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Cooperative MARL
Centralized Training with Decentralized Execution 

- Algorithms like QMIX [4] and COMA [5] 
- Addresses non-stationarity and credit assignment 
- Addresses growth of state and action spaces

- Inapplicable to mixed environments

Combining selösh and social 
incentives  yields tradeoff between 
group performance and fairness 
in multi-agent systems

Our Method: BAROCCO

Trained via MADDPG
 on selösh rewards

Trained via COMA
 on Social Values

Maximized via PPO [3]

Mixed MARL
Centralized Training with Decentralized Execution 

Cooperative Reward Shaping (CRS) [2]

- Algorithms like MADDPG [1]
- Addresses non-stationarity
- Reduce variance of PG 

Social Welfare - 
sum or min of 
rewards of all 
agents

Prosociality 
coefficient, 
between 0 and 1

Each agent i
maximizes mixture 
of selösh and social 
rewards

Selösh 
reward

- Does not address credit assignment problem

Results
Harvest Environment [6]

Group performance (Apples) Fairness (Gini index)
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