
eCAT: a Tool for Automating Test Cases Generation and
Execution in Testing Multi-Agent Systems

(Demo Paper)
Cu D. Nguyen, Anna Perini and Paolo Tonella

Fondazione Bruno Kessler
Via Sommarive, 18
38050 Trento, Italy

{cunduy, perini, tonella}@fbk.eu

ABSTRACT
We introduce eCAT , a tool that supports deriving test cases
semi-automatically from goal-based analysis diagrams, gen-
erates meaningful test inputs based on agent interaction on-
tology, and more importantly it can evolve and execute test
cases automatically and continuously on a multi-agent sys-
tem (MAS). Our experiments have shown that the proposed
tool can exercise MAS more extensively and effectively than
manual testing under the usual time constraints.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Testing tools, multi-agent systems

1. ECAT
Agents have been recognized as a promising technology

to build next generation services. They appear in mobile
phones or personal digital assistant equipments, helping their
owners manage complicated work; agents facilitate e-learning,
decentralized enterprise management. In the development
process of such complex and critical systems, testing be-
comes crucial in order to ensure a satisfactory level of qual-
ity.

We propose an agent testing framework, called eCAT
(http://sra.fbk.eu/people/cunduy/ecat) with following features:

• Generate test case skeletons from goal analysis dia-
grams produced using TAOM4E (http://sra.fbk.eu/tools-

/taom4e). These skeletons can adopt agent interaction
protocols and are ready to be completed with specific
test inputs. Details are introduced in [6].

Cite as: eCAT: a Tool for Automating Test Cases Generation and Ex-
ecution in Testing Multi-Agent Systems (Demo Paper), C. D. Nguyen, A.
Perini and P. Tonella, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

• Provides GUIs to help human testers specify test in-
puts easily.

• Generate test inputs based on agent interaction ontol-
ogy: given an agent system and agents in such system
communicate using an interaction ontology, eCAT can
make use of the ontology in order to generate test in-
puts [7].

• Evolve and generate more test inputs by evolutionary-
mutation or random testing techniques, and run these
test inputs continuously to extensively test MAS [5].

Envi ronment 1

Envi ronment N

Agent A
Agent B

Agent Z

MAS

Host N

Host 1

Test suites editor

Autonomous
tes te r agent

Central monitor ing
 agent

eCAT

Remote moni tor ing agent

Remote moni tor ing
a g e n t

Figure 1: eCAT framework
Figure. 1 depicts a high level architecture of eCAT that

consists of three main components: Test Suite Editor, al-
lowing human testers to derive test cases from goal analysis
diagrams; Autonomous Tester Agent , capable to automat-
ically generate new test cases and to execute them on a
MAS; and Monitoring Agents, that monitor communication
among agents, including the Autonomous Tester Agent , and
all events happening in the execution environments in or-
der to trace and report errors. Remote monitoring agents
are deployed with the environments of the MAS under test,
transparently to the MAS, in order to avoid possible side
effects. All the remote monitoring agents are under the
control of the Central monitoring agent, which is located
at the same host as the Autonomous Tester Agent . The
monitoring agents overhear agent interactions, events, and
constraint violations taking place in the environments, pro-
viding a global view of what is going on during testing and
helping the Autonomous Tester Agent evaluate test results.

pp.1669-1670.

2. TEST CASES GENERATION IN ECAT
Four test cases generation techniques are equipped to eCAT :

Goal-oriented, Ontology-based, Random, and Evolutionary
mutation (also called evol-mutation).

GOAL-ORIENTED. Goal-oriented test cases genera-
tion is a part of a methodology presented in [6] that inte-
grates testing into Tropos, providing a systematic way of
deriving test cases from Tropos output artifacts. eCAT can
take these artifacts as inputs to generate test case skeletons
that are aimed at testing goal fulfillment. Specific test inputs
(i.e. message content), and expected outcome are partially
generated from plan design (e.g. UML activity or sequence
diagrams) and are then completed manually by testers.

ONTOLOGY-BASED. Agent behaviors are often in-
fluenced by messages received. Hence, at the core of test
case generation is the ability to build meaningful messages
that exercise the agent under test so as to cover most of the
possible running conditions. eCAT can take advantage of
agent interaction ontologies, which define the semantics of
agent interactions, in order to automatically generate both
valid and invalid test inputs, to provide guidance in the ex-
ploration of the input space, and to obtain a test oracle
against which to validate the test outputs [7].

RANDOM. eCAT is capable of generating random test
cases, following the random test data generation strategy [4].
First, the Autonomous Tester Agent selects a communica-
tion protocol among those provided by the agents platform,
e.g. FIPA Interaction Protocol [2]. Then, messages are ran-
domly generated and sent to the agents under test. The
message format is that prescribed by the agent environment
of choice (such as the FIPA ACLMessage [3]), while the con-
tent is constrained by a domain data model. Such a model
prescribes the range and the structure of the data that are
produced randomly, either in terms of generation rules or in
the (simpler) form of sets of admissible data that are sam-
pled randomly.

EVOL-MUTATION. This technique combines muta-
tion [1] and evolutionary [9] testing for the automated gener-
ation of the test cases executed by the tester agent in a given
multi-agent environment. Intuitively, we use the mutation
adequacy score as a fitness measure to guide evolution, un-
der the hypothesis that test cases that are better at killing
mutants are also likely to be better at revealing real faults.
The proposed technique consists of the following three steps:

Step 0: Preparation, given the MAS under test M , we
apply mutation operators to M to produce a set of mutants
{M1, M2, . . . , Mn}. One or more operators are applied to
one or more (randomly chosen) agents in M .

Step 1: Test execution and adequacy measure-
ment, the Autonomous Tester Agent executes the test cases
{TC1, TC2, . . . , TCn} on all the mutants. Initially, test
cases are those derived from goal analysis by the user. The
Autonomous Tester Agent then computes the adequacy of
each test case (fitness value): F (TCi) = Ki

N
, where Ki is

the number of mutants killed by TCi. To increase perfor-
mance, the executions of the test cases on the mutants are
performed in parallel (e.g., on a cluster of computers, with
one mutant per node).

Step 2: Test case evolution, the procedure for generat-
ing new test cases is described as follows.

1: Select randomly whether to apply mutation or crossover
2: if Crossover is chosen then
3: Select 2 test cases (i, j) with probability F (TCi), F (TCj)

4: Apply crossover on TCi and TCj

5: else
6: Select a test case with probability of selection F (TCi)
7: Apply mutation
8: end if
9: Add the new test cases to the new set of test cases

The basic mechanisms used to evolve a given test case
are mutation and crossover. Mutation consists of a random
change of the data used in the messages exchanged in a test
case, similarly to the random generation described above.
Crossover consists of the combination of two test cases. Two
good test cases are chosen, some data in the second test case
replace the data used in the first one.

The algorithm stops when the number of generation ex-
ceeds a given maximum number of generation. Otherwise,
we go back to Step 1 and keep on testing continuously [5].
When no improvement of the fitness values is observed for
a number of evolutionary iterations, Step 0 (Preparation) is
repeated.

eCAT ’s performance and capability to reveal faults have
been evaluated on two BDI agent case studies [8]. eCAT
has been implemented as an Eclipse1 plug-in. It supports
testing agents implemented in JADE and JADEX, and the
input ontology formats are those supported by Protégé2 like
OWL.

3. REFERENCES
[1] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints

on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978.

[2] FIPA. Interaction protocols specifications.
http://www.fipa.org/repository/ips.php3, 2000-2002.

[3] FIPA. ACL Message Structure Specification.
http://www.fipa.org/specs/fipa00061, 2002.

[4] H. D. Mills, M. D. Dyer, and R. C. Linger. Cleanroom
software engineering. IEEE Software, 4(5):19–25,
September 1987.

[5] C. D. Nguyen, A. Perini, and P. Tonella. Automated
continuous testing of multi-agent systems. In The fifth
European Workshop on Multi-Agent Systems, December
2007.

[6] C. D. Nguyen, A. Perini, and P. Tonella. A
goal-oriented software testing methodology. In 8th
International Workshop on Agent-Oriented Software
Engineering, AAMAS, volume LNCS 4951, May 2007.

[7] C. D. Nguyen, A. Perini, and P. Tonella.
Ontology-based Test Generation for Multi Agent
Systems. In Proc. of the International Conference on
Autonomous Agents and Multiagent Systems, 2008.

[8] C. D. Nguyen, A. Perini, and P. Tonella.
Ontology-based test generation for multi agent systems.
definition and evaluation. Technical Report
FBK-IRST0108, FBK, 2008.

[9] R. Pargas, M. J. Harrold, and R. Peck. Test-data
generation using genetic algorithms. Journal of
Software Testing, Verifications, and Reliability,
9:263–282, September 1999.

1http://www.eclipse.org
2http://protege.stanford.edu

