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ABSTRACT
Much of the research in auction theory assumes that the auction-
eer knows the distribution of participants’ valuations with complete
certainty. However, this is unrealistic. Thus, we analyse cases in
which the auctioneer is uncertain about the valuation distributions;
specifically, we consider a repeated auction setting in which the
auctioneer can learn these distributions. Using take-it-or-leave-it
auctions (Sandholm and Gilpin, 2006) as an exemplar auction for-
mat, we consider two auction design criteria. Firstly, an auctioneer
could maximise expected revenue each time the auction is held.
Secondly, an auctioneer could maximise the information gained in
earlier auctions (as measured by the Kullback-Liebler divergence
between its posterior and prior) to develop good estimates of the
unknowns, which are later exploited to improve the revenue earned
in the long-run. Simulation results comparing the two criteria indi-
cate that setting offers to maximise revenue does not significantly
detract from learning performance, but optimising offers for infor-
mation gain substantially reduces expected revenue while not pro-
ducing significantly better parameter estimates.
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General Terms
Design, Economics
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1. INTRODUCTION
The use of agent mediated electronic commerce has grown rapidly
over recent years and represents a vast potential market. This pop-
ularity has prompted much research into agent mediated auctions
and, specifically, the development of autonomous software agents
that fulfil the role of auctioneer or bidder on behalf of their owner.
However, much of this work makes strong assumptions about the
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type of information available to the auction designer. In particular,
it is often assumed that, although individual bidders’ valuations are
private, the auctioneer knows the distribution from which they are
drawn (e.g. [5, 2, 8]). In this paper we relax this somewhat unreal-
istic assumption to analyse cases where the auctioneer is uncertain
about the distribution of bidders’ valuations, but we consider a re-
peated auction setting so the auctioneer has an opportunity to learn
the distribution.

The subject of our investigation is the optimal design of one
particular variant of the take-it-or-leave-it auction protocol [8], a
single-offer take-it-or-leave-it auction with symmetric bidders (which
we abbreviate as TLA). Under this protocol, each bidder is made an
offer for the single item. If they accept the offer, the auction closes
and the item is allocated to them. If they reject the offer, they leave
the auction and the next bidder is made a new offer. The auction
continues until the item is sold or all potential bidders reject the of-
fers made to them. Consequently, bidders have a dominant strategy
to accept an offer if it is less than their valuation. This protocol is
used as a canonical setting in which we can examine the fundamen-
tals of our problem, without being distracted by the complications
of other auction protocols.

In this situation, the auctioneer faces two complementary chal-
lenges. The first is to determine the actual values of the offers made
to the bidders, which brings us to our first extension to the state
of the art. We derive an expression for the expected revenue of
an auction given uncertainty over the parameters that describe the
bidders’ valuation distribution, and describe a procedure for max-
imising this expression. This is achieved by using reasonable priors
over parameter values to represent the uncertainty, and integrating
over these priors to find the expected revenue of the auction. The
second challenge is determining appropriate priors over the values
of these parameters for use in optimising the auction design. To do
this, we consider repeated auction setting, where identical items are
sold to a large pool of bidders, giving the auctioneer an opportunity
to learn these values. An online Bayesian inference algorithm is
then used to refine the estimates of the parameters, which are used
as priors for the next auction. The auctions are designed to max-
imise revenue, so by following the procedure described above the
auctioneer “learns while it earns”.

However, learning from the outcomes of auctions designed to
maximise expected revenue does not necessarily imply efficient, or
even rapid, learning. In particular, we expect that if an auctioneer
were to have more accurate estimates of the unknown parameter
values earlier in a sequence of auctions, the average total revenue of
subsequent auctions could be improved. This may, in turn, increase
the total revenue of the complete sequence of auctions.



To test this hypothesis, and as a second extension to the literature,
we derive an expression for the additional information elicited by
running the auction, and procedure for maximising this expression.
We use the expected Kullback-Liebler (KL) divergence between
all possible posterior distributions and the prior distribution of the
unknowns as an experimental design utility function, just as one
would use expected revenue [1]. In the context of Bayesian infer-
ence, KL divergence is the natural measure of information gain, so
using it should improve the learning performance of our Bayesian
inference algorithm.

Our third extension to the state of the art is a comparison of
the two procedures. Using the expressions described above as de-
sign criteria, we apply them to the problem of learning unknown
parameter values from the closing price of TLAs, and compare
their learning performance and revenue. Our results show that us-
ing offers that maximise expected information gain produce only
a marginally better learning performance than compared to using
offers that maximise expected revenue, but at a large cost in terms
of foregone revenue. The implication of this result is that, although
not specifically targeted at maximising the information gained from
an auction, offers that maximise expected revenue do indeed pro-
vide sufficient information for the Bayesian machine learning algo-
rithm to learn effectively.

The paper progresses as follows. Next, we describe the extended
TLA model that considers uncertainty in the parameters of the bid-
ders’ valuation distribution. Then, in section 3, we present the
first auction design criterion, which sets offers to maximise the
expected revenue of the auction given uncertain parameter values.
Section 4 details the online Bayesian machine learning algorithm
used by our auctioneer. In section 5, we present our second design
criterion, which sets offers to maximise the expected information
gained from an auction. Then, in section 6, we compare how our
Bayesian inference algorithm learns from offers generated by each
approach and how using each criterion affects the revenue gener-
ated in a series of auctions. The final section summarises the paper
and discusses future work.

2. THE AUCTION MODEL
In this paper we consider the model of a TLA introduced by Sand-
holm and Gilpin [8]. In particular, we investigate the single-offer
variant as it is the most readily applicable within a real world sce-
nario and it avoids the problem of having to decide how many offers
to make to each potential bidder. We consider a series of such auc-
tions as a model of a situation where the auctioneer can learn the
values of the parameters of the bidders’ valuation distributions.

Under the single-offer TLA protocol, an auctioneer has an indi-
visible good, which it values v0, that it can allocate to any one of
a set of n risk neutral bidders. The auctioneer approaches each po-
tential bidder in sequence and proposes one price for the item. Let
o = o1, . . . ,on be the sequence of n offers. If bidder i accepts the
offer, the item is allocated to that bidder at price ow=i, the auction
finishes, and the seller gains utility U = ow=i−v0. If the bidder re-
jects the offer they leave the auction and the next bidder is offered
the item. The auction continues until the item is sold or all bidders
reject the offer made to them, at which point the auctioneer’s utility
for holding the auction is zero.

We analyse symmetric TLAs, where each bidder has a valua-
tion vi for the good that is independently drawn from a common
distribution with cumulative density F(v). Making this restriction
removes the problem of ordering offers, allowing us to focus solely
on the offer levels implemented by the auctioneer. The bidders’ val-
uation distribution is itself characterised by a vector of parameters
θ which are, in the full information case, known to the auctioneer.

In the extended model considered here, this assumption is relaxed
to analyse the effects of uncertainty over the parameters.

2.1 The Full Information Case
In the single-offer TLA protocol, the decision to accept an offer is
dependent only on a bidder’s own valuation. As such, a bidder’s
dominant strategy is to accept any offer that is less than its valu-
ation. Thus, the probability of the auction closing on a particular
offer is the probability that the current bidder i has a valuation vi
greater than oi, multiplied by the probability that all previous offers
were rejected. The probability of closing on offer P(ow=i), given
that all i−1 previous offers have been rejected, is:

P(ow=i) = [1−F(oi)]
i−1

∏
j=1

F(o j), 1≤ i≤ n. (1)

Then, the probability that the item is not allocated is the probability
that every bidder has a valuation lower than the offer it is made:

P(ow=0) =
n

∏
i=1

F(oi). (2)

Under Sandholm and Gilpin’s model (recalling that o0 = v0), the
expected utility of an auctioneer setting offers at the beginning of
an auction to maximise revenue is:

E[U(o)] =
n

∑
i=0

P(ow=i)oi. (3)

Now, working backwards from the nth offer, see that the expected
value of an offer is determined only by its own value and that of the
offers after it. Using this, Sandholm and Gilpin construct a simple
algorithm to solve for the optimal offers. To begin, the auction-
eer sets a virtual reserve price, π, equal to its own valuation (i.e.
π = v0). It then sets the last offer, on, to maximise its expected rev-
enue given π, recalculates the virtual reserve price using this offer,
and computes the next highest offer on−1. By backward induction,
as each offer is optimal at each step of the auction, the algorithm
produces optimal offers, and offers naturally decrease over time.

2.2 The Incomplete Information Case
The full information model assumes the auctioneer has perfect knowl-
edge of the parameters of the bidders’ valuation distribution. The
model we consider is of the more general case where the parame-
ters, θ, describing the bidders’ valuation distribution are not known.
We represent the auctioneers’ initial uncertainty about θ with a
prior P(θ), which represents an initial assumption as to which val-
ues of θ are most likely to occur.

We illustrate this general approach by considering two exam-
ple valuation distributions. Firstly, the bidders’ valuations may be
drawn from a uniform distribution:

F(v) =
v−a
b−a

with lower and upper supports a and b, and where the auctioneer’s
initial uncertainty about b is represented by a uniform prior with
support [b,b].1 Secondly, the bidders’ valuations may be drawn
from an exponential distribution, where the unknown parameter is
the mean of the distribution, 1/α:

F(v) = 1− e−αv.

1Our use of uniform priors is reasonable because in economic sce-
narios, there are almost always bounds on the likely valuations bid-
ders will hold for an item. This information is captured in the range
of the prior.



d← ∞
while d > stopping condition,

for i=n:1

o′i← argmax
oi
E[U(o)]

d← 0

for i=1:n,
d←max(d,abs(o′i−oi))
oi← o′i

Figure 1: Algorithm for optimal offers in the extended model.

Again, the auctioneer’s initial uncertainty about the value of α is
also represented by a uniform prior, α∈ [α,α]. These two examples
have been chosen because they frequently appear in the literature
(e.g. [7, 3, 6]), and uncertainty in these distributions is easily rep-
resented by uncertainty in a single parameter. However the general
approach can be used to learn distributions with multiple parame-
ters, or may be used in conjunction with Bayesian model selection
techniques [4].

3. EXPECTED REVENUE CRITERION
Uncertainty in the value of θ requires a new method to maximise
the expected revenue of the auction. First, a change of notation
is necessary to explicitly consider uncertainty in the parameters.
Thus, given a valuation distribution F(v,θ) and a set of offers o, let
the probability of closing on offer oi, after i− 1 other offers have
been rejected, or of not closing, o0, be written as:

P(ow=i|θ,o) =





[1−F(oi,θ)]
i−1

∏
j=1

F(o j,θ), 1≤ i≤ n,

n

∏
i=1

F(oi,θ) i = 0.

(4)

To maximise expected revenue, the auctioneer can integrate out un-
certainty in the parameter values using P(θ) to moderate the value
of the expected revenue for each value of θ. Thus, the expected
utility of an auctioneer interested in maximising revenue is:

E[U(o)] =
Z

P(θ)
n

∑
i=o

P(ow=i|θ,o)oi dθ. (5)

Note that in practice we perform these calculations numerically by
considering a discrete approximation of P(θ) from θ to θ.

In order to find the optimal offers, we must set o to maximise
equation (5). As we were unable to find an analytical solution to
this expression, we use a numerical algorithm based on Jacobi iter-
ation. Specifically, while fixing all other offers, we find the value
of oi that maximises equation (5) using a one-dimensional search
method (such as golden section search). We sequentially update
all oi and iterate the process until the offer levels converge to the
necessary accuracy.

We present this algorithm in pseudo-code in figure 1, and note
thatE[U(o)] represents the revenue expression shown in equation (5).
Whilst our purpose is not to prove the convergence properties of
this algorithm, in our experiments it was found to converge reliably
and rapidly, with the only constraints on starting conditions being
that the offers are in the correct order (i.e. descending).

4. ESTIMATING AUCTION PARAMETERS
In section 2.2 of this paper we extended the model of TLAs to con-
sider uncertainty in the parameters that describe the bidders’ val-
uation distribution. Now, under the commonly made assumption
that the participants in each auction are drawn from a large pool of

potential bidders whose valuations are described by the fixed distri-
bution F(v) (e.g. [7, 3, 6]), the auctioneer can use the information
contained in the closing price to refine its estimate of the unknown
auction parameters. In order to compare our results to Sandholm
and Gilpin’s, we only consider the case where the auctioneer learns
at the end of each auction. Given this, we use Bayesian inference to
estimate parameter values via the expressions for the probability of
closing on a particular offer given in equation (4). Bayesian infer-
ence provides a full distribution that describes the auctioneer’s be-
lief over the entire range of possible parameter values. The shape of
this distribution indicates the confidence that the auctioneer should
have in his current estimate [4].

By this approach, the auctioneer updates its joint distribution
over the unknown parameters θ using Bayes’ theorem. In gen-
eral, if T auctions have been observed, the auctioneer can use all
of this evidence to improve its estimate. Thus if the offer levels
used in auction t ∈ T were ot , all the levels used in T auctions were
O = {o1, . . . ,oT }, and the sequence of observed closing prices were
ow = {o1

w=i, . . . ,o
T
w=i}, we have:

P(θ|ow,O) =

T

∏
t=1

P(ot
w=i|θ,ot)P(θ)

Z T

∏
t=1

P(ot
w=i|θ,ot)P(θ)dθ

. (6)

Again, in this expression the denominator is a normalising factor
that ensures that P(θ|ow,ot) sums to one.

The auctioneer adopts the following procedure to learn the un-
known parameter values. Using its prior belief, it selects offers
for the first auction using equation (5). After observing the clos-
ing price of this auction, it uses the expression in equation (6) to
update its belief over the parameters θ. This belief distribution is
then used as P(θ) to calculate the offers for the next auction. The
process of refining the estimate of θ and implementing new offer
levels is repeated for subsequent auctions.

5. INFORMATION GAIN CRITERION
In section 4, the auctioneer learns θ through observing the be-
haviour of bidders in auctions designed to maximise revenue. How-
ever, if the auctioneer had better estimates of θ earlier in the se-
quence of auctions, it could implement better offers and earn greater
revenue in subsequent auctions. To this end, in this section, the
problem of setting offers specifically so the auctioneer can learn in
the most effective way possible is addressed. By doing so, we can
then answer the associated question of whether more rapid learning
in earlier stages of the series of auctions will increase the revenue
earned over the longer term.

The gain in information about parameters θ obtained by select-
ing an experimental (auction) design o = {o1, . . .on}, observing an
outcome ow=i which is then used to update the estimate of θ, may
be measured by the KL divergence between the prior and the pos-
terior distributions of θ:

DKL[P(θ|ow=i,o)||P(θ)] =
Z

P(θ|ow=i,o) log
(

P(θ|ow=i,o)
P(θ)

)
dθ.

However, as the outcome has not yet been observed, the expected
amount of information gained by holding an auction is the average
KL divergence over all possible outcomes in o, as each outcome
will result in a different posterior estimate. Thus, the expected
utility of an auctioneer interested in maximising the information



Average revenue - uniform valuation distribution
Offers maximising 1st auction 2nd auction
DKL, revenue 0.5804 0.6846
Revenue, revenue 0.6126 0.6846

Average revenue - exponential valuation distribution
Offers maximising 1st auction 2nd auction
DKL, revenue 1.393 1.723
Revenue, revenue 1.472 1.720

Figure 2: Revenue comparison. First auction expected revenue
for offers maximising DKL or revenue; Second auction revenue
from offers maximising revenue using posterior from outcome
of first auction based on DKL or revenue maximising offers.

it gains about the bidders’ valuation distribution is:

E[U(o)] =
n

∑
i=0

P(ow=i|o)
Z

P(θ|ow=i,o) log
(

P(θ|ow=i,o)
P(θ)

)
dθ.

(7)
We now describe how we implement this criterion. Equation (7)

is in a clumsy form that requires computing all potential posterior
distributions generated by the different outcomes of the auction.
By applying Bayes’ theorem twice the following expression can be
implemented in our maximum expected KL divergence algorithm:

E[U(o)] =
n

∑
i=0

Z
P(ow=i|θ,o)P(θ) log

(
P(ow=i|θ,o)
P(ow=i|o)

)
dθ (8)

One convenient aspect of equation (8) is that it may also be max-
imised using the iterative algorithm used to maximise the expected
revenue criterion (figure 1, discussed in section 3). In this case,
E[U(o)] represents the expected KL divergence given by equation (8).

6. COMPARING THE CRITERIA
In this section we compare how setting offers using either the ex-
pected revenue or the expected information gain criterion affects
the performance of the Bayesian machine learning algorithm and
the revenue generated by the auction. We implement offers in a
simulated TLA and use the results to test whether or not the infor-
mation gain–maximising offers produce a posterior estimate that
can be used to generate greater revenue in subsequent auctions,
compared to simply optimising offers for revenue.

We addresses this question by looking at the effects of learn-
ing from either approach on the revenue generated if the auction
were run a second time. We consider the case of 8 bidders. In
the first auction, offers are generated from an ignorant prior to ei-
ther maximise expected revenue or expected information gain. In
the second auction, both sets of offers maximise expected revenue,
however one set is generated using the posterior of the information
gain maximising auction, while the other uses the posterior of the
revenue maximising auction. The rationale for this experiment is
that it is the limiting case: In the first auction you have the most
to learn, while the second auction presents the greatest potential to
exploit the additional information to earn additional revenue.

Figure 2 shows that in the first auction, the revenue maximising
offers generate significantly more revenue than those set to max-
imise information gain. The expected revenue for the uniform dis-
tribution is 0.6126 for the revenue maximising offers and 0.5804
for the information gain maximising offers. For the exponential
distribution, the values are 1.472 and 1.393, respectively. Thus, in
setting the offers to maximise expected information gain, the auc-
tioneer has to forgo a significant amount of revenue (5%), and this
is particularly so in the case of exponential valuation distributions.

To justify this action, subsequent auctions must be able to make
up the difference. However, figure 2 also shows that the revenue
generated by the second auction is only slightly affected by differ-
ences in the parameter estimates used (i.e. at the fourth significant
figure). That is, the refinements to the prior produced by using
information gain maximising offers in the first auction do not gen-
erate enough revenue in the second auction than if revenue max-
imising offer levels had been used in both auctions. Furthermore,
even if the extremely small benefit is maintained in subsequent auc-
tions, unless a very long horizon is used (i.e. > 40 repetitions,
without discounting), the future benefits of more rapid learning per-
formance will not overcome the revenue foregone in the very first
auction. On the other hand, the results presented above indicate that
setting offers in TLAs to maximise revenue does not significantly
detract from learning performance.

7. CONCLUSIONS
In this paper we extended an existing model of TLAs to consider
uncertainty in the value of parameters describing the bidders’ valu-
ation distribution. We derived two criteria; one that maximised the
expected revenue of the auction given this parameter uncertainty,
and one that maximised the expected information gained about the
unknown parameter values by holding the auction. We used the
criteria to test whether, by adopting a strategy of learning the un-
known parameters more quickly, an auctioneer could increase the
long-term revenue generated by the entire series of auctions.

Our results show that a TLA optimised to earn revenue reveals
close to the same amount of information as a TLA designed specif-
ically for this purpose, so also allows the auctioneer to come close
to learning as rapidly as if they had optimised the auction specifi-
cally to learn. However, the benefits of learning more quickly early
in a series of auctions do not manifest themselves in significantly
more revenue. As such, the revenue forgone by an auctioneer who
implements offer to maximise the expected information gain of a
TLA is not recouped by any additional revenue in future auctions.
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