
Self-Organized Flocking with a Mobile Robot Swarm

Ali E. Turgut
KOVAN Research Lab.
Dept. of Computer Eng.

Middle East Technical Univ.
Ankara, Turkey

aturgut@metu.edu.tr

Hande Çelikkanat
KOVAN Research Lab.
Dept. of Computer Eng.

Middle East Technical Univ.
Ankara, Turkey

hande@ceng.metu.edu.tr

Fatih Gökçe
KOVAN Research Lab.
Dept. of Computer Eng.

Middle East Technical Univ.
Ankara, Turkey

fgokce@ceng.metu.edu.tr

Erol Şahin
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ABSTRACT

This paper studies self-organized flocking in a swarm of mo-
bile robots. We present Kobot, a mobile robot platform
developed specifically for swarm robotic studies, briefly de-
scribing its sensing and communication abilities. In partic-
ular, we describe a scalable method that allows the robots
to sense the orientations of their neighbors using a digital
compass and wireless communication. Then we propose a
behavior for a swarm of robots that creates self-organized
flocking by using heading alignment and proximal control.
The flocking behavior is observed to operate in three phases:
alignment, advance, and avoidance. We evaluate four vari-
ants of this behavior by setting its parameters to extreme
values and analyze the performance of flocking using a num-
ber of metrics, such as order and entropy. Our results show
that, the flocking behavior obtained under appropriate pa-
rameter values, is quite robust and generates successful self-
organized flocking in constraint environments.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robotics

General Terms

Algorithms, Performance, Design, Experimentation

Keywords

swarm robotics, flocking, self-organization

1. INTRODUCTION
Flocking, the coherent maneuvering of a swarm of indi-

viduals in space as if they are a super-organism, is a widely
observed phenomenon in animal societies. Flocks of birds,
herds of quadrupeds and school of fish stand as fascinating
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Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-

16., 2008, Estoril, Portugal, pp. 39-46.
Copyright c© 2008, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

examples of self-organized coordination for swarm robotic
systems.

Flocking in natural systems has long been studied in biol-
ogy. However, it was Reynolds [14] who first demonstrated
that flocking, which he described as a “general class of po-
larized, non-colliding, aggregate motion” of a group of in-
dividuals, can be created in artificial swarms. Being inter-
ested in obtaining a realistic looking flocking behavior in a
computer animation, Reynolds assumed that his individu-
als (called boids) can sense bearing, range and orientation
of their neighbors and showed that flocking can be achieved
using three simple behaviors in order of decreasing priority;
namely collision avoidance, velocity matching and flock cen-
tering. Roughly speaking, the first behavior keeps the boids
away from each other avoiding collisions, the second behav-
ior aims to match the velocity of a boid with its neighbors
and the third behavior forces the boid to stay close to its
neighbors.

Reynold’s seminal work triggered a wide range of stud-
ies on the design, modeling and analysis of flocking from
robotics, to control theory and statistical physics. In sta-
tistical physics, Vicsek et al. [18] proposed a simple model
called Self-Driven Particles (SDP) to simulate the motion
of self-driven particles in free-space. In his model, parti-
cles, moving at constant velocity, sense the headings of their
neighbors within a pre-defined range and update their head-
ing to the average. The model predicts that flocking emerges
above a critical density of the particles and below a critical
level of noise in their heading computation. In a later study,
Gregoire et al. [3] extended the SDP model by adding an
attraction/repulsion force based on local bearing and range
measurement of neighboring particles to enable coherence in
open-space.

In control theory, Tanner et al. [16] proposed a control law
for flocking in free-space. The law used an attractive/repul-
sive term based on local range and heading measurements,
and an alignment term based on local velocity measurement
for fixed-topology [16] and dynamic-topology [15] cases. The
fixed topology flocking case was implemented on two real
robots that broadcasted their position and velocity obtained
from odometry and with one acting as the leader[13]. Jad-
babaie et al. [7] released the constraints on the neighboring
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relations and proved that the SDP model converges to an
aligned motion when the union of neighboring graphs within
the finite interval of time is connected. Olfati-Saber [12] con-
sidered the case of flocking with a leader in free-space and
environment with obstacles using velocity and proximity in-
formation. It is shown that a group objective is necessary
to ensure stability in both cases. Moshtagh et al. [11] pro-
posed to measure relative bearing, optical flow and time-to-
collision of neighboring agents to align the headings of the
agents in free-space without any explicit heading measure-
ment.

Lindhe et al. [9] proposed a flocking algorithm which en-
sures stable and collision-free flocking in environments with
complex obstacles using Voronoi partitions based on local
range and heading information. Hanada et al. [4] also con-
sidered the same case and proposed a flocking algorithm in
which every agent moves to form an isosceles triangle with
the two neighbors based on range and bearing measurement
of neighbors, keeping its heading toward the goal (known a
priori), adhering to the group and avoiding obstacles. Ger-
vasi and Prencipe [2] on the contrary assumed that every
agent can measure the range and bearing of all agents, one
being the distinguished leader, and move to a target loca-
tion to transform the current formation to the desired one
at each time step.

In one of the earliest attempts towards obtaining flocking
in a group of robots, Mataric [10] combined a set of “basis
behaviors”; namely safe-wandering, aggregation, dispersion
and homing. In this study, the robots were able to sense
the obstacles in the environment, localize themselves with
respect to a set of stationary beacons and broadcast the
position information to the other robots in the group. The
flocking behavior developed can be seen as collective homing,
where a homing direction is known and the robots try to
stay within the sensing range of each other while moving.
Through the use of safe-wandering behavior the robots were
also able to avoid obstacles on their path towards their home.

In [8], Kelly and Keating used a group of 10 robots, which
were able to sense the obstacles around them through ultra-
sound sensors, and the relative range and bearing of neigh-
boring robots through the use of a custom-made active IR
system. The robots used an off-the-shelf RF system to elect
one of them as the leader of the group when none of them
declares itself as the leader. The leader would then wander
in the environment whereas the others would follow. The
IR system was used to generate attractive forces towards
other robots whereas the ultrasound sensors acted as repul-
sive force from other robots and obstacles.

Hayes et al. [5] proposed a “leaderless distributed flock-
ing algorithm that is more conducive to implementation on
embodied agents” than the ones being used in computer an-
imation. The flocking behavior consisted of two simpler be-
haviors; namely collision avoidance and velocity matching
flock centering. It was assumed that the robots were able
to sense the range and bearing of their neighbors within a
predefined sensing range. Using this information each robot
would compute the center-of-mass (CoM) based on the rel-
ative placement of its neighbors and the heading towards a
pre-defined goal area. The CoM was then used to implement
flock cohesion whereas the change in CoM between conse-
quent sensory cycles was used to align the robot with the
group. The authors implemented the proposed algorithm on
the Webots simulator and optimized the parameters of the

algorithm, which were then verified on a 10 robot group. In
the experiments with physical robots, however, the authors
had to “emulate the range and bearing sensor signals” by
tracking the robots using an overhead camera system and
broadcasting these readings to the robots.

Holland et al. [6] proposed a flocking scheme for unmanned
ground vehicles similar to Reynolds’ algorithm based on
avoidance, flock centering and alignment behaviors, where
the UAVs receive the range, bearing and velocity informa-
tion from the base station based on pattern recognition tech-
niques.

Despite the theoretical studies in statistical physics and
control theory, self-organized flocking such as the ones ob-
served in nature has still not been achieved in robotics. The
few experimental studies in robotics reviewed above either
used a virtual or explicit leader[8] to lead a group of individ-
uals or assumed that a goal heading (or area) is sensed by
the whole group[10, 5]. Moreover, in some of the studies[5,
13], the authors had to resort to using “emulated” sensors.
Studies that propose to use vision to control flocking[11], al-
though being promising, still remain to be implemented and
evaluated on physical robots. Hence, swarm robotic systems
that can maneuver in an environment as a super-organism
and avoid obstacles on their path as a flock do not exist yet.

The main reason behind this failure, as partially discussed
above, is that the flocking behaviors proposed and studied in
other domains such as computer graphics, statistical physics
and control theory assumes that the individuals can sense
the range to the center of their neighbors and that there is
one range reading per neighbor. Such sensing abilities are
still not available on most available robot platforms, with
Kelly and Keatings’[8] custom active IR system being an
exception. The proximity sensors on most mobile robots
(such as ultrasound and IR-based systems) can sense only
the range to the closest point of a neighboring robot and
multiple range readings can be returned from a close neigh-
boring robot. Furthermore, the sensing of bearing, velocity
and orientation of neighboring robots is still difficult with
off-the-shelf sensors available on robots. Hence, there ex-
ist a major gap between the studies that propose flocking
behaviors and robotics.

In this paper, we study the self-organized flocking of a
swarm of mobile robots. By self-organized flocking, we mean
that a group of mobile robots, initially connected but not
necessarily aligned, should be able to wander in an envi-
ronment by moving as a coherent group in free space and
avoiding obstacles in the environment as if it’s a “super-
organism”. Different from the other robotic studies men-
tioned above, the challenge lies in developing a fully decen-
tralized and scalable coordination method. Behaviors that
include the use of a designated or elected leader within the
group or the use of a common goal heading are excluded.
In the rest of the paper, we first present a mobile robot
platform and a method that allows the robots to sense the
orientations of their neighbors using a digital compass and
wireless communication. Then we propose a behavior that
creates self-organized flocking in a group of mobile robots
using heading alignment and proximal control.

2. KOBOT ROBOT PLATFORM
We use Kobot robot platform [17] which is specifically de-

signed for swarm robotic studies (Figure 1(a)). Kobot is of
CD size (diameter 12 cm), weighs 350 grams and is differen-
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(a) (b)

Figure 1: (a)A photo of Kobot. (b)The scaled
sketch. The circle represents the body. The small
rectangles shows the placement of the IR sensors.
The gray scale blob shows the output of the sensor
for an obstacle at the corresponding point. Darker
colors denote higher values of sensor measurement
(dk).

tially driven by two high quality motors. It has eight IR sen-
sors for kin and obstacle detection and a digital compass for
heading measurement. An IEEE 802.15.4/ZigBee compli-
ant wireless communication module with a range of approx-
imately 20 m indoors, is used for communication between
Kobots as well as between Kobots and a console. Kobots
host a 20MHz PIC184620A microcontroller, which can be
programmed through the wireless communication channel,
to run its behaviors. The low-power design of their systems,
gives Kobots an operation time of 10 hours with a LiPoly
battery.

2.1 Infrared Short-Range Sensing System
Kobot uses an active IR system for proximal sensing.

The system consists of eight modulated IR sensing modules
placed evenly at 45◦ intervals, as can be seen in Figure 1(b),
and a coordinator microcontroller that controls these mod-
ules. Each module has an IR LED having a half-cone angle
of 25◦, a modulated IR receiver and a microcontroller. The
sensing algorithm utilized is a version of CSMA-CA (carrier
sense multiple access-collision avoidance) algorithm to avoid
crosstalk among any neighboring robots.

Before the measurement, all of the sensors on a robot scan
the environment for a random period of time whose dura-
tion is controlled by the coordinator microcontroller. The
detection of a modulated IR signal in this period indicates
the existence of a kin robot. The measurement comes after
that, and is initiated only when the sensor does not receive
any modulated IR signals for a certain time, the amount of
which is determined by analyzing the timing conditions of
the measurement algorithm. Otherwise, an additional idle
period is inserted to eliminate crosstalk. The measurement
is performed by varying the power of the IR LED to deter-
mine the minimum level at which the radiated signal reflects
back from an object. The kth sensor returns an integer pair
(dk, rk). dk ∈ {0, 1, · · · , 7} denotes the range to the object
being sensed. dk = 1 and dk = 7 indicate a far and nearby
object, respectively. dk = 0 stands for no detection case.
rk ∈ {0, 1} shows whether the sensed object is a kin robot
or not.

The system, specifically designed to be used in swarm
robotics, uses modulated IR signals for measuring the range
to obstacles and can do kin-detection. The system is able to
distinguish kin robots and obstacles within ∼ 20 cm range in
seven discrete levels at 18 Hz. The use of a modulated sig-
nal minimizes interference from environmental lighting con-
ditions and makes the platform suitable for studying self-
organization in robotic systems.

2.2 Virtual Heading Sensor
A novel sensing system called the virtual heading sen-

sor (VHS) is designed for obtaining the headings of the
neighboring robots. It is implemented using the wireless
communication and the digital compass modules. VHS mea-
sures and broadcasts the heading of the robot in radians (to
be called θ) with respect to the sensed North at each time
step (∼ 100 ms). Neighboring robots within the communi-
cation range of VHS receive the broadcasted heading value
of the robot. Empirical results reveal that headings of 70%
of the robots within the communication range, regardless of
flock configuration, can successfully be obtained.

The digital compass has a noisy output characteristic due
to the hard-iron effect caused by nearby ferrous metals, ei-
ther in the environment or in the robot itself. Self-induced
noise is eliminated by mounting the compass on a plas-
tic mast for minimal interference from the robot’s body.
Yet, external noise is inevitable and the sensed North de-
viates much from the absolute North. The VHS system
assumes that the sensed North remains approximately the
same within the wireless communication range of the robots
(corresponding to the robot neighborhood) and that the
heading values broadcasted can be considered to be on the
same coordinate frame allowing the robots to detect their
relative headings with respect to each other. In our exper-
iments, we have observed that this type of sensing is quite
robust even in indoor environments where metal objects are
abundant.

3. THE FLOCKING BEHAVIOR
The flocking behavior consists of heading alignment and

proximal control behaviors, combined in a weighted vector
sum:

~a = α ~h+ β ~p (1)

where ~h is the heading alignment vector, ~p is the proximal
control vector, and ~a is the desired acceleration vector.

3.1 Heading Alignment Behavior
The heading alignment behavior aims to align the robot

with the average heading of its neighbors. The VHS is used
for receiving the current headings of the neighbors. The

alignment vector (~h) is calculated as:

~h =
X

j∈N (t)

»

cos(π
2
− (θj − θ))

sin(π
2
− (θj − θ))

–

where N (t) denotes the neighboring set of the robot at time
t, which contains the neighbors in the communication range
of VHS, θ and θj denote the robot’s and the jth neighbor’s
current heading.
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3.2 Proximal Control Behavior
The proximal control behavior uses readings obtained from

the IR sensing system to (1) avoid collisions with other
robots and obstacles, (2) maintain the cohesion between the
robots.

For each IR sensor, a virtual force proportional to the
square of deviation of measured distance from the desired
distance is assumed. The desired distance is taken as a finite
value for kin-robots, and ∞ for obstacles, which motivates
the robot to keep at a distance with its peers, while running
away from obstacles. The virtual force from the kth sensor
is calculated as:

fk =

(

− (dk−ddes)2

C
if dk ≥ ddes

(dk−ddes)2

C
otherwise

where ddes, the sensor measurement corresponding to the
desired distance, is half of the sensor range for robots (rk =
1), and 0 for obstacles (rk = 0). C is a scaling constant.
Figure 2 plots fk for robots and obstacles and marks the
ddes values for both.
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Figure 2: The virtual force (fk) is drawn with re-
spect to dk. Higher values of dk show closer dis-
tances. The force function is saturated in the range
[−1, 1].

The calculation of the normalized proximal control vector,
~p, is as follows:

~p =
1

8

X

k

»

fk cos(φk)

fk sin(φk)

–

where k ∈ {0, 1, · · · , 7} denotes the sensor positioned at an-
gle φk = π

4
k with x-axis of the body-fixed reference frame.

1
8

is the normalization constant.

3.3 Motion Control
The acceleration vector ~a of the robot is mapped to for-

ward velocity (u) and angular velocity (ω). u is set as:

u =



( ~a
‖~a‖ .âc)

γ
umax if ~a

‖~a‖ .âc ≥ 0

0 otherwise
(2)

where âc is the current direction vector parallel to the y-
axis of the body-fixed reference frame. γ is a parameter
which enables (γ = 1) modulation of the forward velocity or
disables (γ = 0) it.

Figure 3: The reference frame is fixed to the cen-
ter of the robot. The forward velocity, u is denoted
along the y axis of the coordinate frame. vR and vL,
denote the velocity of the right and the left motor,
respectively. The body-fixed reference frame makes
an angle of θ (current heading) with the sensed
North direction (ns). l is the distance between two
wheels.

The forward velocity of the robot is modulated in order
to minimize the probability of collisions. It depends on the
“urge” to turn, as computed by the dot product of the de-
sired direction and the current direction. When the urge
to turn is high, u decreases, converging to 0 at the extreme
case, where the robot only rotates with respect to its mass
center. Conversely, when the robot is already moving in the
desired direction, the forward velocity is allowed to achieve
its maximum.

When the dot product of the desired direction of motion
and the current direction of the robot is negative, this indi-
cates that the angle between the two vectors is greater than
90 degrees in absolute value. By setting u = 0 in this case,
we constraint the robot’s motion to rotation only, instead of
assigning a negative velocity. Failure to do so would have
resulted in robots moving backwards, a situation that would
complicate the behavior and its analysis.

The angular velocity (ω) of the robot is controlled propor-
tionally with the deviation of desired angle from the current
direction of the robot.

ω = (∠~a− ∠âc)Kp (3)

where Kp is the proportionality constant of the controller
and ∠(.) computes the argument of a vector.

The rotational speeds of the right (NR) and the left (NL)
motors (Figure 3) are eventually calculated using the for-
ward velocity (u) and the angular velocity (ω):

NR =
“

u−
ω

2
l
” 60

2πr

NL =
“

u+
ω

2
l
” 60

2πr

where NR and NL are the rotational speeds [rpm] of the
right and left motors respectively, l is the distance between
the wheels of the robot [m], u is the forward velocity [m/s]
and w is the angular velocity [rad/s].

3.4 Variants of the Flocking Behavior
The flocking behavior proposed have three main param-

eters; namely α, β and γ. The effects of these parameters
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are evaluated by setting them to extreme values and hence
introducing four variants of the behavior, listed below:

• Proximal Control with Constant Forward Velocity
(Pconst) In this variant only proximal control is per-
formed and the forward velocity is not modulated. α
is set to 0, β to 1, and γ to 0.

• Proximal Control with Modulated Forward Velocity
(Pmod) In this variant forward velocity is modulated
with γ set to 1. α parameter is again 0 and β is 1, as
in Pconst.

• Heading Alignment and Proximal Control with Con-
stant Forward Velocity (HP const) This variant adds a
heading alignment term. α is set to 0.125 and β is set
to 1. γ is 0 as in Pconst, which means no modulation
in forward velocity.

• Heading Alignment and Proximal Control with Modu-
lated Forward Velocity (HPmod) In this variant, α is
set to 0.125, β is set to 1 and forward velocity is mod-
ulated with γ set to 1.

4. METRICS OF FLOCKING BEHAVIOR
We have used a number of metrics to quantitatively mea-

sure the quality of flocking produced by the four variants of
the proposed flocking behavior.

Order (ψ) measures the angular order of the robots [18].

ψ(t) =
1

N

˛

˛

˛

˛

˛

N
X

k=1

e
iθk

˛

˛

˛

˛

˛

(4)

where N is the number of robots in the group and θk is the
heading of the kth robot at time t.

When the group is aligned, its order is close to one, and it
is in ordered state. When the group is unaligned, its order
is close to zero, and it is in disordered state.

Entropy (S) measures the positional disorder of the group
[1]. This metric is calculated by finding every possible clus-
ter via changing the maximum distance (h) between the in-
dividuals in the same cluster. Two robots i and j are con-
sidered to be in the same cluster, if and only if ‖~ri −~rj‖ ≤ h
holds, where ~ri, ~rj denote the position vectors of ith and jth

robots and ‖.‖ is the Euclidean norm. Shannon’s informa-
tion entropy (H(h)) of a cluster with maximum distance h
is calculated as:

H(h) =
M

X

k=1

pk log2(pk) (5)

where pk is the proportion of the individuals in the kth clus-
ter, M is the number of clusters for a given h.

These entropy values are integrated over all possible h’s
ranging from 0 to ∞ to find the total entropy (S) of the
distribution:

S =

Z ∞

0

H(h) dh (6)

Figure 4 shows four possible configurations that a 7-robot
flock can attain. In configuration (a), individuals are placed
linearly (the least desired configuration) which has the high-
est entropy value. Among the configurations (b) and (c), the

(a) (b) (c) (d)

Figure 4: Entropy values for four different config-
urations of 7 robots. The entropy decreases as the
configuration changes to a more compact form.

former one has the larger entropy value since the positional
order of the latter configuration is higher. Configuration (d)
has the smallest entropy value since it is the most compact
configuration for a 7-individual group. Among the possible
configurations, flock is preferred to move in the most com-
pact manner.

Average angular velocity (ωrms) of the flock is the
amount of unnecessary energy spent [10], due to the rota-
tional movement of each individual. It is calculated by tak-
ing the average of the root-mean-square (rms) of the angular
velocity of each individual over the entire operation time.

ωrms =
1

N

N
X

i=1

q

〈ω2
i 〉t

where N is the number of robots in the group and ωi is the
angular velocity of robot i at time t.
ωrms should ideally be 0 in a desirable flocking behavior

to minimize the unnecessary energy consumption.
Average Forward velocity (VG) is the velocity of the

geometric center of the flock, which is calculated by dividing
the distance traveled in the forward direction during the
run by the operation time. Average velocity of a flock with
non-rotating (having less tendency to rotate) robots is high.
Greater velocity means shorter time to reach a destination
point.

Success rate (SR) denotes the ratio of successful runs
to the unsuccessful ones performed by the flock. A run is
considered as a failure when robots collide with each other
or get stuck.

In conclusion, a desirable flocking behavior requires a high
value of order for aligned motion, low entropy for positional
order, low average angular velocity for minimization of en-
ergy consumption and high average forward velocity for min-
imization of operation time.

5. EXPERIMENTAL RESULTS
The flocking behavior and its variants are evaluated in

three phases which are: (1) The alignment phase, in which
robots have random orientations and try to align to a com-
mon heading (2) The advance phase, where robots are highly
aligned, and attain their maximum forward velocity (3) The
avoidance phase, in which the flock avoids the walls on its
way.

For each phase, 15 experiments have been conducted using
7 Kobots. The advance and alignment phase experiments
are conducted in open-space, while the avoidance phase ex-
periments are conducted in an environment with obstacles.
The metrics proposed in the previous section are used to
evaluate each phase separately.

In the experiments, order (ψ) and average angular ve-
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Figure 5: The results of the advance phase experiments for the four behaviors. Median values are plotted,
with the interquartile range shown as error bars. (a) Plot of order at the end of the experiment (t = tf).
(b) Plot of normalized average angular velocity. (c) Plot of normalized average forward velocity. (d) Plot of
entropy (t = tf). (e) Snapshots of initial (t = 0) and final (t = tf) configurations of the four behaviors.

locity (ωrms) are calculated via collecting the heading and
the ω values broadcasted by Kobots at each time step (∼
100 ms). A moving overhead camera is used to calculate the
entropy (S) at each time step using the relative positions
of the robots which are determined by utilizing an off-line
tracking algorithm using OpenCV, an open source computer
vision library. The average forward velocity(VG) of the flock
is calculated by measuring the displacement in forward di-
rection (direction in which robots are aligned initially) per
unit time. Finally, the success rate (SR) is taken as the ratio
of successful runs to unsuccessful ones in the 15 experiments.

5.1 The Advance Phase
Robots are initially put in an aligned form having a hexag-

onal shape (Figure 5(e)) and let move in open-space for 30
seconds. In the analysis, order, entropy, average angular
velocity and average forward velocity metrics are consid-
ered. Figure 5(a) and (b) show the converged order and av-
erage angular velocity in the four behaviors. Figure 5(c) de-
picts the forward velocities of the flock. Finally, Figure 5(d)
presents the corresponding entropy values. The snapshots
from sample runs can be seen in Figure 5(e).

The Pconst behavior results in a disordered state with
many independent, mobile clusters. The main reason of this
outcome is due to the incapability of adopting to a common
heading. Depending only on the noisy IR sensors combined
with the constant forward velocity makes it impossible for
the robots to remain as a group.

The second variant, Pmod, presents a quite different be-
havior. The robots, aiming to control their inter-distance
only, and being able to modulate their forward velocity, can
indeed stay as a group. However, they tend to turn around

so much that as a flock, they are incapable of moving for-
ward at all.

The HPconst and HPmod behaviors using heading align-
ment perform significantly better in all metrics. They are
capable of maintaining the highly ordered state with less
power consumption, indicating a smooth movement . They
are also capable of moving forward effectively and staying
as a compact group.

Only these two variants can be considered as successful
in this phase, since they can move forward effectively in an
ordered state, and stay as a compact group. Therefore, we
will evaluate only HPconst and HPmod for their alignment
and avoidance performances.

5.2 The Alignment Phase
Robots are placed with random orientations in a compact

form. Order, entropy and success rate metrics are utilized
in the analysis. Figure 6(a) and 6(b) plot order and entropy
in two sample runs. The snapshots from sample runs can be
seen in Figure 6(c).

Figure 6(a) shows that starting from a disordered state,
HPmod can adopt a common heading. The restored low
entropy values in Figure 6(b) shows that HPmod maintains
the positional order of the flock during this arrangement
phase. As a result, at the end of this phase, HPmod can
form a compact and aligned flock. However, HPconst fails in
both. Out of 15 experiments performed, HPconst failed in
all 15 experiments, while HPmod was successful in all.

The reason of these failures in HPconst is the incapabil-
ity of making sharp turns, which results in robots colliding
with each other. These collided robots form independent
stationary clusters, which decrease the order and increase
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Figure 6: The results of the alignment phase experiments for HPconst and HPmod behaviors. (a) Plot of order
of a sample run. (b) Plot of entropy of a sample run. (c) Snapshots of initial (t = 0) and final (t = tf)
configurations of the two behaviors.

the entropy of the flock.

5.3 The Avoidance Phase
Robots are started in an ordered state having a hexagonal

shape (Figure 7(c)) and let to hit a wall standing at 90◦ with
the direction of motion. The order, entropy and the success
rate are measured in the tests. Figure 7(a) and 7(b) plot
order and entropy in two sample runs. The snapshots from
sample runs can be seen in Figure 7(c).

Figure 7(a) shows that HPmod is capable of restoring its
ordered state, after the encounter with the wall. It is also
able to maintain positional order. HPconst is incapable of
maintaining its ordered state and positional order, since
robots get stuck at the wall or collide with each other. There-
fore, it fails in all experiments while HPmod accomplishes the
experiments successfully with 100% success rate.

The experiments reveal that HPmod behavior outperforms
the other behaviors and satisfies the requirements of the de-
sirable flocking behavior. Its success depends on two factors.
One is the heading alignment which stabilizes the heading
of the robots to a common value. The other factor is the
modulation in the forward velocity which prevents collisions
among the robots.

5.4 Full-fledged flocking
Figure 8 shows a sample flocking scenario combining the

three phases, in which nine Kobots positioned in random
orientations are let to move in an environment with a narrow
passage. The robots begin in the alignment phase (t = 0)
in which they try to align with their neighbors. At the end
of this phase, the flock is in a compact and aligned form,
which marks the beginning of the advance phase. When the
flock arrives at the wall, it switches to the avoidance phase
(t = 20s). The robots in the front sense the presence of the
wall, almost come to a halt and turn to avoid the obstacle.
The other robots try to avoid the stopped/turning robots by
decreasing their speeds and rotating rapidly. Robots, after
avoiding the wall, once more adopt to a common alignment
and return to the advance phase (t = 30s).

6. CONCLUSION
In this paper we reported our work towards self-organized

and scalable flocking in a swarm of mobile robots. In par-
ticular, this paper has two major contributions towards this

end. First, it describes a novel sensing system, called vir-
tual heading sensor, which broadcasts digital compass read-
ings through wireless communication channel, and obtains
the relative headings in a group of robots. This method,
based only on the assumption that the sensed North direc-
tion remains same over the neighboring robots, is scalable
and holds great promise for use in swarms of mobile robots
as well as UAVs. Second, we propose a flocking behavior,
partially inspired by previous studies, that can create self-
organized flocking in a group of mobile robots. Different
from previous flocking studies with mobile robots, this be-
havior does not require “simulated sensors”, a goal heading
that is sensed by the whole group or an elected or desig-
nated leader. In this sense we claim that, to the best of our
knowledge, this study is the first true self-organized flocking
in a group of mobile robots.

Much work lies ahead. First, although both the virtual
heading system and the flocking behavior are designed with
scalability in mind, their scalability for larger groups needs
to be investigated in realistic simulations. Second, the sens-
ing system and the flocking behavior needs to be modeled
to ensure stability of flocking. Third, the flocking behavior
needs to be extended with homing and the advantages of
flocking against individual motion be analyzed.
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