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1. THREE CURSES OF DIMENSIONALITY
Markov Decision Processes (MDPs) have proved to be useful

and general models of optimal decision-making in uncertain do-
mains. However, approaches to solving MDP’s using reinforce-
ment learning that depend on storing the optimal value function and
action models as tables do not scale to large state-spaces. Three
computational obstacles prevent the use of standard approaches
when dealing with problems with many variables. First, the state
space (and time required for convergence) grows exponentially in
the number of variables. This makes computing the value function
impractical or impossible in terms of both memory and time. Sec-
ond, the space of possible actions is exponential in the number of
agents, so even one-step look-ahead search is computationally ex-
pensive. Lastly, exact computation of the expected value of the next
state is slow, as the number of possible future states is exponential
in the number of variables. These three obstacles are referred to as
the three “curses of dimensionality”.

Much prior work exists on the topic of scaling reinforcement
learning to large state spaces. Many state abstraction and function
approximation techniques exist. These techniques are a result of
the desire to reduce the number of parameters used to represent the
value function, and thus reduce memory requirements and time to
converge. In addition to such techniques, methods to incorporate
prior knowledge can be successful in speeding up convergence.

In [4] I addressed the three curses of dimensionality, providing
solutions to each. To solve the problem of exploding state space, I
introduced a kind of function approximation called “tabular linear
functions”. To solve action space explosion, I used a hill climbing
technique over the action search space. To solve the problem of
computing the expected value of the next state, I introduced ASH-
learning, which is a model-based average reward algorithm that
uses afterstates to reduce the number of future states it is neces-
sary to examine.

2. ASSIGNMENT-BASED DECOMPOSITION
A common approach to dealing with issues of scaling is to take

advantage of domain-specific structure. Consider the setting of co-
operative multiagent reinforcement learning, where the agents are
trying to cooperate to maximize a global reward signal. The struc-
ture of such multiagent domains can be taken advantage of by de-
composing the states and actions.

In my thesis I propose a new technique for dealing with scal-

ing issues; in particular, I consider the problem of coordinating
multiple agents that share a common reward function through a
centralized controller. Many domains can be decomposed into a
set of weakly coupled agents, where each agent needs to know
only limited information about the others. This allows significant
scaling by limiting the amount of global information and facili-
tates local decision-making. I demonstrate how to implement these
techniques using a variety of common value iteration-based re-
inforcement learning techniques, including model-free Q-learning
and model-based methods.

Rather than addressing separate solutions to each of the three
curses of dimensionality, I propose a single technique for decom-
posing certain reinforcement learning problems such that all the
curses of dimensionality are addressed. In my thesis, I consider a
problem of multiple agents and multiple tasks, where the agents are
to be assigned to tasks in an optimal fashion. I call these problems
multiagent assignment MDPs. Given an assignment, the agents
might work almost independently of each other. However, the as-
signment can potentially change opportunistically. I also show that
the optimal value function even in the simplest of such assignment
tasks is not expressible as a coordination graph. The difficulty is
enforcing conditions such as assigning at most two agents to each
task to get a reward.

I present a new assignment-based decomposition [5] approach
where the action-selection step is split into two levels. At the top
level agents are assigned to tasks and at the lower level the tasks are
performed by the teams with minimal dynamic coordination. This
is similar to the hierarchical multiagent reinforcement learning of
[3], except that I learn a value function only at the lower level and
use search to optimize the higher level. My approach thus scales
much better since it is not necessary to store an exponentially large
value function at the top level.

I will also show how assignment-based decomposition may be
expanded and scaled to solve difficult problems, with many agents
and tasks. Fast search methods (such as those based on hill climb-
ing or bipartite matching algorithms) are useful here as the space of
possible assignments grows very large as the number of agents and
tasks increases. In addition, I will show how using transfer learning
and generalization techniques will allow a policy learned on only a
few agents or tasks may scale to many agents and tasks.

3. COORDINATION GRAPHS
When decomposing the states and actions of cooperative agents,

the issue of coordination of agent actions presents itself. Recent
work using coordination graphs between agents has been shown to
be successful here [1, 2]. The nodes of the graph represent agents
and the arcs between them represent potential interactions between
them. The long-term value of a joint action over all agents is ex-
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pressed as a sum of all the interaction terms, where each such term
is based on the actions and states of two agents. Bayesian net-
work inference algorithms such as variable elimination and belief
propagation have been adapted to finding the best joint action that
maximizes the total reward.

Unfortunately, in many domains, coordination graphs are not
static but change dynamically based on the states and actions of the
agents. The approaches based on coordination graphs are adapted
to dynamic state-based coordination [1, 2]. For example, in the
approach of [2], a set of rules dictate which agent should coordi-
nate with whom, and the value of a state is based on the current
coordination graph.

I will demonstrate a technique for combining coordination graphs
and assignment-based decomposition by adding a context-sensitive
coordination graph at the lower level of the assignment-based de-
composition. Doing this allows us some advantages over using ei-
ther technique alone through separation of concerns. First, con-
sideration of details such as collision avoidance can be delegated
to lower levels, freeing the top level to focus on assignment deci-
sions. Second, the coordination graph at the lower level can take
advantage of knowing the assignment when making coordination
decisions. Third, since the lower level value functions are used in
making the higher level assignment decisions, collision informa-
tion is indirectly percolated to the assignment level.

4. RELATIONAL TEMPLATES
In [4] I introduced a new description of a function approxima-

tion method called “Tabular Linear Functions” (TLFs). TLFs are
a means of combining tables and linear functions in such a way
as to preserve some of the best qualities of both. I will take this
reseach further, describing how to expand and apply TLFs to a re-
lational setting to create a function approximation method I call
“Relational Templates”. The use of relational templates greatly ex-
pands the kinds of domains that TLFs may be applied to.

I will also show how the use of relational templates facilitates
transfer learning and the ability to generalize across multiple do-
mains. Relational templates make be easily re-used across different
(similar) domains. Also, parameters learned on one domain may
often be transferred or generalized to multiple similar domains. I
will show how to combine relational templates with assignment-
based decomposition to easily scale a complex multiagent domain
from few to many agents and tasks.

5. BIPARTITE SEARCH
Assignment-based decomposition solves many of the three curses

of dimensionality, but introduces a new curse of it’s own: how to
scale the assignment search problem as the number of agents in-
creases? With many agents and tasks, there are correspondingly
many possible assignments. In [5], I describe three simple meth-
ods for search: exhaustive search, sequential greedy assignment,
and swap-based hillclimbing. All of these methods have trade off
solution speed and solution quality. I will introduce a new, more
sophisticated approximate search technique for solving the assign-
ment search problem: iterated bipartite assignment search. This
search algorithm quickly provides a high-quality approximation of
the true optimal assignment, allowing assignment-based decompo-
sition to scale to much larger numbers of agents and tasks.

6. PRELIMINARY RESULTS
I have implemented assignment-based decomposition success-

fully on many domains, including product delivery domains, mul-
tiagent predator-prey domains, and real time strategy (RTS) game

Figure 1: Comparison of flat vs. assignment-based decomposi-
tion in 6 agent vs. 2 task RTS domain.

simulations. For this latter domain, I implemented a simple RTS
game simulation on a 10x10 gridworld. Agents vary in number
from 3-12 archers or infantry, and may face off against up to 4 en-
emy “tasks”, either towers, knights, or ballista. These enemy units
are more powerful than friendly units, and thus agents must coor-
dinate in teams of up to three in order to destroy the enemy. Units
are described by attributes such as location, hit points, damage,
range, and mobility. I used a total reward version of ASH-learning
[4] and assignment-based decomposition to solve this domain. Re-
wards were either +1 for a kill, -1 for a death, and -.1 per time step.
As may be seen on this preliminary result in Figure 1, assignment-
based decomposition greatly outperforms “flat” ASH-learning. Not
only that, flat ASH-learning requires seven times as much CPU
time to complete a single run.
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