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ABSTRACT
In many multiagent domains, no single observation event is suffi-
cient to determine that the behavior of individuals is suspicious. In-
stead, suspiciousness must be inferred from a combination of mul-
tiple events, where events refer to the individual’s interactions with
other individuals. Hence, a detection system must employ a detec-
tor that combines evidence from multiple events, in contrast to most
previous work, which focuses on the detection of a single, clearly
suspicious event. This paper proposes a two-step detection system,
where it first detects trigger events from multiagent interactions,
and then combines the evidence to provide a degree of suspicion.
The paper provides three key contributions: (i) proposes a novel
detector that generalizes a utility-based plan recognition with arbi-
trary utility functions, (ii) specifies conditions that any reasonable
detector should satisfy, and (iii) analyzes three detectors and com-
pares them with the proposed approach. The results on a simulated
airport domain and a dangerous-driver domain show that our new
algorithm outperforms other approaches in several settings.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: intelligent agents, multi-
agent systems

General Terms
Algorithms, Security, Experimentation

Keywords
suspicious behavior, multiagent interactions, scoring functions

1. INTRODUCTION
There is a significant amount of research in suspicious activity de-
tection, given its importance in many domains [1, 5, 9, 16]. The
goal is to augment the traditional security measures by scrutinizing
the behavior of all the subjects in the environment. We target a large
class of applications where no single event is sufficient to make
a decision about whether behavior is suspicious or not. Instead,
we face a sparse set of trigger events that identify interesting parts
characterizing the behavior trace. Examples include a potentially
suspicious passenger who appears to turn away in the presence of
security personnel, but not blatantly so, hence no single such event
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is enough to raise suspicion. The main question we address is how
to combine multiple events to decide whether an event trace corre-
sponds to the behavior of a normal or a suspicious person.

There are four challenges that need to be addressed. First, there
is no one significant event or incident that would help us to imme-
diately reach a decision; a series of trigger events allows us to reach
a decision. Second, we have no knowledge about the exact plans
devised by a suspicious person. Third, trigger events include the
interactions of multiple agents making recognition in the presence
of noise difficult. Fourth, the degree of suspiciousness contributed
by a suspicious event depends on the agent’s behavior in the past.
For example, the third suspicious event is evaluated differently than
the first, since the agent’s previous behavior indicates a tendency
to behave suspiciously. Hence, the simple counting of suspicious
trigger events cannot be applied, since it accumulates all the events
linearly. Furthermore, most of the plan-recognition methods, which
rely on a plan library, are insufficient, since plans are not known in
advance.

This paper presents a two-step approach to suspicious behavior
detection from a sequence of an agent’s actions. The first step de-
tects trigger events, i.e., interesting parts of the sequence that serve
as evidence, and estimates the probability that an event is suspi-
cious. For this task we present an approach using coupled hidden
Markov models [4] that are able to model interactive behavior. The
second step combines evidence from multiple events in order to
determine suspiciousness.

The key contributions of this paper are in the second step, which
is defined as a decision problem: Is the behavior of an agent sus-
picious given a sequence of trigger events? First, we formally de-
scribe the detection problem and specify the conditions that any
reasonable detector should satisfy. Second, we analyze three de-
tectors, namely the naive Bayes detector, the hidden Markov mod-
els and the utility-based plan recognition (UPR). These detectors,
however, either simplify the problem or evaluate the events linearly.
Finally, we present a novel detector that is a generalization of UPR
and denoted as Function-UPR (F-UPR): (i) we define utilities as a
set of functions over state transitions and observations; and (ii) we
introduce an observation utility function that is especially suitable
for suspicious behavior detection, since it is able to evaluate events
non-linearly. The experimental evaluation on a simulated airport
domain first compares the three detectors with our proposed ap-
proach. The best two approaches are additionally compared on the
dangerous-driver domain.

2. MOTIVATING DOMAIN AND RELATED
WORK

Airports require numerous security solutions, including the identi-
fication of suspicious activities among passengers and staff in sur-



rounding areas. Our goal is to monitor passengers during the time
they spend at the airport and to detect those that indicate a high level
of stress, fear or deception. It is reasonable to assume that there is
a camera network to track a passenger throughout the airport. We
focus on a task where no single event is sufficient to identify a sus-
picious passenger, but a series of events establishes the decision
over time. The detection of events might be limited due to noise or
an inability to extract some features (e.g., using a ceiling-mounted
camera one can extract the trajectory of a passenger, but not facial
expressions), hence a normal person may appear suspicious (and
vice versa). Also, a precise plan of the suspicious passenger is not
known in advance. Other domains of interest may include catch-
ing a reckless driver executing dangerous (but still legal) maneu-
vers [2], detecting a pirate vessel that plans to capture a transport
vessel and therefore avoids security patrols, etc.

There are two approaches to detecting deviant behavior [2]: sus-
picious and anomalous behavior detection. The first approach as-
sumes a behavior library that encodes negative behavior, and thus
recognizing observed behavior corresponds to identifying a match
in the library. The second approach uses the behavior library in
an inverse fashion, meaning that the library encodes only positive
behavior. When an observed behavior cannot be matched against
the library it is considered as anomalous. Several approaches have
been proposed to tackle the problem either way. In the airport sce-
nario various systems were introduced to automatically detect some
of the threats, such as leaving objects behind [10], suspicious tra-
jectory paths [16], thefts [10], and vandalism acts and fights [12].
There is also a commercially available system [7] that is able to
detect events such as running passengers, climbing over a fence,
etc. However, these approaches mainly deal with the detection of
single incidents, which are clearly suspicious. They do not address
accumulating suspicion as we do.

Another area of related work includes hidden Markov models
(HMMs) [13] that are widely used in traditional activity recogni-
tion for modeling a sequence of actions. Brand et al. [4] introduced
coupled HMMs as an extension with multiple hidden interacting
chains that are able to model interactive behavior. Duong et al. [5]
focused on the duration of activities and introduced switching hid-
den semi-Markov models that provide probabilistic constraints over
the duration of plans, and applied them to the detection of anoma-
lies in the activities of daily living. Although widely used, HMMs
may become inadequate when actions are more complex or have
long-term temporal dependencies [11].

Plan recognition algorithms may use a hybrid approach for sus-
picious activity recognition. A symbolic plan recognizer is used to
filter consistent hypotheses, passing them to an evaluation engine,
which focuses on ranking. Geib and Goldman presented PHATT [8],
a probabilistic approach based on tree grammars able to cope with
interleaved goals, partially ordered plans, and failed observed ac-
tions. Sukthankar and Sycara [14] addressed plan recognition for
multiagent teams, where plans were ordered by linear accumulation
of observed actions consistent with the plan. Another approach is
presented by Avrahami-Zilberbrand and Kaminka [2, 3]. Utility-
based Plan Recognition (UPR) introduces utility to the observer in
selecting the recognition hypotheses. The main strength of UPR is
that it can incorporate an observer’s bias to events with a low like-
lihood, for example, the a-priori probability for planting a bomb is
very low, but detecting it has a high expected utility. We further
discuss this approach in Section 5.3.

Furthermore, intrusion detection systems analyze a variety of
user activities to identify suspicious computer activities. Helman
and Liepins [9] proposed an intrusion detection system that pro-
vides a rating for computer activities, demonstrating frequency es-

timator and matching rules. Esponda et al. [6] analyzed tradeoffs
between positive and negative activity patterns in the library and
presented an approach based on partially matching rules. These ap-
proaches similarly address the problem of how to decide whether a
user’s activity is suspicious, but differ significantly in using a dif-
ferent approach to match and assess behavior.

3. DEFINITIONS AND ASSUMPTIONS
Our methods are general, but for illustrative purposes we will make
use of the airport domain to provide examples. We treat subjects as
agents in a multi-agent environment. At this point we assume that
we can perfectly observe their actions.

Definition 1. Action at is a tuple of observed feature values
⟨ f1, ..., fn⟩ that describe state of an agent at a given time stamp t.

Definition 2. Action trace a(l) is a totally-ordered sequence of l
actions a(l) = (a1,a2, ...,al).

Definition 3. Trigger event xi, j = (ai, ...,a j) is a subsequence of
action trace a(k) (s.t. 1 ≤ i < j ≤ k). A trigger event x is described
by probabilities that the corresponding subsequence is suspicious
s(x) and normal n(x).

Definition 4. Event trace x(k) is a totally-ordered sequence of k
trigger events x(k) = (x1,x2, ...,xk).

We address the problem of suspicious behavior detection in two
steps, as shown in Figure 1. The first step analyzes an action trace
and the surrounding environment to detect trigger events that char-
acterize its interesting parts. The event trace then enters the second
step, where it is evaluated. If the evaluation result exceeds a thresh-
old value or is large relative to other evaluations of the event traces,
then it is considered as suspicious.

Trigger-event detection 

Suspicious behavior detection  
f(x(k)) 

Event trace 
x(k) = x1, x2, …, xk 

Action trace 
a(l) = a1, a2, …, al 

Is 
f(x(k)) 
above

Ĳ?  

Agent is not 
suspicious 

Agent is 
suspicious 

Agent of interest 

yes 

no 

Environment 

Step 1 
Step 2 

Figure 1: Two-step detection of suspicious behavior: (1) detec-
tion of trigger events and (2) detection of suspicious behavior.

Trigger events can be any kind of partial observations we are able
to extract from the domain. In the airport domain, one can focus on
people exhibiting indications of suspicious behavior, such as tak-
ing photos of critical infrastructure, revisiting the same location,
evading the area when noticed, standing in customer service but
not requesting the service, etc. We focus on a well-known detec-
tor obtained from conversations with domain experts. We observe



the interactions between agents at the airport, more precisely, we
are interested in how a passenger behaves in the presence of a uni-
formed authority figure. A person exposed to a high level of stress
produces behavior that indicates fear, anxiety, pressure, tension,
deception, etc. Hence, it is rational for the suspicious agent to min-
imize contacts with the authorities. Note, that no single avoidance
is enough to raise a flag, but many such events put together cause
the person to be treated as suspicious.

A trigger-event detection able to identify interactive behavior
may rely on coupled hidden Markov models (CHMMs), which are
briefly described below. The reader is referred to [4] for details;
the CHMMs are not the main contribution of the paper. The obser-
vations consist of two action traces, namely the action trace of the
agent of interest and the action trace of an authority agent when
they are within some predefined radius. The CHMMs are able
to model the complex, interactive behavior by two HMM chains,
where the hidden states from one chain directly impact on the hid-
den states from the other chain. Figure 2 illustrates the CHMM
for a pair of action traces with length l = 3. The current state QA

t
of agent A is affected by both its previous state QA

t−1 and previous
state QB

t−1 of the agent B (similarly QB
t is affected by QB

t−1 and
QA

t−1). Each state Qi also impacts the corresponding observation
state Yt . For example, if the authority agent moves toward the sus-
picious agent, the next state of the latter takes this into account and
produces an action for an avoidance maneuver.

AQ1
AQ2

BQ2
BQ1

AY1
AY2

BY2
BY1

AQ3

BQ3

AY3

BY3

Figure 2: An example of CHMM for a pair of action traces with
length l = 3.

A regular passenger may not turn or do anything different in the
presence of authorities, while a suspicious person will (although as
described below, an observer may not have perfect observability).
Therefore, we create and train two CHMMs: N̂I models the in-
teractions produced by authorities and regular passengers, while ŜI
models the interactions produced by authorities and suspicious pas-
sengers. For a new event (interaction) x we compute the posterior
probability that the event is generated with both models yielding
n̂I(x) = Pr{x|N̂} and ŝI(x) = Pr{x|Ŝ}, respectively.

4. PROBLEM DEFINITION
This section formally analyzes how to evaluate a sequence of trig-
ger events. We leverage the Bayesian framework for intrusion de-
tection [9] for the problem definition. At each time step t we ob-
serve an event xt , generated by a hidden stochastic process H. Now
suppose that H is a mixture of two auxiliary stochastic processes,
namely the normal process N and the suspicious process S that cor-
respond to a normal and a suspicious passenger. The random vari-
able yt = 0 if xt is generated by N and yt = 1 if xt is generated by S.
Since a suspicious passenger always emits a suspicious event (and
a normal person a normal event), y for a specific agent does not
change over time. In reality, there can be many subprocesses con-
tributing to each of N and S, i.e., many normal users with different
behavior patterns; however, here we assume only a single N and a
single S that capture all the variability.

To this point we assumed that an observer is able to perfectly
observe whether an event is generated by S or N. In practice, how-
ever, it may appear that a normal person emits suspicious events (or
vice-versa). An observer might be limited for various reasons, such
as an inability to detect characterizing features and noisy trigger-
event detectors. Therefore, we relax this assumption as follows.
An event xt is observed as generated by N with the probability
n(xt) = Pr{H(t) = xt |yt = 0} and as generated by S with the prob-
ability s(xt) = Pr{H(t) = xt |yt = 1}= 1−n(xt). The mixture dis-
tribution of an event xt and a prior probability λ is

Pr{H(t) = xt}= λ s(xt)+(1−λ )n(xt). (1)

The objective of suspicious behavior detection is to identify those
traces x(k) =(x1,x2, ...,xk) that are likely to be suspicious activities,
i.e., traces x for which

Pr{y = 1|H(t) = xt , t = 1, ...,k}> τ, (2)

is above some threshold τ or is large relative to the probability for
other traces.

The reason why this problem is difficult is because of the non-
linear effect. Consider the following example. Suppose we observe
a person do a U-turn in front of a police officer, so that the likeli-
hood that this was a suspicious person becomes high. Later we see
the same person doing a half-turn in front of a police officer. This
trigger event if seen on its own, would not contribute much to the
overall suspicion. However, following the initial turn we had ob-
served, this new turn is a much stronger evidence to be attributed
to the overall suspicion, because we bias the new event with our
previous observation.

Theoretically, it might be possible to optimally detect suspicious
behavior using Eq. (2). Unfortunately, this is usually not the case in
practice. To see this, let us assume a prior probability λ = Pr{yt =
1, t = 1, ...,k}. In most cases λ is close to 0, since in real-world
applications suspicious activities are rare. Let the stochastic pro-
cesses N, S and H denote n(x(k)) = Pr{H(t) = xt , t = 1, ...,k|y =

0}, s(x(k)) = Pr{H(t) = xt , t = 1, ...,k|y = 1}, and h(x(k)) =
Pr{H(t) = xt , t = 1, ...,k}, respectively. Using Bayes theorem we
can derive from Eq. (2)

Pr{y = 1|H(t) = xt , t = 1, ...,k}= λ · s(x(k))
h(x(k))

= (3)

=
λ ·∏k

t=1 s(xt |xi,i=t−1,...,1 )

λ ∏k
t=1 s(xt |xi,i=t−1,...,1 )+(1−λ )∏k

t=1 n(xt |xi,i=t−1,...,1 )

To this point we implicitly assumed that the distributions λ , n
and s are reliably estimable. The degree to which this assumption is
valid depends on our detection capability. Suppose we have a suf-
ficiently large dataset Dl of labeled event traces, we can estimate
the prior probability λ from the Dl using the relative frequency,
presenting the number of traces generated by a suspicious agent di-
vided by the total number of traces (since traces can be of different
lengths, the quotient is normalized by the traces’ length). Note that
in order to compute Pr{H(t) = xt , t = 1, ...,k|y = 1} we have to
evaluate

s(x1) · s(x2|x1) · ... · s(xk|xk−1, ...,x1) (4)

While some first terms, i.e., s(xt),s(xt |xt−1), can still be estimated,
the estimation of latter terms including increasingly more history
becomes less and less reliable. In real-world applications we have
no direct knowledge of the values of the conditional probabilities,
i.e., we are unable to specify the probability of an event given all
the possible combinations of history. For this reason we must ap-
proximate the Bayes optimality in general. In particular, we will be



concerned with estimating Pr{y = 1|H(t) = xt , t = 1, ...,k} using
approximate approaches.

Given an event trace, some events may appear suspicious and
some not. Hence, detection systems must have a scoring function
that combines the evidence. The output of a function is interpreted
as the degree of suspicion attributed to the event trace. Although
any two scoring functions need not be exactly the same, we can
specify the conditions that any reasonable scoring function must
satisfy. The class defined below appears to be both natural and
general.

The detection system can employ a scoring function f that inter-
prets events to produce a score characterizing the overall suspicion
of the trace. Given a threshold value τ and an event trace x(k) we
can classify x(k) as suspicious if f (x(k))≥ τ .

Definition 5. A scoring function f over a trace of events x(k) is
a function

f :
K∪

k=1

x(k) → R

The function f assigns a real value to any trace x(k) of length k =
1, ...,K.

Let ∆(xt) decide whether a single event xt is suspicious or not

∆(xt) =

{
1; if s′(xt)≥ τ ′

0; else
, (5)

s′(xt) =
λ · s(xt)

λ · s(xt)+(1−λ ) ·n(xt)
. (6)

Definition 6. A class of well-behaved functions consist of scor-
ing functions s.t. ∀x(k),xk+1 :

f (x(k),xk+1)≥ f (x(k)) if ∆(xk+1) = 1,

f (x(k),xk+1)≤ f (x(k)) if ∆(xk+1) = 0.

The conditions imply that: (i) the scoring function f ’s evaluation
increases when a new suspicious event is added to the trace and (ii)
decreases when a normal event is added to the trace. The well-
behaved scoring functions are motivated by the key observation
that a suspicious event xk+1 (i.e., ∆(xk+1) = 1) is more likely to
be generated by a suspicious process S than a normal process N,
regardless of the history x(k), i.e.,

s(xk+1|x(k))≥ n(xk+1|x(k)) if ∆(xk+1) = 1 and

s(xk+1|x(k))≤ n(xk+1|x(k)) if ∆(xk+1) = 0.

5. DETECTORS
In this section we analyze the approaches that decide whether an
event trace is suspicious. First, we discuss the naive Bayes detector
that relaxes the initial assumptions. Next, we discuss an approach
that directly tackles the problem of estimating the likelihood that a
trace was generated by a suspicious process using HMMs. Finally,
we analyze an approach based on plan recognition and present two
extensions: (1) we define utilities as a potential function; and (2)
we present an observation utility function able to address non-linear
accumulation.

5.1 Naive Bayes Detector
A naive approach assumes that events are independent, which means
that the current event depends only on the current time step t and

not on the time steps prior to t. The evaluation of Eq. (3) is simpli-
fied using the naive assumption:

Pr{y = 1|H(t) = xt , t = 1, ...,k}=
λ ·∏k

t=1 ŝ(xt)

λ ·∏k
i=1 ŝ(xt)+(1−λ ) ·∏k

i=1 n̂(xt)
(7)

We have to evaluate the probability Pr{H(t) = xt |yt} that an event
is generated by a normal process n̂(xt) and a suspicious process
ŝ(xt), which is tractable in terms of evaluation. The approaches
for estimating n̂ and ŝ may include a frequentist estimator, hid-
den Markov models, k-nearest neighbors, neural networks, etc. We
showed an approach using CHMM in Section 3. An evaluation of
the event trace is also well behaved when τ ′ = λ .

In practice, the assumptions may oversimplify the model; how-
ever, we will use it as a baseline in our experiments.

5.2 Hidden Markov Models
An estimation of the conditional probabilities including the his-
tory can be encoded with hidden Markov models (HMMs) [13].
A HMM is a temporal probabilistic model with two embedded
stochastic processes: an unobservable (hidden) process Q, which
can be observed only through another (visible) stochastic process
O. Each state in Q has state-transition probabilities (which are vis-
ible) and a probability distribution over the possible values of O.
The key assumption is that the current hidden state of the agent is
affected only by its previous state.

Now suppose we create a HMM to estimate Pr{H(t) = xt |y =
1, t = 1, ...,k}, more precisely, it models the probability that a trace
of events is generated by a suspicious agent. The hidden states of
the process Q may be referred to as internal states presenting the
intentions of the suspicious agent. For the sake of clarity, let us
assume only two hidden states: a normal intention and a suspicious
intention, emitting normal and suspicious events, respectively. The
transitions between the hidden states can be explained as probabili-
ties that the agent will either follow or change its current intention.
Informally, this switching of intentions may be interpreted as fol-
lows: from an observer’s perspective, sometimes suggesting that
the observed agent is switching intentions appears to provide a bet-
ter explanation of the behaviors.

We construct two HMM models: a normal model N̄ and a sus-
picious model S̄. We split all the labeled traces x ∈ Dl to traces
generated by normal and suspicious agents, and use them to learn
the parameters of the models N̄ and S̄, respectively. The model
parameters can be locally optimized using an iterative procedure
such as Baum-Welch method [13]. Given a new event trace x(k) =
(x1,x2, ...,xk) we compute the probability that the trace was gen-
erated by each model Pr{x(x)|N̄} and Pr{x(x)|S̄} using a forward-
backward procedure [13]. Given the prior probability λ̄ we com-
pute an estimate the trace x(k) was generated by the suspicious pro-
cess S:

Pr{y = 1|H(t) = xt , t = 1, ...,k}=
λ̄ ·Pr{x(k)|S̄}

λ̄ ·Pr{x(k)|S̄}+(1−λ̄ )·Pr{x(k)|N̄} . (8)

Although the information about previous behavior is now par-
tially encoded in the transition probabilities (i.e., given the agent’s
intention at time step t is suspicious it is more likely that the in-
tention at t +1 will be suspicious as well), the model still uses the
Markov assumption, i.e., the next agent’s intention depends only
on it’s current intention. It is possible to introduce more complex
HMM structures with long-term dependencies, but learning and in-
ference in such models become computationally intractable [11].



5.3 Utility-Based Plan Recognition
We exploit UPR, an Utility-based Plan Recognition, briefly de-
scribed below. The reader is referred to [3] for details. UPR con-
sists of a plan library, which encodes behaviors of the observed
agents in a form of directed graph, and a matching algorithm. It fol-
lows the footsteps of the hierarchical HMM in representing proba-
bilistic information in the plan library. A plan step can be atomic,
or non-atomic, i.e., broken down into atomic sub-steps, each a plan
step in itself. Plan steps are linked via sequential edges, describing
the execution order of a given plan and its sub-steps. UPR intro-
duces three types of utilities on the edges: (a) the sequential utility
from the current step to the next; (b) the interruption utility from
the current step to the end of the plan; and (c) the decomposition
utility from the current step at current level to its first substep at the
sub-level. A corresponding probability is maintained for each type
of utility. The observation sequence o is matched against the library
using a Symbolic Plan Recognizer [2], which filters hypotheses that
are consistent with o. Finally, the hypotheses are ranked by their
expected utility.

We use a heuristic version of UPR as follows. Let ŝ(xt) = 1−
n̂(xt) be the probability that the trigger event xt was generated by
a suspicious person. Let cs > 0 be the cost of the damage caused
by a suspicious person if we do not stop him, and similarly, let
dn = 0 be the cost of the damage caused by a normal person. The
expected cost of letting this person go (marking him as normal)
is cgo = csŝ(xt) + dnn̂(xt) = csŝ(xt). Now suppose cn > 0 is the
cost of arresting an innocent person and ds = 0 is the cost of the
damage caused by a suspicious person when arrested. The ex-
pected cost of stopping this person (marking him as suspicious)
is cstop = cnn̂(xt)+dsŝ(xt) = cnn̂(xt). If there was only one event,
we would compare both hypotheses and choose the one with the
lowest expected cost. Supposing in this case cnn̂(xt) is lower, we
would call this person suspicious.

One possible approach, based on the above expected-cost cal-
culation, would be to determine whether a trigger event is to be
categorized as suspicious or normal, and then to accumulate the to-
tal number of suspicious events, and subtract the total number of
normal events; unfortunately, this simple strategy performs poorly.
Therefore, not only do we count whether an event is suspicious or
normal, but we give it a weight, proportional to the benefit or cost
accrued. The function UUPR hence evaluates an event trace x(k) of
a person by accumulating the weighted benefit of stopping this per-
son and subtracting the weighted cost of arresting a normal person:

UUPR(x(k)) =
k

∑
t=1

b(xt), (9)

b(xt) =

{
csŝ(xt); if cnn̂(xt)≤ csŝ(xt)

−cnn̂(xt); if cnn̂(xt)> csŝ(xt)
. (10)

If the accumulated cost exceeds a threshold value τ ′, the person
(i.e., trace x(k)) is marked as suspicious.

This remains a heuristic approach and further investigations could
be a topic for future work; however, given that our next approach
performs significantly superior, we chose to investigate that in more
detail rather than providing more heuristics for the current approach.

5.3.1 Utilities as Potential Functions
Although the evaluation function UUPR is well behaved, the utilities
are constant and hence do not allow a dynamic adjustment to the
behavior of the agent in the past. Thus, for instance, the first time
we note a suspicious event, and the second time we note the same
agent making a suspicious event, count equally. These utilities,

however, are unable to express the characteristics of the empirical
observations. Therefore, we extend the notion of utility and define
the utility U as follows.

Definition 7. The utility function U over a plan step qa, a plan
step qb, and the entire observation sequence x(t) until current time
step t is a function

U : ⟨qa,qb,x(t)⟩n → R.

Utility function can be written as

U(qa,qb,x(t)) =
n

∑
j=1

λ ju j(qa,qb,x(t)),

where each utility function u j can be sequential, interruption, de-
composition or any other utility, and λ j are parameters to be de-
fined. This allows us to introduce a set of auxiliary utility func-
tions u j describing not only the plan-step transitions but also the
additional characteristics of the observation sequence. For exam-
ple, the sequential utility from step qi to qi+1 can be written as
ut(qi,qi+1,x(t)) = c, but in general, the constant c can be replaced
with any function over qi, qi+1 and x(t).

Lemma 1. U is a well behaved function iff

∀u j, j = 1...k : u j is well a behaved function.

PROOF. Consider two well behaved functions f and g, and two
scalar constants λ f and λg. Let f ′ = λ f f . Since multiplication with
scalar preserves well-behaved property, f ′ is also a well behaved
function. Let function u denote u = f ′ + g′. Then, u(x(t),xt+1)

= f ′(x(t),xt+1) + g′(x(t),xt+1) ≥ u(x(t)) = f ′(x(t)) + g′(x(t)) if
∆(xt+1 = 1), since f and g are well behaved and therefore
f ′(x(t),xt+1) and g′(x(t)),xt+1) are non-negative. Similarly, f ′

and g′ are non-positive when ∆(xt+1) = 0.

5.3.2 Observation Utility for Suspicious Behavior De-
tection

In order to include the past behavior of an agent in an evaluation
of the evidence, the utility function must be defined over the obser-
vation sequence. We propose an observation utility function that
assigns cost using the number of normal and suspicious events in
the past. Consider the example from Section 4. Suppose we see a
person do a full U-turn in front of a police officer and we give this
event a cost of 1. Later we see the same person doing a half-turn
in front of a police officer. This event if seen on its own, would be
given cost 0.5. However, following this initial turn where we had
given a cost of 1, this new turn, becomes a 1 instead of 0.5. So,
a linear accumulation would have given us a cost of 1.5, whereas
because we bias the new event to register higher on our scale, our
cost is 2 instead of 1.5.

Let ηs(x(k)) define the number of suspicious events in an event
trace x(k):

ηs(x(k)) =
k

∑
t=1

∆(xt), (11)

Similarly, let ηn(x(k)) = k−ηs(x(k)) represent the number of nor-
mal events. Suppose we observed a trace x(k) of all the suspicious
events, i.e., ∀t, t = 1, ...,k : ∆(xt) = 1. Intuitively, the likelihood
that an event xt was indeed generated by a suspicious process in-
creases exponentially according to the number of suspicious events
in the past. On the other hand, if the events in x were normal, i.e.,
∀t, t = 1, ...,k : ∆(xt) = 0, the likelihood exponentially decreases as
the number of normal events increases. We define an observation



utility function uo over the current event xt and trace x(t−1) recur-
sively as follows:

uo(xt ,x(t−1)) = ψ(x(t)) · (uo(x(t−1))+ω(x(t))), (12)

uo(x(0)) = 0,

ω(x(t)) = α ·ηs(x(t))s(xt )/β , (13)

ψ(x(t)) = γ ·ρ−η∗
n (x(t))/ηs(x(t)). (14)

The term ω(x(t)) uses an exponential function to assign a cost to the
likelihood s(xt) that an event is suspicious. The parameter α > 0
is the initial cost, ηs corresponds to the growth factor, and the pa-
rameter 0 < β < 1 is the likelihood required for the cost to increase
by the growth factor. The parameters α and β are estimated from
the data. Suppose we observe two full U-turns, the second U-turn
attributes higher cost to the overall suspicion, since the exponent
base is increased due to the first U-turn.

Additionally, the term ψ(x(t)) employs an exponential time de-
cay function that discounts the accumulated cost at time t accord-
ing to the number of consecutive normal events η∗

n . The modified
η∗

n represents the time elapsed since the last event ∆(xi) = 1, i.e.,
the number of normal events since the last suspicious event. The
higher the number of consecutive normal events, the faster the cost
decay. The parameter 0 < γ ≤ 1 is the initial decay, the parameter
0 < ρ < 1 is the decay factor, and ηs is used to specify the number
of events required for the decay to decrease by the decay factor.
The parameters γ and ρ are also estimated from the data. Suppose
we observe two agents, one already having made two U-turns and
the other with only one U-turn. Suppose we observe both agents
do a clearly normal event. The overall suspicion of the first agent is
reduced less than the overall suspicion of the second agent. Hence
the higher the number of suspicious events, the slower the suspicion
decay.

The function uo is a well-behaved function by definition. Eq. (12)
can be rewritten, which gives us the utility function UF−UPR:

UF−UPR(x(k)) =
k

∑
t=1

n

∑
j=1

λ j f j(x(t),q(t − i),q(t))

=
k

∑
t=1

(ω(x(t))
k

∏
i=t

ψ(x(i))). (15)

6. EXPERIMENTAL EVALUATION
We conducted empirical tests in a simulated airport domain to eval-
uate the performance of suspicious-passenger detection generated
by four candidate algorithms. In addition, we compared the best
two algorithms on the dangerous-driver domain [2].

To run proof-of-concept tests we considered a simulated environ-
ment, mainly to avoid difficulties due to privacy and confidentiality
issues, and as well as due to the absence of real-world annotated
data of suspicious behavior. A simulator also made it possible to
control the amount of noise otherwise introduced by various vision
systems (occlusions, false detections, etc.), and provided control-
lable and repeatable situations.

6.1 Airport domain
The experiments in this paper use the ESCAPES [15], a state-of-
the-art, multiagent simulator for airport evacuations with several
types of agents exhibiting behaviors of regular travelers, authori-
ties, and families. The agents’ behavior incorporates emotional,
informational and behavioral interactions, such as emotional conta-
gion, the spread of knowledge/fear, social comparison, etc. There-
fore, an agent is affected by the behavior of other agents and their

emotional states, and faced with uncertainty as to what happened
and where the nearest exits are. We assume that the behavior of the
agents corresponds to the behavior of real passengers at the airport.

In cooperation with security officials we defined a scenario where
a suspicious passenger goes from point A to point B while trying
to avoid security personnel at the airport. One may argue that an
adversary that plans to do something malicious would behave nor-
mally in the presence of authorities, and this might be true for a
highly trained individual. As discussed previously, an average per-
son exposed to a high level of stress produces behavior that in-
dicates fear, anxiety, tension, etc., and hence tries to cover it by
minimizing close-range interactions by making u-turns, avoidance
maneuvers, hiding in nearby shops, etc. Implementation details are
provided on a supplemental web page1.

A simulation in ESCAPES is run with a given airport map, au-
thority agents, regular passengers and a suspicious agent going
from point A to B, outputting traces with 2D coordinates for all
agents. We initialized the simulator with 100 agents including
Ka ∈ {5,10,15,20,25} authorities and a suspicious person with
randomly chosen initial and final points. For each Ka setting we
ran 30 simulations, each consisting of 1500−3000 time steps and
100 traces. On average, there were 215 interactions between the au-
thorities and the passengers per run. To avoid issues that arise with
highly unbalanced datasets we used random re-sampling without
replacement to balance the data to the ratio suspicious : normal
= 20 : 80.

The trace of the coordinates was preprocessed to the action trace
as follows. A change in position from the previous to the current
state was described as taking the action of moving North, South,
East and West, and their combinations (nine in total). This trans-
formation describes the shape of a trajectory but discards the lo-
cation information, which leads to better generalization. We also
experimented with other transformations, for example, a more gen-
eral one that also discards the orientation (forward, backward, left,
right), and a less general one that divides the airport map with a
square-based grid with numbered squares [2]. Preliminary tests
showed the best performance when using the first transformation.

For the evaluation we used precision, recall, specificity and F-
measure. Precision is defined as the number of true positives (all
suspicious cases correctly classified as suspicious) divided by the
number of all cases marked as suspicious (true and false positives):
pr = T P/(T P+FP). A perfect score 1 means that all cases marked
as suspicious were indeed suspicious. Hence, the score 1 − pr
represents the rate of false alarms. Recall is defined as the num-
ber of true positives divided by the number of all the suspicious
cases: re = T P/(T P + FN). A perfect score 1 means that all
the suspicious cases were detected (but says nothing about falsely
marked normal cases). Similarly, the specificity is defined for nor-
mal cases sp = T N/(T N +FP). There are two points of interest,
depending on our objective. The first one is when both scores are
minimized, i.e., the trade-off point between false alarms and non-
detected suspicious passengers, which can be detected with the F-
measure FM = 2 · pr · re/(pr+ re). The other case is when a high
false-alarm rate is acceptable and non-detected cases are extremely
costly. In this case we are interested in precision when recall re= 1,
i.e., all the suspicious passengers are found. In the worst-case sce-
nario, all the passengers are marked as suspicious. We evaluate the
statistical significance of our results using the two-sample t-test.

6.1.1 Results
In the first experiment we fixed the number of authority figures

1http://dis.ijs.si/bostjan/aamas2012
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Figure 3: Confusion error rates for different threshold values.

Ka = 10. We instantiated the naive Bayes, HMMs, UPR, and F-
UPR detectors. Additionally, we considered another baseline de-
tector using a simple rule over the threshold k and the event trace
x(t), saying that if the number of suspicious events exceeds k (i.e.,
∃k : ηs(x(t))> k), then mark trace x(t) as suspicious. All the detec-
tors used the event-trace probabilities s′(x(t)) and n′ = 1− s′(x(t))
as returned by the event-detection step. For the HMM approach
we considered two ergodic HMMs as described is Section 6.1.2.
We used two observations, the normal ∆(xt) = 0 and the suspi-
cious ∆(xt) = 1 event, and varied the number of hidden states. The
best results were achieved with three hidden states. Note that the
HMMs detector applied on top of the CHMMs detector basically
presents a version of the mixed layered HMM structure. All the
models (including UPR and F-UPR detectors) were evaluated with
10-fold-cross validation.

Figures 3(a)–3(e) show the confusion error rates for suspicious
(1-recall) and normal (1-specificity) passengers as a function of the
normalized threshold value for all the five algorithms. For example,
if the threshold is zero, then all the passengers are marked as sus-
picious. In this case: (i) all the suspicious passengers are correctly
identified as suspicious, hence the error rate is also zero; and (ii)
all the normal passengers are incorrectly identified as suspicious,
hence the error rate is 1. As the threshold value increases, the error
rate for correctly identifying the suspicious passengers increases,
while the error rate for correctly identifying the normal passengers
decreases.

There are two points of interest: (i) when the error rates cross
each other, i.e., the F-measure is maximized; and (ii) the right-
most point when the error rate for suspicious passengers is zero
(i.e., re = 1) and the other one is minimized. These cases are tab-
ulated in Table 1. The first case is summarized in columns 2-4
showing the recall, precision and F-measure. F-UPR outperforms
the ∃k rule (p < 0.01), naive Bayes (p < 0.01), HMMs (p < 0.01),
and UPR (p < 0.01). The second case, where the threshold value
is such that all the suspicious passengers are discovered, is shown
in columns 5-6. Column five shows the confusion error for normal
passengers (i.e., 1-specificity), while the column six shows the ratio
of correctly raised alarms (i.e., precision). The ∃k rule, for instance,
marks all the passengers as suspicious (FP rate is 100%) and con-
sequentially almost 80% of alarms are false. HMMs achieve better
performance, but still mark more than 50% of normal passengers
as suspicious. Other methods mark between 1/5 and 1/4 of nor-
mal passengers as suspicious, but precision is around 50%, which
means that every second passenger marked as suspicious is indeed
suspicious (and all suspicious passengers are discovered!). Overall,
F-UPR in this setting also outperforms the ∃k rule (p< 0.01), naive
Bayes (p < 0.05), HMMs (p < 0.01), and UPR (p < 0.05). Finally,
Figure 4 depicts the ROC curves showing that F-UPR performs the
same or better in all the threshold settings.

In the last experiment we varied the number of authorities in
the simulation. We expect that an increased number of authority
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Figure 4: ROC curves comparing all the detectors.

Table 1: Evaluation results when the F-measure is maximized
(columns 2-4) and all the suspicious cases are discovered (last
two columns).

max FM re=1
Algorithm re pr FM 1-spec pr
∃k rule 0.619 0.464 0.530 1.000 0.202

Naive Bayes 0.857 0.581 0.693 0.270 0.436
HMMs 0.600 0.706 0.649 0.526 0.286
UPR 0.857 0.720 0.783 0.256 0.477

F-UPR 0.905 0.905 0.905 0.217 0.539
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Figure 5: Evaluation results for varying the number of author-
ity figures in the simulation and two different threshold values.

figures will result in more interactions between the suspicious pas-
sengers and the authorities, which will make detection easier. Fig-
ure 5 shows the results for the Ka ∈ {5,10,15,20,25} authority fig-
ures in a simulation: Fig. 5(a) shows the F-measure for a threshold
such that the F-measure is maximized, while Fig. 5(b) shows the
precision when re = 1. An increased number of authority figures
first significantly increases the detection capabilities. For example,
the F-measure for F-UPR increases by 15% when the security re-



sources are doubled from five to ten, but as the number increases,
the impact is smaller. We can also see that F-UPR achieves the
same performance as other methods using significantly less secu-
rity resources.

6.1.2 Detection Based on the Action Trace
We also applied a sanity check and tested the suspicious behavior
detection from a sequence of agent’s actions (i.e., action trace a)
instead of a sequence of trigger events (i.e., event trace x). We
used HMMs, since they are considered as a baseline for modeling a
sequence of actions. The goal is to differentiate between a sequence
of actions produced by a suspicious and a regular passenger. We
expect this approach not to perform well, since it is too general
and unable to precisely model the interactive behavior present in a
multiagent environment.

The suspicious behavior detector consists of two ergodic HMMs:
S′ trained on the suspicious and N′ trained on the regular action
traces. A new trace is first transformed to the action trace a(k) as
described previously and then matched against both HMMs, yield-
ing the likelihood that it produced the given a(k). If the likelihood
is greater than a threshold the action trace is marked as suspicious.
We tested this approach for Ka = 10. At the threshold value s.t. the
highest F-measure of 18.01 was achieved this approach achieved an
acceptable discovery rate (re = 66.23) and an extremely low pre-
cision (pr = 10.42). Such a performance positions this approach
under the ∃k rule. The overall performance was consistent with our
expectations. Modeling single-agent actions in a multiagent envi-
ronment is not able to capture the interactive behavior.

6.2 Catching a Dangerous Driver
In addition to the airport domain we applied UPR and F-UPR to
the dangerous-driver domain, as introduced in [2]. This domain
also includes behavior that becomes increasingly costly if repeated;
a driver switching a lane once or twice is not necessarily acting
suspiciously, but a driver zigzagging across two lanes is dangerous.
Our goal was to detect such drivers as soon as possible.

We generated 100 observation sequences (each of N observa-
tions) of a zigzagging driver, and 1000 sequences of a safe driver.
The observations were sampled with 10% noise from the trajecto-
ries. If the driver stayed on the same lane as in the previous sample,
the event was considered as normal, otherwise it was considered as
dangerous. For each sequence of trigger events we accumulated the
associated cost using both UPR and F-UPR.

Table 2 reports the performance at the peak F-measure for dif-
ferent lengths of the observation sequence. The results confirm the
experiments on the airport domain for two points. First, F-UPR
performs better than UPR for any selected sequence length. Sec-
ond, the performance of both methods increases as the number of
observations increases, where F-UPR requires fewer observations
than UPR to achieve the same performance.

7. CONCLUSION
This paper successfully addressed the problem of suspicious behav-
ior detection from a set of observations, where no single observa-
tion suffices to make the decision. The paper addresses the problem
in two steps, i.e., the detection of trigger events and a combination
of evidence to reach the final decision. To that end, the main con-
tributions of this paper are: (i) the conditions that a reasonable de-
tector should satisfy; (ii) an analysis of three detectors; (iii) a novel
F-UPR approach that extends the notion of utilities; and (iv) com-
prehensive experiments on two simulated domains. By providing
a new algorithm that outperforms other approaches, this paper has
advanced the state of the art.

Table 2: Performance at the peak F-measure in dangerous
driver domain.

Sequence length N F-UPR UPR
25 0.632 0.540
50 0.720 0.667
75 0.900 0.800
100 0.952 0.857
125 1.000 0.947
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