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ABSTRACT
The process of finding the appropriate agent behavior is a
cumbersome task – no matter whether it is for agent-based
software or simulation models. Machine Learning can help
by generating partial or preliminary versions of the agent
low-level behavior. However, for actually being useful for the
human modeler the results should be interpretable, which
may require some post-processing step after the actual be-
havior learning. In this contribution we test the sensitivity
of the resulting, interpretable behavior program with respect
to parameters and components of the function that describes
the intended behavior.
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I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent Agents

General Terms
Design, Experimentation, Performance

Keywords
Multiagent Simulation, Agent Learning

1. MOTIVATION
The basic idea behind agent-based simulation is that phe-

nomena are generated from simulation of mostly local, low-
level actions and interactions of agents. In such a bottom-
up approach, a central issue concerns what behaviors the
agents must exhibit so that the intended outcome is pro-
duced. Currently, dependent on the experience of the mod-
eler, the development of an agent-based simulation may re-
sult in a painful trial and error process. The goal is to de-
velop a systematic way of bridging the gap between agent
behavior and macro-level outcome.

Our idea is to support the process of designing the agent
behavior using self-adaptive agents [2]. A human modeler
shall focus on describing the targeted phenomenon as well
as the overall simulation settings, including the interfaces
between environment and agents.
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A basic assumption hereby is that it is possible to charac-
terize good performance in terms of an objective function,
also in scenarios in which the features of the actually neces-
sary behavior program are not exactly known. As in every
learning approach, the definition of the objective function
essentially drives the generation of the agent behavior. Our
application of learning is special as we combine traditional
Reinforcement Learning, using the given objective function,
with a post processing step – a decision tree learner – in
which the behavior model shall be abstracted to a human-
readable representation. The central question in our contri-
bution is therefore how robust the final behavior outcome is
with respect to small changes in the objective function.

2. LEARNING FOR MODELING
As stated in the introduction, we propose a learning-driven

analysis and design approach using self-adaptive agents in
the behavior modeling task for simulation models. The ac-
tual optimality of the learnt agent control is only one rele-
vant criterion; the interpretability of the outcome by a hu-
man is essential.

We start with the definition of an environmental model
and a set of sensors and actuators that determine what the
agents are able to perceive and manipulate. The second
step is the definition of a learning architecture that is apt to
connect perceptions and actions of the agent. After that, a
reward function, providing feedback to the agents, is defined.
The reward has to measure performance, as the agents will
use it to explore how the environment reacts to their actions.
The resulting behavioral model should then be analyzed by
the human modeler for preventing artifacts that come from
an improper environmental or reward model, or weak inter-
faces.

The chosen learning architecture for this contribution com-
bines Reinforcement Learning with Decision Tree learning.

We selected Q-learning for our investigation because it is
the simplest reinforcement learning technique directly pro-
ducing situation-action pairs. However, even in simple sce-
narios the high number of pairs prevents a designer to over-
see the actually learnt behavior. For tackling this readabil-
ity problem we use a decision tree representation of the im-
plicit behavior of the best situation-action pairs. In this
contribution we selected the C4.5 algorithm to generate de-
cision trees, which are a well-suited representation model for
decision-making processes [1].

The best situation-action pairs are taken by first exclud-
ing those pairs that haven’t been tested enough, as the con-



fidence on their expected utility is lower. Then, we select
for each situation the action with the highest Q-value, con-
sidering only those with non-zero, positive Q-values. The
generated decision tree basically accomplishes the lacking
abstraction that makes the resulting behavior description
transparent for the designer.

3. EXPERIMENTAL SETUP
Our test scenario is a pedestrian evacuation model. The

environment is represented by a room, a number of round
obstacles and one exit. The agents are randomly placed in
the half on the opposite to the exit. They have two objec-
tives: leave the room as fast as possible and do not collide
with obstacles or other agents. Perception is discretized into
sectors, actions according to movement directions. A reward
is given to each agent individually after each step contain-
ing the following components: (1) Exit Reward indicating
whether the exit was reached; (2) Collision Reward punish-
ing collisions; and (3) Distance Reward indicating whether
the agent came closer to the exit. More details can be found
in [3]. For testing the consequences of different setups to the
overall outcome we focussed on the relation between the dif-
ferent components indicating the pressure towards/against
particular situations: a) when one or more elements are not
considered; b) when one elements contributes half or twice
as much as the others; c) when all contribute with the same
weight.

4. RESULTS AND DISCUSSION
We systematically run experiments with different configu-

rations for the objective function. The agents learnt to suf-
ficiently perform, that means move directly to the exit while
avoiding fixed and dynamic obstacles. Only little differences
in the performance measured in terms of number of collisions
were observable. Naturally, the best performance was mea-
sured when the weights of the Collision Reward were higher
than for Distance Reward. After that, using the decision tree
learner for generalization, we tested how well the classifica-
tion result from the decision tree resembles the originally
learnt behavior. It turned out that the best preservation
of information at the generalization step occurred when the
Distance Reward was weighted higher than the Collision Re-
ward.

Although performance and accuracy measures were al-
most the same for the different settings, the resulting de-
cision trees were quite different. With a higher Distance
Reward, we can see that the agent tend to develop actions
that lead to shorter paths, at the same time as they try
to avoid collisions. A shorter path means the selection of
movements that direct the agent to a sector closer to the
obstacle. This is different in the case with higher Collision
Reward : the decision tree points to a selection of percep-
tions and actions that lead to the development of a wider
collision-avoidance path. This comes from the fact that is
hard to predict other agents’ movements as agents cannot
distinguish between pedestrians and columns. If the weight
on the collision avoidance is higher, the agents learn to be
more “cautious”. They take wider deviations from the di-
rect route to avoid eventually colliding with another agent,
at the expense of evacuation time. That means finally that
those trees are more elaborated than when learning with
the other configurations - this can be seen in Figure 1. The

codes in the nodes correspond to different perceptions: O
for Obstacle, D for Diagonal, A for Ahead, L for Left and
R for Right.

(a) Collisions (b) Evacuation

Figure 1: Behavior trees for different objective func-
tion details putting more focus on collision avoid-
ance or fast evacuation.

5. CONCLUSION AND FUTURE WORK
Testing the robustness of the finally abstracted behav-

ior output with respect to variations of the initial objective
function showed a high sensitivity. Due to the abstraction
and generalization done using the decision tree learner, we
expected more robustness. However this result shows the rel-
evance of a careful formulation of the criteria for valid agent
behavior. Really surprising is that the complexity of the
resulting behavior program is not mirrored in the classical
numerical metrics that describe learning performance. This
makes the formulation of the objective function describing
what the agents shall achieve even more critical than de-
scribing how they should achieve it.

These results lead to next steps for establishing agent
learning as a tool for agent simulation design. First, we
have to analyze the learnt behavior more directly by con-
trolling agents using the decision trees generated. This will
show whether they actually perform in the intended way or
whether too much information has been lost. This may lead
us to testing other generalization techniques than the simple
decision tree learner that we used. There is a lot of research
going on for state abstraction in reinforcement learning. Al-
though not aiming at readability of the abstracted program,
they might be applicable in our case. A second future di-
rection of our research directly addresses the formulation of
the objective function: Instead of formulating an objective
function, we may use learning by demonstration and imi-
tation techniques for directly mapping observable actor or
stakeholder behavior to generate a behavior program for the
corresponding simulated agent.
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