
AAMAS 2012

The 11th International Conference on
Autonomous Agents and Multiagent Systems

June 4—8, 2012
Valencia, Spain

Proceedings
Volume I

IFAAMAS
International Foundation for Autonomous Agents and Multiagent Systems
www.ifaamas.org

Copyright c© 2012 by the International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS).
Permissions to make digital or hard copies of portions of this work for personal or classroom use is granted without
fee provided that the copies are not made or distributed for profit or commercial advantage and that the copies bear
the full citation on the first page. Copyrights for components of this work owned by others than IFAAMAS must
be honoured. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or fee. Request permission to republish from the IFAAMAS board of directors via info@ifaamas.org

ISBN-10: 0-9817381-1-7
ISBN-13: 978-0-9817381-1-6

www.ifaamas.org
info@ifaamas.org

Introduction
The Autonomous Agents and MultiAgent Systems (AAMAS) conference series brings together researchers from

around the world to share the latest advances in the field. It provides a high-profile and high-quality forum for

research in the theory and practice of autonomous agents and multiagent systems. AAMAS 2002, the first of the

series, was held in Bologna, followed by Melbourne (2003), New York (2004), Utrecht (2005), Hakodate (2006),

Honolulu (2007), Estoril (2008), Budapest (2009), Toronto (2010), and Taipei (2011). These are the proceedings of

AAMAS 2012, held in Valencia, in June 2012.

In addition to the general track for the AAMAS 2012 conference, submissions were invited to three special tracks:

a robotics track, a virtual agents track and an innovative applications track. The aims of these special tracks

were to give researchers from these areas a strong focus, to provide a forum for discussion and debate within the

encompassing structure of AAMAS, and to ensure that the impact of both theoretical contributions and innovative

applications were recognized. The tracks were chaired by leaders in the corresponding fields: Daniele Nardi for

the robotics track, Stefan Kopp for the virtual agents track, and Klaus Fischer and Alex Rogers for the innovative

applications track. The special track chairs provided critical input to selection of Program Committee (PC) and

Senior Program Committee (SPC) members, and to the reviewer allocation and the review process itself. The final

decisions concerning acceptance of papers were taken by the AAMAS 2012 Program Co-chairs in discussion with

the special track chairs.

Only full paper submissions were solicited for AAMAS 2012. The general, robotics, virtual agents, and innovative

applications tracks received 525, 75, 45, and 31 submissions respectively, for a total of 676 submissions at the

submission deadline, with 671 papers going on to be reviewed (a few papers were withdrawn after the deadline).

After a thorough review and discussion process which included an opportunity for authors to respond to reviewer

comments, 137 papers were selected for publication as full papers (acceptance rate 20.4%), each of which was allocated

8 pages in the proceedings and allocated 20 minutes in the program for oral presentation. Another 154 papers were

selected as extended abstracts and allocated 2 pages each in the proceedings. Both full papers and extended abstracts

were presented as posters during the conference. A number of accepted papers were subsequently withdrawn, leaving

136 full papers and 146 extended abstracts.

Of the submissions, 401 (59%) were indicated as being student papers, which indicates that AAMAS continues

to be a nurturing environment for students. Submissions were assigned keywords, each of which was classified

under one of 15 top-level topics (e.g., “Agent Cooperation”), including a new keyword “Perspectives” which attracted

six submissions. Representation of top-level topics (measured by first keyword) was broad, with top counts in

the areas of Economic Paradigms (113 submissions), Agent Cooperation (110), Learning and Adaptation (66),

Agent Reasoning (64), Robotics (54) and Agreement Technologies (40). Looking at specific keywords (e.g., “Agent

Cooperation::Distributed problem solving”), the most popular submission topics (again, measured by first keyword)

were game theory (43 submissions), teamwork, coalition formation, and coordination (34), distributed problem

solving (33), single agent learning (27), robot teams, multi-robot systems, robot coordination (26), planning (25),

auction and mechanism design (24), and multiagent learning (21).

We thank the PC and SPC members of AAMAS 2012 for their thoughtful reviews and extensive discussions. We

thank Daniele Nardi, Stefan Kopp, Klaus Fischer, and Alex Rogers for making the robotics, the virtual agents and

the innovative applications tracks a success. We thank Mehdi Dastani and Dave Shield for putting together the

proceedings. The program represents the intellectual motivation for researchers to come together at the conference,

but the success of the event is dependent on the many other elements that make up the week — especially the

tutorials, workshops, and doctoral consortium. We thank all members of the Conference Organising Committee for

their dedication, enthusiasm, and attention to detail, and wish to particularly thank Vicente Botti as Chair of the

Local Organising Committee for his contributions. We also thank Dave Shield for his patience and support regarding

Confmaster during every stage between the submission process and the actual AAMAS 2012 event.

Finally, we would like to thank the programme committee and senior programme committee members for their work,

and the authors for submitting their work to AAMAS.

Vincent Conitzer and Michael Winikoff,
AAMAS 2012 Program Co-Chairs

Wiebe van der Hoek and Lin Padgham,
AAMAS 2012 General Co-Chairs

Organising Committee
General Co-Chairs
Lin Padgham (RMIT University, Australia)
Wiebe van der Hoek (University of Liverpool, UK)

Program Co-Chairs
Vincent Conitzer (Duke University, US)
Michael Winikoff (University of Otago, New Zealand)

Robotics Track Chair
Daniele Nardi (Sapienza University of Rome, Italy)

Virtual Agents Track Chair
Stefan Kopp (Bielefeld University, Germany)

Innovative Applications Track Chairs
Klaus Fischer (DFKI, Germany)
Alex Rogers (University of Southampton, UK)

Local Arrangements Chair
Vicent Botti (Universidad Politecnica de Valencia, Spain)

Finance Chair
Sascha Ossowski (University Rey Juan Carlos, Spain)

Publicity Chair
Stephen Cranefield (University of Otago, New Zealand)

Publications Chair
Mehdi Dastani (Utrecht University, Netherlands)

Tutorials Chairs
Christopher Kiekintveld (University of Texas at Elpaso, US)
Catherine Pelachaud (CNRS-LTC1 and Telecom ParisTech, France)

Workshops Chair
Elizabeth Sklar (City University of New York, US)

Exhibitions Chair
Karl Tuyls (Maastricht University, Netherlands)

Demonstrations Chair
Paul Scerri (Carnegie Mellon University, US)

Scholarships Co-Chairs
Maria Gini (University of Minnesota, US)
Janusz Marecki (IBM Research, US)
Michal Pĕchouček (Czech Technical University, Czech Republic)

Doctoral Consortium Co-Chairs
Enrico Gerding (University of Southampton, UK)
Radhika Nagpal (Harvard University, US)

Sponsorship Co-Chairs
Virginia Dignum (Delft University of Technology, Netherlands)
Satoshi Kurihara (ISIR, Osaka University, Japan)
Sean Luke (George Mason University, US)

Senior Program Committee
Sherief Abdallah (British University in Dubai)
Thomas Ågotnes (University of Bergen)
Francesco Amigoni (Politecnico di Milano)
Elisabeth Andre (University of Augsburg)
Rafael Bordini (INF-UFRGS)
Craig Boutilier (University of Toronto)
Felix Brandt (TU Munich)
Monique Calisti (Martel Consulting)
Ruggiero Cavallo (Yahoo Research)
Xiaoping Chen (University of Science and Technology of China)
Yiling Chen (Harvard University)
Brad Clement (Jet Propulsion Laboratory)
Stephen Cranefield (University of Otago)
Sanmay Das (Rensselaer Polytechnic Institute)
Mathijs de Weerdt (Delft University of Technology)
Keith Decker (University of Delaware)
Frank Dignum (Utrecht University)
Ed Durfee (University of Michigan)
Piotr Faliszewski (AGH University of Science and Technology)
Boi Faltings (EPFL)
Ya’akov (Kobi) Gal (Harvard University)
Nicola Gatti (Politecnico di Milano)
Enrico Gerding (University of Southampton)
Maria Gini (University of Minnesota)
Dominic Greenwood (Whitestein Technologies)
Koen Hindriks (Delft University of Technology)
Michael Huhns (University of South Carolina)
Takayuki Ito (Nagoya Institute of Technology)
Catholijn Jonker (Delft University of Technology)
Gal Kaminka (The MAVERICK Group and Bar-Ilan University)
Jeffrey Kephart (IBM Research)
Christopher Kiekintveld (University of Texas at Elpaso)
Alexander Kleiner (Linköping University)
Sven Koenig (University of Southern California)
Nicole Kraemer (University Duisburg-Essen)
Sarit Kraus (Bar-Ilan University and University of Maryland)
Jérôme Lang (LAMSADE)
Kate Larson (University of Waterloo)
Yves Lespérance (York University)
James Lester (North Carolina State University)
Kevin Leyton-Brown (University of British Columbia)
Michael Luck (King’s College London)

Sean Luke (George Mason University)
Rajiv Maheswaran (University of Southern California)
Janusz Marecki (IBM Research)
Stacy Marsella (University of Southern California)
Peter McBurney (King’s College London)
Louis-Phillippe Morency (University of Southern California)
Yukiko Nakano (Seikei University)
Ana Paiva (INESC-ID and Instituto Superior Tecnico)
David Parkes (Harvard University)
Simon Parsons (City University of New York)
H. Van Dyke Parunak (Jacobs Vector Research Centre)
Adrian Pearce (University of Melbourne)
Michal Pĕchouček (Czech Technical University)
Catherine Pelachaud (CNRS-LTC1 and Telecom ParisTech)
Ariel Procaccia (Carnegie Mellon University)
Sarvapali Ramchurn (University of Southampton)
Juan Antonio Rodriguez-Aguilar (IIIA-CSIC)
Alex Rogers (University of Southampton)
Francesca Rossi (University of Padova)
Tuomas Sandholm (Carnegie Mellon University)
Paul Scerri (Carnegie Mellon University)
Sandip Sen (University of Tulsa)
Onn Shehory (IBM Research)
Yoav Shoham (Stanford University)
Jaime Sichman (University of Sao Paulo)
Munindar Singh (North Carolina State University)
Elizabeth Sklar (City University of New York)
Liz Sonenberg (University of Melbourne)
Katia Sycara (Carnegie Mellon University)
Milind Tambe (University of Southern California)
Matthew Taylor (Lafayette College)
Moshe Tennenholtz (Microsoft Research and Technion)
John Thangarajah (RMIT University)
Simon Thompson (BT Research & Technology)
Kagan Tumer (Oregon State University)
Wamberto Vasconcelos (University of Aberdeen)
Manuela Veloso (Carnegie Mellon University)
Toby Walsh (NICTA and University of New South Wales)
Gerhard Weiss (University of Maastricht)
Danny Weyns (Linnaeus University, Campus Växjö)
Cees Witteveen (Delft University of Technology)
Makoto Yokoo (Kyushu University)
Pinar Yolum (Bogazici University)
Neil Yorke-Smith (American University of Beirut)
Shlomo Zilberstein (University of Massachusetts Amherst)

Program Committee
Noa Agmon (University of Texas at Austin)
Adrian Agogino (UCSC, NASA Ames Research Center)
Stephane Airiau (University of Amsterdam)
Marco Alberti (Universidade Nova de Lisboa)
Huib Aldewereld (Delft University of Technology)
Natasha Alechina (University of Nottingham)
Jan Allbeck (George Mason University)

Marty Allen (University of Wisconsin-La Crosse)
Christopher Amato (MIT)
Frédéric Amblard (IRIT-UT1)
Leila Amgoud (IRIT - CNRS)
Bo An (University of Southern California)
Elliot Anshelevich (Rensselaer Polytechnic Institute)
Alexander Artikis (NCSR Demokritos and Imperial College London)
Katie Atkinson (University of Liverpool)
Reyhan Aydogan (Delft University of Technology)
Ruth Aylett (Heriot-Watt University)
Haris Aziz (Technische Universität München)
Yoram Bachrach (Microsoft Research)
Matteo Baldoni (University of Torino)
Bikramjit Banerjee (University of Southern Mississippi)
Laura Barbulescu (CMU)
Cristina Baroglio (University of Torino)
Nicola Basilico (University of California, Merced)
Ana Bazzan (UFRGS)
Christian Becker-Asano (University of Freiburg)
Maren Bennewitz (University of Freiburg)
Jamal Bentahar (Concordia University)
Timothy Bickmore (Northeastern University)
Peter Biro (Hungarian Academy of Sciences)
Elizabeth Black (King’s College London)
Jim Blythe (ISI, USC)
Olivier Boissier (Ecole des Mines de Saint-Etienne)
Tibor Bosse (Vrije Universiteit Amsterdam)
Luis Botelho (ISCTE-IUL)
Sylvain Bouveret (Grenoble INP - Ensimag and LIG)
Michael Bowling (University of Alberta)
Lars Braubach (University of Hamburg)
Frances Brazier (Delft University of Technology)
Cyril Brom (Charles University in Prague)
Nils Bulling (Clausthal University of Technology)
Juan C. Burguillo (University of Vigo)
Zack Butler (Rochester Institute of Technology)
Zhongtang Cai (Oracle Corp.)
Martin Caminada (University of Luxembourg)
Longbing Cao (University of Technology, Sydney)
Ioannis Caragiannis (University of Patras)
Stefano Carpin (University of California, Merced)
Cristiano Castelfranchi (ISTC-CNR and University of Siena)
Ginevra Castellano (University of Birmingham)
Marc Cavazza (University of Teesside)
Jesus Cerquides (IIIA-CSIC)
Brahim Chaib-draa (Laval University)
Tanmoy Chakraborty (Harvard University)
Georgios Chalkiadakis (Technical University of Crete)
Yu-Han Chang (University of Southern California)
Carlos Chesnevar (Universidad Nacional del Sur)
Maria Chli (Aston University)
Amit Chopra (University of Trento)
Helder Coelho (Universidade de Lisboa)
Robin Cohen (University of Waterloo)
Silvia Coradeschi (Orebro University)

Nikolaus Correll (University of Colorado, Boulder)
Célia da Costa Pereira (Université de Nice Sophia Antipolis)
Prithviraj Dasgupta (University of Nebraska at Omaha)
Mehdi Dastani (Utrecht University)
Patrick De Causmaecker (Katholieke Universiteit Leuven and KaHo Sint-Lieven)
Giuseppe De Giacomo (Sapienza University of Rome)
Steven de Jong (Maastricht University)
Tiago de Lima (University Lille Nord de France)
Francien Dechesne (Delft University of Technology)
James Delgrande (Simon Fraser University)
Scott DeLoach (Kansas State University)
Yves Demazeau (LIG-CNRS)
M. Bernardine Dias (Carnegie Mellon University)
Virginia Dignum (Delft University of Technology)
Oǧuz Dikenelli (Ege University)
Klaus Dorer (Offenburg University)
Prashant Doshi (University of Georgia)
Barbara Dunin-Kęplicz (Warsaw University and Polsh Academy of Sciences)
Amal El Fallah Seghrouchni (LIP6 - UPMC and CNRS)
Edith Elkind (Nanyang Technological University)
Ulle Endriss (University of Amsterdam)
Gábor Erdélyi (Nanyang Technological University, Singapore)
Marc Esteva (IIIA-CSIC)
Rino Falcone (ISTC-CNR)
Alessandro Farinelli (University of Verona)
Maria Fasli (University of Essex)
Shaheen Fatima (Loughborough University)
Jacques Ferber (LIRMM - University of Montpellier 2)
Sevan Ficici (Natural Selection, Inc.)
Nicoletta Fornara (Universita della Svizzera Italiana)
Alex Fukunaga (The University of Tokyo)
Patrick Gebhard (DFKI)
Aditya Ghose (University of Wollongong)
Arpita Ghosh (Yahoo! Research)
Marco Gilles (Goldsmiths, University of London)
Andrew Gilpin (Hg Analytics)
Paolo Giorgini (University of Trento)
Piotr Gmytrasiewicz (University of Illinois at Chicago)
Claudia Goldman (GM Israel)
Valentin Goranko (Technical University of Denmark)
Guido Governatori (NICTA)
Gianluigi Greco (University of Calabria)
Rachel Greenstadt (Drexel University)
Nathan Griffiths (University of Warwick)
Davide Grossi (University of Liverpool)
Zahia Guessoum (Universite de Paris 6 and Universite de Reims)
Renata Guizzardi (Federal University of Espirito Santo)
Mingyu Guo (University of Liverpool)
Christian Guttmann (EBTIC)
James Hanson (IBM Research)
James Harland (RMIT University)
Paul Harrenstein (Technische Universität München)
Noam Hazon (Carnegie Mellon University)
Dirk Heylen (University of Twente)
Benjamin Hirsch (EBTIC)

Jesse Hoey (University of Waterloo)
Mark Hoogendoorn (VU University Amsterdam)
Ian Horswill (Northwestern University)
Adele Howe (Colorado State)
Jane Yung-jen Hsu (National Taiwan University)
Hung-Hsuan Huang (Ritsumeikan University)
Jomi Hubner (Federal University of Santa Catarina)
Joris Hulstijn (Delft University of Technology)
Wayne Iba (Westmont College)
Samuel Ieong (Microsoft Research)
Luca Iocchi (Sapienza University of Rome)
Atsushi Iwasaki (Kyushu University)
Michal Jakob (Czech Technical University)
Nadeem Jamali (University of Saskatchewan)
Wojciech Jamroga (University of Luxembourg)
Albert Xin Jiang (University of British Columbia and University of Southern California)
Kristiina Jokinen (University of Helsinki)
Patrick Jordan (Yahoo! Labs)
Radu Jurca (Google Inc)
Marcelo Kallmann (University of California, Merced)
Ece Kamar (MSR)
Sachin Kamboj (University of Delaware)
Kamalakar Karlapalem (IIIT-H)
Ian Kash (MSR UK)
Wolfgang Ketter (Erasmus University)
Tomas Klos (Delft University of Technology)
Franziska Klügl (Orebro University)
Matthias Klusch (DFKI)
Andreas Kolling (University of Pittsburgh)
Martin Kollingbaum (University of Aberdeen)
Sebastien Konieczny (CRIL-CNRS)
Andreas Krause (ETH Zurich)
Daniel Kudenko (University of York)
Han La Poutre (CWI and Universiteit Utrecht)
Michail Lagoudakis (Technical University of Crete)
Sebastien Lahaie (Yahoo! Research)
Luis Lamb (Universidade Federal do Rio Grande do Sul)
Brent Lance (Army Research Laboratory)
Alessandro Lazaric (SequeL)
João Leite (Universidade Nova de Lisboa)
Pedro Lima (Instituto Superior Tecnico)
Raz Lin (Bar-Ilan University)
Yaxin Liu (Google)
Brian Logan (University of Nottingham)
Alessio Lomuscio (Imperial College London)
Miguel Angel Lopez Carmona (Universidad de Alcala and MIT Sloan School of Management)
Maite Lopez-Sanchez (University of Barcelona)
Emiliano Lorini (IRIT)
Kian Hsiang Low (National University of Singapore)
Benjamin Lubin (Boston University)
Brian Magerko (Georgia Institute of Technology)
Roger Mailler (University of Tulsa)
Vangelis Markakis (Athens University of Economics and Business)
Carlos Martinho (Instituto Superior Tecnico and INESC-ID)
Viviana Mascardi (Universitad́egli Studi di Genova)

Shigeo Matsubara (Kyoto University)
Tokuro Matsuo (Yamagata University)
Nicolas Maudet (LAMSADE, Univ. Paris-Dauphine)
Francisco Melo (INESC-ID/Instituto Superior Técnico)
Felipe Meneguzzi (Carnegie Mellon University)
Pedro Meseguer (IIIA CSIC)
John-Jules Meyer (Utrecht University and Alan Turing Institute Almere)
Tomasz Michalak (University of Southampton)
Martin Michalowski (Adventium Labs)
Simon Miles (King’s College London)
Tim Miller (The University of Melbourne)
Sanjay Modgil (King’s College London)
Luis Moniz (FCUL)
Pavlos Moraitis (LIPADE, Paris Descartes University)
David Morley (SRI International)
Abdel-Illah Mouaddib (University of Caen Basse-Normandie)
Joerg Mueller (TU Clausthal)
Rudolf Müller (Maastricht University)
David Musliner (SIFT)
Karen Myers (SRI)
Hideyuki Nakanishi (Osaka University)
Nanjangud Narendra (IBM)
Victor Naroditskiy (University of Southampton)
Abhaya Nayak (Macquarie University)
Radoslaw Niewiadomski (Telecom ParisTech)
Toyoaki Nishida (Kyoto University)
Jinzhong Niu (CUNY City College)
Timothy Norman (University of Aberdeen)
Ann Nowé (Vrije Universiteit Brussel)
Mariusz Nowostawski (University of Otago)
Colm O’Riordan (National University of Ireland)
Magalie Ochs (CNRS and Télécom ParisTech)
Frans Oliehoek (MIT)
Andrea Omicini (University of Bologna)
Nir Oren (University of Aberdeen)
Mehmet Orgun (Macquarie University)
Charlie Ortiz (SRI International)
Sascha Ossowski (University Rey Juan Carlos)
Eric Pacuit (Tilburg University)
Julian Padget (University of Bath)
Liviu Panait (Google)
Igor Pandzic (Zagreb University)
Mario Paolucci (ISTC-CNR)
David Pardoe (Yahoo! Labs)
Praveen Paruchuri (Carnegie Mellon University)
Terry Payne (University of Liverpool)
David Pennock (Yahoo! Research)
Anna Perini (FBK)
Christopher Peters (Coventry University)
Steve Phelps (University of Essex)
Paulo Pinheiro da Silva (University of Texas at El Paso)
Maria Silvia Pini (University of Padova)
Jeremy Pitt (Imperial College London)
Paul Piwek (The Open University)
Eric Platon (Cirius Technologies, Inc.)

Alexander Pokahr (University of Hamburg)
Faruk Polat (Middle East Technical University)
Maria Polukarov (University of Southampton)
Enrico Pontelli (New Mexico State University)
Ronald Poppe (University of Twente)
Daniele Porello (University of Amsterdam)
Rui Prada (INESC-ID and Instituto Superior Técnico)
Henry Prakken (Utrecht University and University of Groningen)
Doina Precup (McGill University)
Maryam Purvis (University of Otago)
David Pynadath (University of Southern California)
Zinovi Rabinovich (Bar-Ilan University)
Iyad Rahwan (Masdar Institute and Massachusetts Institute of Technology)
Anita Raja (University of North Carolina at Charlotte)
Alessandro Ricci (University of Bologna)
Deborah Richards (Macquarie University)
Mark Riedl (Georgia Institute of Technology)
Laurel Riek (University of Notre Dame)
David Roberts (North Carolina State University)
David Robertson (University of Edinburgh)
Valentin Robu (University of Southampton)
Jeffrey Rosenschein (Hebrew University of Jerusalem)
Jörg Rothe (Heinrich-Heine-Universitaet Duesseldorf)
Antonino Rotolo (University of Bologna)
Michael Rovatsos (University of Edinburgh)
Wheeler Ruml (University of New Hampshire)
Zsófia Ruttkay (Moholy Nagy University of Art and Design)
Paul Rybski (Carnegie Mellon University)
Jordi Sabater-Mir (IIIA-CSIC)
Nicolas Sabouret (University Pierre et Marie Curie)
Fariba Sadri (Imperial College London)
Romeo Sanchez Nigenda (UANL)
Ken Satoh (National Institute of Informatics, Japan and Sokendai, Japan)
Bastin Tony Roy Savarimuthu (University of Otago)
Francesco Scarcello (University of Calabria)
Murat Şensoy (University of Aberdeen)
Sven Seuken (University of Zurich)
Guy Shani (Ben Gurion University)
Steven Shapiro (RMIT)
Alexei Sharpanskykh (VU University Amsterdam)
Dylan Shell (Texas A&M University)
Jiaying Shen (SRI International)
Mei Si (RPI)
Carles Sierra (IIIA-CSIC)
Guillermo Simari (Universidad Nacional del Sur in Bahia Blanca)
Gerardo Simari (Unversity of Oxford)
Arkadii Slinko (University of Auckland)
Stephen Smith (Carnegie Mellon University)
Leen-Kiat Soh (University of Nebraska)
Troels Sørensen (University of Warwick)
Tran Cao Son (New Mexico State University)
Matthijs Spaan (Delft University of Technology)
Siddharth Srivastava (University of Wisconsin Madison)
Mudhakar Srivatsa (IBM Research)
Sebastian Stein (University of Southampton)

Roni Stern (Ben Gurion University)
Nathan Sturtevant (University of Denver)
Gita Sukthankar (University of Central Florida)
Evan Sultanik (Johns Hopkins APL and Drexel University)
Samarth Swarup (Virginia Tech)
Pedro Szekely (USC Information Sciences Institute)
Erik Talvitie (Franklin & Marshall College)
Pingzhong Tang (Carnegie Mellon University)
Luke Teacy (University of Ulster)
Adriaan ter Mors (Delft University of Technology)
Andrea Tettamanzi (Universita degli Studi di Milano)
Michael Thielscher (The University of New South Wales)
Gian Diego Tipaldi (University of Freiburg)
Viviane Torres da Silva (Universidade Federal Fluminense)
Jan Treur (Vrije Universiteit Amsterdam)
Nicolas Troquard (ISTC-CNR)
Karl Tuyls (Maastricht University)
Leendert van der Torre (University of Luxembourg)
Hans van Ditmarsch (University of Sevilla)
Rogier van Eijk (Utrecht University)
Michael van Lent (SoarTech)
Peter-Paul van Maanen (TNO and Vrije Universiteit Amsterdam)
M. Birna van Riemsdijk (Delft University of Technology)
Greet Vanden Berghe (KaHo Sint-Lieven and K.U.Leuven)
Pradeep Varakantham (Singapore Management University)
Virginia Vassilevska Williams (University of California, Berkeley and Stanford University)
Kristen Brent Venable (University of Padova)
Mario Verdicchio (Università di Bergamo)
Paolo Viappiani (Aalborg University)
Hannes Vilhjalmsson (Reykjavik University)
Mirko Viroli (University of Bologna)
Bao Vo (Swinburne University of Technology)
Thomas Voice (University of Southampton)
Yevgeniy Vorobeychik (Sandia National Labs)
Peter Vrancx (Vrije Universiteit Brussel)
Marilyn Walker (UCSC)
Yonghong Wang (Carnegie Mellon University)
Michael Wellman (University of Michigan)
Shimon Whiteson (Univ of Amsterdam)
Mary-Anne Williams (University of Technology, Sydney)
Mark Wilson (University of Auckland)
Stefan Witwicki (INESC-ID and IST)
Wayne Wobcke (University of New South Wales)
Michael Wooldridge (University of Liverpool)
Lirong Xia (Harvard University)
Yang Xu (Univ. Electronic Science and Tech of China)
William Yeoh (Singapore Management University)
R. Michael Young (NC State University)
Minjie Zhang (University of Wollongong)
Chengqi Zhang (University of Technology, Sydney)
Yingqian Zhang (Erasmus University Rotterdam)
Martin Zinkevich (Yahoo! Labs)
Roie Zivan (Ben Gurion University)
Aviv Zohar (Microsoft Research)

Auxiliary Reviewers
Giulia Andrighetto
Chris Archibald
Itai Ashlagi
Edmond Awad
Dirk Bade
Aijun Bai
João Balsa
Nikhil Bansal
Nolan Bard
Titus Barik
Gregory J. Barlow
Dorothea Baumeister
Raphen Becker
Kostas Bekris
Alexandros-Sotiris Belesiotis
Aurélie Beynier
Graham Billiau
Darse Billings
Thomas Bolander
Branislav Bosansky
Fiemke Both
Maroua Bouzid
Simina Branzei
Keith Brawner
Darius Braziunas
Markus Brill
Brett Browning
Neil Burch
Chris Burnett
Ethan Burns
Xiaoqi Cao
Alan Carlin
Arthur Carvalho
Nilanjan Chakraborty
George Christelis
David Coleman
Florin Constantin
Matthew Crosby
Ricardo Matsumura de Araujo
Bart de Keijzer
Yann-Michaël De Hauwere
Enrique de la Hoz
Jeroen de Man
Christiano de Oliveira Braga
Francesco Maria Delle Fave
Sam Devlin
Jilles Dibangoye
John P. Dickerson
Yannis Dimopoulos
Ning Ding
John Doucette
Lachlan Dufton
Quang Duong
Felix Duvallet
Marcin Dziubinski
Adam Eck
Erdem Eser Ekinci
Mohamed El-Menshawy
Patricia Everaere
Paolo Felli
Ariel Felner
Jelena Fiosina
Maksims Fiosins
Amalia Foka
Antiono Franchi

Henry Franks
Katsuhide Fujita
Alfredo Gabaldon
Alice Gao
Hongxing Geng
Charlotte Gerritsen
Amineh Ghorbani
Robby Goetschalckx
Umberto Grandi
Alex Grigoriev
Tal Grinshpoun
Giorgio Grisetti
Marek Grzes
K. R. Guruprasad
Patricia Gutierrez
Sajjad Haider
Tayhun Gokmen Halac
Chung-Wei Hang
Brent Harrison
Ryan Harrison
Adnan Hashmi
Christopher Haubeck
Rafik Hedfi
Cédric Herpson
Rania Hodhod
Armin Hornung
Fatimah Modupe Ishowo-Oloko
Waqar Jaffry
Jie Jiang
Michael Johanson
Benjamin Johnston
E. Gil Jones
Janyl Jumadinova
Anshul Kanakia
Balajee Kannan
Patrick Kapahnke
Maria Karamitrou
Atif Khan
Shehroz Khan
Babak Khosravifar
Dominik Klein
Max Knobbout
Tomek Kolasa
Erik Komendera
David Kortenkamp
Andrew Koster
Ramachandra Kota
Annamaria Kovacs
Markus Kuderer
Tobias Kuester
Akshat Kumar
Jun-young Kwak
Marc Lanctot
Robert Lass
Ron Lavi
Matteo Leonetti
Josh Letchford
Omer Lev
Li Li
Minyi Li
Viliam Lisy
Angela Locoro
Robert Loftin
Marco Luetzenberger
Marin Lujak

Mahsa Maghami
Daniel Maier
Enrico Malizia
Marco Mamei
Cristina E. Manfredotti
Luca Marchetti
Ivan Marsa-Maestre
Maria Vanina Martinez
Riccardo De Masellis
James McInerney
João Messias
Gabriele Modena
Nataliya Mogles
Sara Montagna
Mirko Morandini
Hala Mostafa
Angelica Munoz-Melendez
Cu D. Nguyen
Hiroaki Nishi
José Nuno Pereira
Svetlana Obraztsova
Steven Okamoto
Fabio Paglieri
Luigi Palopoli
Thanos Panagopoulos
Fabio Patrizi
Noam Peled
Ana Peleteiro
Michael Pelican
Toni Penya
Markus Peters
Danilo Pianini
Cyril Poulet
Christos-Alexandros Psomas
Marc Pujol-Gonzalez
Fernando Velazquez Quesada
Srinivasa Ragavan
Dustin Reishus
Bryan Renne
Anja Rey
Reyhaneh Reyhani
Ariella Richardson
Emma Rollon
Magnus Roos
Jörg Röwekämper
Ji Ruan
Mike Ruberry
Zachary B. Rubinstein
Alex Rutherford
Jeff Rye
Leonardo Salayandia
David Sanderson
Monica Santos
Lena Schend
Claudio Schifanella
Pedro Sequeira
Oskar Skibski
Andrew Smith
Nikolaos I. Spanoudakis

Luciano Spinello
Christoph Sprunk
Isabelle Stanton
Alina Strachocka
Ashley Stroupe
Ken Sugawara
Andrzej Szalas
Charalampos Tampitsikas
Yuqing Tang
Danesh Tarapore
Jordan Thayer
Long Tran-Thanh
Pete Trautman
Paulo Trigo
Luca Tummolini
Paolo Turrini
Konstantina Valogianni
Janneke van der Zwaan
Harm van Seijen
Arlette van Wissen
Ondrej Vanek
Matteo Vasirani
Tiago Veiga
Matteo Venanzi
Sicco Verwer
Dani Villatoro
Meritxell Vinyals
Can Wang
Feng Wang
Yanjing Wang
Martijn Warnier
Stefan Warwas
Matthew Whitaker
Bryce Wiedenbeck
Colin Williams
Andreas Witzel
Feng Wu
Xiao-Feng Xie
Reda Yaich
Muhammad Yasir
Yifeng Zeng
Zongzhang Zhang
Xinghui Zhao
George Zhu
Ingo Zinnikus
Inon Zuckerman
Michael Zuckerman

We thank the following for their contribution to the success of this conference.

Emerald Sponsor

Platinum Sponsor

Gold Sponsor

Bronze Sponsor

 Best Student
Paper Sponsor

Scholarship
 Sponsors

Host Institutions

Contents
Invited Talks

Main Program - Full Papers

Session 1A – Innovative Applications
PROTECT: A Deployed Game Theoretic System to Protect the Ports of the United States

Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo, Ben Maule, Garrett
Meyer . 13

SAVES: A Sustainable Multiagent Application to Conserve Building Energy Considering Occupants
Jun-young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Milind Tambe, Farrokh Jazizadeh,
Geoffrey Kavulya, Laura Klein, Burcin Becerik-Gerber, Timothy Hayes, Wendy Wood 21

Active Malware Analysis using Stochastic Games
Simon Williamson, Pradeep Varakantham, Debin Gao, Ong Chen Hui 29

Agents vs. Pirates: Multi-agent Simulation and Optimization to Fight Maritime Piracy
Michal Jakob, Ondřej Vanĕk, Ondřej Hrstka, Michal Pĕchouček 37

Improving Building Energy Efficiency with a Network of Sensing, Learning and Prediction Agents
Sunil Mamidi, Yu-Han Chang, Rajiv Maheswaran . 45

Session 2A – Virtual Agents
Bayesian Model of the Social Effects of Emotion in Decision-Making in Multiagent Systems

Celso de Melo, Peter Carnevale, Stephen Read, Dimitrios Antos, Jonathan Gratch 55
Towards building a Virtual Counselor: Modeling Nonverbal Behavior during Intimate Self-Disclosure

Sin-Hwa Kang, Jonathan Gratch, Candy Sidner, Ron Artstein, Lixing Huang, Louis-Phillippe
Morency . 63

A Sequential Recommendation Approach for Interactive Personalized Story Generation
Hong Yu, Mark Riedl . 71

Evaluating the Models & Behaviour of 3D Intelligent Virtual Animals in a Predator-Prey Relationship
Deborah Richards, Michael J. Jacobson, John Porte, Charlotte Taylor, Meredith Taylor, Anne
Newstead, Iwan Kelaiah, Nader Hanna . 79

Model of the Perception of Smiling Virtual Character
Magalie Ochs, Catherine Pelachaud . 87

Session 3A – Robotics I
Supervised Morphogenesis - Morphology Control of Ground-based Self-Assembling Robots by Aerial

Robots
Nithin Mathews, Alessandro Stranieri, Alexander Scheidler, Marco Dorigo 97

Decentralized Active Robotic Exploration and Mapping for Probabilistic Field Classification in Envi-
ronmental Sensing
Kian Hsiang Low, Jie Chen, John Dolan, Steve Chien, David Thompson 105

Robot Exploration with Fast Frontier Detection: Theory and Experiments
Matan Keidar, Gal Kaminka . 113

Dynamic Reconfiguration in Modular Robots using Graph Partitioning-based Coalitions
Prithviraj Dasgupta, Vladimir Ufimtsev, Carl Nelson, S. G. M. Hossain 121

UT Austin Villa 2011: A Champion Agent in the RoboCup 3D Soccer Simulation Competition
Patrick MacAlpine, Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan, Francisco Barrera,
Adrian Lopez-Mobilia, Nicolae Ştiurcă, Victor Vu, Peter Stone . 129

xvii

Session 4A – Robotics II
Property-driven design for swarm robotics

Manuele Brambilla, Carlo Pinciroli, Mauro Birattari, Marco Dorigo 139
Multi-robot collision avoidance with localization uncertainty

Daniel Hennes, Daniel Claes, Wim Meeussen, Karl Tuyls . 147
Decision-Theoretic Approach to Maximizing Observation of Multiple Targets in Multi-Camera Surveil-

lance
Prabhu Natarajan, Trong Nghia Hoang, Kian Hsiang Low, Mohan Kankanhalli 155

Segregation in Swarms of e-puck Robots Based On the Brazil Nut Effect
Jianing Chen, Melvin Gauci, Michael J. Price, Roderich Groß . 163

Model-Driven Behavior Specification for Robotic Teams
Alexandros Paraschos, Nikolaos Spanoudakis, Michail Lagoudakis 171

Session 5A – Robotics III
Active Visual Sensing and Collaboration on Mobile Robots using Hierarchical POMDPs

Shiqi Zhang, Mohan Sridharan . 181
What am I doing? Automatic Construction of an Agent’s State-Transition Diagram through Intro-

spection
Constantin Berzan, Matthias Scheutz . 189

Learning from Demonstration with Swarm Hierarchies
Keith Sullivan, Sean Luke . 197

Autonomous Robot Dancing Driven by Beats and Emotions of Music
Guangyu Xia, Junyun Tay, Roger Dannenberg, Manuela Veloso 205

Session 1B – Teamwork I
Coordination Guided Reinforcement Learning

Qiangfeng Peter Lau, Mong Li Lee, Wynne Hsu . 215
On Coalition Formation with Sparse Synergies

Thomas Voice, Sarvapali Ramchurn, Nick Jennings . 223
Decentralised Channel Allocation and Information Sharing for Teams of Cooperative Agents

Sebastian Stein, Simon Williamson, Nick Jennings . 231
A New Approach to Betweenness Centrality Based on the Shapley Value

Piotr Szczepański, Tomasz Michalak, Talal Rahwan . 239
Maintaining Team Coherence under the Velocity Obstacle Framework

Andrew Kimmel, Andrew Dobson, Kostas Bekris . 247

Session 2B – Distributed Problem Solving
Stochastic Dominance in Stochastic DCOPs for Risk Sensitive Applications

Duc Thien Nguyen, William Yeoh, Hoong Chuin Lau . 257
Max/Min-sum Distributed Constraint Optimization through Value Propagation on an Alternating

DAG
Roie Zivan, Hilla Peled . 265

Improving BnB-ADOPT+-AC
Patricia Gutierrez, Pedro Meseguer . 273

Optimal Decentralised Dispatch of Embedded Generation in the Smart Grid
Sam Miller, Sarvapali Ramchurn, Alex Rogers . 281

DCOPs and Bandits: Exploration and Exploitation in Decentralised Coordination
Ruben Stranders, Long Tran-Thanh, Francesco Maria Delle Fave, Alex Rogers, Nick Jennings . . 289

Session 4B – Agent Societies
A Multiagent Evolutionary Framework based on Trust for Multiobjective Optimization

Siwei Jiang, Jie Zhang, Yew-Soon Ong . 299
A qualitative reputation system for multiagent systems with protocol-based communication

Emilio Serrano, Michael Rovatsos, Juan Botia . 307
PRep: A Probabilistic Reputation Model for Biased Societies

Yasaman Haghpanah, Marie desJardins . 315
A Decision-Theoretic Characterization of Organizational Influences

Jason Sleight, Ed Durfee . 323
Reasoning under Compliance Assumptions in Normative Multiagent Systems

Max Knobbout, Mehdi Dastani . 331

Session 5B – Teamwork II
Leading Ad Hoc Agents in Joint Action Settings with Multiple Teammates

Noa Agmon, Peter Stone . 341
Comparative Evaluation of MAL Algorithms in a Diverse Set of Ad Hoc Team Problems

Stefano Albrecht, Subramanian Ramamoorthy . 349
An Analysis Framework for Ad Hoc Teamwork Tasks

Samuel Barrett, Peter Stone . 357
Modeling and Learning Synergy for Team Formation with Heterogeneous Agents

Somchaya Liemhetcharat, Manuela Veloso . 365

Session 1C – Learning I
V-MAX: Tempered Optimism for Better PAC Reinforcement Learning

Karun Rao, Shimon Whiteson . 375
Reinforcement Learning Transfer via Sparse Coding

Haitham Bou Ammar, Karl Tuyls, Matthew Taylor, Kurt Driessen, Gerhard Weiss 383
Learning in a Small World

Arun Tejasvi Chaganty, Prateek Gaur, Balaraman Ravindran . 391
Just Add Pepper: Extending Learning Algorithms for Repeated Matrix Games to Repeated Markov

Games
Jacob Crandall . 399

Strong Mitigation: Nesting Search for Good Policies Within Search for Good Reward
Jeshua Bratman, Satinder Singh, Richard Lewis, Jonathan Sorg 407

Session 2C – Learning II
Decentralized Bayesian Reinforcement Learning for Online Agent Collaboration

Luke Teacy, Georgios Chalkiadakis, Alessandro Farinelli, Alex Rogers, Nick Jennings, Sally Mc-
Clean, Gerard Parr . 417

Shaping Fitness Functions for Coevolving Cooperative Multiagent Systems
Mitchell Colby, Kagan Tumer . 425

Dynamic Potential-Based Reward Shaping
Sam Devlin, Daniel Kudenko . 433

Learning and Predicting Dynamic Networked Behavior with Graphical Multiagent Models
Quang Duong, Michael Wellman, Satinder Singh, Michael Kearns 441

Session 3C – Human-agent Interaction
A Cultural Sensitive Agent for Human-Computer Negotiation

Galit Haim, Ya’akov (Kobi) Gal, Sarit Kraus, Michele Gelfand . 451
Giving Advice to People in Path Selection Problems

Amos Azaria, Zinovi Rabinovich, Sarit Kraus, Claudia Goldman, Omer Tsimhoni 459
Combining Human and Machine Intelligence in Large-scale Crowdsourcing

Ece Kamar, Severin Hacker, Eric Horvitz . 467
Reinforcement Learning from Simultaneous Human and MDP Reward

W. Bradley Knox, Peter Stone . 475
Automatic Task Decomposition and State Abstraction from Demonstration

Luis C. Cobo, Charles L. Isbell Jr., Andrea Thomaz . 483

Session 4C – Argumentation & Negotiation
Quantifying Disagreement in Argument-based Reasoning

Richard Booth, Martin Caminada, Mikolaj MikoŁaj, Iyad Rahwan 493
Cooperative Dialogues with Conditional Arguments

Samy Sá, João Alcântara . 501
Defeasible Argumentation for Multi-Agent Planning in Ambient Intelligence Applications

Sergio Pajares Ferrando, Eva Onaindia . 509
Personalizing Communication about Trust

Andrew Koster, Jordi Sabater-Mir, Marco Schorlemmer . 517
From axiomatic to strategic models of bargaining with logical beliefs and goals

Bao Vo, Minyi Li . 525

Session 5C – Emergence
Crowd IQ - Aggregating Opinions to Boost Performance

Yoram Bachrach, Thore Graepel, Gjergji Kasneci, Michal Kosinski, Jurgen Van-Gael 535
Efficient Opinion Sharing in Large Decentralised Teams

Oleksandr Pryymak, Alex Rogers, Nick Jennings . 543
Agents of Influence in Social Networks

Amer Ghanem, Srinivasa Vedanarayanan, Ali Minai . 551
The Emergence of Commitments and Cooperation

The Anh Han , Luís Moniz Pereira , Francisco C. Santos . 559

Session 1D – Social Choice I
Strategyproof Approximations of Distance Rationalizable Voting Rules

Travis Service, Julie Adams . 569
Campaigns for Lazy Voters: Truncated Ballots

Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, Jörg Rothe 577
Possible and Necessary Winners of Partial Tournaments

Haris Aziz, Markus Brill, Felix Fischer, Paul Harrenstein, Jérôme Lang, Hans Georg Seedig . . . 585
Communication Complexity of Approximating Voting Rules

Travis Service, Julie Adams . 593

Session 2D – Social Choice II
Lot-based Voting Rules

Toby Walsh, Lirong Xia . 603
Convergence of Iterative Voting

Omer Lev, Jeffrey Rosenschein . 611
Optimal Manipulation of Voting Rules

Svetlana Obraztsova, Edith Elkind . 619
Manipulation Under Voting Rule Uncertainty

Edith Elkind, Gábor Erdélyi . 627
Voter Response to Iterated Poll Information

Annemieke Reijngoud, Ulle Endriss . 635

Session 3D – Economies & Markets I
Rational Market Making with Probabilistic Knowledge

Abraham Othman, Tuomas Sandholm . 645
Can a Zero-Intelligence Plus Model Explain the Stylized Facts of Financial Time Series Data?

Imon Palit, Steve Phelps, Wing Lon Ng . 653
A Scoring Rule-based Mechanism for Aggregate Demand Prediction in the Smart Grid

Harry Rose, Alex Rogers, Enrico Gerding . 661
A Model-Based Online Mechanism with Pre-Commitment and its Application to Electric Vehicle

Charging
Sebastian Stein, Enrico Gerding, Valentin Robu, Nick Jennings 669

Efficient Crowdsourcing Contests
Ruggiero Cavallo, Shaili Jain . 677

Session 4D – Economies & Markets II
Identifying Influential Agents for Advertising in Multi-agent Markets

Mahsa Maghami, Gita Sukthankar . 687
Predicting Your Own Effort

David F. Bacon, Yiling Chen, Ian Kash, David Parkes, Malvika Rao, Manu Sridharan 695
Optimal Incentive Timing Strategies for Product Marketing on Social Networks

Pankaj Dayama, Aditya Karnik, Yadati Narahari . 703
Optimizing Kidney Exchange with Transplant Chains: Theory and Reality

John Dickerson, Ariel Procaccia, Tuomas Sandholm . 711
Fair Allocation Without Trade

Avital Gutman, Noam Nisan . 719

Session 5D – Auction & Mechanism Design
Mixed-bundling auctions with reserve prices

Pingzhong Tang, Tuomas Sandholm . 729
Eliciting Forecasts from Self-interested Experts: Scoring Rules for Decision Makers

Craig Boutilier . 737
Worst-Case Optimal Redistribution of VCG Payments in Heterogeneous-Item Auctions with Unit

Demand
Mingyu Guo . 745

False-name-proofness in Online Mechanisms
Taiki Todo, Takayuki Mouri, Atsushi Iwasaki, Makoto Yokoo . 753

Session 1E – Game Theory I
Existence of Stability in Hedonic Coalition Formation Games

Haris Aziz, Florian Brandl . 763
Stablity Scores: Measuring Coalitional Stability

Michal Feldman, Reshef Meir, Moshe Tennenholtz . 771
Coalitional Stability in Structured Environments

Georgios Chalkiadakis, Vangelis Markakis, Nick Jennings . 779
Overlapping Coalition Formation Games: Charting the Tractability Frontier

Yair Zick, Georgios Chalkiadakis, Edith Elkind . 787
Handling Negative Value Rules in MC-net-based Coalition Structure Generation

Suguru Ueda, Takato Hasegawa, Naoyuki Hashimoto, Naoki Ohta, Atsushi Iwasaki, Makoto Yokoo 795

Session 2E – Game Theory II
Short Sight in Extensive Games

Davide Grossi, Paolo Turrini . 805
New Results on the Verification of Nash Refinements for Extensive-Form Games

Nicola Gatti, Fabio Panozzo . 813
Playing Repeated Stackelberg Games with Unknown Opponents

Janusz Marecki, Gerry Tesauro, Richard Segal . 821
Repeated zero-sum games with budget

Troels Sørensen . 829
Efficient Nash Equilibrium Approximation through Monte Carlo Counterfactual Regret Minimization

Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, Michael Bowling 837

Session 3E – Game Theory III
Computing Optimal Strategy against Quantal Response in Security Games

Rong Yang, Fernando Ordóñez, Milind Tambe . 847
A Unified Method for Handling Discrete and Continuous Uncertainty in Bayesian Stackelberg Games

Zhengyu Yin, Milind Tambe . 855
Multi-Objective Optimization for Security Games

Matthew Brown, Bo An, Christopher Kiekintveld, Fernando Ordóñez, Milind Tambe 863
Strategy Purification and Thresholding: Effective Non-Equilibrium Approaches for Playing Large

Games
Sam Ganzfried, Tuomas Sandholm, Kevin Waugh . 871

Solving Non-Zero Sum Multiagent Network Flow Security Games with Attack Costs
Steven Okamoto, Noam Hazon, Katia Sycara . 879

Session 4E – Game Theory IV
Task Routing for Prediction Tasks

Haoqi Zhang, Eric Horvitz, Yiling Chen, David Parkes . 889
Mastering multi-player games

Yossi Azar, Uriel Feige, Michal Feldman, Moshe Tennenholtz . 897
Game-theoretic Resource Allocation for Malicious Packet Detection in Computer Networks

Ondřej Vanĕk, Zhengyu Yin, Manish Jain, Branislav Bošanský, Milind Tambe, Michal Pĕchouček 905
Sustaining Cooperation on Networks: An Analytical Study based on Evolutionary Game Theory

Raghunandan Ananthasayanam, Subramanian Chandrasekarapuram 913
Behavioral Game Theoretic Models: A Bayesian Framework For Parameter Analysis

James Wright, Kevin Leyton-Brown . 921

Session 5E – Game & Agent Theories
Scaling Simulation-Based Game Analysis through Deviation-Preserving Reduction

Bryce Wiedenbeck, Michael Wellman . 931
Towards Tractable Boolean Games

Paul Dunne, Michael Wooldridge . 939
A Framework for Modeling Population Strategies by Depth of Reasoning

Michael Wunder, Michael Kaisers, John Robert Yaros, Michael Littman 947
Detection of Suspicious Behavior from a Sparse Set of Multiagent Interactions

Boštjan Kaluža, Gal Kaminka, Milind Tambe . 955

Session 1F – Planning
Probabilistic Planning with Non-Linear Utility Functions and Worst-Case Guarantees

Stefano Ermon, Carla Gomes, Bart Selman, Alexander Vladimirsky 965
Heuristic Search of Multiagent Influence Space

Stefan Witwicki, Frans Oliehoek, Leslie Kaelbling . 973
A Hierarchical Goal-Based Formalism and Algorithm for Single-Agent Planning

Vikas Shivashankar, Ugur Kuter, Dana Nau, Ron Alford . 981
DiscoverHistory: Understanding the Past in Planning and Execution

Matthew Molineaux, Ugur Kuter, Matthew Klenk . 989
Time Bounded Adaptive A*

Carlos Hernández, Jorge Baier, Tansel Uras, Sven Koenig . 997

Session 2F – Knowledge Representation & Reasoning
Memory Formation, Consolidation, and Forgetting in Learning Agents

Budhitama Subagdja, Wenwen Wang, Ah-Hwee Tan, Yuan-Sin Tan, Loo-Nin Teow 1007
Improved Use of Partial Policies for Identifying Behavioral Equivalence

Yifeng Zeng, Yinghui Pan, Hua Mao, Jian Luo . 1015
Learning and Reasoning about Norms using Neural-Symbolic Systems

Guido Boella, Silvano Colombo Tosatto, Artur d’Avila Garcez, Valerio Genovese, Perotti Alan,
Leendert van der Torre . 1023

On Supervising Agents in Situation-Determined ConGolog
Giuseppe De Giacomo, Yves Lespérance, Christian Muise . 1031

Generalized and Bounded Policy Iteration for Finitely-Nested Interactive POMDPs: Scaling Up
Ekhlas Sonu, Prashant Doshi . 1039

Session 3F – Agent-based Software Development
Measuring Plan Coverage and Overlap for Agent Reasoning

John Thangarajah, Sebastian Sardina, Lin Padgham . 1049
Programming Norm-Aware Agents

Natasha Alechina, Mehdi Dastani, Brian Logan . 1057
Metamodel-Based Metrics for Agent-Oriented Methodologies

Noélie Bonjean, Antonio Chella, Massimo Cossentino, Marie-Pierre Gleizes, Frédéric Migeon, Va-
leria Seidita . 1065

Comma: A Commitment-Based Business Modeling Methodology and its Empirical Evaluation
Pankaj Telang, Munindar Singh . 1073

Revising Conflicting Intention Sets in BDI Agents
Steven Shapiro, Sebastian Sardina, John Thangarajah, Lawrence Cavedon, Lin Padgham 1081

Session 4F – Logics for Agency
Action models for knowledge and awareness

Hans van Ditmarsch, Tim French, Fernando R. Velázquez-Quesada 1091
Epistemic Coalition Logic: Completeness and Complexity

Thomas Ågotnes, Natasha Alechina . 1099
Group Synthesis for Parametric Temporal-Epistemic Logic

Andrew Jones, Michał Knapik, Alessio Lomuscio, Wojciech Penczek 1107
A Logic of Revelation and Concealment

Wiebe van der Hoek, Petar Iliev, Michael Wooldridge . 1115
State and Path Coalition Effectivity Models for Logics of Multi-Player Games

Valentin Goranko, Wojciech Jamroga . 1123

Session 5F – Logic and Verification
A logic of emotions: from appraisal to coping

Mehdi Dastani, Emiliano Lorini . 1133
Automatic Verification of Epistemic Specifications under Convergent Equational Theories

Ioana Boureanu, Andrew Jones, Alessio Lomuscio . 1141
Semantics and Verification of Information-Based Protocols

Munindar Singh . 1149

Main Program - Extended Abstracts
Innovative Applications

Emergence of Multi-generational Migration Behavior by Adaptiogenesis to Environmental Changes
Katsuya Suetsugu, Atsuko Mutoh, Shohei Kato, Hidenori Itoh . 1159

A cognitive architecture for emergency response
Felipe Meneguzzi, Siddharth Mehrotra, James Tittle, Jean Oh, Nilanjan Chakraborty, Katia Sycara,
Michael Lewis . 1161

An Adaptive System for Proactively Supporting Sustainability Goals
Sarah Hickmott, Liam Magee, James Thom, Lin Padgham . 1163

Cooperative Virtual Power Plant Formation Using Scoring Rules
Valentin Robu, Ramachandra Kota, Georgios Chalkiadakis, Alex Rogers, Nick Jennings 1165

A Storage Pricing Mechanism for Learning Agents in the Masdar City Smart Grid
Fatimah Ishowo-Oloko, Perukrishnen Vytelingum, Nick Jennings, Iyad Rahwan 1167

MAS for manufacturing control: A layered case study
Sindre Pedersen, Bjarne Foss, Ingrid Schjølberg, Johannes Tjønnås 1169

Opinion Gathering Using a Multi-Agent Systems Approach to Policy Selection
Adam Wyner, Katie Atkinson, Trevor Bench-Capon . 1171

Lottery-based Resource Allocation for Plug-in Electric Vehicle Charging
Matteo Vasirani, Sascha Ossowski . 1173

Virtual Agents
The Role of Social Identity, Rationality and Anticipation in Believable Agents

Rui Prada, Guilherme Raimundo, Márcia Baptista, Joana Dimas, Pedro A. Santos, Carlos Mart-
inho, Jorge Peña, Luís Landeiro Ribeiro . 1175

On-the-fly behavior coordination for interactive virtual agents - A model for learning, recognizing and
reproducing hand-arm gestures online
Ulf Großekathöfer, Nils-Christian Wöhler, Thomas Hermann, Stefan Kopp 1177

Live Generation of Interactive Non-Verbal Behaviours
Ken Prepin, Catherine Pelachaud . 1179

Agent Communication for Believable Human-Like Interactions between Virtual Characters
Joost van Oijen, Frank Dignum . 1181

A BDI Dialogue Agent for Social Support: Specification of Verbal Support Types
Janneke van der Zwaan, Virginia Dignum, Catholijn Jonker . 1183

An Agent-based Annotation Model for Narrative Media
Mario Cataldi, Rossana Damiano, Vincenzo Lombardo, Antonio Pizzo 1185

Goal-Driven Approach To Open-Ended Dialogue Management using BDI Agents
Wilson Wong, Lawrence Cavedon, John Thangarajah, Lin Padgham 1187

Distributed Punishment as a Norm-Signalling Tool
Daniel Villatoro, Giulia Andrighetto, Jordi Brandts, Jordi Sabater-Mir, Rosaria Conte 1189

The "Resource" Approach to Emotion
Sabrina Campano, Nicolas Sabouret, Etienne de Sevin, Vincent Corruble 1191

Emotional Contagion with Virtual Characters
Jason Tsai, Emma Bowring, Stacy Marsella, Milind Tambe . 1193

Higher-order social cognition in rock-paper-scissors: A simulation study
Harmen de Weerd, Rineke Verbrugge, Bart Verheij . 1195

Robotics
Can I trust you? Sharing information with artificial companions

Matthias Keysermann, Ruth Aylett, Sibylle Enz, Henriette Cramer, Carsten Zoll, Patricia Vargas 1197
MO-LOST: Adaptive ant trail untangling in multi-objective multi-colony robot foraging

Zhao Song, Seyed Abbas Sadat, Richard T. Vaughan . 1199
Generating Strategies for Multi-Agent Pursuit-Evasion Games in Partially Observable Euclidean Space

Eric Raboin, Ugur Kuter, Dana Nau . 1201
Induction and Learning of Finite-State controllers from Simulation

Matteo Leonetti, Luca Iocchi, Subramanian Ramamoorthy . 1203
Spatial awareness in robotic swarms through local wireless communications

Frederick Ducatelle, Gianni Di Caro, Luca Gambardella . 1205
Multi-Robot Learning by Demonstration

Michiel Blokzijl-Zanker, Yiannis Demiris . 1207
Distributed Value Functions for the Coordination of Decentralized Decision Makers

Laëtitia Matignon, Laurent Jeanpierre, Abdel-Illah Mouaddib . 1209
Auctioning Robotic Tasks with Overlapping Time Windows

Ernesto Nunes, Maitreyi Nanjanath, Maria Gini . 1211
Real-World Testing of a Multi-Robot Team

Paul Scerri, Prasanna Velagapudi, Balajee Kannan, Abhinav Valada, Christopher Tomaszewski,
John Dolan, Adrian Scerri, Kumar Shaurya Shankar, Luis Bill-Clark, George Kantor 1213

Online Planning for Large MDPs with MAXQ Decomposition
Aijun Bai, Feng Wu, Xiaoping Chen . 1215

Enabling Robots to Find and Fetch Objects by Querying the Web
Thomas Kollar, Mehdi Samadi, Manuela Veloso . 1217

Configurable Human-Robot Interaction for Multi-Robot Manipulation Tasks
Bennie Lewis, Gita Sukthankar . 1219

Agent Reasoning
Evaluating POMDP Rewards for Active Perception

Adam Eck, Leen-Kiat Soh . 1221
Finding new consequences of an observation in a system of agents

Gauvain Bourgne, Katsumi Inoue, Nicolas Maudet . 1223

User-Centric Preference-Based Decision Making
Ingrid Nunes, Simon Miles, Michael Luck, Carlos de Lucena . 1225

Lagrangian Relaxation for Large-Scale Multi-Agent Planning
Geoff Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Ajay Srinivasan Arava-
mudhan, Shih-Fen Cheng . 1227

Tree-based Pruning for Multiagent POMDPs with Delayed Communication
Frans Oliehoek, Matthijs Spaan . 1229

Planning in the Logics of Communication and Change
Pere Pardo, Mehrnoosh Sadrzadeh . 1231

Intention-Aware Planning under Uncertainty for Interacting with Self-Interested, Boundedly Rational
Agents
Trong Nghia Hoang, Kian Hsiang Low . 1233

Delayed Observation Planning in Partially Observable Domains
Pradeep Varakantham, Janusz Marecki . 1235

Analysis of Methods for solving MDPs
Marek Grześ, Jesse Hoey . 1237

Decentralized Multi-agent Plan Repair in Dynamic Environments
Antonín Komenda, Peter Novák, Michal Pĕchouček . 1239

Multimodal Trust Formation with Uninformed Cognitive Maps (UnCM)
Michele Piunti, Matteo Venanzi, Rino Falcone, Cristiano Castelfranchi 1241

Modeling Deep Strategic Reasoning by Humans in Competitive Games
Xia Qu, Prashant Doshi, Adam Goodie . 1243

Coalitional Agency and Evidence-Based Ability
Nicolas Troquard . 1245

Strategic voting and the logic of knowledge
Hans van Ditmarsch, Jérôme Lang, Abdallah Saffidine . 1247

Exclusivity-based Allocation of Knowledge
Madalina Croitoru, Sebastian Rudolph . 1249

Agent Cooperation
Role Selection in Ad Hoc Teamwork

Katie Genter, Noa Agmon, Peter Stone . 1251
Integrating Self-organisation into Dynamic Coalition Formation

Dayong Ye, Minjie Zhang, Danny Sutanto . 1253
An Analysis of Constructive Network Formation Models

Gary Fredericks, José Vidal . 1255
On Deconflicting Local Coordination Among Agents

Manh Tung Pham, Kiam Tian Seow . 1257
Hierarchical Clustering and Linguistic Mediation Rules for Multiagent Negotiation

Enrique de la Hoz, Miguel Angel Lopez Carmona, Mark Klein, Ivan Marsa-Maestre 1259
An Information Sharing Algorithm For Large Dynamic Mobile Multi-agent Teams

Linglong Zhu, Yang Xu, Paul Scerri, Han Liang . 1261
Global Constraints in Distributed Constraint Satisfaction

Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer 1263
Multi-Agent A* for Parallel and Distributed Systems

Raz Nissim, Ronen Brafman . 1265
Partial Cooperation in Multi-agent Search

Roie Zivan, Alon Grubshtein, Michal Friedman, Amnon Meisels 1267
Prioritized Shaping of Models for Solving DEC-POMDPs

Pradeep Varakantham, William Yeoh, Prasanna Velagapudi, Katia Sycara, Paul Scerri 1269

Coordinated Look-Ahead Scheduling for Real-Time Traffic Signal Control
Xiao-Feng Xie, Stephen Smith, Gregory J. Barlow . 1271

Global Optimization for Multiple Agents
Brammert Ottens, Boi Faltings . 1273

Scalable decentralized supply chain formation through binarized belief propagation
Toni Penya-Alba, Jesus Cerquides, Juan Antonio Rodriguez-Aguilar, Meritxell Vinyals 1275

Planning and Evaluating Multiagent Influences Under Reward Uncertainty
Stefan Witwicki, Inn-Tung Chen, Ed Durfee, Satinder Singh . 1277

A Better Maximization Procedure For Online Distributed Constraint Optimization
Yoonheui Kim, Victor Lesser . 1279

Agent-human Coordination with Communication Costs under Uncertainty
Asaf Frieder, Raz Lin, Sarit Kraus . 1281

Token Economy for Online Exchange Systems
Jie Xu, William Zame, Mihaela van der Schaar . 1283

Economic paradigms
Using the Max-Sum Algorithm for Supply Chain Formation in Dynamic Multi-Unit Environments

Michael Winsper, Maria Chli . 1285
Complexity and Approximability of Social Welfare Optimization in Multiagent Resource Allocation

Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, Jörg Rothe 1287
When speed matters in learning against adversarial opponents

Mohamed Elidrisi, Maria Gini . 1289
Do Experts Help in Two-Sided Search?

Yinon Nahum, David Sarne, Sanmay Das, Onn Shehory . 1291
The Benefits of Search Costs in Multiagent Exploration

David Sarne, Yonatan Aumann . 1293
Adaptive Negotiating Agents in Dynamic Games: Outperforming Human Behavior in Diverse Societies

Eunkyung Kim, Luyan Chi, Yu Ning, Yu-Han Chang, Rajiv Maheswaran 1295
A Robust Approach to Addressing Human Adversaries in Security Games

James Pita, Richard John, Rajiv Maheswaran, Milind Tambe, Rong Yang, Sarit Kraus 1297
Designing Better Strategies against Human Adversaries in Network Security Games

Rong Yang, Fei Fang, Albert Xin Jiang, Karthik Rajagopal, Milind Tambe, Rajiv Maheswaran . . 1299
Anytime Algorithms for Multi-agent Visibility-based Pursuit-evasion Games

Viliam Lisý, Branislav Bošanský, Michal Pĕchouček . 1301
Computing Optimal Security Strategies in Networked Domains: A Cost-Benefit Approach

Joshua Letchford, Yevgeniy Vorobeychik . 1303
Automated Equilibrium Analysis of Repeated Games with Private Monitoring: A POMDP Approach

YongJoon Joe, Atsushi Iwasaki, Michihiro Kandori, Ichiro Obara, Makoto Yokoo 1305
Adversarial Patrolling Games

Yevgeniy Vorobeychik, Bo An, Milind Tambe . 1307
Consensus Games

Julian Zappala, Natasha Alechina, Brian Logan . 1309
Individual-based Stability in Hedonic Games depending on the Best or Worst Players

Haris Aziz, Paul Harrenstein, Evangelia Pyrga . 1311
Influence and aggregation of preferences over combinatorial domains

Nicolas Maudet, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable 1313
Manipulation with Randomized Tie-Breaking under Maximin

Michael Zuckerman, Jeffrey Rosenschein . 1315
Learning Performance of Prediction Markets with Kelly Bettors

Alina Beygelzimer, John Langford, David Pennock . 1317

TrustBets: Betting over an IOU Network
Sharad Goel, Mohammad Mahdian, David Pennock, Daniel Reeves 1319

On the Social Welfare of Mechanisms for Repeated Batch Matching
Elliot Anshelevich, Meenal Chhabra, Sanmay Das, Matthew Gerrior 1321

Merging Multiple Information Sources in Federated Sponsored Search Auctions
Sofia Ceppi, Enrico Gerding, Nicola Gatti . 1323

A Truthful Learning Mechanism for Multi-Slot Sponsored Search Auctions with Externalities
Nicola Gatti, Alessandro Lazaric, Francesco Trovò . 1325

Strategy-proof mechanisms for two-sided matching with minimum and maximum quotas
Suguru Ueda, Daniel Fragiadakis, Atsushi Iwasaki, Peter Troyan, Makoto Yokoo 1327

Incentives for Truthful Reporting in Crowdsourcing
Ece Kamar, Eric Horvitz . 1329

Agent-based simulations
Cooperation among Malicious Agents: A General Quantitative Congestion Game Framework

Zaojie Rui, Tuanjie Fu, Darong Lai, Yichuan Jiang . 1331
Opinion Convergence in Agent Networks

Sreerupa Chatterjee, Alexander Ruff, Sandip Sen . 1333
Behavior Modeling From Learning Agents: Sensitivity to Objective Function Details

Robert Junges, Franziska Klügl . 1335
Emergent Behaviour of Bacteria in a Multiagent System

Philip Hendrix, Elena Budrene, Benoit Morel, Igor Linkov . 1337
Investigating the Role of Social Behavior in Financial Markets through Agent-Based Simulation

Alessia Mauri, Andrea Tettamanzi . 1339
An Agent-Based Model for Pedestrian and Group Dynamics: Experimental and Real-World Scenarios

Giuseppe Vizzari, Lorenza Manenti . 1341
The Impact of Cultural Differences on Crowd Dynamics

Natalie Fridman, Avishay Zilka, Gal Kaminka . 1343
The Spanish Steps flower scam - agent-based modeling of a complex social interaction

Ladislau Bölöni . 1345
Effect of defectors for cooperation: How strictly should defectors be eliminated from the newcomers?

Hitoshi Yamamoto, Isamu Okada, Yuki Ogawa . 1347
Patterns of Migration and Adoption of Choices By Agents in Communities

Feyza Hafizoǧlu, Sandip Sen . 1349
Agent-based simulation of mobility in real-world transportation networks

Maicon Amarante, Ana Bazzan . 1351
SimAnalyzer: Automated description of groups dynamics in agent-based simulations

Philippe Caillou, Javier Gil-Quijano . 1353

Agent societies and Societal issues
Emergence of Cooperation through Structural Changes and Incentives in Service-Oriented MAS

Elena del Val, Miguel Rebollo, Vicent Botti . 1355
Disagreement for control of rational cheating in peer review: a simulation

Mario Paolucci, Francisco Grimaldo . 1357
Sub-delegation and Trust

Chris Burnett, Nir Oren . 1359
A Dempster-Shafer Theory Based Witness Trustworthiness Model

Siyuan Liu, Alex C. Kot, Chunyan Miao, Yin-Leng Theng . 1361
Detecting and Identifying Coalitions

Reid Kerr, Robin Cohen . 1363

SARC: Subjectivity Alignment for Reputation Computation
Hui Fang, Jie Zhang, Murat Şensoy, Nadia Magnenat Thalmann 1365

The Impact of Social Placement of Non-Learning Agents on Convention Emergence
Nathan Griffiths, Sarabjot Singh Anand . 1367

Handling Change in Normative Specifications
Duangtida Athakravi, Domenico Corapi, Alessandra Russo, Marina De Vos, Julian Padget, Ken
Satoh . 1369

A Context-aware Normative Structure in MAS
Jie Jiang, Huib Aldewereld, Virginia Dignum, Yao-Hua Tan . 1371

A Programming Approach to Monitoring Communication in an Organisational Environment
Mehdi Dastani, Leendert van der Torre, Neil Yorke-Smith . 1373

On modeling punishment in multi-agent systems
Subhasis Thakur, Guido Governatori, Abdul Sattar . 1375

Strategic Pseudonym Change in Agent-Based E-Commerce
José Such, Emilio Serrano, Vicent Botti, Ana García-Fornes . 1377

Multi-dimensional Transition Deliberation for Organization Adaptation in Multiagent Systems
Juan M. Alberola, Vicente Julian, Ana García-Fornes . 1379

Using a hierarchy of coordinators to overcome the frontier effect in social learning
Sherief Abdallah . 1381

Learning and Adaptation
Towards Student/Teacher Learning in Sequential Decision Tasks

Lisa Torrey, Matthew Taylor . 1383
Bayes-Optimal Reinforcement Learning for Discrete Uncertainty Domains

Emma Brunskill . 1385
Algorithms for Scaling in a General Episodic Memory

Nate Derbinsky, Justin Li, John Laird . 1387
Break with agents who listen to too many others (at least when making Boolean decisions!)

Daniel Epstein, Ana Bazzan, André Machado . 1389
Adaptive Agents on Evolving Networks

Ardeshir Kianercy, Aram Galstyan, Armen Allahverdyan . 1391
A Common Gradient in Multi-agent Reinforcement Learning

Michael Kaisers, Daan Bloembergen, Karl Tuyls . 1393
Combining Independent and Joint Learning: a Negotiation based Approach

Reinaldo Bianchi, Ana Bazzan . 1395
Modeling Difference Rewards for Multiagent Learning

Scott Proper, Kagan Tumer . 1397
Revenue prediction in budget-constrained sequential auctions with complementarities

Sicco Verwer, Yingqian Zhang . 1399
An RL approach to Common-Interest Continuous Action Games

Abdel Rodríguez, Peter Vrancx, Ricardo Grau, Ann Nowé . 1401

Agreement Technologies
Selecting judgment aggregation rules for NAO robots: an experimental approach

Vijayalakshmi Ganesan, Marija Slavkovik, Sergio Sousa, Leendert van der Torre 1403
Distance-based Rules for Weighted Judgment Aggregation

Marija Slavkovik, Wojciech Jamroga . 1405
Bribery in Voting Over Combinatorial Domains is Easy

Nicholas Mattei, Maria Silvia Pini, Francesca Rossi, Kristen Brent Venable 1407

On the benefits of argumentation schemes in deliberative dialogue
Alice Toniolo, Timothy Norman, Katia Sycara . 1409

Testing the Benefits of Structured Argumentation in Multi-Agent Deliberation Dialogues
Eric Kok, John-Jules Meyer, Henry Prakken, Gerard Vreeswijk . 1411

Knowing Each Other in Argumentation-based Negotiation
Elise Bonzon, Yannis Dimopoulos, Pavlos Moraitis . 1413

Branch and Bound for Negotiations in Large Agreement Spaces
Dave de Jonge, Carles Sierra . 1415

Collaborative Job Processing on a Single Machine - A Multi-Agent Weighted Tardiness Problem
Fabian Lang, Andreas Fink . 1417

Determining the Willingness to Comply With Norms
Natalia Criado, Estefanía Argente, Pablo Noriega, Vicent Botti 1419

The Dutch eat at 5:30 pm: Shared Strategies for Agent Reasoning
Amineh Ghorbani, Huib Aldewereld, Virginia Dignum, Pablo Noriega 1421

Specifying and reasoning about normative systems in deontic logic programming
Ricardo Gonçalves, José Alferes . 1423

Normative Systems require Hybrid Knowledge Bases
Marco Alberti, Ana Sofia Gomes, Ricardo Gonçalves, Matthias Knorr, João Leite, Martin Slota . 1425

Systems and Organisation
Self-management of Ambient Intelligence Systems: a Pure Agent-based Approach

Inmaculada Ayala, Mercedes Amor, Lidia Fuentes . 1427
Enhancing Decentralized Service Discovery through Structural Self-Organization

Elena del Val, Matteo Vasirani, Miguel Rebollo, Alberto Fernandez 1429
Cloning, Resource Exchange and Relation Adaptation: A Self-organising Multi-Agent Framework

Dayong Ye, Minjie Zhang, Danny Sutanto . 1431

Agent-based system development
Dynamic change impact analysis for maintaining and evolving agent systems

Hoa Dam, Aditya Ghose . 1433
Supporting User-Centric Business Processes with WADE

Federico Bergenti, Giovanni Caire, Danilo Gotta . 1435
OrgMAP: An Organization-based Approach for Multi-Agent Programming

Cuiyun Hu, Xinjun Mao, Yin Chen, Huiping Zhou . 1437
MAPLE: Multi-Agent Programming with Letter Exchanges on Sensor Networks

Tiffany Yi-Ting Tsao, Wan-rong Jih, Jane Yung-jen Hsu . 1439

Agent theories - Models and Architectures
Efficient Context Free Parsing of Multi-agent Activities for Team and Plan Recognition

Bikramjit Banerjee, Jeremy Lyle, Landon Kraemer . 1441
Agent Deliberation via Forward and Backward chaining in Linear Logic

Luke Trodd, James Harland, John Thangarajah . 1443
On the Failure of Game Theoretic Approach for Distributed Deadlock Resolution

Nadav Sofy, David Sarne . 1445
Bounded Model Checking for Knowledge and Linear Time

Artur Męski, Wojciech Penczek, Bozena Woźna-Szcześniak, Maciej Szreter, Andrzej Zbrzezny . . 1447
The role of identity in agent design

Ines Di Loreto, Fabien Hervouet . 1449

Demonstrations
SAFEPED: Agent-Based Environment for Estimating Accident Risks at the Road Black Spots

Gennady Waizman, Itzhak Benenson . 1453
Sustainable Multiagent Application to Conserve Energy

Jun-young Kwak, Pradeep Varakantham, Rajiv Maheswaran, Milind Tambe, Farrokh Jazizadeh,
Geoffrey Kavulya, Laura Klein, Burcin Becerik-Gerber, Timothy Hayes, Wendy Wood 1455

Migrating Artificial Companions
Iain Wallace, Michael Kriegel, Ruth Aylett . 1457

Effective Methods for Generating Collision Free Paths for Multiple Robots based on Collision Type
Fan Liu, Ajit Narayanan, Quan Bai . 1459

Decentralised stable coalition formation among energy consumers in the smart grid
Filippo Bistaffa, Alessandro Farinelli, Meritxell Vinyals, Alex Rogers 1461

Learning to be Scientists via a Virtual Field Trip
Deborah Richards, Michael J. Jacobson, Meredith Taylor, Anne Newstead, Charlotte Taylor, John
Porte, Iwan Kelaiah, Nader Hanna . 1463

Virtual Characters in Agent-Augmented Co-Space
Yi-Lin Kang, Budhitama Subagdja, Ah-Hwee Tan, Yew-Soon Ong, Chunyan Miao 1465

ARGUS: A Coordination System to Provide First Responders with Live Aerial Imagery of the Scene
of a Disaster
Francesco Maria Delle Fave, Alex Rogers, Nick Jennings . 1467

Pogamut Toolkit
Jakub Gemrot, Michal Bída, Cyril Brom . 1469

An Intelligent Agent for Home Heating Management
Alex Rogers, Sasan Maleki, Siddhartha Ghosh, Nick Jennings . 1471

Tactical Operations of Multi-Robot Teams in Urban Warfare
Peter Novák, Antonín Komenda, Viliam Lisý, Branislav Bošanský, Michal Čáp, Michal Pĕchouček 1473

MITRO: an augmented mobile telepresence robot with assisted control
Sjriek Alers, Daan Bloembergen, Max Bügler, Daniel Hennes, Karl Tuyls 1475

Toolkit for Teaching Steering Behaviors for 3D Human-like Virtual Agents
Markéta Popelová, Cyril Brom, Jakub Tomek, Michal Bída . 1477

A Development Environment for Engineering Intelligent Avatars for Semantically-enhanced Simulated
Realities
Stefan Warwas, Matthias Klusch, Klaus Fischer, Philipp Slusallek 1479

Running Experiments on DipGame Testbed
Angela Fabregues, Santiago Biec, Carles Sierra . 1481

v-mWater: a 3D Virtual Market for Water Rights
Pablo Almajano, Tomas Trescak, Marc Esteva, Inmaculada Rodriguez, Maite Lopez-Sanchez . . . 1483

Context-Aware MAS to Support Elderly People
Boštjan Kaluža, Mitja Luštrek, Erik Dovgan, Matjaž Gams . 1485

Agent Based Monitoring of Gestational Diabetes Mellitus
René Schumann, Stefano Bromuri, Johannes Krampf, Michael Schumacher 1487

Protos: A Cross-Organizational Business Modeling Tool
Anup Kalia, Pankaj Telang, Munindar Singh . 1489

Expectation and Complex Event Handling in BDI-based Intelligent Virtual Agents
Surangika Ranathunga, Stephen Cranefield . 1491

ARGOS: Simulating Migration Processes
Oscar Alvarado, N. Ruiz, Adriana Giret, Vicente Julian, Vicent Botti, Victor Perez, Rosa Maria
Rodriguez . 1493

CALU: Collision Avoidance with Localization Uncertainty
Daniel Claes, Daniel Hennes, Karl Tuyls, Wim Meeussen . 1495

Stigmergic Coverage Algorithm for Multi-Robot Systems
Bijan Ranjbar-Sahraei, Gerhard Weiss, Ali Nakisaee . 1497

Infraworld, a Multi-agent Based Framework to Assist in Civil Infrastructure Collaborative Design
Jaume Faus, Francisco Grimaldo . 1499

AgentPolis: Towards a Platform for Fully Agent-based Modeling of Multi-Modal Transportation
Michal Jakob, Zbynĕk Moler, Antonín Komenda, Zhengyu Yin, Albert Xin Jiang, Matthew Johnson,
Michal Pĕchouček, Milind Tambe . 1501

Distributed Consensus for Interaction between Humans and Mobile Robot Swarms
Alessandro Giusti, Jawad Nagi, Luca Gambardella, Gianni Di Caro 1503

Team-It: Location-Based Mobile Games for Multi-Agent Coordination and Negotiation
Spencer Frazier, Yu-Han Chang, Alex Newnan, Rajiv Maheswaran 1505

GaTAC: A Scalable and Realistic Testbed for Multiagent Decision Making
Ekhlas Sonu, Prashant Doshi . 1507

Invited Talks

Delivering the Smart Grid:
A Grand Challenge for Autonomous Agents Research
Restructuring electricity grids to meet the increased demand of electric vehicles and heat pumps, while making
greater use of intermittent renewable energy sources, represents one of the greatest engineering challenges of our
day. This modern electricity grid, in which both electricity and information flow in two directions between large
numbers of widely distributed suppliers and generators - commonly termed the ‘smart grid’ - represents a radical
reengineering of infrastructure which has changed little over the last hundred years. However, the autonomous
behaviour expected of the smart grid, its highly distributed nature, and the existence of multiple stakeholders each
with their own incentives and interests, challenges existing engineering approaches. In this talk, I will describe why I
believe that autonomous agents and multi-agent systems are essential for delivering the smart grid as it is envisioned.
I will present some recent work that has been done in this area, and describe many challenges that still remain.

Alex Rogers (University of Southampton)

Alex Rogers is a Reader in the Agents, Interaction and Complexity Research Group at the University of Southampton
in the UK. Originally graduating with a degree in Physics, he spend five years working as a field engineer in the oil
industry before returning to academia having developed an interest in complexity science and multi-agent systems.
His research interests address the challenges in developing and applying agent-based algorithms and mechanisms for
the control of decentralised systems.

This work has addressed applications in areas such as sensor networks and unmanned autonomous vehicles, and
most recently, has focused on applications within future energy systems such as the smart grid.

3

Lab and field evidence of a cognitive hierarchy in strategic thinking
When software agents interact with people, game theory provides a framework to help the agents make decisions.
However, human behavior in games differs from that of the infinitely rational beings studied in classical game
theory. Cognitive hierarchy (CH) models offer an algorithmic approach to modelling bounded rationality in strategic
thinking, particularly for new strategic environments or as initial conditions for models of learning from experience.
CH models have been applied to many experimental data sets, and to some field settings including Swedish lottery
games and quality disclosure of movies through critics’ reviews. There is also evidence from measuring visual
attention, and fMRI of brain activity, which is consistent with steps of strategic thinking.

Colin Camerer (California Institute of Technology)

Colin Camerer is the Robert Kirby Professor of Behavioral Economics at Caltech. He earned a Ph.D. from the
University of Chicago in 1981 and worked at Northwestern, Penn, and Chicago before Caltech. He has published
more than 150 peer-reviewed articles and book chapters and wrote or co-edited four books. Camerer’s research
group is interested in the psychological and neural basis of choice, strategizing in games, and trading in markets.

Our focus is on complex goal-directed choices which typically involve rewards that depend on random events or
choices by others. Recent neuroeconomic fMRI projects involve self-control in choosing tempting foods, weighting
probabilities, curiosity, choice overload, and the contrast between hypothetical and binding (real) choices. His
group also does economics using field data-testing game theory models of realistic limits on strategic thinking, using
Swedish lotteries and movie revenues. Earlier projects examine hot hand misperceptions and sunk cost fallacies
in NBA basketball, and labor supply of cab drivers. Our group also does field experiments, studying risk and
time preferences, and group favoritism in Vietnam. Prof. Camerer has been the past president of the Economic
Science (experimental economics) Association and the Society for Neuroeconomics, and was elected a Fellow of the
Econometric Society and a member of the American Academy of Arts and Sciences.

4

Social Contexts
This talk will advocate the explicit treatment of social contexts for the design of automated agents and multi-agent
systems. In particular, I will illustrate how social contexts effect the design of optimization algorithms, how social
contexts can be designed to lead to efficient and stable multi-agent systems, and how adopting assumptions about the
nature of the social context can provide powerful solutions to classical challenges in game theory and reinforcement
learning.

Moshe Tennenholtz (Technion/Microsoft Research Israel)
2012 ACM/SIGART Autonomous Agents research award winner

Moshe Tennenholtz is the Sonheimer Professor at the Technion–Israel Institute of Technology. He is also a Principal
Researcher at Microsoft Research and a founder of the basic research group at the Microsoft Israel R&D center.
Moshe received his B.Sc. in Mathematics from Tel-Aviv University (1986), and his M.Sc. and Ph.D. (1987, 1991)
from the Department of Applied Mathematics and Computer Science in the Weizmann Institute.

Moshe served as the editor-in-chief of the Journal of Artificial Intelligence Research [JAIR]; he is also an associate
editor of Games and Economic Behavior, the international journal of autonomous agents and multi-agent systems,
and of the transactions on economics and computation, serves on the editorial board of the Journal of Machine
Learning Research, the moderator for the computer science and game theory section of the arXiv, and served on the
editorial board of the AI magazine.

Moshe is a AAAI fellow and a fellow of the society for advancement of economic theory. He served as program chair
of the ACM Electronic Commerce [EC] conference, and of the TARK conference. He was also co-founder and chief
scientist of companies in the area of e-commerce. In joint work with colleagues and students he introduced several
pioneering contributions to the interplay between computer science and game theory, such as the study of artificial
social systems, co-learning, non-cooperative computing, distributed games, the axiomatic approach to qualitative
decision making, the axiomatic approach to ranking, reputation, and trust systems, competitive safety analysis,
program equilibrium, mediated equilibrium, and learning equilibrium, as well as the first near-optimal polynomial
algorithm for reinforcement learning in stochastic games.

5

Social Norms for Self-Policing Multi-Agent Systems and Virtual Societies
Social norms help people self-organizing in many situations where having an authority representative is not feasible.
On the contrary to institutional rules, the responsibility to enforce social norms is not the task of a central authority
but a task of each member of the society. In recent years, the use of social norms has been considered also as
a mechanism to regulate virtual societies and specifically heterogeneous societies formed by humans and artificial
agents.

Firstly we sketch a game-theoretical categorization of norms that will organize the rest of the talk. This dissertation
generally tackles how norms (assuming their existence) become established inside a virtual society, such as those
formed entirely by virtual agents or a combination of them with human subjects. We initially tackle how conventions
emerge when dealing with different topological structures of interactions. In this part we discovered how in social
networks (with the theoretical characteristics of a scale-free) conventions cannot always emerge (even in the self-
interest of the whole society), because of the emergence of subconventions that are facilitated by the inherent
structure of the network. The identification of the Self-Reinforcing Substructures have allowed us to develop the
necessary mechanisms to reach full convergence, which was never previously reached by any other researcher in the
community.

After that we explore other mechanisms that allow the imposition of social norms, such as incentives mechanisms
like punishment. We present an empirical study of how different punishment technologies affect differently human
subjects and we develop an agent architecture (EMIL-I-A) which behaves similarly. This architecture is not only
affected by the costs associated to punishment but also by the normative message it conveys, allowing the transmission
of normative messages, establishing therefore the differentiation between punishment and sanction. This hypothesis
is tested using a cross-methodological approach performing human experimentation and agent based simulation.

Finally, we explore another cognitive mechanism that would allow us to explain the voluntary non self-interested
compliance, Internalization, by which agents comply with norms because so doing is an end in itself, and not merely
because of external sanctions, such as material rewards or punishment.

Daniel Villatoro (Autonomous University of Barcelona, Spain)
2011 Victor Lesser Distinguished Dissertation award winner

Daniel Villatoro completed his PhD at the IIIA-CSIC under the supervision of Dr. Jordi Sabater-Mir. His main
research interests focus on self-policing mechanisms for the adaptation of virtual environments, paying special at-
tention to the interaction of virtual entities and human subjects. He has collaborated with known researchers in the
area such as Sandip Sen, Rosaria Conte, Giulia Andrighetto or Michael Luck, and visited important institutions such
as the Santa Fe Institute. Daniel has over 20 publications in top tier conferences and specialized journals. Moreover
he has been an active member of the community acting as general chair of the EASSS09 and EASSS11, and the
MABS11 Workshop, and reviewer of the most important journals (such as JAAMAS, EAAI, or ACM TAAS) and
conferences (such as AAAI, IJCAI, AAMAS or ECAI).

6

A market-oriented programming enviornment and its application to distributed mul-
ticommodity flow problems
(Journal of Artificial Intelligence Research, Volume 1, pages 1-23, 1993)

Market price systems constitute a well-understood class of mechanisms that under certain conditions provide effec-
tive decentralization of decision making with minimal communication overhead. In a market-oriented programming
approach to distributed problem solving, we derive the activities and resource allocations for a set of computational
agents by computing the competitive equilibrium of an artificial economy. WALRAS provides basic constructs for
defining computational market structures, and protocols for deriving their corresponding price equilibria. In a par-
ticular realization of this approach for a form of multicommodity flow problem, we see that careful construction of
the decision process according to economic principles can lead to efficient distributed resource allocation, and that
the behavior of the system can be meaningfully analyzed in economic terms.

Michael P. Wellman (University of Michigan)
2012 IFAAMAS Award for Influential Papers in Autonomous Agents and Multiagent Systems winner

Michael P. Wellman is Professor of Computer Science & Engineering at the University of Michigan.

He received a PhD from the Massachusetts Institute of Technology in 1988 for his work in qualitative probabilistic
reasoning and decision-theoretic planning. From 1988 to 1992, Wellman conducted research in these areas at the
USAF’s Wright Laboratory. For the past 19+ years, his research has focused on computational market mechanisms
for distributed decision making and electronic commerce.

As Chief Market Technologist for TradingDynamics, Inc. (now part of Ariba), he designed configurable auction
technology for dynamic business-to-business commerce. Wellman previously served as Chair of the ACM Special
Interest Group on Electronic Commerce (SIGecom), and as Executive Editor of the Journal of Artificial Intelligence
Research. He is a Fellow of the Association for the Advancement of Artificial Intelligence and the Association for
Computing Machinery.

7

Towards Flexible Teamwork
(Journal of Artificial Intelligence Research, Volume 7, pages 83-124, 1997)

Many AI researchers are today striving to build agent teams for complex, dynamic multi-agent domains, with in-
tended applications in arenas such as education, training, entertainment, information integration, and collective
robotics. Unfortunately, uncertainties in these complex, dynamic domains obstruct coherent teamwork. In par-
ticular, team members often encounter differing, incomplete, and possibly inconsistent views of their environment.
Furthermore, team members can unexpectedly fail in fulfilling responsibilities or discover unexpected opportunities.
Highly flexible coordination and communication is key in addressing such uncertainties. Simply fitting individual
agents with precomputed coordination plans will not do, for their inflexibility can cause severe failures in teamwork,
and their domain-specificity hinders reusability.

Our central hypothesis is that the key to such flexibility and reusability is providing agents with general models
of teamwork. Agents exploit such models to autonomously reason about coordination and communication, provid-
ing requisite flexibility. Furthermore, the models enable reuse across domains, both saving implementation effort
and enforcing consistency. This article presents one general, implemented model of teamwork, called STEAM. The
basic building block of teamwork in STEAM is joint intentions (Cohen & Levesque, 1991b); teamwork in STEAM
is based on agents’ building up a (partial) hierarchy of joint intentions (this hierarchy is seen to parallel Grosz &
Kraus’s partial SharedPlans, 1996). Furthermore, in STEAM, team members monitor the team’s and individual
members’ performance, reorganizing the team as necessary. Finally, decision-theoretic communication selectivity in
STEAM ensures reduction in communication overheads of teamwork, with appropriate sensitivity to the environ-
mental conditions. This article describes STEAM’s application in three different complex domains, and presents
detailed empirical results.

Milind Tambe (University of Southern California)
2012 IFAAMAS Award for Influential Papers in Autonomous Agents and Multiagent Systems winner

Milind Tambe is a Professor of Computer Science and Industrial and Systems Engineering at the University of South-
ern California(USC). He leads the TEAMCORE Research Group at USC, with research focused on agent-based and
multi-agent systems. He is a fellow of AAAI (Association for Advancement of Artificial Intelligence) and recipient
of the ACM (Association for Computing Machinery) "Autonomous Agents Research Award".

He is also the recipient of the Christopher Columbus Fellowship Foundation Homeland security award, the Rist Prize
of the Military Operations Research Society, a "most influential paper award" from the International Foundation
for Agents and Multiagent Systems, US First Coast Guard District’s Operational Excellence Award, Certificate of
Appreciation from the US Federal Air Marshals Service, special commendation given by the Los Angeles World
Airports police from the city of Los Angeles, USC Viterbi School of Engineering use-inspired research award, Okawa
foundation faculty research award, the RoboCup scientific challenge award, USC Steven B. Sample Teaching and
Mentoring award and the ACM recognition of service award.

Prof. Tambe and his research group’s papers have been selected as best papers at a dozen premier Artificial
Intelligence and Operations Research Conferences and workshops; these have included best paper awards at the
International Conference on Autonomous Agents and Multiagent Systems and International Conference on Intelligent
Virtual Agents. Additionally, algorithms developed by his Teamcore research group have been deployed for real-
world use by several agencies including the LAX police, the Federal Air Marshals service, the US Coast Guard and
the Transportation security administration. He received his Ph.D. from the School of Computer Science at Carnegie
Mellon University.

8

Main Program - Full Papers

Session 1A
Innovative Applications

PROTECT: A Deployed Game Theoretic System to Protect
the Ports of the United States

Eric Shieh+, Bo An+, Rong Yang+, Milind Tambe+, Craig Baldwin*, Joseph DiRenzo*, Ben
Maule*, Garrett Meyer*

+University of Southern California
+{eshieh, boa, yangrong, tambe}@usc.edu

*United States Coast Guard
*{Craig.W.Baldwin, Joseph.DiRenzo, Ben.J.Maule, Garrett.R.Meyer}@uscg.mil

ABSTRACT
While three deployed applications of game theory for security have
recently been reported at AAMAS [12], we as a community re-
main in the early stages of these deployments; there is a continuing
need to understand the core principles for innovative security ap-
plications of game theory. Towards that end, this paper presents
PROTECT, a game-theoretic system deployed by the United States
Coast Guard (USCG) in the port of Boston for scheduling their pa-
trols. USCG has termed the deployment of PROTECT in Boston a
success, and efforts are underway to test it in the port of New York,
with the potential for nationwide deployment.

PROTECT is premised on an attacker-defender Stackelberg game
model and offers five key innovations. First, this system is a depar-
ture from the assumption of perfect adversary rationality noted in
previous work, relying instead on a quantal response (QR) model
of the adversary’s behavior — to the best of our knowledge, this
is the first real-world deployment of the QR model. Second, to
improve PROTECT’s efficiency, we generate a compact represen-
tation of the defender’s strategy space, exploiting equivalence and
dominance. Third, we show how to practically model a real mar-
itime patrolling problem as a Stackelberg game. Fourth, our exper-
imental results illustrate that PROTECT’s QR model more robustly
handles real-world uncertainties than a perfect rationality model.
Finally, in evaluating PROTECT, this paper for the first time pro-
vides real-world data: (i) comparison of human-generated vs PRO-
TECT security schedules, and (ii) results from an Adversarial Per-
spective Team’s (human mock attackers) analysis.

Categories and Subject Descriptors
J.m [Computer Applications]: MISCELLANEOUS

General Terms
Security, Design

Keywords
Game Theory, Security, Applications, Stackelberg Games

1. INTRODUCTION

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems – Innovative Applica-
tions Track (AAMAS 2012), Conitzer, Winikoff, Padgham, and van der
Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The global need for security of key infrastructure with limited
resources has led to significant interest in research conducted in
multiagent systems towards game-theory for real-world security.
As reported previously at AAMAS, three applications based on
Stackelberg games have been transitioned to real-world deploy-
ment. This includes ARMOR, used by the Los Angeles Interna-
tional Airport [12] to randomize checkpoints of roadways and ca-
nine patrols; IRIS which helps the US Federal Air Marshal Ser-
vice [12] in scheduling air marshals on international flights; and
GUARDS [12] which is under evaluation by the US Transporta-
tion Security Administration to allocate resources for airport pro-
tection. We as a community remain in the early stages of these de-
ployments, and must continue to develop our understanding of core
principles of innovative applications of game theory for security.

To this end, this paper presents a new game-theoretic security
application to aid the United States Coast Guard (USCG), called
Port Resilience Operational/Tactical Enforcement to Combat Ter-
rorism (PROTECT). The USCG’s mission includes maritime se-
curity of the US coasts, ports, and inland waterways; a security
domain that faces increased risks in the context of threats such as
terrorism and drug trafficking. Given a particular port and the vari-
ety of critical infrastructure that an adversary may attack within the
port, USCG conducts patrols to protect this infrastructure; however,
while the adversary has the opportunity to observe patrol patterns,
limited security resources imply that USCG patrols cannot be at
every location 24/7. To assist the USCG in allocating its patrolling
resources, similar to previous applications [12], PROTECT uses
an attacker-defender Stackelberg game framework, with USCG as
the defender against terrorist adversaries that conduct surveillance
before potentially launching an attack. PROTECT’s solution is to
typically provide a mixed strategy, i.e. randomized patrol patterns
taking into account the importance of different targets, and the ad-
versary’s surveillance and anticipated reaction to USCG patrols.

While PROTECT builds on previous work, this paper highlights
five key innovations. The first and most important is PROTECT’s
departure from the assumption of perfect rationality on the part of
the human adversaries. While appropriate in the initial applica-
tions as a first step — ARMOR, IRIS, GUARDS — this assumption
of perfect rationality is well-recognized as a limitation of classical
game theory, and bounded rationality has received significant atten-
tion in behavioral game-theoretic approaches [4]. Within this be-
havioral framework, quantal response equilibrium has emerged as
a promising approach to model human bounded rationality [4, 10,
14] including recent results illustrating the benefits of the quantal
response (QR) model in security games contexts [15]. Therefore,
PROTECT uses a novel algorithm called PASAQ [16] based on the
QR model of a human adversary. To the best of our knowledge, this

13

is the first time that the QR model has been used in a real-world se-
curity application.

Second, PROTECT improves PASAQ’s efficiency via a com-
pact representation of defender strategies exploiting dominance and
equivalence analysis. Experimental results show the significant
benefits of this compact representation. Third, PROTECT addresses
practical concerns of modeling real-world maritime patrolling ap-
plication in a Stackelberg framework. Fourth, this paper presents
a detailed simulation analysis of PROTECT’s robustness to uncer-
tainty that may arise in the real-world. For various cases of added
uncertainty, the paper shows that PROTECT’s quantal-response-
based approach leads to significantly improved robustness when
compared to an approach that assumes full attacker rationality.

PROTECT has been in use at the port of Boston since April
2011 and been evaluated by the USCG. This evaluation brings forth
our final key contribution: for the first time, this paper provides
real-world data comparing human-generated and game-theoretic
schedules. We also provide results from an Adversarial Perspective
Team’s (APT) analysis and comparison of patrols before and after
the use of the PROTECT system from a viewpoint of an attacker.
Given the success of PROTECT in Boston, we are now extending
it to the port of New York, and based on the outcome there, it may
potentially be extended to other ports in the US.

(a) PROTECT is being used in Boston (b) Extending PRO-
TECT to NY

Figure 1: USCG boats patrolling the ports of Boston and NY

2. USCG AND PROTECT’S GOALS
The USCG continues to face challenges with evolving asymmet-

ric threats within the maritime environment not only within the
Maritime Global Commons, but also within the ports and water-
ways that make up the United States Maritime Transportation Sys-
tem. The former Director of National Intelligence, Dennis Blair
noted in 2010 a persistent threat "from al-Qa’ida and potentially
others who share its anti-Western ideology. A major terrorist attack
may emanate from either outside or inside the United States" [3].
This threat was reinforced in May of 2011 following the raid on
Osama Bin Laden’s home, where a large trove of material was un-
covered, including plans to attack an oil tanker. "There is an indi-
cation of intent, with operatives seeking the size and construction
of tankers, and concluding it’s best to blow them up from the inside
because of the strength of their hulls" [6]. These oil tankers transit
the U.S. Maritime Transportation System. The USCG plays a key
role in the security of this system and the protection of seaports to
support the economy, environment, and way of life in the US.

Coupled with challenging economic times, USCG must operate
as effectively as possible, achieving maximum benefit from every
hour spent on patrol. As a result, USCG is compelled to re-examine
the role that optimization of security resource usage plays in its

mission planning — and how innovation provided by game theory
can be effectively employed.

The goal of PROTECT is to use game theory to assist the USCG
in maximizing its effectiveness in the Ports, Waterways, and Coastal
Security (PWCS) Mission. PWCS patrols are focused on protecting
critical infrastructure; without the resources to provide one hundred
percent on scene presence at any, let alone all of the critical infras-
tructure, optimization of security resource is critical. Towards that
end, unpredictability creates situations of uncertainty for an enemy
and can be enough to deem a target less appealing.

The PROTECT system, focused on the PWCS patrols, addresses
how the USCG should optimally patrol critical infrastructure in a
port to maximize protection, knowing that the adversary may con-
duct surveillance and then launch an attack. While randomizing
patrol patterns is key, PROTECT also addresses the fact that the
targets are of unequal value, understanding that the adversary will
adapt to whatever patrol patterns USCG conducts. The output of
PROTECT is a schedule of patrols which includes when the patrols
are to begin, what critical infrastructure to visit for each patrol, and
what activities to perform at each critical infrastructure. While ini-
tially pilot tested in the port of Boston, the solution technique was
intended to be generalizable and applicable to other ports.

3. KEY INNOVATIONS IN PROTECT
The PWCS patrol problem was modeled as a leader-follower (or

attacker-defender) Stackelberg game [7] with USCG as the leader
(defender) and the terrorist adversaries in the role of the follower.
The choice of this framework was supported by prior successful
applications of Stackelberg games [12]. In this Stackelberg game
framework, the defender commits to a mixed (randomized) strat-
egy of patrols, whereas the attacker conducts surveillance of these
mixed strategies and responds with a pure strategy of an attack on a
target. The objective of this framework is to find the optimal mixed
strategy for the defender.

Stackelberg games have been well established in the multi-agent
systems literature [5, 8, 9, 12]. Therefore, rather than providing
further background in these games, this section immediately tran-
sitions to three of PROTECT’s key innovations. We begin by dis-
cussing how to practically cast this real-world maritime patrolling
problem of PWCS patrols as a Stackelberg game (Section 3.1). We
also show how to reduce the number of defender strategies (Sec-
tion 3.2) before addressing the most important of the innovations
in PROTECT: its use of the quantal response model (Section 3.3).

3.1 Game Modeling
To model the USCG patrolling domain as a Stackelberg game,

we need to define (i) the set of attacker strategies, (ii) the set of
defender strategies, and (iii) the payoff function. These strategies
and payoffs center on the targets in a port — ports, such as the port
of Boston, have a significant number of potential targets (critical
infrastructure). In our Stackelberg game formulation, the attacker
conducts surveillance on the mixed strategies that the defender has
committed to, and can then launch an attack. Thus, the attacks an
attacker can launch on different possible targets are considered as
his/her pure strategies.

However, the definition of defender strategies is not as straight-
forward. Patrols last for some fixed duration during the day as spec-
ified by USCG, e.g. 4 hours. Our first attempt was to model each
target as a node in a graph and allow patrol paths to go from each in-
dividual target to (almost all) other targets in the port, generating an
almost complete graph on the targets. This method yields the most
flexible set of patrol routes that would fit within the maximum du-
ration, covering any permutation of targets within a single patrol.

14

This method unfortunately faced significant challenges: (i) it re-
quired determining the travel time for a patrol boat for each pair of
targets, a daunting knowledge acquisition task given the hundreds
of pairs of targets; (ii) it did not maximize the use of port geogra-
phy whereby boat crews could observe multiple targets at once and;
(iii) it was perceived as micromanaging the activities of the USCG
boat crews, which was undesirable.

Our improved approach to generating defender strategies there-
fore grouped nearby targets into patrol areas. The presence of pa-
trol areas led the USCG to redefine the set of defensive activities
to be performed on patrol areas to provide a more accurate and ex-
pressive model of the patrols. Activities that take a longer time pro-
vide the defender a higher payoff compared to activities that take
a shorter time to complete. This impacts the final patrol schedule
as one patrol may visit fewer areas but conduct longer duration de-
fensive activities at the areas, while another patrol may have more
areas with shorter duration activities.

To generate all the permutations of patrol schedules, a graph G =
(V, E) is created with the patrol areas as vertices V and adjacent
patrol areas as edges E . Using the graph of patrol areas, PROTECT
generates all possible patrol schedules, each of which is a closed
walk of G that starts and ends at the patrol area b ∈ V , the base
patrol area for the USCG. The patrol schedules are a sequence of
patrol areas and associated defensive activities, and are constrained
by a maximum patrol time τ .

The graph G along with the constraints b and τ are used to gen-
erate the defender strategies (patrol schedules). Given each patrol
schedule, the total patrol schedule time is calculated (this also in-
cludes traversal time between areas, but we ignore it in the follow-
ing for expository purposes); we then verify that the total time is
less than or equal to the maximum patrol time τ . After generat-
ing all possible patrol schedules, a game is formed where the set of
defender strategies is composed of patrol schedules and the set of
attacker strategies is the set of targets. The attacker’s strategy was
based on targets instead of patrol areas because an attacker will
choose to attack a single target.

Table 1 gives an example, where the rows correspond to the de-
fender’s strategies and the columns correspond to the attacker’s
strategies. In this example, there are two possible defensive ac-
tivities, activity k1 and k2, where k2 provides a higher payoff for
the defender than k1. Suppose that the time bound disallows more
than two k2 activities (given the time required for k2) within a pa-
trol. Patrol area 1 has two targets (target 1 and 2) while patrol areas
2 and 3 each have one target (target 3 and 4 respectively). In the
table, a patrol schedule is composed of a sequence of patrol ar-
eas and a defensive activity in each area. The patrol schedules are
ordered so that the first patrol area in the schedule denotes which
patrol area the defender needs to visit first. In this example, patrol
area 1 is the base patrol area, and all of the patrol schedules be-
gin and end at patrol area 1. For example, the patrol schedule in
row 2 first visits patrol area 1 with activity k2, then travels to pa-
trol area 2 with activity k1, and returns back to patrol area 1 with
activity k1. For the payoffs, if a target i is the attacker’s choice
and is also part of a patrol schedule, then the defender would gain
a reward Rdi while the attacker would receive a penalty P ai , else
the defender would receive a penalty P di and the attacker would
gain a reward Rai . Furthermore, let Gdij be the payoff for the de-
fender if the defender chooses patrol j and the attacker chooses to
attack target i. Gdij can be represented as a linear combination of
the defender reward/penalty on target i and Aij , the effectiveness
probability of the defensive activity performed on target i for patrol
j, as described by Equation 1. The value of Aij is 0 if target i is
not in patrol j.

Gdij = AijR
d
i + (1−Aij)P di (1)

For instance, suppose target 1 is covered using k1 in strategy 5,
and the value of A15 is 0.5. If Rd1 = 150 and P d1 = −50, then
Gd15 = 0.5(150) + (1 − 0.5)(−50) = 50. (Gaij would be com-
puted in a similar fashion.) If a target is visited multiple times with
different activities, only the highest quality activity is considered.

In the USCG problem, rewards and penalties are based on an
analysis completed by a contracted company of risk analysts that
looked at the targets in the port of Boston and assigned correspond-
ing values for each one. The types of factors taken into consid-
eration for generating these values include economic damage and
injury/loss of life. Meanwhile, the effectiveness probability, Aij ,
for different defensive activities are decided based on the duration
of the activities. Longer activities lead to a higher possibility of
capturing the attackers. While Table 1 shows a zero-sum game, the
algorithm used by PROTECT is not limited to a zero-sum game;
the actual payoff values are determined by the USCG.

Patrol Schedule Target 1 Target 2 Target 3 Target 4
(1:k1), (2:k1), (1:k1) 50,-50 30,-30 15,-15 -20,20
(1:k2), (2:k1), (1:k1) 100,-100 60,-60 15,-15 -20,20
(1:k1), (2:k1), (1:k2) 100,-100 60,-60 15,-15 -20,20
(1:k2), (2:k1), (1:k2) 100,-100 60,-60 15,-15 -20,20
(1:k1), (3:k1), (2:k1), (1:k1) 50,-50 30,-30 15,-15 10,-10
(1:k1), (2:k1), (3:k1), (1:k1) 50,-50 30,-30 15,-15 10,-10

Table 1: Portion of a simplified example of a game matrix

3.2 Compact Representation
In our game, the number of defender strategies, i.e. patrol sched-

ules, grows combinatorially, generating a scale-up challenge. To
achieve scale-up, PROTECT uses a compact representation of the
patrol schedules using two ideas: (i) combining equivalent patrol
schedules and; (ii) removal of dominated patrol schedules.

With respect to equivalence, different permutations of patrol sched-
ules provide identical payoff results. Furthermore, if an area is vis-
ited multiple times with different activities in a schedule, only the
activity that provides the defender the highest payoff requires atten-
tion. Therefore, many patrol schedules are equivalent if the set of
patrol areas visited and defensive activities in the schedules are the
same even if their order differs. Such equivalent patrol schedules
are combined into a single compact defender strategy, represented
as a set of patrol areas and defensive activities (and minus any or-
dering information). Table 2 presents a compact version of Table 1,
which shows how the game matrix is simplified by using equiva-
lence to form compact defender strategies, e.g. the patrol schedules
in the rows 2-4 from Table 1 are represented as a compact strategy
Γ2 = {(1,k2), (2,k1)} in Table 2.

Compact Strategy Target 1 Target 2 Target 3 Target 4
Γ1 = {(1:k1), (2:k1)} 50,-50 30,-30 15,-15 -20,20
Γ2 = {(1:k2), (2:k1)} 100,-100 60,-60 15,-15 -20,20
Γ3 = {(1:k1), (2:k1), (3:k1)} 50,-50 30,-30 15,-15 10,-10

Table 2: Example compact strategies and game matrix

Next, the idea of dominance is illustrated using Table 2 and not-
ing the difference between Γ1 and Γ2 is the defensive activity on
patrol area 1. Since activity k2 gives the defender a higher pay-
off than k1, Γ1 can be removed from the set of defender strate-
gies because Γ2 covers the same patrol areas while giving a higher

15

Figure 2: Flow chart of the PROTECT system

payoff for patrol area 1. To generate the set of compact defender
strategies, a naive approach would be to first generate the full set
of patrol schedules and then prune the dominated and equivalent
schedules. Instead, PROTECT uses three ideas to quickly compute
the compact strategies: (i) computation of a starting point for com-
pact strategy generation; (ii) computation of a stopping point and;
(iii) verification of feasibility in compact strategies.

While generating compact strategies, we first generate compact
strategies containing n̂ patrol areas, then n̂− 1 patrol areas and so
on until ň patrol areas. n̂ is called the starting point and is defined
as τ/ρ where τ is the maximum patrol time and ρ shortest duration
of a defensive activity. The maximum number of areas in any com-
pact strategy must be less than or equal to n̂. For example, if there
are 20 patrol areas, τ =100 minutes and ρ = 10 minutes, then the
algorithm will start by generating compact strategies with 10 pa-
trol areas. It must be verified that a feasible patrol schedule can be
formed from each compact strategy. This is achieved by construct-
ing the shortest patrol schedule that is equivalent to the compact
strategy, and comparing the patrol travel time against τ .

Let S(n) represent all the compact strategies that contain n pa-
trol areas. If S(ň) contains all the compact strategies that are cov-
ered with the highest quality defensive activity at each patrol area,
the process of generating compact strategies will terminate and ň
is called the stopping point of enumeration. Any compact strat-
egy that contains fewer than ň patrol areas will be dominated by a
compact strategy in S(ň).

Figure 2 shows a high level view of the steps of the algorithm us-
ing the compact representation. The compact strategies are used in-
stead of full patrol schedules to generate the game matrix. Once the
optimal probability distribution is calculated (as explained in Sec-
tion 3.3) for the compact strategies, the strategies with a probability
greater than 0 are expanded to a complete set of patrol schedules.

In this expansion from a compact strategy to a full set of patrol
schedules, we need to determine the probability of choosing each
patrol schedule, since a compact strategy may correspond to mul-
tiple patrol schedules. The focus here is to increase the difficulty
for the attacker to conduct surveillance by increasing unpredictabil-
ity1, which we achieve by randomizing uniformly over all expan-
sions of the compact defender strategies. The uniform distribution
provides the maximum entropy (greatest unpredictability). Thus,
all the patrol schedules generated from a single compact strategy
are assigned a probability of vi/wi where vi is the probability of
choosing a compact strategy Γi and wi is the total number of ex-
panded patrol schedules for Γi. The complete set of patrol sched-
ules and the associated probabilities are then sampled and provided
to the USCG, along with the start time of the patrol generated via
uniform random sampling.

3.3 Human Adversary Modeling
1Creating optimal Stackelberg defender strategies that increase the
attacker’s difficulty of surveillance is an open research issue in the
literature; here we choose to maximize unpredictability as the first
step.

ti Target i
Rdi Defender reward on covering ti if it’s attacked
P di Defender penalty on not covering ti if it’s attack
Rai Attacker reward on attacking ti if it’s not covered
P ai Attacker penalty on attacking ti if it’s covered
Aij Effectiveness probability of compact strategy Γj on ti
aj Probability of choosing compact strategy Γj
J Total number of compact strategies
xi Marginal coverage on ti

Table 3: PASAQ notation as applied to PROTECT

While previous game-theoretic security applications have assumed
a perfectly rational attacker, PROTECT takes a step forward by ad-
dressing this limitation of classical game theory. Instead, PRO-
TECT uses a model of a boundedly rational adversary by using a
quantal response (QR) model of an adversary, which has shown to
be a promising model of human decision making [10, 11, 15]. A
recent study demonstrated the use of QR as an effective prediction
model of humans [14]. An even more relevant study of the QR
model was conducted by Yang et al. [15] in the context of security
games where this model was shown to outperform competitors in
modeling human subjects. Based on this evidence, PROTECT uses
a QR model of a human adversary. (Aided by a software assistant,
the defender still computes the optimal mixed strategy.)

The QR model adapts ideas from the literature which presumes
that humans will choose better actions at a higher frequency, but
with noise added to the decision making process following a logit
distribution as defined below

qi =
eλG

a
i (xi)

∑T
j=1 e

λGaj (xi)
(2)

The parameter λ represents the amount of noise in the attacker’s
strategy. λ can range from 0 to ∞ with a value of 0 representing
a uniform random probability over attacker strategies while a value
of ∞ representing a perfectly rational attacker. qi corresponds to
the probability that the attacker chooses a target i; Gai (xi) corre-
sponds to the attacker’s expected utility of attacking target i given
xi, the probability that the defender covers target i; and T is the
total number of targets.

To apply the QR model in a Stackelberg framework, PROTECT
employs an algorithm known as PASAQ [16]. PASAQ computes
the optimal defender strategy (within a guaranteed error bound)
given a QR model of the adversary by solving the following non-
linear and non-convex optimization problem P , with Table 3 listing
the notation:

P:

max
x,a

∑T
i=1 e

λRai e−λ(R
a
i−Pai)xi((Rdi − P di)xi + P di)

∑T
i=1 e

λRai e−λ(R
a
i−Pai)xi

xi =

J∑

j=1

ajAij , ∀i

J∑

j=1

aj = 1

0 ≤ aj ≤ 1, ∀j
The first line of the problem corresponds to the computation

of the defender’s expected utility resulting from a combination of
Equations 1 and 2. Unlike previous applications [8, 12], xi in this
case not just summarizes presence or absence on a target, but also
the effectiveness probability Aij on the target as well.

16

As with all QR models, a value for λ is needed to represent the
noise in the attacker’s strategy. Based on discussions with USCG
experts about the attacker’s behavior, a λ value of 0 (uniform ran-
dom) and∞ (fully rational) were ruled out. Given the payoff data
for Boston, an attacker’s strategy with λ = 4 starts approaching
a fully rational attacker — the probability of attack focuses on a
single target. It was determined from the knowledge gathered from
USCG that the attacker’s strategy is best modeled with a λ value
that is in the range [0.5, 4]. A discrete sampling approach was
used to determine a λ value that gives the highest average expected
utility across attacker strategies within this range to get λ = 1.5.
Selecting an appropriate value for λ remains a complex issue how-
ever, and it is a key agenda item for future work.

4. EVALUATION
This section presents evaluations based on (i) experiments com-

pleted via simulations and (ii) real-world patrol data along with
USCG analysis. All scenarios and experiments, including the pay-
off values and graph (composed of 9 patrol areas), were based off
the port of Boston. The defender’s payoff values have a range of
[-10,5] while the attacker’s payoff values have a range of [-5,10].
The game was modeled as a zero-sum game2 in which the attacker’s
loss or gain is balanced precisely by the defender’s gain or loss. For
PASAQ, the defender’s strategy uses λ = 1.5 as mentioned in Sec-
tion 3.3. All experiments are run on a machine with an Intel Dual
Core 1.4 GHz processor and 2 GB of RAM.

4.1 Memory and Run-time Analysis
This section presents the results based on simulation to show

the efficiency in memory and run-time of the compact represen-
tation versus the full representation (Section 3.2). In Figure 3(a),
the x-axis is the maximum patrol time allowed and the y-axis is
the memory needed to run PROTECT. In Figure 3(b), the x-axis
is the maximum patrol time allowed and the y-axis is the run-time
of PROTECT. The maximum patrol time allowed determines the
number of combinations of patrol areas that can be visited — so
the x-axis indicates a scale-up in the number of defender strategies.
When the maximum patrol time is set to 90 minutes, the full rep-
resentation takes 30 seconds and uses 540 MB of memory while
the compact representation takes 11 seconds to run and requires 20
MB of memory. Due to the exponential increase in the memory
and run-time that is needed for the full representation, it cannot be
scaled up beyond 90 minutes.

0

100

200

300

400

500

600

60 70 80 90 100

M
em

or
y

(M
B

)

Max Patrol Time (minutes)

Full

Compact

(a) Memory comparison

0

5

10

15

20

25

30

35

60 70 80 90

R
u

n
ti

m
e

(s
ec

on
d

s)

Max Patrol Time (minutes)

Full

Compact

(b) Runtime comparison

Figure 3: Comparison of full vs. compact representation

4.2 Utility Analysis
Given that we are working with real data, it is useful to under-

stand whether PROTECT using PASAQ with λ = 1.5 provides
2In general these types of security games are non-zero-sum [12],
however for Boston as a first step it was decided to cast the game
as zero-sum.

an advantage when compared to: (i) a uniform random defender’s
strategy; (ii) a mixed strategy with the assumption of the attacker
attacking any target uniformly at random (λ = 0) or; (iii) a mixed
strategy assuming a fully rational attacker (λ = ∞). The previ-
ously existing DOBSS algorithm was used for λ = ∞ [12]. Ad-
ditionally, comparison with the λ = ∞ approach is important be-
cause of the extensive use of this assumption in previous applica-
tions (for our zero-sum case, DOBSS is equivalent to minimax but
the utility does not change). Typically, we may not have an esti-
mate of the exact value of the attacker’s λ value, only a possible
range. Therefore, ideally we would wish to show that PROTECT
(with λ = 1.5) provides an advantage over a range of λ values as-
sumed for the attacker (not just over a point estimate), justifying
our use of the PASAQ algorithm.

-2

-1.5

-1

-0.5

0

0.5

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

D
ef

en
de

r
E

xp
ec

te
d

U
ti

lit
y

Attacker λ value

PASAQ (λ=1.5)

DOBSS

Uniform Random
(Attacker)

Uniform Random
(Defender)

Figure 4: Defender’s Expected Utility when varying λ for at-
tacker’s strategy(color)

To achieve this, we compute the average defender utility of the
four approaches above as the λ value of the attacker’s strategy
changes from [0, 6], which subsumes the range [0.5, 4] of rea-
sonable attacker strategies. In Figure 4, the y-axis represents the
defender’s expected utility and the x-axis is the λ value that is used
for the attacker’s strategy. Both uniform random strategies perform
well when the attacker’s strategy is based on λ = 0. However,
as λ increases, both strategies quickly drop to a very low defender
expected utility. In contrast, the PASAQ strategy with λ = 1.5
provides a higher expected utility than that assuming a fully ratio-
nal attacker over a range of attacker λ values (and indeed over the
range of interest), not just at λ = 1.5.

4.3 Robustness Analysis
In the real world, observation, execution, and payoffs, are not

always perfect due to the following: noise in the attacker’s surveil-
lance of the defender’s patrols, the many tasks and responsibilities
of the USCG where the crew may be pulled off a patrol, and lim-
ited knowledge of the attacker’s payoff values. Our hypothesis is
that PASAQ with λ = 1.5 is more robust to such noise than a de-
fender strategy which assumes full rationality of the attacker such
as DOBSS [12], i.e. PASAQ’s expected defender utility will not de-
grade as much as DOBSS over the range of attacker λ of interest.
This is illustrated by comparing both PASAQ and DOBSS against
observation, execution, and payoff noise [8, 9, 17]. (A compari-
son of the uniform random strategies was not included due to its
poor performance shown in Figure 4.) All experiments were run
generating 200 samples with added noise and averaging over all
the samples. For Figures 5, 6, and 7, the y-axis represents the
defender’s expected utility and the x-axis is the attacker’s λ value,
with error bars depicting the standard error.

The first experiment considers observational noise, which means
that the attacker has noise associated with observing the defender’s
patrol strategy as shown in Figure 5. In this scenario, if the defender

17

covered a target with probability p, the attacker may perceive the
probability to be uniformly distributed in [p − x, p + x] where x
is the noise. The low observation error corresponds to x = 0.1
while for high error x = 0.2. Contrary to expectation, observation
error leads to an increase in defender expected utility in PASAQ,
but a potential decrease (or no change) in DOBSS — thus PASAQ
ends up dominating DOBSS by a larger margin over bigger ranges
of λ, further consolidating the reason to use PASAQ rather than a
full-rationality model.

An example illustrates PASAQ’s unexpected behavior. Suppose
the defender’s strategy is c and there are two targets, t1 and t2 with
defender expected utilities of Ud1 (c) = −2 and Ud2 (c) = −1, with
the attacker’s expected utility Ua(c) being the opposite because
this is a zero-sum game. For an attacker strategy with a higher λ,
the adversary will choose to attack t1 and the defender would get
a utility of -2. When observation noise is added, increases in the
coverage of t1 results in decreases in Ua1 (c′) so the attacker might
choose to attack t2 instead, giving the defender a higher utility than
when noise is absent. If the coverage of t1 decreases, Ua1 (c′) will
increase and the attacker will still choose to attack t1, but Ud1 (c)
will remain the same as when there was no noise.

The reason there is a different trend for DOBSS is because DOBSS
minimizes the maximum attacker’s expected utility or, in our situa-
tion, also maximizes the minimum defender’s expected utility. This
results in multiple targets with the same minimum defender’s util-
ity; these targets are referred to as an attack set [12]. Typically,
when the coverage over the attack set varies due to observation er-
ror, some of the targets have less and some have more coverage, but
the attacker ends up attacking the targets in the attack set regardless,
giving the defender almost no change in its expected utility.

For the second experiment, noise is added to the execution phase
of the defender as shown in Figure 6. If the defender covered a
target with probability p, this probability now changes to be uni-
formly distributed in [p − x, p + x] where x is the noise. The low
execution error corresponds to x = 0.1 whereas high error cor-
responds to x = 0.2. The key takeaway here is that execution
error leads to PASAQ dominating DOBSS over all tested values
of λ, further strengthening the reason to use PASAQ rather than
a full-rationality model. When execution error is added, PASAQ
dominates DOBSS because the latter seeks to maximize the min-
imum defender’s expected utility so multiple targets will have the
same minimum defender utility. For DOBSS, when execution error
is added, there is a greater probability that one of these targets will
have less coverage, resulting in a lower defender’s expected utility.
For PASAQ, typically only one target has the minimum defender
expected utility. As a result changes in coverage do not impact it
as much as DOBSS. Similar to observation error, as execution er-
ror increases, the advantage in the defender’s expected utility of
PASAQ over DOBSS increases even more.

In the third experiment shown in Figure 7, payoff noise is added
by aggregating mean-0 Gaussian noise to the attacker’s original
payoff values (similar to [8]). As more noise is added to the pay-
offs, both defenders’ strategies result in an increase in the defender’s
expected utility because the game is no longer zero-sum. The low
payoff noise corresponds to a standard deviation of 1 while a high
payoff noise corresponds to a standard deviation of 1.5. Similar
to the previous experiments, when payoff noise is added, DOBSS
is dominated by PASAQ, indicating the robustness of PASAQ. As
noise is added to the attacker’s payoff but not the defender’s payoff,
the attacker’s strategy may no longer result in the lowest possible
defender expected utility. For example, with no payoff noise, target
t1 gives the attacker the highest utility and the defender the low-
est utility. When noise is added to the attacker’s payoffs, t1 may

no longer give the attacker the highest utility; instead, he/she will
choose to attack target t2, and the defender receives a higher util-
ity than t1. In essence, with a zero-sum game, the defender has
planned a conservative strategy, based on maximin, and as such
any change in the attacker is to the defender’s benefit in this case.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

D
ef

en
d

er
's

 E
xp

ec
te

d
 U

ti
li

ty

Attacker λ value

PASAQ(λ=1.5)

DOBSS(λ=∞)

PASAQ(noise low)

DOBSS(noise low)

PASAQ(noise high)

DOBSS(noise high)

Figure 5: Defender’s expected utility: Observation noise(color)

-3

-2.5

-2

-1.5

-1

-0.5

0

0

0.
5 1

1.
5 2

2.
5 3

3.
5 4

4.
5 5

5.
5 6

De
fe

nd
er

's
Ex

pe
ct

ed
 U

til
ity

Attacker λ value

PASAQ(λ=1.5)
DOBSS(λ=∞)
PASAQ(noise low)
DOBSS(noise low)
PASAQ(noise high)
DOBSS(noise high)

Figure 6: Defender’s expected utility: Execution noise(color)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

De
fen

de
r's

 E
xp

ec
ted

 U
til

ity

Attacker λ value

PASAQ(λ=1.5)
DOBSS(λ=∞)
PASAQ(noise low)
DOBSS(noise low)
PASAQ(noise high)
DOBSS(noise high)

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

De
fen

de
r's

 E
xp

ec
ted

 U
til

ity

Attacker λ value

PASAQ(λ=1.5)
DOBSS(λ=∞)
PASAQ(noise low)
DOBSS(noise low)
PASAQ(noise high)
DOBSS(noise high)

Figure 7: Defender’s expected utility: Payoff noise(color)

4.4 USCG Real-World Evaluation
In addition to the data made available from simulations, the USCG

conducted its own real-world evaluation of PROTECT. With per-
mission, some aspects of the evaluation are presented in this paper.

Real-world scheduling data: Unlike prior publications at AA-
MAS of real-world applications of game theory for security, a key
novelty of this paper is the inclusion of actual data from USCG
patrols before and after the deployment of PROTECT at the port
of Boston. Figure 8 and Figure 9 show the frequency of visits by
USCG to different patrol areas over a number of weeks. The x-axis
is the day of the week, and the y-axis is the number of times a patrol
area is visited for a given day of the week. The y-axis is intention-
ally blurred for security reasons as this is real data from Boston.
There are more lines in Figure 8 than in Figure 9 because during
the implementation of PROTECT, new patrol areas were formed
which contained more targets and thus fewer patrol areas in the
post-PROTECT figure. Figure 8 depicts a definite pattern in the

18

patrols. While there is a spike in patrols executed on Day 5, there
is a dearth of patrols on Day 2. Besides this pattern, the lines in
Figure 8 intersect, indicating that some days, a higher value target
was visited more often while on other days it was visited less often,
even though the value of a target does not change day-to-day. This
means that there was not a consistently high frequency of coverage
of higher value targets before PROTECT.

In Figure 9, we notice that the pattern of low patrols on Day 2
(from Figure 8) disappears. Furthermore, lines do not frequently
intersect, i.e. higher valued targets are visited consistently across
the week. The top line in Figure 9 is the base patrol area and is
visited at a higher rate than all other patrol areas.

0

5

10

15

20

25

30

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

C
ou

nt

Figure 8: Patrol visits per day by area - pre-PROTECT(Color)

0

20

40

60

80

100

120

140

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

C
ou

nt

Base Patrol Area

Figure 9: Patrol visits per day by area - post-PROTECT(Color)

Adversary Perspective Teams(APT): To obtain a better under-
standing of how the adversary views the potential targets in the port,
the USCG created the Adversarial Perspective Team (APT), a mock
attacker team. The APT provides assessments from the terrorist
perspective and as a secondary function, assesses the effectiveness
of the patrol activities before and after deployment of PROTECT.
In their evaluation, the APT incorporates the adversary’s known
intent, capabilities, skills, commitment, resources, and cultural in-
fluences. In addition, it screens attack possibilities and assists in
identifying the level of deterrence projected at and perceived by
the adversary. For the purposes of this research, the adversary is
defined as an individual(s) with ties to al-Qa’ida or its affiliates.

The APT conducted a pre- and post-PROTECT assessment of the
system’s impact on an adversary’s deterrence at the port of Boston.
This analysis uncovered a positive trend where the effectiveness of
deterrence increased from the pre- to post- PROTECT observations.

Additional Real-world Indicators: The use of PROTECT and
APT’s improved guidance given to boat crews on how to conduct
the patrol jointly provided a noticeable increase in the quality and
effectiveness of the patrols. Prior to implementing PROTECT, there
were no documented reports of illicit activity. After implementa-
tion, USCG crews, reported more illicit activities within the port
and provided a noticeable "on the water" presence with industry
port partners commenting, "the Coast Guard seems to be every-

where, all the time." With no actual increase in the number of re-
sources applied, and therefore no increase in capital or operating
costs, these outcomes support the practical application of game the-
ory in the maritime security environment.

4.5 Outcomes after Boston Implementation
After evaluating the performance and impact of PROTECT at

Boston, the USCG viewed this system as a success. As a result,
PROTECT is now getting deployed in the port of New York. We
were presented an award for the work on the PROTECT system for
the Boston Harbor which reflects USCG’s recognition of the impact
and value of PROTECT.

5. LESSONS LEARNED: PUTTING THEORY
INTO PRACTICE

Developing the PROTECT model was a collaborative effort in-
volving university researchers and USCG personnel representing
decision makers, planners and operators. Building on the lessons
reported in [12] for working with security organizations, we in-
formed the USCG of (i) the assumptions underlying the game-
theoretic approaches, e.g. full adversary rationality, and strengths
and limitations of different algorithms — rather than pre-selecting
a simple heuristic approach; (ii) the need to define and collect cor-
rect inputs for model development and; (iii) a fundamental under-
standing of how the inputs affect the results. We gained three new
insights involving real-world applied research; (i) unforeseen posi-
tive benefits because security agencies were compelled to reexam-
ine their assumptions; (ii) requirement to work with multiple teams
in a security organization at multiple levels of their hierarchy and;
(iii) need to prepare answers to end-user practical questions not al-
ways directly related to the "meaty" research problems.

The first insight came about when USCG was compelled to re-
assess their operational assumptions as a result of working through
the research problem. A positive result of this reexamination prompted
USCG to develop new PWCS mission tactics, techniques and pro-
cedures. Through the iterative development process, USCG re-
assessed the reasons why boat crews performed certain activities
and whether they were sufficient. For example, instead of "cov-
ered" vs "not covered" as the only two possibilities at a patrol point,
there are now multiple sets of activities at each patrol point.

The second insight is that applied research requires the research
team to collaborate with planners and operators on the multiple lev-
els of a security organization to ensure the model accounts for all
aspects of a complex real world environment. Initially when we
started working on PROTECT, the focus was on patrolling each
individual target. This appeared to micromanage the activities of
boat crews, and it was through their input that individual targets
were grouped into patrol areas associated with a PWCS patrol. On
the other hand, input from USCG headquarters and the APT men-
tioned earlier, led to other changes in PROTECT, e.g. departing
from a fully rational model of an adversary to a QR model.

The third insight is the need to develop answers to end-user ques-
tions which are not always related to the "meaty" research question
but are related to the larger knowledge domain on which the re-
search depends. One example of the need to explain results in-
volved the user citing that one patrol area was being repeated and
hence, randomization did not seem to occur. After assessing this
concern, we determined that the cause for the repeated visits to a
patrol area was its high reward — order of magnitude greater than
the rarely visited patrol areas. PROTECT correctly assigned patrol
schedules that covered the more "important" patrol areas more fre-
quently. In another example, the user noted that PROTECT did not

19

assign any patrols to start at 4:00 AM or 4:00 PM over a 60 day
test period. They expected patrols would be scheduled to start at
any hour of the day, leading them to ask if there was a problem
with the program. This required us to develop a layman’s brief-
ing on probabilities, randomness, and sampling. With 60 patrol
schedules, a few start hours may not be chosen given our uniform
random sampling of the start time. These practitioner-based issues
demonstrate the need for researchers to not only be conversant in
the algorithms and math behind the research, but also be able to
explain from a user’s perspective how solutions are accurate. An
inability to address these issues would result in a lack of real-world
user confidence in the model.

6. SUMMARY AND RELATED WORK
This paper reports on PROTECT, a game-theoretic system de-

ployed by the USCG in the port of Boston since April 2011 for
scheduling their patrols. USCG has deemed the deployment of
PROTECT in Boston a success and efforts are underway to de-
ploy PROTECT in the port of New York, and to other ports in the
United States. PROTECT uses an attacker-defender Stackelberg
game model, and includes five key innovations.

First, PROTECT moves away from the assumption of perfect ad-
versary rationality seen in previous work, relying instead on a quan-
tal response (QR) model of the adversary’s behavior. While the QR
model has been extensively studied in the realm of behavioral game
theory, to the best of our knowledge, this is its first real-world de-
ployment. Second, to improve PROTECT’s efficiency, we generate
a novel compact representation of the defender’s strategy space, ex-
ploiting equivalence and dominance. Third, the paper shows how
to practically model a real-world (maritime) patrolling problem as
a Stackelberg game. Fourth, we provide experimental results illus-
trating that PROTECT’s QR model of the adversary is better able to
handle real-world uncertainties than a perfect rationality model. Fi-
nally, for the first time in a security application evaluation, we use
real-world data: (i) providing a comparison of human-generated
security schedules versus those generated via a game-theoretic al-
gorithm and; (ii) results from an APT’s analysis of the impact of the
PROTECT system. The paper also outlined the insights from the
project which include the ancillary benefits due to a review of as-
sumptions made by security agencies, and the need for knowledge
to answer questions not directly related to the research problem.

As a result, PROTECT has advanced the state of the art beyond
previous applications of game theory for security. Prior applica-
tions mentioned earlier, including ARMOR, IRIS or GUARDS [12],
have each provided unique contributions in applying novel game-
theoretic algorithms and techniques. Interestingly, these applica-
tions have revolved around airport and air-transportation security.
PROTECT’s novelty is not only its application domain in maritime
patrolling, but also in the five key innovations mentioned above,
particularly its emphasis on moving away from the assumption of
perfect rationality by using the QR model.

In addition to game-theoretic applications, the issue of patrolling
has received significant attention in the multi-agent literature. These
include patrol work done by robots primarily for perimeter patrols
that have been addressed in arbitrary topologies [2], maritime pa-
trols in simulations for deterring pirate attacks [13], and in research
looking at the impact of uncertainty in adversarial behavior [1].
PROTECT differs from these approaches in its use of a QR model
of a human adversary in a game theoretic setting, and in being a de-
ployed application. Building on this initial success of PROTECT,
we hope to deploy it at more and much larger-sized ports. In so
doing, in the future, we will consider significantly more complex
attacker strategies, including potential real-time surveillance and

coordinated attacks.

7. ACKNOWLEDGMENTS
We thank the USCG offices, and particularly sector Boston, for

their exceptional collaboration. The views expressed herein are
those of the author(s) and are not to be construed as official or re-
flecting the views of the Commandant or of the U.S. Coast Guard.
This research was supported by the United States Department of
Homeland Security through the Center for Risk and Economic Anal-
ysis of Terrorism Events (CREATE) under award number 2010-ST-
061-RE0001.

8. REFERENCES
[1] N. Agmon, S. Kraus, G. A. Kaminka, and V. Sadov.

Adversarial uncertainty in multi-robot patrol. In IJCAI, 2009.
[2] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower

strategies for robotic patrolling in environments with
arbitrary topologies. In AAMAS, 2009.

[3] D. Blair. Annual threat assessment of the US intelligence
community for the senate select committee on intelligence.
http://www.dni.gov/testimonies/20100202_testimony.pdf,
2010.

[4] C. F. Camerer. Behavioral Game Theory: Experiments in
Strategic Interaction. Princeton University Press, 2003.

[5] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In ACM EC, 2006.

[6] K. Dozier. Bin laden trove of documents sharpen US aim.
http://www.msnbc.msn.com/id/43331634/ns/us_news-
security/t/bin-laden-trove-documents-sharpen-us-aim/,
2011.

[7] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[8] C. Kiekintveld, J. Marecki, and M. Tambe. Approximation

methods for infinite bayesian Stackelberg games: modeling
distributional uncertainty. In AAMAS, 2011.

[9] D. Korzhyk, V. Conitzer, and R. Parr. Solving Stackelberg
games with uncertain observability. In AAMAS, 2011.

[10] R. D. McKelvey and T. R. Palfrey. Quantal response
equilibria for normal form games. Games and Economic
Behavior, 10(1):6–38, 1995.

[11] B. W. Rogers, T. R. Palfrey, and C. F. Camerer.
Heterogeneous quantal response equilibrium and cognitive
hierarchies. Journal of Economic Theory, 2009.

[12] M. Tambe. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[13] O. Vanek, M. Jakob, O. Hrstka, and M. Pechoucek. Using
multi-agent simulation to improve the security of maritime
transit. In MABS, 2011.

[14] J. Wright and K. Leyton-Brown. Beyond equilibrium:
Predicting human behavior in normal form games. In AAAI,
2010.

[15] R. Yang, C. Kiekintveld, F. Ordonez, M. Tambe, and
R. John. Improving resource allocation strategy against
human adversaries in security games. In IJCAI, 2011.

[16] R. Yang, M. Tambe, and F. Ordonez. Computing optimal
strategy against quantal response in security games. In
AAMAS, 2012.

[17] Z. Yin, M. Jain, M. Tambe, and F. Ordóñez. Risk-averse
strategies for security games with execution and
observational uncertainty. In AAAI, 2011.

20

SAVES: A Sustainable Multiagent Application to Conserve
Building Energy Considering Occupants

Jun-young Kwak, Pradeep Varakantham∗, Rajiv Maheswaran, Milind Tambe, Farrokh
Jazizadeh, Geoffrey Kavulya, Laura Klein, Burcin Becerik-Gerber, Timothy Hayes,

Wendy Wood
University of Southern California, Los Angeles, CA, 90089
∗Singapore Management University, Singapore, 178902

{junyounk,maheswar,tambe,jazizade,kavulya,lauraakl,becerik,hayest,wendy.wood}@usc.edu,
∗pradeepv@smu.edu.sg

ABSTRACT
This paper describes an innovative multiagent system called
SAVES with the goal of conserving energy in commercial build-
ings. We specifically focus on an application to be deployed in
an existing university building that provides several key novelties:
(i) jointly performed with the university facility management team,
SAVES is based on actual occupant preferences and schedules, ac-
tual energy consumption and loss data, real sensors and hand-held
devices, etc.; (ii) it addresses novel scenarios that require negotia-
tions with groups of building occupants to conserve energy; (iii) it
focuses on a non-residential building, where human occupants do
not have a direct financial incentive in saving energy and thus re-
quires a different mechanism to effectively motivate occupants; and
(iv) SAVES uses a novel algorithm for generating optimal MDP
policies that explicitly consider multiple criteria optimization (en-
ergy and personal comfort) as well as uncertainty over occupant
preferences when negotiating energy reduction – this combination
of challenges has not been considered in previous MDP algorithms.
In a validated simulation testbed, we show that SAVES substan-
tially reduces the overall energy consumption compared to the ex-
isting control method while achieving comparable average satisfac-
tion levels for occupants. As a real-world test, we provide results of
a trial study where SAVES is shown to lead occupants to conserve
energy in real buildings.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Innovative Applications, Energy, Sustainable Multiagent Building
Application, Multi-objective Optimization

1. INTRODUCTION

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems – Innovative Applica-
tions Track (AAMAS 2012), Conitzer, Winikoff, Padgham, and van der
Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: The actual research testbed (RGL) at the University of
Southern California

Limited availability of energy sources has led to the need to de-
velop efficient measures of conserving energy. Motivated by this
need, researchers at AAMAS have been developing multiagent sys-
tems to conserve energy, both for deployment in smart grids and in
buildings, with a particular focus on residential buildings [10, 16,
17, 21].

Inspired by this prior work, we describe an innovative multia-
gent system called SAVES (Sustainable multi-Agent building ap-
plication for optimizing Various objectives including Energy and
Satisfaction), where agents communicate and negotiate with human
occupants to conserve energy. SAVES focuses on energy conser-
vation in commercial (including office and educational) buildings
given their significant burden on energy consumption, e.g., in 2008
buildings in the U.S. consumed 18.5 QBtu, representing 46.2% of
building energy consumption and 18.4% of U.S. energy consump-
tion [1]. To this end, this paper specifically focuses on an appli-
cation to be deployed at Ralph & Goldy Lewis Hall (RGL) at the
University of Southern California (shown in Figure 1).

SAVES provides the following key novelties. First, jointly per-
formed with the university facility management team, our research
is based on actual occupant preferences and schedules, actual en-
ergy consumption and loss data, real sensors and hand-held de-
vices, etc. Second, SAVES addresses novel scenarios that require
agents to negotiate with groups of building occupants to conserve
energy; previous work has typically focused on agents’ negotia-
tion with individual occupants [3, 12]. Third, it focuses on non-
residential buildings, where human occupants do not have a di-
rect financial incentive in saving energy. Furthermore, commercial
buildings offer new opportunities for energy conservation, since oc-

21

cupants may follow a more regular schedule, allowing SAVES to
plan ahead for energy conservation. Finally, SAVES uses a novel
algorithm for generating optimal BM-MDP policies that explicitly
considers multiple criteria optimization (energy and personal com-
fort) as well as uncertainty over occupant preferences when negoti-
ating for energy reduction – this combination of challenges has not
been considered in previous MDP algorithms [5, 6, 8, 13].

We provide three sets of evaluations of SAVES. First, we con-
structed a detailed simulation testbed, with details all the way down
to individual electrical outlets in our targeted building and vari-
ations in solar gain per day; and then validated this simulation.
Within this simulation testbed, we show that SAVES substantially
reduces the overall energy consumption compared to existing con-
trol methods while achieving comparable satisfaction level of oc-
cupants. Second, we show the benefits of BM-MDPs by showing
that it gives a well-balanced solution while considering multiple
criteria. Third, as a real-world test, we provide results of a human
subject study where SAVES is shown to lead human occupants to
significantly reduce their energy consumption in real buildings.

In Section 2, we describe our testbeds. This includes both the
real educational building where SAVES is to be deployed, and
our simulation testbed, which we validate by comparing with real
building data. Next, in Section 3, we describe the SAVES mul-
tiagent system, and the novel BM-MDP algorithm at the heart of
SAVES. Section 4 provides evaluations discussed above.

2. TESTBEDS

2.1 Educational Building Testbed
SAVES is to be deployed in an actual educational building. Fig-

ure 1 shows the real testbed building (RGL) and the floor plan of
3rd floor. It is a multi-functional building that has been designed
with a building management system, and it provides a good envi-
ronment to test various control strategies to mitigate energy con-
sumption. In particular, this campus building has three floors in
total and is composed of different types of spaces including class-
rooms, offices for faculty and staff, and conference rooms for meet-
ings. Each floor has a large number of rooms and zones (a set of
rooms that is controlled by specific piece of equipment) with var-
ious physical properties including different building devices, ori-
entation, window size, room size and lighting specifications. For
instance, the 3rd floor has 24 zones and 39 rooms.

Within this building, components and equipment include HVAC
(Heating, Ventilating, and Air Conditioning) systems, lighting sys-
tems, office electronic devices such as computers and AV equip-
ment, and different types of sensors and energy meters. Human
occupants of the building are divided into two main categories: per-
manent and temporary. Permanent occupants include office users
such as faculty, staff, researchers and laboratory residents. Tempo-
rary occupants include scheduled occupants like students or faculty
attending classes or meetings and unscheduled occupants who are
students or faculty using common lounges or dining spaces.

In this domain, there are two types of energy-related occupant
behaviors that SAVES can influence to conserve energy use: indi-
vidual behaviors and group behaviors. Individual behaviors only
affect an environment where the individual is located. They in-
clude adjusting light sources and temperature in individual offices
and turning on/off computers and other electronics. Group behav-
iors lead to changes in shared spaces and require negotiation with a
group of occupants in the building. For instance, SAVES may nego-
tiate with a group of occupants to adjust the lighting level and tem-
perature in their shared office or to relocate a meeting to a smaller
office. As we will show later, energy savings by considering such

group negotiations together are significant.
The desired goal in this educational building is to optimize mul-

tiple criteria, i.e., achieve maximum energy savings without trad-
ing off the comfort level of occupants. The research on this testbed
building is intended to be generalized to other building types, where
we can observe many different types of energy-use and the behav-
ioral patterns of occupants in the buildings.

2.2 Simulation Testbed
As an important first step in deploying SAVES in the actual

building described in the previous section, we test SAVES in a
realistic simulation environment using real building data. To that
end, we have constructed a simulation testbed based on the open-
source project OpenSteer (http://opensteer.sourceforge.net/), which
provides a 2D, OpenGL environment. It can be used for efficient
statistical analysis of different control strategies in buildings before
deploying the system.
Building Components: Our simulation considers three building
component categories: HVAC devices, lighting devices, and ap-
pliances. The HVAC components control the temperature of the
assigned zone. The lighting devices control the lighting level of
the room. The appliances in our simulation are either desktop or
laptop computers. These components have two possible actions:
“on” and “standby”. When the lighting or appliance devices are
on, they consume a fixed amount of energy. We attempt to very
accurately reflect the energy consumed by each of the three com-
ponent categories in the simulation. The energy consumption of
HVACs is calculated based on changes in air temperature and air-
flow speeds, and gains from natural light source and appliances in
the space. To calculate the energy consumption of the lighting and
appliance devices, we collected actual energy consumption data in
the testbed building. For the appliances, a desktop computer spends
0.150 kW/h and 0.010 kW/h when it is on and standby, respectively.
A laptop computer spends 0.050 kW/h when it is on and 0.005 kW/h
when it is on standby.1

Human Occupants: We built two types of human occu-
pants in our simulation using the agent behavior framework
presented in [20]. Permanent occupants stay in their of-
fices or follow their regular schedules. Temporary occupants
stay in the building for classes and leave once classes end.

Figure 2: Actual Temp. Preference

Each occupant has
access to a subset
of the six available
behaviors accord-
ing to her/his
type — wander,
attend class, go
to meeting, teach,
study, and perform
research — any
one of which may
be active at a given
time, where the be-
havior is selected
based on class and meeting schedules. Occupants also have a
satisfaction level based on the current environment, modeled as a
percentage between 0 and 100 (0 is fully dissatisfied, 100 is fully
satisfied).

To model the satisfaction level in this simulation, we use a Gaus-

1The detailed equations to compute the energy consump-
tion and actual parameter values are presented here:
http://teamcore.usc.edu/junyounk/energy/AAMAS12-SAVES-
supplementary.pdf

22

Figure 3: Energy Consumption Validation

sian distribution N(µ, σ) for each occupant. The mean (µ) of each
individual Gaussian is drawn from actual occupant preference data
shown in Figure 2 (e.g., for 18% of permanent occupants, µ=76◦F).
This data was gathered from 40 permanent occupants and 202 tem-
porary occupants in RGL over two weeks in the spring of 2011.
We use this actual data instead of the ASHRAE standard, which
fails to account for individual preferences. The standard deviation
(σ) of each Gaussian is selected uniformly randomly from a range
of 3–5◦F [11]. Based on the constructed Gaussian model for each
occupant, the satisfaction level is computed as follows:

S(t) =

{
100, if t = µ
f(t)
f(µ)
× 100, if t 6= µ

(1)

where S(t) is the satisfaction function, f(x) is the probability den-
sity function of N(µ, σ), and t is the current temperature.
Validation: Before testing SAVES in simulation, we first validate
the simulation testbed. Specifically, we compare the energy con-
sumption calculated in the simulation testbed with actual energy
meter data using the 3rd floor of the actual testbed building.

Figure 3 shows that daily energy use comparison data (y-axis)
measured for 30 sample weekdays throughout different seasons (x-
axis; 3 weekdays in 2011 Spring, 10 weekdays in 2011 Summer,
17 weekdays in 2011 Fall). The energy consumption includes the
amount consumed by HVACs, lighting devices and appliances. We
use measured parameter values such as solar gain and outdoor tem-
perature and real parameter values for the building obtained from
the facility management system. We set the starting indoor tem-
perature using real data. The likelihood value for human occupants
to “turn off” lights and appliances when they leave their offices is
76%, based on a survey of the testbed building. Students follow
2010 Fall, 2011 Spring and 2011 Fall class schedules, and faculty,
staff and students follow their meeting schedules.

As shown in the figure, the difference between actual energy me-
ter data and energy use from the simulation testbed was between
0.17% – 8.71% (mean difference: 3.37%), which strongly supports
our claim that the simulation testbed is realistic.

3. SAVES
In this section, we describe the key components of SAVES and

how to optimally plan negotiations with groups of occupants to
conserve energy in our application.

3.1 Agents in SAVES
At the heart of SAVES are two types of agents: room agents and

proxy agents (Figure 4). There is a dedicated room agent per office
and conference room, in charge of reducing energy consumption in
that room. It can access sensors to retrieve information such as the

Figure 4: Agents & Communication Equipment in SAVES. An agent
in SAVES sends feedback including energy use to occupants.

current lighting level and temperature and energy use at different
levels (building-level, floor-level, zone-level, and room-level) and
impact the operation of actuators. A proxy agent [18] is on an in-
dividual occupant’s hand-held device and it has the corresponding
occupant’s preference and behavior models. Proxy agents commu-
nicate on behalf of an occupant to the room agent. Such proxy
agents’ adjustable autonomy – when to interrupt a user and when
to act autonomously – is recognized as a major research issue [18,
19], but since it is not our focus, we use preset rules instead. Room
agents may directly communicate with occupants without proxy
agents if needed. Finally, different room agents coordinate among
themselves via proxy agents, e.g., if two separate conference room
agents wish to move a meeting to one occupant’s office, the proxy
of that occupant allows one of the room agents to proceed, blocking
the other’s request (see Figure 4).

Room agent reasoning is based on a new model called Bounded
parameter Multi-objective MDPs (BM-MDPs), which is one of the
contributions of this research. BM-MDPs are a hybrid of MO-
MDPs [5, 13] and BMDPs [8]. BM-MDPs are responsible for plan-
ning simple and complex tasks. Simple tasks include turning on the
HVAC before a class or a meeting, and do not need the full power
of the BM-MDPs. Complex tasks were why BM-MDPs were cre-
ated; these include negotiating with groups of individuals to relo-
cate meetings to smaller rooms to save energy, negotiating with
multiple occupants of a shared office to reduce energy usage in the
form of lights or HVACs, and others. Before describing BM-MDPs
in depth, we motivate their use by elaborating on the meeting relo-
cation negotiation scenario.

Group Meeting Relocation Negotiation Example Consider a
meeting that has been scheduled with two attendees (P1 and P2) in
a large conference room that has more light sources and appliances
than smaller offices. Since the meeting has few attendees, the
room agent can negotiate with attendees to relocate the meeting
to nearby small, sunlit offices, which can lead to significant
energy savings. The room agent handles this negotiation based
on BM-MDPs. There are three objectives (i.e., three separate
reward functions) that the room agent needs to consider during this
negotiation: i) energy saving (R1), ii) P1’s comfort level change
(R2), and iii) P2’s comfort level change (R3). The room agent
first checks the available offices. Assuming there are two available
offices A and B, the room agent asks each attendee if she or he
will agree to relocate the meeting to one of the available offices. In
asking an attendee, the room agent must consider the uncertainty
of whether an attendee is likely to accept its offer to relocate

23

the meeting. Since asking incurs a cost (e.g., cost caused by
interrupting people), the room agent needs to reason about which
option is preferable considering P1 and P2’s likelihood to accept
each option (A or B) and the reward functions for each option to
reduce the required cost and maximize benefits. Assuming A is
preferable, the optimal policy of the agent is “ask P1 first about
A”–“if P1 accepts, ask P2 about A”–“if P1 does not reply, ask P1

about A again”–“repeat the process with B”–“if both agree, relo-
cate the meeting”–“if both disagree, find other available options.”
While this is a simplified example, in practice the problem is more
difficult, as there may be more than two attendees in a meeting.
The room agent must also first communicate with the proxies of
the owners of offices A and B and there may be uncertainty in
their agreement to have a meeting in their office; further adding to
the challenge of sequential decision making under uncertainty. In
addition, the agent must decide if it should ask P1 first and use that
result to influence P2, etc.

Thus, BM-MDPs must reason with multiple objectives, but si-
multaneously must reason with the uncertainty in the domain. In
fact, in a complex domain such as ours, the probabilities of atten-
dees’ or others’ acceptance of the room agent’s offer, or the proba-
bilities of other outcomes may not be precisely known — we may
only have a reasonable upper and lower bound over such probabil-
ities. Indeed, precisely knowing the model is very challenging, and
we ended up building BM-MDPs to address both these challenges
and requirements. However, before explaining BM-MDPs, we first
explain MO-MDPs on which BM-MDPs are built.

3.2 Multi-objective MDPs
The negotiation scenarios described earlier require SAVES to

consider multiple objectives simultaneously: energy consumption
and satisfaction level of multiple individuals. To handle such mul-
tiple objectives, MDPs have been extended to take into account
multiple criteria assuming no model uncertainty. Multi-Objective
MDPs (MO-MDPs) [5, 13] are defined as an MDP where the re-
ward function has been replaced by a vector of rewards. Specif-
ically, MO-MDPs are described by a tuple 〈S,A, T, {Ri}, p〉,
where Ri is the reward function for objective i and p denotes the
starting state distribution (p(s) ≥ 0). In the meeting relocation ex-
ample shown in Section 3.1, specifically, the multiple reward func-
tions, {Ri}, include energy consumption (which is the reduction
in energy usage in moving from a conference room to a smaller
office), and comfort level defined separately for each individual
(based on data related to their temperature comfort zones).

The key takeaway from MO-MDPs towards BM-MDPs is an un-
derstanding of how to generate a policy in the presence of such
multiple objectives that are not aggregated into one single value.
The key principle we rely on, given the current domain of non-
residential buildings is one of fairness; we wish to reduce energy
usage, but we cannot sacrifice any one individual’s comfort en-
tirely in service of this goal. To meet this requirement, we focus
on minimizing the maximum regret instead of maximizing the re-
ward value based on a min-max optimization technique [14] to get
a well-balanced solution.

To minimize the maximum regret, we first need to compute the
optimal value for each objective using the MDP framework relying
on the following standard formulation:

minV ∗(s) (2)

s.t. V ∗(s) ≥ R(s, a) + γ
∑

s′∈S
T (s, a, s′) · V ∗(s′), (3)

0 ≤ γ < 1 (4)

where V ∗ is an optimal value, and γ is a discount factor.
We define the regret in MO-MDPs as following:

Definition Let Hα
i (s) be the regret with respect to a policy α for

objective i and state s. Formally,

Hα
i (s) = V

α∗i
i (s)− V αi (s), (5)

where V α
∗
i

i (s) is the value of the optimal policy, α∗i , and V αi (s) is
the value of the policy α for objective i and state s.

Therefore, we can minimize the maximum regret in MO-MDPs
using the following optimization problem:

minD (6)

s.t. D ≥
∑

s∈S
p(s) · [V ∗i (s)− Vi(s)] , ∀i ∈ I, (7)

Vi(s) =
∑

a∈A
α(s, a)

[
Ri(s, a) + γ

∑

s′∈S
T (s, a, s′) · Vi(s′)

]
,

(8)
∑

a∈A
α(s, a) = 1,∀s ∈ S, 0 ≤ γ < 1 (9)

where V ∗i is the constant value pre-calculated by (2) of the MDP
formulation using the reward function for objective i, Ri, and I is
a set of objectives.

Unfortunately, in BM-MDPs, we have an upper and lower bound
on transition probabilities and rewards, and thus this optimization
problem cannot be directly used. Nonetheless, it helps us under-
stand the key difference in minimizing max regret between MO-
MDPs and BM-MDPs — specifically in addressing such upper and
lower bounds in BM-MDPs, we end up with different transition
probabilities Ti for each objective i, as discussed below, and hence
rely on a different approach to compute regret.

3.3 BM-MDPs
We now extend MO-MDPs, using ideas from BMDPs [8], to cre-

ate BM-MDPs. BMDP (represented by tuple 〈S,A, T̂ , R̂, p〉) is
an extension to the standard MDP, where upper and lower bounds
on transition probabilities and rewards are provided as closed real
intervals. In addition to representation of uncertainty over transi-
tion probabilities and rewards, a key takeaway for BM-MDPs from
BMDPs is the algorithm to generate policies. This algorithm is
based on the notion of Order-Maximizing MDPs [8], which selects
transition probabilities from the given intervals. Order-maximizing
MDPs crucially take the order of states as an input – this order is
ascending if we are to return a pessimistic policy (based on lower
bound values), and it is descending for an optimistic policy (based
on upper bound values). More specifically, using this order as an in-
put, order-maximizing MDPs construct the transition function, and
generate a policy as an output relying on value iteration. We rely
on order-maximizing MDPs to generate policies in our BM-MDPs
as well (but manipulate the order of states input). To provide some
intuition behind the operations of the order-maximizing MDPs, we
provide a simple example to show how transition values are as-
signed from their intervals using the given order in the following
example. For more details, please refer to [8].

Example of Order Maximizing MDPs Consider a BMDP with
two states: s1 and s2. The transition ranges are T (s1, a, s1) = [0.5,
0.9], T (s1, a, s2) = [0.2, 0.6]. Let us assume that the upper bound
of value is Vub(s1) = 3 and Vub(s2) = 2 at a certain iteration of
order-maximizing MDP value iteration. In BMDP, the intuition is

24

that for calculating the optimistic value, we require movement to s1
as much as possible within the given range of transition probability
(since it has a higher upper bound value). Therefore to create an op-
timistic policy, the input to the order-maximizing MDPs is to sort
the states in a descending order based on the upper bounds. Given
this input, the transition probabilities in the order-maximizing MDP
for calculating optimistic value would be T ′(s1, a, s1) = 0.8 be-
cause T ′(s1, a, s2) should be at least 0.2, and T ′(s1, a, s2) = (1 -
0.8). Based on these transition probabilities, we obtain a new set
of expected values via value iteration, generate a new descending
order, and iterate until convergence.

Similar to BMDPs, the transition and reward functions in BM-
MDPs have closed real intervals. Whereas BMDPs are limited to
optimizing a single objective case (i.e., the BMDP model requires
one unified reward function), BM-MDPs can i) optimize over mul-
tiple objectives (i.e., a vector of reward functions) with ii) differ-
ent degrees of model uncertainty. Specifically, BM-MDPs are de-
scribed by a tuple 〈S,A, T̂ , {R̂i}, p〉, where R̂i represents the re-
ward function for objective i.

Algorithm 1 SOLVEBMMDP()
1: for i = 1 ∈ I do
2:

〈
V∗i,lb,V

∗
i,ub

〉
← SolveBMDP(BMDPi)

3: {V′i,lb} ← ∞ ; {Vi,lb} ← 0
4: while |{V′i,lb} − {Vi,lb}| > ε do

5: {Vi,lb} ← {V
′
i,lb}

6: for i = 1 ∈ I do
7: Oi ← SortIncreasingOrder({Vi,lb})
8: Mi ← ConstructOrderMaximizingMDP(Oi);
9: {V′i,lb} ← SolveMOMDPPessimistic({Vi,lb}, {V∗i,lb}, {Mi})

10: αpes ← ObtainPessimisticPolicy({Vi,lb})
11: {V′i,ub} ← ∞ ; {Vi,ub} ← 0
12: while |{V′i,ub} − {Vi,ub}| > ε do
13: {Vi,ub} ← {V′i,ub}
14: for i = 1 ∈ I do
15: Oi ← SortDecreasingOrder({Vi,ub})
16: Mi ← ConstructOrderMaximizingMDP(Oi);
17: {V′i,ub} ← SolveMOMDPOptimistic({Vi,ub}, {V∗i,ub}, {Mi})
18: αopt ← ObtainOptimisticPolicy({Vi,ub})
19: return {〈αpes, αopt〉}

To solve BM-MDPs, we introduce a novel algorithm that is a hy-
brid of BMDPs and MO-MDPs. Specifically, our algorithm mar-
ries the minimization of max regret idea from MO-MDPs with
that of order maximizing MDPs to handle uncertainty over tran-
sition function and rewards. The overall flow is described in Al-
gorithm 1. At a higher level, we have three stages: (i) computing
the optimal value bounds

〈
V∗i,lb,V∗i,ub

〉
for each objective i using

BMDPs (lines 1–2), (ii) using the MO-MDP idea to optimize mul-
tiple objectives based on a min-max formulation (lines 3–9 & 11–
17), and (iii) obtaining a policy α based on the final value functions
〈{Vi,lb}, {Vi,ub}〉 (lines 10 & 18). The output of this algorithm is
in the form of two policies (pessimistic and optimistic), and we
leave it to the user to determine which one is used.

We now describe the computation of the pessimistic policy (lines
3–10). The optimistic policy (lines 11–18) is similarly computed.
The pessimistic policy minimizes the maximum regret with respect
to the optimal lower bound values of all objectives ({V ∗i,lb}) over
all states; this computation is iteratively performed in line 9. For
each objective i, we first get an ascending order of states using
the current lower bound values Vi,lb (line 7) to construct the order-
maximizing MDP (line 8). This set of order-maximizing MDPs,

{Mi}, is an input to the function SolveMOMDPPessimistic() to
optimize multiple objectives by directly computing regret on line
9. This computation is performed by Eq. (6) with a different tran-
sition probability function Ti in the given Mi instead of T . This in
turn influences the sorting order of states, and the process continues
until the expected values {Vi,lb} converge.

4. EVALUATION OF SAVES
In this section, we provide three sets of evaluations: two sets of

results tested in the simulation testbed and a set of results tested in
the real-world.

4.1 Simulation: Overall Evaluation
We evaluate the performance of SAVES using both 2nd and 3rd

floors of RGL in the simulation environment. We test BM-MDPs
using a pessimistic setting and compare it with two other control
heuristics discussed below.
Manual Control: The manual control strategy is the baseline
system that represents the current strategy operated by the facility
management team in the real testbed building (RGL). In this strat-
egy, temperature is regulated by the facility managers according to
two set ranges for occupied (70◦F–75◦F) and unoccupied periods
(50◦F–90◦F) of the day. In this control setting, HVACs always at-
tempt to reach the pre-set temperature regardless of the presence
of occupants and their preferences in terms of temperature. Light-
ing and appliance devices are controlled by human occupants. The
same likelihood value for human occupants to “turn off” lights and
appliances was used as in Section 2.2.
Reactive Control: We consider the reactive control heuristic
for comparison purposes since it can be easily implemented us-
ing cheap sensors in the real building, and recently, some build-
ings have already started adopting this simple heuristic to reduce
energy use. The lighting and appliance devices are now automati-
cally controlled and turned on and off according to the presence of
people. Additionally, as in [9], appropriate temperature set points
of HVACs are computed based on the average preference of human
occupants. HVACs automatically turn on and off according to the
presence of people and temperature set points.

We focus on measuring two different criteria — total energy con-
sumption (kWh) and average satisfaction level of occupants (%).
The experiments were run on Intel Core2 Duo 2.53GHz CPU with
4GB main memory. All techniques were evaluated for 100 indepen-
dent trials throughout this section. We report the average values.

4.1.1 Result: Total Energy Consumption
We compared the cumulative total energy consumption mea-

sured during 24 hours for all control strategies. Figure 5(a) shows
the cumulative total energy consumption on the y-axis in kWh and
time on the x-axis. We report the average total energy consump-
tion measured over the same 30 weekdays used in Figure 3. As
shown in the figure, the manual control strategy showed the worst
result since it does not take into account behaviors or schedules
of human occupants and building components simply follow the
predefined policies. The reactive control strategies showed lower
energy consumption than the manual setting by 16.06%. SAVES
showed the best results compared to other control heuristics and
statistically significant improvements (t-test; p < 0.01) in terms
of energy used in the testbed building. Specifically, our algorithm
with the ideal compliance rate (i.e., SAVES-IDEAL: occupants al-
ways accept the suggestions provided by the SAVES room agents to
conserve energy) reduced the energy consumption by 42.45% when
compared to the manual control strategy. If we use the compliance
rate (68.18%) of human subjects shown in Table 3 (as measured

25

(a) Total Energy Consumption

(b) Average Satisfaction Level

Figure 5: Performance Evaluation of SAVES

in our real-world experiments), SAVES achieved energy savings
by 31.27% (40% of the savings due to SAVES came out of group
tasks, such as reducing energy consumption in shared offices, relo-
cating meetings, and others) as compared to the manual setup. This
is double the rate of the reactive approach.

4.1.2 Result: Average Satisfaction Level
Here, we compare the average satisfaction level of human oc-

cupants under different control strategies in the simulation testbed.
Figure 5(b) shows the average satisfaction level in percentage on
the y-axis and time on the x-axis. As shown in the results, the man-
ual setting and our novel algorithm showed the best results. This is
because the manual setting makes HVACs attempt to reach the de-
sired temperature set point as soon as possible while disregarding
the resulting energy consumption, and our method plans ahead of
the schedules; thus, these two can achieve the desired comfort level
faster than the reactive control strategy.

The manual strategy, however, is very sensitive to the given tem-
perature range. In our experiment, the temperature set point was set
by the facility management team (e.g., 70–75◦F) based on the av-
erage preference model, thus it achieved high comfort level in the
testbed. However, if the actual preferred temperature in the build-
ing is different from the average model, it fails to meet the occu-
pant’s desired level. This phenomenon can be seen when occupants
stay during the unoccupied time (after typical working hours). As
we can see at 18 on the x-axis (i.e., 6pm) in the figure, the average
comfort level drops significantly. Due to the delayed effects in tem-
perature change, the reactive control strategy showed significantly
lower satisfaction results than other methods. For instance, it has a
satisfaction level below 60% at 14 on the x-axis (i.e., 2pm). Thus,
SAVES not only provides superior energy savings, but also avoids
the reduction in comfort level that a reactive strategy may cause.

Table 1: Average Maximum Regret Comparison
Problem Set MDPs BM-MDPs Difference

m1 168.62 4.72 163.90
m2 359.44 164.17 195.27
m3 448.15 164.97 283.18
m4 291.27 138.59 152.68
m5 143.32 95.88 47.44

Table 2: Example of the Meeting Relocation Negotiation
Max. Regret

Objective MDPs BM-MDPs
Energy Savings 443.54 162.83

P1’s Comfort Lv. Change 15.34 162.84
P2’s Comfort Lv. Change 15.34 97.58

4.2 Simulation: Multi-objective Optimization
In this section, we perform more analysis on our novel algorithm.

Table 1 shows the average maximum regret comparison tested in 5
different problem sets between the standard MDP with a unified re-
ward based on the weighted sum method [22] and BM-MDPs (in
this case, we assume no transition or reward uncertainty). The uni-
form weight distribution was applied to the weighted sum method.
Our goal is to show that BM-MDPs give lower maximum regrets,
which indicates well-balanced solutions as discussed earlier.

Each problem is an instance of the meeting relocation negotia-
tion task, having its own reward structure but the same transition
function. The problem instances are divided into five groups (prob-
lem sets m1–m5) based on the percentage of objectives that have
positive rewards in all objectives. Recall that in the meeting reloca-
tion scenario, the different objectives include energy reduction and
change in comfort level of individual participants. Specifically, in
problem set m1, relocating a meeting leads to positive rewards in
over 75% of objectives (76–100%) and negative rewards in the rest
of objectives, problem set m2 has 51–75% of objectives with posi-
tive rewards, and similarly for the remaining sets, so that in problem
set m5, all objectives have negative rewards if the meeting is relo-
cated. Each problem set has 100 independent problem instances.
We then measured the average maximum regret of each method in
each problem set. As shown in Table 1, BM-MDPs always showed
lower maximum regrets (column 3) compared to the MDP with
uniform weight (column 2), which suggests that our method gives
well-balanced solutions regardless of reward characteristics.

The next question is what the well-balanced solution means in
our energy domain. Let us take the meeting relocation example
with two attendees (P1 and P2) discussed in Section 3.1. In Ta-
ble 2, column 1 shows three objectives (energy savings and two at-
tendees’ comfort level change) and columns 2–3 indicate the maxi-
mum regret from MDPs and BM-MDPs, respectively. As shown in
the table, MDPs generated a policy that almost entirely disregards
energy-savings, leading to significantly large regrets (row 3, col-
umn 2). BM-MDPs, on the other hand, were able to achieve small
regrets over all objectives (rows 3–5, column 3).

Lastly, we test our BM-MDP algorithm considering different
degrees of model uncertainty. Figure 6 shows the average max-
imum regret tested over 100 different problem instances on the
y-axis. We choose 1 problem from each problem set (m1, m2,
· · · , m5) from the previous test. The noise of each model
is proportional (20%) to the mean reward value and transition
probability. MDPs and MO-MDPs generate policies ignoring
the model’s uncertainty and BM-MDPs generate two types of
policies (BM-MDP-Pes: pessimistic, BM-MDP-Opt: optimistic)
that explicitly account for the uncertainty. We then randomly

26

generate 20 different instances within the range for each prob-
lem (e.g., for m1, we generate m1,1, · · · , m1,20). Each gen-
erated policy is evaluated over those 20 problem instances and
the average maximum regret is computed for each algorithm.

Figure 6: Performance of BM-MDPs

For the other 4
problems (m2, · · · ,
m5), we repeat the
same procedure and
report the overall
average value. As
shown in the figure,
BM-MDPs have the
best performance
(i.e., lowest average
maximum regret),
which means BM-
MDPs are capable
of generating more robust and well-balanced solutions compared
to previous work when there is model uncertainty. However, the
solution quality between the pessimistic and optimistic BM-MDPs
was not significantly different and their performance is domain
dependent. Note that the results shown in Figure 6 are average
maximum regrets over all problem instances, and in some particu-
lar instances, MO-MDP might outperform either BM-MDP-Pes or
BM-MDP-Opt (but not both even in this case). We leave this issue
for future investigation.

4.3 Real-world Test: Human Experiments
As a real-world test, we design and conduct a validation experi-

ment on a pilot sample of participants (staff on campus). We con-
duct this investigation: i) to verify if SAVES can lead to changes
in occupants’ behaviors and to reduce energy consumption in com-
mercial buildings, ii) to validate the parameter values used during
the negotiation process such as the acceptance/compliance rate for
the suggestion and iii) to understand what types of feedback are
most effective to affect occupants’ energy-related decisions.

In this study, we consider two test conditions: i) feedback with-
out motivation (Test Group I) (e.g., please reduce the lighting level
in your office), and ii) feedback with motivation including partici-
pant’s own energy use, and environmental motives (Test Group II)
(e.g., if you reduce your lighting for working hours, the annual en-
ergy savings at the building level are 26000kWh on average, which
is equivalent to the reduction of CO2 emissions of 2.2 homes for
one year). From this experiment, we answer the following ques-
tion by comparing change in energy behavior patterns and possible
estimated energy consumption between test groups I and II.

HYPOTHESIS 1. More informed feedback (provided to subjects
in Test Group II) will be more effective to conserve energy than
feedback without motivation (Test Group I).

We tested the hypothesis above as follows: we first recruited 22
staff from 7 buildings at the University of Southern California who
are over 18 years old. Subjects were tested under two different con-
ditions, and each test group had 11 individuals respectively, each of
whom has her/his own office. Since we tested using a simple light-
ing negotiation scenario, each participant must be able to adjust the
lighting levels in her/his office. With participants’ agreements, we
installed lighting sensors (Figure 4) in their offices. During the ex-
periment, participants were supposed to stay in their own offices
and do their regular work. We then measured the baseline energy
behavior and energy consumption, and SAVES provided feedback
via emails based on sensed lighting level (two times per day, at
11am and 2pm, for three consecutive weekdays). In each message,

Table 3: Lighting Negotiation Results (*: p < 0.05)
Avg. Accep. Rate (%) User Rating (Max: 5.0)

Group I 28.79 (11.03) 3.82 (0.26)
Group II 68.18 (9.65) 4.18 (0.18)

Mean Diff. 39.39∗ 0.36

participants received a simple suggestion for lighting level with a
certain type of feedback (e.g., please reduce the lighting level in
your office). We systematically observed and logged their energy
behavior during the entire experiment using the light sensors. At
the end of the experiment, each participant was required to take a
short survey (i.e., the reasons why they agree or disagree with a pro-
vided suggestion). We conducted this study for two weeks in the
fall of 2011 and collected data from human subjects using multiple
sensors and routers.

In Table 3, column 2 displays the average acceptance rate in per-
centage (0–100%) of two test groups, and column 3 represents the
average user rating of the provided feedback during the experiment.
The range of ratings is between 0 and 5, and 0 indicates that the
feedback was not helpful at all, and 5 means that the feedback was
extremely helpful. In both columns, values in parentheses indicate
the standard errors. The last row shows a mean difference between
two groups for each value.

Table 3 shows that when we provided more informed feedback
including environmental motives (Group II), occupants showed sta-
tistically significantly higher compliance acceptance rate (68.18%),
which provides strong evidence for the above hypothesis (t-test;
p < 0.05). In addition, human subjects in Group II felt that the
provided feedback was more helpful during the negotiation pro-
cess. However, the difference in user ratings between two groups
was not significant, and thus we took a quick survey from partici-
pants at the end of the experiment to further analyze their decisions.
In contrast with Group I, in Group II, the main reason why partici-
pants who agreed to reduce the lighting level in their offices (over
80% of conformers in Group II) was because the feedback signif-
icantly improved awareness of energy use. In addition, more than
half of all participants strongly believed that this study will be very
helpful by encouraging occupants to think about energy usage. This
discrepancy in average user ratings and acceptance rates remains an
issue for future work.

In this trial study, we have learned that although occupants in
commercial buildings do not have a direct financial incentive in
saving energy, proper motivations can achieve a higher compliance
rate for the energy-related suggestion. This study specifically gives
us the insights that there is a significant potential to conserve en-
ergy by investigating effective and tailored methods to improve oc-
cupants’ motivation to conserve energy.

5. RELATED WORK
In discussing related work, a key point we wish to emphasize is

the uniqueness of our work in combining research on multiagent
systems, specifically our multi-objective MDP algorithm that han-
dles uncertainty, and negotiations with human subjects, in an inno-
vative application for energy savings. It is this specific combination
of attributes that sets SAVES apart from previous research.
Multiagent Energy Systems: Multiagent systems have been con-
sidered to provide sustainable energy for smart grid management.
Voice et al. [21] provided a game-theoretic framework for model-
ing storage devices in large-scale systems where each storage de-
vice is owned by a self-interested agent that aims to maximize its
monetary profit. In addition, [10] addressed research challenges to
integrate plug-in Electric Vehicles (EVs) into the smart grid.

27

To model and optimize building energy consumption, Ramchurn
et al. [16] considered more complex deferrable loads and managing
comfort in the residential buildings. Rogers et al. [17] addressed
the challenge of adaptively controlling a home heating system in
order to minimize cost and carbon emissions within a smart grid
using Gaussian processes to predict the environmental parameters.
Our domain is different in focusing on energy savings in commer-
cial buildings, and the representation and approaches are also dif-
ferent from previous work by allowing consumers (i.e., occupants)
to play a part in optimizing the operation in the building instead of
managing the optimal demand on buildings.
Energy Literacy via Feedback: Abrahmase et al. [2] reviewed
38 interventions aimed to reduce household energy consumption,
and they concluded that normative feedback about energy use is
the most promising strategy for reducing and maintaining low
consumption. However, it focused on residential environments,
which is different from our work. In a recent study, Carrico and
Riemer [4] provided monthly normative feedback via email to oc-
cupants of a commercial building about their own buildings’ energy
use in comparison with and other, similar buildings. Unfortunately,
the study relied on self-reporting to assess the behaviors. Instead,
our work relies on real sensors to observe their energy behavior
in real-time. Faruqui et al. [7] reviewed past experiments and pi-
lot projects to evaluate the effect of in-home displays (IHDs) on
energy consumption. Our work is different because we simultane-
ously consider multiple criteria including energy consumption and
occupant comfort level.
Multi-objective Optimization Techniques: There has been a sig-
nificant amount of work done on multi-objective optimization. The
most common approaches to multi-objective optimization are to
find Pareto optimal solutions [15], use the weighted sum method
to aggregate multiple objectives using a prior preference [22], or
consider the weighted min-max (or Tchebycheff) formulation that
provides a nice theoretical property in terms of sufficient/necessary
conditions for Pareto optimality [14].

Recently, Chatterjee et al. [5] considered MDPs with multiple
discounted reward objectives. They theoretically analyzed the com-
plexity of the proposed approach and showed that the Pareto curve
can be approximated in polynomial time. Ogryczak et al. [13] fo-
cused on finding a compromise solution in multi-objective MDPs
for a well-balanced solution. They compared their approach rely-
ing on the Tchebycheff scalarizing function to the weighted sum
method. On the other hand, there has been some significant ad-
vances to handle model uncertainty on standard MDPs including [6,
8]. Our work is different from them as we assume model uncer-
tainty while simultaneously optimizing multiple criteria in MDPs.

6. CONCLUSION
In this work, we presented an innovative multiagent system

called SAVES with the goal of conserving energy in commercial
buildings. There are several key novelties in SAVES: (i) SAVES
is based on a real building and uses actual building data, including
energy data, occupant preferences and schedules; (ii) it investigates
both individual and group negotiations to save energy in smaller
offices and shared rooms; (iii) it focuses on a commercial build-
ing, which requires a different mechanism to effectively motivate
occupants since they do not have a direct financial incentive in con-
serving energy; and (iv) SAVES’s reasoning is based on a novel
BM-MDP algorithm for generating optimal policies that explicitly
considers multiple criteria optimization as well as uncertainty over
occupant preferences. We justified SAVES in a validated simula-
tion testbed and showed that it can provide solutions to significantly
reduce energy consumption while achieving comparable satisfac-

tion levels of building occupants. As a real-world test, we provided
results of a human subject study where SAVES is shown to lead
occupants to conserve energy in real buildings.

7. ACKNOWLEDGMENTS
We thank Perceptronics Solutions, Inc. for their support of this

research.

8. REFERENCES[1] Buildings Energy Data Book. U.S. Dept. of Energy, 2010.
[2] W. Abrahmase, L. Steg, C. Vlek, and T. Rothengatter. A review of

intervention studies aimed at household energy conservation. J
Environ. Psychol., 25:273–291, 2005.

[3] S. Abras, S. Ploix, S. Pesty, and M. Jacomino. A multi-agent home
automation system for power management. Informatics in Control
Automation and Robotics, 15:59–68, 2008.

[4] A. Carrico and M. Riemer. Motivating energy conservation in the
workplace: An evaluation of the use of group-level feedback and
peer education. J Environ. Psychol., 31, 2011.

[5] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision
processes with multiple objectives. In STACS, 2006.

[6] K. V. Delgado, S. Sanner, L. N. de Barros, and F. G. Cozman.
Efficient solutions to factored MDPs with imprecise transition
probabilities. In AAAI, 2009.

[7] A. Faruqui, S. Sergici, and A. Sharif. The impact of informational
feedback on energy consumption - a survey of the experimental
evidence. Energy, 35, 2010.

[8] R. Givan, S. Leach, and T. Dean. Bounded-parameter Markov
decision processes. Artificial Intelligence, 2000.

[9] F. Jazizadeh, G. Kavulya, L. Klein, and B. Becerik-Gerber.
Continuous sensing of occupant perception of indoor ambient
factors. In ASCE International Workshop on Computing in Civil
Engineering, 2011.

[10] S. Kamboj, W. Kempton, and K. S. Decker. Deploying power
grid-integrated electric vehicles as a multi-agent system. In AAMAS,
2011.

[11] H. E. Khalifa, C. Isik, and J. F. I. Dannenhoffer. Energy efficiency of
distributed environmental control systems. Technical Report
DOE-ER63694-1, Syracuse Univ., 2006.

[12] Z. Mo and A. Mahdavi. An agent-based simulation-assisted approach
to bi-lateral building systems control. In IBPSA, 2003.

[13] W. Ogryczak, P. Perny, and P. Weng. A compromise programming
approach to multiobjective Markov decision processes. In MCDM,
2011.

[14] A. Osyczka. An approach to multicriterion optimization problems for
engineering design. Comput. Methods Appl. Mech. Eng.,
15:309–333, 1978.

[15] V. Pareto. Manuale di Economica Politica. Societa Editrice Libraria,
1906.

[16] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R. Jennings.
Agent-based control for decentralised demand side management in
the smart grid. In AAMAS, 2011.

[17] A. Rogers, S. Maleki, S. Ghosh, and N. Jennings. Adaptive home
heating control through Gaussian process prediction and
mathematical programming. In International Workshop on Agent
Technology for Energy Systems (ATES), 2011.

[18] P. Scerri, D. V. Pynadath, and M. Tambe. Towards adjustable
autonomy for the real world. JAIR, 17:171–228, 2002.

[19] N. Schurr, J. Marecki, and M. Tambe. Improving adjustable
autonomy strategies for time-critical domains. In AAMAS, 2009.

[20] J. Tsai, N. Fridman, E. Bowring, M. Brown, S. Epstein, G. Kaminka,
S. Marsella, A. Ogden, I. Rika, A. Sheel, M. Taylor, X. Wang,
A. Zilka, and M. Tambe. ESCAPES - Evacuation Simulation with
Children, Authorities, Parents, Emotions, and Social comparison. In
AAMAS, 2011.

[21] T. Voice, P. Vytelingum, S. Ramchurn, A. Rogers, and N. Jennings.
Decentralised control of micro-storage in the smart grid. In AAAI,
2011.

[22] K. Yoon and C.-L. Hwang. Multiple Attribute Decision Making, An
Introduction. Sage Publications, 1995.

28

Active Malware Analysis using Stochastic Games

Simon A. Williamson
School of Information Systems

Singapore Management
University
Singapore

swilliamson@smu.edu.sg

Pradeep Varakantham
School of Information Systems

Singapore Management
University
Singapore

pradeepv@smu.edu.sg

Debin Gao
School of Information Systems

Singapore Management
University
Singapore

dbgao@smu.edu.sg
Ong Chen Hui

DSO National Laboratories
Singapore

ochenhui@dso.org.sg

ABSTRACT
Cyber security is increasingly important for defending com-
puter systems from loss of privacy or unauthorised use. One
important aspect is threat analysis — how does an attacker
infiltrate a system and what do they want once they are in-
side. This paper considers the problem of Active Malware
Analysis, where we learn about the human or software in-
truder by actively interacting with it with the goal of learn-
ing about its behaviours and intentions, whilst at the same
time that intruder may be trying to avoid detection or show-
ing those behaviours and intentions. This game-theoretic
active learning is then used to obtain a behavioural cluster-
ing of malware, an important contribution for both under-
standing malware at a high level and more crucially, for the
deployment of effective anti-malware defences. This paper
makes the following contributions: (i) A formal definition
of the game-theoretic active malware analysis problem; (ii)
A fast algorithm for learning about a malware in the ac-
tive analysis problem which utilises the concept of reducing
entropy in the beliefs about the malware; (iii) A virtual
machine based agent architecture for the implementation of
the active malware analysis problem and (iv) A behaviour
based clustering of malware behaviour which is shown to be
more accurate than a similar clustering using only passive
information about the malware.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security, Experimentation

Keywords
Malware Analysis, Stochastic Game

1. INTRODUCTION

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems – Inno-
vative Applications Track (AAMAS 2012), Conitzer, Winikoff,
Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Cyber security has emerged as one of the most important
problems in the modern internet age, with cyber attacks
resulting in millions of pounds of damage to organisations
and individuals. The rise of the internet has enabled the
propagation of malicious software (malware), exposing home
computer users and organisations alike to threats previously
unimagined. Such threats include the stealing of users pri-
vate data such as usernames, passwords and email contacts.
These malware can also turn an unwitting computer users
system into a tool for attacking the rest of the internet such
as in Distributed Denial of Service attacks and the sending
of spam. As a result, the problem then is of Cyber Security
— how to defend a computer system against unauthorised
use either by a piece of software or by a human attacker.

With this established, the aspect of cyber security consid-
ered in this paper is in threat analysis: Given a piece of mal-
ware or a human intruding on a system, can we learn about
the behaviours and intentions of that intruder. This is also
known as malware analysis. Here behaviours are taken to
mean the software vulnerabilities exploited to gain access to
some part of a system (such as opening a port or installing
some keylogging software), and intentions are the goals of
the attackers, do they want to steal some information or use
the machine as part of a larger coordinated attack. This
process has clear game-theoretic implications since intrud-
ers often want to mask their access in order that the attack
can be used again. Consequently, we have the situation that
we want to learn the maximum information possible about a
malware on our computer system. Conversely that malware
wants to avoid giving away information about it’s behaviours
and intentions. It is important to note that this is a central
problem in cyber security, as the results of malware analysis
are used to power virus detection.

Against this background, malware analysis is performed
by a human security expert on each newly discovered mal-
ware. The security expert must use various tools to iden-
tify how the malware infiltrates a working system, how it
propagates to other systems and what it does whilst on the
infected system. This is a time consuming manual process
during which the the expert will examine the malware bi-
nary, execute it, examine logs and make some trial inter-
actions with the infected system. Due to the volume of
threats that need to be analysed, several authors have pro-
posed automated analysis techniques. Now, these techniques
can generally be classified according to whether they are
static, which means that the binary is analysed, or dynamic,

29

which means that the malware is executed and its effects
monitored. Automated static analysis techniques include
Eureka [6] which analyses the code and produces a control
flow graph representing the malware logic. It does this by
scanning for system calls and grouping them together and
assigning functions (since several system calls are involved
in a high level operation such as creating a file). However
static analysis is becoming increasingly difficult as malware
becomes more sophisticated at using techniques such as code
obfuscation (where the binary is randomised but preserves
the original logic) and polymorphic binaries (the code is
mutated to change its identifiable features such as variable
names). Consequently, dynamic analysis is an interesting
avenue to consider further. Here the malware is actually
executed and the results are analysed (which bypasses the
problems with static analysis). Several automated analysis
techniques have been proposed here including [1], [7] and
[4] which gather execution traces (a list of the operations
the malware performed) and then attempt to classify these
traces. There are several means to classify the traces i.e.
support vector machines or distance measures [2].

That said, we can identify a weakness with automated dy-
namic analysis techniques when compared with a human se-
curity expert. Specifically, all of these techniques are passive,
meaning that the malware is executed and a log is generated.
However, a human security expert would interact with an
infected system by placing honey in several locations. Ex-
amples of this include creating fake Internet Explorer activ-
ity or sending emails. Malwares have unique responses to
such activity which are missed by passive analysis. Conse-
quently, we propose an automated technique based on Active
Dynamic Analysis. This means that the system will interact
with the malware, basing its next action on the response of
the malware, with the aim of learning the maximum amount
of information about the policy of that malware. There exist
some steps in this direction such as [5] which acknowledges
that some malware require an input and so they define a
set of possible inputs to test. However, a weakness with this
approach is that the input sets must be defined before execu-
tion and are not reactive to what the malware has done thus
far. This makes this approach potentially slow since many
unproductive paths may be explored. We will attempt to
address this weakness by using software agents to react to
what the malware has done and choose the next input. Table
1 summarises our classification of this space.

Table 1: Malware Analysis
Dynamic Static

Active [5]
Passive [1], [7], [2], [4] [6]

Finally, this paper makes the following contributions: (i)
A formal definition of the game-theoretic active malware
analysis problem; (ii) A fast algorithm for learning about
a malware in the active analysis problem which utilises the
concept of reducing entropy in the beliefs about the mal-
ware; (iii) A virtual machine based agent architecture for
the implementation of the active malware analysis problem
and (iv) A behaviour based clustering of malware behaviour
which is shown to be more accurate than a similar clustering
using only passive information about the malware.

2. MOTIVATING SCENARIOS
This section provides examples of active malware analysis on
a single machine and on a network of machines. In the rest
of this paper we will formalise these examples in terms of the

Active Malware Analysis Game. We provide these illustra-
tive examples to make concrete the process of active malware
analysis and how it contrasts with simple passive analysis.
Specifically, both of these examples will show that simply
passively monitoring what a malware does is not guaranteed
to find all aspects of that malwares behaviour and that many
modern malwares only exhibit some actions in response to
data or actions on the infected system, or even worse than
that, may potentially try to evade analysis.

2.1 Malware acting on a Single Machine
We first show the difference between passive and active anal-
ysis in the case of a single malware. Now, passive analysis:

The malware BZub.ji is executed in a clean test environ-
ment. The subsequent trace is analysed by a technician and
it is discovered that a browser helper object (RBHO) has been
installed, which calls a new program placed in the Windows
system directory. This program is analysed separately, but
code obfuscation techniques render static analysis redundant.
The program is executed but seems to be inert.

By way of contrast, using active analysis techniques:
The malware BZub.ji is executed in a clean test envi-

ronment, alongside an analysis agent. The agent monitors
that a browser helper object has been installed and that a
secondary program has been installed. The agents model of
existing malware indicates that these two activities indicate a
modification of Internet Explorer has been used. The agent
tests this aspect of it’s model by executing a simulated in-
teraction with Internet Explorer and it observes that a file
has been created and is updated as it uses Internet Explorer.
Simple textual matching shows that this file contains some
of the honey that it used in IE. Consequently the agent has
confirmed an aspect of the malware behaviour that passive
analysis could only find with a human help.

Figure 1 shows the difference in information received be-
tween the two types of analysis.

(a) Passive analysis (b) Active analysis

Figure 1: Analysis of the single malware scenario

2.2 Malware acting on a Network (Botnets)
The following example takes place in the context of a net-
work of computer systems linked by some arbitrary topol-
ogy. Assuming infiltration starts with a single machine, we
first describe what we learn about the botnet using passive
techniques and then contrast with active analysis:

The malware Sinowal.aj is executed on a single clean
machine. Analysis of subsequent network traffic reveals that
the infiltrated machine attempts to connect to a series of
domains (presumably the command centre of the botnet).
However no domains exist within the restricted network, so
nothing further happens. Some connections to neighbours
are recorded and the botnet grows larger by capturing these
machines. The botnet takes no further action.

This is contrasted with a more active analysis:
The malware Sinowal.aj is executed on a single clean

machine. The infiltrated machine attempts to connect to a
series of domains, so a second machine on the network (with
an analysis agent) poses as one of these domains and a con-
nection is formed. This machine is now posing as the com-

30

mand centre of the botnet. After some trial and error with
the command protocol employed by the botnet, the machine
is able to successfully communicate with the bot. Fake activ-
ity on the infiltrated machine causes it to connect to other
machines on the network via shares and it is found that the
malware can spread through these actions. Dummy informa-
tion placed on these machines is also found to be harvested
and sent to the command machine. Note that honey can
take the form of fake private information such as passwords
or fake user activity such as opening a network share.

Again Figure 2 shows the difference in information re-
ceived between the two types of analysis.

(a) Passive analysis (b) Active analysis

Figure 2: Analysis of the botnet scenario

As we can see from these two examples the basic notion
of active analysis remains the same, namely that more infor-
mation about a malware can be found by interacting with an
infected system (be it a single machine or network) than by
just watching what a malware does. However the only dif-
ference between these two systems is the types of monitoring
required (file system/ registry changes on a single machine
verses network traffic in the botnet scenario) and the types
of actions that can be taken (dummy Internet explorer activ-
ity versus connecting to network shares or sending emails).
After establishing some basic notation we generalise these
scenarios into the Active Malware Analysis Game.

3. BACKGROUND
This section describes the necessary background for the use
of agent techniques in malware analysis. We first present a
model of multi-agent interactions, Stochastic Games which
can be used to model the game-theoretic interactions we pre-
sented in the previous section. Then we consider multi-agent
learning within those games, the RMax algorithm which is
capable of learning about the policies of unknown agents.

3.1 Stochastic Games
{N,S,A, {Rj}j≤N , T} describes a discounted stochastic game:

• N is the set of players.

• S is the state space.

• A = A1 × · · · × AN , represents the full set of actions,
with Aj representing the set of actions for agent j.

• Rj : S ×A→ R is the reward function for agent j.

• T : S ×A× S′ → R[0,1] is the transition function.

The game is played as follows. At the first stage the game
is in an initial state s1 ∈ S. At stage m the players are in-
formed of the past history

(
s1, a1, s2, . . . , am−1, sm

)
, where

st is the state of the game at timestep t and at is the action

Algorithm 1 The RMax algorithm.

1: while true do . For each time step
2: s← CurrentState . Get current state
3: a← Action(s) . Get best action for s using model
4: r, s′ ← Execute(a, s) . Reward and resulting state
5: if Times played a in s ≤ Threshold then
6: Update av(r, s, a)
7: Update av(s′, s, a)
8: if Times played a in s = Threshold then
9: R(s, a) = av(r, s, a) . Set model

10: T (s, a, s′) = av(s′, s, a) . Set model

combination the players played at that state. Every player
j chooses, independently of the others from its policy, πi re-
ceives a stage payoff Rj (sm, am), where am =

(
amj
)
j∈N , and

the game moves to a new state sm+1 according to the transi-
tion probability T

(
sm, am, sm+1

)
. Less formally, a stochas-

tic game consists of a finite set of stage games between two
or more agents. In each of these stage games, the agents can
choose from a set of possibly unique actions, and depending
on the choice made by all agents, are assigned a reward. Fur-
ther to this, again depending on the actions chosen and the
original stage game, a transition will occur to a new stage
game, with possibly different actions and rewards.

The goal is to compute policies, πi : G→ Ai for all agents
i at every time step t, such that no agent has an incentive
to deviate. G indicates the history of observed states and
actions of other agents. Put simply, this policy is a function
which maps the history of the game to an action for agent i.
The optimal policy returns the best action for that player.

3.2 The RMax Algorithm
RMAX [3] is an algorithm for learning an appropriate pol-
icy in a stochastic game. It assumes that the opponent is an
initially unknown part of the environment, so it is suitable
for single agent problems with an unknown underlying tran-
sition and reward function or multi-agent problems, such
as ours, with an unknown opponent. The algorithm starts
off with an optimistic model which assumes the maximum
possible reward for all possible state actions. The learning
procedure then proceeds by computing an optimal policy
for this model and as states and actions become known (ac-
cording to a polynomial threshold) updating the model and
re-computing the policy. This algorithm is guaranteed to
learn the policy for the agent in polynomial time. Figure
1 gives the algorithm in detail. The updates at lines 6 and
7 are the mean results of the previous trials. This purpose
of using the average is to capture what happens when that
action is taken both in the presence of a stochastic world
model (which may result in different outcomes for the same
action) or an opponent with an unknown policy (who may
change which action she plays in the same state).

With this established, the next section builds on stochas-
tic games in order to represent the unique characteristics
of malware analysis on a computer system. Then in Sec-
tion 4, we utilise RMax in the construction of a learning
algorithm for active malware analysis which exploits those
unique characteristics of the problem to learn quickly.

4. ACTIVE MALWARE ANALYSIS GAME
In this section we present the Active Malware Analysis Game
between an analysis agent, n1 and a malicious agent (mal-
ware) n2. This formalisation captures, amongst others, the
two scenarios presented in Section 2. The game specifies the
interactions between a malware, who is trying to infiltrate
a system, and an analyser who wants to learn about that

31

malware. In turn the malware may be trying to avoid such
learning. The game is defined as follows:

• The infiltrated system is represented as a weighted
graph where V is the set of vertices, E is the set of
edges connecting the vertices. Each vertex is a state
of core components of the system (ex: important flags
in the registry) and edges represent transitions in the
state of the computer that the malware can induce.

• The malware, n2, may change several components of
the infiltrated system. This represents a path through
the graph past those vertices indicating the affected
components. Thus the effects of the malware are rep-
resented by its location on the graph vm ∈ V .

• The strategy space of the malware n2 is the next change
it can take from its current location, given as the neigh-
bours of that location a2 = vm ∪ neighbour(vm)

• The analysis agent, n1, may place within the system
honey (simulated user activity). The set of locations of
places honey can be placed is described by the subset
of leaf nodes of the graph V H ⊂ V .

• The strategy space of n1, a1 = V H means it can move
the honey h from its current location, vh, to a new
location (or leave it where it is), vh ∈ V H . That is,
the agent can create new simulated user activity and
remove other activity. We use location on the graph
to represent some fake user activity or data in place,
with the preceding vertices representing state changes
before this information is introduced.

• The global state space is given as the location of the
honey, vh, and of the malware, vm, S = V × V H .

• Agent n2 has a fixed, possibly stochastic, but unknown
policy π : S → a2 which gives the probability of mov-
ing to a connected vertex given the location of the
agent and the distribution of the honey on the graph.

• There is a reward function for agent n1 associated with
learning the policy and preferences of agent n2. We
will consider this further in the next section.

• We assume that the malware always starts out on a
clean system at the start vertex v0 = s1.

If we refer back to the description of stochastic games, we
can see that the graph represents a computer operating sys-
tem and that vertices represent the different physical states
that the operating system may be in (whether a certain reg-
istry variable is set or a type of file exists). Further to this,
edges in the graph represent actions that the malware can
take to change the condition of the operating system and ex-
ploit weaknesses (the transition function). Honey locations
are the action space of the analysis agent. Consequently, it
can be seen that a path from the start vertex to a honey
represents a behaviour of the malware and we are interested
in learning which behaviours a malware exhibits. We can
see this in the Figures 1 and 2 where paths along the graph
are an accumulation of the changes the malware has made,
and that some edges are only taken in response to a partic-
ular honey (in these figures we represent this as the labels
on the edges for simplicity).

Finally, it is clear that this is an instance of learning an
opponents unknown policy in a stochastic game — both the
analysis agent and the malware (be it software or a human

agent) take sequential decisions and the reward function is
linked because the analysis agent wants to learn the malware
policy whilst that agent may want to hide its own policy.

5. LEARNING IN THE ACTIVE MALWARE
ANALYSIS GAME

This section describes the learning algorithm we employ
within the malware analysis game. Specifically, we describe
several variants of the RMax algorithm that we later test in
the empirical section. For these variants we compare their
respective learning rates and finally describe how we repre-
sent learnt information for a user interested in generating a
signature for the new malware.

5.1 Learning using Entropy Reduction
RMax assumes the optimal policy will be learnt with poly-
nomial time. Now, in a real application such as ours, this
is not feasible since placing a piece of dummy information
on a computer system can take seconds. As a result, we are
not interested in obtaining the eventual optimal policy, but
in learning the most possible about the malware in very few
timesteps (≤ 20). Consequently, we incorporate this notion
into the reward function. However, we still want to employ
RMax so that we can guarantee that the analysis agent is
exploiting its knowledge of the malware effectively, whilst at
the same time learning as much as possible. Given this, we
define an information-centric utility function for the agent
which can be used within RMax, and optimised in-order to
learn about the malware as fast as possible.

Now, the malware policy π is defined as the distribution
over the possible edges towards the honey (V H) given the
current location of the honey vh and the malware position
vm. From the starting position v0 to each of the honey loca-
tions vH there is a path pi which is defined as the list of edges
ei ∈ E the malware will take to that honey e0, e1, . . . , en.
The malware then, must select a path pi ∈ PH from the set
of paths based on the location of the honey and its policy.
The aim is to learn this policy which describes the probabil-
ity of taking path pi based on the location of the honey s,
Pr(pi|s = vH) for all possible honey locations.

Pr(pi|s = vH) =
∏

en∈pi
Pr(en|s = vH) (1)

where Pr(en|s = vH) is the probability of taking edge en.
We need a utility function which rewards the agent for

learning this function online (since the initial value is an
uninformative distribution). Consequently, we maximise the
negative of the entropy of this function, where πi is the
current estimate of the malware policy:

U(πi) = −[
∑

s∈VH

∑

pi∈PH
Pr(pi|s) log(Pr(pi|s))] (2)

With this established, the MYOPIC algorithm uses this
utility function for 1-step lookahead action selection. At
each timestep t the agent selects the action which maximises
U(πt) and then updates πt to a new policy πt+1 by updating
the probabilities of taking an edge. Specifically the malwares
historical frequency of playing edge en in s is defined as:

Pr(en|s = vHj) = σten,s =
1

t

t−1∑

τ=0

I{eτn = s},

where I{e′n = eτn} is an indicator function equal to one if
e′n is the action played by the malware at time τ , and zero

32

Figure 3: Myopic example.

otherwise. This algorithm works as follows: The example in
Figure 3 shows a simple policy space for a dummy malware
which starts in the first node attempts to move to the nearest
honey, which can be at T or B. Previous trials have shown
that the malware will steal information at B if it exists, but
as yet we do not know what happens when information is
at T, except that the malware moves to the second node in
either case. Here we can see that if the honey is placed at B
again, in this case (and assuming the malware tries to steal
it), no new information is gained so the total entropy in the
policy remains at -0.693. However, if the honey is placed at
T then the entire policy can be learnt and entropy goes to
zero, so MYOPIC would choose this action.

It should be noted that we abandon the optimality guar-
antees given by RMAX, however an optimal polynomial so-
lution is not appropriate in our problem. Further to this,
after presenting some benchmarks, the next section shows
that this entropy reduction algorithm is guaranteed to be at
least as fast as a random walk, and in general faster.

5.2 Benchmarks
PASSIVE: This algorithm does not take any action in re-
sponse to the malware and represents the learning performed
by dynamic, passive malware analysis such as [1]. This ap-
proach assumes that the malware will reveal its policy with-
out interaction from the analysis agent. This allows us to
benchmark our results against passive automated.
RANDOM: Selects a uniform distribution random action.
RMAX OPTIMAL: Now, the aim of the problem is to
learn the behaviour of the malware whilst she is changing the
underlying system. As a result, this seems like a straight-
forward application of the RMax algorithm to the Active
Malware Analysis Game. This is in contrast to using single
agent learning algorithms which potentially ignore the prob-
lem that the malware may be trying to hide its policy from
the analysis agent. However, this is potentially slow.

5.3 Exploration Rates
Now we define the exploration rates for our algorithms and
justify the information-centric reward measure.

The single step expected entropy reduction E[H] in the
belief of the malware policy πb is defined as:

E[H(πb, v
m)] =

∑

p∈P (vm)

∑

vh∈VH
π(p, s)A(πb, v

m, vh)

∗[H(b(πb, p, v
h))−H(πb)]

where p is a path from the set of all paths from the malware
position vm to the honey locations and π(p, vh) is the true
malware policy and is the probability of taking path p in
state vh. A(πb, v

m, vh) is the action selection function and is
the probability of selecting honey location vh for the current
belief and malware position. Finally, b(π, p, vh) is the belief
revision function giving a new belief π′b when the malware
takes path p in state vh for prior belief πb.

A random action selection policy is defined as follows:

A(πb, v
m, vh) =

1

|V H | (3)

whilst the MYOPIC action selection gives:

A(.) =

{
1 vh = h′ ∧ argmaxh′ [H(b(πb, p, h

′))−H(πb)]
0 otherwise

Since RANDOM gives the expected entropy over all pos-
sible choices of vh ∈ V H then this must include the vh that
would be chosen by MYOPIC. This means that we can
decompose the expression for the expected entropy using
RANDOM in terms of the expected entropy for MYOPIC
and the expected entropy over all states not including that
one chosen in MYOPIC. Now, we define J as the expected
entropy using MYOPIC:

J = argmaxvh
∑

p∈P (vm)

∑

vh∈VH
π(p, vh)[H(b(πb, p, v

h))−H(πb)]

(4)
where Jv is the vh chosen in J which maximises the ex-
pression. Then remembering the choice of Jv, the expected
entropy, using RANDOM, over the remaining set is:
∣∣V H

∣∣− 1

|V H |
∑

p∈P (vm)

∑

vh∈VH−Jv

π(p, vh)[H(b(πb, p, v
h))−H(πb)]

(5)
Now, let K represent the maximum entropy in the remain-
ing set, K =

∑
p∈P (vm)

∑
vh∈VH−Js

π(p, vh)[H(b(πb, p, v
h))−

H(πb)] then the expected entropy for RANDOM is at most
as large as:

1

|V H |J +

∣∣V H
∣∣− 1

|V H | K (6)

Putting all of this together,

RANDOM ≤MYOPIC

1

|V H |J +

∣∣V H
∣∣− 1

|V H | K ≤ J

K ≤ J
Which means that as long as there is an vh which is larger
than all others, MYOPIC will reduce the entropy more
quickly. If not, then it will do the same as RANDOM.

These expressions can be extended to a finite horizon n:

E[Hn(πb, v
m)] =

∑

p∈P (vm)

∑

vh∈VH
π(p, vh)A(πb, v

m, s)[IH(πb, p, v
h)

+E[Hn−1(b(πb, p, v
h), d(vm, p))]]

where IH(πb, p, v
h) = H(b(πb, p, v

h))−H(πb) and d(vm, p)
is the malware transition from vm along p to a new m′.

5.4 Learning over Multiple Malware
The techniques defined thus far are adequate for learning
about a single malware, however they do not answer our
larger research question: how similar is a new malware to
an existing family of malwares? This is important in the con-
text of using the information to power anti-virus defences.
Specifically, by indicating a malwares similarity to existing
malwares the process of generating a signature is simplified.
This is the goal of all automated techniques. To address
this, we will use the standard K-Means clustering approach
which maintains a set of k families of malware together with

33

Figure 4: Active Malware Analysis Framework.

a representative mean malware policy. The goal then is to
learn the policy of a new malware sample, and then assign
it to an existing family or even create a new one, using a
simple distance metric.

The distance metric takes the learnt policy and computes
the distance for each transition (in all states). This is then
summed to give a measure over the entire policy:

distance(πi, πj) =
∑

vh∈S

∑

p∈P (v0)

|πi(p, vh)− πj((p, vh)| (7)

6. ARCHITECTURE
This section describes the implementation of the Active Mal-
ware Analysis Game. The overall architecture is given in
Figure 4. Since we are interacting with real examples of
malware, we must run that malware binary (MALWARE)
on a virtual machine (VM), and in order that the VM can
be reset by the analysis agent (AGENT) must be located on
the host system (HOST). Now, the agent makes use of sev-
eral sensors to detect the state of the VM operating system
(OS). Also, in order to interact with the malware, our agent
needs access to a suite of actuators on the VM. Consequently
we require an interface between the agent on the host and
the sensors (SENSORS) and actuators (ACTUATORS) on
the VM (VM INTERFACE). Next we give specific details of
the actuators and sensors deployed in our empirical analysis.

6.1 Sensors
The Active Malware Analysis Game depicts the operating
system state as a graph with vertices representing states for
core components and edges are transitions between those
states. Now, in order to detect the current state of the
operating system and when such transitions occur (at the
behest of the malware), we require a suite of sensors. Each
sensor is designed to monitor one specific component such as
whether a process has been registered to autorun when the
operating system is started. For example this requires mon-
itoring changes to the registry for the key: \Software \Mi-
crosoft\Windows\CurrentVersion\Run. Similarly for other
aspects such as browser helper objects, hidden services, pa-
rameters, and file system changes. By starting with the anal-
ysis performed by security experts on previous malware, we
can generate a comprehensive set of such sensors, and the
graph construction between them can be automated.

6.2 Actuators
The Active Malware Analysis Game allows the analysis agent
to take actions in the operating system which the malware
may or may not respond to. These actions allow the agent
to move honey around the system. The purpose is to learn
how the malware changes the operating system (using the
sensors) in response to all of the possible honeys that might
be deployed by the analysis agent. Consequently, our ar-
chitecture requires a suite of honey actions. These include
placing dummy sensitive information in several key locations
or performing some simulated user activity on the operat-
ing system. One example of this includes opening Internet
Explorer, going to a website and entering a username and
password in fields denoted as such. Other examples include
creating dummy configuration files for common programs or
an address book of email address amongst others. In a simi-
lar fashion to the sensors, we start with types of honey iden-
tified by security experts to create a comprehensive suite.

As a final note, it can be seen that the architecture is
easily expanded with new actuators and sensors should these
be deemed necessary. The analysis agent will continue to
learn as before with these new components and no change
is required in the underlying algorithm.

7. EXPERIMENTS
In this section we demonstrate the utility of our active anal-
ysis framework by clustering a dataset of several previously
analysed malwares. We show that the automatic clustering
is accurate with regards to a human generated clustering
and that it outperforms clustering performed using passive
dynamic analysis. Further to this, we demonstrate that our
entropy reduction learning algorithm is more useful in this
malware analysis scenario than an RMax based algorithm.
First we describe the experimental scenario, and then show
the clustering performance over several algorithms.

7.1 Experimental Configuration
We experiment with a dataset of 50 malwares drawn from
several families. These families are given in Table 2 All
of these malware have previously been analysed manually
and assigned to a cluster (both based on their static and
dynamic properties). We allow each of our 4 learning algo-
rithms (RMAX OPTIMAL, MYOPIC, RANDOM and
PASSIV E) to interact with each malware for 20 timesteps
in a clean virtual machine. This is repeated 30 times and
the average learnt policy is used in the clustering phase. Fol-
lowing this, we initialise the K-MEANS algorithm with 10
random means in the policy space and allow the clustering
algorithm to run for 1000 iterations. This is repeated 30
times for the average clustering. Table 3 summarises the

Table 2: Experimental Malware
Zlob Hooker KeyLogger LdPinch

PdPinch QQPass Sinowal AdvanceKeyLogger
BZub Luzia VB

types of behaviours and intentions we consider in this ex-
ample (although the real set is larger). Now, the interesting
thing to note about this set of malware is that some parts of
their behaviour are conducive to passive analysis and some
are more appropriate for active analysis. Specifically, many
of the malware will install themselves in the system in var-
ious ways such as hidden services or injecting DLLs into
other processes for example. Parts of this behaviour is iden-
tifiable by passive analysis because it always happens when

34

Table 3: Experimental Behaviours and Intentions
FSys/Rservice Install service

Address Emails
FSys/RBHO Install BHO

Text File contents
RAuto Autorun

IE/Keylog Private data from websites
RFile Register file location

IE/Keylog/Cache Private data from history

 50

 55

 60

 65

 70

 75

 80

 85

Passive Myopic Random RMAX_OPTIMAL

%
Co

rre
ct

Cl
us

ter
ing

Figure 5: Cluster Identification Rate.

the malware executed. However some parts are not, such
as when a keylogger writes a file in response to entering a
username or inferring that an already running process has
been captured by the malware.

7.2 Clustering
We first compare the clustering obtained by our various al-
gorithms with an ideal clustering identified by malware anal-
ysis experts. As Figure 5 shows, the algorithm MYOPIC
is significantly more accurate when identifying clusters than
PASSIV E, with a correct identification rate of 81% verses
54%. This is because MYOPIC can identify a far larger
part of the malware policy and consequently obtains a more
informative clustering. Also, both RMAX OPTIMAL and
RANDOM also outperform PASSIV E because they all do
active learning. However, the learning time is severely con-
strained and they do not learn as fast as MYOPIC so con-
sequently they are not as effective as that algorithm. We
will show these results in more detail next to explain the
improvement in performance.

Moving on, when we compare the features learnt in the
malware policies we can see the impact on clustering to
see why MYOPIC performs much better than PASSIV E.
Specifically, Figures 6, 8, 10 and 9 show the clustering for the
algorithmsMYOPIC, PASSIV E, RMAX OPTIMAL and
RANDOM respectively. Further to this, Figure 7 shows the
clustering done by a security expert. The x-axis shows the
feature space for the possible mechanisms employed by the
malware to infiltrate the system. The y-axis shows the pos-
sible locations of sensitive data that a malware might steal
from. Both of these are in our restricted scenario. Each
figure shows boxes for each identified cluster located in the
space of mechanisms and intentions. The size of the box in-
dicates the relative proportion of the corpus of sample mal-
wares in this particular cluster.

With this established, in Figure 6 we can see that a large
grouping of malwares installs a DLL as a system service
and proceeds to keylog the users actions. The next smallest
family registers an executable and steals data from text files.

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 6: Feature extraction using MYOPIC.

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 7: Expert classification.

An even smaller cluster registers a browser helper object and
uses Internet Explorer to steal information. Finally a small
group of malwares installs an autorun entry and raids the
address book of Outlook.

As we can see in Figure 7, the clustering by MYOPIC
is very close to the one done by an expert. However the
only divergence is in the large clusters which perform in-
formation stealing using keylogging and the cache at the
same time. In some cases, MYOPIC fails to differentiate
between information stolen from the cache and from key-
logging. This is because the malware in this case is able to
perform both actions at the same time which breaks some of
the underlying assumptions of a stochastic game. Further to
this, sometimes there are some delays in placing the honey
and when the malware reacts (perhaps because of errors in
the malware or when it does polling) However, despite these
physical limitations, as we will see next this clustering is still
highly accurate compared to other approaches.

Specifically, the clustering from MYOPIC should be con-
trasted with Figure 8 which has not learnt as much detailed
information and so the clusterings are much courser. Here
the algorithm typically can learn about how the malware is
installed (a browser helper object or hidden service) but can-
not find out about the intentions. An exception is the cluster
of malwares that steals from text files - some of these files
are created by the system and so are present even if a user
does not create them. This is because, whilst the analysis

35

Null

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 8: Feature extraction using PASSIV E.

Null

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 9: Feature extraction using RANDOM .

is dynamic (meaning the malware is executed), it is passive,
meaning that we do not interact with the malware as a se-
curity expert tasked with analysis would. An illustrative
example is the cluster of malwares which register a file: In
Figure 6 we also see that this cluster does some keylogging,
however in Figure 8 this information is missing and the clus-
tering puts most of these malwares with other groups. As a
result, automated analysis is limited in its usefulness unless
it is active because many variants of malware require some
user interaction to exhibit their full suite of behaviours.

Finally, we should consider what happens with active anal-
ysis using a slower learning algorithm - Figures 10 and 9.
Here we can see that RANDOM is effectively the same as
PASSIV E in the clustering it performs because it does not
learn the important part of the policy space in the short time
allotted. This highlights the importance of learning quickly
in this domain. RMAX OPTIMAL is better, and does in
fact learn one of the clusters which requires active analy-
sis (the cluster installing a keylogger in Internet Explorer),
however even it does not learn the complete set of intentions
for this cluster because it misses that this type of malware
family also searches the cache.

8. CONCLUSION
This paper has introduced the application of Automated
Active Malware Analysis using stochastic games and multi-
agent learning. We defined a game capturing the active

Null

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 10: Using RMAX OPTIMAL.

malware analysis problem. Following this, we developed an
extension of RMax based on reducing entropy for learning
quickly in the constrained time horizon of such games. We
showed theoretically that this extension is faster than stan-
dard techniques. Finally, we presented a comprehensive em-
pirical demonstration of our deployed framework for active
malware analysis. We learnt the policies of 50 malwares
and achieved a clustering very close to the one proposed by
human security experts.

In future work, we intend to extend the application frame-
work to the issue of learning about botnet malware. The
game remains the same as in this paper, but a new archi-
tecture must be developed to monitor networks of systems,
rather than the single system implemented in this paper.
We also intend to extend the theoretical justification for the
entropy reduction based algorithm, showing that it is faster
than any other heuristic in this game.

9. ACKNOWLEDGMENTS
This work was supported by DSO National Laboratories,

Singapore, contract DSOCL10192.

10. REFERENCES
[1] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Mao, Farnam

Jahanian, and Jose Nazario. Automated classification and
analysis of internet malware. In Christopher Kruegel, Richard
Lippmann, and Andrew Clark, editors, Recent Advances in
Intrusion Detection, volume 4637 of Lecture Notes in
Computer Science, pages 178–197. Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-74320-0 10.

[2] Ulrich Bayer, Paolo M. Comparetti, Clemens Hlauschek,
Christopher Krügel, and Engin Kirda. Scalable, Behavior-Based
Malware Clustering. 2009.

[3] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general
polynomial time algorithm for near-optimal reinforcement
learning. J. Mach. Learn. Res., 3:213–231, March 2003.

[4] Christopher Kruegel, Engin Kirda, Ulrich Bayer, and Andreas
Moser. Dynamic analysis of malicious code. Journal in
Computer Virology, 1 2006.

[5] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis. In Security and Privacy,
2007. SP ’07. IEEE Symposium on, pages 231 –245, may 2007.

[6] Monirul Sharif, Vinod Yegneswaran, Hassen Saidi, Phillip
Porras, and Wenke Lee. Eureka: A framework for enabling static
malware analysis. In Sushil Jajodia and Javier Lopez, editors,
Computer Security - ESORICS 2008, volume 5283 of Lecture
Notes in Computer Science, pages 481–500. Springer Berlin
Heidelberg, 2008.

[7] GÃl’rard Wagener, Radu State, and Alexandre Dulaunoy.
Malware behaviour analysis. Journal in Computer Virology,
4:279–287, 2008. 10.1007/s11416-007-0074-9.

36

Agents vs. Pirates: Multi-Agent Simulation and
Optimization to Fight Maritime Piracy

Michal Jakob, Ondřej Vaněk, Ondřej Hrstka and Michal Pěchouček
Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague

Technicka 2, Praha 6, Czech Republic
{jakob, vanek, hrstka, pechoucek}@agents.fel.cvut.cz

ABSTRACT
Contemporary maritime piracy presents a significant threat
to the global shipping industry, with annual costs estimated
at up to US$12bn. To address the threat, commanders and
policymakers need new data-driven decision-support tools
that will allow them to plan and execute counter-piracy ac-
tivities most effectively. So far, however, the provision of
such tools has been very limited. To fill this gap, we have
employed the multi-agent approach and developed a novel
suite of computational tools and techniques for operational
management of counter-piracy operations. A comprehensive
agent-based simulation enables the stakeholders to assess
the efficiency of a range of piracy counter-measures, includ-
ing recommended transit corridors, escorted convoys, group
transit schemes, route randomization and navy patrol de-
ployments. Decision-theoretic and game-theoretic optimiza-
tion techniques further assist in discovering counter-measure
configurations that yield the best trade-off between trans-
portation security and cost. We demonstrate our approach
on two case studies based on the problems and solutions cur-
rently explored by the maritime security community. Our
work is the first integrated application of agent-based tech-
niques to high-seas maritime security and opens a wide range
of directions for follow-up research and development.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent
Systems; I.6.3 [Simulation and Modeling]: Applications

General Terms
Algorithms, Security, Experimentation

Keywords
agent-based modeling, simulation, transportation, maritime
piracy, security, optimization, case study, operation research

1. INTRODUCTION
Contemporary maritime piracy presents a significant threat

to the global shipping industry, with annual total costs esti-

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems – Inno-
vative Applications Track (AAMAS 2012), Conitzer, Winikoff,
Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

mated at up to US$12bn [3]. International efforts have led to
the reduction of the success rate of pirate attacks. The num-
ber of pirate attacks, average amount of ransom paid and the
number of crewmembers held in captivity, however, remain
high. In the first nine months of 2011 and for Somali-based
piracy alone, there were 194 attacks reported for Somalia,
24 vessels hijacked and 400 crewmembers taken hostage1.

From the many levels on which solutions to the prob-
lem are sought, we focus on the operational management
of the situation at sea, as this is the arena where progress
can be made in the short term, before long-term sustainable
solutions can be developed onshore. Operational manage-
ment is also the area where the agent-based approach can
provide significant added value—due to the lack of strong
central authorities, complex structure of shared, compet-
ing and hostile interests and fragmented, distributed nature,
global maritime shipping is best viewed as a complex multi-
agent system and, consequently, solutions pursued within
the multi-agent framework.

In line with the efforts of main governmental and industry
stakeholders, we focus on planning and management of op-
erational piracy counter-measures designed to increase the
security of maritime transit, including recommended tran-
sit corridors, group transit and escorted convoy schemes,
route randomization and coordinated patrol deployments.
When properly designed and implemented, these measures
have a potential to significantly improve transportation se-
curity with reasonable additional cost. However, due to
complex spatial and temporal dependencies between individ-
ual counter-measures, discovering their effective, synergistic
combinations presents a major challenge.

We address this challenge in a novel way by a combination
of agent-based modeling and optimization techniques. We
have built a data-driven piracy-aware agent-based model of
maritime transportation, which enables decision makers to
reduce uncertainty about the effects of their management
and regulatory actions. The model integrates a wide range
of real-world data and, to our best knowledge, is the first
computational model that simulates global shipping down
to a level of individual vessels. This is crucial for accurately
capturing emergent, collective effects that arise from the co-
ordination and cooperation of commercial and navy vessels
and their non-cooperative interaction with pirates.

Recognizing that being able to assess effects of piracy
counter-measures is only a first step towards discovering
their most effective combinations, we have also developed
computational optimization techniques that partially auto-

1Source: IMB Piracy Reporting Centre

37

mate counter-measure design. We demonstrate the joint
utility of the simulation and optimization tools on two case
studies based on the problems and solutions currently ex-
plored by the maritime security community.

Please note that due to the wide scope of our research
and the number of techniques developed, we only provide
here a high-level description of key concepts, methods and
components, with the prime focus on elucidating how the
multi-agent perspective has been beneficial in addressing the
problem at hand—references to papers studying individual
issues in depth are provided where appropriate.

2. MARITIME TRANSPORTATION MULTI-
AGENT SYSTEM

Maritime piracy takes place within a larger maritime trans-
portation system comprised of all seaborne vessels engaged
in maritime activities. At the level of abstraction suitable
for operational management, the maritime transportation
system can be viewed as a multi-agent system, with vessels
corresponding to autonomous agents. Vessels in the system
are capable of moving freely within the spatial boundaries of
surface waters while interacting with the maritime environ-
ment, other vessels (either directly via communication or in-
directly via environment) and other non-vessel actors (such
as shipping operators or traffic coordinators). For most of
the time, each vessel pursues its individual goals but there
are also situations where multiple vessels interact. Such in-
teractions are either non-cooperative (such as pirate attacks
or navy warship pirate interceptions) or cooperative (such
as merchant vessels’ calls for help to navy warships).

2.1 Vessel Agents
The following types of vessels play the most important

role in the dynamics of maritime piracy:

• merchant ships – large ocean-going vessels carrying
cargo over long distances between world’s ports; pri-
mary targets of pirate attacks;

• pirate ships – vessels of different types and sizes oper-
ating within and in close proximity to main shipping
lanes, where they attempt to attack, board and hijack
passing merchant vessels; depending on their opera-
tional area, pirate ships range from small skiffs up to
large motherships acting as floating bases from which
speedboats are launched to attack2;

• navy warships – military vessels of different categories
operating in piracy-affected areas and capable of armed
action against pirates.

2.2 Piracy Counter-Measures
Merchant and navy vessels can participate in a range of

piracy counter-measures designed to increase the security
of voyage through piracy-affected waters. Most measures
require cooperation between multiple vessels and can be
viewed as multi-agent coordination mechanisms that com-
plement standard, single-agent vessel behaviors. Based on
discussions with the maritime security community, we con-
sider the following operational piracy counter-measures:

2The group of one mothership and multiple accompanying
speedboats is referred to as a pirate attack group(PAG)

Counter-measure Parameters
Transit corridor sequence of GPS waypoints
Patrol deployment patrol stationary location and/or

dynamic patrolling policy
Group transit corridor, speed levels, transit

schedule (per speed level)
Escorted convoy corridor, departure time, convoy

speed
Route randomization corridor, randomization distribu-

tion

Table 1: Piracy counter-measures considered and sets of pa-
rameters by which they are specified.

• Recommended transit corridors concentrate merchant
traffic along defined routes connecting sequences of
waypoints. Corridors facilitate protection from navy
vessels; however, they also makes targeting transiting
vessels easier for pirates.

• Group transit schemes coordinate the timing of mer-
chant vessel transit so that vessels pass high-risk piracy
areas in groups; this improves mutual awareness and
facilitates navy response; however, it makes the transit
take longer as vessels have to follow a predefined entry
schedule and may have to reduce their cruising speeds
to match the speed of their respective transit group.

• Patrol deployments position navy warships in strate-
gic locations from where they can provide assistance
to nearby merchant vessels in case of a pirate attack;
we consider both stationary and dynamic deployments.
Navy patrols are very effective locally; however, their
action radius is limited and their sustained operation
carries huge costs.

• Escorted convoy schemes arrange incoming merchant
vessels into escorted convoys prior to transiting a high-
risk area. In contrast to the group transit scheme, the
convoy is accompanied by a dedicated armed escort
vessel throughout the transit. Although very effective,
a large-scale convoy system would require a very high
number of escort vessels to operate effectively, which
is costly.

• Route randomization relaxes transit corridor bound-
aries by making transiting vessels randomly deviate
from the center of the corridor according to a given
probability distribution (typically uniform). Route ran-
domization reduces predictability of vessel positions,
and thus makes planning and execution of pirate at-
tacks more difficult.

Each counter-measure can be parameterized by a set of pa-
rameters (see Table 1). Except for route randomization, all
above measures are currently actively used, although convoy
schemes are operated rather sporadically by national navies
on an ad-hoc basis. The use of transit corridors and group
transits is currently limited to the Gulf of Aden.

2.3 System Parametrization
From the perspective of maritime security, there are sev-

eral factors fundamentally affecting temporal and geograph-
ical distribution of pirate attacks:

38

• Merchant traffic patterns – represented in terms of an
origin-destination matrix describing a yearly number
of trips between world’s major shipping ports.

• Pirate population – represented by the number of ac-
tive pirate groups and locations of their on-shore bases.

• Weather conditions – represented by spatio-temporal
maps of wind direction and speed, sea state and visi-
bility.

• Piracy counter-measures – represented by a list of spe-
cific counter-measures and their parameters.

The above factors comprise a minimum set of parameters
that has to be specified for a maritime transportation system
before its piracy-related properties can be studied, both in
the real-world and in a simulation.

2.4 Performance Metrics
A wide range of events and measurable quantities can be

observed on a maritime transportation system. On the sys-
tem level, the following metrics are of practical interest with
regards to evaluating and optimizing the efficiency and se-
curity of maritime shipping:

• pirate attack statistics – the number of pirate attacks
that occurs in the system in a defined time period;
we further distinguish between successful attacks (=hi-
jacks), intercepted attacks (attacks that fail due to
navy interception) and aborted attacks (attacks aborted
by pirates themselves, often due to effective employ-
ment of self-defense measures by the targeted vessel);

• average transit distance – average distance travelled
per merchant vessel trip (in kilometers);

• average transit duration – average duration of mer-
chant vessel trip (in hours).

Additional metrics can be derived from the primary metrics,
such as fuel consumption or operational cost per trip.

2.5 Problem Statement
Given the framework introduced above, the problem ad-

dressed by our work can be more precisely defined as:

1. Analyzing relationships between the parameters of the
global maritime transportation system and its perfor-
mance metrics

2. Discovering such combinations of piracy counter-measures
that optimize a user-defined function over the perfor-
mance metrics (i.e. a user-defined trade-off between
the security and cost of shipping)

In the following two sections, we show how we addressed
both problems.

3. SIMULATION
In order to address the first problem, we have built an

agent-based model/simulation3 of the global maritime trans-
portation system. The simulation closely follows the multi-

3We use both terms rather interchangeably, choosing model
when focusing on the descriptive aspect and choosing simu-
lation to emphasize the dynamic/execution aspect

agent conceptualization of the transportation system de-
scribed in the previous section. As such, it provides exe-
cutable models of vessel behaviors as well as the (collective)
piracy counter-measure.

Given the critical role the interactions between merchant,
pirate and navy vessels play in the dynamics of maritime
piracy, agent-based, micro-simulation approach is vital for
accurately modeling the effect of piracy on maritime trans-
portation, as it allows to capture phenomena and provide
detail of analysis not attainable with macro-level equation-
based methods [15].

3.1 Input Data
To achieve a sufficient level of accuracy, data-driven agent-

based modeling requires large amounts of data for setting,
calibrating and validating individual parts of the model. In
contrast to macro-modeling approaches, data both on indi-
vidual and macro level are required. To build the model of
global maritime transportation, we have used the following
categories of data: (1) geographical data (shore lines, shal-
low waters), (2) weather data (visibility range, sea state),
(3) merchant traffic data4 (origin-destination matrix, fleet
composition, vessel operational characteristics), (4) pirate
intelligence (base locations, attack strategies, capabilities,
historic reported pirate incidents5), (5) military operations
(number of warships and their operational areas) and (6)
piracy counter-measures (see the previous section).

Obtaining the above data in quantity and quality required
was and remains to be a major challenge due to enormous
fragmentation of data gathering activities in the maritime
domain and commercial sensitivity of some of key data.
Moreover, many data sets obtained were noisy and incom-
plete and required significant preprocessing before integra-
tion to the model.

3.2 Agent Behavior Implementation
Maritime transportation simulation requires agent control

architecture capable of expressing desired individual and col-
lective vessel behaviors. Agents have to be able to execute
long-running actions while reacting to interruptions. The
minimum intelligent agent architecture that can handle such
requirements is a model-based reflex agentwith an encapsu-
lated deliberative module handling route-planning. The re-
quired class of behaviors should be implementable in a mod-
ular and extensible way, facilitating sharing of common be-
havior fragments between different classes of vessels. At the
same time, the agent control architecture should be compu-
tationally efficient enough to handle thousands of simulated
agents. Unfortunately, none of existing agents architectures
or simulation platforms supports these requirements. Gen-
eral agent-based simulation toolkits do not provide sufficient
abstractions for modular behavior implementation; such ab-
stractions are provided by cognitive agent architectures (e.g.
Jazzyk [10]) but these require substantial computational re-
sources to run.

Our implementation therefore uses extended finite state
machines (FSM), which augment standard FSMs with in-
ternal variables associated with each state. Individual states
correspond to the principal mental states of the vessel agent

4Merchant vessel trajectories in the form of AIS records are
available at e.g. AISLive: http://www.aislive.com/
5Pirate reports are available from e.g. OceanusLive: http:
//www.oceanuslive.org

39

Figure 1: A finite state machine of the pirate vessel agent.

Figure 2: AgentC simulation platform—visualization of the
Gulf of Aden group transit.

(such as move, attack, patrol etc.) and their associated ac-
tions. These actions may involve complex deliberative pro-
cedures, e.g. risk-aware route planning for merchant ships
and adaptive target selection for pirates, giving the FSMs
reasoning capabilities beyond simple reactive control. Al-
though limited (e.g. not capable of executing concurrent
activities), extended FSMs proved to provide a good trade-
off between expressivity/modularity and computational ef-
ficiency. An example FSM is given in Figure 1.

3.3 Simulation Platform Implementation
Extended FSM-based behavioral models are executed on

a Java-based multi-agent platform built partially using the
lightweight Alite 6 multi-agent simulation toolkit and em-
ploying Google Earth for geo-spatial visualization (see Fig-
ure 2). The simulation platform provides abstractions for
representing the maritime environment, agent-to-environment
sensor interfaces and agent-to-agent communication proto-
cols. Time-stepped simulation execution model is used, al-
though we consider transitioning to the event-based model
to further improve computational efficiency. Each simula-
tion run is defined by a scenario defining the parameters of
the maritime transportation system (Section 2.3). Parallel
execution of large numbers of simulations is supported using
the Eucalyptus cloud-computing platform7.

3.4 Model Validation
The model has been validated both on the individual and

system level. Individual-level models have been validated

6http://agents.fel.cvut.cz/projects#alite
7http://www.eucalyptus.com/

against independent test datasets capturing real-world be-
havioral patterns for the respective type of vessels. For ex-
ample, merchant vessel models have been validated against
real-world trajectories obtained from satellite AIS and vol-
untary reporting systems. In addition, system-level behavior
has been validated against empirical data. The spatial dis-
tribution of merchant traffic has been compared with mar-
itime shipping density maps. To validate the interaction
of all types of vessels and counter-measures employed, we
compared pirate incidents generated by the model with real-
world piracy incidents. More details about the validation
can be found in [17].

4. OPTIMIZATION
The maritime transportation simulation introduced in the

previous section empowers policy-makers in estimating the
effects of different combinations of piracy counter-measures.
Given the number parameters and combinations of these
counter-measures, however, finding their right configuration
remains difficult. We have therefore explored ways to pro-
vide computational support for optimizing counter-measure
configurations automatically.

In its full generality, looking for such optimum configu-
rations is a massive multi-agent optimization problem: a
multi-objective performance function is optimized in a stochas-
tic and partially observable environment with a high degree
of uncertainty and thousands of interacting, largely self-
interested agents employing a wide range of parameterized
strategies and policies in the presence of multiple adaptive
adversaries. Even if solutions in a form of a massive joint
transit and patrolling routes and schedules could be found,
they might be too complex and unstructured to be under-
stood and hence trusted by human stakeholders. Instead
of trying to solve the full problem, we therefore focused on
optimizing individual counter-measures. For computational
reasons, proposed optimization algorithms work with highly
abstracted problem representations not containing the same
amount of details as the simulation model. The simulation
is therefore used to validate optimization results and to ob-
tain higher-accuracy assessment of their expected real-world
performance, which can be subsequently used to fine-tune
proposed solutions.

4.1 Group Transit Optimization
Since participation in group transit schemes is voluntary,

the problem of determining optimum speed levels and tran-
sit schedules can be viewed as a cooperative game with non-
transferable utilities. Because of computational intractabil-
ity of solving such a game for real-world problem sizes, we
have so far considered two simplified, cooperative formula-
tions of the problem.

The simpler formulation concerns the optimization of fixed-
schedule group transit schemes. Taking into account the dis-
tribution of cruising speeds of transit traffic, we look for such
a fixed set of speed levels that result in a shortest average
transit duration. The optimum set of speed levels is found
by searching for an optimum binning of the histogram of
transit cruising speeds using a branch&bound search com-
bined with dynamic programming (see [6] for details).

The more advanced formulation explores the potential of
dynamic group transit schemes, in which speeds and sched-
ules are not fixed in advance but determined on-the-fly, us-
ing multi-agent coordination techniques, based on incoming

40

traffic. The added flexibility allows the dynamic group tran-
sit scheme to achieve higher performance than fixed-schedule
schemes on the expense of more extensive vessel coordina-
tion and information sharing.

4.2 Randomized Transit Routing
A major disadvantages of fixed transit corridors is the

high predictability of vessel positions [13], which makes tar-
geting merchant traffic easier for pirates. Predictability can
be reduced by instilling a certain amount of randomness in
transit routing. A basic approach applies uniformly or nor-
mally distributed randomization to disperse the traffic away
from the corridor center and/or to alternate between several
predefined corridors. Better route randomizations can be
obtained using game-theoretic techniques, which explicitly
account for the payoff the merchant vessels and attacking
pirates receive from different transit routes. To this end,
we extended the model of security games and formalized
the hostile area transit problem as a zero-sum normal-form
game between two mobile players, the transit and the pirate,
each choosing a route maximizing its utility. The solution,
found using incremental equilibrium search techniques, can
achieve up to two-fold reduction in the attack rate compared
to the basic approach. Details are provided in [16, 18].

4.3 Optimum Patrol Deployment
Due to their limited numbers and very high operational

costs, military vessels have to be deployed in a way maximiz-
ing their protective effect. We considered two formulations
of patrol deployment problem. The basic formulation con-
siders a stationary deployment of patrol vessels—each vessel
is assigned a fixed location from which it only departs to as-
sist vessels in danger. Given a number of patrol vessels, we
look for such a set of deployment locations that maximizes
the volume of commercial traffic within the patrol’s effective
action radius8). Deployment locations are found using a vec-
tor quantization Lindo-Buzo-Gray (LBG) algorithm [9]. See
Figure 3 for an illustrative example.

The basic formulation does not take into account the abil-
ity of pirates to adapt their attack locations in response to
their observation of fixed patrol deployments. To overcome
this problem, we therefore considered a game-theoretic for-
mulation of the problem in which patrols are mobile and
randomize their movement to minimize the ability of pirates
to take advantage of their predictable absence, while taking
into account transit routes of individual merchant vessels.
An novel extended-form game in the Stackelberg setting is
used as the underlying formal model. The approach is par-
ticularly effective in combination with randomized transit
routing. See [2] for more details.

5. CASE STUDIES
We have applied the developed modeling and optimiza-

tion tools to several real-world use cases, based largely on
feedback from the maritime community and discussions with
officials from the International Maritime Organization and
U.S. Office of Naval Research. Here we present two specific
case studies—one focusing on evaluating the combination
of a novel corridor system and patrol deployments in the

8Radius of 150km is currently considered; this corresponds
to the ability to respond within 40 minutes using an on-
board helicopter.

Figure 3: Example traffic density and the corresponding
traffic coverage-maximizing deployment of 8 patrols.

piracy-infested Indian Ocean, the other on the optimization
of group transit scheme in the Gulf of Aden. More informa-
tion about the developed tools and their applications can be
found at the AgentC project website9.

Except for the parameters explicitly mentioned as vari-
ables of the study, the maritime system configuration re-
mains the same throughout both case studies, in particu-
lar the origin-destination matrix capturing global merchant
shipping flows. The simulation contained approximately
4500 merchant vessel agents, up to 100 navy warships and
up to 20 pirate ship agents. In both case studies, the re-
sults given are for one year of simulated maritime traffic.
Because parts of agent decision making are inherently non-
deterministic, each configuration was simulated for 100 runs
and average values are presented. One simulation run took
approximately 10 mins of single 2.5GHz CPU core execution
time.

5.1 CS I: Indian Ocean Corridor System
The International Recommended Transit Corridor (IRTC),

established in 2009, has since proven—in combination with
the deployment of navy patrols—a very effective tool for
suppressing successful pirates attacks in the Gulf of Aden.
Recently, the maritime security community has been dis-
cussing the possibility of establishing additional corridors in
the Indian Ocean, where pirate activity is also high follow-
ing pirates’ displacement from the Gulf of Aden. In contrast
to the Gulf of Aden, which is an elongated, narrow area with
a simple bidirectional traffic flow, the Indian Ocean is much
larger and crisscrossed, in all directions, by a multitude of
traffic flows. This makes the design of an effective corridor
system a complex optimization task.

Scenarios. We used the AgentC simulation to study three
possible layouts of Indian Ocean corridor systems: (1) single
west-east corridor channeling the large amount of west- and
east-bound traffic (denoted as Single-IO), and (2) a more
extensive multi-corridor system covering all the main traffic
flows in the Indian Ocean (denoted as Multi-IO). Results are
compared with the current setup where no corridors are used
in the Indian Ocean (denoted as None-IO). IRTC corridor
is considered in all cases. See Figure 4 for corridor layouts.

9http://agents.fel.cvut.cz/projects/agentc

41

Figure 4: Corridor layouts for the Indian Ocean corridor
system. The Single-IO layout uses the IRTC and the red
east-west corridor only; the Multi-IO layout utilizes all de-
picted corridors.

In addition, we were interested in better understanding
the possible synergy of deploying navy vessels alongside tran-
sit corridors. As a second study parameter, we therefore
varied the number of deployed navy warships, using the sta-
tionary deployment method to determine their positions (see
Section 4.3). All results presented are for three active pirate
attack groups.

Results. We have evaluated all performance metrics de-
fined in Section 2.4. Average transit distance and dura-
tion only depend on the corridor system and amounted to
6696km / 237h for no corridors in the Indian Ocean, 6703km
/ 237h for the Single-IO and 6819km / 242h for the Multi-IO
corridor setup.

Pirate attacks statistics depend on both study variables.
The numbers of hijacks in Figure 5 confirm the synergis-
tic effect of transit corridors and patrolling—the Multi-IO
corridor setup boosts protection force of patrols up to 40%
in the case of 100 patrols (28.9 vs. 20.4 hijacks for None-
IO and Multi-IO corridor system, respectively). A detailed
breakdown of attack outcomes for the multi-IO corridor con-
figuration (Figure 6) indicates that the decrease in hijacks
is both due to the warship deterrence effect and the abil-
ity to intercept pirate attacks if they actually take place
(more of the latter as the number of patrols increases). Fi-
nally, in Figure 7 we compare geographical distribution of
vessel hijacks for None-IO and Multi-IO corridor setup with
20 patrolling warships. The distribution clearly depicts a
high-risk hotspot north-east of the Socotra island.

Overall the results suggest that establishing a transit cor-
ridor system in the Indian Ocean is an effective way of in-
creasing the security of transit on the expense of a very
small increase in transit distance and duration (about 2% in
the case of Multi-IO configuration). Further improvements
might be attained if corridors are combined with group tran-
sit and/or escorted convoy measures, though that could have
a noticeable impact on transit duration.

5.2 CS II: GOA Group Transit Optimization
In August 2010, the Group Transit Scheme was introduced

to further reduce the risk of pirate attacks on vessels transit-
ing the Gulf of Aden. The scheme, which is closely related
to the IRTC, groups vessels traveling at similar speeds so

Figure 5: Dependency of the number of hijacks on the cor-
ridor system and the number of patrols (0–100). Standard
deviation over 100 simulation runs also depicted.

Figure 6: Ratios of hijack, abort and interception outcomes
of pirate attacks for different numbers of patrol vessels.

that they cross high-risk areas close together as this provides
additional deterrence to pirates and facilitates military re-
sponse in case of an attack. Each transit group follows a
recommended route through the IRTC at a published speed
and fixed schedule (see Figure 8a) designed to maximize pro-
tection in highest risk times and areas. The schedule speci-
fies vessel entry times depending on vessel’s cruising speed.
Five speed levels and consequently five speed groups are cur-
rently used—10, 12, 14, 16, and 18 knots.

The current number of speed levels and their uniform
spacing is not optimum, given the distribution of cruising
speeds in typical transit traffic (see Figure 8b). The aim of
this study thus was to find out whether a different distribu-
tion of speed levels could reduce the transit delay incurred
by following the group transit schedule.

Scenarios. The study variables were the number and dis-
tribution of speed levels used by the Gulf of Aden group
transit scheme. For each number of speed levels, their op-
timum distribution was determined as the one maximizing
the average speed of transit (and thus minimizing average
transit time).

In addition to proposing optimum speed level distribu-
tion for fixed-schedule group transit, we have also explored
the potential of a dynamic, negotiation-based group tran-
sit scheme in which groups are formed on-the-fly as vessels
arrive.

42

Figure 7: Geospatial distribution of hijacks for None-IO
(left) and Multi-IO (right) corridor system configurations.

Results. We used the simulation to evaluate all key perfor-
mance metrics. Surprisingly, no significant shift in the num-
ber of hijacks was observed. Upon a closer analysis, this can
be explained by two forces cancelling each other—on one
hand, a higher number of speed levels results in higher av-
erage transit speeds which reduces the attack success rate;
on the other hand, more speed levels means more transit
groups which makes their protection more difficult.

Expectedly, the average transit delay decreases with in-
creasing the number of speed levels (Figure 8c). For the ap-
proximately 22 thousands vessels transiting the Gulf of Aden
every year, the optimized 6 speed-level transit scheme would
save over 400 days of total transit time a year. Consider-
ing an average daily vessel operational cost of US$30K, this
translates into savings of approximately US$12mn a year.
The dynamic group transit scheme surpasses even the best
fixed-schedule scheme both in the number of hijacks and the
transit time (the red dashed line in Figure 8c). Practical ap-
plication of dynamic group transit would, however, require
more extensive changes to the way transit is organized—a
rather symptomatic trade-off between the performance and
practicality of piracy counter-measures (see also the next
section). See [17] for a more detailed evaluation and discus-
sion of the case study.

6. LESSONS LEARNED
Overall, the multi-agent paradigm proved very useful dur-

ing all stages of the development process—providing a con-
ceptual framework for the analysis of the problem, inform-
ing architectural decisions during system design and, finally,
supplying modeling and optimization techniques to imple-
ment the required functionality. Many challenges were not
technical; often they lied in the (in)ability to obtain essential
domain knowledge and datasets.

That said, the development of the simulation would have
been easier if there was an agent-based simulation platform
offering higher-level abstractions for representing individual-
and collective level behavior and capable of simulating thou-
sands of agents simultaneously. As mentioned in Section 3.2,
to our best knowledge, no such a domain-independent plat-
form currently exists, despite the fact that it would be useful
in a wide range of applications. The optimization part would
benefit from further research on (route) planning, scheduling
and security resource allocation in hostile settings. Existing
techniques, grounded largely in computational game theory,
remain limited in their scalability and reliance on strong as-
sumptions concerning rationality of adversaries and observ-
ability of their actions, although there is promising recent
work on their relaxation (e.g., [7]).

As far as pitching of the agent-based approach is con-
cerned, the ability to visualize the execution of individual
simulation runs proved vital. First, it aided in conveying
the very idea of maritime transportation as a multi-agent
system. Second, it helped in winning the confidence of do-
main experts by allowing them to peek inside the model
(see Figure 2) and verify that it behaves realistically on the
micro-level. A key selling point of the agent-based approach
to analyzing counter-piracy measures was the ability of the
approach to analyze hypothetical what-if scenarios not yet
occurring in the real world. Such scenarios cannot be reli-
ably explored using standard statistical and/or data mining
methods because they are too different from existing real-
world situations on which datasets required for generating
such models can only be obtained.

Working with the user community, we were constantly
reminded of the necessity to maintain a proper balance be-
tween the quest for sophisticated, optimum solutions and
their suitability for real-life deployment. Simple, subopti-
mal yet robust solutions can often be more suitable not only
because they rely on fewer uncertain assumptions (such as
rationality, observability or information sharing), but also
because they are easier to explain and compatible with the
existing infrastructure and processes in the generally very
conservative maritime domain. Rather than coming up with
a revolutionary optimum ways of managing counter-piracy
measures, a more evolutionary approach seems more suit-
able, starting from concepts and measures already familiar
to domain experts and using sophisticated techniques to dis-
cover their optimum configurations.

In contrast to other transportation domains, (global) mar-
itime shipping seems underrepresented in the applied re-
search on multi-agent systems and, in fact, on computa-
tional modeling and optimization in general. This is despite
the fact that the global, transnational nature of maritime
shipping and the consequent lack of strong central authori-
ties, complex incentive structure and stiff economic competi-
tion make the multi-agent framework indispensable for accu-
rately representing global shipping problems. Given the size
of the shipping industry, estimated at several hundred US$
billion annually, current situation presents a sizable oppor-
tunity for innovative applications of multi-agent techniques.

7. RELATED WORK
Unlike in other areas of transportation, most notably road

and air transportation, the deployment of computational
modeling in the maritime domain is limited. Existing work
either focuses on traffic in ports and national, coastal waters
[8, 5] or uses high-level equation-based models [1] unfit for
capturing individual-level behavior and inter-vessel interac-
tions essential to model maritime piracy. The relative lack
of work addressing global shipping as a whole is partly due
to the global, international nature of maritime shipping and
the consequent lack of a strong authority that would drive
implementation of such methods.

Focusing on the very phenomenon of maritime piracy, the
work is even more slim and concentrated primarily in the
fields of security studies, international relations and global
policy (e.g. [11]). Only very recently, initial attempts at
applying computational modeling and optimization to mar-
itime piracy have emerged but focus exclusively at military
aspects of the problem [14, 12, 4].

43

(a) Current group transit schedule. (b) Transit vessel speed distribution. (c) Average transit delay.

Figure 8: (a) Schedule used by the current Gulf of Aden group transit scheme, (b) histogram of transit traffic speeds and its
current (dashed lines) and optimum (colors) binning (for 6 speed levels), (c) reduction of the average transit delay with the
increasing number of speed levels; delay for the current suboptimum (green) and dynamic grouping (red) schedule also shown.

8. CONCLUSIONS
We have shown how the multi-agent approach can be used

to conceptualize and consequently address important chal-
lenges in planning and managing counter-piracy activities.
A combination of multi-agent simulation and optimization
proved very useful, enabling to evaluate and optimize the
performance of counter-measures in a wide range of what-if
scenarios. To our best knowledge, our work is the first in-
tegrated application of agent-based techniques to high-seas
maritime security and, in fact, to global shipping analysis
and optimization in general. The techniques developed en-
able commanders, policymakers and other relevant stake-
holders to make better, more informed decisions and to im-
prove maritime security with reasonable additional cost.

Acknowledgements
Funded by the Office of Naval Research (grant no. N000140
910537) and by the Czech Ministry of Education, Youth and
Sports (grant no. LH11051).

9. REFERENCES
[1] S. Bourdon, Y. Gauthier, and J. Greiss. MATRICS: A

maritime traffic simulation. Technical report, Defence
R&D Canada, 2007.

[2] B. Bošanský, V. Lisý, M. Jakob, and M. Pěchouček.
Computing time-dependent policies for patrolling
games with mobile targets. In 10th International
Conference on Autonomous Agents and Multiagent
Systems, 2011.

[3] A. Bowden, K. Hurlburt, E. Aloyo, C. Marts, and
A. Lee. The economic costs of maritime piracy.
Technical report, One Earth Future Foundation, 2010.

[4] J. Decraene, M. Anderson, and M. Low. Maritime
counter-piracy study using agent-based simulations. In
2010 Spring Simulation Multiconference, page 165,
2010.

[5] K. Hasegawa, K. Hata, M. Shioji, K. Niwa, S. Mori,
and H. Fukuda. Maritime traffic simulation in
congested waterways and its applications. In 4th
Conference for New Ship and Marine Technology,
Chine, pages 195–199, 2004.

[6] O. Hrstka and O. Vaněk. Optimizing group transit in
the Gulf of Aden. In 15th International Student
Conference on Electrical Engineering, 2011.

[7] D. Korzhyk, V. Conitzer, and R. Parr. Solving
Stackelberg games with uncertain observability. In

10th International Conference on Autonomous Agents
and Multiagent Systems, 2011.

[8] E. Köse, E. Basar, E. Demirci, A. Güneroglu, and
S. Erkebay. Simulation of marine traffic in Istanbul
strait. Simulation Modelling Practice and Theory,
11(7-8):597–608, 2003.

[9] Y. Linde, A. Buzo, and R. Gray. An algorithm for
vector quantizer design. IEEE Transactions on
Communications, 28(1):84–95, 1980.

[10] P. Novák. Jazzyk: A programming language for
hybrid agents with heterogeneous knowledge
representations. 6th International Workshop on
Programming Multi-Agent Systems, pages 72–87, 2009.

[11] F. C. Onuoha. Piracy and maritime security off the
Horn of Africa: Connections, causes, and concerns.
African Security, 3(4):191–215, 2010.

[12] L. Slootmaker. Countering piracy with the
next-generation piracy performance surface model
(master thesis). Technical report, Naval Postgraduate
School, Monterey California, 2011.

[13] F. J. Sluiman and H. de Konig. Naval vessel traffic
services: Enhancing the safety of merchant shipping in
maritime security operations. Naval War College
Review, 63(3):123–137, 2011.

[14] T. Tsilis. Counter-piracy escort operations in the Gulf
of Aden (master thesis). Technical report, Naval
Postgraduate School, Monterey California, 2011.

[15] H. Van Dyke Parunak, R. Savit, and R. Riolo.
Agent-based modeling vs. equation-based modeling: A
case study and users’ guide. In 1st International
Workshop on Multi-Agent Systems and Agent-Based
Simulation, pages 277–283, 1998.

[16] O. Vaněk, B. Bošanský, M. Jakob, and M. Pěchouček.
Transiting areas patrolled by a mobile adversary. In
2010 IEEE Symposium on Computational Intelligence
and Games, pages 9–16, 2010.

[17] O. Vaněk, M. Jakob, O. Hrstka, and M. Pěchouček.
Using multi-agent simulation to improve the security
of maritime transit. In 12th International Workshop
on Multi-Agent-Based Simulation, pages 12–23, 2011.

[18] O. Vaněk, M. Jakob, V. Lisý, B. Bošanský, and
M. Pěchouček. Iterative game-theoretic route selection
for hostile area transit and patrolling. In 10th
International Conference on Autonomous Agents and
Multiagent Systems, pages 1273–1274, 2011.

44

Improving Building Energy Efficiency with a Network of
Sensing, Learning and Prediction Agents

Sunil Mamidi
Infomation Sciences Institute

University of Southern
California

Marina del Rey, CA 90292
mamidi@usc.edu

Yu-Han Chang
Infomation Sciences Institute

University of Southern
California

Marina del Rey, CA 90292
ychang@isi.edu

Rajiv Maheswaran
Infomation Sciences Institute

University of Southern
California

Marina del Rey, CA 90292
maheswar@isi.edu

ABSTRACT
Nearly 20% of total energy consumption in the United States
is accounted for in heating, ventilation, and air condition-
ing (HVAC) systems. Smart sensing and adaptive energy
management agents can greatly decrease the energy usage
of HVAC systems in many building applications, for example
by enabling the operator to shut off HVAC to unoccupied
rooms. We implement a multi-modal sensor agent that is
non-intrusive and low-cost, combining information such as
motion detection, CO2 reading, sound level, ambient light,
and door state sensing. We show that in our live testbed at
the USC campus, these sensor agents can be used to accu-
rately estimate the number of occupants in each room using
machine learning techniques, and that these techniques can
also be applied to predict future occupancy by creating agent
models of the occupants. These predictions will be used by
control agents to enable the HVAC system increase its ef-
ficiency by continuously adapting to occupancy forecasts of
each room.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Design

Keywords
Occupancy prediction, Energy efficiency, Environmental sens-
ing, Adaptive-agents

1. INTRODUCTION
Adaptive multi-agent systems are a key component of ef-

forts towards reducing energy consumption, with proposed
applications to smart grid and residential HVAC system op-
eration. In this paper, we describe a multi-agent system
deployed in a large educational/commercial office building
environment that optimizes energy use and occupant com-
fort. Such a system can significantly reduce energy con-

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems – Inno-
vative Applications Track (AAMAS 2012), Conitzer, Winikoff,
Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sumption without decreasing occupant comfort and satisfac-
tion by adding spatiotemporal constraints that limit energy
use to zones and intervals where occupants are predicted
to be present. These policies are learned by observing pat-
terns of occupant behavior and optimizing HVAC operation
in response to the learned occupant models. The techniques
described have wide applicability across commercial and res-
idential building environments.

Buildings consume about 40% of all energy used in the
United States, divided nearly equally between the residen-
tial and commercial sectors, with a significant portion de-
voted to heating, ventilation, and air conditioning (HVAC)
systems [1]. While the HVAC mechanical units themselves
have increased in efficiency over the years, there have not
been advances in terms of using intelligent agents to im-
prove efficiency. Intelligent agents that robustly learn and
adapt to the environments in which they are deployed have
the potential to greatly reduce energy consumption by pro-
actively adjusting building HVAC systems to respond to oc-
cupant needs along multiple objectives such as minimizing
energy while maximizing occupant comfort and satisfaction.

Recently the agents community has begun to develop tech-
niques for energy efficient practices within smart grid and
some building domains, primarily residential buildings [9,
10, 12, 7]. Here we focus on HVAC control in commercial
buildings, though the techniques should be directly applica-
ble in residential settings as well. The innovative application
described is a Building-Level Energy Management Systems
(BLEMS) project that is deploying a multi-agent system
with 58 multi-modal sensors, multiple learning agents that
collaboratively learn and adapt to specific occupant needs,
and 74 actuators that correspond to the building’s HVAC
zones and the two central air handling units (AHUs). The
system is shown in Figure 1. Sensor Agents in each room
read environmental variables such as temperature, CO2, and
sound level every minute, and record these values to a Time-
line. Occupancy Estimation Agents (OEAs) use these read-
ings to estimate the number of occupants in each room. The
Policy Agent may use these estimates for reactive actions
when needed, but primarily these estimates are then used by
Occupancy Prediction Agents (OPAs) to predict the number
of occupant who will be in each room in the next hour. The
Policy Agent uses these predictions to adjust the heating
or air conditioning actuators so that the respective rooms
are warmed or cooled to the desired temperature before the
occupants arrive, or to shut down the system when occu-
pants leave. It does this by communicating with the Honey-

45

well Enterprise Buildings Integrator (EBI) system used by
University to remotely control HVAC operation in many of
campus buildings.

The core component of the system is the adaptive Esti-
mation and Prediction agents that observe multiple sensors
and learn patterns of occupant behavior. By modeling oc-
cupancy patterns, the BLEMS Policy agent can conserve
energy by constraining heating and cooling policies to be
active only during the hours when occupants are actually
in specific rooms and zones of the building. We show that
our Estimation Agent can achieve 95% accuracy in the oc-
cupancy estimation task, with RMSE of occupant numbers
of 0.7. Prediction of the occupancy status of a room is also
an important component of the system because the thermal
mass of each zone sometimes requires a substantial start-up
time to heat or cool the space to a comfortable temperature.
We thus need to know whether a room will be in use up to
an hour in advance of actual occupancy. This type of infor-
mation can be inferred or predicted from learned patterns
of occupant behavior. We show that we can achieve nearly
90% accuracy in this occupancy prediction task.

2. DEPLOYMENT ENVIRONMENT
The BLEMS system is currently being deployed to a 3-

story research and teaching building at the University (name
withheld), henceforth referred to as University, as part of a
program funded by the U.S. Department of Energy. The
building contains lecture halls, classrooms, conference rooms,
lounge spaces, and staff and student offices. The wide range
of space uses enables us to test the capabilities of the BLEMS
agents within different regimes, suggesting applicability to
both commercial office buildings and residential spaces, as
well as challenging environments such as intermittently used
conference rooms. Users of the building include permanent
occupants such as professors, administrative staff, and grad-
uate research assistants, as well as temporary occupants in-
cluding students attending classes and visitors at meetings.
The building, along with a floorplan of the first floor showing
sensor locations, in shown in Figure 2.

To test the BLEMS system prior to full deployment at
University, we deployed two identical BLEMS agents within
two different lab spaces at the University, which we’ll refer
to as Lab1 and Lab2. The labs are located in two different
buildings, and are used by 4-10 students on an intermittent
basis. The spaces were chosen because they represent the
most challenging environment for the BLEMS agents, where
multiple students share the space and have individually vari-
able schedules. Sometimes Lab1 is completely empty for the
entire day, whereas other days there are as many as 10 people
in the space. Figure 7 shows probability of atleast one occu-
pant on a typical Business day in Lab1. The BLEMS Occu-
pancy Estimation Agent and Occupancy Prediction Agent
learn the behavior patterns of these users over the course of
a month of observation, and use this learned behavior to ad-
just heating and air conditioning policies based on the OEA
and OPA estimates and predictions.

3. RELATED WORK
There is an expanding literature on agent-based HVAC

control and occupant behavior modeling techniques for re-
ducing energy consumption in residential and commercial
building settings. Most of the agent literature on efficient

HVAC control centers on residential settings where occu-
pancy is considerably easier to model, and where HVAC
systems are also much simpler, or on smart grid related
technology [9, 10, 12, 7]. In the commercial office settings
described in this paper, occupant schedules are much more
variable, with professors often traveling, teaching, or attend-
ing meetings elsewhere, and where large inflows and outflows
of students into classroom spaces occurs regularly. Further-
more, the HVAC system has many more interlinked controls,
including central air handling units that deliver cooled air
throughout the building ductwork, and individual airflow
control and heating units in each zone/room. This makes
the BLEMS Policy Agent’s task more complex.

Occupant behavior models have also been explored by
many researchers in civil and industrial engineering. The
closest in spirit to the current work is a model developed
by Page et al. [6], which models occupancy using a Markov
chain. They develop a time series model of an occupant in
particular zones of the building. This model was shown to
simulate occupant behavior well in the aggregate, for ex-
ample producing PDFs of arrival times that matches the
actual distribution relatively well. However, the model does
not attempt to predict actual occupancy on any given day
and time, rather it only produces a probability density for
occupancy at that day and time. Furthermore, it does not
attempt to estimate the number of occupants in zones where
more than one person may be present, e.g., labs or confer-
ence rooms.

In general, other work on occupancy models suffer from
the same drawback. The outputs of these models tend to
be probability densities, rather than specific predictions. As
we will show in this paper, in many cases we can achieve
higher accuracy by using other input features to a machine
learning-based predictor, instead of simply counting and us-
ing the historical probabilities, or using survey data. The
reason much of this work differs in spirit from our current
paper is a difference in goals: for the related work, the oc-
cupancy models were used to create simulations of overall
building occupancy, from which engineers could calculate
a building’s thermal loads and thus correctly size and pro-
vision an HVAC system. Use of these simulations in the
operation of the HVAC system would typically be relegated
to computing a reasonable start and end time for the HVAC
system to be turned on. In marked contrast, our goal is to
dynamically operate the HVAC system on a zone by zone
basis, with potentially different behavior for each zone and
each day and time. We actively use the occupancy models
we develop to operate the HVAC system. Thus, our mod-
els cannot simply produce an aggregate probability density;
instead we need accurate estimates of occupancy for every
day, time, and zone.

For completeness, we survey some of this related work:
[5, 11] attempted to create statistical occupancy time-series
model based on occupancy survey of the people on a regular
day. Richardson et al. [5] generated realistic occupancy us-
ing this model.The generated occupancy is binary informa-
tion on a 10-minute resolution, which is similar to our study
of prediction accuracy analysis where we have surveyed oc-
cupants of a building and generated data using probabilis-
tic selection of occupant’s typical schedules. Liao et al. [8]
developed an agent-based model to simulate the occupant
behavior and developed a graphical model on the probabilis-
tic factors that effect agent behavior. Their experiment was

46

Figure 1: The BLEMS System: Sensor, Estimator, Predictor, and Policy Agents, and the Honeywell EBI.

Figure 2: (Left) The BLEMS testbed: University Building. (Right) Floorplan of first floor deployment.

limited to one occupant of a particular room.The probabilis-
tic graphical model alone cannot predict occupancy due to
dynamic nature of occupants day-to-day activity. Yu. [14]
has applied a rule-based technique on motion sensor data
and achieved an accuracy of 83%; they learned the rules
with statistical methods in the context of single occupant
in a room. In contrast to much of this work, we are build-
ing predictive models that can be deployed to a variety of
offices, labs, and classrooms throughout campus buildings,
and is adaptive enough to quickly learn individual occupant
behaviors when deployed in the field.

Lighting is another important, though less significant, com-
ponent of building energy usage. Controls based on occu-
pancy estimates were shown to result in energy saving of
40% when the control system was able to substitute day-
lighting in place of artificial lighting [3]. Other types of
HVAC systems, such as TABS (Thermally Activated Build-
ing System), which uses heated or cooled water circulating
through pipes embedded in the floor instead of forced air,
have also been investigated [4]. These investigations have

used simple probabilistic occupancy models that assume ar-
rival and departure times distributed according to Gaus-
sian or uniform distributions, with a probabilistic rate of
temporary absence. Such models are useful for evaluating
traditional static policies for building operation. However,
as described above, HVAC operations can be significantly
optimized by responding to individual occupancy patterns
rather than treating the population as homogenous.

4. SENSING AGENT
In contrast to other attempts to estimate current room oc-

cupancy, we use non-intrusive techniques that do not rely on
the video or camera feeds used in prior, related work [2, 13].
Currently the most reliable estimates are based on image
recognition techniques. Instead we introduce a multi-modal
sensor that is low-cost and non-intrusive. Unlike the ubiq-
uitous motion sensors deployed in “green” buildings today, a
multi-modal sensor provides multiple types of readings from
which we can more accurately gauge occupancy, including
estimating the number of occupants in a room. Each modal-

47

ity is incorporated using fairly low-cost, off-the-shelf com-
ponents. The device has the following raw sensors: sound,
wide-field motion detection, narrow-field motion detection,
ambient light, temperature, humidity, carbon dioxide, and
door state (open/closed).

The Sensing Agent reads the values of these sensors ev-
ery minute and records a useful transformation of this data
onto the BLEMS Timeline. For example, it records onto
the Timeline the number of times that motion was detected,
rather than the raw value which is a lifetime count of motion
activations. For our experiments, the Sensing Agent also re-
trieves ground truth occupancy counts from a Counter App
that is deployed on iPads installed next to the doorways in
Lab1 and Lab2. The students in these labs record their ar-
rivals and departures using this app. This enables us to ver-
ify the accuracy of our Estimation and Prediction agents. In
the future, the Sensing Agent may also receive other inputs,
such as feedback from occupants using provided smartphone
applications.

Figure 3: Prototype BLEMS sensor, with and with-
out cover; dollar bill for scale.

5. OCCUPANCY ESTIMATION AGENT
The BLEMS system relies on accurate occupancy estima-

tion (current number of occupants in a room) and occupancy
prediction (a prediction of how many occupants will be in
the room in the next 15, 30, 45, 60 minutes) in order to
adjust the operation of the HVAC system to conserve en-
ergy while maintaining occupant comfort. We investigate
two estimation problems: 1) estimation of whether or not
there are any occupants in a room, and 2) estimation of the
exact number of occupants in a room. The first problem,
binary estimation, is clearly simpler, and we demonstrate
high accuracy for that task. Solving this problem allows
us to modify HVAC operation so that it is turned off when
there are no occupants. The second problem is much harder,
given the fairly crude sensors we are given and the goal of
estimation an exact number of occupants. However, we also
demonstrate surprisingly good accuracy for this task as well.
Solving this problem allows us to further tune HVAC oper-
ation so that space conditioning energy (flow rate of condi-
tioned air into the zone) is adjusted to match the number of
occupants in the space, which increases comfort.

5.1 Baseline: Rule-Based Heuristic
We first implement a simple heuristic that serves as a base-

line comparison for the binary occupancy estimation prob-
lem. The rule-based estimator takes as input the previous
15-minute interval of sensor data and outputs whether any
occupant is present in the room. Presence is output as long
as the narrow or wide field motion detector detects motion,

or if the sound or CO2 sensor reads higher than the baseline
normal.

5.2 Machine Learning Methods
Supervised statistical machine learning techniques use a

set of labeled training data to learn the parameters of a pre-
diction model. Here, our training set consists of the feature
vectors formed from the sensor readings, where each vector is
labeled with the ground truth occupancy. We then use a va-
riety of statistical learning techniques like linear regression,
logistic regression, multi-layer perceptron, and support vec-
tor machines (SVM) to train prediction models using sensor
data labeled with the ground truth data. Given a new fea-
ture vector of sensor readings, the trained models can then
estimate the occupancy.

It is important to note that the choice of features in the
representation of the data often makes a big difference in
the accuracy of the trained classifiers, depending on the type
of classifier used. As described earlier, the BLEMS Sensor
Agent creates a set of features that are based on the original
raw sensor readings, but transformed and projected onto
useful axes such as the number of times motion was detected
in the last minute. The Estimation Agent adds additional
knowledge to this feature vector, such as domain knowledge
that biases the classification or collaborative knowledge from
other agents operating in nearby or similar rooms. This
overall set of features includes:

• Time: the time is the minute count from the start of
the day,

• Biasing Time: in some experiments we also provide a
nonlinear function that encodes the notion that occu-
pants are more likely to be in the room during usual
work hours.

• Sound: cumulative sound energy sensed for one minute,

• CO2 : instantaneous reading of the carbon dioxide sen-
sor,

• Number of times wide-field motion detected in the last
minute, where the sensor is mounted to detect motion
within the room,

• Number of times narrow-field motion detected in the
last minute, where the sensor is mounted to point across
the doorway,

• Temperature: Instantaneous temperature of the room
recorded by sensor,

• Humidity H: Instantaneous humidity recorded by sen-
sor,

• Motion M : Number of times motion detected by the
wide beam motion detector in the last minute,

• Motion N : Number of times motion detected by the
narrow beam motion detector in the last minute,

• Motion status M0: Current wide beam motion sensor
status { High=1, Low=0 },
• Motion status N0: Current narrow beam motion sen-

sor status { High=1, Low=0 },
• CO2(t1, t2): Average CO2 during a window of time

from t1 to t2 hours in the past,

• CO2(4am, 7am): Average CO2 during 4am-7am, when
occupancy is presumed to be zero,

• O(t1, t2): Average estimated occupancy count during
a window of time from t1 to t2 hours in the past,

• corr(CO2(t1, t2), CO2(t3, t4)): Correlation of CO2(t1, t2)

48

Figure 4: (Left) iPad mounted beside the lab en-
trance to gather ground truth occupancy counts.
Large touch buttons enable occupants and visitors
to easily mark their entrances and exits. (Right)
A web application enables quick visualization of the
sensor readings and ground truth.

and CO2(t3, t4), where CO2(ti, tj) is the vector of CO2

per-minute readings during a window of time from ti
to tj hours in the past,

The classifiers are trained using various subsets of this col-
lection of features. We present results using three different
subsets of features:

(i) Time, Sound, CO2, cumulative motion count differ-
ence, cumulative beam count difference, temperature,
humidity, and motion sensors,

(ii) All features in Set (i), plus CO2(0, 3), CO2(3, 6), and

CO2(6, 9),

(iii) All features in Set (ii), plus CO2(0.5, 2.5)−CO2(0, 2),

CO2(1, 3) − CO2(0.5, 2.5), CO2(1.5, 3.5) − CO2(1, 3),

O(0, 2), O(0.5, 2.5), O(1, 3), O(1.5, 3.5),
corr(CO2(0, 2), CO2(0.5, 2.5)) ,
corr(CO2(0.5, 2.5), CO2(1, 3)), and
corr(CO2(1, 3), CO2(1.5, 3.5)).

Using these features, we estimate the occupancy count

Ô(t) at the current time t. We will omit the notation t
when it is clear.

5.3 Experiments and Results
For the results reported in this paper, sensor devices were

deployed at Lab 1 and Lab2. Both of these office spaces
are shared by multiple graduate students, and the number
of occupants ranges from zero to ten, with large variability
within and between days. Training data was collected over
several weeks. The models were then trained on this dataset.
For binary occupancy estimation, we report accuracy of the
predictions. For estimation of a numeric occupancy value,
we report the Root Mean Square Error (RMSE). We report
the average RMSE obtained through 10-fold cross valida-
tion, where in each of 10 runs, one-tenth of the training
dataset is held out of the training and used as the test set.

To collect the ground truth data (the number of people
who are actually in the room at that time), we mounted an
iPad with a Counter App next to the doorway of the test lab
(see Figure 4). Lab 1 was also outfitted with a camera that
snapped an image of the entire lab every minute. Using these
images, we verified the accuracy of the data collected by the
Counter App, to ensure that students were using the App
on a consistent basis. Our results showed that the Counter
App data was a reasonable reflection of ground truth.

Rule-based heuristic. Somewhat surprisingly, the rule-
based heuristic resulted in very poor results for the simple bi-
nary occupancy estimation problem. The heuristic resulted
in the wrong answer more often that the correct answer; es-
sentially the opposite of the prediction would have resulted

in higher accuracies. This is due to several limitations in the
rule-based heuristic. The rules are very sensitive to back-
ground fluctuations in average CO2 and sound levels. The
rules are also likely to over-estimate occupancy because sat-
isfying any one of the rules will cause the heuristic to predict
that there is an occupant in the room.

Learning techniques. The feature sets used to train the
occupancy estimators can greatly affect the resulting accu-
racy. One of the novel aspects of our learning methods is
the design of the feature set. To overcome variability in
certain environment variables such as CO2, we constructed
features that attempt to measure the change in background
CO2 levels throughout the day. These background changes
are often due to the influence of occupants in other rooms of
the building, since air is partially recirculated. The correla-
tion features and average CO2 features enable the classifiers
to partially account for these influences. Eventually, as sen-
sors are deployed throughout the University Building, we
will be able to use communication between the agents to
directly correct for some of these variations.

The core learning algorithms are primarily WEKA (open
source machine learning package) implementations of stan-
dard machine learning algorithms. We report results using
MultiLayer Perceptron, Linear Regression, Gaussian pro-
cesses, and SVM to estimate the occupants using data from
the Sensor Agent. We briefly describe each of these methods
here, and provide the parameters used in each case. We did
not use cross-validation to optimize the choice of parameters
yet; this may be done in future work.

MultiLayer Perceptron learning has one linear node in first
layer and four nodes with sigmoid activation functions in
second layer. The parameters are: Learning rate 0.3, Mo-
mentum 0.2, epochs 500, error threshold 20, and one hidden
layer with 4 nodes. The model denoted MLP10 is the Mul-
tiLayer Perceptron trained on feature set (ii).

Gaussian Processes learning has RBF kernel and noise of
1.0 . It was computationally expensive due the high number
of matrix inverse calculations and is very time consuming
for training even with a few thousand data points.

Linear Regression uses a ridge regularizer= 1.0e− 8 , m5
attribute selection. The trained model estimates the number
of occupants based on a linear combination of the input
feature values.

SVM Multiclass classifier was also used, and the parame-
ters of ν-SVM are v = 0.001, ε = 0.01, kernel=radial basis
function, cost=1.0. The model denoted SVM15 is this SVM
trained on feature set (iii).

Results. Table 1 shows the accuracy and RMSE of the
different estimation techniques on cross-validated training
data. We show accuracy and RMSE under the two different
subsets of features described earlier. For real-valued esti-
mators, an instance is considered to be correctly classified
when the estimated value is greater than 0.7 and the ground
truth people count is greater than or equal to 1, or if the
estimated value is less than or equal to 0.7 and the ground
truth is zero.

The average RMSE for estimation with most of these tech-
niques is less than one, which is quite good. The MultiLayer
Perceptron achieves an RMSE of 0.82 on the unseen test
data from the following week. An RMSE of 0.82 is a good
result since the number of occupants varies between zero
and ten. It suggests that our occupancy estimate is usually
within one of the correct number of occupants. Given that

49

we are using fairly simple and crude sensors, and we have
not optimized the learning process extensively, we believe
this is an encouraging result.

Moreover, we used an ensemble learning method to com-
bine results across multiple time periods. This method used
a voting method to elicit the most popular prediction in the
previous fifteen minutes, and used this value as its predic-
tion. In practice, this enabled the occupancy estimator to
smooth out occasional irregularities in the data and result-
ing predictions, leading to considerably better RMSE scores,
as shown in Table 1.

Estimation method RMSE Accuracy

Rule-based heuristic – 46%
MultiLayer Perceptron, 0.9 90%
featureset(i)
Gaussian Processes, 1.0 91%
featureset(i)
Linear Regression, 1.2 86%
featureset(i)
ν-SVM-R, 0.88 92%
featureset(iii)
MultiLayer Perceptron, 0.73 95%
featureset(iii)
Linear Regression, 1.05 87%
featureset(ii)
Ensemble Voting, 0.6 95%
featureset(iii)

Table 1: Accuracy of different occupancy estimation
techniques. The Ensemble Method has the best ac-
curacy and lowest RMSE.

The experiments suggest that CO2 is highly correlated to
the number of occupants. Motion and motion count also
correlate to presence of an occupant in room. For example,
the Linear Regression learns the following coefficients for
estimating the current number of occupants:

Ô = −8.889 + 0.3883 ∗M − 0.1826 ∗N
+41.777 ∗ CO2 + 0.0096 ∗H + 0.8754 ∗M0

However, it is also clear that this simple classifier, while
decent, does not achieve optimal occupancy estimation per-
formance.

To get a better sense of the estimates produced through-
out each day, Figure 5 shows plots for the estimated occu-
pancy on a particular day of test data using the different
occupancy estimation algorithms. Figure 9 is plot of RMSE
of estimation average over a day against different dates. We
can see from for Lab1 that SVM15 has low RMSE compared
to MLP10. SVM15 includes autocorrelation features, which
seems to improve estimation for lab which has CO2 well
correlated to Occupancy.

We also evaluate the performance of cross lab estimation:
that is, using a occupancy model trained from one lab’s data
to estimate occupancy at the other lab. We observed an
RMSE of around 2.5-3.5 for estimating Lab 2 occupancy us-
ing the Lab1 model, and an RMSE of 1.2-1.6 for estimating
Lab1 occupancy using the Lab 2 model. Figure 9 shows oc-
cupancy estimation for Lab 2 using a trained model of Lab
1.

(a) MultiLayer Perceptron

(b) SVM with 15 attributes
Figure 5: Occupancy estimation using machine
learning techniques.

Figure 6: Ensemble Voting .

6. OCCUPANCY PREDICTION AGENT
The previous section shows that we can use BLEMS Sen-

sor Agents to accurately estimate the number of occupants
in a shared office space. On its own, this could enable signif-
icant gains in energy efficiency by enabling the HVAC sys-
tem to be quickly adjusted to meet the needs of the current
number of occupants. However, if we can predict the future
occupancy, efficiency can be increased further. Partly, this
is due to the need for unoccupied spaces to be conditioned
to within a fairly tight range of temperature, so that a new
occupant is not subjected to uncomfortable conditions while
the space is brought to an acceptable temperature. Thus,
energy is wasted maintaining all spaces within a building to
within a few degrees of desired temperature. Accurate pre-
diction of future occupancy would enable the HVAC software
to completely turn off heat or air conditioning to un-used
spaces. The HVAC can be turned on if occupancy is pre-
dicted far enough in advance, so that the system has ample
time to prepare the room for occupancy by heating or cool-
ing it as needed. Typically offices and shared lab spaces can
be conditioned within one hour, so in this paper, we inves-
tigate the use of machine learning techniques to predict the
future occupancy of building spaces for up to that interval.

As in the occupancy estimation problem described ear-

50

Figure 7: Probability of Occupancy status on a typi-
cal Business day over 24hr period. Higher the prob-
ability, Lighter is the heatmap.

Figure 8: Cross lab testing: Estimating Lab 2 occu-
pancy using model trained on Lab 1 data.

lier, we train the occupancy models using a labeled training
dataset. Each day is divided into a feature vector of length
96, where the room’s occupancy within each 15-minute in-
terval in the day is represented by one binary feature. We
train a separate model to estimate the future occupancy in
the room at each 15-minute interval of the day. That is,
if it is currently 11:45, to predict the occupancy at twelve
noon, we train a model using a training set that has feature
vectors describing the occupancy pattern from midnight to
11:45, labeled by the occupancy at noon.

We use two different datasets for this portion of the work.
The primary dataset is the same as in the occupancy estima-
tion work, consisting of sensor data and ground truth from
the deployed Sensor Agents in the two campus lab spaces
described earlier. We predict future occupancy in two dif-
ferent scenarios: (1) assuming we only have access to the
estimated occupancy counts outputted by the Occupancy
Estimation Agent, and (2) assuming we have access to the
ground truth.

We tested occupancy prediction using ground truth data
and sensor occupancy estimation. We have used algorithms
as in second dataset (described in following paragraph), ex-
cept with less training data (15 to 18 days instead of 100+
days) and test data of less than a week. Table 2 shows the ac-
curacy of prediction of estimated occupancy. The accuracy
is 0.95 for occupancy prediction using ground truth data
and drops to .89 for occupancy prediction using estimated
occupancy.

The second dataset is derived from survey data gathered
from the University Building occupants. We conducted a
survey of the building occupants using a web application
that asks for their three most typical schedules during the
week. Based on the survey of 30 respondents, we gener-
ated simulated data using probabilistic selection of sched-
ules with some noise added. Each of the three schedules is
selected with a probability corresponding to the occupant’s

(a) Lab 2 Occupancy Estimation RMSE from 9/18-
9/30 by MLP10 and SVM10

(b) Lab 1 Occupancy Estimation RMSE from 9/14-
9/30 by SVM15 and MLP10

Figure 9: Estimation RMSE for Lab 1 and Lab 2.
Training Test

Data Data Accuracy
Lab1 ,Ground Truth 15 5 0.945
Lab2, Ground Truth 18 6 0.93

Lab1, Estimated Data 15 5 0.89
Lab2, Estimated Data 18 6 0.8

Table 2: Occupancy Prediction accuracy (15 min in
advance), using real data from live deployment at
Lab 1 and Lab 2.

survey response. The occupancy pattern is then perturbed
by changing the occupancy bit of each 15-minute interval
with 0.2 probability. We use this simulated dataset to in-
vestigate the feasibility of predicting occupancy of a room
up to 1.5 hours in advance.

The learning methods are trained on different combina-
tions of size of training dataset {100,200} days, and predict
the occupancy {15, 30, 60, 90} minutes in advance. The
results are shown in Table 3 and Figure 10. We used a mul-
tilayer perceptron and logisitic regression classifier. We note
that the best possible accuracy is 0.8, since we generated the
data with a noise term of 0.2. The table shows that both
methods are able to fairly accurately predict occupancy 15
minutes in advance. Prediction of occupancy 30, 60, and 90
minutes in advance is somewhat lower, but is still quite high
relative to the absolute maximum of 80% accuracy. With
smaller amounts of noise in the generated data, the accu-
racy is significantly higher, but this shows that the methods
will still perform reasonably well with high degrees of noise.
On the synthetic survey data, it is interesting to note that
the system’s performance is actually not as good. Partly we
believe this is because occupant schedule are actually not
as variable as the data we synthetically generated. We pur-
posefully chose a high noise term of 0.2 in order to produce
a challenging dataset. However, our live data shows that

51

Figure 10: Occupancy Prediction: accuracy vs. time
period for advance prediction.

this may have been overly pessimistic. Table 3 shows our
accuracy using the survey-based synthetic data, Figure 10
shows how the accuracy degrades as we attempt to predict
further into the future (up to an hour in advance).

Prediction method Training Min in Accuracy
size advance

Multi-layer Perceptron 100 15 67%
MultiLayer Perceptron 200 15 68%
Logistic Regression 100 15 72%
Logistic Regression 200 15 75%

Table 3: Accuracy of different occupancy prediction
techniques for predicting future occupancy 15 min-
utes in advance, given different amounts of training
data(Synthetic data generated from survey of Uni-
versity Building occupants).

7. CONCLUSION
Adaptive multi-agent systems that learn about occupant

behaviors and optimize HVAC operation in response to these
occupant models promise to greatly reduce energy consump-
tion.We show that machine learning techniques can be used
to estimate room occupancy using a set of simple sensors,
and that we can use similar techniques to learn agent models
that predict occupant behavior. By using these agent mod-
els to predict room occupancy up to an hour in advance,
the BLEMS system can intelligently control the multi-agent
HVAC system to minimize energy usage while maintaining
occupant comfort.

We will continue to refine the learning methods. In par-
ticular, the current off-the-shelf methods will need to be re-
fined to better handle small training dataset sizes (so that
we can predict occupancy without lengthy collection of oc-
cupant behavior) and take advantage of additional structure
in the data (such as a sequence of beam activation and mo-
tion activation indicating occupant arrival). Even with the
current methods, it appears that we can handle relatively
small dataset sizes of a couple weeks.

The good performance of the system on the live test-
bed environments enables us to proceed with the project.
The BLEMS system is currently being deployed to an en-
tire three-storey office building on the University campus.
Experiments in the near future will meter the energy con-
sumption at University Building under control conditions
and under the treatment condition with the BLEMS sys-
tem. We will establish the energy reduction made possible
by intelligent sensing, agent modeling, and adaptive control
strategies.

Acknowledgements. This work was funded in part by a
grant from the U.S. Department of Energy, DE-EE0004019.

8. REFERENCES
[1] Buildings Energy Data Book. U.S. Department of

Energy, 2010.

[2] Y. Benezeth, H. Laurent, B. Emile, and
C. Rosenberger. Towards a sensor for detecting human
presence and characterizing activity. Energy and
Buildings, 43:305–314, 2011.

[3] C. R. D. Bourgeois and I. Macdonald. Adding
advanced behavioural models in whole building energy
simulation-a study on the total energy impact of
manual and automated lighting control. Elsevier.
Energy and Buildings, 38:814–823, 2006.

[4] W. P. Dirk Saelens and R. Baetens. Energy and
comfort performance of thermally activated building
systems including occupant behavior. Elsevier. Energy
and Buildings, 46:835–848, 2011.

[5] M. T. Ian Richardson and D. Infield. A
high-resolution domestic building occupancy model for
energy demand simulations. Elsevier. Energy and
Buildings, 40:1560–1566, 2008.

[6] N. M. J. Page, D. Robinson and J. L. Scartezzini. A
generalised stochastic model for the simulation of
occupant presence. Elsevier. Energy and Buildings,
40:83–98, 2008.

[7] S. Kamboj, W. Kempton, and K. S. Decker. Deploying
power grid-integrated electric vehicles as a multi-agent
system. In Autonomous Agents and Multi-Agent
System (AAMAS), 2011.

[8] C. Liao and P. Barooah. An integrated approach to
occupancy modeling and estimation in commercial
buildings. American Control Conference, 2010.

[9] Z. Mo and A. Mahdavi. An agent-based
simulation-assisted approach to bi-lateral building
systems control. In IBPSA, 2003.

[10] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R.
Jennings. Agent-based control for decentralized
demand side management in the smart grid. In
Autonomous Agents and Multi-Agent System
(AAMAS), 2011.

[11] A. T. Rhys Goldstein and A. Khan.
Schedule-calibrated occupant behavior simulation.
Autodesk Research., 2010.

[12] A. Rogers, S. Maleki, S. Ghosh, and N. Jennings.
Adaptive home heating control through gaussian
process prediction and mathematical programming. In
International Workshop on Agent Technology for
Energy Systems (ATES), 2011.

[13] A. Sarkar, M. Fairchild, and C. Salvaggio. Integrated
daylight harvesting and occupancy detection using
digital imaging. In Proceedings of SPIE (The
International Society for Optics and Photonics), 2008.

[14] T. Yu. Modeling occupancy behavior for energy
efficiency and occupants comfort management in
intelligent buildings. International Conference on
Machine Learning and Applications, 2010.

52

Session 2A
Virtual Agents

Bayesian Model of the Social Effects of Emotion in
Decision-Making in Multiagent Systems

Celso M. de Melo
Institute for Creative
Technologies, USC,

12015 Waterfront
Drive, Building #4
Playa Vista, CA

90094-2536, USA

demelo@ict.usc.edu

Peter Carnevale
University of

Southern California
Marshall School of

Business,
Los Angeles, CA
90089-0808, USA

peter.carnevale@mar
shall.usc.edu

Stephen Read
University of

Southern California
Department of
Psychology,

Los Angeles, CA
90089-1061, USA

read@rcf.usc.edu

Dimitrios Antos
Harvard

University, 33
Oxford st.,

Maxwell-Dworkin
217, Cambridge,
MA 02138, USA

antos@fas.harv
ard.edu

Jonathan Gratch
Institute for Creative
Technologies, USC,

12015 Waterfront
Drive, Building #4
Playa Vista, CA

90094-2536, USA

gratch@ict.usc.edu

ABSTRACT
Research in the behavioral sciences suggests that emotion can
serve important social functions and that, more than a simple
manifestation of internal experience, emotion displays
communicate one’s beliefs, desires and intentions. In a recent
study we have shown that, when engaged in the iterated prisoner’s
dilemma with agents that display emotion, people infer, from the
emotion displays, how the agent is appraising the ongoing
interaction (e.g., is the situation favorable to the agent? Does it
blame me for the current state-of-affairs?). From these appraisals
people, then, infer whether the agent is likely to cooperate in the
future. In this paper we propose a Bayesian model that captures
this social function of emotion. The model supports probabilistic
predictions, from emotion displays, about how the counterpart is
appraising the interaction which, in turn, lead to predictions about
the counterpart’s intentions. The model’s parameters were learnt
using data from the empirical study. Our evaluation indicated that
considering emotion displays improved the model’s ability to
predict the counterpart’s intentions, in particular, how likely it
was to cooperate in a social dilemma. Using data from another
empirical study where people made inferences about the
counterpart’s likelihood of cooperation in the absence of emotion
displays, we also showed that the model could, from information
about appraisals alone, make appropriate inferences about the
counterpart’s intentions. Overall, the paper suggests that
appraisals are valuable for computational models of emotion
interpretation. The relevance of these results for the design of
multiagent systems where agents, human or not, can convey or
recognize emotion is discussed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Intelligent Agents; D.2.2 [Software Engineering]: Design
Tools and Techniques – User Interfaces

General Terms
Design, Experimentation, Theory

Keywords

Emotion, Appraisals, Expression, Bayesian, Decision-Making

1. INTRODUCTION
Recent developments in the behavioral sciences have led to a
revolution in the understanding of the role of emotion in cognition
and social behavior. Contrary to the classical view of emotion as
an obstacle to rational decision-making [1, 2], this research
emphasizes the positive influence emotion can have in decision-
making [3-5]. As a consequence, there has been growing interest
on the impact emotions can have in multiagent systems [6] and
several computational models of emotion have recently been
proposed [7-10]. Following the initial focus on the intrapersonal
effects of emotion [11, 12], these models also focus on the impact
of emotion in the self’s decision-making. However, the
interpersonal effect of emotion in decision-making is also
interesting and important [13-15] – i.e., the impact of another’s
emotions on one’s decision-making. In this paper we explore a
computational model for the interpersonal effect of emotion in
decision-making.

A useful framework for understanding the interpersonal effect of
emotion is the theory of the social functions of emotion [16-18].
This theory emphasizes that emotional expressions are not simple
manifestations of internal experience; rather, expressions are
other-directed and communicate one’s beliefs, desires and
intentions [18-21]. Emotion displays, thus, help regulate social
interaction. For instance, guilt occurs when someone transgresses
an accepted social norm and serves as an apology, signaling
regret, which, in turn, contributes to avoid reprisals from others
[22]. To study the social functions of emotion in decision-making,
de Melo et al. [23, 24] conducted a series of experiments where
participants engaged in a social dilemma - the iterated prisoner’s
dilemma [25] - with different embodied agents. Even though
following the same strategy to choose their actions, the agents
showed facial displays of emotion that reflected different social
value orientations (e.g., cooperative or competitive). The results
indicated people’s decision-making was influenced by the
emotion displays and people cooperated more with agents which
displays reflected a desire for cooperation (e.g., smile when
mutual cooperation occurred in the game) than one which
displays reflected selfish desires (e.g., a smile when the agent
maximized its reward at the expense of the participant). Using the
empirical data collected in these studies, de Melo et al. [26] then
developed, based on maximum-likelihood estimation, a
computational model for decision-making in a social dilemma that
took into account the outcome of the dilemma and the emotion

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,
Winikoff, Padgham, and van der Hoek (eds.), 4–8 June 2012, Valencia,
Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

55

display. Their results showed that this model was more accurate
than a model which only took into account the dilemma’s
outcome.

Recently, we have extended their research with two experiments
that address the mechanism by which emotions serve their social
functions. To understand this mechanism two questions needed to
be answered: What is the information conveyed by emotion
displays? How is this information retrieved from the displays? To
answer them, we looked at appraisal theories of emotion. In
appraisal theories [27], emotion displays arise from cognitive
appraisal of events with respect to the agent’s goals, desires and
beliefs (e.g., is this event congruent with my goals? Who is
responsible for this event?). According to the pattern of appraisals
that occurs, different emotions are experienced and displayed.
Now, since displays reflect the agent’s intentions through the
appraisal process, it is also plausible to ask whether people can
infer from emotion displays the agent’s goals by reversing the
appraisal mechanism. The question then becomes: can people
retrieve information about how the sender is appraising the
situation from emotion displays? To address this, in our first
experiment we asked participants to imagine playing the iterated
prisoner’s dilemma with different embodied agents. Participants
were always told the same outcome occurred but were shown
videos of different emotional reactions from the agent.
Participants were then asked questions about how they thought
the agent was appraising the situation and how likely the agent
was to cooperate in the future. The results showed that
participants perceived the agent to appraise the outcome
consistently with expectations from appraisal theories (e.g., when
the agent showed anger after an unfavorable outcome, participants
perceived the agent to appraise the outcome as obstructive to its
goals and to blame the participant for it). Moreover, the results
showed that appraisals statistically mediated [28] the effect of
emotion displays on perception of how likely the agent was to
cooperate in the future. This, thus, suggests that appraisals are a
key component of the information conveyed by emotion displays.
To verify that perception of appraisals influence perception of the
agent’s likelihood of cooperation, in our second experiment we
explicitly manipulated perceptions of appraisal and measured the
effect on perceptions of likelihood of cooperation. The
manipulation consisted of having the agents, instead of showing
facial displays of emotion, express how they were appraising the
outcome through text (e.g., “I really don’t like this outcome and I
blame you for it”). The results showed that perceptions of
appraisal influenced people’s perception of how likely the agent
was to cooperate in the future; moreover, when the expression of
appraisals corresponded, according to predictions of appraisal
theories, to the emotions displayed in the first experiment, the
effects on perceptions of likelihood of cooperation where very
similar across experiments. Overall, these studies suggest a causal
model where emotion displays lead people to infer how the agent
is appraising the outcome and that, in turn, leads people to infer
how likely the agent is to cooperate in the future.

In this paper we propose a computational model that captures this
appraisal-based mechanism for the interpersonal effect of emotion
in decision-making. The model is useful for multi-agent systems
for, at least, two reasons: (1) it can be used to design agents that
convey through emotion displays appropriate information about
beliefs, desires and intentions; (2) it can be used by agents to
interpret how the other party, human or agent, is appraising the

situation and, thus, infer its intentions. At its core, the model is
about inferring, from emotion displays, how the counterpart
appraises the situation and, from this, inferring the other’s
intentions in the social encounter. Because there is a strong
inductive component in this model, we follow a Bayesian
approach [29]. We considered three alternative Bayesian
networks: the first considered the outcome of the dilemma only;
the second considered the outcome and the emotion displayed; the
third considered the outcome, emotion display and appraisals. The
models’ parameters were learnt from the empirical data collected
in the first of the aforementioned studies. We compared models
with respect to their accuracy in predicting the counterpart’s
likelihood of cooperation in the future. Our first hypothesis,
following de Melo et al.’s [26] findings was that:

Models that considered emotion display would have
better accuracy than models that did not

(H1)

However, the focus of this paper is on showing the value of
integrating (perceptions of) appraisals in a model of decision-
making. One important advantage appraisals provide is a structure
which is shared by several emotions. For instance, conduciveness
to goals is an appraisal which is shared by joy and sadness [27]:
an event which is conducive to someone’s goals causes joy; an
event which is obstructive to someone’s goals causes sadness.
This shared structure provides a mechanism for learning
parameters and making inferences regarding emotions even in the
absence of examples for that particular emotion. All that is
necessary is data for the emotions with which the missing emotion
shares appraisals. So, our next hypothesis was:

Models that considered appraisals would have better
accuracy than models that did not, over test sets which
included emotions not seen in the training set

(H2)

Finally, there are situations where people express how they are
appraising a situation without resorting to emotion expression. An
obvious example is when people convey verbally their attitudes
toward an event. The data collected in the second of the
aforementioned studies – where people convey appraisals through
text – is a case in point. This dataset could, thus, be used to test
our third and final hypothesis:

Models that considered appraisals could be accurate
even when no emotion was shown

(H3)

The rest of the paper is organized as follows: Section 2 presents
the data in the two empirical studies; Section 3 presents the
Bayesian model alternatives; Section 4 describes three
experiments which test each of the hypotheses; finally, Section 5
discusses the results and its implications.

2. EMPIRICAL DATA
2.1 Study 1
The Bayesian model presented in this paper is based on data
collected in a recent empirical study. In this study, we gave
participants scenarios where they imagined playing the iterated
prisoner’s dilemma with embodied agents that displayed emotion.
The payoff matrix we used is shown in Table 1. Each scenario
pertained to the first round (of a 5-round game) and corresponded
to a particular outcome of the game. Participants were then shown
a video of how the agent reacted to the outcome. The reaction
corresponded to a facial display of emotion. The agents and

56

emotion displays used in the experiment are shown in Figure 1.
The experiment followed a mixed design with two factors:
Outcome (between-participants) with 4 levels (one for each
outcome of the game); and, Emotion (repeated-measures) with 5
levels (Neutral vs. Joy vs. Anger vs. Sadness vs. Guilt). In other
words, each participant only saw one outcome but, was engaged
with several agents that expressed different emotions. Only
certain pairings of outcome and emotion where explored: (a) in
mutual cooperation (CC), we considered the neutral and joy
expressions; (b) when the participant was exploited (participant
cooperated and agent defected, CHDA), we considered the neutral,
joy and guilt expressions; (c) when the participant exploited
(participant defected and agent cooperated, DHCA), we considered
the neutral, anger and sadness expressions; (d) in mutual defection
(DD), we considered the neutral, joy and anger expressions.
Considering only a subset of the pairings allowed us to avoid
unintuitive pairings (e.g., expression of anger in mutual
cooperation) and reduce overall participation time.

Table 1. The prisoner’s dilemma payoff matrix

 Agent

 Cooperates Defects

Participant

Cooperates Agent:

Participant:

5

5

Agent:

Participant:

2

7

Defects Agent:

Participant:

7

2

Agent:

Participant:

4

4

For each scenario, after watching the video of the agent’s
reaction, participants were asked several questions about how the
agent was appraising the outcome. Questions referred to three
appraisal variables: a) conduciveness to goals, which measures
whether the event is consistent or inconsistent with the
individual’s goals; (b) blameworthiness, which measures whether
the self or another agent is responsible for the event; (c) coping
potential, which measures one’s ability to deal with (or control)
the consequences of an event. These variables were chosen
because, even though several appraisal theories have been
proposed [27, 30-33], there tends to be agreement that these are
critical for the emotions considered in this study: joy occurs when
the event is conducive to one’s goals; anger occurs when the
event is not conducive to one’s goals, is caused by another agent
and one has power/control over it; sadness occurs when the event
is not conducive to one’s goals; guilt occurs when the event is not
conducive to one’s goals and is caused by the self. Questions
were asked on a 7-point likert scale (e.g., for conduciveness to
goals, 1 meant “the outcome is not conducive at all” and 7 meant
“the outcome is very conducive”). Several questions were asked
for each appraisal variable [30, 31, 33] but, after averaging
correlated questions, only four measures remained (on a 1 to 7
scale): conduciveness to goals, participant-blameworthiness, self-
blameworthiness and coping potential. Finally, before moving to
the next scenario, the participant was asked one question about
the agent’s likelihood of cooperation in the next round (scale: 1-
“not likely to cooperate at all” to 7-“very likely to cooperate”).
Overall, 405 participants were recruited for this experiment,
resulting in an average of 100 per outcome.

For the purposes of learning a Bayesian model, the appraisal and
likelihood of cooperation questions were converted into binary
format: the feature was set to ‘true’ if the original classification

was 5 or above; the feature was set to ‘false’ if the classification
was 3 or below; if the classification was 4, the feature was not
assigned a value (missing attribute). Each example in the training
dataset, thus, had the following features:

a) Emotion Display: Neutral, Joy, Anger, Guilt or Sadness

b) Conduciveness to Goals (binary): Whether the agent was
perceived to find the outcome conducive to its goals

c) Self-Blameworthiness (binary): Whether the agent was
perceived to blame itself for the outcome

d) Participant-Blameworthiness (binary): Whether the agent
was perceived to blame the participant for the outcome

e) Coping Potential (binary): Whether the agent was perceived
to be able to deal with the consequences of the outcome

f) Likelihood of Cooperation (binary): Whether the agent was
perceived to be likely to cooperate in the future

In total, excluding the examples for which the target attribute
(Likelihood of Cooperation) was missing, there were 940
examples in the dataset.

2.2 Study 2
In a second empirical study, we manipulated directly how
participants perceived the counterpart to be appraising the
interaction, and measured perceptions of cooperation. Instead of
showing emotion displays, in this study, agents expressed
themselves through text in a simulated chat interface. The
mapping of emotions into appraisals followed the predictions of
appraisal theories [27, 30-33] and is shown in Table 2. The
scenarios, game and design remained the same as in the previous
study. After watching the agent’s reaction, participants were
asked how likely the agent was to cooperate in the next round
(scale: 1-“not likely to cooperate at all” to 7-“very likely to
cooperate”). Overall, 202 participants were recruited for this
experiment, resulting in an average of 50 participants per
outcome. The question about perception of cooperation was

Figure 1. The facial displays of emotion.

57

discretized as in Study 1. The main difference between this and
the previous dataset is that this one does not have a feature for
emotion displays (or equivalently, its values are always missing).
In total, the dataset had 454 examples.

Table 2. Mapping of emotion into textual expression of
appraisals

Emotion Appraisal Expression

Neutral I neither like, nor dislike this outcome

Joy I like this outcome

Anger I do NOT like this outcome and I blame YOU for it

Sadness I do NOT like this outcome

Guilt I do NOT like this outcome and I blame MYSELF for it

3. MODELS
All Bayesian models were trained with respect to the empirical
data in Study 1. Since some of the attributes in the examples
could be missing (see Section 2), the EM algorithm was used for
learning the parameters. The decision regarding Likelihood of
Cooperation was made as follows:

 If P(Likelihood of Cooperation) > 0.5, true

 If P(Likelihood of Cooperation) = 0.5, random

 Otherwise, false

3.1 Model 1: Outcome
The first Bayesian model considered only two variables: Outcome
(O) and Likelihood of Cooperation (LC). Figure 2 shows the
respective Bayesian network. Outcome was set to have a uniform
prior, i.e., each possible outcome occurred with 0.25 probability.
The learnt parameters are shown in Table 3.

Figure 2. Bayesian network for Model 1.

Table 3. Parameters for Model 1.

O P(LC) O P(LC)

CC .470 CHDA .380

DD .405 DHCA .271

3.2 Model 2: Emotion and Outcome
The second Bayesian model built on the previous and added
Emotion Display (ED). Figure 3 shows the respective Bayesian
network. Emotion Display was also set to have a uniform prior,
i.e., each emotion occurred with 0.20 probability. The parameters
are shown in Table 4.

Figure 3. Bayesian network for Model 2.

Table 4. Parameters for Model 2.

ED O P(LC) O P(LC)

Neutral CC .235 CHDA .254

Joy CC .719 CHDA .182

Anger CC .500 CHDA .500

Guilt CC .500 CHDA .670

Sadness CC .500 CHDA .500

Neutral DD .453 DHCA .377

Joy DD .368 DHCA .500

Anger DD .400 DHCA .242

Guilt DD .500 DHCA .500

Sadness DD .500 DHCA .217

3.3 Model 3: Appraisals
The last Bayesian model added appraisal variables:
Conduciveness to Goals (CG), Self-Blame (SB), Participant-
Blame (PB) and Coping Potential (CP). The Bayesian network is
shown in Figure 4. The appraisal variables were given BDeu
priors [34], i.e., likelihood equivalent uniform Dirichlet priors.
The parameters for the appraisal variables are shown in Table 5
and the parameters for Likelihood of Cooperation in Table 6.

Figure 4. Bayesian network for Model 3.

Table 5. Parameters for the appraisal variables in Model 2.

ED P(CG) P(SB) P(PB) P(CP)

Neutral .370 .203 .267 .748

Joy .970 .206 .177 .905

Anger .021 .381 .824 .324

Guilt .227 .678 .222 .348

Sadness .041 .730 .485 .285

Table 6. Likelihood of Cooperation parameters in Model 2.

CG SB PB CP O P(LC) O P(LC)

T T T T CC .436 DD .367
F T T T CC .082 DD .476
T F T T CC .410 DD .459
F F T T CC .129 DD .265
T T F T CC .837 DD .263

58

F T F T CC .002 DD .658
T F F T CC .640 DD .387
F F F T CC .324 DD .369
T T T F CC .146 DD .080
F T T F CC .259 DD .670
T F T F CC .054 DD .018
F F T F CC .172 DD .307
T T F F CC .990 DD .971
F T F F CC .014 DD .371
T F F F CC .776 DD .635
F F F F CC .203 DD .367
T T T T CHDA .320 DHCA .913
F T T T CHDA .849 DHCA .411
T F T T CHDA .084 DHCA .386
F F T T CHDA .528 DHCA .150
T T F T CHDA .108 DHCA .602
F T F T CHDA .863 DHCA .156
T F F T CHDA .243 DHCA .464
F F F T CHDA .526 DHCA .338
T T T F CHDA .502 DHCA .012
F T T F CHDA .366 DHCA .275
T F T F CHDA .335 DHCA .201
F F T F CHDA .383 DHCA .212
T T F F CHDA .642 DHCA .982
F T F F CHDA .821 DHCA .185
T F F F CHDA .122 DHCA .926
F F F F CHDA .398 DHCA .149

4. EVALUATION
4.1 Experiment 1
To test hypothesis H1, that models which considered emotion
would do better than models that did not, we tested the models
accuracy with respect to the data in Study 1. Each model was re-
trained using 20-fold cross-validation. The models were then
compared with respect to average performance on the 20 test sets.
Several standard performance measures are reported in Table 7:
(a) accuracy, the percentage of correctly classified examples; (b)
true positives, the number of correctly classified examples where
the target (Likelihood of Cooperation) is ‘true’; (c) true negatives,
the number of correctly classified examples where the target is
‘false’; (d) false positives, the number of incorrectly classified
examples where the target is ‘true’; (e) false negatives, the
number of incorrectly classified examples where the target is
‘false’. Means were compared using the 1-way independent
ANOVA test.

The results showed that there was a significant difference in
accuracy. In order to perform pairwise comparisons between the
models, LSD post-hoc tests were performed (these are not shown
in Table 7). The tests indicated that Models 2 and 3 were more
accurate than Model 1. This confirmed hypothesis H1. Moreover,
looking at the table, it was clear that Model 1 (based on Outcome)
was making the same predictions as a game-theoretic model

which always predicted defection1. Therefore, Outcome, by itself,
seemed to be insufficient to discriminate examples in this dataset.
Finally, Models 2 and 3 also seemed to be identical in their
predictions. This suggested that, in this case, appraisal variables
did not add more information than that provided by Emotion
Display. The results also showed significant differences in the
remaining variables. Looking at the true and false positive
measures, it was confirmed that Model 1 always predicted
defection. Still, on average, Model 1 was slightly better than
Models 2 and 3, at predicting negative examples.

Table 7. Performance results for experiment 1. Means and
standard deviations (in parenthesis) are shown

 acc tp tn fp fn

Model 1 62.38%

(5.84)

0.00

(0.00)

28.75

(3.05)

0.00

(0.00)

17.25

(2.43)

Model 2 69.91%

(7.19)

6.15

(2.08)

26.05

(3.51)

2.70

(1.66)

11.10

(3.16)

Model 3 69.91%

(7.19)

6.15

(2.08)

26.05

(3.51)

2.70

(1.66)

11.10

(3.16)

Sig. (2-sd) .001* .000* .013* .000* .000*

* significant to p<.05
acc - accuracy; tp - true positives; tn - true negatives; fp - false
positives; fn - false negatives

4.2 Experiment 2
To test hypothesis H2, that the appraisal model would have better
accuracy than the others over a test set with unseen emotions, we
split the data in Study 1 into two subsets: (a) the training subset,
which included all the examples from Study 1 except the ones
corresponding to Joy with the outcome CHDA; (b) the test subset,
which included all the examples from Study 1 where the emotion
was Joy and the outcome was CHDA. Models were then trained on
the former subset and tested on the latter. The results are shown in
Table 8.

Table 8. Performance results for experiment 2

 acc tp tn fp fn

Model 1 81.82% 0.00 72.00 0.00 16.00

Model 2 56.82% 9.00 41.00 31.00 7.00

Model 3 81.82% 0.00 72.00 0.00 16.00

acc - accuracy; tp - true positives; tn - true negatives; fp - false
positives; fn - false negatives

The results showed that Model 3 was performing better than
Model 2. This happened because, since there were no examples in
the training set corresponding to Joy in CHDA, Model 2’s posterior
for Likelihood of Cooperation was 0.500, which corresponded to

1 The intuition is that: the last iteration is a 1-shot prisoner’s

dilemma game, for which the only Nash equilibrium is mutual
defection; thus, the second to last game becomes the effective
last round for which a decision needs to be made. Thus, by
induction, players should defect in the first round and continue
doing so in every round until all rounds are completed.

59

a random decision. On the other hand, because of the shared
appraisal structure, Model 3’s posterior for Likelihood of
Cooperation (P(LC|Joy, CHDA)) was 0.272. The posterior, thus,
was reflecting other examples which had information about the
appraisals underlying Joy. Therefore, hypothesis H2 was
confirmed. Finally, the results reveal that, in this case, Model 1
performed as well as Model 3. This happened because both
always defected in this test set.

4.3 Experiment 3
To test hypothesis H3, that the appraisal model could make
accurate predictions even in the absence of evidence for emotion
displays, we tested our models with the data from Study 2. The
models were still trained on the data from Study 1 but, were tested
on data from Study 2. The results are shown in Table 9.

Table 9. Performance results for experiment 3

 acc tp tn fp fn

Model 1 57.49% 0.00 261.00 0.00 193.00

Model 2 57.49% 0.00 261.00 0.00 193.00

Model 3 66.74% 72.00 231.00 30.00 121.00

acc - accuracy; tp - true positives; tn - true negatives; fp - false
positives; fn - false negatives

The results showed that Model 3 was outperforming the
remaining models on this dataset. This confirmed hypothesis H3.
Effectively, in the absence of information about emotion displays,
Model 2 could not do better than advance a prediction based only
on Outcome as in Model 1.

5. DISCUSSION
This paper presents a Bayesian model that captures social effects
of emotion displays in decision-making. The model’s parameters
were learnt using empirical data from an experiment where people
engaged in a social dilemma with embodied agents that expressed
emotions. The results in experiment 1 indicated that a model
which took into account emotion displays was more accurate in
replicating people’s decision-making behavior than a model
which only took into account the social dilemma outcome. This
result reinforces findings in the behavioral sciences that show that
non-verbal behavior – in particular, facial displays of emotion –
can influence people’s decision to cooperate in social dilemmas
[35-38]. The results also replicate de Melo et al.’s [26] findings
that a computer model of decision-making in a social dilemma
improves if it takes into account the counterpart’s emotion
displays.

The results for Model 1, based on Outcome only and which
always predicted defection, emphasize the insufficiency of a
game-theoretic approach for modeling agents that interact with
people. Effectively, unlike the rational prediction of defection in
every round in the finite iterated prisoner’s dilemma, people often
cooperated in our datasets. This is compatible with the widely
accepted view that people’s behavior systematically deviates from
game-theoretic predictions of rational behavior [39-42].
Moreover, our findings show that emotion is one of the factors
that helps explain such deviations. The systematic influence of
emotion displays in decision-making is, effectively, one of the
premises of the social functions theory of emotion [16-18]. This

theory suggests that, more than mere manifestations of internal
experience, emotion expression is other-directed and
communicates one’s beliefs, desires and intentions. In multiagent
systems research, these social effects of emotion have already
been shown, for instance, when agents interact with people in
social dilemmas [23, 24] and negotiation [43].

In this paper we propose further that appraisals are a useful
framework to structure a computational model of emotion
interpretation. Following empirical results that suggest that
appraisals mediate the effect of emotion displays in decision-
making, the proposed Bayesian model was structured so that
variables which represented inferences about the counterpart’s
intentions were conditionally independent of emotion displays
given information about the appraisal variables. The underlying
assumption is that what matters is not the emotion display in itself
but, the information it conveys about appraisals.

From a cognitive modeling perspective, it is interesting to notice
that the parameters for the appraisal variables (Table 5), which
represent the conditional probabilities given the emotion display,
were generally in line with expectations from appraisal theories
[27]: conduciveness to goals was highest for joy
(P(CG|Joy)=.970); self-blame was highest for guilt
(P(SB|Guilt)=.678) and sadness (P(SB|Sadness)=.730);
participant-blame was highest for anger (P(PB|Anger)=.824);
and, coping potential was highest for Joy (P(CP|Joy)=.905). This
means the model was learning, from empirical data alone, some of
the theoretical predictions advanced by appraisal researchers [27,
30-33].

Pragmatically, there are several advantages in following an
appraisal-based model for emotion interpretation. First, appraisals
provide a structure which is shared by several emotions. This
provides a mechanism for learning parameters and making
inferences regarding emotions even in the absence of examples
for that particular emotion. The results in experiment 2 showed
that the appraisal model was capable of recovering a reasonable
posterior for Likelihood of Cooperation, given Joy and CHDA,
even when no examples for that case existed in the training set.
On the other hand, the model based on emotion and outcome
(Model 2) could not do better than predict an even chance (0.500)
of cooperation for the case where Joy is shown in CHDA.

A second advantage is that the appraisals model is capable of
supporting inferences about the counterpart’s intentions even in
the absence of emotion. The results shown in experiment 3
showed that this model was capable of accurately predicting
Likelihood of Cooperation for a dataset where Emotion Display
was unobservable and only evidence for appraisals was available.

A third advantage of appraisals is that they provide a domain-
independent mechanism for relating the counterpart’s beliefs,
desires and intentions to emotion displays. This relation is laid out
in detail in appraisal theories of emotion [30-33] which explain
how someone’s beliefs, desires and intentions lead to different
appraisal of situations which, in turn, lead to the experience and
expression of different emotions. This knowledge can be used by
multiagent system designers in, at least, two ways: (1) to
implement a model, such as the one presented in this paper, that
allows an agent to make inferences about the counterpart’s
beliefs, desires and intentions; (2) to design agents which can
convey through appropriate emotions, their beliefs, desires and

60

intentions. Notice also that, even though appraisal theories were
applied to decision-making in this paper, there is nothing in it
preventing its application to other domains.

Finally, even though the paper was motivated by the literature in
human-human interaction and the focus is mainly in human-agent
interaction, this work has important consequences for agent-agent
interaction. Simon [44] concisely articulated one of the main
intrapersonal functions of emotions for intelligent agents:
interrupting normal cognition when unattended goals require
servicing. The theory of the social functions of emotions, on the
other hand, articulates one of the main interpersonal functions of
emotions for agents: to communicate the agent’s beliefs, desires
and intentions. As mentioned above, appraisal theories further
define how this function can be implemented through appraisals.
But, why should agents use emotions to convey their mental states
to other agents, as opposed to just explicitly communicate the
mental states? There are many reasons, but we shall focus on two.
First, from a complexity point-of-view it is more efficient for the
agent to communicate information about emotions and appraisals
than the whole mental state. Moreover, notice emotion need not
be necessarily communicated through facial displays. Second,
from an evolutionary perspective, emotion expression evolved to
help solve recurrent problems that occur in social interaction [45-
47]. Emotions are a quick and effective mechanism, when
compared to deliberation, to respond to such problems. As
multiagent systems grow in complexity, there is also an
increasing need for quick and effective mechanisms to solve
recurrent problems. Emotion can be one such mechanism.

6. REFERENCES
[1] Hirschman, A. 1997. The passions and the interests.

Cambridge University Press.

[2] Lefford, A. 1946. The influence of emotional subject matter
on logical reasoning. Journal of General Psychology 34, 127-
151.

[3] Damasio, A. 1994. Descartes’ error: Emotion, reason and the
human brain. Putnam.

[4] Wilson, T. and Schooler, J. 1991. Thinking too much:
Introspection can reduce the quality of preferences and
decisions. Journal of Personality and Social Psychology 60,
181-192.

[5] Blanchette, I., Richards, A., Melnyk, L. and Lavda, A. 2007.
Reasoning about emotional contents following shocking
terrorist attacks: A tale of three cities. Journal of
Experimental Psychology: Applied 13, 47-56.

[6] Marsella, S., Gratch, J. and Petta, P. 2010. Computational
models of emotion. In A Blueprint for Affective Computing,
K. Scherer, T. Banzinger and E. Roesch, Eds. Oxford
University Press, Oxford, NY, 21-45.

[7] Gratch, J. and Marsella, S. 2004. A domain independent
framework for modeling emotion. Journal of Cognitive
Systems Research 5, 4, 269‐306.

[8] Dias, J.and Paiva, A. 2005. Feeling and reasoning: A
computational model for emotional agents. In Proceedings of
12th Portuguese Conference on Artificial Intelligence, EPIA
2005.

[9] Becker‐Asano, C. and Wachsmuth, I. 2008. Affect
simulation with primary and secondary emotions. In
Proceedings of the 8th International Conference on
Intelligent Virtual Agents.

[10] Wehrle, T. and Scherer, K. 2001. Toward computational
modeling of appraisal theories. In Appraisal processes in
emotion: Theory, methods, research, K. Scherer, A. Schorr
and T. Johnstone, Eds. Oxford University Press, New York,
350-365.

[11] Loewenstein, G. and Lerner, J. 2003. The role of affect in
decision making. In Handbook of Affective Sciences, R.
Davidson, K. Scherer and H. Goldsmith, Eds. Oxford
University Press, New York, 619-642.

[12] Blanchette, I. and Richards, A. 2010. The influence of affect
on higher level cognition: A review of research on
interpretation, judgment, decision making and reasoning.
Cognition and Emotion 15, 1-35.

[13] Morris, M. and Keltner, D. 2000. How emotions work: An
analysis of the social functions of emotional expression in
negotiations. Research in Organizational Behavior 22, 1-50.

[14] Van Kleef, G., De Dreu, C., and Manstead, A. 2004. The
interpersonal effects of anger and happiness in negotiations.
Journal of Personality and Social Psychology 86, 57-76.

[15] Rafaeli, A. and Sutton, R. 1989. The expression of emotion
in organizational life. Research in Organizational Behavior
11, 1-43.

[16] Frijda, N. and Mesquita, B. 1994. The social roles and
functions of emotions. In Emotion and culture: Empirical
studies of mutual influence, S. Kitayama and H. Markus,
Eds. American Psychological Association, Washington, DC,
51-87.

[17] Keltner, D. and Haidt, J. 1999. Social functions of emotions
at four levels of analysis. Cognition and Emotion 13, 505-
521.

[18] Keltner, D. and Kring, A. 1998. Emotion, social function,
and psychopathology. Review of General Psychology 2,
320-342.

[19] Bavelas, J., Black, A., Lemery C. and Mullet, J. 1986. ‘I
show how you feel’: Motor mimicry as a communicative act.
Journal of Personality and Social Psychology 50, 322-329.

[20] Fernandez-Dols, J. and Ruiz-Belda, M. 1995. Are smiles
signs of happiness? Gold medal winners at the Olympic
games. Journal of Personality and Social Psychology 69,
1113-1119.

[21] Kraut, R. and Johnston, R. 1979. Social and emotional
messages of smiling: An ethological approach. Journal of
Personality and Social Psychology 37, 1539-1533.

[22] Keltner, D. and Buswell, B. 1997. Embarrassment: Its
distinct form and appeasement functions. Psychological
Bulletin 122, 250-270.

[23] de Melo, C., Carnevale, P. and Gratch, J. The impact of
emotion displays in embodied agents on emergence of
cooperation with people. Presence: Teleoperators and Virtual
Environments Journal, 2011, in press.

61

[24] de Melo, C., Carnevale, P. and Gratch, J. 2011. Reverse
appraisal: Inferring from emotion displays who is the
cooperator and the competitor in a social dilemma. In
Proceedings of 33rd Annual Meeting of the Cognitive
Science Society, 396-401.

[25] Poundstone, W. 1993. Prisoner’s dilemma. Doubleday.

[26] de Melo, C., Carnevale, P., Antos, D. and Gratch, J. 2011. A
computer model of the interpersonal effect of emotion
displayed in social dilemmas. In Proceedings of the
Affective Computing and Intelligent Interaction (ACII)
Conference, 67-76.

[27] Ellsworth, P. and Scherer, K. 2003. Appraisal processes in
emotion. In Handbook of Affective Sciences, R. Davidson,
K. Scherer and H. Goldsmith, Eds. Oxford University Press,
New York, 572-595.

[28] Preacher, K., & Hayes, A. 2008. Asymptotic and resampling
strategies for assessing and comparing indirect effects in
multiple mediator models. Behavior Research Methods 40,
879-891.

[29] Griffiths, T., Kemp, C. and Tenenbaum, J. 2008. Bayesian
models of cognition. In The Cambridge handbook of
computational cognitive modeling, Ron Sun, Ed. Cambridge
University Press.

[30] Scherer, K. 2001. Appraisal considered as a process of multi-
level sequential checking. In Appraisal processes in emotion:
Theory, methods, research, K. Scherer, A. Schorr and T.
Johnstone, Eds. Oxford University Press, New York, 92-120.

[31] Roseman, I. 2001. A model of appraisal in the emotion
system: integrating theory, research, and applications. In
Appraisal processes in emotion: Theory, methods, research,
K. Scherer, A. Schorr and T. Johnstone, Eds. Oxford
University Press, New York, 68-91.

[32] Ortony, A., Clore, G. and Collins, A. 1988. The cognitive
structure of emotions. Cambridge University Press.

[33] Smith, C. and Ellsworth, P. 1985. Patterns of cognitive
appraisal in emotion. Journal of Personality and Social
Psychology 48, 813-838.

[34] Heckerman, D., Geiger, D. and Chickering, D. 1995.
Learning Bayesian networks: The combination of knowledge
and statistical data. Machine Learning 20, 197-243.

[35] Boone, R. and Buck, R. 2003. Emotional expressivity and
trustworthiness: The role of nonverbal behavior in the
evolution of cooperation. Journal of Nonverbal Behavior 27,
163-182.

[36] Frank, R. 1988. Passions within reason. Norton.

[37] Schug, J., Matsumoto, D., Horita, Y., Yamagishi, T. and
Bonnet, K. 2010. Emotional expressivity as a signal of
cooperation. Evolution and Human Behavior 31, 87-94.

[38] Scharlemann, J., Eckel, C., Kacelnik, A. and Wilson, R.
2001. The value of a smile: Game theory with a human face.
Journal of Economic Psychology 22, 617-640.

[39] Tversky, A. and Kahneman, D. 1981. The framing of
decisions and the psychology of choice. Science 211, 453-
458.

[40] Simon, H. 1997. Models of bounded rationality. MIT Press.

[41] Starmer, C. 2000. Developments in non-expected utility
theory: The hunt for descriptive theory of choice under risk.
Journal of Economic Literature 38, 332-382.

[42] Camerer, C. 1995. Individual decision making. In Handbook
of Experimental Economics, J. Kagel and A. Roth, Eds.
Princeton University Press, Princeton.

[43] de Melo, C., Carnevale, P. and Gratch, J. (2011). The effect
of expression of anger and happiness in computer agents on
negotiations with humans. In Proceedings of Autonomous
Agents and Multiagent Systems (AAMAS) 2011.

[44] Simon, H. 1967. Motivational and emotional controls of
cognition. Psychological Review 74, 29‐39.

[45] Darwin, C. 1872. The expression of the emotions in man and
animals. Murray.

[46] Ekman, P. 1992. An argument for basic emotions. Cognition
and Emotion 6, 169-200.

[47] Lazarus, R. 1991. Emotion and adaptation. Oxford
University Press.

62

Towards building a Virtual Counselor: Modeling

Nonverbal Behavior during Intimate Self-Disclosure
Sin-Hwa Kang

1
, Jonathan Gratch

1
, Candy Sidner

2
, Ron Artstein

1
, Lixing Huang

1
,

and Louis-Philippe Morency
1

1
 Institute for Creative Technologies
University of Southern California

12015 Waterfront Drive
Playa Vista, CA 90094, USA

1-310-574-5700

{kang, gratch, artstein, lhuang,

morency}@ict.usc.edu

2
Dept of Computer Science

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609, USA
1-508-831-5000

sidner@wpi.edu

ABSTRACT

Nonverbal behavior is considered critical for indicating

intimacy and is important when designing a social virtual agent

such as a counselor. One key research question is how to

properly express intimate self-disclosure. In this paper we

present an extensive study of human nonverbal behavior during

intimate self-disclosure. This is an important milestone in

creating a virtual counselor. A study of video interactions

between human participants demonstrated that people display

more head tilts and pauses when they revealed highly intimate

information about themselves; they presented more head nods

and eye gazes during less intimate sharing. An implementation

of these behaviors in a virtual agent suggests that people tend

to perceive head tilts, pauses and gaze aversion by the agent as

conveying intimate self-disclosure. These findings are

important for future research with virtual counselors and other

social agents.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Intelligent agents.

J.4 [Social and Behavioral Sciences]: Psychology.

General Terms

Experimentation, Human Factors.

Keywords

Virtual agents, Nonverbal behavior, Intimacy, Self-disclosure,

Rapport, Affective behavior.

1. INTRODUCTION
Humans often share personal information with others in order

to create social connections. Sharing personal information is

especially important in counseling interactions [14]. Research

studying the relationship between intimate self-disclosure and

human behavior critically informs the development of virtual

agents that create rapport with human interaction partners. One

significant example of this application is using virtual agents as

counselors in psychotherapeutic situations. We argue that the

capability of expressing different intimacy levels is key to a

successful virtual counselor to reciprocally induce disclosure in

clients. Previous studies [5,6] found that human clients liked

virtual counselors who disclosed personal information, only

verbally. In this paper, we address the complementary

challenge of learning nonverbal behavior associated to self-

disclosure.

There has been substantial interest in modeling the nonverbal

behavior of humans for application in developing virtual agents

[4,7,8,15,16,21,24]. Patterns of nonverbal behavior have been

studied in terms of a function of intimacy in social interactions

[11]. Existing studies found that nonverbal behavior may

indicate intimacy [2,11] by operating as a key channel for the

expression of communicators’ inner feelings and intentions

[10,25,26]. Edinger and Patterson [11] describe that intimacy

could be defined as the principal affective reaction toward the

other person in interpersonal communication. Researchers

further argue that nonverbal signals are more believable than

verbal cues as those are impulsive and harder to be

manipulated [18].

Specifically, in psychotherapeutic situations, researchers have

addressed the critical role that nonverbal behavior plays in the

formation and maintenance of the therapeutic relationship by

shaping rapport between counselors and clients [26]. Research

has found that clients’ nonverbal behavior unconsciously

disclosed intimate information that is not conveyed by verbal

signals [14,26]. Therefore, counselors’ communication with

clients using nonverbal affective expression may enhance

counseling effects.

Our study is an important step in building a virtual counselor.

The goal of our study is to learn a model of nonverbal behavior

that indicates intimacy for use by virtual counselors. Based on

the literature review, our current study focuses on the

investigation of humans’ nonverbal behavior in association

with their intimate verbal self-disclosure in interview

interactions. We formulate our main research question as:

Appears in: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,

Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012, Valencia,

Spain. Copyright © 2012, International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

s

63

“What types of nonverbal behavior does a person present

when s/he discloses information with different levels of

intimacy?”

To address this research question, we analyze the data of

interviewees’ nonverbal behavior in conjunction with their

intimate self-disclosure. This dataset was collected by Kang

and Gratch in the context of a study focusing on verbal self-

disclosure for virtual counselor [17]. The dataset did not have

an interviewer’s self-disclosure but an interviewee’s self-

disclosure in counseling interactions. Since nonverbal

behaviors form part of general human interaction patterns, we

assume that the data learned from client behavior will be useful

for modeling the non-verbal behavior of counselors. We focus

on six nonverbal behaviors: eye gazes, head nods, head shakes,

head tilts, pauses (silence) and smiles. The choice of six

nonverbal behaviors was motivated by a literature review and

features diagnostic of social effects in prior work

[3,9,12,18,19,23,25], as well as a pre-analysis by an expert in

nonverbal communication. These six nonverbal behaviors were

identified as being easily recognizable with current visions

system and having the most potential.

Our results show that interesting nonverbal patterns are often

associated with self-disclosure, both with individual features

(e.g. head nods or head tilts) and co-occurrence (e.g. head tilts

and pauses). We also present an inter-coder reliability designed

for continuous behavior annotations. Based on these findings,

we present a preliminary study analyzing the effect of

nonverbal behavior with a virtual counselor.

The following section describes the original dataset of

computer-mediated one-on-one human interviews analyzing

self-disclosure. This description is necessary to understand our

novel analysis described in Section 3, focusing on nonverbal

behavior. In section 4, we present a preliminary evaluation by

applying our findings to a virtual agent. Section 5 presents

discussion and conclusions.

2. SELF-DISCLOSURE DATASET
We describe in this section the details of the self-disclosure

dataset used to analyze nonverbal patterns. The video

sequences analyzed in our paper were recorded during the Kang

& Gratch [17] study. These interviews were computer mediated

(through a video conference system). In the interview

interaction, the interviewee was asked to answer ten questions

asked by an interviewer that required gradually increasing

levels of intimate self-disclosure. We utilize the dataset1 of the

study [17] collected in the form of computer-mediated one-on-

one human and interview interaction. Since interactions with

virtual agents always happen through a media (e.g., computer

screen), the use of computer mediation between the two

humans is motivated by creating a situation that is similar to

what a human experiences with a virtual agent.

1 The human-human dataset used in this paper was part of a

more extensive design involving three conditions [17].

2.1 Participants and Procedure
Thirty-six people (50% women, 50% men) from the general

Los Angeles area participated in this study. They were

recruited using Craigslist.com and were compensated $30 for

seventy-five minutes of their participation. On average, the

participants were 36 years old (M = 36.03, SD = 8.96).

The paired participants (a confederate and a subject) never met

each other beforehand. The interaction took place in two

separate rooms where the paired participants were placed at

different times, to avoid any initial face-to-face contact. The

confederate was placed in one of the rooms before a recruited

subject arrived to participate in the study. Recruited subjects

were given a conversational scenario where the interviewer

asked ten questions requiring gradually increasing intimacy

levels of self-disclosure from the interviewee. The authors of

the study [17] proposed that this communication situation and

the questions could motivate emotional interaction where

people need to disclose personal information about themselves

to get to know each other. Interviewees and interviewers in

actual interactions saw each other’s video image displayed on a

30-inch computer monitor (see Figure 1). Confederates played

the role of an interviewer. The typical conversation was

allowed to last about thirty minutes, but interviewees were not

informed of any specific time limitation. The condition of the

study was presented to same gender combinations of dyadic

partners: male-male and female-female.

To allow video interview conversation, video conference

software (Skype) and a web-cam (Logitech QuickCam Orbit

MP) were used. A hands-free headset connected to the

computer was provided to both of the interviewers and

interviewees for the audio communication.

Figure 1. Computer-mediated interview interaction

between an interviewer (a confederate) and an interviewee

(a subject)

2.2 Measurement: Intimacy of Interviewees’

Self-Disclosure
In the study [17], interviewers (confederates) did not talk about

themselves, thus we decided to analyze interviewees’ self-

disclosure instead. The intimacy of interviewees’ self-

64

disclosure was independently rated by two coders. The coders

rated verbal data of interviewees’ answers from annotated

audio transcriptions.

First, the two coders defined utterances as “disclosure” or

“other.” The utterance is “an idea unit, which is an expression

of one whole idea or proposition [17].”

Second, the coders rated the intimacy level of each “disclosure”

utterance using the three layer categorization scheme of Altman

and Taylor’s three-layer categorization scheme [1]: a peripheral

layer (lower intimacy), an intermediate layer (intermediate

intimacy), and core layer (higher intimacy). The examples of

each category included: “I am 30-years old (peripheral layer)”

“I like to go shopping (intermediate layer)” and “I feel most

guilty about cheating on my girlfriend (core layer).”

After the utterances were defined as self-disclosure and

intimacy levels were judged, inter-coder reliability was

measured. The authors performed Krippendorff’s alpha for

interval data obtained by rating intimacy levels [20]. The

results of Krippendorff’s alpha showed good inter-coder

reliability: Alpha = .84; Do (Observed Disagreement) = 232.37;

De (Expected Disagreement) = 1483.14.

Therefore, interviewees’ verbal self-disclosure had four

intimacy levels: 0 – no intimacy, 1 – lower intimacy, 2 –

intermediate intimacy, and 3 – higher intimacy. This rating

scheme was used for our main data analysis described in the

next section.

3. STUDY OF HUMAN BEHAVIOR:

Experiments and results
Our main goal of this paper is to find what types of

interviewees’ nonverbal behavior is associated with different

intimacy levels of verbal self-disclosure. In this section, we first

describe the types of nonverbal behavior that we explored,

present the inter-coder reliability of our experiments and finally

discuss our findings.

3.1 Nonverbal Features
We annotated interviewees’ nonverbal behavior based on the

video recordings. The nonverbal features included six types of

behaviors that we considered most representative features for

indicating intimate self-disclosure. Details about annotating the

six nonverbal features are below:

 Eye Gazes: Eye gazes start when an interviewee starts

to look at an interviewer and ends when he or she

averts his or her gaze. An annotator looked at the full

sequence and identified the gaze direction associated

with the interviewer, then performed the full

annotation.

 Head Nods: Head nods are head rotations along the

vertical axis (pitch angle). A head nod gesture starts

when the head moves and ends when either the head

stops moving or the head nod amplitude starts

increasing again.

 Head Shakes: Head shakes are head rotations along

the horizontal axis (yaw angle). They were annotated

using the same approach as head nods.

 Head Tilts: Head tilts are head rotations within the

plane defined by the torso (head rotation around the

nose).

 Pauses: Pauses (silence) were extracted from the

audio transcription files.

 Smiles: Smiles were annotated using the same

procedure as head nods. If a smile was slowly

decreasing in amplitude and suddenly increased, we

annotated it as a new smile.

While nonverbal behavior was annotated for both answers and

questions, the analysis presented in this paper focuses on

answers annotations. We keep as future work the analysis of

nonverbal behavior during questions.

We define two types of features for each annotated nonverbal

behavior:

 Normalized Duration: Percentage of the time the

nonverbal behavior was active during the answer;

 Normalized Count: Number of times a nonverbal

behavior occurs divided by the length of the answer

(in seconds).

We normalized the duration and count to remove any

confounding effect caused by a big difference of the total

lengths between interviewees’ answers.

The annotation work was done using the ELAN software

(version 3.9.0). We assigned one coder to annotate each

feature, while assigning two coders for head nods and smiles as

these were considered having substantial variation among

coders based on the outcomes of our previous experiment.

The outcome of the inter-coder reliability analysis on head nods

and smiles is presented in the next section.

3.2 Inter-Coder Reliability of Continuous

Nonverbal Behavior Annotation
We calculate reliability between two coders on the annotation

of head nods and smiles. Our calculation is not concerned with

the individuation of gestures (for example whether a certain

time span contains one or two head nods), but only with

whether the annotators agree that at a certain time point a head

nod occurred. We therefore treat the annotations as an

aggregation of individual time slices, and check agreement on

each slice separately. The raw annotations are already digitized

by the maximal resolution of the annotation tool, which is 1

millisecond; for efficient computation we only look at 50

millisecond time slices -- the difference in reliability is

negligible, since head nods and smiles typically last for much

longer than 50ms. Observed agreement between the annotators

was 95% for head nods and 84% for smiles. That is, at 95%

and 84% of the time points, annotators agreed on whether or

not a head nod or smile was present.

65

We correct for chance agreements between the annotators using

Krippendorff's alpha [20], which removes the amount of

agreement expected by chance. Chance-corrected agreement is

60% on head nods and 66% on smiles, showing a good amount

of agreement (the figure is lower for head nods because they

occur less frequently, so a higher amount of agreement is

accountable by chance; overall head nods are marked 7% of the

time, whereas smiles are marked 38% of the time).

There is substantial variation in the reliability of annotation for

the different experiment participants. For head nods, observed

agreement ranges from 86% to 99.8% (median 95%, mean

95%, s.d. 3.5%), and chance-corrected agreement ranges from -

16% to 99% (median 66%, mean 62%, s.d. 25%). For smiles,

observed agreement ranges from 61% to 99.1% (median 84%,

mean 84%, s.d. 9.7%), and chance-corrected agreement ranges

from 17% to 98% (median 67%, mean 65%, s.d. 21%). We

interpret this variation as an indication that both smiles and

head nods are harder to detect on some people than others.

Chance correction for individual participants was always

performed using the expected agreement derived from the

pooled annotation data, because the larger number of

observations is likely to yield a better estimate of the true

amount of agreement expected by chance.

3.3 Intimacy Levels of Interviewees’ Self-

Disclosure

The association between interviewees’ answer intimacy and

their nonverbal behavior was analyzed by categorizing three

levels of intimacy2: Low Intimacy (N = 92), Medium Intimacy

(N = 91), and High Intimacy (N = 177). The Low Intimacy

included “no intimacy (0)” and “lower intimacy (1).” The

Medium Intimacy included “intermediate intimacy (2).” The

High Intimacy included “higher intimacy (3).”

3.4 Results of Single Feature Analysis
We ran One-Way ANOVA to find the pattern of six nonverbal

behaviors associated with three intimacy levels of self-

disclosure: eye gazes, head nods, head shakes, head tilts,

pauses and smiles.

The results showed that there was a significant difference for

Head Nods in Normalized Duration [F(2,357) = 3.216; p =

.041; η2 = .018] for Low Intimacy (M = .088, SD = .167) and

High Intimacy (M = .049, SD = .105). The results also showed

a significant difference for Head Tilts in Normalized Duration

[F(2,357) = 3.569; p = .029; η2 = .020] for Low Intimacy (M =

.039, SD = .062) and High Intimacy (M = .076, SD = .126), as

well as in Normalized Count [F(2,357) = 4.465; p = .012; η2 =

.024] for Low Intimacy (M = .045, SD = .072) and High

Intimacy (M = .080, SD = .122).

The results did not show statistically significant difference for

other nonverbal features.

2 The “N” indicates a total number of subjects’ answers that

falls into each of three categories: Low, Medium, and High

intimacy.

The analysis results are presented in Table 1 and Figure 2.

3.5 Results of Co-occurrence Analysis
We are interested not only in individual features related with

intimacy but also co-occurrence patterns: when two nonverbal

behaviors occur at the same time. We encode these co-

occurrence features the same way as individual features:

 Normalized duration: percentage of the time both

features were active

 Normalized count: number of times both features

were active divided by the answer length.

The results showed that there was a significant difference for

Head Nods & Eye Gazes in Normalized Count [F(2,357) =

3.187; p = .042; η2 = .018] for Low Intimacy (M = .089, SD =

.207) and High Intimacy (M = .042, SD = .106). The results

also showed a significant difference for Head Tilts & Pauses in

Normalized Count [F(2,357) = 4.229; p = .015; η2 = .023] for

Low Intimacy (M = .024, SD = .043) and High Intimacy (M =

.058, SD = .120). The results further demonstrated that there

was a moderate difference for Head Nods & Eye Gazes in

Normalized Duration [F(2,357) = 3.007; p = .051; η2 = .017] for

Low Intimacy (M = .054, SD = .121) and High Intimacy (M =

.025, SD = .070).

The results did not show statistically significant difference for

other nonverbal features.

 Table 1. One-Way ANOVA for single features. Our analysis

 shows significant differences for head nods and head tilts.

 Normalized Duration Normalized Count

 Intimacy

p

Intimacy

p Low Med

ium

High Low Med

ium

High

Eye

Gazes

.476 .415 .408 .186 .438 .338 .352 .118

Head

Nods

.088* .051 .049* .041 .099 .074 .057 .111

Head

Shakes

.066 .092 .092 .362 .038 .055 .059 .291

Head

Tilts

.039* .054 .076* .029 .045* .052 .080* .012

Pauses

.462 .469 .486 .484 .733 .682 .647 .322

Smiles

.233 .300 .271 .358 .162 .167 .159 .974

 *The mean difference is statistically significant by Bonferroni

 Test [28]

66

The analysis results are presented in Table 2 and Figure 3.

There was no statistically significant difference in the patterns

of nonverbal behaviors associated with different intimacy levels

between males and females.

Figure 2. Mean difference of normalized duration for head

nods and head tilts. We can see that head tilts are positively

associated with intimacy while head nods are reduced with

higher intimacy.

Figure 3. Mean difference of normalized count for two co-

occurrence patterns. The first pattern (head nods and

gazes) is inversely correlated with intimacy while the other

pattern is directly associated.

3.6 Discussion
We found that interviewees showed more head tilts when they

disclosed highly intimate information. Furthermore,

interviewees presented more head tilts with silent pauses when

they revealed highly personal information. Hesitant responses

accompanied by pauses were considered unreliable reactions

[11], and may mostly have been presented to avoid feelings of

embarrassment that could happen when someone revealed

intimate information about him or herself. These findings

demonstrate that head tilts and pauses are strong nonverbal

cues that convey high intimacy.

We also found that interviewees presented less head nods.

Head nods are a cue of a positive response in most cultures,

e.g. American culture. We contend that interviewees would

hesitate to show head nods when they disclosed highly personal

N
o

rm
alized

 D
u

ratio
n

N

o
rm

alize
d

 C
o

u
n

t

*

*

*

*

*

*

*

*

Table 2. One-Way ANOVA for co-occurrence features. Our

analysis shows significant difference for the patterns (i) head

nods and eye gazes, and (ii) head tilts and pauses.

 Normalized Duration Normalized Count

 Intimacy

p

Intimacy

p Low Med

ium

High Low Med

ium

High

Head

Nods &

Eye

Gazes

.054* .040 .025* .051 .089* .066 .041* .042

Head

Nods &

Head

Tilts

.003 .003 .001 .384 .006 .007 .003 .293

Head

Nods &

Pauses

.052 .031 .028 .200 .084 .058 .043 .120

Head

Nods &

Head

Shakes

.000 .000 .002 .418 .001 .000 .008 .316

Head

Nods &

Smiles

.019 .017 .013 .770 .035 .043 .018 .328

Head

Tilts &

Eye

Gazes

.013 .016 .025 .128 .026 .032 .048 .260

Head

Tilts &

Pauses

.012 .023 .031 .085 .024* .038 .058* .015

Head

Tilts &

Head

Shakes

.002 .016 .016 .299 .004 .012 .016 .221

Head

Tilts &

Smiles

.011 .020 .021 .553 .016 .022 .029 .384

Head

Shakes

& Eye

Gazes

.033 .040 .039 .790 .030 .046 .046 .436

Head

Shakes

&

Pauses

.028 .028 .034 .741 .031 .044 .052 .251

Head

Shakes

&

Smiles

.015 .044 .033 .151 .016 .030 .029 .445

Smiles

& Eye

Gazes

.100 .117 .106 .810 .138 .120 .118 .776

Smiles

&

Pauses

.065 .083 .083 .543 .119 .124 .123 .986

Pauses

& Eye

Gazes

.116 .108 .129 .522 .290 .241 .242 .394

*The mean difference is statistically significant by Bonferroni

Test

67

information, whereas they would present more head tilts as a

signal of thinking to give appropriate answers in a polite

manner.

Finally, head shakes and smiles were not affected significantly

by intimacy levels of interviewees’ self-disclosure. Head shakes

are described as a feature dependent on accompanying vocal

signals that imply suspicion, dissatisfaction or impossibility,

while presenting “no” without saying it [18]. Therefore, head

shakes are considered a signal of negative responses in most

cultures, e.g. American culture. In the type of an interview

interaction utilized in this study, we argue that it would not be

common for interviewees to show such a negative response

during their interactions with interviewers who were

supposedly strangers to the interviewee. Meanwhile, smiles can

be interpreted in different ways depending on social context.

Smiles are usually perceived as expressions of liking and

acceptance [14,27], whereas some people use smiles to hide

their anxiety in a polite way [26]. Therefore, there is no right

answer to interpret any finding related to the smile feature.

There was no statistically significant difference for the gaze

feature, but, in general, interviewees looked at an interviewer

more when they gave less intimate answers (see Table 1 &

Figure 2). A similar pattern was found in the study by Exline

and his colleagues [13]. They discovered that participants

showed greater gaze toward an interviewer while they gave

answers responding to more innocuous questions compared to

more intimate ones in an interview interaction. We, however,

found that interviewees showed more eye gaze accompanying

head nods while interviewees were giving less intimate

information about themselves (see Table 2 & Figure 3). These

outcomes imply that head nods may be a strong cue

representing low intimacy in communication.

The outcomes demonstrated that interviewees displayed more

head tilts and pauses when they revealed highly intimate

information about themselves; they presented more head nods

and eye gazes during less intimate sharing.

4. IMPLEMENTATION IN A VIRTUAL

HUMAN: Preliminary evaluation
We designed a short online survey to evaluate the effect of

these nonverbal cues (identified in the previous section) with a

virtual counselor. We hypothesized that people would perceive

that a virtual counselor disclosed highly intimate self-disclosure

if the counselor presented head tilts and pauses accompanied by

gaze aversion.

4.1 Online survey design
In the survey, we created a webpage which included a question,

a video clip, and two options to choose (See Figure 4). In the

video clip, a virtual counselor was presented. The counselor

disclosed highly intimate self-disclosure while demonstrating

nonverbal behavior. The virtual counselor’s nonverbal behavior

was composed of head tilts and pauses accompanied by gaze

aversion to represent high intimacy. The gaze aversion was

applied to make the counselor’s nonverbal behavior represent

high intimacy as we found that humans showed mutual gazes

and nods more for lowly intimate self-disclosure.

The final video clip was created after removing the counselor’s

voice so that participants would not know which words were

spoken by the counselor. The video lasted fifteen seconds. As

shown in Figure 4, the participants were instructed to select the

spoken text that best match the nonverbal behavior of the

virtual counselor. Two options were offered: low intimacy

statement (option 1) and high intimacy statement (option 2).
Both options were different from the spoken words by the

original video, to assure that the participants could not guess

based on the lip movement. The text for both options comes

from validated previous work on self-disclosure [22].

Figure 4. Web study layout. Virtual counselor displays the

same nonverbal behaviors identified in our analysis (see

Section 3): head tilts and pauses accompanied by gaze

aversion.

4.2 Participants and Procedure
Fifteen participants (47% women, 53% men) took the survey

voluntarily without any compensation. The participants were

recruited via the email lists of our company and friends. On

average, the participants were 27 years old (M = 27, SD = 5.0).

The participants were given the URL of the survey through an

email. In the survey, participants watched a fifteen second

video clip without audio and were asked to choose the spoken

text that best correlates with the virtual counselor’s nonverbal

behavior shown in the video clip.

4.3 Results
Figure 5 shows the results of our user study. Ten participants

selected the high intimacy statement while only 5 participants

selected the low intimacy statement. Although still preliminary

given the limited number of participants, this result is

promising and gives us guidelines for the large-scale user study

with a fully interactive virtual counselor.

low intimacy

statement

high intimacy

statement

68

5. DISCUSSION AND CONCLUSIONS
Our study of nonverbal behavior in association with intimate

self-disclosure provides future directions for designing virtual

agents who talk about themselves during counseling

interactions. Based on the outcomes of our current study, we

argue that virtual counselors should show head nods and eye

gazes for less intimate self-disclosure and head tilts and pauses

for highly intimate self-disclosure. We contend that virtual

counselors’ intimate self-disclosure accompanying with

appropriate nonverbal behavior will enable human clients to

like their counselors more and create better rapport with them

as was demonstrated by Bickmore and his colleagues [5,6] for

verbal-only self-disclosure.

We presented a preliminary user study based on our findings

related to intimacy and nonverbal behaviors. In the study, we

focused more on finding whether users could perceive a

counselor's "highly intimate" self-disclosure by looking at

his/her non-verbal behaviors and associate the correct statement

with the non-verbal behaviors. Our results are promising and

pave the way for a large-scale user study with an interactive

virtual counselor. For example, human clients will interact with

the virtual counselor in counseling sessions, in which the

counselor will present different types of nonverbal behavior

associated with different levels of intimate self-disclosure. We

also plan a future user study to look at other types of nonverbal

behavior such as body movements, and the co-occurrence of

more than two nonverbal behavioral features will be further

investigated.

6. ACKNOWLEDGEMENTS
This study was funded by the U.S. Army Research,

Development, and Engineering Command and the National

Science Foundation under Grants # IIS-0916858 and IIS-

0917321.The content does not necessarily reflect the position or

the policy of the Government, and no official endorsement

should be inferred.

6. REFERENCES
[1] Altman, I. & Taylor, D. 1973. Social penetration:

Development of interpersonal relationships. Holt

McDougal.

[2] Argyle, M., & Dean, J. 1965. Eye-contact, distance, and

affiliation. Sociometry, 28, pp. 289-304.

[3] Bavelas, J.B., Coates, L., Johnson, T. 2000. Listeners as co-

narrators. Journal of Personality and Social Psychology

79(6), 941-952.

 [4] Bee, N., Wagner, J., André, E., Vogt, T., Charles, F., Pizzi,

D. & Cavazza, M. 2010. Discovering Eye Gaze Behavior

during Human-Agent Conversation in an Interactive

Storytelling Application. In: 12th International Conference

on Multimodal Interfaces and 7th Workshop on Machine

Learning for Multimodal Interaction.

[5] Bickmore, T. 2005. Ethical Issues in Using Relational

Agents for Older Adults. Paper presented at the AAAI Fall

Symposium on Caring Machines: AI in Eldercare,

Washington, DC.

[6] Bickmore, T., Schulman, D., & Yin, L. 2009. Engagement

vs. Deceit: Virtual Humans with Human Autobiographies.

In: Proc. 9th International Conference on Intelligent Virtual

Agents.

[7] Buschmeier, H., Bergmann, K. & Kopp, S. 2010. Adaptive

Expressiveness -- Virtual Conversational Agents That Can

Align to Their Interaction Partner. In: Proc. 9th

International Conference on Autonomous Agents and

Multiagent Systems. Toronto, Canada.

[8] Cassell, J., Pelachaud, C., Badler, N., Steedman, M.,

Achorn, B., Becket, T., Douville, B., Prevost, S., & Stone,

M. 1994. Animated conversation: rule-based generation of

facial expression, gesture & spoken intonation for multiple

conversational agents. In: Proceedings of 21st Annual

Conference on Computer Graphics and Interactive

Technologies SIGGRAPH'94.

[9] Duncan, S. Jr. 1974. On the Structure of Speaker-Auditor

Interaction during Speaking Turns. Language in Society,

3(2), pp. 161-180.

[10] Cacioppo, J. T., Petty, R. E., Losch, M. E., & Kim, H. S.

1986. Electromyographic activity over facial muscle regions

can differentiate the valence and intensity of affective

reactions. Journal of Personality and Social Psychology, 50,

pp. 260-268.

[11] Edinger, J. & Patterson, M. 1983. Nonverbal Involvement

and Social Control. Psychological Bulletin 1983, vol. 93,

no. 1, pp. 30-56.

[12] Ekman, P. 1992. An argument for basic emotions.

Cognition & Emotion 6(3), 169-200.

[13] Exline, R., Gray, D., & Schuette, D. 1965. Visual

Behavior in a Dyad as Affected by Interview Content and

N
u

m
b

er o
f p

articip
an

ts

Figure 5. Results from our user study. Twice as

many participants selected the high intimacy

statement (option 2) over the low intimacy statement

(option 1).

69

Sex of Respondent. Journal of Personality and Social

Psychology 1965, vol. 1, no. 3, pp. 201-209.

[14] Farber, B. 2006. Self-Disclosure in Psychotherapy.

Guilford, New York.

[15] Heylen, D. 2006. Head gestures, gaze and the principles

of conversational structure. International Journal of

Humanoid Robotics, 3(3), pp. 241-267.

[16] Jonsdottir, G.R., Thorisson, K.R., & Nivel, E. 2008.

Learning Smooth, Human-Like Turntaking in Realtime

Dialogue. In: Proceedings of International Conference on

Intelligent Virtual Agent, Tokyo, Japan.

[17] Kang, S. & Gratch, J. 2010. Virtual Humans Elicit

Socially Anxious Interactants’ Verbal Self-Disclosure.

Journal of Computer Animation and Virtual Worlds, 21(3-

4), pp. 473-482.

[18] Knapp, M. & Hall, J. 2010. Nonverbal Communication in

Human Interaction. Wadsworth | Cengage Learning,

Boston.

[19] Kraemer N. C. 2008. Human behavior in military contexts,

chap. Nonverbal Communication, pp. 150-188.

Washington: The National Academies Press.

[20] Krippendorff, K. 2004. Content Analysis, an Introduction

to its Methodology, 2nd Edition. Thousand Oaks, CA: Sage.

[21] Mattman, M., Gratch, J., & Marsella, S. 2005. Natural

behavior of a listening agent. In: Proceedings of

Interactional Conference on Intelligent Virtual Agents,

Kos, Greece.

[22] Moon, Y: Intimate exchanges 2000. Using computers to

elicit self- disclosure from consumers. Journal of

Consumer Research, Vol. 26, No. 4, 323-339.

[23] O’Leary, M. & Gallois, C. 1985. The last ten turns:

Behavior and sequencing in friends’ and strangers’

conversation findings. Journal of Nonverbal Behavior 9(1),

Spring 1985, Human Sciences Press.

[24] Pelachaud, C. 1996. Simulation of face-to-face interaction.

In: Proceedings of the workshop on Advanced Visual

Interfaces, pp. 269-271, Gubbio, Italy.

[25] Philippot, P., Feldman, R., & Coats, E. 2003. The Role of

Nonverbal Behavior in Clinical Settings. In: Philippot, P.,

Feldman, R., & Coats, E. (eds.) Nonverbal Behavior in

Clinical Settings. Oxford University Press, New York.

[26] Tickle-Degnen, L. & Gavett, E. 2003. Changes in

nonverbal behavior during the development of therapeutic

relationships. In: Philippot, P., Feldman, R., & Coats, E.

(eds.) Nonverbal Behavior in Clinical Settings. Oxford

University Press, New York.

[27] Trees, A. & Manusov, V.: Managing Face Concerns in

Criticism Integrating Nonverbal Behaviors as a Dimension

of Politeness in Female Friendship Dyads,

http://onlinelibrary.wiley.com/doi/10.1111/j.1468-

2958.1998.tb00431.x/pdf.

[28] Tabachnick, B. & Fidell, L. 2001. Using Multivariate

Statistics. Allyn & Bacon.

70

A Sequential Recommendation Approach for Interactive
Personalized Story Generation

Hong Yu and Mark O. Riedl
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{hong.yu, riedl}@cc.gatech.edu

ABSTRACT
In story-based games or other interactive story systems, a
Drama Manager is an omniscient agent that acts to bring
about a particular sequence of plot points for the user to
experience. We present a Drama Manager that uses play-
er modeling to personalize the user’s story according to his
or her storytelling preferences. In order to deliver personal-
ized stories, a Drama Manager must make decisions on not
only which plot points to be included into the unfolding s-
tory but also the optimal sequence of the events the user
should experience. A prefix based collaborative filtering al-
gorithm based on users’ structural feedback is proposed to
address the sequential selection problem. We demonstrate
our system on a simple interactive story generation system
based on choose-your-own-adventure stories to evaluate our
algorithms. Results on human users and simulated users
show that our Drama Manager is capable of capturing user-
s’ preference and generating personalized stories with high
accuracy.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—games, Industrial automation

General Terms
Algorithms, Design

Keywords
Interactive story generation, drama manager, player model-
ing, prefix based collaborative filtering

1. INTRODUCTION
Computer games use story to motivate player activity and

to create a sense of causal continuity across a series of chal-
lenges [15]. While stories in games are often linear, progres-
sively more games and virtual simulated environments allow
variability in the story. A Drama Manager (DM) is an om-
niscient agent that monitors the virtual world in which the
user is immersed and acts to determine what happens next
in the player’s story experience, often coordinating and/or

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

instructing virtual characters [1]. In short, a Drama Manag-
er is an agent that reasons about and attempts to enhance
the user’s experience in a virtual world.

Prevailing approaches to Drama Management develop a-
gents that select successive plot points in response to player
actions [9, 20, 14, 13, 7, 8]. In these systems, the DM is
a surrogate for the human designer who provides some for-
m of high-level specification for a “good” story experience.
Although these action-response systems may improve play-
er enjoyment, DM decisions do not take into account the
user’s preferences. We argue that the DM must also be a
surrogate for the user by taking into consideration the user’s
preferences; the DM should model and act on the user’s in-
dividualistic preferences do deliver optimized, personalized
experiences.

Player modeling is a widely applied technique in computer
games to capture users’ preferences in order to increase en-
joyment and reduce frustration and boredom [3]. Previous
approaches to player modeling in story-based games have
attempted to optimize player experience by classifying play-
ers according to well-defined player types [10, 4, 18]. and
using pre-defined mappings of classes to plot point selection
rules. These approaches require a designer to pre-determine
the meaningful player types, even though there is no clear
evidence of links between player types models and prefer-
ences for story content. User modeling can be cast as a rec-
ommendation process and collaborative filtering (CF) has
been successfully applied to modeling user preferences over
movies, products, books, music, etc [17]. Collaborative fil-
tering algorithms attempt to detect users’ rating “patterns,”
extract similarities between users’ patterns, and make pre-
dictions of new user’s ratings based on previous ratings from
the users who share similar patterns. Collaborative filtering
can be applied to the problem of selecting the plot point to
occur next in a game, although to the best of our knowledge
CF has not previously been used for Drama Management.

The techniques described above—player type classifica-
tion and collaborative filtering— make one-shot recommen-
dations and/or decisions. Unfortunately, stories are sequences
of plot points and a player’s assessment of the story he or
she is experiencing is thus a function of the history of plot
points experienced so far. In this paper, we present a novel
approach to player modeling in games to select the most op-
timal sequence of plot points in a game: Prefix Based Col-
laborative Filtering (PBCF), which learns user preferences
over fragments of story and then applies it to the Drama
Management problem of selection of successive plot points
in a game.

71

As a form of collaborative filtering, PBCF is a robust ap-
proach to player modeling in story-based computer games
that uses machine learning to learn the most appropriate
dimensions for the model from structured feedback—i.e.,
ratings of previously played story content. Player models
can be built without making rigid assumptions about the
model dimensions and those models will be more capable of
describing, distinguishing, and capturing users’ preferences.
We show how a DM agent can make more effective decisions
about how to act on the world for the benefit of the user,
essentially optimizing the player’s game experience. It is not
enough to make a local decision about what should happen
next in a game; a DM must determine the best possible fu-
ture sequence of events the user should experience based on
all previous events. Therefore, our DM agent, using PBCF,
learns preferences over sequences of story events.

Our contributions are as follows: We (1) propose a new al-
gorithm, PBCF, that performs sequential recommendation;
(2) build a flexible and robust preference model that does
not rely on assumptions about the model dimensions; (3)
incorporate the preference model into the Drama Manager
which is allowed to select plot points based on users’ pref-
erences instead of user actions.We evaluate the algorithm
in a simplified testbed domain based on Choose-Your-Own-
Adventure book serials1 using human users and simulated
users.

2. RELATED WORK
Drama Manager agents have been widely used to guide the

users through an expected story experience set by designers.
Two approaches to drama management—search-based dra-
ma management [20, 9, 16] and declarative optimization-
based drama management [14, 2]—transform the problem
of selecting the next best plot point into a search problem
where the DM searches for possible future histories of plot
points based on an evaluation function set by the designer.
The Façade interactive drama [8] uses a reactive plot point
selection technique to determine the next set of behaviors
for two virtual characters. Riedl and colleagues [13] use a
partial-order planner to re-plan a story when the user per-
forms actions that change the virtual world in ways that
prevent story progression as expected. Similarly, Porteous
and Cavazza [11] use a planner with designer-provided con-
straints to control virtual characters and push a story for-
ward. A DM by Magerko et al. [7] predicts player actions
and attempts to prevent story failures by directing virtual
characters to perform actions or change goals. These Dra-
ma Management techniques all respond to player actions to
move the story forward in a way partially or completely con-
ceived by a human designer. That is, the DM is a surrogate
for the human designer.

Relatively little work has been done to determine how a
story should unfold in a game or virtual environment based
on player models. The PaSSAGE system [18] automatically
learns a model of the player’s preference through observa-
tions of the player in the virtual world, and uses the model
to dynamically select the branches of a Choose-Your-Own-
Adventure style story graph. PaSSAGE uses Robin’s Laws
five game player types: Fighters, Power Gamers, Tacticians,
Storyteller, and Method Actors. A player is modeled as a
vector where each dimension is the strength of one of the

1http://en.wikipedia.org/wiki/Choose Your Own Adventure

types. As the player performs actions, dimensions are in-
creased or decreased in accordance to rules. Peinado and
Gervás [10] use the same player types. Seif El-Nasr [5] us-
es a four-dimension player model: heroism, violence, self-
interestedness, and cowardice. These player modeling tech-
niques assume players can be classified according to several
discrete play styles and that, even with continuous charac-
teristic vector combining the discrete user styles, optimal
story choices can be made by a DM. These systems fur-
ther assume that role playing game player classifications (or
ad-hoc types) are applicable to story plot choices. In ad-
dition, these systems assume that plot points could be se-
lected in isolation from each other based on a comparison
between their attributes and the player model. In this pa-
per, we propose a collaborative filtering based player model-
ing approach that learns player model dimensions from user
feedback—ratings—and further solves sequential plot point
recommendation/selection problems.

Roberts, et al. [14, 2] developed an algorithm, Target-
ed Trajectory Distribution Markov Decision Process (TTD-
MDP), to solve non-Markov Decision Processes by wrapping
all the previous MDP states into one node of a trajectory
tree. Their objective was to produce probabilistic policies
for the trajectory tree that minimize divergence from a tar-
get distribution of trajectories. They apply their process to
declarative optimization-based drama management by mod-
eling stories as state space trajectories. TTD-MDPs require
a target distribution across trajectories/stories. Further, as
a reinforcement learning technique, it must simulate a user.
While the simulated user may utilize a player model, that
model would need to first be acquired. Our approach learns
the player model and does not require a target distribution
over trajectories.

3. PREFIX BASED COLLABORATIVE FIL-
TERING

A story can be decomposed into a sequence of plot points,
which usually represent single events or tasks in the story.
In a interactive story-based game or virtual world, a Drama
Manager is in charge of which plot points to be presented to
the users and in what order. This is a NP complete problem
given all the plot points. To address this, temporal and
semantic constraints are imposed among these plot points to
reduce the size of the story space [20, 9]. When constraints
are known, a branching story graph containing the possible
successors to each plot point can be built automatically or
by hand. The question a DM must answer is: what is the
best path in the branching story graph for an individual
user? By answering the quest with a player model, we aim
to create an optimal experience for the a particular user.

The architecture of our Drama Manager system is illus-
trated in Figure 1. The DM has an existing story library or
database which contains all possible story permutations, as
described in the next section. The DM obtains the current
system states from the interactive system interface. Then
the best path is selected by the DM according to the player
model, which is built entirely based on player feedback.

3.1 Story Representation
A branching story graph is a representation that specifies

which plot points are allowed to follow other plot points.
For the purposes of a Drama Manager agent, it provides

72

Interac�ve System

Interface

Player

Model

Player

Feedback

Story Library

User

DM

System

States

Next Plot

Point

Figure 1: The architecture of the interactive story
generation system.

(a) (b)

1 2 3 4

56

A

B

1

1, 2

DC 1, 2, 31, 2, 6

GF 1, 2, 3, 4 1, 2, 3, 5E 1, 2, 6, 5

Figure 2: (a) Branching story graph of a simple s-
tory library which contains three stories. (b) The
prefix graph of the story library.

the set of options for the next plot point at any given time.
Figure 2(a) illustrates a very simple branching story graph,
where nodes represent plot points and links represent pos-
sible alternative successors. While simple, many other plot
representations are reducible to the branching story graph
representation [12, 14]. A story is a path through the graph
starting at the root node and terminating at a leaf node. Fig-
ure 2(a) contains three complete, possible stories ({1,2,3,4},
{1,2,3,5}, {1,2,6,5}). Note that the branching story graph
is usually a graph instead of a tree.

We transform it into a prefix graph as in Figure 2(b). In
the prefix graph, each node represents a prefix of a story.
The children of a node are those prefixes that can directly
follow the parent prefix. Apparently, the prefix graph will
be a tree or forest since any prefix cannot have more than
one parent node. In our system, only the prefix graph is
stored in the story library.

In our approach, we ask users to rate the “story-so-far”—
the portion of the story that they have observed leading up
to the current point in time. Notice that it is easier and
more accurate for the users to rate the story-so-far instead
of each new plot point since history matters in stories. Be-
cause the branching story graph has been transformed into
a prefix graph, the rating is stored with the prefix that cor-
responds to the story-so-far. Further, the system does not
need to solve a credit assignment problem as in reinforce-
ment learning to determine how much of a final rating each
plot point is responsible for.

3.2 Player Modeling
Different users can different preference over stories. We

aim to extract the dimensions of these preferences from the
users’ ratings instead of constraining ourselves to a few pre-

Prefix User 1 User 2 User 3 …

A (1) * * 2 …

B (1, 2) 1 * 2 ….

C (1, 2, 6) * * * …

D (1, 2, 3) 4 3 * …

… … … … …

Figure 3: Illustration of the prefix-rating matrix. A,
B, C and D represent the prefixes. The larger the
digital number, the higher the preference. The stars
represent those missing ratings.

defined dimensions as in prior works by Thue et al., [18],
Peinado et al. [10], and [4]. The basic assumption of our
player modeling algorithms is that those people who share
similar preference in the past tend to share it again in the
future, hence we use a form of collaborative filtering.

Unlike in traditional recommendation systems, where col-
laborative filtering is usually used as one-shot recommen-
dation of content based on preferences, we must solve the
problem of sequences of recommendations where the order
of plot points matters. In other words, the story generation
can be viewed as as a non-Markov Decision Process, where
at each step the DM’s selection of optimal next plot point is
based on all previous plot points. For example, if the story
prefix {1, 2, 3} has been presented to the user (node D in
Figure 2(b)), then the DM’s next selection should be based
on all the user’s ratings on previous three prefix nodes (A, B,
and D). A user who leaves positive feedback on node B and
negative feedback on node D should be different from anoth-
er one who leaves negative feedback on both node B and D.
A prefix based CF approach is proposed to model players in
a way that allows non-MDP problems to be solved. While
other techniques similarly roll history into state nodes, as
in our prefix trees and equivalent structures in TTD-MDPs
[14, 2], our approach uses structured feedback to guide tree
navigation, inferring ratings when feedback data is sparse.

In this paper, stories are presented to the user plot point
by plot point and a preference rating for the story-so-far is
collected after every plot point. Then a prefix-rating matrix
including the story prefix ratings from all users can be ob-
tained. A n by m prefix-rating matrix contains the ratings
for n prefixes from m users. One column of the matrix rep-
resents all the ratings of the corresponding user for the all
the prefixes. One row of the matrix represents ratings for
the corresponding prefix from all the users. Figure 3 shows
a simple illustration of the prefix-user matrix. The matrix
is usually very sparse, i.e. containing a lot of missing rat-
ings, because there is no way of expecting any given user
to have read and rated all the prefixes in the library. The
prefix-user matrix is treated as the product-user matrix as
in traditional CF [17].

Two collaborative filtering learning algorithms are tested
in this paper: probabilistic Principle Component Analysis
(pPCA) [19] and Non-negative Matrix Factorization (NMF)
[6, 21]. Next we briefly introduce the two algorithms and
their application in our player modeling.

3.2.1 Probabilistic PCA
For a n dimensional vector r, probabilistic PCA assumes

73

that it can be factorized as follows:

r = Wx + µ + ǫ (1)

where x is a n′ dimensional vector in the hidden or reduced
dimension space (usually n′ < n) and W is a n by n′ matrix.
µ is the mean vector which permits r to have nonzero mean.
ǫ ∼ σ2I is the Gaussian noise.

Let the vector r be any one column of the prefix-rating ma-
trix. pPCA projects the corresponding user’s prefix-rating
vector into the hidden space or the reduced dimension s-
pace x just as in traditional principle component analysis.
The hidden space vector x models the corresponding user’s
preference type. Note that from Equation 1 we can get:

r|x ∼ N(Wx + µ, σ2I) (2)

Thus the basic assumption of pPCA algorithm is that the
user’s prefix rating vector (the column of the prefix-user ma-
trix) obeys a multi-dimensional Gaussian distribution.

If the prefix-user matrix contains missing values, the EM
algorithm can be used to compute W and σ [19]. The hidden
space vector x can then be computed from the observed
ratings, and the missing ratings can be estimated with W ,
σ and x.

3.2.2 Non-negative Matrix Factorization
The purpose of NMF is to factorize an n by m matrix R

as follows:

R = W ∗ H (3)

where W ∈ Rn∗m′
and H ∈ Rm′∗m are two non-negative

matrices (usually m′ < m). Non-negative here means that
all the entries in the matrix are greater than or equal to
zero. If R contains missing values, the EM algorithms can
be used to compute W and H [21]. Then the missing values
in R are recovered using the estimated W and H.

If R is the prefix-rating matrix (n prefixes and m user-
s), the m′ columns of the matrix W , wj j = 1, ...m′, can
be viewed as a set of bases that represent different types
of users. Then hi, the ith column of H, will correspond to
the ith user’s preference. In practice, it will be difficult to
interpret the player types that correspond to each hi. How-
ever, if we have prior knowledge about some preference types
(e.g., fighter, tactician), that is, we know their ratings for
all the prefixes (e.g., fighter’s rating vector wf , tactician’s
rating vector wt), then the matrix W can be seeded with
the rating vectors (wf , wt) as fixed columns. Simulated
experiments in Section 4 shows that such prior can indeed
increase player modeling accuracy when they are known to
accurately distinguish users with regard to stories.

3.3 Player Modeling Processes
The entire Drama Management system is composed of two

phases: model training and story generation. In the model
training phase, the process can be summarized as follows:

1. Build the story library storing the prefix forest.

2. Collect data and populate the prefix-rating matrix R.

3. Compute the player model parameters: W , σ and µ
for the pPCA, or W for NMF.

For a new user, after we get some initial ratings r from
him or her, the story generation phase is as follows:

1. Model the new user’s preference using r through com-
puting x for pPCA, or h for NMF.

2. Calculate the full rating vector r′ (with no missing
values) from x using Equation 1 or Equation 3.

3. Select the highest rated full-length story that is a
descendant of the current prefix in the prefix graph.
Present the corresponding next plot point in the se-
lected full-length story.

4. Collect user’s rating on the story-so-far (i.e., the rec-
ommended prefix).

5. Include the new rating into r and go to step 1.

Note that it is not necessary to collect ratings after each pre-
fix in the story generation phase; we do it in our system for
the purpose of collecting as much data as possible to build
a more accurate player model. With every new rating, the
DM will get better understanding of the current user’s pref-
erence and recommend next prefixes with higher confidence.

4. EVALUATION AND RESULTS
Based on the theory that all interactive systems can be

translated into a branching story graph, we built a simple
interactive storytelling system that can automatically guide
the user through a particular branching path. The system
presents the stories to the user one plot point by one plot
point. After every plot point, it asks the user for the prefer-
ence rating on the story-so-far. Instead of the user choosing
the branch, the system then recommends the next branch
by some means (using our model, or random). In the sys-
tem, the ratings are digital integers ranging from 1 to 5.
While our test bed is simple compared to modern computer
games, it represents the fundamentals of other Drama Man-
agers. By limiting player interaction to providing ratings of
the story-so-far we aim to control the experimental variable
of player agency to further facilitate validation of our pref-
erence model. We have performed two sets of experiments:
on human users and on simulated users.

4.1 Story Library
The story library is built through transcribing the stories

from four Choose-Your-Own-Adventure books—The Abom-
inable Snowman, Journey Under the Sea, Space and Beyond,
and The Lost Jewels of Nabooti—all of which are adventure
stories. Every book contains a branching story tree. At the
end of each page in the book, the reader is presented with
a multi-choice question, the answer to which leads the read-
er to different pages of the book to continue down different
branches of the story. Figure 4 shows the branching story
graph from one of the books.

We chose to transcribe Choose-Your-Own-Adventure book-
s to control for story quality, as opposed to authoring stories
ourselves. In the system, every story is pruned and tran-
scribed to contain exactly six plot points2. As in Figure 2,
these branching story graphs are transformed into the prefix
graphs which are stored in the story library. Thus our story
library is a forest containing 154 possible stories (about 1000
words per story) and 326 prefixes.

2We do this for implementation purpose. It is not necessary
for every story to contain exactly the same number of plot
points; our system can be easily extended to handle stories
of varied number of plot points.

74

55

5

4

1

14

13

8

10

7

4543

3132

15 20

9

9591

8077

6258

110

81 82

1

1

103

101

78

76

60

109

9896

33

64

46

21

102

104

23

59

47

34

22

100

57

73

75 67

69

76

65

50

55

68

49

48

38

112

107

26

11437

8786

24 27

99

8385

16

2928

19

113

7270

6351

11640

92

97

90

52 54

4239

Page #

Figure 4: Illustration of the branching story rep-
resentation of stories in The Abominable Snowman.
The nodes in the graph represent pages in the book
(plot points). Every story start from the root node
and end on one of the leaves.

4.2 Experiments with Human Users
We conducted an evaluation of our system on human user-

s. The evaluation consisted of two phases: model training,
and story generation testing. In the model training phase,
31 users have participated in the experiments (18 male and
13 female). 26 of them are college graduate students and
the other 5 users are research scientists and staff. All the
users who have never read the choose-your-own-adventure
stories are given a sample adventure story which is out of
the story library to familiarize themselves (five out of the
31 users have been exposed to choose-your-own-adventure
series before the experiments).

Every user in the training phase read ten stories randomly
selected from the library. A random story is a random walk
from a root of any tree in the forest to a leaf node. Each
story is presented to the user one plot point at a time and
a rating is collected after every plot point. The experiment
took about half an hour for each player. We obtain a 326
by 31 prefix-rating matrix R with ∼ 86% ratings missing.

We computed the Root Mean Square Error (RMSE) in
order to get the best parameters for model training. The
prefix-rating matrix R is randomly split into training part
Rt which contains 90% of the ratings, and validation part
Rv which contains the remaining 10% of the ratings. Note
that Rt and Rv are still the same dimension as the original
matrix R and both of them contains missing values. We
train the NMF and pPCA on the training set Rt with dif-
ferent parameters. The resulting models are used to predict
the ratings in the validation matrix. The Root Mean Square
Error (RMSE) can be computed as follows:

RMSE =

√
1

|O|
∑

i,j∈O

(Rv
ij − Rv′

ij)2 (4)

where Rv′
is the predicted validation matrix, O is the set of

entries indices that are not missing in the validation matrix
Rv and |O| is the number of entries that are not missing
in Rv. The random splitting process is repeated for ten
times and the average RMSEs on the validation sets are

Algorithms RMSE
NMF dim3 1.2423
NMF dim4 1.1781
NMF dim5 1.1371
NMF dim6 0.9901
NMF dim7 1.1108
NMF dim8 1.1354
NMF dim9 1.2464

pPCA 1.2016

Table 1: The average RMSE for different parameter-
s of NMF and pPCA algorithms. NMF dimi means
NMF algorithm with the number of player styles
(number of columns of the matrix W) i.

Random Personalized Accuracy p-value
All 2.9449 3.8899 0.828 < 0.0001

Existing 3.032 4.035 0.863 < 0.0224
New 2.8993 3.8138 0.809 < 0.0001

Table 2: The average ratings for the random and
personalized full-length stories. The accuracies are
the percent of pairs in which the average rating of
the personalized stories is larger than the average
rating of the random stories.

reported in Table 1. The dimi in the table mean the number
of columns of the matrix W in Equation 3 is i. The RMSEs
in the table suggest that there are probably six types of users
in current training set when it comes to story preferences.

Another 22 graduate students (17 male and 5 female) were
recruited for the second phase: testing of the model’s ability
to predict ratings. This phase is divided into four steps. In
the first step, the users read five random stories and leave
ratings after every plot point, as in the training phase. In
the second step, the DM starts to choose new personalized
stories and branches according to the users’ ratings and the
player models built in the training phase. The final NMF
and pPCA models are trained on the entire prefix-rating
matrix R with the best parameters which correspond to the
least RMSE. These personalized stories are presented to the
users plot point by plot point in the same way as the first five
random stories and the users’ ratings after every plot point
are collected. Then, as in Sharma et al. [16], the DM then
presents another five personalized stories in the third step,
followed by five random stories in the last step in order to
eliminate any prejudice introduced by the order in which the
stories are presented to the users. Thus, every user in the
testing phase is required to read 20 stories (10 total random
stories and 10 total personalized stories).

For comparison of model performance on new users versus
existing users, we also invited 11 participants from the train-
ing phase back to also participate in the validation phase.
The experiment process is exactly the same as above. Ta-
ble 2 shows the results for the new users and existing users
when the player model is trained with NMF algorithms set
for six dimensions (the variant with the lowest RMSE).

Results are shown in Table 2, the first line exhibits the s-
tatistical results on all the 32 testing users. The second line
and the third line give the results of the 11 users from the

75

training group and the 21 users out of the training group
respectively. The first column “Random” and the second
column “Personalized” show the average ratings of all the
random and all the personalized stories in the story gener-
ation phase respectively. For every user in the story gen-
eration phase, we also compare the pair of average story
ratings from the first step and the second step, and the pair
of average story ratings from the third and the fourth step.
The “Accuracy” column shows the percent of pairs in which
the average rating of the personalized stories is larger than
the average rating of the random stories, indicating the DM
correctly choosing preferred stories. The last column shows
the significance of the difference between random and per-
sonalized averages using a one-tailed t-test.

4.3 Experiments with Simulated Users
In order to establish more complete analysis on PBCF, we

also conducted experiments with simulated users. Simulated
users are more consistent over time, allowing us to make
observations about our algorithm on a controllable data set
to study its capability. Note that it is not necessary for
the simulated users actually being good imitations of the
human users’ preferences. Instead, as long as the simulated
users are consistent, they can be used to experiment with
the capability of our system to capture users’ preference and
build user models. In addition, we can get as much rating
data as we need from simulated users.

The simulated users are built based on the Robin’s Laws
player types, which assumes there are five types of player-
s for games: Fighters (who prefer combat), Power Gamers
(who prefer gaining items and riches), Tacticians (who prefer
thinking creatively), Storytellers (who prefer complex plots)
and Method Actors (who prefer to take dramatic action-
s) [18, 10]. Every simulated user is assigned with a five-
dimensional characteristic vector. Each entry of the vector
(ranging from 0 to 1) specifies the corresponding characteris-
tic of the simulated user. For example, vector [0.8, 0, 0, 0.6, 0]
means the simulated user is a combination of fighter and s-
toryteller and tends to enjoy fighting a little more.

To run experiments with simulated users, all story prefix-
es in our database were labeled according to Robin’s Laws
player types. The labeling of prefixes was performed by
three college students, one of whom is an author on this
paper. To mitigate bias, the label for each prefix is the av-
erage label produced by each of the human labelers. Thus
each prefix label is a five-dimensional vector, where each ele-
ment expresses the average belief about how the story-so-far
matches players of different types.

We assume that a simulated user of a particular type ac-
cording to the Robin’s Laws player types tends to prefer
a story or story prefix that most closely matches the us-
er’s type. For example, a simulated user with characteris-
tic vector u = [0.8, 0, 0, 0, 0] will prefer for a story prefix i
with label pi = [1, 0, 0, 0, 0] over a story prefix j with label
pj = [0, 1, 0, 0, 0]. Consequently, we assume that the rating
r of a simulated user u for a prefix p is proportional to co-

sine distance between the vector u and p: r ∼ uT p
|u||p| . In

practice, the ratings are computed by scaling the cosine dis-
tances to between 1 and 5. In addition, we add random noise
with standard Gaussian distribution (mean 0 and variance
1) to all the ratings in order to simulate the human user
case where it could be inaccurate for the human users to
quantitate preference into digital labels.

During the model training phase of the experiments, we
generate 120 simulated users with characteristic vectors ran-
domly chosen from {[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0,
0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]}. Each simulated user then
reads 10 random stories and leaves a preference rating after
every plot points as human users. A 326 by 120 prefix-rating
matrix is populated at the end of the model training phase.

The testing phase is divided into four steps that are exact-
ly the same as the human user’s experiment story generation
phase. In every step each simulated user is required to read
five random or personalized stories. To test the generaliza-
tion ability of our algorithm, a new group of 1000 simulated
users are used in the testing phase. Each is assigned with a
random characteristic vector (the five entries of the charac-
teristic vector are values ranging from 0 to 1).

For the purpose of comparison, we implement all the fol-
lowing algorithms:

• BaselineP : pPCA is used to learn the player models
from simulated users’ ratings on full-length stories in-
stead of prefixes, then directly recommends the full-
length stories instead of choosing branches through
recommending prefixes. This algorithm behaves simi-
lar to a traditional movie recommendation system where
full-length movies are recommended based on others’
ratings on the full-length movies.

• BaselineN : The same as BaselineP except using NMF.

• Vector : A vector based player modeling algorithm that
is similar to the model learning technique used by Thue
et al. [18]. A vector that simulates a player starts out
as [0, 0, 0, 0, 0]. For every plot point encountered, the
DM updates the characteristic vector based on the fea-
tures of the current story prefix including the new plot
point. The DM generates successive plot points by rec-
ommending the following prefix based on the updated
user vector, or chooses randomly when there is no clear
preference.

• pPCA: The prefix based algorithm using pPCA, same
as with the human users.

• NMFwoP : The prefix based algorithm using NMF with-
out prior knowledge, same as with the human users.

• NMFwP : The prefix based algorithm using NMF with
Robin’s Laws player types as prior knowledge as dis-
cussed in Section 3.2.2. In the case of simulated users,
we can compute the correct rating vector wj for each
known player type j, where j = 1, ...5 correspond to
the five player types in the training phase. Then these
vectors wj can be included into the matrix W in E-
quation 3 as fixed columns during training process.

The experiment results for these algorithms on the 1000 test-
ing simulated users are shown in Table 3. The results are all
statistically significant at p-values approaching zero (using
one-tailed t-tests on random and personalized averages) due
to the large number of testing users.

It is interesting to explore the learning speed of the player
model as the number of stories read in every step changes,
which was set to 5 for testing with human and synthetic
users. Figure 5 shows the average accuracies of 1000 simu-
lated users for different algorithms as the number of stories
read in every step changes. As shown in the figure, the NM-
F algorithms can achieve accuracies higher than 70% even
when one new simulated user reads only one story.

76

Algorithm Random Personalized Accuracy
BaselineP 2.2190 2.5305 0.668
BaselineN 2.1752 2.4582 0.643

Vector 2.2010 2.8335 0.617
pPCA 2.2350 2.9607 0.798

NMFwoP 2.2362 3.3950 0.894
NMFwP 2.2013 4.0027 0.949

Table 3: The testing results for the simulated users
using several variations of the DM algorithm.

1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Random/Customized Stories

A
c
c
u
ra

c
y

pPCA

NMFwoP

NMFwP

Vector

BaselineP

BaselineN

Figure 5: The accuracies of the six algorithms as the
number of stories read in every step changes.

We also test the influence of the training set size on the
player model training process. Figure 6 shows the average
RMSEs of the three prefix based algorithms with different
number of simulated users for training. Each RMSE value in
the figure is an average computed from 10 random splittings
of the training data. As seen from the figure, the training
RMSEs decrease as the the training set size grows. Due to
the Gaussian noise in the rating data, the RMSE values for
the NMFwP algorithm become stable after the number of
training users goes above 100 even if it has the perfect prior
knowledge of the player models.

4.4 Discussions
Both the experiments on human users and simulated user-

s achieve high story generation accuracies on the current
Choose-Your-Own-Adventure data set for the prefix based
algorithms. We observe that over 80% of the time, new hu-
man users will rate DM-generated stories higher than ran-
dom stories. We achieve this rate after the new users have
only rated 5 sample stories. The accuracy of about 86% is
achieved when the testing users’ data are already part of
the trained model. The average ratings for the personal-
ized stories are higher than the random stories. The results
show that our prefix based player modeling algorithms can
capture the users’ preference and generate new stories with
high confidence.

Even with Gaussian noise added to the synthetic ratings,
our player modeling algorithms achieve higher accuracies on
the simulated users than on the human users. Although from
the learning process we know that there does exist features
of story rating behavior that are predictive of future rating
behavior, it is still difficult if not impossible to interpret

20 40 60 80 100 120 140 160

0.8

1

1.2

1.4

1.6

1.8

2

Number of Users in Training Phase

R
M

S
E

NMFwP

NMFwoP

pPCA

Figure 6: The average RMSEs of the three prefix
based algorithms with different number of simulated
users for training.

these features. We do not believe that these features are as
clear cut as Robin’s Laws player types, Seif El-Nasr’s types,
or other factorized personality models. The preference types
of human users should be more complicated than the linear
combinations of several presumed categories, which is also
the reason to build the player models from data instead of
constraining ourselves to a few pre-defined dimensions.

For the simulated users, the NMF algorithm usually per-
forms better than the pPCA algorithm which could due to
our linear model assumption for the simulated users. The
linear characteristic model for simulated users coincides with
the basic assumption of the NMF algorithm, which also as-
sumes that users (columns of the matrix R in Equation 3)
are linear combinations of a set of bases (columns of the ma-
trix W in Equation 3). Although NMF is a natural fit for
the synthetic users, it is also superior to pPCA for human
data in terms of RMSEs in our experiments.

Figure 5 shows that the prefix based algorithms can ac-
quire player preference much faster than applying traditional
CF algorithms directly on full-length stories (baseline algo-
rithms BaselineP and BaselineN). The main reason is that
the prefix based algorithms can obtain more preference in-
formation (the ratings on all the prefixes) from users than
the baseline algorithms in both model learning and story
generation phases. It also demonstrates that these ratings
on prefixes do strongly correlate with users’ preference and
can help to improve player models. The figure also shows
that the Vector approach learns the player model much slow-
er than our algorithms and is thus less accurate on average.
This is because the Vector approach cannot acquire any in-
formation from the training data.

Although there are only 154 full-length stories and 326
prefixes in the story library, the well-known scalability of col-
laborative filtering algorithms suggests that our algorithms
can be extended to handle larger scale problems as long as
we have enough rating data. In traditional recommendation
systems, CF algorithms can easily process products-user ma-
trix with dimension of hundreds of thousands and achieve
high recommendation accuracies [17]. The number of pre-
fixes could be exponential in the number of plot points. But
in practice we can effectively add constraints between plot
points to limit the size of the prefix database. Notice that in
our system, the number of total prefixes grows linearly with

77

the number of total stories given a limit of maximum num-
ber of plot points in each story because of the constraints
imposed by the branching story graph representation.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a PBCF algorithm to address

the sequential recommendation problem. The player models
built with the PBCF algorithm enable the Drama Manager
to make successive story choices on behalf of the users. We
examine the algorithm in a simple interactive story gener-
ation system built with choose-your-own-adventure series.
The evaluation results on both human users and simulated
users demonstrate that our algorithm is able to capture the
users’ preference and generate stories with high confidence.

Although the current system is simple, it represents one
of the most important fundamentals of Drama Managemen-
t: delivering new stories based on a pre-authored library of
legal stories through player modeling. Although player mod-
eling techniques in Drama Management has not been widely
explored, we believe that it is an essential part of building an
agent that is responsible for optimizing the player’s experi-
ence in a game or virtual world. Our approach combines the
robustness of machine learning with intuitions about the se-
quential nature of stories. The Drama Manager agent built
in this way is capable of generating personalized stories and
guiding the users through a better experience.

There are many avenues for future work. A larger story
space is required to verify the scalability of our algorithm-
s. The experiment results on simulated user show that prior
knowledge does help to increase the accuracies. It will be in-
teresting to investigate how to include prior knowledge in the
case of human users. Furthermore, the player choices and
other unstructured feedback are still missing in the current
system. The DM operates like a story generator in current
system, although we implement this as a control to validate
the algorithm. When the algorithm is placed in a full vir-
tual world that supports human player choice, then other
well-known techniques for managing player choice, such as
re-planning [13] can be added to the player modeling.

6. REFERENCES
[1] J. Bates. Virtual reality, art, and entertainment.

Presence: The Journal of Tele-operators and Virtual
Environments, 1(1):133–138, 1992.

[2] S. Bhat, D. L. Roberts, M. J. Nelson, C. L. Isbell, and
M. Mateas. A globally optimal algorithm for
TTD-MDPs. Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2007.

[3] D. Charles, M. McNeill, M. McAlister, M. Black,

A. Moore, K. Stringer, J. Kĺźcklich, and A. Kerr.
Player-centred game design: Player modelling and
adaptive digital games. Proceedings of DiGRA 2005
Conference, 2005.

[4] M. S. El-Nasr. Interactive narrative architecture based
on filmmaking theory. International Journal on
Intelligent Games and Simulation, 3(1), 2004.

[5] M. S. El-Nasr. Engagement, interaction, and drama
creating an engaging interactive narrative using
performance arts theories. Interactions Studies,
8(2):209–240, 2007.

[6] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. Advances in Neural
Information Processing Systems, 13:556–562, 2001.

[7] B. Magerko and J. E. Laird. Mediating the tension
between plot and interaction. AAAI Workshop Series:
Challenges in Game Artificial Intelligence, 2004.

[8] M. Mateas and A. Stern. Integrating plot, character
and natural language processing in the interactive
drama facade. Proceedings of the 1st International
Conference on technologies for Interactive Digital
Storytelling and Entertainment, 2003.

[9] M. J. Nelson and M. Mateas. Search-based drama
management in the interactive fiction Anchorhead.
Proceedings of the First Artificial Intelligence and
Interactive Digital Entertainment Conference, 2005.

[10] F. Peinado and P. Gervas. Transferring game
mastering laws to interactive digital storytelling.
Proceedings of the 2nd International Conference on
Technologies for Interactive Digital Storytelling and
Entertainment, 2004.

[11] J. Porteous and M. Cavazza. Controlling narrative
generation with planning trajectories: the role of
constraints. Proceedings of 2nd International
Conference on Interactive Digital Storytelling, 2009.

[12] M. Riedl and R. M. Young. From linear story
generation to branching story graphs. IEEE Journal of
Computer Graphics and Animation, 26(3):23–31, 2006.

[13] M. O. Riedl, A. Stern, D. M. Dini, and J. M.
Alderman. Dynamic experience management in virtual
worlds for entertainment, education, and training.
International Transactions on Systems Science and
Applications, 2008.

[14] D. L. Roberts, M. J. Nelson, C. L. Isbell, M. Mateas,
and M. L. Littman. Targeting specific distributions of
trajectories in MDPs. Proceedings of the Twenty-First
National Conference on Artificial Intelligence, 2006.

[15] A. Rollings and E. Adams. Andrew rollings and ernest
adams on game design. New Riders Press, 2003.

[16] M. Sharma, M. Mehta, S. Ontanon, and A. Ram.
Player modeling evaluation for interactive fiction.
Proceedings of the Third Artificial Intelligence and
Interactive Digital Entertainment conference, 2007.

[17] X. Su and T. M. Khoshgoftaar. A survey of
collaborative filtering techniques. Advances in
Artificial Intelligence, 2009.

[18] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen.
Interactive storytelling: A player modelling approach.
Proceedings of the third Artificial Intelligence and
Interactive Digital Entertainment Conference, 2007.

[19] M. E. Tipping and C. M. Bishop. Probabilistic
principal component analysis. Journal of the Royal
Statistical Society, B61(3):611–622, 1999.

[20] P. W. Weyhrauch. Guiding interactive drama. Ph.D.
Dissertation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA. Technical Report
CMU-CS-97-109, 1997.

[21] S. Zhang, W. Wang, J. Ford, and F. Makedon.
Learning from incomplete ratings using non-negative
matrix factorization. Proceedings of the 6th SIAM
Conference on Data Mining, 2006.

78

Evaluating the Models and Behaviour of 3D Intelligent
Virtual Animals in a Predator-Prey Relationship

Deborah Richards
1
, Michael J Jacobson

2
,John Porte

1
, Charlotte Taylor

2
, Meredith Taylor

1
,

Anne Newstead
2
, Iwan Kelaiah

1
, Nader Hanna

1

1
Department of Computing

Macquarie University
North Ryde, NSW, 2109, Australia

+61 2 9850 9567

deborah.richards@mq.edu.au

Centre for Computer Supported Learning and
Cognition, Faculty of Education and Social Work,
The University of Sydney, NSW, 2106, Australia

+61 2 9036 7671

michael.jacobson@sydney.edu.au

ABSTRACT

This paper presents the intelligent virtual animals that inhabit

Omosa, a virtual learning environment to help secondary school

students learn how to conduct scientific inquiry and gain concepts

from biology. Omosa supports multiple agents, including animals,

plants, and human hunters, which live in groups of varying sizes

and in a predator-prey relationship with other agent types

(species). In this paper we present our generic agent architecture

and the algorithms that drive all animals. We concentrate on two

of our animals to present how different parameter values affect

their movements and inter/intra-group interactions. Two

evaluations studies are included: one to demonstrate the effect of

different components of our architecture; another to provide

domain expert validation of the animal behavior.

Categories and Subject Descriptors

I.2 ARTIFICIAL INTELLIGENCE;I.6 SIMULATION AND

MODELING, I.6.3[Applications] I.6.7 [Simulation Support

Systems] Environments

General Terms

Algorithms, Measurement, Design, Experimentation.

Keywords

Agents, artificial life, boids, educational virtual worlds, biology

education, science inquiry.

1. INTRODUCTION
Understanding the nature of and processes involved in scientific

inquiry is an important skill that is difficult for most school

students to acquire. This is an important challenge as inquiry

figures pivotally in many national science plans. Key inquiry

skills include a wide range of activities involved in scientific

research such as hypothesis formation, experimental design, data

collection and analysis, evaluation and reflection on the quality of

evidence for hypotheses. Yet despite the aspirations for

curriculum reform expressed in science policy documents, the

practice of science education does not generally provide

significant opportunity for students, especially at primary/middle

school and secondary school, to experience genuine scientific

inquiry [1].

The goal of our overall program of research is to develop

innovative learning technologies that consist of 3D virtual worlds

with embedded agent architectures. These educational “VWorlds”

provide “virtually” authentic contexts for students to engage in

scientific inquiry practices as they learn about biological systems,

such as problem-identification, making observations and drawing

inferences, interviewing characters, and collecting and analyzing

data. Our project involves multidisciplinary collaboration with

researchers in computer science and graphics, learning and

cognitive sciences, and biology, as well as classroom science

teachers. In this paper, we focus on the agent architecture we are

developing by describing the artificial animals that inhabit our

VWorld. We begin with consideration of related research.

2. RELATED RESEARCH
There is considerable interest in the use of computational

modeling in modern biological research [15]. In particular, agent-

based modeling (ABM) techniques (sometimes referred to as

"individual-based models" in the literature) have been used to

model a variety types of biological phenomena, such as flocking

behaviors of birds and fish [8], synchronous firefly flashing [14],

and the dynamics of predator-prey interactions in ecosystems [6].

Topping et al. [13] use ABMs to model an entire ecosystems in

the animal, landscape and man simulation system (ALMaSS) that

allows policy decisions to be made and includes many vegetated

and non-vegetated areas, a range of crops with multiple growth

models and multiple animals. Interactions between species are

minimal in their ABM. Siebert, Ciarletta and Chevrier [10] are

also interested in modeling complex systems. However, rather

than creating a multi-agent system (MAS), they simulate a co-

evolution where each agent type (sheep, grass and wolves) is a

separate model/system connected via a coupling artifact.

In the intelligent virtual agent/virtual world research space,

foundational work was done by [3]. More recent and specific to

intelligent animals concerns deer with an artificial nose that

detects the emotions of other conspecifics [2] and gray wolves

that begin as pups and overtime develop certain social behaviours

through learning to express age appropriate emotional states

involving context-specific emotional memories [12]. Unlike our

virtual world, these studies only concerned one type of animal.

In terms of the overall learning technology environment we are

developing, research exploring the nature of learning with multi-

user virtual worlds and 3D game environments has documented

interesting educationally relevant outcomes, such as their

motivational power and the opportunity to help develop important

skills (e.g., collaboration [11]). The learning design features of

Appears in: Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,

Winikoff, Padgham, and van der Hoek (eds.), 4–8 June 2012, Valencia,

Spain. Copyright © 2012, International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

79

our VWorld build upon earlier agent-augmented multi-user virtual

environments research [5] that were found to deliver significant

benefits in science secondary classrooms.

3. OUR VIRTUAL WORLD - OMOSA
Omosa is a fictitious world that allows students to gain science

inquiry skills and explore scientific concepts about biological

systems. We chose not to model a specific place, flora, or fauna as

we did not want the concepts learned to be restricted to the

context we provided. To create Omosa, we needed to balance the

level of detail in our environment with the complexity of our

animals and human agents in a virtual environment with real-time

graphics. We are using multi-platform game development

software called Unity3D (http://unity3d.com/), which contains in-

built features to reduce complexity while maintaining appearance

such as lightmapping and occlusion culling.

We put several locations on Omosa (see Figure 1) where students

can collect information and complete learning activities. These

areas are: the village (where the indigenous Omosans live); the

hunting ground (where our animals are located); the research lab

(where students can collect information on ecological research

and speak to an ecologist); and the weather lab (where students

can collect information on climate research and speak to the

climatologist). Artefacts can be collected in each location.

Figure 1. Our virtual world, Omosa

We modeled all our structures using Blender

(http://www.blender.org/) to keep the polygon count as low as

possible. We used Mixamo (http://www.mixamo.com/) to design

and purchase low polygon human models. From TurboSquid

(http://turbosquid.com/) we purchased three extinct animals

(Andrewsarchus, Bluebuck, and Indricotherium) and an Iberian

Lynx. In this paper we focus on two of our animals: the Bluebuck

and Andrewsarchus, which we call a Yernt (one is laying on the

ground in Figure 2) and a Tooru (three are feeding on a Yernt in

Figure 2); the Yernt is the prey and the Tooru its predator.

Figure 2. Tooru (Predator) and Yernt (prey)

4. ARCHITECTURE
Our animals are agents who are embodied and situated in the

Omosan environment. Each animal has its own state but shares its

behaviour and population parameters with other animals of the

same species (i.e. flockmates or conspecifics). As well as

knowledge of its own state, each animal has access to lists of its

predators, prey and flockmates. Each agent acts autonomously

seeking to satisfy the goals determined by a combination of

parameters introduced in this section.

In this section we present our model parameters and agent states

and describe how the agents reason to decide what action to

perform (e.g. chase, flee, eat) and the direction to move in.

4.1 Flocking - Tweaking the Boids algorithm
Reynolds [8] suggested that the seemingly complex group

behavior seen in flocking can be modeled when individuals

(boids) are driven using a small number of simple rules. A basic

Boid algorithm includes: separation (or collision avoidance with

nearby flockmates), alignment (or velocity matching with nearby

flockmates), and cohesion (or centring by staying close to nearby

flockmates).

The SeparationVector is a direction vector that is calculated and

achieved at the individual boid level. If any other boid is too close

then the SeparationVector will steer the boid away. Given a

desired spacing, the distance to all other boids is measured. If

distance < spacing then a vector can be calculated such that

boid1_position – boid2_position = SeparationVector. This

SeparationVector is a xyz direction that the current boid now

intends to travel in order to maintain a distance from other boids.

If multiple boids fall within the desired spacing then the resulting

SeparationVectors can be summed together.

The AlignmentVector is a direction vector that is calculated at the

entire boids group level. It is the average direction that the entire

group of boids is travelling in.

The CohesionVector is a direction vector that is calculated at an

individual level. It points from the current boid towards the

average position of all other boids.

These three vectors can be summed to produce an output vector,

the direction the boid will finally move, that represents the

intentions of the boid. To represent the unpredictability of

individuals (1) includes a RandomVector, as follows:

OutputVector = SeparationVector + AlignmentVector +

CohesionVector + RandomVector (1)

80

Individual Agent Reasoning

This random value could be replaced by a probability if a suitable

stochastic model was identified for that animal type (i.e. species,

gender, age, etc). Also, greater or lesser importance can be

applied to any of the input vectors by multiplying them by a

weight. For example in (2) we increase the importance of

grouping together with:

OutputVector = SeparationVector + AlignmentVector +

(CohesionVector * 1.5) + RandomVector (2)

The individual boid will now move in the OutputVector direction

from its current location. To avoid collisions (3) builds upon this

algorithm as follows:

OutputVector = SeparationVector + AlignmentVector +

CohesionVector + RandomVector + ObstacleVector (3)

Where ObstacleVector points away from a tree or a rock that an

individual boid is getting too close to and would prefer to not

crash into.

Finally, in Omosa we do not want the entire population for each

animal to behave as a single group. For each type of agent our

model allows us to specify the size of subgroups within a

population. In our implementation, herding is achieved by

modifying both the AlignmentVector + CohesionVector to only

consider the nearest HerdSize boids. In this way we have sub

groups of boids that will dynamically readjust itself to only use

the nearest boids. Different size herds can be seen in Figure 3.

Figure 3. Yernt and Tooru Boids

4.2 Beyond Boids – Predator/Prey agents
The animals in Omosa, as in real ecosystems, do more than move

around; they exhibit behaviours such as growing, dying, hunting,

eating, etc. Here we focus on the predator-prey relationship which

drives many of the group and individual behaviours. To achieve

this we have developed a predator model and a prey model. Figure

4 depicts how these models influence the boids.

Prey Model –This model produces a vector (4) calculated at an

individual level that points towards prey animals. In order to

indicate urgency some prey animals will be given greater

importance, or weight, for a number of reasons:

• The closer the prey the greater the weight. This simulates the

predator singling out a target as it bears down on it.

• The more fatigued the prey the greater its weight. The

predator attacks the weak.

• The more injured the prey the greater the weight. The predator

attacks the weak.

PreyDistance, PreyFatigue, and PreyHealth are all values

between 0.0 and 1.0.

PreyVector = PreyDirection * (1.0 – PreyDistance) *

PreyFatigue * (1.0 – PreyHealth) (4)

Predator Model – In contrast to the Prey model, this model

produces a vector (5) calculated at an individual level that points

away from predator animals. In order to indicate urgency some

predators are given greater importance for the following reasons:

• The closer the predator the greater the weight. This simulates

the prey fleeing for its life.

• The more threatening the prey the greater the weight. This

simulates some animals or even human hunters being more

dangerous than others, and the prey reacting accordingly.

PredatorDistance and PredatorThreat are values between 0 & 1.

PredatorVector = PredatorDirection * (1.0 – PredatorDistance)

* PredatorThreat (5)

Figure 5 shows how each of the components in our architecture fit

together. We can see a pipes and filters like structure between the

Flocking, Predator and Prey components which allow the agent to

achieve its decision making goal about which direction to go in.

This decision is influenced by FollowVector, a vector that

behaves much like a leash. Depending on whether they are

hunting or resting we can adjust FollowVector to migrate the

entire group from one location on the map to another. We can also

adjust the weight of this leash to ensure the group does not go

running off into the ocean or another area we want them to avoid.

In the future, this vector could be replaced with a subsystem that

intelligently determines locations of herds both for initial

spawning and migration purposes.

Boid

s

Prey
Predator

Obstacle

AnotherBoid
separation cohesion

repel

repel

attract

Figure 4. Simple model of factors influencing the

individual boid.
Figure 5. Omosa Architecture and Agent Reasoning.

Mid

point

Flocking/

subherds

(i.e. boids)

Predator

Prey

Decision

on

Direction

Prey List Pred List

Follow

Unity3D Game Engine (incl., Physics and Rendering Engines)

Specific Agent Properties Species Properties Set of

OutputVectors

Herd- List

81

The Individual Agent Reasoning System is used to determine the

direction that the individual agent intends to go. However, our

agents have additional restrictions that will define the eventual

OutputPosition. These other factors are seen as being beyond the

control of the agent and not part of their reasoning. For example,

the physics engine will slow agents down as they attempt to

ascend hills and accelerate agents as they descend.

Another factor applied after the agent has made their own decision

regarding their intended direction is maximum speed, a value

defined by the type of animal represented, which is further limited

by the agent’s health, fatigue, stamina and age. This models the

fact that animals, including humans, are externally limited by

these factors, in addition to their internal influence on the

individual decision making as described in the prey model

presented. To provide a more natural model of klinokenesis

(change in direction) in our animals we have developed a

smoothing algorithm that allows the animal to adjust speed and

angle to provide a more rounded trajectory rather than a 180

degree turnaround which can result in strange behaviours in

conjunction with the physics engine. For the same reason, we also

adjust the animals speed to slow down when approaching another

agent/object. A summary of individual and group parameters,

states and behaviours is given in Table 1.

Table 1. Agent parameters, states and behaviours

Intra-agent (conspecific)

parameters

Inter-agent (different species)

parameters
Cohesion – individual Separation – individual

Alignment – group Obstacle - individual

Follow – group Prey – individual

Obstacle - individual Predator - individual

Individual States

Group/Species States

Health, Stamina, Life Stage

(i.e. birth, mature, dying which

affects size & colour), Urgency,

Threat level, Location

Population/Herd size, Life

Expectancy, Stage duration,

Spacing, Perceptual Distance,

Speed, Health Regeneration

Individual Behaviours Group Behaviours

Roaming, Hunting, Standing,

Feeding, Fleeing, Dying, Birth
Hunting/Stalking

As a group the animals work together to hunt down prey and

avoid obstacles and predators, while as individual agents they

maintain their own goals and states. While some of the group

behaviours are very efficient, as the individual characteristics

became more complex and specific, it has been necessary to find

ways to maintain performance. For example, not all behaviours

need to be refreshed every cycle to create believability.

Performance is discussed again in the conclusion section.

5. EVALUATION STUDIES
At stated in our introduction, the goal of our project is to provide

experience in conducting scientific inquiry and improve

knowledge of biological concepts in secondary schools. In this

section we present condensed results from two evaluation studies.

The first study seeks to verify our models, algorithms and

architecture as presented in the previous section. The second

study seeks to validate our approach through an interview with an

expert ethologist who has not been involved in the project.

5.1 Study 1 – Model Verification
In the first study we have collected data which evaluates the

components in our Individual Agent Reasoning System. The

design is presented next, followed by results and discussion.

5.1.1 Design
To evaluate the effect of the flocking, predator and prey

components on the behavior of our animal, we have collected data

about our predator and prey populations over a 20 minute period

using different combinations of components in our architecture.

Each run/simulation used identical population parameter settings.

The parameters used were the default settings for each population

identified by the biologist on our team as most appropriate for our

predator and prey population. For each run, we collected the total

population, number of births and deaths for both prey and

predators as well as the number of predator kills and prey deaths

from old age. The six runs reported in this paper include:

1. Default/Complete: Flocking/herding, Predator/Prey awareness.

2. No flocking/herding (1 minus Boids model)

3. No predator awareness (1 minus Predator model)

4. No prey awareness (1 minus Prey model)

5. No prey or predator awareness (1 minus Prey and Predator)

6. No subherds (1 minus herds, i.e. influenced by entire flock not

just neighbours/herd members).

5.1.2 Results and Discussion
The results of data analysis are shown in Figures 6-11. The

comments below are based on review of those figures as well as

observations of agent behavior on the screen during each run. We

are particularly interested in the kill rates, as the domain expert

(see next subsection) equated success with natural/low kill rates.

The data in Figure 6 is based on the complete model presented in

the previous section and includes flocking, predator / prey

awareness and herding. We observe normal agent behavior and a

fairly balanced system. The birth rate maintains the prey

population. The predator made 13 kills over 20 minutes.

In Figure 7 the flocking component was turned off, although

obstacle avoidance is included to avoid collisions with each other.

Without any flocking enabled the agents still functioned

surprisingly well. Prey were able to escape predators on most

occasions. The level of realism seemed to be reduced, the prey

behaved somewhat like water trickling between the predators, but

definitely not as a group. Prey population fluctuated but was near

maximum after 20 minutes. Predator made 12 kills in 20 minutes.

In Figure 8, when there is no predator awareness (i.e. prey does

not respond to predator), we see that the prey were wiped out in

less than 2 minutes. Prey did not attempt to evade the predator.

We observed that the predator had some difficulty getting to all of

the prey because there were too many prey carcasses in the way.

Prey were unable to reproduce and maintain population. Predators

made 80 kills over 2 minutes. Note that this simulation is not

realistic: there would be an upper limit on how many prey a

predator seek to kill; the predator population will die out when the

food source is gone.

In Figure 9 there is no prey awareness (i.e. predators do not

respond to prey); the predator completely fails to function. The

prey was aware of the predators when they moved to the hunting

area, but just moved to a safe distance. Prey population fluctuates

due to life span, birth rate is able to maintain maximum

population. Predator made 0 kills in 20 minutes.

82

Figure 6. Default Settings (Flocking, Predator / Prey

Awareness, Herding) Normal behaviour.

Figure 7. No Flocking (Boids still avoid collisions with

each other).

Figure 8. No Predator Awareness (Prey does not

respond to predator)

Figure 9. No Prey Awareness (Predator does not

respond to prey)

Figure 10. No Predator Vector and No Prey Vector

(Both predator and prey don't respond to other).

Figure 11. No Sub Herds (Flocking is enabled, boids are

influenced by all of their own type, not just those

nearby)

83

In Figure 10 the predator and prey models are both switched off.

(Both predator and prey don't respond to other). Predators

perform badly as in the previous condition. However at

approximately one minute the predator herd happens to walk right

into the prey herd, which in turn doesn't respond and takes a lot of

losses. After that the predator never came close to the prey again,

instead spending most of the time splashing around on the beach.

Predator made 31 kills over 20 minutes.

Finally in Figure 11 we evaluate turning off the herding feature so

that no subherds exist within a population. Flocking is still active

but boids are influenced by all of their own type, not just those

nearby). Both predator and prey function well. Predators seemed

to benefit from this setting, showing more cohesion, while the

prey may have been hampered from too much influence from

others of their species (instead of just relevant ones nearby). Prey

population fluctuated but was maintained. Predators made 16 kill.

We conclude that the predator and prey models are essential to

model natural success/kill rates. Though success rates are mostly

unaffected by flocking/herding they are necessary to provide a

realistic 3D simulation of animals which live and act in groups.

5.2 Expert Validation
In addition to having access to a number of advisers, one of the

investigators in this research project is a biologist. However, to

provide independent evaluation of our animal behaviours we

approached an expert in the field of animal communication and

conservation, whose particular area of expertise and interest was

ungulates, with a focus on elk and bison. We conducted a one (1)

hour interview involving demonstration of our system and a series

of structured questions. The steps we followed and questions

posed, together with responses are described below.

5.2.1 Step 1: First Impressions
In order to put our animals in their current environmental context

and to gain first general impressions, we began with a tour of the

village including a conversation with an Omosan hunter and then

we used the game/site map (Figure 1) to locate animals that we

then introduced up close, as in Figure 2. We then took a bird’s eye

view of a part of Omosa containing herds of both animal types.

Our first question was simply “What are your first impressions?”

We were unaware of the expectations of our expert, and she was

unaware of what she would see. Thus, as a first response she

commented that [real] animals are predictable but ours are

unpredictable. She mentioned the many eyes hypothesis where the

animals would stay in groups, always with some animals watching

while others fed/grazed. The expert’s response regarding

unpredictability occurred after a relatively lengthy initial period

where the two populations had been grazing independently and

then appeared to become aware of one another. This time delay

can be seen in Figure 12. Figure 12 shows a plot of the agent

movements over time. The red (left side) path shows predators.

The green (right side) show prey. We can see over time that the

separate populations begin to interact and that the two populations

are moving regularly with predators following prey and prey

tending to flee from predators as shown more clearly in the

pathways at the bottom of the figure.

As the behaviours became more interesting, including predators

circling a wounded or dead prey, which our expert said is like

wolf pack behavior, the expert became more engaged and excited,

sometimes intrigued by the behaviours observed. When students

use the world, the animals will have potentially been through

numerous life cycles and it is unlikely they will be at the initial

and less interesting reset/spawning stage.

5.2.2 Step 2: Parameter Testing
To allow model adjustment and assist learning, we allow the

group level parameters (see Table 1) to be adjusted via sliders. We

asked the expert to select up to 3 parameters that they would like

to change, though only one a time. We asked her to make a

prediction for each parameter before any changes were made. Our

expert was only interested in changing two parameters: speed and

perceptual distance and stated that prey can move faster and have

further perceptual distance than predators. The other parameters,

such as stamina, were perceived to be secondary. The expert

stated that there should be at least two or three times as many prey

than predators and was happy with our relative herd sizes of 3 for

predators and 15 for prey. In terms of population sizes of 80 for

prey and 15 for predator, the biologist was also satisfied.

Speed was changed first by increasing the speed of the prey and

reducing the speed of the predator. The prediction was there

would be less kills/success and the animal behaviours would be

more lifelike. In accordance with the prediction, there were

considerably less kills. Surprisingly we also observed that the

predators seemed to be moving as one towards the prey rather

than in herd sizes of 3 towards selected prey and this inefficient

behavior would have affected success rates. The expert added that

a kill success rate of 10% was normal for natural populations but

that speed should be slightly unnatural resulting in greater

numbers of kills so that the simulation is not too boring.

The second parameter to be changed was perceptual distance. In

line with natural differences, the predator value was decreased to

20 and prey value was increased to 35. Again the prediction was

that the behavior would be more natural and would result in less

kills/predator success. Indeed less kills were observed. What was

not predicted and was quite surprising was the opposite behavior

to our change relating to speed. Even though we left the speed

settings to those specified by our expert, this time rather than

predators appearing to act as a whole population moving slowly

Figure 12. 3D Model of animal paths showing agent

position over time(red/left=predator, green/right=prey

84

towards the prey, the majority of Tooru continued to ignore the

Yernt. Only individuals at the edge of the predator group closest

to the prey group appeared to notice the prey and run off in that

direction, leaving their herd (the other two) behind. It appears that

the individual had come within the perceptual distance allowing

them to recognize the prey, and was quite hungry by that time

pulling them more strongly towards the prey than their mates. The

mates who had not been able themselves to see the prey, were still

close enough to other conspecific herds and thus they joined the

new herd to satisfy that need. The increased perceptual vision of

the prey in detecting the predator resulted in the flock of prey

moving away from the predator herds/population, making it

increasingly difficult for the predator to spot them.

5.2.3 Step 3: Rating of Environment
We chose to use the questions from [2] to “establish the

contribution of behaviours to the perceived realism of the animals

within the environments and the contribution to the overall

experience” (p.155). However, we sought to validate our complete

architecture, system and the emergent behaviors with a domain

expert rather than test alternative models/combinations of system

components to subjects (e.g. no-flocking, no flight, no

fear/emotion, etc) with immersive technology students. Thus we

did not use Likert scale responses but allowed the expert to use

their own term. Table 2 shows the questions and brief answers.

Table 2. Parameters defining our three current conspecifics

Question Response

1. How realistic was the graphical representation of the

animals in the environment?
Good

2. How much did the environment engage you generally? Very

3. How much did the animals add to the realism of the

environment?
Very

4. Did the animals seem alive in the environment? Yes

5. Did the animals appear to be behaving in an intelligent

manner?
Depends

6. How realistic was the behaviour of the animals? Good

7. How quickly did you adjust to the virtual environment

experience?
Immediate

8. To what extent did the animals seem to be reacting to

their environment?
Good

9. To what extent did the animals appear to be reacting with

one another?
Good

10. To what degree did the animals appear to make an

emotional reaction?

Motivation

observed

Regarding whether the animals were perceived as alive, (Q4) the

expert added that “movement is critical, it brings the animal to life

and the animals bring the virtual world to life”. Regarding

whether the animals appeared to be behaving in an intelligent

manner (Q5) the answer was qualified by saying that it depends

on what parameters are used. The expert was “bothered by lack of

group cohesion within the pack” which was not always evident.

However, the circling of a pack around prey and chasing after the

same prey could be observed at times. We asked the question

“How compelling was your sense of moving around inside the

virtual environment?” but it was not answered due to lack of

relevance as the expert did not control the initial tour of the world

and watching the behaviours did not involve interaction with the

animals.

Regarding questions 8 and 9, the expert commented that the

flocking indicated awareness of conspecifics; prey were aware of

predators and reacted by fleeing when they were chased. Chasing

was evidence of predators being aware of prey and reacting to

them. The fact that at times both animal agent types grazed and

showed no interest in the other animal type indicated that there

were also other factors affecting their interest in and desire to hunt

or flee. However, for some settings a lack of cohesion on the part

of predator was observed. At these times it seemed that predators

were not reacting to one another even though prey did react to one

another.

Though our model does not explicitly include emotion (fleeing

could be triggered by fear), we included the question from [20]

regarding emotion to test and provide opportunity for discussion

whether the ethologist had endowed our animals with emotional

behavior or believed that emotional factors should be modeled.

The expert stated outright that they were uncomfortable with the

word “emotion” when considering the behavior of animals. They

preferred the term and concept of motivation. The expert observed

that the prey were motivated to avoid the predators, which could

be seen as due to fear, but they did not feel it necessary or

appropriate to attribute emotion as the cause.

5.2.4 Step 4: Usefulness for Education
The goal of our intelligent animals is to allow students to observe

animals in a natural setting to see how they may behave, allow

them to set various hypotheses about the animals and phenomena

occurring in Omosa and to teach them about complex systems. It

was not our goal to provide ecologically sound and complete

animal models which would allow us or others to make decisions

and predications about these populations in the real world. Thus,

we asked “Do you believe the world would be useful for

educational purposes?’ They responded “Definitely, it would get

the students engaged”.

When asked if the world would be useful at the tertiary level,

perhaps in some of their own teaching context, they were more

hesitant and remarked with respect to the animals that it could be

useful if more parameters could be made available (though none

were specifically suggested) and students would need to be able to

change them. The expert suggested that Omosa 2.0 would be

needed for tertiary biology students. When asked what would be

in 2.0, they suggested multiple prey types and predator switching

between prey depending on factors such as availability.

5.2.5 Step 5: Additional Features and Directions
Throughout the interview a number of behaviours were suggested

for possible inclusion, as follows:

• Reproduction rates influenced by success rates,

• Targeted kills, e.g instead of attacking many/closest prey,

predators would intelligently pick one or two, e.g. smallest.

(we already factor in health).

• Complementary/coordinated group behaviours, e.g. some

prey-flockmates would come back and defend, some pack

members may not join in.

• After killing predators go back to foraging (which we do).

• Might need to change life span.

These features and others are considered as further extensions to

our agents in the next section.

85

6. CONCLUSIONS & FUTURE WORK
Animals have provided agent researchers with so called

biologically-inspired solutions to issues such as coalition

formation (e.g. [4]) and other social dilemmas involving

communication, coordination and cooperation to solve problems

such as load balancing, message congestion and bandwidth

allocation. Similarly, we anticipate that software/network agent

research related to the handling of social interactions, decision

making, self-interested agents and cooperation (e.g. [9]) could

potentially offer some insights and extensions to our animal

agents. As demonstrated, behaviours which simulate group

communication and coordination exist in our model, however, to

produce more lifelike animals we may want to extend our models

with natural communication methods involving gestures and

sound, similar to the use of the scents and an artificial nose [2].

MAS-based group decision-making may be a feature that our

animal or human agents will need as in the study by [16].

Inclusion of updating schemes which allow the evolution of our

models is also potentially attractive.

Currently, we simulate different life stages through size of the

animal and intend to use changes in colour as a feature to indicate

age. Also, while we have different values for traits for different

species we do not currently have separate traits for different

species or differentiate between behavior in males and females as

in ALMaSS [13]. We would like to include stochastic elements

into our models to potentially provide more authentic behaviours

in determining initial locations to spawn animals and affecting

whether a kill is successful or not. At this stage, we do not believe

that explicit modeling of emotions is appropriate or necessary for

our animals. We will conduct further studies using our models

and more of our animals, as suggested by the expert, involving

multiple predators and alternative prey.

Scalability is an issue facing both graphics researchers and agent

researchers involved in building complex cognitive architectures

and multi-agent platforms [7]. On the graphics side we have paid

close attention to polygon counts. For example, using MeshLab

(http://meshlab.sourceforge.net/) we were able to reduce the

number of polygons in purchased animal models from around

6000 to no more than 1800 each. To support both the processing

requirements of our agent reasoning approach with the processing

requirements of the graphics, we have increased the number of

frames between each animal in the herd updating its behavior.

While this slightly decreases the realism of the animals’ behavior,

it significantly improves the overall game performance. As the

complexity of the models and agents in Omosa increase, we will

have to consider more strategies for maintaining the balance

between processing speed and environment complexity.

Initial trials with teachers and a Science special interest group

were enthusiastically received and led to modifications to Omosa

involving the dialogue engine, interaction controls and smoothing

of animal movement transitions. In November 2011 we began

testing our workbooks and lessons in the classroom over 4

lessons. We are currently processing student data including

measurements of learning gains and changes in levels of interest

in science inquiry. Results will appear in a future publication.

7. ACKNOWLEDGMENTS
This project is funded via ARC Discovery DP1093170

8. REFERENCES
[1] Campbell, T., Abd-Hamid, N., Chapman, H. (2010).

Development of Instruments to Assess Teacher and Student

Perceptions of Inquiry Experiences in Science Classrooms.

Journal of Science Teacher Education 21, 13–30.

[2] Delgado-Mata, C., Martinez, I J., Bee, S., Ruiz-Rodarte, R.

and Aylett, R. 2007, On the Use of Virtual Animals with

Artificial Fear in Virtual Environments New Generation

Computing, 25(2): 145-169.

[3] Funge, J., X. Tu, & D. Terzopoulos 1999. Cognitive

Modeling: Knowledge, reasoning and planning for intelligent

characters,", Proc. ACM SIGGRAPH 99 Conference, Los

Angeles, CA, August, 1999, 29–38.

[4] Haque, M., Rahmani, A. and Egerstedt, M. 2010.

Biologically inspired coalition formation of multi-agent

systems. In Proc. AAMAS '10, Vol. 1, 1427-1428.

[5] Jacobson, M. J., Miao, C., Kim, B., Shen, Z., & Chavez, M.

2008. Research into learning in an intelligent agent

augmented multi-user virtual environment. In Proc. Int.l

Conf. on Web Intelligence & IAT, 348–351.

[6] Levin,S.A., B.T.Grenfell, A.Hastings, & A.S.Perelson. 1997.

Mathematical & computational challenges in population

biology & ecosystems science. Science, 275: 334-343.

[7] Navarro, L, Flacher, F. and Corruble, V. 2011, Dynamic

Level of Detail for Large Scale Agent-Based Urban

Simulations, In Proc. AAMAS’2011, 701 - 708.

[8] Reynolds, C. 1987. Flocks, herds and schools: A distributed

behavioral model.SIGGRAPH'87,ACM,Anaheim,CA,25–34.

[9] Salazar, Rodriguez-Aguilar, Arcos, Peleteiro,Burguillo-Rial,

Emerging Cooperation on Complex Networks, In Proc.

AAMAS’2011, 669-676.

[10] Siebert, J., Ciarletta, L., and Chevrier, V. 2010. Agents and

artefacts for multiple models co-evolution: building complex

system simulation as a set of interacting models. In Proc.

AAMAS '10, Vol. 1, 509-516.

[11] Steinkuehler, C. A. (2004). Learning in massively

multiplayer online games. In Y. B. Kafai, W. A. Sandoval,

N. Enyedy, A. S. Nixon, & F. Herrera (Eds.), Proc. 6th Int.

Conf. Learning Sciences Mahwah, NJ: Erlbaum, 521-528.

[12] Tomlinson, B and Blumberg. B2002. Synthetic Social

Relationships in Animated Virtual Characters.” In: From

Animals to Animats 7. Proc. 7th Int. Conf. on the Simulation

of Adaptive Behavior (SAB ’02). Edinburgh, UK.

[13] Topping, C.J., Hansen, T.S., Jensen, T.S., Jepsen, J.U.,

Nikolajsen, F. & Odderskær, P. 2003: ALMaSS, an agent-

based model for animals in temperate European landscapes. -

Ecological Modelling 167(1-2): 65-82.

[14] Wilensky, U. and K. Reisman, 2006. Thinking like a wolf, a

sheep or a firefly: Learning biology through constructing and

testing computational theories -- an embodied modeling

approach. Cognition & Instruction. 24(2): p. 171-209.

[15] Wooley, J.C. and H.S. Lin, 2005. Catalyzing inquiry at the

interface of computing and biology, Washington, D.C.:NAP.

[16] Zappala, J. 2008. Multi-agent simulation of group decision

making in animals, MSc Thesis, Uni. of Nottingham.

86

Model of the Perception of Smiling Virtual Character

Magalie Ochs
CNRS-LTCI Télécom ParisTech
ochs@telecom-paristech.fr

Catherine Pelachaud
CNRS-LTCI Télécom ParisTech

pelachaud@telecom-paristech.fr

ABSTRACT
A smile may convey different communicative intentions de-
pending on subtle characteristics of the facial expression.
Moreover, during an interaction, the expression of smile im-
pacts on the observer’s perception of both the social stance
of the speaker and of the content of the talk. In this paper,
we describe a perceptual study where we explore the ef-
fects of virtual characters displaying different types of smiles
(namely politeness and amusement) when speaking on the
user’s perception. Based on the collected data, a model to
automatically compute the user’s potential perception of the
virtual character’s social stance depending on its smiling be-
havior and on its gender has been proposed.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]

General Terms
Algorithms

Keywords
Virtual character, smile, user’s perception

1. INTRODUCTION
During dialog, non-verbal behaviors play an important

role on interlocutor’s perception. The content of the message
but also the global stance of the speaker may be perceived
differently depending on her gestures, her posture, and her
facial expressions. For instance, smiles may enhance the
global perception of a person [6, 18, 27] and even of a vir-
tual character [14]. In this paper, based on a human-centric
approach, we propose to explore the effects of smiles on the
perception that users have of a virtual character.

A smile is one of the simplest and most easily recognized
facial expressions [9]. To create a smile, the two muscles
zygomatic majors, on either side of the face, have to be
activated. However, others muscles may be implied in an
expression of smile. Moreover, a smile may have several
meanings - such as amusement and politeness - depending
on subtle differences in the characteristics of the smile itself

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and of other elements of the face that are displayed with the
smile. These different types of smiles are often distinguish-
able during a social interaction. Recently researchers [26,
22] have shown that people are also able to distinguish dif-
ferent types of smiles when they are expressed by a virtual
character.

A smiling virtual character improves human-machine in-
teraction. For example it enhances the perception of the
task to be done and how the character is perceived. It in-
creases the motivation and enthusiasm of the user [14, 31].
However, an inappropriate smile (an inappropriate type of
smile or a smile expressed in an inappropriate situation) may
have negative effects on the social interaction [31].

In this paper, we present research that aims at identify-
ing the effects of different virtual character’s smiles on the
user’s perception of the virtual character. More precisely, we
have investigated how polite and amused smiles displayed by
speaking virtual characters alter the user’s perception both
of the content of a message and of the stance of the vir-
tual character. We considered the types of displayed smile
and the gender of the virtual character. For this purpose,
we propose a human-centric approach to both identify the
characteristics of smiles and their effects on perception. We
have first identified the dynamic and morphological charac-
teristics of different types of virtual character’s smile. Our
method was to collect a corpora of smiles directly created
by users. Characteristic features of each smile types were
extracted from the analysis of the corpora. An evaluation
study has been conducted to validate the identified smiles
in context. Secondly, we have developed a web application
to collect the user’s perception of virtual characters display-
ing different smiles when saying an utterance. Two types of
smile have been considered: polite and amused smiles. Two
virtual characters, a female and a male one, were used. The
results have been used to propose a model to automatically
compute how user’s (potential) perception of the agent is
influenced dynamically by the display of agent’s smile. It
is a first attempt toward being a Theory of Mind model.
The Theory of Mind is the cognitive ability to understand
others’ actions and expressions within an intentional or goal-
directed framework (i.e. the intentional stance [5]). In our
work, based on a human-centric approach, we aim at mod-
eling the user’s Theory of Mind of the agent’s social stances.

The paper structure is as follow. After giving an overview
of existing works on humans’ smiles and on virtual char-
acters’ smiles (Section 2), we introduce the method used
to identify the different types of smile of virtual characters
(Section 3). In Section 4, we present the web application

87

developed to collect the user’s (potential) perception of a
smiling virtual character. In Section 5, we present the re-
sulting data and we introduce a model to compute the user’s
perception of a smiling virtual character during an interac-
tion. We conclude and present perspectives of this research
in Section 6.

2. RELATED WORK
In this section, we present existing research on the types

and meaning of smiles (Section 2.1) and the effect on the
observer (Section 2.1), both in human-human interaction
(Section 2.1.1 and 2.2.1) and in human-machine interaction
(Section 2.1.2 and 2.2.2).

2.1 Types and meaning of smiles

2.1.1 Human smiles
According to Poggi and Chirico [24], a smile may have two

basic meanings: “a purely expressive meaning, an expression
of pleasure, and a communicative meaning, the goal of show-
ing friendly to other people”. Smile can also replace a word:
one can smile to say “hello” [24].

The most common type of smile is the amused smile, also
called felt, Duchenne, enjoyment, or genuine smile. Another
type, which is often thought of as the amused smile’s op-
posite is the polite smile, also called non-Duchenne, false,
social, masking, or controlled smile [11]. Perceptual studies
[11] have shown that people unconsciously and consciously
distinguish between an amused smile and a polite smile.
Other smiles have been identified, as for instance embar-
rassed smiles. However, in the current paper, we focus on
two smiles: the amused and polite smiles.

These different smiles are distinguishable by their distinct
morphological and dynamic characteristics. Despite, no con-
sensus exists on the morphological and dynamic characteris-
tics of the amused and polite smiles, it is, in general believed
that the orbicularis oculi (which refers to the Action Unit
(AU) 6 in the Facial Action Coding System [10]) is more
present in amused smile than in polite smile. The dynamic
characteristics of the amused smile are the smoothness and
regularity of the onset, apex, offset (describing the tempo-
ral course of the facial action) and of the overall zygomatic
actions, the mouth opening. The duration of the smile lasts
between 0.5 and 4 seconds [1, 9]. In the expression of a po-
lite smile, the cheek raising (AU6) is absent, the amplitude
of the zygomatic major (AU12) is small, the smile is slightly
asymmetric, the apex is longer, the onset shorter, the offset
is more abrupt than in amused smile, and the lips may be
pressed [9].

2.1.2 Virtual smiles
In order to increase the repertoire of communicative be-

haviors of virtual character’s facial expressions, several re-
searchers have considered different virtual character’s smiles.
For instance, in Tanguy [30], two different types of smiles,
amused and polite, are used by a virtual character. The
amused smile is used to reflect an emotional state of hap-
piness whereas a polite smile, called fake smile in Tanguy
(2006), is used by the virtual character masking sadness
with a smile. The amused smile is represented by lip cor-
ners raised, lower eyelids raised, and an open mouth. The
polite smile is represented by an asymmetric raising of the
lip corners and an expression of sadness in the upper part of

the face. In Rehm and André [26], virtual characters mask a
felt negative emotion of disgust, anger, fear, or sadness with
a smile. Two types of facial expression were created accord-
ing to Ekman’s description [8]. The first expression corre-
sponds to a felt emotion of happiness (including an amused
smile). The second one corresponds to the other expression
(e.g. disgust) masked by unfelt happiness. In particular,
the expression of unfelt happiness lacks the AU6 activity
and is asymmetric. It may correspond to a polite smile.
Niewiadomski and Pelachaud [21] proposed an algorithm to
generate complex facial expressions, such as masked or fake
expressions. An expression is a composition of eight facial
areas, each of which can display signs of emotion. For com-
plex facial expressions, different emotions can be expressed
on different areas of the face. In particular, it is possible to
generate different expressions of joy: a felt and a fake one.
The felt expression of joy uses the reliable features (AU6),
while the second one is asymmetric.

Several other virtual characters smile during an interac-
tion to either express a positive emotion [25], to create a
global friendly atmosphere [31], or for salutation [4]. Gen-
erally, these virtual characters use only the amused type of
smiles. In this present work, we explore different types of
smiles a virtual character may perform.

2.2 Perception of smiles

2.2.1 Human-human interaction
Several studies have shown that individuals who smile are

perceived more positively than non-smiling persons. Smiling
people are viewed as more relaxed, kind, warm, attractive,
successful, sociable, polite, happy, honest with a higher sense
of humor, and less dominant [6, 7, 18, 20, 27].

In Western society, the women smile more than men and
are also expected to do so [6, 17]. For instance, in Deutsch,
LeBaron, and Fryer [6], a study of the perception of photog-
raphy of male and female smiling and non-smiling faces show
significant differences depending on gender. Whereas there
is no significant difference between smiling men and women,
the absence of smile for a woman seems to deteriorate her
image compared to a man. Indeed, the study has shown
that women who do not smile are perceived less happy and
relaxed than non-smiling men. The hypothesis is that dif-
ferent standards are applied to evaluate non-verbal behavior
of men and women. People expect that women smile more
than men, and consequently, a deviation from that expected
behavior influences negatively the perception of non-smiling
women. No distinction between polite and amused smiles is
considered in the study. Moreover, as shown in Hess, Blairy,
and Kleck [12], since smile is expected for a woman, per-
ceiver may not consider women’s smiles as informative com-
pared to men. Moreover, research has shown an influence of
gender on the perception of the intensity of a smile: men’s
amused smiles are perceived as more intense than those of
women.

Concerning the detection of different smile types, research
has shown that women are more sensitive to non-verbal signs
and more able to decode facial expressions cues, even for
virtual characters’ faces [15]. Women make more extreme
judgment ratings than men when decoding facial expressions
[13]. The type of displayed smile affects also the perception
of the observer. For instance, people showing amused smile
are perceived more expressive, natural, outgoing, sociable,

88

relaxed, likable and pleasant than when they show polite
smiles [11, 17]. Amused smiling faces are also perceived as
being more sociable and generous than polite smiling face
[19].

2.2.2 Human-machine interaction
Several researchers have explored the effect of smiling vir-

tual characters on the user’s perception both of the charac-
ter’s social stance and of the speech content.

Effects of smiles on social stance.
In Krumhuber, Manstead, and Kappas [15], the results

show that virtual characters displaying a felt smile (longer
onset and offset) were rated as more attractive, more trust-
worthy, and less dominant than those showing a faked smile
(a short onset duration). In Rehm and André [26], a per-
ceptive test has enabled the authors to measure the impact
of fake expressions of smile on the user’s subjective impres-
sion of the character. The participants were able to perceive
the difference, but they were unable to explain their judg-
ment. The character expressing an amused smile was per-
ceived as being more reliable, trustable, convincing, credi-
ble, and more certain about what it said compared to the
character expressing a negative emotion masked by a smile.

In Krumhuber, Manstead, and Kappas [15], a gender ef-
fect has been noticed: smiles shown by female virtual char-
acters are judged less authentic that those displayed by men,
whatever is the smile.

Effects of smiles on speech content.
In Krumhuber, Manstead, Cosker, Marshall, and Rosin[14],

the authors have explored the impact of different types of
smile displayed by virtual faces on the users’ perception of
the virtual character’s speech content. The context of the
interaction is a job interview. The results show that the
type of smiles used by the virtual character has an impact
on users’ judgments and employment decisions: when the
virtual character uses an amused smile the users perceive
the job as more positive and more suitable than when the
virtual character exhibits a polite smile or a neutral expres-
sion. Note that the virtual character smiles when telling an
amusing utterance, i.e. in a situation in which the user may
expect an amused smile.

Moreover, as shown in Theonas, Hobbs and Rigas [31],
smiles of virtual characters, expressed in an appropriate sit-
uation, enable the creation of a sense of comfort and warmth
and a global friendly and living atmosphere.

In conclusion, when displayed by a human, the amused
and the polite smile may be distinguished through morpho-
logical and dynamic characteristics. Despite some specific
muscle contractions associated to smile types, no consensus
exists in the literature on the facial characteristics of amused
and polite smiles (Section 2.1.1). In the context of virtual
characters, researchers have mainly focused on amused smile
to express an emotion of joy, and sometimes on polite smile
(in the particular context of a fake smile) to mask an ex-
pression of sadness. In our work, we propose a method to
design virtual character’s smiles that are directly created by
users. We then explore the effects of these expressed smiles
on the user’s perception of the virtual character.

Research shows that smiles expressed both by a human
or a virtual character enhance the social stance perceived

by others, and particularly for smiling male (be virtual or
human) and for a displayed amused smile. However, existing
research has mainly compared the global perception of an
agent (virtual or human) expressing no smile or an amused
or a polite smile. In our work, we investigate the effect of a
virtual character displaying both smiles at different moment
of its speech.

Before presenting the study on the effect of smiles on user’s
perception, we first introduce the method used to charac-
terize the features of virtual character’s amused and polite
smiles.

3. THE CHARACTERISTICS OF VIRTUAL
SMILES

In order to identify the morphological and dynamic char-
acteristics of the amused and the polite smile of a virtual
character, we have proposed a human-centric approach: we
have created a web application that enables a user to easily
create different types of smile on a virtual character’s face.
Through radio buttons on an interface, the user could gener-
ate any smile by choosing a combination of seven parameters
(amplitude of smile, duration of the smile, mouth opening,
symmetry of the lip corner, lip press, and the velocity of the
onset and offset of the smile). We have considered two or
three discrete values for each of these parameters (for in-
stance, small or large for the amplitude of the smile). These
parameters were selected as being pertinent in smile behav-
iors [22]. When the user changes the value of one of the
parameters, the corresponding video of a virtual character
smiling is automatically played. Considering all the possi-
ble combinations of the discrete values of the parameters,
we have created 192 different videos of smiling virtual char-
acter. The user was instructed to create one animation for
each type of smile. Three hundred and forty eight partici-
pants (with 195 females) with a mean age of 30 years have
created smiles. We have then collected 348 descriptions for
each smile (amused and polite). The experiment is presented
in details in [23].

Based on this smile corpus and on a decision tree clas-
sification technique, we have defined an algorithm to de-
termine the morphological and dynamic characteristics of
the smile types that a virtual character may express. We
have chosen to use decision tree learning as this technique is
well-adapted to qualitative data and produces results that
are interpretable and that is easily implemented in a vir-
tual character. By applying the CART (Classification And
Regression Tree) method [3], with the morphological and
dynamic characteristics as input variables and the types of
smile as target variables, we have obtained a decision tree in
which the nodes correspond to the smile characteristics and
the leaves to the smile types. In the resulting decision tree,
10 leaves are labeled as polite smiles, and 7 as amused smiles.
The advantage of such a method is to consider, not only one
amused or polite smile but several smile types. That en-
ables one to increase the repertoire of the virtual character’s
expressions. The global error rate is 27.75%, with a 95%
confidence interval of 1.2%: the global error rate is in the
interval [26.55%, 28.95%] (for more details on the corpora
of smiles and the proposed algorithm, see [22]).

To validate the resulting smiles, an evaluation of four of
the best classified amused and polite smiles have been per-
formed in context. Different scenarios (of polite and amused

89

situation) were presented in text to the user. For each sce-
nario, video clips of virtual character’s different smiles were
presented. We asked users to imagine the virtual character
displaying the facial expression while it was in the situation
presented in the scenarios. The user had to rate each of
the facial expressions on its appropriateness for each given
scenario. The evaluation has been conducted on the web
through a platform of tests developed using Flash technol-
ogy. Seventy-five individuals participated in this evaluation
(57 female) with a mean age of 32. The evaluation revealed
significant results showing that the generated smiles are ap-
propriate to their corresponding context (for more details
on the experiment, see [23])

The next step is to measure the effect of these smiles on
partners of an interaction. For this purpose, we have con-
ducted a study to identify how users perceive smiling virtual
characters saying a sentence, varying the gender of the vir-
tual character and the types of smile being expressed. We
present in more details this study in the next section.

4. MEASURING THE EFFECTS OF SMIL-
ING VIRTUAL CHARACTERS

In order to measure the effects of the expressions of smile
by virtual characters, based on a human-centric approach,
we have conducted a study to collect perception the users
have of a virtual character when the later displays polite
and amused smiles. We consider the situation in which the
virtual character expresses smiles when speaking1. Given
the types of smile considered, we have chosen positive situ-
ations to match the types of smile. The agent tells a joke
to the user. The display of an amused smile by the virtual
character is relevant in this situation. The polite smile is
used to accompany the virtual character’s salutation at the
beginning of its talk [24, 4].

Procedure.
We performed the evaluation on the web through a plat-

form of tests developed using Flash technology. The test has
two parts. In the first part, each participant watches four
videos of a virtual character telling a joke (Figure 1): two
video clips of a female virtual character telling a joke and
two video clips of a male virtual character telling a joke. The
four jokes told to the participant were different. To try to
ensure that the user watched each video clips, we imposed
that the user cannot go to the next page before clicking on
the play button of the video clip. The order of the video clips
has been counterbalanced to avoid an effect of the order on
the results. In total the duration of the test was around 20
minutes.

After watching each video clip, the user had to rate the
stance of the virtual character on a Likert scale of 5-points.
Stance is defined in Scherer [28] as “affective style that spon-
taneously develops or is strategically employed in the inter-
action with a person or a group of persons, coloring the
interpersonal exchange in that situation (e.g. being polite,
distant, cold, warm, supportive, contemptuous)”. In this
study, we have considered the following stances as being rel-
evant to the scenarios: spontaneous, stiff, cold, warm, boring,
and enjoyable. Moreover, to measure the effect of smiles on

1We do not explore the display of smile when the virtual
character is listening, i.e. smiles used as backchannel. For
instance see [2] for a study on its effect on user’s perception.

the perception of what the agent said, we asked the user to
indicate how well she understood the joke and if she likes it.

In the second part of the test, four videos of the virtual
character smiling were presented to the user. Here, the vir-
tual character just smiles without speaking. For each video,
we asked the user to indicate the types of smile displayed by
the virtual character: polite, amused, none of them (Figure
2). In this way, we verify if the smiles are perceived by the
users as expected. Once again, the order of the presented
videos was counterbalanced to avoid an effect of their order
on the results.

Figure 2: Screenshot of the second part of the test

Smiles.
The video clips presented to the user correspond to the

smiles resulting from our algorithm and that were validated
by the evaluation (Section 3). For each type, we used two
different smiles with a good recognition rate. Table 1 indi-
cates the characteristics of these smiles.

id type size mouth sym. lip cheek onset dur.
1 pol. small close yes no no 0.4s 3s
2 pol. small close no no no 0.4s 1.6s
3 amu. large open yes no yes 0.8s 3s
4 amu. large open yes no yes 0.8s 1.6s

Table 1: The characteristics of the amused (amu) and

polite (pol) smiles. In the first line, size indicates the

size of the lip extension, mouth indicates if the mouth is

opened or closed, sym indicates if the smile is symmetric

or not, lip if the lip is pressed, cheek if the cheek is raised,

onset the duration of the onset and offset, and dur the

total duration of the smile.

Virtual characters.
In order to measure the effect of gender on the user’s per-

ception of virtual character’s smiles, we have considered two
different virtual characters: one female, named Poppy, and
one male, named Obadiah. Figure 3 illustrates the virtual
characters Poppy and Obadiah smiling.

Virtual characters’ talk.

90

Figure 1: Screenshot of the first part of the test

Figure 3: Screenshot of the two virtual characters
smiling

The virtual characters spoke French. The video clips pre-
sented to the participants correspond to the virtual charac-
ters telling a riddle to the user after a brief salutation. For
instance (translated from French): “Good morning, I know
a little riddle, what is the future of I yawn? I sleep! ”.
Four different riddles have been selected based on a brief
evaluation of sixteen riddles. We have asked 7 persons (3
females and 4 males) to rate their liking of the sixteen rid-
dles between 0 and 5. Based on the results, we have selected
the riddles with the maximum rate and the minimum stan-
dard deviation. We suppose that the selected four riddles
are approximatively equivalent. Finally, in terms of verbal
behavior of the virtual character, only the riddle varies from
one video clip to another. The beginning of the talk and the
tonality of the voice do not vary.

Concerning the non-verbal behavior, only the smiles (both
the type of smiles and the moment when it is expressed)
differ from one video clip to another. Four conditions have
been considered:

• no smile condition: the virtual character expresses no
smile during its talk;

• polite smile condition: the virtual character displays
only the polite smile when the virtual characters is
saying “good morning”;

• amused smile condition: the virtual character expresses

only the amused smile when it says the response to the
riddle;

• both smiles condition: the virtual character displays
the polite and amused smiles at the moment described
in the polite and amused conditions.

The different smiles expressed by the virtual characters are
those described Table 1.

Participants.
Two hundred and forty two individuals participated in

this study (158 female) with a mean age of 30 (SD = 10.35).
They were recruited via mailing lists on line. The partici-
pants were mainly from France (N = 223), followed by Bel-
gium (N = 5). There was some participants from Germany,
Algeria, Tunisia, and Italy. Each participant has watched
four video clips (two of Poppy and two of Obadiah telling
each a different riddle)2 and four video clips of the virtual
characters just smiling (in the second part of the test).

In the next section, we present in details the results of this
test.

5. USER’S PERCEPTION OF SMILING VIR-
TUAL CHARACTERS

5.1 Results
First of all, we have analyzed the results of the second

part of the test to ensure that smiles have been perceived
correctly, i.e. amused smiles have been tagged as amused
and polite smiles as polite by the participants. Globally,
the smiles have been in average categorized correctly, except
one amused smile displayed by Poppy categorized in average

2Note that the experimental design does not correspond to
repeated measures design because each participant is not
exposed to all the conditions of the experiment.

91

more as polite than as amused smile (smile with the id 4
in Table 1). We have then decided to exclude the video
clips in which Poppy displays this smile. In total, we have
considered 483 video clip’s rating.

To measure the effects of smiles on the user’s perception,
we have performed ANOVAs and the post hoc Tukey’s test
to evaluate the significant differences of rating between the
different conditions (no smile, polite smile, amused smile and
both smiles condition).

The significative results are presented in Tables 2. The
first column indicates the condition compared (N for no
smile, A for amused smile, P for polite smile, and AP for
both smiles condition) and the first line the studied social
stance. The elements of the table correspond to the con-
dition in which the social stance of the virtual character
has been the best perceived (n.s. means non significant,
*: p < .05, **: p < .01, ***: p < .001). For instance, in
Table 2, the notation A∗ at the intersection of the line N-A
and the column Enjoyable means that, in the amused smile
condition, the virtual character has been perceived signifi-
cantly more enjoyable (with p < .05) than in the no smile
condition.

Warm Enjoyable Cold Boring
N-A A∗∗∗ A∗ N∗ n.s.
N-P P∗∗∗ n.s. n.s. n.s.
N-AP AP∗∗∗ AP∗∗ N∗∗∗ N∗∗

P-AP AP∗∗∗ AP∗ n.s. n.s.

Table 2: Comparison of the user’s perception of the
virtual character’s social stance in the different con-
ditions

To measure the effects of gender, we have performed T-
Test. The gender of the virtual characters has significant
effects on the user’s perception. For instance, when Poppy
is smiling (whatever is the smile), she is perceived signifi-
cantly less cold (and warmer) than Obadiah expressing the
same smile (with p < 0.05). Poppy is perceived less boring
with one smile (polite or amused) than Obadiah with the
same smile (with p < 0.05). With the amused smile (with
or without a polite smile), Poppy is perceived significantly
more spontaneous and enjoyable than Obadiah expressing
the same smile (with p < 0, 01).

With regard to these results, we have more precisely an-
alyzed the significant differences for each virtual character
separately. Contrary to the results presented in Table 2,
it appears that, compared to the expression of only the po-
lite smile, Poppy is perceived significantly more spontaneous,
warm (and less cold), and less stiff when it expresses an
amused smile (with p < 0.05). For Obadiah, the expression
of an amused smile (with or without a polite smile) enhances
the warm impression of the virtual character (with p < 0.05).

Concerning the effect of the gender of the user on her per-
ception, only one significant result has been noticed: women
perceive the virtual character as significantly more polite
when it expresses a polite smile than men. This result can
be explained in the light of the research of [15] showing that
women are more sensitive to non-verbal behaviors and more
able to decode facial expressions cues for virtual characters’
faces (Krumhuber et al., 2007), and of the research of [13]
showing that women make more extreme judgment ratings
than men when decoding facial expressions.

Concerning the effects of smile on the perception of the
content of the sentence, significant differences appear. The
users prefer the riddle and judge the riddle funnier when the
virtual character expresses both smiles than with no smile
or only one (polite or amused) (with p < 0.05). Moreover, as
expected, the user judges that the virtual character thinks
its riddle funnier when it expresses an amused smile (with
or without a polite smile) compared to the expression of
no smile or only a polite smile (with p < 0.001). This re-
sult confirms that the amused smile is viewed by the user as
an information on the positive state of the virtual character.

We discuss in more details the results of the study in the
next section.

5.2 Discussion
The results of the study confirm that smiles enhance the

social stance of a virtual character. Indeed, globally, the
smiles (both the polite and amused smiles) increase the warm
stance of the character. Particularly, the amused smile en-
ables to improve the perception of the virtual character in
terms of enjoyment compared to no smile or a polite smile.
The display of the polite and the amused smile in the same
sentence enables to decrease the boring stance of the vir-
tual character. These results are consistent with previous
research showing that individuals and virtual entities who
smile are perceived more positively than non-smiling agents
(see Section 2.2). However, the results also highlight the im-
pact of the different smiles on the user’s perception, showing
that the display of an amused smile enables one to enhance
certain social stances of the virtual character (warm and en-
joyment) compared to the display of a polite smile. These
results can be explained as amused smile is commonly asso-
ciated to felt smile reflecting a positive emotion, compared
to polite smile generally associated to fake smile. These
effects on the perception of the virtual character’s stances
confirm that the users perceive the difference between smiles,
and more particularly between their associated communica-
tive intention, when the virtual character displays them in
a talk. The results show that the use of both smiles enables
one to decrease the boring stance of the character. That
can be due to the variability of smiles expressed by the vir-
tual character in appropriate situation. It may reflect more
engagement from the virtual character.

A gender effect was also revealed. The female virtual char-
acter displaying an amused smile is perceived more posi-
tively (spontaneous, warm, enjoyable) that the male virtual
character expressing the same smile. In particular, it seems
that to add an amused smile in a sentence with a polite
smile enables one to decrease the stiff stance. In contrary,
the male virtual character is generally perceived more boring
and cold when smiling (whatever is the smile) compared to a
smiling female virtual character. Whereas previous research
in Human and Social Science has shown that the absence
of smile for a woman deteriorates her image compared to a
man (see Section 2.2), the results of our study show that
the smile displays by a female virtual character enables it
to enhance her image (spontaneous, warm, enjoyable) com-
pared to a male virtual character. These results confirm
the recent experiment reported in Kulms, Krämer, Gratch,
and Kang [16] showing that virtual character’s non-verbal
behavior may be predominant on stereotype attribution.

In the next section, based on the results of the experiment,

92

we attempt to propose a model to automatically compute
how the (potential) perception of the user of the virtual
character’s stance3 evolves depending on its smiling behav-
ior.

5.3 Toward a model of user’s perception of a
smiling virtual character

In order to enable a virtual character to approximate the
user’s perception of its social stance, we propose a first model
to automatically compute the potential perception of the
user depending on the smiles displayed by the virtual char-
acter when speaking. This model aims at estimating the
probability that a virtual character is perceived as sponta-
neous, stiff, warm, enjoyable and boring. In the collected
data on user’s perception (Section 4), each stance was rated
along a 5 point Likert scale, we can represent this as natu-
ral values ranging from 0 to 4. To provide convenient and
intelligible variables, we map the discrete values to three cat-
egories: the value 0 is associated to neutral, the two lowest
values (for x=1 or x=2) are associated to low, and the two
highest values (for x=3 or x=4) are associated to high. The
probabilities to obtain such values for each social stance are
computed based on the results of the study (Section 5.1).
For instance, the probability that the female virtual charac-
ter is perceived highly spontaneous by displaying an amused
smile when telling something positive is P

(
spontaneous =

high|(smile = A∨smile = AP)∧gender = female
)

= 0.27,
i.e. the probability that spontaneous=3 or spontaneous=4
in the condition A (only an amused smile is expressed) or AP
(an amused and polite smile are expressed). Finally, after
each sentence is pronounced by a virtual character, given its
gender and its smiling behavior (polite smile, amused smile,
both smiles, or no smile), the model provides a matrix re-
flecting the probability of the user’s (potential) perception
of the virtual character’s social stance. For instance, the ma-
trix illustrated in Figure 4 reflects the potential social stance
perceived by the user for a male virtual character which has
not expressed a smile when telling something positive.

Figure 4: Matrix of probabilities representing the
user’s (potential) perception of a male virtual char-
acter that does not display an amused smile when
telling a riddle.

The model enables us to measure the effects of smile but
also the effect of not displaying a specific smile in a situation
in which the user may expect this non-verbal behavior.

Thus, it is an attempt to compute how user’s (poten-
tial) perception of its interactant’s social stance, based on
its nonverbal behavior, evolves during an interaction. The

3We do not model the user’s perception of the virtual char-
acter’s speech content since our results are closely linked to
the specific context of the talk.

proposed approach is human-centric since both the signals
themselves, their corresponding communicative functions,
and their impacts on the perceptive social stances, have been
defined by the users. The resulting model characterizing the
social stances that the user attributes to the virtual charac-
ter given its smiling behavior, can be viewed as a model of
the user’s Theory of Mind (ToM, [5]) on the social stance
inferences.

Our model still needs to be extended in several direc-
tions. It has been constructed from results emanating from
a specific scenario (saying riddle). We still have to see if it
still hold for situations in which the virtual character does
not only tell something funny (like a riddle), but something
globally positive (i.e. reflecting a positive emotion). Sim-
ilar concerns hold for the perception of polite smile. We
need to validate if we can extend our model to any situa-
tion for which the expression or non-expression of a polite
smile is expected. Greeting is such a situation but there are
others as those described in Ochs, Niewiadomski, Brunet,
and Pelachaud [23]. Moreover we suppose that the com-
puted probabilities are cumulative during the interaction.
For instance, several successive sentences reflecting a posi-
tive emotion without displaying an amused smile will lead to
successive decreasing of the user’s perception of the virtual
character’s positive social stance. This hypothesis has to be
validated during virtual character-user interaction.

6. CONCLUSION
In conclusion, in this paper, we have performed a study

to measure the effects of virtual characters displaying polite
and amused smiles when saying a sentence, on the user’s per-
ception of the virtual character’s social stance. The results
of the study have revealed significant differences, confirm-
ing that smiles enhance the social stance of a virtual char-
acter. These results are consistent with previous research
showing that individuals and virtual entities who smile are
perceived more positively than non-smiling agents (Section
2.2). Moreover, the results also highlight the impact of the
different smiles on the user’s perception, showing that the
display of an amused smile enables one to enhance certain
social stances of the virtual character (warm and enjoyment)
compared to the display of a polite smile. In our experiment
we have considered the expression by a virtual character of
both polite and amused smiles when speaking. Previous
research has mainly studied the effects of these smiles sepa-
rately whereas in communication both smiles are generally
expressed.

Our results also provide new insights concerning the gen-
der effect on the user’s perception. Indeed, contrary to
human-human interaction, a smiling female virtual charac-
ter seems to be better perceived than a smiling male virtual
character.

Based on the measures collected during the study (Sec-
tion 5.1), a probabilistic model of the user’s (potential) per-
ception of a smiling virtual character has been proposed. It
enables one to evaluate the user’s perception of virtual char-
acter’s social stance during the interaction given the virtual
character’s gender and its smiling behavior. Both the effect
of the expression of smile in appropriate situations and the
absence of smile in expected smiling situations have been
modeled.

The next step consists in evaluating such a model dur-
ing an interaction with users. For this purpose, we aim

93

at integrating our model in the platform SEMAINE [29] to
test at several moments during the interaction if the pro-
posed model provides an adequate virtual character’s image
of what users have.

7. ACKNOWLEDGMENTS
This research has been supported by the European Com-

munity Seventh Framework Program (FP7/2007-2013), un-
der grant agreement no. 231287 (SSPNet).

8. REFERENCES
[1] Z. Ambadar, J. F. Cohn, and L. I. Reed. All Smiles

are Not Created Equal: Morphology and Timing of
Smiles Perceived as Amused, Polite, and
Embarrassed/Nervous. Journal of Nonverbal Behavior,
17-34:238–252, 2009.

[2] E. Bevacqua, S. Hyniewska, and C. Pelachaud.
Positive influence of smile backchannels in ECAs. In
International Workshop on Interacting with ECAs as
Virtual Characters (AAMAS), 2010.

[3] L. Breiman, J. Friedman, R. Olsen, and C. Stone.
Classification and Regression Trees. Chapman and
Hall, 1984.

[4] J. Cassell, T. Bickmore, L. Campbell,
H. Vilhjálmsson, and H. Yan. More than just a pretty
face: Conversational protocols and the affordances of
embodiment. Knowledgebased Systems, 14(1-2):55–64,
2001.

[5] D. C. Dennett. The Intentional Stance. Mit press
edition, 1987.

[6] F.M. Deutsch, D. LeBaron, and M.M. Fryer. What is
in the Smile? Psychology of Women Quarterly, 11,
1987.

[7] J.A. Edinger and M.L. Patterson. Nonverbal
involvement and social control. Psychological Bulletin,
93:30–56, 1983.

[8] P. Ekman and W. V. Friesen. Unmasking the Face. A
guide to recognizing emotions from facial clues.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1975.

[9] P. Ekman and W. V. Friesen. Felt, False, And
Miserable Smiles. Journal of Nonverbal Behavior,
6:238–252, 1982.

[10] P. Ekman, W. V. Friesen, and J. C. Hager. The facial
action coding system. Weidenfeld and Nicolson, 2002.

[11] M. G. Frank, P. Ekman, and W. V. Friesen.
Behavioral markers and recognizability of the smile of
enjoyment. Journal of Personality and Social
Psychology, 64:83–93, 1993.

[12] U. Hess, S. Blairy, and R. E. Kleck. The influence of
facial emotion displays, gender, and ethnicity on
judgments of dominance and affiliation. Journal of
Nonverbal Behavior, 24:275–283, 2000.

[13] M. Katsikitis, I. Pilowsky, and J. M. Innes. Encoding
and decoding of facial expression. Journal of General
Psychology, 124:357–370, 1997.

[14] E. Krumhuber, A. Manstead, D. Cosker, D. Marshall,
and P. Rosin. Effects of Dynamic Attributes of Smiles
in Human and Synthetic Faces: A Simulated Job
Interview Setting. Journal of Nonverbal Behavior,
33:1–15, 2008.

[15] E. Krumhuber, A. Manstead, and A. Kappas.
Temporal aspects of facial displays in person and
expression perception. The effects of smile dynamics,
headtilt and gender. Journal of Nonverbal Behavior,
31:39–56, 2007.

[16] P. Kulms, N. C. Krämer, J. Gratch, and S. Kang. It’s
in Their Eyes: A Study on Female and Male Virtual
Humans’ Gaze. In Intelligent Virtual Agent (IVA),
pages 80–92, 2011.

[17] M. LaFrance and M. A. Hecht. Why smiles generate
leniency. Personality and Social Psychology Bulletin,
21(3):207–214, 1995.

[18] S. Lau. The effect of smiling on person perception.
Journal of Social Psychology, 117:63–67, 1982.

[19] M. Mehu, A.C. Little, and R.I.M. Dunbar. Duchenne
smiles and the perception of generosity and sociability
in faces. Journal of Evolutionary Psychology,
5(1-4):133–146, 2007.

[20] M. M. Moore. Nonverbal courtship patterns in women.
Ethology and Sociobiology, 6:237–247, 1985.

[21] R. Niewiadomski and C. Pelachaud. Model of Facial
Expressions Management for an Embodied
Conversational Agent. In 2nd International Conference
on Affective Computing and Intelligent Interaction
(ACII), pages 12–23, Lisbon, Portugal, 2007.

[22] M. Ochs, R. Niewiadmoski, and C. Pelachaud. How a
virtual agent should smile? morphological and
dynamic characteristics of virtual agent’s smiles. In
Intelligent Virtual Agent (IVA), 2010.

[23] M. Ochs, R. Niewiadomski, P. Brunet, and
C. Pelachaud. Smiling virtual agent in social context.
Cognitive Processing, Special Issue on“Social Agents”,
2011.

[24] I. Poggi and R. Chirico. The meaning of smile. In
Oralite, gestualite, communication multimodale,
interaction, pages 159–164. 1998.

[25] I. Poggi and C. Pelachaud. Affective Interactions:
Towards a New Generation of Computer Interfaces,
chapter Emotional. 2000.

[26] M. Rehm and E. André. Catch me if you can ?
Exploring lying agents in social settings. In AAMAS,
pages 937–944. Academic Press Inc, 2005.

[27] H. T. Reis, W.I. McDougal, C. Monestere,
S. Bernstein, K. Clark, E. Seidl, M. Franco,
E. Giodioso, L. Freeman, and K. Radoane. What is
smiling is beautiful and good. European Journal of
Social Psychology, 20:259–267, 1990.

[28] K. R. Scherer. What are emotions? And how can they
be measured? Social Science Information,
44(4):695–729, December 2005.

[29] M. Schröder. The SEMAINE API: Towards a
Standards-Based Framework for Building
Emotion-Oriented Systems. Advances in
Human-Computer Interaction, 2010.

[30] E. Tanguy. Emotions: the art of communication
applied to virtual actors. PhD thesis, Department of
Computer Science, University of Bath, England, 2006.

[31] G Theonas, D Hobbs, and D Rigas. Employing Virtual
Lecturers’ Facial Expressions in Virtual Educational
Environments. International Journal of Virtual
Reality, 7:31–44, 2008.

94

Session 3A
Robotics I

Supervised Morphogenesis – Morphology Control of
Ground-based Self-Assembling Robots by Aerial Robots

Nithin Mathews, Alessandro Stranieri, Alexander Scheidler, Marco Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

{nmathews,astranie,ascheidler,mdorigo}@ulb.ac.be

ABSTRACT
In this paper, we study a heterogeneous robot team com-
posed of self-assembling robots and aerial robots that coop-
erate with each other to carry out global tasks. We intro-
duce supervised morphogenesis – an approach in which aerial
robots exploit their better view of the environment to detect
tasks on the ground that require self-assembly, and perform
on-board simulations to determine the morphology most ad-
equate to carry out the task. In case existing morphologies
on the ground do not match those determined in simula-
tion, aerial robots use a series of enabling mechanisms to
initiate and control (hence supervise) the formation of mor-
phologies more adequate to carry out the task. Supervised
morphogenesis solely employs LEDs and camera-based local
communication between the two robot types. We validate
the applicability of our approach in a real-world scenario, in
which ground-based robots are given the task to cross an un-
known, undulated terrain by forming ad-hoc morphologies
under the supervision of an aerial robot.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Robot teams, multi-robot systems, air/ground systems, self-
assembling robots, swarm robotics

1. INTRODUCTION
Self-assembling robotic systems have been the topic of

many studies (refer to [1] for an overview). In such systems,
autonomous robots form new or re-arrange existing physical
connections to each other to form distinctive collective robot
structures (hereafter called morphologies). This morpholog-
ical flexibility gives self-assembling robots the potential to
adapt to changing environmental conditions. For instance,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: A potential deployment of the heterogeneous robot
team considered in this study. Maneuvers in such undulated
terrain may require the self-assembling robots to rely on en-
vironmental perception from an aerial perspective to deter-
mine the shape and the size of the morphologies (a chain
morphology of size three is shown in the inset) that may
allow the robots to navigate through the environment.

navigating through an uneven terrain may require a mor-
phology different from the one required for pushing an ob-
ject. However, existing systems are often not able to adap-
tively form new morphologies as a function of the task or
the environment. This is primarily because individual com-
ponents in existing systems consist of rather simple ground-
based robots that are adversely affected by obstructed sen-
sor views. Additionally, self-assembling robots often do not
have the sensory apparatus required to determine the mor-
phological constraints imposed by their environments.

Although many algorithms have been proposed to con-
trol morphology formation in self-assembling robots [2–6],
little attention has been devoted to the subsequent prac-
tical applicability of self-assembled morphologies. In fact,
only very few works have considered real-world tasks that re-
quire robots to form task-dependent morphologies of precise
shapes and sizes (hereafter called target morphologies) [7,8].
Due to sensory limitations, however, the robots in these
works are not able to detect the tasks allocated to them.
Therefore, the target morphologies were either predefined [7]
or controlled through additional environmental cues [8]. In [9],
self-assembling robots are able to detect and solve a series

97

of tasks. However, the considered tasks did not require a
precise morphology shape or size to be solved successfully.

Many researchers have proposed to overcome the sensory
limitations of ground-based robots by using heterogeneous
systems composed of both ground-based and aerial robots
[10–15]. These systems exploit the complementary capabil-
ities of the two robot types. In fact, while aerial robots can
offer unobstructed field of view and rapid coverage of large
areas, ground-based robots can offer high accuracy sensing
at relatively short distances and can manipulate the envi-
ronment. In [10, 11], researchers have proposed GPS-based
solutions to study localization and navigation problems in
robot teams composed of aerial and ground-based robots.
The robots in [12] complement each others observations by
fusing sensory data to provide scalable solutions to tasks
involving searching and tracking of ground targets. Other
studies include cooperative surveillance [13, 14] and motion
control of ground-based robots through an aerial robot [15].
Despite the variety of tasks and applications considered in
existing air and ground-based robotic systems, no research
has been carried out, to the best of our knowledge, to study
how aerial robots may assist ground-based self-assembling
robots in their morphogenetic processes.

In this paper, we enhance the sensing capabilities of a
ground-based self-assembling robotic system by integrating
aerial robots into the system (Fig. 1 shows a possible de-
ployment scenario for such a heterogeneous team of robots).
We propose supervised morphogenesis – an approach that
enables aerial robots i) to detect tasks on the ground that
require ground-based robots to self-assemble, and ii) if neces-
sary, to initiate and control (i.e., supervise) the formation of
appropriate morphologies. That is, ground-based robots del-
egate the decision-making concerning if and what morpholo-
gies to form to the aerial robots. The aerial robots exploit
their elevated position and their richer sensory equipment to
determine exact characteristics of tasks. Subsequently, they
use on-board simulations to determine an appropriate target
morphology. In particular, the aerial robots build a model of
the perceived environment and then simulate the behavior
of different morphologies within this environment. In this
manner, aerial robots can assess how different morphologies
perform when executing a task without requiring any phys-
ical realization of morphologies on the ground. Depending
on the outcome of the simulations, aerial robots then deter-
mine the most appropriate target morphology and supervise
its formation. Such a system has the ability to adapt to
completely unknown environments and thus to significantly
increase its level of autonomy.

We present the results of a first implementation of super-
vised morphogenesis. We report on experiments conducted
to evaluate our approach in a real-world hill-climbing task.
In this task, a group of ground-based robots and an aerial
robot are required to reach a light source by navigating over
a hill of unknown steepness. In our approach, the aerial
robot calculates a height map using stereo images to build an
internal representation of the perceived environment. They
then execute on-board simulations to estimate the steepness
each ground-based robot may experience when navigating to
the light source. In case the simulations predict a ground-
based robot to topple over, because of a too steep slope,
the aerial robot positions itself over the hill to supervise the
formation of target morphologies that guarantee safe cross-
ing of the hill. In this initial implementation of supervised

Figure 2: The two robot types considered in this study. The
foot-bot is shown on the left while the eye-bot is on the right.
1) The upward-pointing camera, 2) the ARM11TMprocessor,
3) the docking unit, 4) the docking ring with integrated
LEDs, 5) the ceiling attachment device, 6) the downward-
facing LED ring, and 7) the downward-pointing camera.

morphogenesis, we restrict target morphology to chain mor-
phologies1 composed of either two or three ground-based
robots.

2. HARDWARE PLATFORM
In our experiments, we use a set of self-assembling robots

called foot-bots and a flying robot called eye-bot (see Fig. 2).
Both robot types were developed as part of the SWAR-
MANOID project [16].

A foot-bot is a mobile robot with a circular chassis of
17 cm diameter. A combination of tracks and wheels pro-
vides the foot-bots with differential drive motion capabili-
ties. The docking module provides self-assembling capabil-
ities with other foot-bots. This module is composed of a
docking unit with three fingers, a docking ring, and an in-
tegrated force sensor that can register the forces applied to
the unit. A foot-bot can physically attach to another foot-
bot by inserting the docking unit into its docking ring and
then opening the three fingers. A foot-bot is also equipped
with 12 RGB LEDs distributed around its docking ring. The
LEDs allow a foot-bot to visually display its internal state
to nearby robots. Other features include a 2D distance scan-
ner, 24 IR proximity and light sensors, one upward-pointing
and one omnidirectional 2 mega pixel HD camera supporting
high quality vision in both vertical and horizontal planes. A
custom-made on-board device named mxRAB can be used
to exchange messages (10 bytes) and to estimate the relative
range and bearing (up to a distance of 5 m) between adja-
cent foot-bots. This device combines radio frequency and
infrared and is based on the work presented in [17].

An eye-bot is 54 cm high and has a diameter of 50 cm.
Eight rotors, mounted in a co-axial quadrotor configuration,
provide the eye-bot with thrust and control. The eye-bot

1
A linear structure in which each robot besides the first one is con-

nected to the rear of the preceding robot.

98

Figure 3: The experimental setup: 5 foot-bots, an eye-bot
attached to the ceiling, a light source, and a mock-up hill.

has an on-board battery that allows 10-20 minutes of au-
tonomous flight. It is also equipped with a ceiling attach-
ment device that can be used in indoor environments to
extend mission endurance. A downward-pointing 2 mega
pixel HD 360 ◦ pan-and-tilt camera allows the eye-bot to
survey the ground and to detect the foot-bots. The down-
ward facing RGB LED ring with 16 RGB LEDs can be used
to communicate internal state information to the foot-bots.
Other features include a light weight body (270 g) made
out of carbon-fiber, a 3D relative positioning sensor (with a
maximum range of 12 m), an altitude sensor, and a magne-
tometer to detect heading direction.

Foot-bots and eye-bots are equipped with an on-board
ARM11TMprocessor (i.MX31 operating at 533 MHz with
128 MB RAM) running a Linux-based operating system that
is interfaced with all on-board sensors and actuators.

3. TASK AND EXPERIMENTAL SETUP
A group consisting of 5 foot-bots and one eye-bot is given

the task to navigate from a deployment area to a light source
by crossing a hill of a priori unknown steepness (see Fig. 3).
The inclination of the hill can vary between 0 ◦ (i.e., no in-
clination) and 30 ◦. Individual foot-bots are only able to
withstand a maximum inclination of 25 ◦ without toppling
over. If for a hill the maximum inclination is less than 25 ◦,
individual foot-bots can cross without requiring further as-
sistance. If, on the other hand, the maximum inclination
is higher than 25 ◦, the foot-bots have to self-assemble into
chain morphologies that offer sufficient stability when pass-
ing over the hill. The number of chain morphologies that
have to be formed and their individual sizes depend on the
total number of foot-bots allocated to the task and are not
known to any of the robots. In our experiments, the eye-bot
is assumed to have flown in advance and attached to the ceil-
ing2 at a height of 2.96 m immediately before the hill. The
task is considered accomplished if all 5 foot-bots manage to
reach the light source.

2
As it is irrelevant to the work presented in this paper and because

it goes beyond the scope of this work, we do not discuss flight control
algorithms that may result in this behavior of the eye-bot.

4. METHODOLOGY
We describe the methodology employed to solve the task

considered in this work. First, the eye-bot uses its downward-
pointing camera from an elevated position to build an inter-
nal representation of the environment. In particular, two
sequentially taken images from two distinct positions in the
environment are used to compute a height map of the envi-
ronment in the field of view (details are given in Sect. 4.1).
Second, this height map is used to calculate height pro-
files along each foot-bot’s estimated trajectory to the light
source. Subsequently, on-board simulations are performed
to estimate whether each foot-bot is able to drive over the
computed height profile of its estimated trajectory without
toppling over (see Sect. 4.2). In case the simulation predicts
that a foot-bot would topple over, the eye-bot supervises
the formation of target morphologies that offer the physical
stability required to cross the hill. To initiate morphology
formation, the eye-bot selects a favorably situated foot-bot.
The eye-bot then establishes a dedicated one-to-one commu-
nication link with the selected foot-bot (see Sect. 4.3). The
dedicated communication link is then used to initiate the
formation of a target morphology by activating the execu-
tion of a SWARMORPH-script [2]. SWARMORPH-script
is a language that permits arbitrary morphology generation
using self-assembling robots in a distributed manner. The
foot-bots are pre-loaded with two different SWARMORPH-
scripts that, when executed, can generate a chain morphol-
ogy composed of two or three foot-bots each.3 Physical
connections between a connection inviting foot-bot and a
neighboring foot-bot are formed using the recruitment and
guidance based mechanism presented in [18]. In Sect. 4.4,
we finally present robot controllers we have developed while
following a distributed control paradigm.

4.1 Internal representation of the environment
The eye-bot builds an internal representation of the ground

underneath by computing a height map. Most flying robots
are subject to payload limitations that reduce the possibil-
ities for dedicated, on-board sensing hardware (such as Mi-
crosoft’s Kinect) capable of computing height maps. In this
section, we describe how the eye-bot obtains the height map
using its comparatively lightweight monocular vision system.

The eye-bot takes two images (each from a different po-
sition) such that the closest foot-bot to the light source is
always in the field of view. Based on the two images, the eye-
bot computes the height of the surfaces and the objects in
the scene. The extraction of three-dimensional information
of a scene based on stereo images is a problem that has been
studied by the computer vision community for decades [19].

We make a series of assumptions when acquiring the im-
ages. First, we assume that the eye-bot is able to hover
above the ground at a fixed height using its altitude sensor
and that the image plane is parallel to the ground. Second,
the exact distance of the eye-bot to the ground and the dis-
tance between the two positions is assumed to be accessible
to the eye-bot through its 3D relative positioning sensor.
Third, we assume to know the focal length of the camera,
obtained through a prior calibration step [20].

Both images are taken at a resolution of 640x480 pixels
(see Fig. 4a and Fig. 4b). In order to compute a height map,

3
In our experiments, the eye-bot makes the simplifying assumption

that chain morphologies provide the physical stability required to
cross any detected hill.

99

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a,b) Images acquired by the eye-bot at a distance of 30 cm from each other. (c) A grayscale representation of the
disparity map computed. (d) The trajectory estimations of five foot-bots to the light source. (e) The height profile of the
trajectory estimated for foot-bot #3. (f) A schematic of an on-board simulation run. The inclination computed at six different
positions is shown. The arrows depict the location of computed inclinations that are higher than 25 ◦. (g) The eye-bot detects
two GREEN and three BLUE signals. (h) A foot-bot detects the signal RED/GREEN sent by the eye-bot.

Image #1 Image #2

Undistortion

Undistorted image #1

Corner detection

Image #1 corners

Undistorted image #2

Corner tracking

Point correspondences

Rectification

Rectified image #2

Dense matching

Disparity map

Height computation

 Height map

Figure 5: A flowchart depicting the individual steps included
in the computation of the height map.

we first generate a so-called disparity map. For each point
in the first image, a disparity map contains the distance (in
pixel) by which the point has moved in the second image.
Points further away from the camera move less compared
to points closer to the camera. Based on the disparity of
a point, the knowledge about the distance of the eye-bot
to the ground, the displacement of the eye-bot between the
positions from which the two images have been acquired, and
the exact properties of the camera, the eye-bot can calculate
the height of the point in real-world distances.

Fig. 5 shows a flowchart containing the individual steps of
the process that leads to the computation of a height map.
The Undistortion step takes both images as input and com-
pensates for tangential and radial distortion introduced by
the lens and modeled by the coefficients found by the cal-
ibration step. The next three steps transform the images
so that the search for the correspondence of a point in the
first image can be limited to a horizontal scan in the sec-
ond image. This process is called rectification. First, the
Corner Detection step finds interesting feature points in the
first image as described in [21]. Then, in the Corner Track-
ing step, the iterative Lucas-Kanade method [22] is used to
track the interesting points in the second image. The out-
put of this step is a set of sparsely matched points. In the
Rectification step, this set of correspondences is used to find
the transformation matrix that vertically aligns the second
image to the first. The transformation matrix is used to rec-
tify the second image. To derive the disparity of each point
in the image we then apply the Dense matching step. The
algorithm used here is described in [23]. Figure 4c shows a
grayscale representation of the disparity map. Finally, the
last step applies stereo triangulation to each disparity value
to produce the height map. The computed height map is
a two-dimensional matrix of size 640x480. For each real-
world point visible in both images, the height map contains
its elevation from the ground in cm.

4.2 On-board simulation-based reasoning
Here we describe how the eye-bot uses the height map to

perform on-board simulations. Based on these simulations,
the eye-bot evaluates whether or not individual foot-bots are
able to continue their navigation towards the light source
without self-assembling.

The task considered in this work requires each foot-bot to

100

execute a phototaxis behavior that guides the foot-bot di-
rectly to the light source. Therefore, as shown in Fig 4d, the
eye-bot estimates a foot-bot’s trajectory to the light source
to be a straight line. Note that while the position of a foot-
bot in the image returned by the camera is calculated using
the computer vision algorithms presented in Sect. 4.3, the
light source is assumed to be situated on the right edge of
the image. For each foot-bot, the eye-bot reads out the cell
values in the height map on a line (of 1 pixel width) that
connects the position of the foot-bot to the right edge of the
image horizontally. These values represent the height profile
of the foot-bot’s estimated trajectory to the light source. An
example of a height profile is plotted in Fig. 4e.

For each computed depth map, the eye-bot simulates a
virtual navigation of each foot-bot in the field of view to
the light source along its respective height profile. Each
foot-bot is placed at its current position on the height pro-
file and the inclination experienced by the foot-bot in this
position is calculated. In particular, the inclination of the
surface underneath the front and the rear end of the simu-
lated foot-bot’s chassis is calculated. Then, the foot-bot is
moved pixel-by-pixel, until the foot-bot’s chassis reaches the
light source, and the inclination is calculated each time the
foot-bot is moved (see Fig. 4f for a visualization). In case
a calculated inclination for a foot-bot is higher than 25 ◦,
the inclination a foot-bot can endure without toppling over,
the eye-bot halts performing simulations and requires the
foot-bots to self-assemble.

4.3 LEDs and camera-based communication
The robots considered in this work use their on-board

LEDs and cameras to communicate with each other. The
eye-bot uses its downward-pointing camera to perceive the
LEDs of the foot-bots (see Fig. 4g). A foot-bot, in turn,
uses its upward-pointing camera to perceive the LEDs of an
eye-bot (see Fig. 4h).

A foot-bot can transmit three distinctive signals to the
eye-bot by displaying either one of the three primary RGB
colors on its LED ring (i.e., RED, GREEN, or BLUE). The
eye-bot executes the following two steps to perceive the sig-
nal transmitted by each foot-bot and detect the total num-
ber of foot-bots in the field of view. First, the eye-bot carries
out a threshold-based RGB color detection on the images re-
turned by its downward-pointing camera. Second, for each
RGB color channel, a circle detection algorithm is run to
determine the number of foot-bots in the field of view. Each
detected circle is assumed to be a foot-bot with its unique
position (i.e., the center of the circle) in the environment.

In addition to the three signals used by the foot-bots, the
eye-bot uses the following two signals to communicate to the
foot-bots: RED/BLUE and RED/GREEN. These signals
are based on two primary RGB colors displayed simultane-
ously using alternating LEDs. A foot-bot processes the im-
age returned by its upward-pointing camera to detect RGB
color blobs. The signal transmitted by the eye-bot is then
determined by evaluating the total number of detected red,
green and blue blobs respectively. For instance, if only red
blobs are detected, the signal transmitted by the eye-bot is
detected as RED. If, on the other hand, both red and green
blobs are detected simultaneously the signal transmitted by
the eye-bot is detected as RED/GREEN (see Fig. 4h).

In self-assembling robotic systems, morphology formation
is usually initiated by a single robot. We use the mechanism

presented in [24] to let the eye-bot select a favorably located
foot-bot to initiate morphology formation by establishing a
dedicated communication link to the foot-bot. The eye-bot
uses the signals RED, GREEN, and BLUE in combination
with an iterative selection process to narrow down the num-
ber of potential recipients of a broadcast signal (i.e., a color
displayed on the LEDs) to a single foot-bot. In [24], this it-
erative selection process is shown to scale well with respect
to the number of participating foot-bots. The established
communication link with a particular foot-bot enables the
eye-bot to ensure that a subsequently transmitted signal (for
instance RED/GREEN or RED/BLUE) will only be pro-
cessed by the selected foot-bot even though other foot-bots
may also be able to receive the broadcasted signal.

4.4 Distributed robot control
We present two behavior-based controllers we have devel-

oped: one for the eye-bot and one for the foot-bots. Each
robot is autonomous and independently executes its respec-
tive controller on the on-board ARM11TMprocessor.

The behavior-based controller of the eye-bot is described
by the finite state machine shown in Fig. 6a. Initially, the
eye-bot executes a phototaxis behavior by flying ahead of
the foot-bots towards the direction of the light source. The
light source is detected using the downward-pointing pan-
and-tilt camera. Simultaneously, the eye-bot estimates the
distance traveled by using the 3D relative positioning sen-
sor in combination with at least one stationary robot (for
instance in the deployment area) that provides a static ref-
erence point. At fixed distance intervals, the eye-bot takes
images of the ground.4 Sequentially taken images are then
used to compute a height map of the surface in the field of
view. If subsequently performed on-board simulations do
not predict danger in the surveyed area (i.e., foot-bots can
act independently), the eye-bot continues heading towards
the light source by executing the phototaxis behavior. If,
on the other hand, simulations detect a surface too steep for
individual foot-bots, the eye-bot positions itself (by attach-
ing to the ceiling in indoor environments or otherwise by
hovering) above the hazardous area. The eye-bot sends the
signal RED to issue a warning to the foot-bots underneath.

From its elevated position, the eye-bot uses the signals
RED, GREEN, and BLUE to establish a one-to-one com-
munication link to a favorably located foot-bot that will ini-
tiate a target morphology formation. Each foot-bot that
acknowledges the warning using the BLUE signal is a selec-
tion candidate. Among these, the eye-bot selects the foot-
bot that is situated in the center (relative to the hill) and
that is closest to the light source. This allows target mor-
phologies to be formed away from the two edges of the hill
while allowing completed target morphologies to navigate
directly to the light source without colliding with individ-
ual foot-bots along the way. Depending on the total num-
ber of foot-bots that have acknowledged the issued warning,
the eye-bot uses the established communication link to form
a chain morphology of either size two or three. That is,
if three foot-bots have acknowledged, a chain morphology
of size three is formed by sending the signal RED/BLUE
to activate the execution of SWARMORPH-script 2 in the

4
We have empirically determined that images taken at a distance of

30 cm from each other and from a height of 2.42 m (measured from
the ground to the tip of the camera) yield the best results in our
experimental setting.

101

(a)

(b)

Figure 6: Finite state machine respresentation of the control logic of (a) the eye-bot and (b) the foot-bots. Transitions shown
in dashed lines are not considered in this study, as they are only applicable if flight control algorithms are executed on the
eye-bot. The signals sent using the LEDs in each state are shown in parentheses.

foot-bots. In all other cases, a chain morphology of size two
is formed by sending the signal RED/GREEN to activate
the execution of SWARMORPH-script 1. As only one mor-
phology is formed at a time, counting the number of foot-
bots sending the RED signal allows the eye-bot to determine
when target morphologies are completed. The morphology
formation process is iterated until no foot-bots are detected
in the field of view. In this manner, by sequentially form-
ing chain morphologies composed of two or three robots, the
eye-bot guarantees the crossing of potentially any number of
foot-bots given there is more than one foot-bot deployed.

Figure 6b shows the individual states in the behavior-
based controller of the foot-bots. Each foot-bot executes
a phototaxis behavior to navigate to the light source. The
light source is detected using the on-board light sensors. Si-
multaneously, it uses the upward-pointing camera to detect
potential warnings (i.e., the RED signal) issued by the eye-
bot. Note that due to the wider field of view of the eye-bot,
it is not necessarily the case that a foot-bot in the field of
view of the eye-bot has in turn the eye-bot in its field of view.
The foot-bots closest to the light source are more probable
to detect signals sent by the eye-bot first, as the eye-bot first
enters their field of view. Therefore, the foot-bot that de-
tects a RED signal sent by the eye-bot broadcasts a message
through the mxRAB device to inform the other foot-bots.
All foot-bots become stationary and use the BLUE signal to
acknowledge the warning issued by the eye-bot.

Stationary foot-bots use the signals RED, GREEN, and
BLUE to establish a one-to-one communication link to the
eye-bot. Foot-bots that do not perceive the eye-bot in the
field of view or get excluded from the selection process seek
for a connection that has to be formed. A connection seek-
ing foot-bot does not move until it is invited by a connec-
tion inviting foot-bot. Once the commmunication link is es-
tablished, the selected foot-bot uses the signal subsequently
transmitted by the eye-bot (RED/GREEN or RED/BLUE)
to execute the appropriate SWARMORPH-script that leads
to the formation of the requested target morphology. The
selected foot-bot initiates the morphology formation process
by inviting a connection at its rear. Morphologies are com-
pleted when connection inviting foot-bots and connection
seeking foot-bots execute basic robot behaviors described in
a SWARMORPH-script. The underlying connection form-
ing mechanism used in this study allows a connection invit-

ing foot-bot to actively recruit an optimally situated con-
nection seeking foot-bot and guide the recruit to the loca-
tion where the connection is required. Note that the con-
nection inviting foot-bots and the foot-bots in the selection
process use the mxRAB device to send messages that in-
hibit nearby connection seeking foot-bots from leaving the
mophology formation area and driving towards the light.
Foot-bots in a completed morphology execute a connected
phototaxis behavior that allows the foot-bots to cross the
hill as a composite entity. The execution of controllers is
stopped on foot-bots that have successfully crossed the hill
and reached the light source.

5. EXPERIMENTS AND RESULTS
We performed a series of experiments to assess the perfor-

mance of the decision-making process (i.e., whether or not
to require self-assembly) carried out by the eye-bot. We also
validated our approach on real robots using the task and ex-
perimental setup described in Sect. 3. The properties of the
self-assembly mechanism (i.e., precision, speed and reliabil-
ity) used by the foot-bots in our approach have already been
studied and were presented in [18].

In our experiments, we consider a mock-up of a hill (with
a maximum inclination of 30 ◦) that cannot be crossed by in-
dividual foot-bots. Therefore, a successful task completion
requires the eye-bot to detect the hazardous situation. We
let the eye-bot take 10 different sets of images in which the
hill and the 5 foot-bots are always visible. Each set consists
of two images taken at 30 cm from each other. The images
in each set are used to compute a height map from which
a height profile is retrieved for the estimated trajectory of
each foot-bot in the field of view. Simulations are run on
the resulting 50 height profiles to determine the maximum
inclination on each trajectory. The mean of the computed
maximum inclination is 29.12 ◦ with a standard deviation of
4.1 ◦. This result indicates that, on average, the internal rep-
resentation of the environment closely correspond to reality.
Also, the low standard deviation indicates that the decision-
making process is often able to identify the encountered en-
vironment as hazardous to individual foot-bots. However,
the eye-bot may need to assume a more defensive threshold
angle (e.g., 20 ◦) an individial foot-bot can withstand in or-
der to entirely avoid faulty decisions that can cause foot-bots
to topple over.

102

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Snapshots of a supervised morphogenesis experiment in the hill-crossing task considered in this paper. For the
sake of better visibility, the background has been removed in all images. The letters represent the signals transmited by the
robots: R=RED, G=GREEN, B=BLUE, RG=RED/GREEN, and RB=RED/BLUE. (a) Deployment phase. Foot-bots drive
towards the light source. The eye-bot runs on-board simulations. (b) The eye-bot attracts the attention of foot-bots using
the RED signal: the foot-bots halt. (c) The eye-bot selects a foot-bot and activates the execution of SWARMORPH-script
1 (RED/GREEN signal). (d) A chain morphology composed of two foot-bots is formed. (e) The morphology moves towards
the light while the eye-bot selects a next foot-bot and (f) activates the execution of SWARMORPH-script 2 (RED/BLUE
signal). (g) A chain morphology composed of three foot-bots is formed. (h) The morphology executes connected phototaxis.

The decision-making process of the eye-bot is, if necessary,
followed by the supervised morphology formation process.
In our experiments, the stationary eye-bot is not able to
acquire the two images required to build the internal repre-
sentation of the environment. Hence, it uses a pre-calculated
height map that was computed using images taken prior to
running the experiment. Initially, all five foot-bots execute a
phototaxis behavior to navigate to the light source. The eye-
bot transmits the RED signal to attract the attention of the
foot-bots as soon as on-board simulations detect a slope too
steep for individual foot-bots to cross. Immediately before
reaching the slope, the closest foot-bots to the light source
detect the signal RED on the eye-bot and therefore become
stationary. These foot-bots inform their neighboring foot-
bots, yet unaware of the hazardous situation, by broadcast-
ing a message through the mxRAB device. In what follows,
the eye-bot selects one of the foot-bots able to perceive the
eye-bot and establishes a communication link to it. Once the
communication link is established, the eye-bot initiates mor-
phology formation by transmitting either the RED/GREEN
or the RED/BLUE signal as a function of the total number
of foot-bots in the field of view. While completed morpholo-
gies move towards the light and successfully cross the hill,
the eye-bot continues to supervise the formation of further
morphologies using the remaining foot-bots.

Figure 7 shows snapshots of an experimental run of super-
vised morphogenesis. The complete video footage of the ex-
periment and more details on the results can be found online
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-019/.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have enhanced the sensing capabilities of

a ground-based self-assembling robotic system by incorpo-
rating aerial robots into the system. We introduced super-
vised morphogenesis – a novel approach that enables aerial
robots i) to detect tasks on the ground that cannot be de-
tected by ground-based robots and ii) to initiate and con-
trol the formation of morphologies that meet the challenges
posed by the task. A key feature of supervised morphogene-
sis is that the aerial robots perform on-board simulations to
evaluate the adequacy of different morphologies to a consid-
ered task. We reported on experiments conducted in which
supervised morphogenesis was tested on real robotic hard-
ware in a hill-crossing task.

To the best of our knowledge, the work presented in this
paper represents the first implementation of a robotic system
that enables aerial robots to control morphology formation
of ground-based self-assembling robots. We have shown how
our approach can be used to enhance the adaptivity of self-
assembling robot systems to previously unknown tasks. Our
approach does not require any proprietary hardware and
only relies on off-the-shelf components such as LEDs and
digital cameras to enable communication between the two
robot types. Therefore, our approach can also be applied on
other robotic platforms.

In our ongoing work, we are studying how to leverage
the approach presented in this study to operate in envi-
ronments composed of various, different tasks that require
the formation of a variety of morphologies in parallel. We
are also considering to provide aerial robots with the abil-

103

ity to determine an appropriate morphology to a task by
simulating the perceived environment and the robots on the
ground using on-board physics-based simulations. Moreover,
we intend to couple physics-based simulations with machine
learning techniques to let aerial robots learn about task-to-
morphology mappings. Such a system can feature the ability
to produce the most appropriate morphology for potentially
any type of physically plausible task and environment.

7. ACKNOWLEDGMENTS
This work was partially supported by the European Com-

mission via the ERC Advance Grant “E-SWARM: Engineer-
ing Swarm Intelligence Systems”(grant 246939). Alessandro
Stranieri acknowledges support from the MIBISOC network,
an Initial Training Network funded by the European Com-
mission, grant PITN–GA–2009–238819. Alexander Schei-
dler acknowledges support from the postdoc programme of
the German Academic Exchange Service (DAAD) and the
Meta-X project, funded by the Scientific Research Direc-
torate of the French community of Belgium. Marco Dorigo
acknowledges support from the Belgian F.R.S.-FNRS, of
which he is a research director.

8. REFERENCES
[1] R. Groß and M. Dorigo. Self-assembly at the

macroscopic scale. Proc. IEEE, 96(9):1490–1508, 2008.

[2] A. L. Christensen, R. O’Grady, and M. Dorigo.
SWARMORPH-script: a language for arbitrary
morphology generation in self-assembling robots.
Swarm Intelligence, 2(2–4):143–165, 2008.

[3] C. Jones and M.J. Matarić. From local to global
behavior in intelligent self-assembly. In Proc. of the
2003 IEEE Int. Conf. on Rob. and Autom., pages
721–726. IEEE Computer Society Press, Los Alamitos,
CA, 2003.

[4] E. Klavins, R. Ghrist, and D. Lipsky. A grammatical
approach to self-organizing robotic systems. IEEE
Trans. Autom. Control, 51(6):949–962, 2006.

[5] K. Støy and R. Nagpal. Self-reconfiguration using
directed growth. In Proc. of the Int. Conf. on Distr.
Auton. Rob. Syst., pages 1–10. Springer, Berlin,
Germany, 2004.

[6] W. Liu and A. Winfield. Autonomous morphogenesis
in self-assembling robots using ir-based sensing and
local communications. In Proc. of the 7th Int. Conf.
on Swarm Intelligence, volume 6234 of LNCS, pages
107–118. Springer, Berlin, Germany, 2010.

[7] H. Wei, Y. Chen, M. Liu, Y. Cai, and T. Wang.
Swarm robots: From self-assembly to locomotion. The
Computer Journal, 54(9):1465–1474, 2011.

[8] R. O’Grady, A. L. Christensen, C. Pinciroli, and
M. Dorigo. Robots autonomously self-assemble into
dedicated morphologies to solve different tasks. In
Proc. of 9th Int. Conf. on Auton. Agents and
Multiagent Syst., pages 1517–1518. IFAAMAS,
Richland, SC, 2010.

[9] R. O’Grady, R. Groß, A. L. Christensen, and
M. Dorigo. Self-assembly strategies in a group of
autonomous mobile robots. Autonomous Robots,
28(4):439–455, 2010.

[10] R. T. Vaughan et al. Fly Spy: Lightweight localization
and target tracking for cooperating air and ground
robots. In Proc. of the 5th Int. Symp. on Distrib.
Auton. Rob. Syst., pages 315–324. Springer, Berlin,
Germany, 2000.

[11] A. Stentz, A. Kelly, H. Herman, P. Rander, O. Amidi,
and R. Mandelbaum. Integrated air/ground vehicle
system for semi-autonomous off-road navigation. In
Proc. of AUVSI Unmanned Syst. Symp., 2002.

[12] B. Grocholsky, S. Bayraktar, V. Kumar, C. J. Taylor,
and G. Pappas. Synergies in feature localization by
air-ground robot teams. In Proceedings of the 9th
International Symposium on Experimental Robotics,
pages 353–362. Springer, Berlin, Germany, 2004.

[13] B. Grocholsky, J. Keller, V. Kumar, and G. Pappas.
Cooperative air and ground surveillance. IEEE
Robotics & Automation Magazine, 13:16–25, 2006.

[14] M. A. Hsieh et al. Adaptive teams of autonomous
aerial and ground robots for situational awareness.
Journal of Field Robotics, 24(11-12):991–1014, 2007.

[15] N. Michael, J. Fink, and V. Kumar. Controlling a
team of ground robots via an aerial robot. In Int.
Conf. on Intel. Rob. and Syst., pages 965–970. IEEE
Press, Piscataway, NJ, 2007.

[16] M. Dorigo et al. Swarmanoid: a novel concept for the
study of heterogeneous robotic swarms. IEEE Robotics
& Automation Magazine, in press, 2012.

[17] J.F. Roberts, T.S. Stirling, J-C. Zufferey, and
D. Floreano. 2.5D infrared range and bearing system
for collective robotics. In Proc. of the 2010 IEEE/RSJ
Int. Conf. on Intel. Rob. and Syst., pages 3659–3664.
IEEE Press, Piscataway, NJ, 2009.

[18] N. Mathews et al. Enhanced directional self-assembly
based on active recruitment and guidance. In Proc. of
the 2011 IEEE/RSJ Int. Conf. on Intel. Rob. and
Syst., pages 4762–4769. IEEE Computer Society
Press, Los Alamitos, CA, 2011.

[19] M. Z. Brown, D. Burschka, and G. D. Hager.
Advances in computational stereo. IEEE Trans.
Pattern Anal. Mach. Intell., 25:993–1008, 2003.

[20] G. Bradski and A. Kaehler. Learning OpenCV:
Computer Vision with the OpenCV Library. O’Reilly,
Cambridge, MA, 2008.

[21] J. Shi and C. Tomasi. Good features to track. In Proc.
of the IEEE Conf. on Comp. Vis. and Pat. Recog.,
pages 593–600. IEEE Press, Piscataway, NJ, 1994.

[22] J.Y. Bouguet. Pyramidal implementation of the Lucas
Kanade feature tracker. Description of the algorithm.
Intel Corporation Microprocessor Research Labs, 2000.

[23] H. Hirschmüller and S. Gehrig. Stereo matching in the
presence of sub-pixel calibration errors. In Proc. of the
IEEE Conf. on Comp. Vis. and Pat. Recog., pages
437–444. IEEE Press, Piscataway, NJ, 2009.

[24] N. Mathews, A. L. Christensen, E. Ferrante,
R. O’Grady, and M. Dorigo. Establishing spatially
targeted communication in a heterogeneous robot
swarm. In Proc. of 9th Int. Conf. on Auton. Agents
and Multiagent Syst., pages 939–946. IFAAMAS,
Richland, SC, 2010.

104

Decentralized Active Robotic Exploration and Mapping for
Probabilistic Field Classification in Environmental Sensing

Kian Hsiang Low†, Jie Chen†, John M. Dolan§, Steve Chien‡, and David R. Thompson‡
Department of Computer Science, National University of Singapore, Republic of Singapore†

Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213 USA§
Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 USA‡

{lowkh, chenjie}@comp.nus.edu.sg†, jmd@cs.cmu.edu§
{steve.chien, david.r.thompson}@jpl.nasa.gov‡

ABSTRACT
A central problem in environmental sensing and monitor-
ing is to classify/label the hotspots in a large-scale envi-
ronmental field. This paper presents a novel decentralized
active robotic exploration (DARE) strategy for probabilis-
tic classification/labeling of hotspots in a Gaussian process
(GP)-based field. In contrast to existing state-of-the-art ex-
ploration strategies for learning environmental field maps,
the time needed to solve the DARE strategy is independent
of the map resolution and the number of robots, thus mak-
ing it practical for in situ, real-time active sampling. Its
exploration behavior exhibits an interesting formal trade-off
between that of boundary tracking until the hotspot region
boundary can be accurately predicted and wide-area cover-
age to find new boundaries in sparsely sampled areas to be
tracked. We provide a theoretical guarantee on the active
exploration performance of the DARE strategy: under rea-
sonable conditional independence assumption, we prove that
it can optimally achieve two formal cost-minimizing explo-
ration objectives based on the misclassification and entropy
criteria. Importantly, this result implies that the uncertainty
of labeling the hotspots in a GP-based field is greatest at or
close to the hotspot region boundaries. Empirical evaluation
on real-world plankton density and temperature field data
shows that, subject to limited observations, DARE strategy
can achieve more superior classification of hotspots and time
efficiency than state-of-the-art active exploration strategies.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes;
I.2.9 [Robotics]: Autonomous vehicles

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-robot exploration and mapping, adaptive sampling,
active learning, Gaussian process

1. INTRODUCTION
A fundamental problem in environmental sensing and mon-

itoring is to identify and delineate the hotspot regions in a

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

large-scale environmental field [2, 11]. It involves partition-
ing the area spanned by the field into one class of regions
called the hotspot regions in which the field measurements
exceed a predefined threshold, and the other class of re-
gions where they do not. Such a problem arises in many
real-world applications such as precision agriculture, mon-
itoring of ocean and freshwater phenomena (e.g., plankton
bloom), forest ecosystems, rare species, pollution (e.g., oil
spill), or contamination (e.g., radiation leak). In these ap-
plications, it is necessary to assess the spatial extent and
shape of the hotspot regions accurately due to severe eco-
nomic, environmental, and health implications, as discussed
in [11]. In practice, this aim is non-trivial to achieve be-
cause the constraints on the sampling assets’ resources (e.g.,
energy consumption, mission time, sensing range) limit the
number and coverage of in situ observations over the large
field that can be used to infer the hotspot regions. Subject
to limited observations, the most informative ones should
therefore be selected in order to minimize the uncertainty
of estimating the hotspot regions (or, equivalently, classify-
ing/labeling the hotspots) in the large field, which motivates
our adaptive sampling work in this paper.

Mobile robot teams are particularly desirable for perform-
ing the above environmental sensing task because they can
actively explore to map the hotspot regions at high resolu-
tion. On the other hand, static sensors lack mobility and
are therefore not capable of doing this well unless a large
quantity is deployed. While research in multi-robot explo-
ration and mapping have largely focused on the conventional
task of building occupancy grids [10], some recent efforts
are put into the more complex, general task of sampling
spatially distributed environmental fields [4, 5, 6]. In con-
trast to occupancy grids that assume discrete, independent
cell occupancies, environmental fields are characterized by
continuous-valued, spatially correlated measurements, prop-
erties of which cannot be exploited by occupancy grid map-
ping strategies to select the most informative observation
paths. To exploit such properties, exploration strategies for
learning environmental field maps have recently been devel-
oped and can be classified into two regimes: (a) wide-area
coverage strategies [3, 4, 5] consider sparsely sampled (i.e.,
largely unexplored) areas to be of high uncertainty and con-
sequently spread observations evenly across the field; (b)
hotspot sampling strategies [7] assume areas of high uncer-
tainty and interest to contain extreme, highly-varying mea-
surements and hence produce clustered observations. For-
mal, principled approaches of exploration [4, 5] have also

105

been devised to simultaneously perform hotspot sampling
when a hotspot region is found as well as wide-area coverage
to search for new hotspot regions in sparsely sampled areas.
These strategies optimize their observation paths to mini-
mize the uncertainty (e.g., in terms of mean-squared error
or entropy) of mapping the entire continuous-valued field.
They are, however, suboptimal for classifying/labeling the
hotspots in the field, which we will discuss and demonstrate
theoretically and empirically in this paper. More details of
their exploration behavior and properties will be provided
in Section 6.1.

This paper proposes a novel decentralized active robotic
exploration (DARE) strategy for probabilistic classification/
labeling of hotspots in a large-scale environmental field (Sec-
tion 5). The environmental field is assumed to be realized
from a rich class of probabilistic spatial models called Gaus-
sian process (GP) (Section 2) that can formally character-
ize its spatial correlation structure. More importantly, it
can provide formal measures of classification/labeling uncer-
tainty (i.e., in the form of cost functions) such as the misclas-
sification and entropy criteria (Section 3) for directing the
robots to explore highly uncertain areas of the field. The
chief impediment to using these formal criteria is that they
result in cost-minimizing exploration strategies (Section 4),
which cannot be solved in closed form. To resolve this, they
are reformulated as reward-maximizing dual strategies, from
which we can then derive the approximate DARE strategy
to be solved in closed form efficiently. The specific contri-
butions of our work include:
• analyzing the time complexity of solving the DARE strat-

egy (Section 5): we prove that its incurred time is indepen-
dent of the map resolution and the number of robots, thus
making it practical for in situ, real-time active sampling.
In contrast, existing state-of-the-art exploration strategies
[3, 4, 5] for learning environmental field maps scale poorly
with increasing map resolution and/or number of robots
(Section 6.1);
• analyzing the exploration behavior of the DARE strategy

through its formulation (Section 5): it exhibits an inter-
esting formal trade-off between that of boundary tracking
until the hotspot region boundary can be accurately pre-
dicted and wide-area coverage to find new boundaries in
sparsely sampled areas to be tracked. In contrast, ad hoc,
reactive boundary tracking strategies [9, 12] typically re-
quire a hotspot region boundary to be located manually
or via random exploration and are not driven by the need
to maximize the fidelity of estimating multiple hotspot
regions given limited observations;
• providing theoretical guarantee on the active exploration

performance of the DARE strategy (Section 5): we prove
that, under reasonable conditional independence assump-
tion, it produces the same optimal observation paths as
that of the centralized cost-minimizing strategies, the lat-
ter of which otherwise cannot be solved in closed form.
This result has a simple but important implication: the
uncertainty of labeling the hotspots in a GP-based field is
greatest at or close to the hotspot region boundaries;
• empirically evaluating the active exploration performance

and time efficiency of the DARE strategy on real-world
plankton density and temperature field data (Section 6):
subject to limited observations, the DARE strategy can
achieve better classification of the hotspots than state-of-
the-art active exploration strategies [1, 5] while being sig-

nificantly more time-efficient than those performing wide-
area coverage and hotspot sampling.

2. GAUSSIAN PROCESS-BASED ENVIRON-
MENTAL FIELD

The Gaussian process (GP) can be used to model an envi-
ronmental field as follows: the environmental field is defined
to vary as a realization of a GP. Let X be a set of sampling
locations representing the domain of the environmental field
such that each location x ∈ X is associated with a real-
ized (random) measurement yx (Yx) if x is sampled/observed
(unobserved). Let {Yx}x∈X denote a GP, that is, every finite
subset of {Yx}x∈X has a multivariate Gaussian distribution

[8]. The GP is fully specified by its prior mean µx
4
= E[Yx]

and covariance σxs
4
= cov[Yx, Ys] for all x, s ∈ X . In the

experiments (Section 6), we assume that the GP is second-
order stationary, i.e., it has a constant prior mean and a
stationary prior covariance structure (i.e., σxs is a function
of x − s for all x, s ∈ X). The prior mean and covariance
structure of the GP are assumed to be known. Let S denote
a subset of locations of X sampled a priori (either by the
robot team or other sampling assets) and yS be a row vector
of corresponding measurements. Given the set S of sampled
locations and corresponding measurements yS , the distribu-
tion of Yx at any unobserved location x ∈ X \ S remains
Gaussian with the following posterior mean and variance

µx|S = µx + ΣxSΣ−1
SS(yS − µS)> (1)

σ2
x|S = σ2

x − ΣxSΣ−1
SSΣSx (2)

where µS is a row vector with mean components µs for every
location s ∈ S, ΣxS is a row vector with covariance compo-
nents σxs for every location s ∈ S, ΣSx is the transpose of
ΣxS , and ΣSS is a covariance matrix with components σss′
for every pair of locations s, s′ ∈ S. To map the entire field,
the measurements at its unobserved areas can be predicted
using the posterior mean (1) and the uncertainty of each of
these point-based predictions is represented by the poste-
rior variance (2). An important property of GP is that the
posterior variance σ2

x|S (2) is independent of the observed
measurements yS .

If the environmental field evolves over time, then its do-
main is extended to include the temporal dimension: let X
instead denote a set of spatiotemporal inputs such that each
input x ∈ X comprises both the spatial location and time.
The rest of the GP model formulation remains unchanged.

3. COST FUNCTIONS
Recall that the exploration objective is to select observa-

tion paths that minimize the uncertainty of estimating the
hotspot regions in the field. To achieve this, formal measures
of uncertainty (specifically, in the form of cost functions)
have to be defined. Let us first consider the feasibility of us-
ing cost functions that quantify the uncertainty of mapping
the entire continuous-valued field, such as (a) sum of poste-
rior variances (2) over the unobserved locations in X \ S [4]

∑

x∈X\S
σ2
x|S (3)

and (b) posterior joint entropy of the measurements YX\S
at the unobserved locations in X \ S [5]

H[YX\S |yS]
4
= −

∫
P (yX\S |yS) logP (yX\S |yS) dyX\S .

106

These cost functions have been utilized in [4, 5] to guide
exploration: the resulting active exploration strategies for
learning GP-based field maps are non-adaptive and per-
form wide-area coverage, that is, observation paths are dis-
tributed evenly across the field. Do these wide-area coverage
strategies also optimize our exploration objective or should
observation paths be directed to sample specific features of
the field instead? In the rest of this paper, we will show
that, by defining cost functions to measure the uncertainty
of classifying the hotspots in the field, our objective can be
better achieved by performing the latter.

Let us begin by framing the problem of estimating the
hotspot regions in a field formally as one of classifying/labeling
the hotspots in the field: A location x is defined as a hotspot
if its corresponding field measurement Yx is greater than or
equal to a predefined threshold, denoted by γ. Let {Zx}x∈X
denote a binary random process such that Zx is an indicator
variable of label 1 if Yx ≥ γ (i.e., location x is a hotspot),
and label 0 otherwise. Then, our problem of estimating the
hotspot regions is equivalent to one of labeling the hotspots
in the field, specifically, by predicting the label of Zx for
every location x ∈ X . As a result, our exploration objec-
tive can be achieved through the use of cost functions that
measure the uncertainty of labeling the hotspots in the field.
Two such cost functions will be defined next.

Let Ẑx be the predicted label of Zx for every location
x ∈ X and the cost of predicting (or, more precisely, misclas-

sifying) the label of Zx with Ẑx be denoted by the following
0− 1 loss function

L(Zx, Ẑx) =
∣∣∣Zx − Ẑx

∣∣∣ =

{
1 if Zx 6= Ẑx ,

0 otherwise.
(4)

That is, (4) counts a false positive (i.e., the location x is
labeled as a hotspot but it is not) or false negative (i.e., x
is not labeled as a hotspot but it is) as a misclassification.
If Zx is unlabeled (i.e., location x is unobserved), then we
calculate the expected cost (or risk) of predicting the label

of Zx with Ẑx instead, which is denoted by

RẐx|S =
∑1
i=0 L(Zx = i, Ẑx) P (Zx = i|yS)

= Ẑx (1− P (Zx = 1|yS)) + (1− Ẑx) P (Zx = 1|yS)

= P (Ẑx 6= Zx|yS)
(5)

where P (Zx = 1|yS) = P (Yx ≥ γ|yS), the second equality
results from P (Zx = 0|yS) = 1−P (Zx = 1|yS), and the last
equality states that the risk (5) is equal to the probability
of misclassification.

The risk (5) is minimized by the Bayes decision/classification
rule

Ẑ∗x =

{
1 if P (Zx = 1|yS) ≥ 0.5 ,

0 otherwise.

= arg max
i∈{0,1}

P (Zx = i|yS) .

Using Ẑ∗x as the predicted label of Zx, the risk (5) reduces
to

RẐ∗x|S
= min (P (Zx = 1|yS), 1− P (Zx = 1|yS)) . (6)

Consequently, the sum of risks (or expected number of mis-
classifications) over the unobserved locations in X \ S is

∑

x∈X\S
RẐ∗x|S

, (7)

which defines our first cost function. We call this (7) the
misclassification criterion.

The second cost function, which we call the entropy cri-
terion, is defined as the posterior joint entropy of the labels
of ZX\S at the unobserved locations in X \ S

H[ZX\S |yS] . (8)

4. CENTRALIZED ACTIVE EXPLORATION
In this section, we will formulate greedy cost-minimizing

exploration strategies based on the misclassification (7) and
entropy (8) criteria defined in Section 3. Unfortunately,
these centralized strategies cannot be evaluated in closed
form, as explained in this section. To resolve this, these cost-
minimizing strategies must first be reformulated as reward-
maximizing dual strategies, from which we can then derive
the approximate DARE strategy (Section 5) to be solved in
closed form efficiently.

Supposing the misclassification criterion (7) is used and
a set S of locations are previously sampled, the exploration
strategy for directing a team of k robots has to select the
next set O ⊆ X \ S of k locations to be observed that mini-
mize the sum of expected risks:

min
O

∑

x∈X\S
EYO|yS

{
RẐ∗x|S

⋃O

}
. (9)

This cost-minimizing strategy (9) can be reformulated as the
following reward-maximizing dual strategy, which selects the
next setO of locations to be observed that maximize the sum
of expected risk reductions:

max
O

∑

x∈X\S
RẐ∗x|S

− EYO|yS
{
RẐ∗x|S

⋃O

}
. (10)

The equivalence between these two strategies follows imme-
diately from observing that the first term

∑
x∈X\S RẐ∗x|S

in

(10) remains constant with any choice of O. Both strategies
cannot be solved exactly due to the expectation term, which
cannot be evaluated in closed form.

If the entropy criterion (8) is used instead, then the explo-
ration strategy has to select the next set O of locations to be
observed that minimize the expected posterior joint entropy
of the labels of ZX\(S⋃O):

min
O

EZO|yS
{
H[ZX\(S⋃O)|yS , ZO]

}
. (11)

This cost-minimizing strategy (11) can be reformulated as
the following reward-maximizing dual strategy, which selects
the next set O of locations with maximum label entropy to
be observed:

max
O

H[ZO|yS] . (12)

To show their equivalence, H[ZX\S |yS] (8) is first expanded
using chain rule of entropy:

H[ZX\S |yS] = H[ZO|yS] + EZO|yS
{
H[ZX\(S⋃O)|yS , ZO]

}
.

(13)
From (13), since H[ZX\S |yS] is a constant, the choice of
O that maximizes H[ZO|yS] (i.e., (12)) will also minimize
EZO|yS

{
H[ZX\(S⋃O)|yS , ZO]

}
(i.e., (11)). When |O| = k ≥

2, both strategies cannot be solved exactly due to the en-
tropy terms, which contain multivariate Gaussian cumula-
tive distribution functions that cannot be evaluated in closed
form.

107

5. DECENTRALIZED ACTIVE EXPLORATION
This section presents a novel decentralized active robotic

exploration (DARE) strategy that can approximately achieve
both cost-minimizing exploration objectives (9) and (11)
(Section 4) based on the misclassification and entropy cri-
teria, respectively. Unlike the centralized cost-minimizing
and reward-maximizing exploration strategies (Section 4),
the DARE strategy can be solved in closed form efficiently.

The DARE strategy for directing each of the k robots has
to select the next location x ∈ X \ S to be observed that
trades off between (a) minimizing the difference between its
predicted measurement µx|S and the boundary threshold γ,
and (b) maximizing the square root of its posterior variance
σ2
x|S :

min
x
|γ − µx|S |/σx|S . (14)

Intuitively, the behavior of the DARE strategy exhibits an
interesting trade-off between that of (a) boundary track-
ing and (b) wide-area coverage: it simultaneously tracks a
hotspot region boundary that is found until it can be accu-
rately predicted as well as searches for new hotspot region
boundaries in sparsely sampled areas to be tracked.

In this paper, the domain X of the field is assumed to
be a grid of sampling locations. The next location x to
be observed by each robot is then constrained to be selected
from the 4-connected neighborhood N of the robot’s current
location instead of from X \ S.

Theorem 1 (Time Complexity). Solving the DARE
strategy (14) requires O

(
|S|2(|S|+ |N |)

)
time.

The above result reveals that the time needed to compute
the DARE strategy is independent of the map resolution
(i.e., domain size |X |) and the number k of robots, thus
making it practical for in situ, real-time active sampling.

Theorem 2 (Communication Overhead). Let the com-
munication overhead be the number of broadcast messages
sent by each robot over the network. Then, the asynchronous
communication overhead of DARE strategy (14) is O(1).

In terms of data sharing, each robot broadcasts a message
to the other robots sharing its sampled observations since
its last broadcast. Coordination between robots is needed
only if their neighborhoods intersect: in this case, they may
select the same next location to be observed. To avoid
this, each robot can broadcast on the same or another mes-
sage sharing its selected location to be observed next. With
asynchronous (e.g., turn-based) communication, the remain-
ing robots avoid choosing prior selected locations. With
synchronous communication, for each location in conflict,
the higher-numbered robot (obtained by numbering robots
uniquely) uses (14) to choose new unselected location to be
observed. This is iterated until the conflicts are resolved.
This process is not communication-expensive as every loca-
tion is in conflict with at most 4 robots in its neighborhood.

Under conditional independence assumption, the DARE
strategy (14) produces the same observation paths as that
of the centralized cost-minimizing strategies (9) and (11)
(Section 4), as established in the result below:

Theorem 3 (Performance Guarantee). If the un-
observed measurements YX\S are conditionally independent
given the sampled measurements yS , then the DARE strat-
egy (14) is equivalent to both cost-minimizing strategies (9)
and (11) based on the misclassification and entropy criteria.

160 170 180 190 200 210 220

35

40

45

50

0

2

4

Figure 1: Temperature field bounded within lat.
30.75 − 50.75N and lon. 157.75 − 222.25E: γ is set to
3 ◦C, which results in a hotspot region in the top left
and another one in the bottom right.

245.4 245.6 245.8 246
30

30.1

30.2

30.3

30.4

30.5

30.6

30.7

30.8

30.9

31

0

10

20

30

40

50

60

Figure 2: Plankton density field bounded within lat.
30 − 31N and lon. 245.3625 − 246.1125E: γ is set to
30 mg/m3, which results in a hotspot region in the
top right and another one in the bottom left.

The proof of the above result can be found in the appendix.
The proof construction in fact describes how the DARE
strategy (14) can be derived from either reward-maximizing
dual strategy (i.e., (10) or (12)) (Section 4). A simple but
important implication of this result is that the uncertainty
of estimating the hotspot regions in a GP-based field (i.e.,
in terms of misclassification or entropy criterion) is greatest
at or close to the hotspot region boundaries.

In practice, how reasonable is the conditional indepen-
dence assumption? Firstly, such an assumption is often
made in order to calculate the widely-used sum of poste-
rior variances (i.e., mean-squared error) criterion (3) [2, 4].
Secondly, we conjecture that the assumption becomes less
restrictive (i.e., Theorem 3 becomes more reliable) when the
number |S| of sampled locations increases to potentially re-
duce the degree of violation of conditional independence, the
spatial correlation between field measurements decreases,
and the robots are sufficiently far apart (this last case applies
only to the entropy criterion).

6. EXPERIMENTS AND DISCUSSION
This section evaluates the active exploration performance

of the DARE strategy (14) empirically on 2 real-world spa-
tial datasets off the west coast of USA: (a) August 2009
AVHRR temperature data (Fig. 1), and (b) March 2009
MODIS plankton density data (Fig. 2). These regions are
discretized, respectively, into (a) 130× 41 (i.e., |X | = 5330)
and (b) 61 × 81 (i.e., |X | = 4941) grids of sampling loca-
tions. Each location x is, respectively, associated with (a)
temperature measurement yx in ◦C, and (b) chlorophyll-a

108

Table 1: Comparison of active exploration strategies (WC: Wide-area Coverage, HS: Hotspot Sampling, BT:
Boundary Tracking).
Exploration strategy Behavior Coordination type Time complexity Map resolution |X | No. of robots k

Maximize mutual information [3] WC Centralized O
(
|N |k|X |2(|X |+ k2)

)
Cubic Exponential

Minimize sum of variances [4] WC Centralized O
(
|N |k|S|2|X |

)
Linear Exponential

MES [5] WC Centralized O
(
|N |k|S|2(|S|+ k2)

)
Independent Exponential

MES+HS [5] WC+HS Centralized O
(
|N |k|S|2(|S|+ k2)

)
Independent Exponential

Straddle [1] WC+BT Decentralized1 O
(
|S|2(|S|+ |N |)

)
Independent Independent

DARE WC+BT Decentralized O
(
|S|2(|S|+ |N |)

)
Independent Independent

(chl-a) measurement yx in mg/m3. Using a team of k =
2, 4, 8 robots, each robot is tasked to, respectively, explore
1250, 625, 312 locations in its path to sample a total of about
2500 observations. The simulated robot team is given 120
randomly selected observations as prior data before explo-
ration. We use 2000 randomly selected observations to learn
the hyperparameters (i.e., mean and covariance structure) of
GP through maximum likelihood estimation [8].

6.1 Comparing Active Exploration Strategies
Since the domains X of both fields are considerably large,

it is prohibitively expensive to compare meaningfully with
the wide-area coverage strategies [3, 4] that scale poorly with
increasing map resolution and are thus not practical for in
situ, real-time active sampling. For example, it was reported
in [6] that the greedy mutual information-based strategy
of [3] incurred more than 62 hours to generate paths for 3
robots to sample a total of 267 observations in a grid of only
|X | = 1424 locations. The performance of the DARE strat-
egy is therefore compared to that of three state-of-the-art
exploration strategies whose incurred times are independent
of the map resolution: (a) The decentralized1 straddle strat-
egy [1] for directing each robot selects the next location x
to be observed using maxx 1.96σx|S − |γ − µx|S |. Similar to
DARE, its exploration behavior is a trade-off between that of
boundary tracking and wide-area coverage. Unlike DARE,
its trade-off has to be manually adjusted using an arbitrary
weight that, if set inappropriately, may produce subopti-
mal behavior. For example, this weight is proposed by [1]
to be set to 1.96, which is empirically demonstrated later
to emphasize boundary tracking more than wide-area cov-
erage. As a result, it tends to persist in tracking boundaries
that are already well-predicted before deciding to search for
new ones. Subject to limited observations, it may conse-
quently not perform as well as DARE in a field with multi-
ple hotspot regions. Also, it is not known how or whether
the value of this weight can be formally derived in order
for the straddle strategy to achieve the cost-minimizing ex-
ploration objectives (9) and (11); (b) The centralized maxi-
mum entropy sampling (MES) strategy [5] for directing the
robot team performs only wide-area coverage by selecting
the next set O of locations with maximum entropy to be
observed using maxO H[YO|yS]; (c) It can be coupled with
hotspot sampling (HS) by modifying the exploration ob-
jective to maxO H[YO|yS] +

∑
x∈O µx|S . We call this the

MES+HS strategy [5]. For these centralized strategies, the
joint action space is exponential in the number of robots.
So, they scale poorly with increasing number of robots. Ta-

1The original straddle strategy proposed by [1] is developed
for a single robot. To transform it into a decentralized multi-
robot strategy, we simply execute the single-robot straddle
strategy on every robot in the team.

ble 1 summarizes and compares the characteristics of the
above-mentioned active exploration strategies; it does not
include the communication overhead, which is O(1) for all
strategies.

6.2 Performance Metric
The first performance metric used to evaluate the tested

strategies is the number of misclassifications

M(A)
4
=
∑

x∈A
L(zx, Ẑ

∗
x)

over all locations in a given set A where the function L is
previously defined in (4). Three cases are considered:

(a) A = X (i.e., all locations in the domain of the field),

(b) A = X ′ where

X ′ = {x ∈ X | |γ − yx| ≤ 0.2(max
x′∈X

yx′ − min
x′∈X

yx′)}

(i.e., all locations with measurements that are close to the
boundary threshold of 30 mg/m3 for the plankton density
field and 3 ◦C for the temperature field), and

(c) A = X \ X ′.
We observe that |X ′| is only about 22% of |X | for both fields.
The second metric is the time taken to compute a strategy.

6.3 Temperature Field Data
Fig. 3 shows the results of the performance of tested strate-

gies averaged over 5 randomly generated starting robot lo-
cations for the temperature field. In terms of the M(X)
performance, Figs. 3a−3c show that the DARE strategy
quickly outperforms the MES and MES+HS strategies as
the number of observations increases: their performance dif-
ferences have been verified using t-tests (α = 0.1) to be
statistically significant after a total of 500, 750, and 800
observations sampled by teams of 2, 4, and 8 robots, re-
spectively. Hence, the boundary-tracking DARE strategy
reduces a greater number of misclassifications over the entire
field than wide-area coverage and hotspot sampling. With
more observations, the DARE strategy can also perform bet-
ter than the straddle strategy: their performance differences
have been verified using t-tests (α = 0.1) to be statistically
significant after a total of 500, 1000, and 1600 observations
sampled by teams of 2, 4, and 8 robots, respectively. To
explain this, we examine the observation paths of a team of
2 robots in one of the 5 test runs, as shown in Fig. 4. The
initial performance of the DARE and straddle strategies are
similar because they are both searching for hotspot region
boundaries (Fig. 4a). As the number of observations in-
creases further, DARE’s performance improves over that of
the straddle strategy because we observe that it directs the
robots to search for new boundaries when the ones that are
currently being tracked are well-predicted. In contrast, the

109

0 200 400 600 800 1000 1200
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(a) 2 robots

0 200 400 600 800 1000 1200
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(d) 2 robots

0 200 400 600 800 1000 1200
0

20

40

60

80

100

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(g) 2 robots

0 100 200 300 400 500 600
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(b) 4 robots

0 100 200 300 400 500 600
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(e) 4 robots

0 100 200 300 400 500 600
0

20

40

60

80

100

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(h) 4 robots

0 50 100 150 200 250 300
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(c) 8 robots

0 50 100 150 200 250 300
150

200

250

300

350

400

450

500

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(f) 8 robots

0 50 100 150 200 250 300
0

20

40

60

80

100

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(i) 8 robots

Figure 3: Graphs of (a-c) M(X), (d-f) M(X ′), and (g-i) M(X \ X ′) vs. no. of observations/robot for varying
number of robots actively exploring the temperature field.

straddle strategy tends to persist in tracking boundaries that
are already well-predicted before deciding to search for new
ones (Figs. 4b−4e). In terms of the M(X ′) and M(X \ X ′)
performance, Figs. 3d−3i reveal that, with increasing ob-
servations, the DARE strategy also reduces a greater num-
ber of misclassifications than the other evaluated strategies
whether they are over locations close to the boundaries (i.e.,
in X ′) or away from the boundaries (i.e., in X \X ′). It is in-
teresting to note that locations close to the boundaries incur
the majority of the misclassifications as compared to those
away from the boundaries, which further corroborates the
implication of Theorem 3 that there is higher uncertainty in
labeling the locations close to the hotspot region boundaries.

6.4 Plankton Density Field Data
Fig. 5 shows the results of the performance of tested strate-

gies averaged over 5 randomly generated starting robot loca-
tions for the plankton density field. The results are very sim-
ilar to that of the temperature field (Section 6.3) except that
the performance of the straddle strategy approaches that of
the DARE strategy with excessive observations: their per-

formance differences have been verified using t-tests (α =
0.1) not to be statistically significant after a total of 2000
and 2240 observations sampled by teams of 2 and 4 robots,
respectively. This is expected because the straddle strategy
can track and predict the boundaries as well as the DARE
strategy given a long enough exploration. However, sub-
ject to limited observations (which is more practical, as ex-
plained in Section 1), the performance of the DARE strategy
is clearly superior to that of the straddle strategy.

6.5 Incurred Time
Fig. 6 shows the results of the time taken to compute the

tested strategies averaged over 5 randomly generated start-
ing robot locations for the temperature field; the results of
incurred time for the plankton density field are very similar
and therefore not shown here. The time differences between
the DARE and straddle strategies have been verified using
t-tests (α = 0.1) not to be statistically significant, which
is expected due to the same time complexities, as shown
in Table 1. The time taken to compute these two decen-
tralized boundary tracking strategies are shorter than that
needed to compute the centralized wide-area coverage and

110

(a) 250 observations

(b) 500 observations

(c) 750 observations

(d) 2000 observations

(e) 2500 observations
Figure 4: Evolution of 2-robot observation paths
produced by DARE (left column) and straddle
(right column) strategies sampling a total of (a) 250,
(b) 500, (c) 750, (d) 2000, and (e) 2500 observations.
The robots start at locations of different lat. 37.75N
and 40.75N and same lon. 192.75E.

hotspot sampling strategies (i.e., MES+HS and MES) by
about one and two orders of magnitude for the cases of 2
and 4 robots, respectively. With a larger number of robots,
it can be observed from Fig. 6 that the centralized wide-area
coverage and hotspot sampling strategies incur significantly
more time because their time complexities are exponential
in the number of robots, as shown in Table 1. In contrast,
the time incurred by the decentralized boundary tracking
strategies do not increase because their time complexities
are independent of the number of robots. Note that Fig. 6
does not show the graphs of time taken to compute the cen-
tralized strategies for the case of 8 robots because they incur
significantly more time than that of 4 robots and their in-
curred time consequently cannot be recorded correctly due
to long integer overflow in C’s clock function.

7. CONCLUSION
This paper describes a decentralized active robotic explo-

ration strategy for probabilistic classification of hotspots in
a large-scale GP-based environmental field. It has the prac-
tical advantage of being significantly more time-efficient over
existing state-of-the-art active exploration strategies [3, 4, 5]
because its incurred time is independent of the map resolu-
tion and the number of robots. In terms of active exploration
performance, we have theoretically guaranteed that, under
reasonable conditional independence assumption, the DARE
strategy can optimally achieve the formal cost-minimizing
exploration objectives based on the misclassification and en-
tropy criteria, both of which otherwise cannot be optimized
exactly to yield closed-form solutions. We have demon-
strated theoretically and empirically that the uncertainty
of labeling the hotspots in a GP-based field is greatest at or

0 200 400 600 800 1000 1200

120

140

160

180

200

220

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(a) 2 robots

0 200 400 600 800 1000 1200

120

140

160

180

200

220

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(d) 2 robots

0 200 400 600 800 1000 1200

4

6

8

10

12

14

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(g) 2 robots

0 100 200 300 400 500 600

120

140

160

180

200

220

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(b) 4 robots

0 100 200 300 400 500 600

120

140

160

180

200

220

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(e) 4 robots

0 100 200 300 400 500 600

4

6

8

10

12

14

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(h) 4 robots

0 50 100 150 200 250 300

120

140

160

180

200

220

No. of observations/robot

M
(X

)

DARE
Straddle
MES+HS
MES

(c) 8 robots

0 50 100 150 200 250 300

120

140

160

180

200

220

No. of observations/robot

M
(X

′)

DARE
Straddle
MES+HS
MES

(f) 8 robots

0 50 100 150 200 250 300

4

6

8

10

12

14

No. of observations/robot

M
(X

\
X

′)

DARE
Straddle
MES+HS
MES

(i) 8 robots

Figure 5: Graphs of (a-c) M(X), (d-f) M(X ′), and (g-
i) M(X\X ′) vs. no. of observations/robot for varying
number of robots actively exploring the plankton
density field.

0 200 400 600 800 1000 1200
10!2

100

102

104

No. of observations/robot

Ti
m

e
(s

)

DARE
Straddle
MES+HS
MES

(a) 2 robots

0 100 200 300 400 500 600
10!2

100

102

104

No. of observations/robot

Ti
m

e
(s

)

DARE
Straddle
MES+HS
MES

(b) 4 robots

0 50 100 150 200 250 300
10!2

100

102

104

No. of observations/robot

Ti
m

e
(s

)

DARE
Straddle

(c) 8 robots

Figure 6: Graphs of incurred time vs. no. of obser-
vations/robot for varying number of robots actively
exploring the temperature field.

close to the hotspot region boundaries. The DARE strat-
egy is capable of exploiting this to produce an exploration
behavior that formally trades off between that of boundary
tracking until the hotspot region boundary can be accurately
predicted and wide-area coverage to find new boundaries in
sparsely sampled areas to be tracked. Empirical evaluation
on real-world plankton density and temperature field data
shows that, given limited observations, the DARE strategy
can reduce a greater number of misclassifications than state-
of-the-art active exploration strategies.

8. ACKNOWLEDGMENTS
This work was supported by MOE AcRF Tier 1 R-252-

000-426-133. A portion of this work was carried out by the
Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and
Space Administration.

9. REFERENCES
[1] B. Bryan, J. G. Schneider, R. Nichol, C. Miller,

C. Genovese, and L. A. Wasserman. Active learning
for identifying function threshold boundaries. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages
163–170, Cambridge, MA, 2006. MIT Press.

[2] N. A. C. Cressie. Statistics for Spatial Data. Wiley,
NY, 2nd edition, 1993.

111

[3] A. Krause, A. Singh, and C. Guestrin. Near-optimal
sensor placements in Gaussian processes: Theory,
efficient algorithms and empirical studies. JMLR,
9:235–284, 2008.

[4] K. H. Low, J. M. Dolan, and P. Khosla. Adaptive
multi-robot wide-area exploration and mapping. In
Proc. AAMAS, pages 23–30, 2008.

[5] K. H. Low, J. M. Dolan, and P. Khosla.
Information-theoretic approach to efficient adaptive
path planning for mobile robotic environmental
sensing. In Proc. ICAPS, pages 233–240, 2009.

[6] K. H. Low, J. M. Dolan, and P. Khosla. Active
Markov information-theoretic path planning for
robotic environmental sensing. In Proc. AAMAS,
pages 753–760, 2011.

[7] K. H. Low, G. J. Gordon, J. M. Dolan, and P. Khosla.
Adaptive sampling for multi-robot wide-area
exploration. In Proc. IEEE ICRA, pages 755–760,
2007.

[8] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. MIT Press,
Cambridge, MA, 2006.

[9] R. N. Smith, A. Pereira, Y. Chao, P. P. Li, D. A.
Caron, B. H. Jones, and G. S. Sukhatme. Autonomous
underwater vehicle trajectory design coupled with
predictive ocean models: A case study. In Proc. IEEE
ICRA, pages 4770–4777, 2010.

[10] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, Cambridge, MA, 2005.

[11] R. Webster and M. Oliver. Geostatistics for
Environmental Scientists. John Wiley & Sons, Inc.,
NY, 2nd edition, 2007.

[12] F. Zhang and N. E. Leonard. Cooperative control and
filtering for cooperative exploration. IEEE Trans.
Automat. Contr., 55(3):650–663, 2010.

APPENDIX
Proof of Theorem 3
In Section 4, we have already shown the equivalence between
the cost-minimizing and reward-maximizing strategies based
on the misclassification and entropy criteria. Therefore, it
suffices to prove that the DARE strategy (14) is equivalent
to the reward-maximizing strategies.

Let us first prove that the reward-maximizing strategy
(10) for the misclassification criterion is equivalent to the
DARE strategy (14). From (10),

max
O

∑

x∈X\S
RẐ∗x|S

− EYO|yS
{
RẐ∗x|S

⋃O

}

= max
O

∑

x∈O
RẐ∗x|S

+
∑

x∈X\(S⋃O)

(
RẐ∗x|S

− EYO|yS
{
RẐ∗x|S

⋃O

})

= max
O

∑

x∈O
RẐ∗x|S

+
∑

x∈X\(S⋃O)

(
RẐ∗x|S

− EYO|yS
{
RẐ∗x|S

})

= max
O

∑

x∈O
RẐ∗x|S

=

k∑

i=1

max
xi

RẐ∗xi |S
.

The first equality follows from RẐ∗x|S
⋃O = 0 for x ∈ O by

assuming no observation noise. The second equality is due
to the conditional independence assumption that is provided

as a sufficient condition in the theorem. The third equality
is due to the second summation term evaluating to zero.
The last equality follows from the observation that each risk
term in the summation depends only on the choice of the
next location x to be observed by a single different robot.
Hence, we can maximize each risk term in the summation
independently and in a decentralized manner to achieve the
same result as that in the third equality.

max
x

RẐ∗x|S
= max

x
{min (P (Zx = 1|yS), 1− P (Zx = 1|yS))}

= max
x
{min (P (Yx ≥ γ|yS), 1− P (Yx ≥ γ|yS))}

≡ max
x

{
min

[
−erf

(
γ − µx|S
σx|S
√

2

)
, erf

(
γ − µx|S
σx|S
√

2

)]}

= max
x
−
∣∣∣∣∣ erf

(
γ − µx|S
σx|S
√

2

) ∣∣∣∣∣

≡ min
x

∣∣∣∣∣ erf

(
γ − µx|S
σx|S
√

2

) ∣∣∣∣∣

≡ min
x

|γ − µx|S |
σx|S
√

2

≡ min
x

|γ − µx|S |
σx|S

.

The first equality follows from (6). The first equivalence is

due to P (Yx ≥ γ|yS) =
1

2

[
1− erf

(
γ − µx|S
σx|S
√

2

)]
.

Now, let us prove that the reward-maximizing strategy
(12) for the entropy criterion is equivalent to to the DARE
strategy (14). From (12),

max
O

H[ZO|yS]

= max
O

∑

x∈O
H[Zx|yS]

=

k∑

i=1

max
xi

H[Zxi |yS] .

The first equality follows from chain rule of entropy and
conditional independence assumption. The second equality
follows from observing that each entropy term in the sum-
mation depends only on the choice of the next location x to
be observed by a single different robot. Hence, we can max-
imize each entropy term in the summation independently
and in a decentralized manner to achieve the same result as
that in the first equality.

max
x

H[Zx|yS]

≡ min
x
P (Zx = 1|yS) logP (Zx = 1|yS) +

(1− P (Zx = 1|yS)) log(1− P (Zx = 1|yS))

≡ min
x

∣∣∣∣
1

2
− P (Zx = 1|yS)

∣∣∣∣

= min
x

∣∣∣∣
1

2
− P (Yx ≥ γ|yS)

∣∣∣∣

≡ min
x

∣∣∣∣∣ erf

(
γ − µx|S
σx|S
√

2

) ∣∣∣∣∣

≡ min
x

|γ − µx|S |
σx|S
√

2

≡ min
x

|γ − µx|S |
σx|S

.

112

Robot Exploration with Fast Frontier Detection:
Theory and Experiments

Matan Keidar
MAVERICK Group, Department of Computer

Science, Bar-Ilan University
matankdr@gmail.com

Gal A. Kaminka
MAVERICK Group, Department of Computer

Science, Bar-Ilan University
galk@cs.biu.ac.il

ABSTRACT
Frontier-based exploration is the most common approach to explo-
ration, a fundamental problem in robotics. In frontier-based ex-
ploration, robots explore by repeatedly computing (and moving to-
wards) frontiers, the segments which separate the known regions
from those unknown. However, most frontier detection algorithms
process the entire map data. This can be a time consuming process
which slows down the exploration. In this paper, we present two
novel frontier detection algorithms: WFD, a graph search based al-
gorithm and FFD , which is based on processing only the new laser
readings data. In contrast to state-of-the-art methods, both algo-
rithms do not process the entire map data. We implemented both
algorithms and showed that both are faster than a state-of-the-art
frontier detector implementation (by several orders of magnitude).

General Terms
Algorithms Performance

Keywords
Robot, Exploration, Frontier, Laser

1. INTRODUCTION
The problem of exploring an unknown territory is a fundamental

problem in robotics. The goal of exploration is to gain as much new
information as possible of the environment within bounded time.
The most common approach to exploration is based on frontiers.
A frontier is a segment that separates known (explored) regions
from unknown regions. By moving towards frontiers, robots can
focus their motion on discovery of new regions. Yamauchi [17]
was the first to show a frontier-based exploration strategy. His work
preceded many others (e.g, [3, 4, 10, 11]).

Most frontier detection methods are based on edge detection and
region extraction techniques from computer vision. To detect fron-
tiers, they process the entire map data with every execution to the
algorithm. State-of-the-art frontier detection algorithms can take a
number of seconds to run, even on powerful computers. If a large
region is explored, the robot actually has to wait in its spot until the
frontier detection algorithm terminates. Therefore, many explo-
ration implementations call the frontier detection algorithm only
when the robot arrives at its destination.

This can cause inefficiencies in the exploration. We present two
examples: First, consider a common single-robot case (Figure 1),
where a robot exploring its environment detects a frontier and moves

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(a) (b) (c)

Figure 1: A single-robot example. In 1(a) the robot is heading
towards the marked target on the frontier. In 1(b) the target
and all of the remaining are covered by the robot’s sensors, but
because the robot does not re-detect frontiers, it continues to
move. In 1(c) the robot has reached the frontier, unnecessarily.

(a) (b)

Figure 2: A multi-robot example. In 2(a), the top robot (R2) is
heading towards the right target, t2; the other robot (R1) heads
towards the top target t1. In 2(b) R2 has reached its target,
clearing both t1 and t2, making R1’s movements unnecessary.

towards it (Figure 1(a)). Because of sensor coverage, the robot may
in fact sense (and clear) all remaining unknown area (Figure 1(b)),
but because it cannot call the frontier-detection mechanism, it con-
tinues to move unnecessarily (Figure 1(c)). Similarly, consider a
multi-robot case (Figure 2). Here, two robots, are exploring the
environment, from their initial locations (Figure 2(a)). One of the
robots passes by a target assigned to the other, thus clearing it (Fig-
ure 2(b)). But because the other robot cannot continuously re-detect
frontiers, it unnecessarily continues towards the covered target, in-
stead of turning to more fruitful exploration targets.

In this paper, we thus focus on significantly speeding up frontier
detection. We introduce two algorithms for fast frontier detection:
The first, WFD (Wavefront Frontier Detector) is an iterative method
that performs a graph-search over already-visited map points. It
builds on ideas suggested in earlier work [5] which were not eval-
uated as an alternative to the edge-detection state-of-the-art. The
key idea in WFD is that it does not scan the entire map, only the
regions that have already been visited by the robot. However, as ex-
ploration progresses, the scanned area grows, and thus WFD cannot
be expected to perform well in large areas. Our second contribu-
tion is FFD (Fast Frontier Detector), a novel approach for frontier
detection which processes raw sensor readings, and thus only scans
areas that could contain frontiers. But because it works with raw

113

sensor data, it requires extending the mapper (SLAM) with addi-
tional data-structures, so that frontiers are maintained even when
they are no longer within sensor range. We describe these data-
structures in detail, focusing on fast implementations.

We provide a detailed evaluation of these algorithms, and con-
trast them with the state-of-the-art (SOTA). We examine their per-
formance in different types of environments and two different CPUs.
We show that WFD is faster than SOTA by 1–2 orders of magni-
tude, and that FFD is faster than WFD by 1–2 orders of magnitude.
The results make it possible to execute real-time frontier-detection
on current-day robot CPUs, opening the way to novel frontier-
based exploration methods which were impractical until now.
2. RELATED WORK

An outline of the exploration process can be described as fol-
lows: while there is an unknown territory, allocate each robot a tar-
get to explore and coordinate team members in order to minimize
overlaps. In frontier-based exploration, targets are drawn from ex-
isting frontiers, segments that separate known and unknown regions
(see Section 3.1 for definitions).

Most literature ignores the computational cost of frontier detec-
tion. To the best of our knowledge, all of the following works uti-
lize a standard edge-detection method for computing the frontiers.
They recompute frontier locations whenever one robot has reached
its target location or whenever a certain distance has been traveled
by the robots or after a timeout event.

Yamauchi [17] developed the first frontier-based exploration meth-
ods. The robots explore an unknown environment and exchange
information with each other when they get new sensor readings.
As a result, the robots build a common map (occupancy grid) in a
distributed fashion. The map is continuously updated until no new
regions are found. In his work, each robot heads to the centroid, the
center of mass of the closest frontier. All robots navigate to their
target independently while they share a common map. Frontier de-
tection is performed only when the robot reaches its target.

Burgard et al. [3, 4] focus their investigation on probabilistic ap-
proach for coordinating a team of robots. Their method considers
the trade-off between the costs of reaching a target and the utility of
reaching that target. Whenever a target point is assigned to a spe-
cific team member, the utility of the unexplored area visible from
this target position is reduced for the other team members. In their
work, frontier detection is carried out only when a new target is to
be allocated to a robot.

Wurm et al. [15] proposed to coordinate the team members by di-
viding the map into segments corresponding to environmental fea-
tures. Afterwards, exploration targets are generated within those
segments. The result is that in any given time, each robot explores
its own segment. Wurm [16] suggests to call frontier detection ev-
ery time-step of the coordination algorithm. Moreover, he claims
that updating frontiers frequently is important in a multi-robot team
since the map is updated not only by the robot assigned to a given
frontier but also by all of the robots in the team. He suggests ex-
ecuting the algorithm 0.5m − 1m or every second or whenever a
new target is requested.

Stachniss [12] introduced a method to make use of background
knowledge about typical structures when distributing the team mem-
bers over the environment. In his work, Stachniss computes new
frontiers when there new targets are needed to be allocated. This
happens whenever one robot has reached its designated target loca-
tion or whenever the distance traveled by the robots or the elapsed
time since last target assignment has exceeded a given threshold.

Berhault et al. [1] proposed a combinatorial auction mechanism
where the robots bid on a bunch of targets to navigate. The robots
are able to use different bidding strategies. Each robot has to visit

all the targets that are included in his winning bid. After combining
each robot’s sensor readings, the auctioneer omits selected frontier
cells as potential targets for the robots. Frontier detection is per-
formed when creating and evaluating bids.

Visser et al. [14] investigated how limited communication range
affects multi-robot exploration. They proposed an algorithm which
takes into account wireless constraints when selecting frontier tar-
gets. Visser [13] suggests recomputing frontiers every 3–4 meters,
which in his opinion, has positive effect.

Our work on WFD is independent from previous work, though [5]
mentions a frontier detection algorithm that utilizes breadth-first
search, similar to WFD . However, [5] does not provide details of
the algorithm, nor evaluation of its performance, and so exact sim-
ilarities and differences cannot be assessed. Our work here also
significantly extends and corrects our own earlier work [9], which
presented preliminary—and incomplete—versions of the WFD and
FFD algorithms. Compared to [9], this paper presents corrected al-
gorithms, proves the soundness and completeness of FFD , and
reports new experimental and analytical results.

3. WAVEFRONT FRONTIER DETECTOR
We present a graph search based approach for frontier detection.

The algorithm, WFD (Algorithm 1), processes the points on map
which have already been scanned by the robot sensors and there-
fore, does not always process the entire map data in each run, but
only the known regions.

3.1 Definitions and Terms
In this section we define and explain the terms that are used in

the following sections. We assume the robot in question uses an
occupancy-grid map representation in the exploration process (Fig-
ure 3) within the map:
Unknown Region is a territory that has not been covered yet by
the robot’s sensors.
Known Region is a territory that has already been covered by the
robot’s sensors.
Open-Space is a known region which does not contain an obstacle.
Occupied-Space is a known region which contains an obstacle.
Occupancy Grid is a grid representation of the environment. Each
cell holds a probability that represents if it is occupied.
Frontier is the segment that separates known (explored) regions
from unknown regions. Formally, a frontier is a set of unknown
points that each have at least one open-space neighbor.

Definition. Suppose we are given a temporal sequence of observa-
tions 〈O0, . . . , Ot〉 (time 0 to time t), where each observation Ox
is a tuple 〈Gx, Px, Rx〉 composed of: (i) the occupancy-gridGx of
time x; (ii) the robot pose Px (in occupancy-grid coordinates); and
(iii) the range sensor readings Rx originating at the robot location
(given in either ego-centric polar coordinates, or in occupancy-grid
coordinates). The Frontier Detection Problem is to return all fron-
tiers existing at time t, given the sequence.

Existing algorithms for frontier detection rely on edge-detection
methods. The algorithms systematically search for frontiers all
over the occupancy-grid, i.e., both in known and unknown regions.

3.2 WFD
WFD (Algorithm 1) is based on Breadth-First Search (BFS).

First, the occupancy-grid point that represents the current robot po-
sition is enqueued into queuem, a queue data-structure used to de-
termine the search order (Lines 1–3).

Next, a BFS is performed (Line 4–30) in order to find all frontier
points contained in the map. The algorithm keeps scanning only

114

Figure 3: Evidence grid, frontier points, extraction of different
frontiers (from left to right). Taken from [17].

Algorithm 1 Wavefront Frontier Detector (WFD)
Require: queuem // queue, used for detecting frontier points from

a given map
Require: queuef // queue, used for extracting a frontier from a

given frontier cell
Require: pose // current global position of the robot

1: queuem ← ∅
2: ENQUEUE(queuem, pose)
3: mark pose as “Map-Open-List”

4: while queuem is not empty do
5: p← DEQUEUE(queuem)

6: if p is marked as “Map-Close-List” then
7: continue
8: if p is a frontier point then
9: queuef ← ∅

10: NewFrontier ← ∅
11: ENQUEUE(queuef , p)
12: mark p as “Frontier-Open-List”

13: while queuef is not empty do
14: q ← DEQUEUE(queuef)
15: if q is marked as {“Map-Close-List”,”Frontier-Close-

List”} then
16: continue
17: if q is a frontier point then
18: add q to NewFrontier
19: for all w ∈ adj(q) do
20: if w not marked as {“Frontier-Open-

List”,“Frontier-Close-List”, “Map-Close-List”}
then

21: ENQUEUE(queuef ,w)
22: mark w as “Frontier-Open-List”
23: mark q as “Frontier-Close-List”
24: save data of NewFrontier
25: mark all points of NewFrontier as “Map-Close-List”
26: for all v ∈ adj(p) do
27: if v not marked as {“Map-Open-List”,“Map-Close-List”}

and v has at least one “Map-Open-Space” neighbor then
28: ENQUEUE(queuem,v)
29: mark v as “Map-Open-List”
30: mark p as “Map-Close-List”

points that have not been scanned yet and represent open-space
(Line 27). The above scanning policy ensures that only known re-
gions (that have already been covered by the robot’s sensors) are
actually scanned. The significance of this is that the algorithm does
not have to scan the entire occupancy-grid each time.

Because frontier points are adjacent to open space points, all
relevant frontier points will be found when the algorithm finishes
(Line 30). If a frontier point is found, a new BFS is performed
in order to extract its frontier (Lines 13–25). This BFS searches
for frontier points only. Extracting the frontier is ensured because
of the connectivity of frontier points. At the end of the extraction
(Line 25), the extracted frontier data is saved to a set data-structure
that stores all frontiers found in the algorithm run.

In order to avoid rescanning the same map point and detecting
the same frontier reachable from two frontier points, WFD marks
map points with four indications:

1. Map-Open-List: points that have already been enqueued by
the outermost BFS (Line 28)

2. Map-Close-List: points that have already been dequeued by
the outermost BFS (Line 5)

3. Frontier-Open-List: points that have already been enqueued
by the frontier extraction BFS (Line 21)

4. Frontier-Close-List: points that have already been dequeued
by the frontier extraction BFS (Line 14)

The above marks indicate the status of each map point and deter-
mine if there is a need to handle it in a given time.

The key innovation in WFD is that it prevents scanning unknown
regions, since frontiers never appear there. However, it still searches
all known space.

3.3 Speeding-Up WFD Even Further
WFD’s execution time can be boosted even more by reducing the

grid size. Of course, there is a trade-off between shorter execution
time and the quality of the output frontiers. Even though, standard
exploration tasks can utilize the output frontiers received in this
manner. The grid is divided into blocks in size of the robot’s width
and height. Smaller blocks will not make sure that robot will be
able to pass through terrain obstacles (i.e. corridors). Each block
in the real world is represented by a single cell in the reduced grid.
In order to determine the value of the cell, we examined different
strategies. We considered both the speed of creating the new grid
and the quality of the output. We found out that sampling the center
of the block edges and the block center yields the best results.

4. FAST FRONTIER DETECTOR
Unlike other frontier detection methods (including WFD), our

proposed algorithm (Algorithm 2) only processes new laser read-
ings which are received in real time. It therefore avoids searching
both known and unknown regions. In doing this, we make use of
the fact that by definition, frontiers represent the boundaries be-
tween the known and unknown regions of the environment (see
Figure 3). Hence, scanning all unknown regions is definitely un-
necessary and not time-efficient. The FFD algorithm contains four
steps (Algorithm 2), and can be called with every new scan.

4.1 Sorting
The first step (line 1) sorts range readings based on their angle,

i.e., based on the ego-centric polar coordinates with the robot as the
origin. Normally, laser readings are given as a sorted set of polar
coordinated points, making this sorting step unnecessary. How-
ever, if this is not the case, a sorting is needed to be applied on the
received laser readings.

To sort the readings, we assume that range readings are a set
of Cartesian coordinated points, which consists of the locations

115

Algorithm 2 Fast Frontier Detector (FFD)
Require: frontiersDB // data-structure that contains last known

frontiers
Require: pose // current global position of the robot
Require: lr // laser readings which were received in current

iteration. Each element is a 2-d cartesian point

// polar sort readings according to robot position
1: sorted← SORT_POLAR(lr, pose)

// get the contour from laser readings
2: prev ← POP (sorted)
3: contour ← ∅
4: for all Point curr ∈ sorted do
5: line← GET_LINE(prev, curr)
6: for all Point p ∈ line do
7: contour ← contour ∪ {p}

// extract new frontiers from contour
8: NewFrontiers← ∅ // list of new extracted frontiers
9: prev ← POP (contour)

10: if prev is a frontier cell then // special case
11: create a new frontier in NewFrontiers
12: for all Point curr ∈ contour do
13: if curr is not a frontier cell then
14: prev ← curr
15: else if curr has been visited before then
16: prev ← curr
17: else if curr and prev are frontier cells then
18: add curr to last created frontier
19: prev ← curr
20: else
21: create a new frontier in NewFrontiers
22: add curr to last created frontier
23: prev ← curr

// maintainance of previously detected frontiers
24: for all Point p ∈ ActiveArea do
25: if p is a frontier cell then
26: // split the current frontier into two partial frontiers
27: get the frontier f ∈ frontiersDB which enables p ∈ f
28: f1 ← f [1 . . . p]
29: f2 ← f [(p+ 1) . . . |f |]
30: remove f from frontiersDB
31: add f1 and f2 to frontiersDB
32: for all Frontier f ∈ NewFrontiers do
33: if f overlaps with an existing frontier existFrontier then
34: merged← f ∪ existFrontier
35: remove existFrontier from frontiersDB
36: add merged to frontiersDB
37: else
38: create a new index and add f to frontiersDB

of range hits (
{

(x0, y0), . . . , (xn, yn)
}

where n is the number of
readings). The naive method for converting Cartesian to polar co-
ordinates uses two CPU time-consuming functions: atan2 and sqrt.

To speed angle sorting, we use a cross product [6] to avoid con-
verting Cartesian to polar coordinates, while still sorting the points
based on polar angle. Given 3 Cartesian coordinated points:

P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2)

the cross product is defined as:

(p1−p0)×(p2−p0) = (x1−x0)·(y2−y0)−(x2−x0)·(y1−y0)

If the result is positive, then
−−−→
P0P1 is clockwise from

−−−→
P0P2. Else, it

is counter-clockwise. If the result is 0, then the two vectors lie on
the same line in the plane (i.e., the angle is the same).

Therefore, by examining the sign of the cross product, we can
determine the order of the Cartesian points according to polar co-
ordinates, without calculating their actual polar coordinate value.
This applies only five subtractions and two multiplications which
are far less time-consuming than calling atan2 and sqrt.

4.2 Contour

Figure 4: Example of pro-
duced contour.

In this step (lines 2–7) we use
the angle-sorted laser readings.
The output of the contour step
is a contour which is built from
the sorted laser readings. The
algorithm computes the line that
lies between each two adjacent
points from the set. The line is
computed by calling the func-
tion GET_LINE. In our implementation we use Bresenham’s
line algorithm [2]. Next, all points that are represented by all the
lines (including the points from the laser readings set) are merged
into a contour (Figure 4).

4.3 Detecting New Frontiers
In this step (lines 8–23) the algorithm extracts new frontiers from

the previously calculated contour. There are three cases correspond
to each two adjacent points in the contour:

1. Current scanned point is not a frontier cell: therefore, it
does not contribute any new information about frontiers and
can be ignored.

2. Current and previous scanned points are frontier cells:
therefore, both points belong to the same frontier and current
scanned point is added to last detected frontier.

3. Current point is a frontier cell but the previous is not:
a new starting point of a frontier was detected. Hence, the
algorithm creates a new frontier and adds the new starting
point to it.

4.4 Maintaining Previously Detected Frontiers
FFD gains its speed by processing the laser readings only, rather

than entire regions of the map. However, if the robot navigates
towards a specific frontier, other previously detected frontiers are
no longer updated because they are not covered by the robot’s sen-
sors. Thus, scanning the new received laser readings enables FFD
to detect only new frontiers in each execution. In this step (lines
24–38), in order to get complete information about the frontiers,
the algorithm performs maintenance over previously detected fron-
tiers which are no longer covered in the range of the sensors. Only
by joining together new detected frontiers and previously detected
frontiers, we get the overall frontiers in current world state. This
step has multiple targets: avoiding detection of new frontiers in

116

an already scanned area (Section 4.4.2), eliminating frontier points
which are no longer belong to frontiers (Section 4.4.3) and join-
ing correctly the new detected frontiers together with previously
detected frontiers (Section 4.4.4).

4.4.1 Data-Structures
In order to perform the maintenance step within a very short time

as possible, FFD utilizes two data-structures which have a short ac-
cess time. These data structures must maintain memory of frontiers
between calls. Thus FFD has to have persistent memory, i.e., data
structures that persist between calls. This is contrast to other ap-
proaches that can be executed in a certain time, and only then.

Another thing to note is that in particle filter based systems (our
focus in this paper), each particle represents a possible hypothe-
sis of the world state (including the robot position of course). The
“best” particle is chosen according to a likelihood measurement.
FFD requires the previously detected frontiers to be robust against
map orientation changes caused by loop-closures of the mapping
algorithm. Therefore, when a new laser reading is received, each
particle executes its own instance of FFD algorithm on its own
map, using its own data structures. More specifically, each parti-
cle performs maintenance with its own map because particles do
not share maps. We describe the data structures for maintenance
below.

Grid of Frontier Indices This data-structure is an extension of the
occupancy grid (though it can be implemented as a separate en-
tity). In addition to occupancy information, each grid cell contains
a frontier index, pointing to a frontier to which the grid cell belongs,
or NULL otherwise. The pointer is into the Frontier Database (de-
scribed below). In our implementation, we used integer index val-
ues. After accessing a grid cell, querying for its frontier index is
O(1).

Frontier Database This data-structure maps frontier indexes (point-
ers) to sets of points. All detected frontiers are stored in this data-
structure. We use it to map frontier index to the actual set that con-
tains the points in world coordinates. In our implementation, we
use the default C++ implementation of a map template, which is
implemented as a self-balancing binary search tree. Therefore, as-
suming n represents the number of frontiers stored in the database,
searching for a frontier index takes O(logn), inserting a new fron-
tier takes O(logn) and removing a frontier index takes O(logn),
though a (hash) table lookup implementation can make this faster.

4.4.2 Avoiding Re-Detection of Same Frontier
FFD detects new frontiers by processing laser readings only.

Hence, FFD might detect the same frontier again and classify it
as a new frontier if the robot did not change its position during
two following FFD executions. Moreover, if the robot travels back
to an already visited region, no new frontiers should be detected.
FFD has to distinguish between laser readings from between time
frames. Otherwise, FFD might wrongly detect a new frontier which
lies within an already scanned area.

Therefore, we keep track of the number of sensor visits (sen-
sor covers) of each map cell. The definition of a frontier point is
now expanded: a frontier point is a point which represent an un-
known region, has at least one open-space neighbor and has not
been scanned before. Given a contour, the detection of new fron-
tiers ignores points that have already been scanned by the laser sen-
sors and treats them as non-frontier points (lines 15–16).

Figure 5 demonstrates the necessity of the above. Figure 5(a)
shows frontiers extraction without tracking the number of visits. It
can be seen that there are frontiers that lie inside an open space

(a) Incorrectly re-detected fron-
tiers.

(b) Correct detection.

Figure 5: An example of re-detecting same frontiers.

area. This is absolutely wrong because frontiers are supposed to be
positioned on the boundaries between known and unknown regions.
In contrast, Figure 5(b) shows frontiers extraction with avoidance
of redetecting same frontiers. It can be seen that every frontier
separates known and unknown regions.

4.4.3 Eliminating Previously Detected Frontiers
In order to complete the process, points which are no longer in

frontiers (i.e. were covered by the robot’s sensors) have to be elim-
inated. Lines 24–31 contain the elimination logic applied by FFD.

Let ti be a time frame and lrti be the laser readings which were
received in time frame ti. In order to perform maintenance in a
specific time, we define the Active Area of time frame ti to be the
blocking rectangle that can be constructed using the farthest laser
readings of lrti , relative to the robot position in time frame ti.

xmin = min({x|x ∈ lrti}), ymin = min({y|y ∈ lrti})
xmax = max({x|x ∈ lrti}), ymax = max({y|y ∈ lrti})

ActiveAreati = {(x, y) |xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}
The active area’s rectangle is constructed from the following ver-
tices: (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin).
The rectangle is an approximation to the real active area that is ac-
tually bounded within the laser readings.

By processing received laser readings, FFD extracts new fron-
tiers. However, in order to get the complete world’s frontiers state,
points that are no longer on frontiers have to be eliminated. FFD
maintains a frontier database which maps an integer (frontier index)
to a set of points (frontier).

An unknown region is classified as known region only if it is
covered by the robot’s sensors. FFD gets its input from the new re-
ceived laser readings, and thus only regions that are covered by the
robot’s sensors might contain frontiers that have to be eliminated.
Thus, if there are frontiers that need to be eliminated, they must lie
inside the Active Area. Hence, the active area is a key feature in
the process of maintaining frontiers. FFD scans each point that lies
inside the active area and checks if it was previously belonged to a
frontier. The check can be performed very fast as explained before.
If the current scanned point was belonged to a frontier, the current
scanned point is removed from the frontier and the frontier is spit
into two partial frontiers using the current scanned point as a pivot
(lines 28–29).

In the end of this process, all no-longer frontier points in the
frontier database are removed and the database contains only points
that are still valid frontiers.

4.4.4 Storing New Detected Frontiers
In the last phase of the maintenance step (lines 32– 38) new de-

tected frontiers are stored in the frontier database alongside with
existing valid frontiers. For each new detected frontier, FFD checks
if it overlaps with an already existing frontier. This comparison can
be performed in a short time using the matrix of frontier indices.

117

Each frontier point is queried in O(1) operations. If an overlap is
found, the frontier is merged with the frontier that it is overlapped
with. If no overlap is found, then the frontier is inserted to the
frontier database.
5. FFD IS SOUND AND COMPLETE

We show that Algorithm 2 is sound and complete. We begin
with a lemma that demonstrates that FFD always recognizes new
frontiers (i.e., frontiers that appeared at time t, but did not exist
before). This will then be used to prove completeness of FFD .

LEMMA 5.1. Suppose f is a frontier point at time t, which was
not a frontier point at any time s, where s < t. Then FFD will
mark f as a frontier given observation Ot.

PROOF. Let f be a valid frontier point in time t and was not a
classified as frontier in time s < t. Since f is a valid frontier point,
then it has a value of Unknown and has at least one Open Space
neighbor at time t. Assume towards a contradiction that FFD did
not recognize f as a frontier point. First, let us show that f is
contained in the contour handled in Lines 8–23. Since f is a valid
frontier point, then it has a value of Unknown and has at least one
Open Space neighbor in time t. The point f cannot be located
wholly within an unknown region because it must have at least one
Open Space neighbor. Also, the point f cannot be located wholly
within a known region since f is a valid frontier point and hence, its
value is Unknown. Therefore, f must be located on the contour
itself. Lines 8–23 handle points on the contour, which we have
just shown f is on. In these lines, the FFD algorithm scans all
contour points sequentially and specifically searches for frontier
points. Because if scans all points on the contour, and we have
shown that f is on the contour, it follows that f would be detected,
contradicting the assumption that FFD did not recognize f as a
frontier point at time t.

We now turn to proving the completeness of the FFD algorithm.
THEOREM 5.2. Let f be a valid frontier point at time t. Then

FFD will mark f as a frontier point given the sequence of observa-
tions 〈O0, . . . , Ot〉.

PROOF. Two cases should be examined:

Case 1. f is a new frontier point at time t. Trivially, this case is
handled directly by lemma 5.1.

Case 2. f was a new frontier point at time s, where s < t. Let
s be the earliest time in which f was a frontier. Based on lemma
5.1, it follows that it was detected at this time. All that remains to
show is that given the f is still valid at time t, FFD will maintain
knowledge of it from time s and report on it.

If f is still a valid frontier point at time t, then it has not been
covered yet by the robot’s sensors. Otherwise, it would no longer
contain an Unknown value and hence, will not be a valid frontier
point. So if it was not yet covered, it must be a frontier point that
is maintained by FFD. The only way in which f can be eliminated
from being classified as a frontier point is done by lines 24–31. In
these, FFD scans all points that are covered by the robot’s sensors
and checks if any points should be eliminated (line 25). Since f is
not covered by the sensors, then it will not be scanned and elimi-
nated in time t⇒ f remains classified as a frontier by FFD.

In both cases we show FFD will recognize f to be a valid frontier
at time t.

Since Theorem 5.2 is true for any frontier point valid at time t, it
follows that FFD is complete.

To show the soundness of FFD , we must demonstrate that there
does not exist a case where FFD marks a point f̂ as a frontier, when
it is not.

(a) Cartesium Building, Uni-
versity of Bremen.

(b) Freiburg, Building 079.

Figure 6: Some of the testing environments.

THEOREM 5.3. Let f̂ be an arbitrary point in the occupancy
grid, which is not a frontier at time t. Then FFD will not return f̂ as
a frontier point, given the sequence of observations 〈O0, . . . , Ot〉.

PROOF. Assuming that f̂ is an arbitrary point which is not a
frontier point at time t, then f̂ is either contains value different
from Unknown or all its adjacent values are different from Open
Space. We will examine two cases:

Case 1. f̂ is marked as a new frontier. Suppose, towards a con-
tradiction, that FFD detects f̂ as a new frontier (i.e., true at time t,
but not a frontier in time s, where s < t). Since detection of new
frontier points (Lines 8–23) considers only points on the contour, it
follows that f̂ must be located on the contour and detected by lines
8–23. However, line 13 specifically avoids classifying non-frontier
points as frontiers. Since f̂ is a non-frontier point, it is ignored by
FFD. Therefore, f̂ cannot be marked as a new frontier ⇒ contra-
dicting the assumption that it is detected by FFD as a new frontier.
Case 1 is impossible.

Case 2. f̂ is an old frontier but was not eliminated by the main-
tenance routine. Suppose, towards a contradiction, that f̂ is lo-
cated inside the active area and is not eliminated by the mainte-
nance section. Therefore, f̂ is a point that was covered by the
robot’s sensors and no longer contains an Unknown value, yet is
still marked as a frontier by the FFD algorithm. We remind the
the reader that in order to maintain frontier points across runs, each
point in the grid keeps a value which contains NULL if the point is
not a frontier point or the index of the frontier to whom it belongs.
Therefore, in line 25 FFD scans all points in the active area and
checks if they contain a frontier index. When FFD scans f̂ , it will
find out that it contains a valid frontier index (because it has pre-
viously belonged to a valid frontier) and continues executing lines
27–31. In these lines, FFD checks and removes from the DB all
points that are no longer frontier points and previously were fron-
tier points. Thus f̂ will be eliminated after scanning the active area,
contradicting the assumption that f̂ was not eliminated.

Since in both cases we show that FFD necessarily eliminated f̂
from the valid frontier list, it follows that if f̂ is not a frontier-point
at time t, it would not be marked as such by FFD. Since Theorem
5.3 holds for any arbitrary point, it follows that FFD never incor-
rectly marks a non-frontier point as a frontier. It is thus sound.
6. EXPERIMENTAL RESULTS

We have fully implemented WFD and FFD and performed test-
ings on data obtained from the Robotics Data Set Repository (Radish)
[8]. We used WFD without the suggested speed-up feature, in order
to compare all algorithms fairly. Figure 6 shows a few of the envi-
ronments used for the evaluation. WFD and FFD were compared
with a SOTA (state-of-the-art) frontier detection algorithm, due to
Wurm and Burgard [15, 16].

To evaluate the algorithms, we integrated them into a single-
robot exploration system. The system is based on GMapping, an
open-source SLAM implementation [7]. We integrated our code

118

into the ScanMatcher component which is contained inside gsp
thread (Grid SLAM Processor). At the time that a new MapEvent
is raised, all frontier detection algorithms are executed according
to current world state. Execution times are measured by Linux
system-call getrusage, which measures the CPU-process time. We
examined the run-time of all algorithms on two different machines:
• First experiment: we used a fast desktop computer contain-

ing Intel Core 2 Duo T6600 CPU with clock speed of 2.20
GHz and Random Access Memory (RAM) in size of 4 GB.
• Second experiment: we used a slower desktop computer con-

taining Intel Pentium III (Coppermine) with clock speed of
800 MHz and Random Access Memory (RAM) in size of 1
GB. Research-grade robots typically have a faster CPU, but
commercial robots typically do not.

We used several environments taken from Radish [8]:
(A) Cartesium Building, University of Bremen
(B) Freiburg, Building 079
(C) Outdoor dataset recorded at the University of Freiburg, (C)
(D) 3rd Floor of MIT CSAIL
(E) Edmonton Convention Centre (site of the AAAI 2002 Grand

Challenge)
Note that we use the exploration data (raw sensor readings and

odometry) from these data sets, and thus all algorithms use exactly
the same data, form the same robot trajectories. Thus the movement
of the robot is identical, and the only thing we examine is how
quickly it can compute frontiers.

FFD is called every-time a new laser reading is received. There-
fore, in order to compare FFD execution time to other algorithms
correctly, we accumulate FFD’s execution times between calls to
other algorithms. In other words, if we call WFD in time-stamps ti
and ti+1, then FFD’s accumulated execution time is calculated by:

ti+1∑

x=ti

ExecutionT imeFFD(x)

Moreover, we remind the reader that because FFD is called for
every particle in the particle-filtering GMapping [7], the results
here accumulate also over the number of particles (30 in our case).

We begin by examining overall performance. Figure 7 shows
one set of results of the comparison in each of the two machines.
Each group of bars represents a run over a separate map. For each
algorithm, we calculate the mean execution time, over the dura-
tion of the exploration. The vertical axis measures the calculated
execution time in microseconds, on a logarithmic scale. The one-
second line is at 106 microseconds. The next tick, at 107, marks 10
seconds.

Figure 7 shows that WFD is faster than SOTA by approximately
one order of magnitude. FFD is faster than WFD by one to two or-
ders of magnitude. Indeed, FFD performs close to the one-second
line. In contrast, WFD and SOTA typically take anywhere from 10
to 100 seconds to perform their task, even on relatively fast ma-
chines.

FFD’s improvement over the others is indeed notable, given that
the measured results are not for single FFD runs, but in fact show
accumulated run-time, over the frequency of the sensor readings,
multiplied over the number of particles (approximately 2000 calls
to FFD for each WFD or SOTA calls). These multiplicative factors
have significant impact on FFD’s usability. It is important to un-
derstand whether the number of particles influences the result more
than the frequency of sensor readings, as the number of particles is
often increased for better quality.

We thus turn to evaluating FFD at a finer resolution. Figure 8
compares the run-time of individual particles in specific environ-
ments. Each bar represents a specific particle. The vertical axis

(a) Intel T6600

(b) Intel Coppermine

Figure 7: Comparing WFD and FFD to State-of-the-Art algo-
rithm on different machines.
measures the mean run-time of FFD for the particle. The error-
bars represent the standard deviation of each particle’s run-time.

The figure shows that the per-particle run-time is measured in a
few hundred micro-seconds. Thus the overall results were accu-
mulating comparing the accumulation of thousands of FFD runs
against single WFD and SOTA runs. Indeed, one can boost FFD’s
execution time by not executing it on every received laser reading,
since the frequency of receiving new laser readings is often higher
than the speed of processing and updating the map anyways. Many
laser sensors generate output at 30Hz–75Hz, at least three times
faster than the rate at which the robots process the information.
By ignoring some laser readings, FFD would perform much better,
without any noticeable decay in mapping quality.

7. CONCLUSIONS AND FUTURE WORK
Frontier-based exploration is the most common approach to solve

the exploration problem. State-of-the-art frontier detection meth-
ods process the entire map data, which hangs the exploration sys-
tem for a few seconds with every call to the detection algorithm.

We introduced two novel faster frontier detectors, WFD and FFD.
The first, a graph based search, processes the map points which
have already been scanned by the robot sensors and therefore, does
not process unknown regions in each run (though it grows slower as
more area is known). The second, a laser-based approach for fron-
tier detection, only processes new laser readings which are received
in real time eliminating also much of the known area search. How-
ever, maintaining previous frontiers knowledge requires tight inte-
gration with the mapping component, which may not be straight-
forward. We describe efficient implementation for both algorithms,
and compare them empirically. FFD is shown to outperform WFD
and the state-of-the-art by 1–2 (2–3, resp.) orders of magnitude.

In future, we plan to integrate FFD with EKF-based SLAM map-
pers, which we hope will lead to further improvements. We also

119

(a) Cartesium Building, Bremen

(b) Freiburg, Building 079

(c) Outdoor dataset, University of
Freiburg

(d) 3rd Floor of MIT CSAIL

(e) Edmonton Convention Centre

Figure 8: FFD run-time for individual SLAM particles.

plan to begin investigation of novel exploration policies, based on
real-time frontier-detection.

Acknowledgements. We thank Kai M. Wurm and Wolfram Bur-
gard for providing us with their own implementation of state-of-
the-art frontier detection algorithm. Thanks go to Cyrill Stachniss,
Giorgio Grisetti and Nick Roy for providing data to the Robotics
Data Set Repository (Radish) [8].

8. REFERENCES
[1] M. Berhault, H. Huang, P. Keskinocak, S. Koenig,

W. Elmaghraby, P. Griffin, and A. Kleywegt. Robot
exploration with combinatorial auctions. In IROS-03, pages
1957–1962, 2003.

[2] J. Bresenham. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30, 2010.

[3] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun.
Collaborative multi-robot exploration. In IEEE International
Conference on Robotics and Automation. Vol. 1, pages
476–481, 2000.

[4] W. Burgard, M. Moors, C. Stachniss, and F. Schneider.
Coordinated multi-robot exploration. IEEE Transactions on
Robotics, 21(3):376–378, 2005.

[5] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi.
Multi-objective exploration and search for autonomous
rescue robots: Research articles. J. Field Robot.,
24:763–777, August 2007.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improved
techniques for grid mapping with Rao-Blackwellized particle
filters. IEEE Transactions on Robotics, 23:34–46, 2007.

[8] A. Howard and N. Roy. The robotics data set repository
(RADISH), 2003.

[9] M. Keidar, E. Sadeh-Or, and G. A. Kaminka. Fast frontier
detection for robot exploration. In F. Dechesne, H. Hattori,
A. ter Mors, J. M. Such, D. Weyns, and F. Dignum, editors,
Advanced Agent Technology: AAMAS 2011 Workshops.
Revised Selected Papers, volume 7068 of Lecture Notes in
Computer Science (LNCS), pages 281–294. 2012.

[10] H. Lau and A. NSW. Behavioural approach for multi-robot
exploration. In Australasian Conference on Robotics and
Automation (ACRA), Brisbane, December, 2003.

[11] R. Sawhney, K. M. Krishna, and K. Srinathan. On fast
exploration in 2D and 3D terrains with multiple robots. In
AAMAS-09, pages 73–80, 2009.

[12] C. Stachniss. Exploration and Mapping with Mobile Robots.
PhD thesis, University of Freiburg, Department of Computer
Science, 2006.

[13] A. Visser. personal communication. Email, January 4th,
2011.

[14] A. Visser and B. A. Slamet. Including communication
success in the estimation of information gain for multi-robot
exploration. In WiOpt-08, pages 680–687, 2008.

[15] K. Wurm, C. Stachniss, and W. Burgard. Coordinated
multi-robot exploration using a segmentation of the
environment. In IROS-08, Nice, France, Sept. 2008.

[16] K. M. Wurm. personal communication. Email, January 20th,
2011.

[17] B. Yamauchi. Frontier-based exploration using multiple
robots. In Agents-98, pages 47–53, 1998.

120

Dynamic Reconfiguration in Modular Robots
using Graph Partitioning-based Coalitions

Prithviraj Dasgupta, Vladimir Ufimtsev Carl Nelson, S. G. M. Hossain
Computer Science Department Mechanical Engg. Department

University of Nebraska, Omaha, USA University of Nebraska, Lincoln, USA
{pdasgupta, vufimtsev}@unomaha.edu cnelson5@unl.edu, smgmamur@yahoo.com

ABSTRACT
We consider the problem of dynamic self-reconfiguration in
a modular self-reconfigurable robot (MSR). Previous ap-
proaches to MSR self-reconfiguration solve this problem us-
ing algorithms that search for a goal configuration in the
MSR’s configuration space. In contrast, we model the self-
reconfiguration problem as a constrained optimization prob-
lem that attempts to minimize the reconfiguration cost while
achieving a desirable configuration. We formulate the MSR
self-reconfiguration problem as finding the optimal coalition
structure within a coalition game theoretic framework. To
reduce the complexity of finding the optimal coalition struc-
ture, we represent the set of all robot modules as a fully-
connected graph. Each robot module corresponds to a ver-
tex of the graph and edge weights represent the utility of a
pair of modules being in the same coalition (or, connected
component). The value of a coalition structure is then de-
fined as the sum of the weights of all edges that are com-
pletely within the same coalition in that coalition structure.
We then use a graph partitioning technique to cluster the
vertices (robot modules) in the constructed graph so that the
obtained coalition structure has close to optimal value. The
clustering algorithm has time complexity polynomial in the
number of agents, n, and yields an O(log n) approximation.
We have verified our technique experimentally for a vari-
ety of settings. Our results show that the graph clustering-
based self-reconfiguration algorithm performs comparably
with two other existing algorithms for determining optimal
coalition structures. 1

Categories and Subject Descriptors
I.2.9 [Robotics]: Autonomous vehicles—modular robots, dy-
namic reconfiguration

General Terms
Algorithms

1This research has been performed as part of the ModRED
project that is supported by a NASA EPSCoR grant.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
modular self-reconfigurable robots, dynamic reconfiguration,
coalition game, graph-based clustering

1. INTRODUCTION
Over the past few years, modular self-reconfigurable robots

(MSRs) have been proposed as an elegant, yet efficient way
to build robots that are capable of maneuvering in tight
spaces or unstructured terrain [18]. Structurally, an MSR is
composed of functionally simple modules that are connected
together into a certain formation. Each module is individu-
ally capable of performing very limited operations, but when
connected with other modules, they can adapt their shape to
form a single robot that can accomplish a complex task. In
spite of the simple and inexpensive construction of an MSR’s
modules, and easy maneuverability, a principal challenge in
MSRs is to solve the self-reconfiguration problem i.e. how
to adapt their shape autonomously so that they can change
tasks or continue their operation after encountering obsta-
cles or occlusions that impede their movement. As a moti-
vating example, we consider a scenario where a set of robot
modules are deployed individually, possibly scattered on the
ground within communication range of each other, from an
airborne vehicle. The objective of these individual modules
is to autonomously determine suitable multi-module config-
urations, maneuver themselves to get within close proximity
of each other, and, finally align and dock with each other
to realize those configurations. This paper focuses on the
computational aspects of the problem faced by the individ-
ual modules to determine their ’best’ set of configurations
that gives them an improved efficiency or value in perform-
ing their assigned task, while considering the costs in terms
of energy expended to get in proximity of, and align and
dock with each other to get into those configurations. This
problem is challenging because a fixed set of rules does not
work for all situations. An MSR needs to perceive its current
environment to determine how many modules to connect to-
gether, and the configuration or shape those modules should
get into, so that the MSR can perform its assigned task most
efficiently.

In this paper, we have addressed the MSR self-reconfiguration
problem by modeling it as a coalition structure generation
(CSG) problem in coalition game theory. Coalition games
are suitable for the MSR self-reconfiguration problem be-
cause the solution found by a coalition game ensures sta-
bility. Once the best partition or coalition of agents, corre-
sponding to the best configuration of MSRs has been found,
the MSR modules that have been determined to form the

121

new configuration will remain together and will not try to
leave the new configuration and attempt to combine with
other modules. However, there are several research chal-
lenges that need to be addressed while using coalition game
theory for MSR self-reconfiguration. First, in coalition game
theory, the assimilation of agents into teams and the com-
munication between agents is assumed to be free of cost.
However, for MSRs, modules incur “cost” by expending en-
ergy to communicate with each other and physically move
to each other’s proximity to dock with each other. Secondly,
solving the CSG problem that deals with finding the best or
optimal coalition in a coalition structure graph is known to
be an NP-hard problem with a few existing heuristic solu-
tions. To address these problems, in this paper we first de-
velop a utility-based formulation for the costs corresponding
to the dynamic reconfiguration problem in MSRs within a
coalition game theoretic framework. Then we use a graph
clustering algorithm to solve the CSG problem within this
setting, using a polynomial time complexity and logarithmic
approximation. To illustrate the operation of our MSR we
have used the domain of robotic exploration of initially un-
known environments. Our experimental results show that
our graph clustering technique can be successfully used to
dynamically self-reconfigure an MSR into different configu-
rations.

2. RELATED WORK
Modular self-reconfigurable robots (MSRs) are a type of

self-reconfigurable robots that are composed of identical mod-
ules. These modules can change their connections with each
other to manifest different shapes of the MSR and select a
shape that enables the MSR to perform its assigned task
efficiently [4, 16]. An excellent overview of the state of the
art MSRs and related techniques is given in [18]. Out of
the three types of MSRs — chain, lattice and hybrid - we
have used a chain-type MSR to illustrate the experiments in
this paper although our techniques could be used for other
types too. The self-reconfiguration problem in MSRs has
been solved using search-based [3, 5] and control-based
techniques [14]. However, both these techniques require
the initial and goal configuration to be determined before
the reconfiguration process starts. A third technique called
task-based reconfiguration has recently shown considerable
success [9]. Here the goal configuration of an MSR do-
ing reconfiguration is not determined a priori, but is deter-
mined as the configuration that helps the MSR perform its
task efficiently. Our work in this paper is targeted towards
task-based reconfiguration techniques; we do not explicitly
specify a goal configuration but allow the reconfiguration
algorithm to select a new configuration that minimizes the
reconfiguration cost.

Coalition game theory gives a set of techniques that can
be used by a group of agents to form teams or coalitions
with each other [10, 13]. A coalition can be loosely defined
as a set of agents that remain together with the intention of
cooperating with each other, possibly to perform a task. In
terms of MSRs a coalition represents a set of MSR-modules
that are connected together while performing a certain task.
Within coalition games, the coalition structure generation
problem that deals with partitioning the agents into disjoint
and exhaustive sets called coalitions has received significant
attention. This problem is NP-complete, and Sandholm [15]
and Rahwan [11] have proposed anytime algorithms to find

(a) (b) (c)

Figure 1: (a) CAD figure of a single module of the
MSR. (b) A simulated version of the MSR inside
Webots. (c) Major components of the MSR.

near-optimal solutions. In contrast to these works, we use
a graph clustering-based approach to find the optimal coali-
tion structure.

Weighted graph games were introduced in [8] as a specific
case of coalition games where the set of agents is modelled as
a vertex set of a graph, and the valuation function is calcu-
lated by summing the edge weights of the constructed graph.
Coalition structure generation in graph games has recently
received attention in [17], [1], and the problem was shown
to be NP-complete. Our method uses the graph coalition
game formulation and the graph clustering technique pre-
sented in [7] to obtain close to optimal coalition structures
in the graph. The technique is based on a generalized version
of correlation clustering [2] known as correlation clustering
with partial information.

3. A NOVEL 4-DOF MODULAR ROBOT
We have used an MSR called ModRED [6] that is cur-

rently being developed by us, for implementing and testing
the techniques in this paper. Unlike most other MSRs, it has
4 DOF (3 rotational and 1 translational); this allows each
module to rotate along its long axis as well as extend along
that same axis, as shown in Figure 1(a). This combination of
DOF enables the MSR to achieve a greater variety of gaits to
possibly maneuver itself out of tight spaces. A picture of the
MSR, its simulated version within a robot simulator called
Webots and its major components are shown in Figure 1.
For the simulated version of each module, we have used a
GPS node that gives global coordinates on each robot2, an
accelerometer to determine the alignment of the robot with
the ground, in addition to the IR sensors and Zigbee modules
in the physical robot. The movement of the MSR in fixed
configuration is enabled through gait tables [16]. Each gait
table applies to a specific movement of the robot in a spe-
cific configuration. The contents of the gait table give the
sequence of movements of the different joints of the robot to
achieve the desired motion. Videos showing the movement
of the MSR in different configurations using gait tables are
available at http://cmantic.unomaha.edu/projects/modred/.
The MSR ModRED can be configured into a chain struc-

2In the physical MSR, relative positioning is planned to be
done using the IR sensors.

122

Figure 2: ModRED modules in a chain configuration

Figure 3: ModRED modules in a ring configuration

ture as is shown in Figure 2 as well as a ring structure as is
shown in Figure 3 (images taken from Webots). When mod-
ules form these configurations the MSR performs more effi-
ciently; it can move faster and it can overcome obstacles. In
different configurations, the MSR uses different gaits which
enable it to move faster and overcome more obstacles. In the
chain structure the MSR can mimic the movement of a snake
for movement or it can use its rotational degree of freedom
to roll sideways, while in the ring structure the MSR can
perform several ”rolling” motions akin to that of a wheel.

While moving in a fixed configuration, if the MSR’s mo-
tion gets impeded by an obstacle or an occlusion in its path,
it needs to reconfigure into a new configuration so that it
can continue its movement efficiently. In the next section,
we formalize the MSR self-reconfiguration problem and then
provide a graph clustering approach for finding the optimal
coalition.

4. DYNAMIC SELF-RECONFIGURATION
IN MSRS

Let A be the set of modules or agents that have been
deployed in the environment. The set of MSRs (coalition
structure) at time t, {At

i}, is defined as a set of exhaustive
and disjoint partitions of A, i.e., ∪i At

i = A and Ai ∩Aj = ∅
for i 6= j. The i-th MSR (coalition) at time t is given by a

set of ordered modules or agents, i.e.,

At
i = {at

i1 , a
t
i2 , a

t
i3 , ..., at

i|At
i
|
} (1)

Here, at
i1 is the leading module of At

i, at
i|At

i
|

is the trailing

or end module of the MSR and {at
ij

, at
ij+1

}, j = 1...|At
i | − 1

are the set of modules that are physically coupled together
pairwise in a chain configuration using their end couplers.
Using this definition, when At

i is a singleton, it represents a
single module that is not coupled with any other modules.

Let Π(A) be the set of all partitions of A and let CS(A) =
{A1, A2, ..., Ak} ∈ Π(A) denote a specific partition of A. 3

We define V : Π(A) → R, a value function that assigns each
partition CS(A) ∈ Π(A) a real number. Consider an MSR in
configuration CSold(A) = {Aold

1 , Aold
2 , ..., Aold

k } that recon-
figures to CSnew(A) = {Anew

1 , Anew
2 , ..., Anew

k′ }. Note that k
and k′ may be different. Such reconfigurations can happen,
for example, when an MSR gets stuck at an obstacle while
navigating during an exploration task. The objective of the
MSR is to get into a new configuration that lets it continue
performing its assigned task while incurring the minimum
reconfiguration cost. We parametrize the reconfiguration
cost in the following manner. Let costCSold(A)→CSnew(A)(ai, aj)
denote the cost that will be incurred to couple modules ai

and aj with each other (in the process of reconfiguration
from CSold(A) to CSnew(A)). For simplicity we will write
costold,new(ai, aj). If these two modules remain in the same
MSR after reconfiguration, this cost is 0. Otherwise, this
cost is given by the sum of the costs of undocking the mod-
ules ai and aj respectively from their current MSRs, the cost
of one of the modules, say aj , moving to the vicinity of the
other module ai and the cost of aligning and docking the
two modules, as described below:4

costold,new(ai, aj) =

0, if ai,aj∈Aold
k1

and ai,aj∈Anew
k2

costUndock(ai)

+ costUndock(aj)

+ costCrawl(aj ,loc(ai))

+ costAlignAndDock(ai,aj), otherwise
(2)

Within this framework, we define the MSR self-reconfiguration
problem as the following:

Definition 1. Modular Self Reconfiguration. Given a
partition CSold(A) = {Aold

1 , Aold
2 , ..., Aold

k }, find a partition
CSnew(A) = {Anew

1 , Anew
2 , ..., Anew

k′ } such that the following
constraint is satisfied:

max
CSnew(A)∈Π(A)

V (CSnew(A)) −
∑

ai,aj∈A

costold,new(ai, aj)

(3)

4.1 Coalition Game for MSR Self-Reconfiguration
We formulate the MSR self-reconfiguration problem as

finding an optimal coalition structure using a coalition game
theoretic framework. Each module of the MSR is provided
with a software agent that performs calculations related to
the coalition game based algorithm to solve the modular

3For legibility, and without loss of generality, we drop the
notation for time t from the MSR
4We assume that costs are symmetric, i.e.,
costold,new(ai, aj) = costold,new(aj , ai).

123

Figure 4: Coalition structure graph with 4 agents

self reconfiguration problem. We have used a popular rep-
resentation of coalition games called characteristic function
games (CFG) [10]. A CFG is defined by a pair of attributes
(A, v), where A is the set of agents, and v : 2A → R is
called a characteristic function or value function. v gives
a real number called the value or worth for each possi-
ble subset or coalition S of the set of A agents. A coali-
tion structure is an enumeration of the subsets S of A such
that every agent appears exactly once in one of the subsets.
For a set of agents A, let Π(A) denote the set of coalition
structures. For example, with A = {a1, a2, a3}, Π(A) =
{{a1}{a2}{a3}, {a1}{a2, a3}, {a2}{a1, a3}, {a3}{a1, a2},
{a1, a2, a3}}. Π(A) can be enumerated recursively as a coali-
tion structure graph (CSG), as shown in Figure 4.1. Each
coalition structure CS(A) ∈ Π(A) appears as a node in
the CSG. Nodes are organized into levels, and a node at
level l − 1 can be generated recursively by combining pair-
wise the members from disjoint partitions, for each node in
level l. Each coalition structure CS(A) is associated with
a value V (CS(A)) that is usually calculated by adding the
values of each coalition within the coalition structure, i.e.,
V (CS(A)) =

∑
S∈CS(A)

v(S). For example, with 4 agents, for

the coalition structure {a1, a2}{a3}{a4}, V ({a1, a2}{a3}{a4}) =
v({a1, a2}) + v(a3) + v(a4). For the context of MSR re-
configuration, an agent ai corresponds to a single MSR-
module, a coalition S corresponds to an MSR Aj , while a
coalition structure corresponds to a set of MSRs. To solve
the modular self-reconfiguration problem given in Definition
1, we have to find the coalition structure in the CSG that
corresponds to the maximum value, i.e., find CS∗(A) =
arg max

CS(A)∈Π(a)
V (CS(A)).

4.2 Graph-based Representation of CSG
Let G = (A, E) denote a weighted, complete graph with

its vertex set as the set of modules A, edge set as E =
{(aj , ak) : ∀aj, ak ∈ A} and edge weight function w : E → R
defined as:

w(e) = w(aj , ak) = V al − cost(aj , ak) (4)

where V al is a fixed constant. As a simplification, we take
the cost function to be symmetric so that w(e) = w(e′), ∀e =

(ai, aj), e
′ = (aj , ai) ∈ E and thus the graph can be treated

as undirected. We define the sum of the edge weights in a
coalition Ai to be the utility of the coalition, i.e.

v(Ai) =
∑

e=(aj ,ak):
aj ,ak∈Ai,j 6=k

w(e) (5)

It is important to note that the edge weight function is not
non-negative (which is a requirement of most graph cluster-
ing algorithms). Edges which have a positive weight corre-
spond to a positive contribution to utility if the two modules
were to join the same coalition, whereas negative edges will
correspond to a decrease in utility if they were to join the
same coalition. Also, with this definition, the utility of a
singleton, i.e. a coalition consisting of only one module, is 0
since there are no edges within the coalition.

Graph-based MSR Reconfiguration Problem. Re-
call that Π(A) is the set of all partitions of A i.e. the set of
all possible non-overlapping coalition structures.

The utility of a coalition structure CS(A) = {A1, A2, ..., Ak},
is given by:

V (CS(A)) =
k∑

i=1

v(Ai) (6)

Initially, A has a coalition structure consisting entirely of
singletons i.e. each module is on its own and no coalitions
of two or more modules have been formed. In this setting,
the problem of finding an optimal coalition structure con-
sists of clustering the graph G = (A, E) into CS∗(A) =
{A1, A2, ..., Ak} such that:

V (CS∗(A)) = max
CS(A)∈Π(A)

V (CS(A))

4.3 Graph Clustering Approach for Coalition
Formation

We will use the approach proposed in [7]. The penalty of
a coalition structure CS(A) = {A1, A2, ..., Ak} takes into ac-
count positive weighted edges between different coalitions in
the structure and negative weighted edges within the same
coalition in the structure and is defined to be:

Penalty(CS(A)) = Penaltyp(CS(A))+Penaltym(CS(A))

124

Penaltyp(CS(A)) =
∑

e=(ai,aj):w(e)>0
ai∈Ak1

,aj∈Ak2
,

k1 6=k2

|w(e)|

Penaltym(CS(A)) =
∑

e=(ai,aj):w(e)<0
ai,aj∈Ak1

|w(e)|

The penalty of a coalition structure is equivalent to what
is defined as the cost of a clustering in [7]. We use the
term ”penalty” so there is no confusion with the cost func-
tion which was defined in Equation 2. To obtain a coalition
structure with close to optimal utility, we are interested in
maximizing the sum of edge weights that are within coali-
tions in the structure. That is, it is beneficial to have mod-
ules (vertices) that have a positive edge between them to
be in the same coalition, and to have modules that have
a negative edge to be in different coalitions. Notice that
by reducing the total weight of negative edges within coali-
tions, and total weight of positive edges between coalitions,
the utility of the coalition is increased. By minimizing the
penalty we are thus minimizing the absolute total weight of
positive edges between coalitions and absolute total weight
of negative edges completely within coalitions, and therefore
increasing the utility of the coalition structure. In fact, as
we will show, minimizing the penalty of a coalition structure
is equivalent to maximizing its utility.

As in [7], for each pair of modules (vertices) i.e. for each
edge (ai, aj) ∈ E, we introduce binary variables xaiaj ∈
{0, 1} for a clustering CS(A) = {A1, A2, ..., Ak} such that
xaiaj = 0 ↔ ∃Al ∈ CS(A) : ai, aj ∈ Al (the two modules
are in the same coalition) and xaiaj = 1 ↔ ∃Ak1 , Ak2 ∈
CS(A), k1 6= k2 : ai ∈ Ak1 , aj ∈ Ak2 (the two modules are
in different coalitions). Notice that 1 − xai,aj = 0 iff ai

and aj are in different coalitions and 1 − xai,aj = 1 iff ai

and aj are in the same coalition. We will use the abbre-
viation xe for xaiaj where e = (ai, aj) ∈ E. Formulating
Penalty(CS(A)) using these binary variables, we need non-
negative constants:

me =

{
|w(e)| if w(e) < 0

0 if w(e) ≥ 0

pe =

{
|w(e)| if w(e) > 0

0 if w(e) ≤ 0

So Penalty(CS(A)) becomes:

Penalty(CS(A)) =
∑

e∈E

pexe +
∑

e∈E

me(1 − xe) (7)

We wish to find a coalition structure with minimal cost.
This is equivalent to finding the structure with optimal util-
ity as we now show.

Proposition 1. A coalition structure with minimal penalty
will have a maximal (optimal) utility.

Proof: From Equation 7 we have that the penalty of a
coalition structure CS(A) is:

Penalty(CS(A)) =
∑

e∈E

pexe +
∑

e∈E

me(1 − xe)

Using the same notation, we have that the utility of a
coalition structure from Equations 5, 6 is:

V (CS(A)) =
k∑

i=1

v(Ai) =
k∑

i=1

∑
e=(aj,ak):

aj ,ak∈Ai,j 6=k

w(e) =

∑
e∈E

pe(1 − xe) − ∑
e∈E

me(1 − xe) =

∑
e∈E

pe −
(∑

e∈E

pexe +
∑

e∈E

me(1 − xe)

)
=

∑
e∈E

pe − Penalty(CS(A))

Since
∑

e∈E

pe is a constant (the variables are the xe’s),

then minimizing Penalty(CS(A)) is equivalent to maximiz-
ing V (CS(A)) and thus the coalition with minimal penalty
will have the maximal (optimal) utility.

2

Notice that Penalty(CS(A)) ≥ 0, ∀CS(A) ∈ Π(A) and to
minimize the Penalty using the above formulation, it would
suffice to set xe = 0 whenever pe > 0 and xe = 1 whenever
me > 0 so that Penalty = 0, however this will not neces-
sarily correspond to a valid coalition structure since the xe

variables are not independent. As noted in [7], an assign-
ment of values {0, 1} to the variables xe corresponds to a
valid coalition structure (clustering) if the variables satisfy
the triangle inequality, that is ∀ai, aj , ak ∈ A, i 6= j 6= k,
xai,aj + xaj,ak ≥ xai,ak . The problem can therefore be for-
mulated as a 0-1 integer linear program:

min:
∑

e∈E

pexe +
∑

e∈E

me(1 − xe)

constraints:
xai,aj ∈ {0, 1}, ∀ai, aj ∈ A, i 6= j
xai,aj + xaj,ak ≥ xai,ak , ∀ai, aj , ak ∈ A, i 6= j 6= k
xai,aj = xaj,ai∀ai, aj ∈ A, i 6= j

As is known, 0-1 integer linear programming is NP-complete,
so the problem is relaxed to a linear program [7]:

min:
∑

e∈E

pexe +
∑

e∈E

me(1 − xe)

constraints:
xai,aj ∈ [0, 1], ∀ai, aj ∈ A, i 6= j
xai,aj + xaj,ak ≥ xai,ak , ∀ai, aj , ak ∈ A, i 6= j 6= k
xai,aj = xaj,ai∀ai, aj ∈ A, i 6= j

The problem can now be solved in polynomial time, though
it may yield a fractional solution i.e. the variables xe are
in the interval [0, 1], and are not necessarily binary. In
this case the authors in [7] propose a rounding algorithm
based on region growing to obtain a valid approximate so-
lution i.e. obtain a valid assignment of 0’s and 1’s to the
xe variables which will yield a close to minimal penalty.
The whole algorithm runs in polynomial time (polynomial
in the number of variables) and is a O(log n) approximation.
The number of variables is simply the number of edges in

125

the graph. In our case, we have a complete graph so that

|E| =
(|A|

2

)
=

(
n
2

)
= n(n−1)

2
and so the algorithm will run

in time polynomial in the number of modules (vertices) n.
The algorithm is outlined as follows:

1. Coordinates of all agents in A are specified. Parameter
V al is specified.

2. ∀ai, aj ∈ A, w(ai, aj) is calculated using Equations 2
and 4.

3. Objective function given by Equation 7 is formulated
and constraints are set.

4. Linear programming is used to obtain a solution to the
optimization problem.

5. If the solution is 0-1 integer then a valid coalition struc-
ture has been found. Else if the solution is fractional, the
region growing rounding algorithm [7] is used to obtain a
valid approximate solution.

5. EXPERIMENTAL RESULTS
We have implemented the described algorithm for obtain-

ing optimal coalition structures using the mixed integer lin-
ear programming solver LPsolve version 5.5.2.0. In this sec-
tion we present results on simulations for agent set sizes from
3 to 43. For agent set sizes between 3 and 12, we were able
to perform an exhaustive search on the space of all coali-
tion structures to find the actual optimal coalition structure
and compare it with the structure obtained using the graph
clustering linear programming model. For higher agent set
sizes the exhaustive search (complexity O(nn)) becomes pro-
hibitive, as do the algorithms for the general CSG problem
[11, 15]. The reason we are able to outperform those meth-
ods is that our formulation is a restricted case i.e. we are
restricting the problem to a weighted graph where coalition
utilities are calculated by summing pairwise utilities (edge
weights).

For each of the agent set sizes n = {3, 4, ..., 43}, we used a
grid size of (n + 4) × (n + 4) and generated random integer
coordinates for each of the agents i.e. for each agent ai ∈
A, 1 ≤ i ≤ n, we assigned coordinates (xai , yai) where xai is
randomly generated from {0, 1, ..., n+3} and yai is randomly
generated from {0, 1, ..., n + 3}. We generated 30 random
arrangements of n agents in an (n + 4) × (n + 4) grid for
each value of n from 3 to 12, and 10 random arrangements
for n from 13 to 43. The edge weights were calculated using
w(e) = V al − cost(aj , ak), and for simplification we took
cost(aj , ak) = d(aj , ak) + costAlignAndDock where d(aj , ak)
is the Euclidean distance between agents aj , ak in the grid
and costAlignAndDock = 1 was a constant representing the
cost of alignment and docking of two modules (agents). We
set V al = n

2
+3 for each different value of n. V al was chosen

so that for each edge (ai, aj), the weight is w(e) = V al −
cost(aj , ak) = n

2
+3−d(aj , ak)−1 = n+4

2
−d(aj , ak) meaning

if modules ai, aj are within a distance of n+4
2

(half the width
of the grid) then their edge weight (utility) will be positive,
and if they are at least half a grid width apart then they
will have a negative edge weight. For singleton coalitions we
used the utility of 0. Notice that in the graph formulation,

singleton coalitions have no edges contained and hence do
not contribute anything to the coalition utility5. A zero
utility for singletons also indicates that a coalition consisting
of a single module will not provide any contribution to the
total utility of the coalition structure.

Such a scenario arises in a practical setting where the mod-
ules are deployed in an unknown environment as singletons.
Deploying a configured MSR is harder than deploying single
modules separately. Each of the individual modules may be
dropped from an aircraft/spacecraft with a parachute and
thus will be scattered in the ground environment once they
land. Our goal is then to find the optimal coalition structure
so that the modules can form into larger MSRs and proceed
with exploration.

After randomly generating the test cases for each agent
set size and calculating the edge weights, we formulated the
objective function (the penalty of a coalition structure) to
minimize and the constraints, then used LPsolve to produce
a valid solution. For agent set sizes up to 43, using the
default settings in LPsolve, all solutions to the randomly
generated test cases were 0-1 integer i.e. no rounding is
required. In this case an exact solution is obtained to the 0-1
integer linear programming model and thus it is an optimal
coalition structure. As empirical evidence of this we took
the actual optimal utility from the exhaustive search and
compared to the value obtained using LPsolve.

Table 1 shows the mean ratio (averaged over the 30 test
cases for each agent set size) of the utility of the coalition
structure we found to the utility of the optimal coalition
structure. Mean runtime (average over each of the 30 test
cases) is also displayed. For implementation we used a desk-
top PC (Intel Core i7 - 960 3.20GHz, 12GB DDR3 SDRAM)

No. of
Agents

Mean Ratio
to Optimal
Utility

Mean
Runtime
(secs)

3 1 0.004667
4 1 0.004733
5 1 0.004833
6 1 0.005
7 1 0.005233
8 1 0.005733
9 1 0.006367
10 1 0.007233
11 1 0.008567
12 1 0.01127

Table 1. Mean Ratio of Utilities for Coalition Structures
Obtained to Optimal Coalition Structures

From Table 1, we see that the method we implemented is
able to find optimal coalition structures for the given number
of agents. In fact, in all of the 30 cases for each agent size,
optimal coalition structures were found.

Figure 5 shows running times averaged over 10 test cases
for each value of agent set size from 3 to 43. The algorithm
was implemented for agents set sizes 13 to 43 on the same
machine. Notice that even for 43 agents, the running time
is approximately 5 seconds. Running algorithms which ex-
plore the space of all coalition structures for such numbers
5While realistically, singleton coalitions should have a value,
we do not consider this in our formulation. Adding vertex
weights to the formulation is a possible way to account for
singleton coalitions.

126

Figure 5: Average running times for various agent
set sizes

Figure 6: Initial locations of 20 ModRED modules
randomly scattered within an environment (snap-
shot from Webots)

of agents is prohibitive. The algorithms are all bounded be-
low by Ω(2n) since the utility of every possible subset of A
has to be obtained. While the algorithms [15], [11] are
applicable to any coalition game i.e. any valuation func-
tion, the method implemented by us is only applicable to
the graph coalition game case where the valuation function
is calculated by summing pairwise utilities.

Figure 6 shows the initial random arrangement of 20 ModRED
modules in a 24 × 24 grid (snapshot taken from Webots).
Each module is assumed to be in its own singleton coalition,
edge weights are calculated using equation 5 with V al =
15, cost = 1, and Euclidean distances between modules.
The coalition structure obtained using the graph clustering
method with the given parameters is displayed (modules in
the same coalition are circled). The clustering method natu-
rally groups close modules into the same cluster (since with
constant cost, edge weights are primarily influenced by dis-
tance). Once the coalition structure is determined, the mod-
ules are instructed to form into their respective coalitions
and configure into chains as is illustrated in Figure 7.

For agent set sizes larger than 43, LPsolve produced frac-
tional solutions i.e. the edge variables xai,aj were values in

Figure 7: ModRED modules form the specified
coalitions and configure into four different chain for-
mations (snapshot from Webots)

the interval (0,1). In this case, the region growing round-
ing algorithm in [7] is implemented to obtain O(log n)-
approximations to the optimal coalition structure. Addi-
tional time is required for this procedure but it should be
noted that it runs in polynomial time and therefore does not
change the fact that the overall algorithm runs in polynomial
time.

6. CONCLUSION AND FUTURE WORK
We have formulated the CSG problem for our setting of

MSR reconfiguration as a graph coalition formation game.
Current state of the art algorithms for general coalition for-
mation are all bounded below by Ω(2n) [15], [11] and for
a guaranteed optimal solution, the worst case running time
is O(nn). In our formulation, although it is a specific case
with a graph representation, there is no longer a Ω(2n) lower
bound and algorithms exist [7] which guarantee a O(log n)
approximation and run in polynomial time. In this setting,
coalition formation for large sets of agents becomes feasible.

In general, solving the 0-1 integer linear programming
problem (which is part of the graph clustering technique)
is NP-Complete, but when the problem is relaxed to a gen-
eral linear programming problem, solutions can be found
in polynomial time. Fractional solutions do not represent a
valid coalition structure and a O(log n) approximation poly-
nomial time algorithm is used to obtain a valid coalition
structure. In the simulation results presented, we did not
have to implement the region growing rounding algorithm
in [7] since we obtained 0-1 integer solutions and thus opti-
mal coalition structures. As the agent set size grows larger,
the solutions obtained in the linear programming part of the
algorithm are fractional and region growing has to be applied
to obtain valid coalition structures. We plan to extend our
work to include the rounding algorithm so that the prob-
lem can be approximately solved for larger agent set sizes
and compare it with more recent coalition structure search
algorithms [12].

Also, our current formulation is able to produce a close
to optimal coalition structure when reconfiguring from the
coalition structure in which each module is in a coalition
on its own i.e. each coalition is a singleton. We plan to
extend the approach so that we can reconfigure from any
given initial configuration. Assigning tasks for the coalitions
is another extension we hope to explore. In this scenario

127

each coalition is assigned a task and constraints are set so
that each coalition is able to solve the assigned task. In
the case when not all tasks can be solved, reconfiguration
has to be performed to obtain a coalition structure which
will meet the task needs. Implementing our approach in the
physical world to the MSR ModRED requires that we take
into account uncertainty since sensor noise becomes a key
issue. Extending our formulation by using stochastic edge
weights is one approach to tackling the issue of uncertainty
in the graph coalition formation problem.

7. REFERENCES
[1] Y. Bachrach, P. Kohli, V. Kolmogorov, and

M. Zadimoghaddam. Optimal coalition structures in
graph games. arXiv:1108.5248v1 [cs.GT], 2011.

[2] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. Machine Learning, 56(1-3):89–113, 2004.

[3] Z. Butler, S. Brynes, and D. Rus. Distributed motion
planning for modular robots with unit decompressable
modules. In IEEE/RSJ Intl. Conf. Intell. Rob. and
Sys., pages 790–796, Maui, Hawaii, 2001.

[4] A. Castano, W. Shen, and P. Will. Conro: Towards
deployable robots with inter-robots metamorphic
capabilities. Autonomous Robots, 8:309–324, 2000.

[5] G. Chirikjian, A. Pamecha, and I. Ebert-Upfhoff.
Evaluating efficiency of self reconfiguration in a class
of modular robots. Robotics Systems, 13:317–338,
1996.

[6] K. Chu, S. G. M. Hossain, and C. Nelson. Design of a
four-dof modular self-reconfigurable robot with novel
gaits. In ASME International Design Engineering
Technical Conference, pages DETC2011–47746,
Washington, D.C., 2011.

[7] E. Demaine and N. Immorlica. Correlation clustering
with partial information. Lecture Notes in Computer
Science, 2764:71–80, 2003.

[8] X. Deng and C. Papadimitriou. On the complexity of
cooperative solution concepts. Mathematics and
Operations Research, 19(2):257–266, 1994.

[9] A. Kamimura, E. Yoshida, S. Murata, H. Kurokawa,
K. Tomita, and S. Kokaji. Distributed
self-reconfiguration of m-tran iii modular robotic
system. Intl. J. of Rob., 27(3-4):373–386, 2008.

[10] R. Myerson. Game Theory: Analysis of Conflict.
Cambridge, Massachusetts: Harvard University Press,
1997.

[11] T. Rahwan. Algorithms for Coalition Formation in
Multi-Agent Systems. PhD thesis, University of
Southampton, 2007.

[12] T. Rahwan, S. Ramchurn, A. Giovannucci, and
N. Jennings. An anytime algorithm for optimal
coalition structure generation. Journal of Artificial
Intelligence Research, 34:521–567, 2009.

[13] D. Ray. A Game-Theoretic Perspective on Coalition
Formation (1st ed.). Oxford University Press, USA,
2008.

[14] M. Rosa, S. Goldstein, P. Lee, J. Campbell, and
P. Pillai. Scalable shape sculpturing via hole motions.
In IEEE Intl. Conf. Rob. and Auton., pages
1462–1468, Orlando, FL, 2006.

[15] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohme. Coalition structure generation with

worst case guarantees. Artificial Intelligence,
111(1-2):209–238, 1999.

[16] K. Stoy, D. Brandt, and D. Christensen.
Self-Reconfigurable Robots: An Introduction.
Cambridge, Massachusetts: The MIT Press, 2010.

[17] T. Voice, M. Poulakarov, and N. Jennings. Graph
coalition structure generation. arXiv:1102.1747v1
[cs.DS], 2011.

[18] M. Yim and et al. Modular self-reconfigurable robot
systems: Challenges and opportunities for the future.
IEEE Robotics and Automation Magazine,
14(1):43–53, 2007.

128

UT Austin Villa 2011: A Champion Agent in the RoboCup
3D Soccer Simulation Competition

Patrick MacAlpine, Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan∗,
Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Ştiurcă†, Victor Vu, and Peter Stone

Department of Computer Science, The University of Texas at Austin, Austin, TX 78701, USA
{patmac, urieli, sbarrett, shivaram,

tank225, alomo01, nstiurca, diragjie, pstone}@cs.utexas.edu

ABSTRACT

This paper presents the architecture and key components of
a simulated humanoid robot soccer team, UT Austin Villa,
which was designed to compete in the RoboCup 3D simu-
lation competition. These key components include (1) an
omnidirectional walk engine and associated walk parame-
ter optimization framework, (2) an inverse kinematics based
kicking architecture, and (3) a dynamic role assignment and
positioning system. UT Austin Villa won the RoboCup 2011
3D simulation competition in convincing fashion by winning
all 24 games it played. During the course of the competition
the team scored 136 goals while conceding none. We analyze
the effect of each component in isolation and show through
extensive experiments that the complete team significantly
outperforms all the other teams from the competition.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelli-
gence—Robotics

General Terms

Algorithms, Design, Experimentation

Keywords

Humanoid robotics, Robot soccer, Machine learning

1. INTRODUCTION
Robot Soccer [3] has served as an excellent research do-

main for autonomous agents and multi-agent systems over
the past decade and a half. In this domain, teams of au-
tonomous robots compete with each other in a complex,
real-time, noisy and dynamic environment, in a setting that
is both collaborative and adversarial. Robot soccer has
spread over several popular platforms, each having its own
advantages. For example, the real robot competitions, in-
cluding the humanoid robot league, have typically empha-
sized low-level robot control challenges. On the other hand,

∗S. Kalyanakrishnan is currently at Yahoo! Labs.
†N. Ştiurcă is currently at the University of Pennsylvania.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the RoboCup 2D simulation platform has emphasized high-
level team strategy challenges. In this paper, we focus on
the RoboCup 3D simulation platform, which integrates both
these low-level and high-level challenges under one umbrella.

In the 3D simulation league teams of nine simulated hu-
manoids play in a simulation environment with realistic
physics, state-noise, multidimensional actions and real-time
control. One advantage of the 3D simulation domain over
real robots is avoiding the high cost of errors, and the rel-
atively slow feedback loop, that happens when testing new
skills in the real world. An advantage over the 2D simu-
lator is the ability to test high-level team strategies under
the constraints of humanoid locomotion. Due to the com-
plexity of the environment, parts of the agent are hard to
design by hand. For instance, it is a significant challenge to
design a walk that is both fast and stable. The 3D simula-
tion platform allows for designing and investigating general
methodologies for skill and strategy acquisition in a com-
plex, challenging domain, using machine learning.

In this paper, we present UT Austin Villa, the winning
agent of the 3D simulation league in RoboCup 2011. Each
of UT Austin Villa’s field players is controlled by (a sepa-
rate instance of) the same program. The players continu-
ally estimate the world state from noisy observations, reason
about position assignments, and then quickly and robustly
move on the field using a learned walk. In this paper, we
describe the complete agent, but focus particularly on the
most novel components that were key contributors to our
success. Specifically, we focus on (1) an omnidirectional
walk agent and an associated walk parameter optimization
framework, (2) an automatically optimized inverse kinemat-
ics based kicking architecture, and (3) a dynamic role as-
signment and positioning system. We analyze the individual
components and the complete team’s performance both in
competition and in controlled experiments.1

The rest of the paper is structured as follows. Section 2
gives a domain description. Section 3 describes our agent’s
architecture. Section 4, 5 and 6 describe the three key com-
ponents of our agent, respectively. Results are given in Sec-
tion 7, and Section 8 summarizes.

2. DOMAIN DESCRIPTION
Robot soccer has served as an excellent platform for test-

ing learning scenarios in which multiple skills, decisions, and

1Videos of these components in action can be found
online at http://www.cs.utexas.edu/~AustinVilla/sim/
3dsimulation/AustinVilla3DSimulationFiles/2011/
html/components.html

129

controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. There is a rich
literature based on this domain addressing a wide spectrum
of topics from low-level concerns, such as perception and
motor control [6, 12], to high-level decision-making prob-
lems [10, 13].

The RoboCup 3D simulation environment is based on
SimSpark [4], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine [2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending torque commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the torque and di-
rection in which to move a joint. Although there is no in-
tentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within
a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on the sole of each foot. Ad-
ditionally, agents can communicate with each other every
other simulation cycle (40ms) by sending messages limited
to 20 bytes. Figure 1 shows a visualization of the Nao robot
and the soccer field during a game.

3. AGENT ARCHITECTURE
The UT Austin Villa agent receives visual sensory in-

formation from the environment which provides distances
and angles to different objects on the field. It is relatively
straightforward to build a world model by converting this
information about the objects into Cartesian coordinates.
This of course requires the robot to be able to localize itself
for which the agent uses a particle filter. In addition to the

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 9 versus
9 game (right).

vision perceptor, the agent also uses its accelerometer read-
ings to determine if it has fallen and employs its auditory
channels for communication.

Once a world model is built, the agent’s control module is
invoked. At the lowest level, the humanoid is controlled by
specifying torques to each of its joints. This is implemented
through PID controllers for each joint, which take as input
the desired angle of the joint and compute the appropriate
torque. Further, the agent uses routines describing inverse
kinematics for the arms and legs. Given a target position
and pose for the hand or the foot, the inverse kinematics
routine uses trigonometry to calculate the target angles for
the different joints along the arm or the leg to achieve the
specified target, if possible.

The PID control and inverse kinematics routines are used
as primitives to describe the agent’s skills. In order to deter-
mine the appropriate joint angle sequences for walking and
turning, the agent utilizes an omnidirectional walk engine
which is described in Section 4. When invoking the kicking
skill, the agent uses inverse kinematics to control the tra-
jectory of the kicking foot as discussed in Section 5. Two
other useful skills for the robot are falling (for instance, by
the goalie to block a ball) and rising from a fallen position.

It is worth mentioning that some of the agent’s skills, like
diving, rising from a fall, and kicking, are defined using a
flexible text-file-based skill description language, which was
used by our team in RoboCup 2010 [15], and which allows
to quickly create new skills, while leaving some of the skills’
parameters opened for optimization using machine learning.

Because the team’s emphasis was mainly on learning ro-
bust and stable low-level skills, the high-level team strategy
is relatively straightforward. The player closest to the ball
is instructed to go to it while other field player agents dy-
namically choose target positions on the field as explained
in Section 6. The goalie is instructed to stand a little in
front of its goal and, using a Kalman filter to track the ball,
attempts to dive and stop the ball if it comes near.

4. OMNIDIRECTIONAL WALK ENGINE

AND OPTIMIZATION
The primary key to UT Austin Villa’s success in the 2011

RoboCup 3D simulation competition was its development
and optimization of a stable and robust fully omnidirectional
walk. The team used an omnidirectional walk engine based
on the research performed by Graf et al. [8]. The main
advantage of an omnidirectional walk is that it allows the
robot to request continuous velocities in the forward, side,
and turn directions, permitting it to approach its destina-
tion more quickly. In addition, the robustness of this engine
allowed the robots to quickly change directions, adapting to
the changing situations encountered during soccer games.

4.1 Walk Engine Implementation
The walk engine uses a simple set of sinusoidal functions

to create the motions of the limbs with limited feedback
control. It processes desired walk velocities given as input,
chooses destinations for the feet and torso, and then in-
verse kinematics are used to determine the joint positions re-
quired. Finally, PID controllers for each joint convert these
positions into torque commands that are sent to the joints.

The walk engine first selects a trajectory for the torso to
follow, and then determines where the feet should be with

130

respect to the torso location. The trajectory is chosen using
a double linear inverted pendulum, where the center of mass
is swinging over the stance foot. In addition, as in Graf
et al.’s work [8], the simplifying assumption that there is
no double support phase is used, so that the velocities and
positions of the center of mass must match when switching
between the inverted pendulums formed by the respective
stance feet. Further details of the walk can be found in [11].

The walk engine is parameterized using more than 40 pa-
rameters, ranging from intuitive quantities, like the step size
and height, to less intuitive quantities like the maximum
acceptable center of mass error. These parameters are ini-
tialized based on an understanding of the system and also
testing them out on an actual Nao robot. This initialization
resulted in a stable walk. However, the walk was extremely
slow compared to speeds required during a competition. We
refer to the agent that uses this walk as the Initial agent.

4.2 Walk Engine Parameter Optimization
The slow speed of the Initial agent calls for using machine

learning to obtain better walk parameter values. Parameters
are optimized using the CMA-ES algorithm [9], which has
been successfully applied in [15]. CMA-ES is a policy search
algorithm that successively generates and evaluates sets of
candidates. Once CMA-ES generates a group of candidates,
each candidate is evaluated with respect to a fitness mea-
sure. When all the candidates in the group are evaluated,
the next set of candidates is generated by sampling with
probability that is biased towards directions of previously
successful search steps.

As optimizing 40 real-valued parameters, can be impracti-
cal, a carefully chosen subset of 14 parameters was selected
for optimization while keeping all the other parameters fixed.
The chosen parameters are those that have the highest po-
tential impact on the speed and stability of the robot, and
are mainly: rotation and height; the robot’s center of mass
height, shift amount, and default position; the fraction of
time a leg is on the ground and the time allocated for one
step phase; the step size PID controller; center of mass nor-
mal error and maximum acceptable errors; and the robot’s
forward offset.

Similarly to a conclusion from [15], we have found that
optimization works better when the robot’s fitness measure
is its performance on tasks that are executed during a real
game. This stands in contrast to evaluating it on a general
task such as the speed of walking straight. Therefore, the
robot’s in-game behavior is broken down into a set of smaller
tasks, and the parameters for each one of these tasks is se-
quentially optimized. When optimizing for a specific task,
the performance of the robot on the task is used as CMA-
ES’s fitness value for the current candidate parameter set
values.

In order to simulate common situations encountered in
gameplay, the walk engine parameters are optimized for a
goToTarget subtask. This consists of an obstacle course in
which the agent tries to navigate to a variety of target po-
sitions on the field. The goToTarget optimization2 includes
quick changes of target/direction for focusing on the reac-
tion speed of the agent as well as holding targets for longer

2Note that we use three types of notation for each of go-
ToTarget, GoToTarget, goToTarget, to distinguish between
an optimization task, an agent created by this optimization
task and a parameter set. Similarly for“sprint”and“initial”.

durations to improve the straight line speed of the agent.
Additionally the agent is instructed to stop at different times
during the optimization to ensure that it is stable and does
not fall over when doing so. In order to encourage the agent
to learn both quick turning behavior and a fast forward walk,
the agent always walks and turns toward its designated tar-
get at the same time. This allows for the agent to swiftly
adjust and switch its orientation to face its target, thereby
emphasizing the amount of time during the optimization
that it is walking forward. Optimizing the walk engine pa-
rameters in this way resulted in a significant improvement
in performance with the GoToTarget agent able to quickly
turn and walk in any direction without falling over. This
improvement also showed itself in actual game performance
as when the GoToTarget agent played 100 games against the
Initial agent, the GoToTarget agent won on average by 8.82
goals with a standard error of .11.

To further improve the forward speed of the agent, a
second walk engine parameter set is optimized for walking
straight forward. This is accomplished by running the go-
ToTarget subtask optimization again, but this time the go-
ToTarget parameter set is held fixed while a new parameter
set, called the sprint parameter set, is learned. The sprint
parameter set is used when the agent’s orientation is within
15◦ of its target. By learning the sprint parameter set in con-
junction with the goToTarget parameter set, the new Sprint
agent remains stable while switching between the two walk
parameter sets, and the agent’s speed increases from .64 m/s
to .71 m/s as timed when walking forward for ten seconds
after starting from a stand still.

Figure 2: UT Austin Villa’s walk parameter opti-
mization progression. Circles represent the set(s) of
parameters used by each agent during the optimiza-
tion progression while the arrows and associated la-
bels above them indicate the optimization tasks used
in learning. Parameter sets are the following: I =
initial, T = goToTarget, S = sprint, P = positioning.

In the next step we further optimize the agent to quickly
position near the ball. While the goToTarget optimization
emphasizes quick turns and forward walking speed, position-
ing around the ball involves more side-stepping to circle the
ball. To account for this discrepancy, the agent learns a third
parameter set called the positioning parameter set. To learn
this new parameter set a driveBallToGoal23 optimization task
is created, in which the agent is evaluated on how far it is
able to dribble the ball over 15 seconds when starting from
a variety of positions and orientations from the ball. When-
ever the agent enters a radius of .8 meters from the ball, it
transitions to using the positioning parameter set. During
the optimization, both the goToTarget and sprint parameter
sets are held fixed. As the optimization naturally includes

3The ’2’ at the end of the name driveBallToGoal2 is used to
differentiate it from a driveBallToGoal optimization that was
used in [15].

131

transitions between all three parameter sets, this constrains
all parameter sets to be compatible with each other. Adding
both the positioning and sprint parameter sets further im-
proves the agent’s performance such that the resulting Final
agent, is able to beat the GoToTarget agent by an average
of .24 goals with a standard error of .08 across 100 games. A
summary of the progression in optimizing the three different
walk parameter sets can be seen in Figure 2.

5. KICK ENGINE
While the learned walk described in Section 4 is by far

the aspect of UT Austin Villa that is most responsible for
its success, as is affirmed in Section 7, robust and accurate
kicking is another skill that is essential for playing soccer at
a high level.

To motivate some of the design decisions in our kick en-
gine which we discuss in depth later in this section, we first
present the desired qualities of the engine. For a kick to be
broadly applicable, it needs to be agile, robust, versatile, and
easily and concisely parameterizable. Agility refers to tak-
ing shots quickly. Robustness entails taking accurate and
powerful shots in spite of positioning errors (e.g., without
the agent being perfectly lined up with the ball). Versatility
refers to being able to kick in multiple directions from mul-
tiple ball starting locations. The parameterization criterion
serves to facilitate learning optimized kicks.

5.1 Kick Engine Implementation
To achieve these criteria, our kick engine employs a sys-

tem of defining and dynamically computing smooth curves
which guide the foot’s trajectory through the ball at high
speed and in the desired direction. We use Cubic Hermite
Splines to define the foot trajectories. Agility and robust-
ness are achieved by defining the kick trajectory relative to
the ball in Cartesian space. Unlike our previous year’s team
which used fixed joint angle skills exclusively, the current
agents do not have to tip-toe eg., directly behind the ball at
a set distance in order to kick the ball eg., forward. Instead,
the kick engine dynamically computes the trajectory of the
foot once the agent is close enough to the ball, regardless of
whether the agent finished positioning or whether the agent
was able to position itself precisely relative to the ball. Ver-
satility is achieved because multiple directional kicks can be
defined and used at will. Learning and optimization of kicks
is facilitated by the parameterization of the foot trajectories
in terms of a sparse set of control (way-) points. The flow
of the kick engine follows.

First, a kick is selected, and the agent approaches the
ball (Section 5.1.1). Once close enough to the ball, it shifts
its weight onto the support foot and computes the kicking
foot trajectory necessary to perform the desired kick (Sec-
tion 5.1.2). At each time step during the kick, the kick
engine interpolates the control (way-) points defined in the
kick skill file (Section 5.1.5) to produce a target pose for
the foot in Cartesian space (Section 5.1.3). Finally, an IK
solver computes the necessary joint angles of the kicking leg,
and these angles are fed to the joint PID controllers (Sec-
tion 5.1.4). Figure 3 illustrates the program flow of the kick
engine.

5.1.1 Kick Choice and Ball Approach

As the agent approaches the ball, it must decide which
type of kick to attempt (Section 5.1.6 describes the options)

Figure 3: The flow of the agent deciding when to
kick the ball and how to interpolate the curve cre-
ated relative to the ball.

and whether to use the left or right foot. Each kick skill
definition includes a target offset of the agent relative to the
ball. Choosing a kick reduces to choosing the target with the
lowest cost for the agent to move to. We calculate the cost
of each target through the following variables and formula:

distCost = |agentPosition − targetOffsetPosition| /m

turnCost =
|agentOrientation − targetOrientation|

360◦

ballPenalty =

.5 if ball is in path to target offset
0 otherwise

kickCost = distCost + turnCost + ballPenalty

The chosen target is approached using the walk engine. Dur-
ing approach, the kick engine continuously checks if the
agent is close enough to kick by using the IK solver to deter-
mine if the foot can reach most (> 90%) of the points along
the trajectory for the chosen kick.

5.1.2 Dynamically Compute Kick Trajectory

Once the agent has shifted its weight in preparation for a
kick, it notes the ball’s position with respect to itself (specif-
ically its torso, the root of the leg kinematic chains). This
offset is added to the control points in the kick skill file to dy-
namically compute the exact curve of the foot with respect
to the agent’s torso.

5.1.3 Interpolate Kick Trajectory

The control points defined in the kick skill files are used
to compute a smooth 3D curve. We use the Cubic Hermite
Spline formulation to interpolate the control points because
Hermite Splines yield curves with C1 continuity which pass
through all control points [5]. The time offset from the start
of the kick is normalized to the range [0 − 1] (0 is the start
of the kick; 1 is the end), and the normalized offset is used
to sample the Hermite Spline. The kick skill files also define
the Euler angles (roll, pitch, and yaw) of the foot at each
control point. These angles are linearly interpolated.

5.1.4 Kick Inverse Kinematics

For the inverse kinematics calculations, we used Open-

132

RAVE’s [7] analytic inverse kinematics solver. The Open-
RAVE IK solver can process arbitrary forward kinematic
chains defined in XML and produce fast C++ source code
that solves the inverse kinematics. Note that the time-
consuming analytic processing is done offline, and the fast
C++ code can be queried hundreds of times at each time
step without a significant computational cost.

5.1.5 Kick Skill Definition

Extending the skill definition files to allow Cartesian co-
ordinate plus Euler angle waypoints for each foot, we prede-
fine all six degree of freedom positions of the foot for a given
curve at any linear time through the curve.

5.1.6 Directional Kicks

We defined five kicks that assume that the ball is in front
of the agent such that it can kick directly forward and at
45◦ and 90◦ angles either outward or inward, depending on
which leg is used. We also created directional kicks which
assume that the ball is to the side of or behind one of the
legs. See Figure 4.

Figure 4: The agent can dynamically kick the ball
in varied directions with respect to the placement of
the ball at a, b, and c.

5.2 Kick Optimization
We can then optimize the waypoints (three to five per

kick) for kicked distance and speed through CMA-ES. This
then allows us to have multiple directional kicks defined
through simple curves as we do not have to dedicate large
amounts of time tweaking each one and can create rough
paths to guide the initial seed of the agent’s kick.

In order to learn the parameters for a kick we set up an
optimization task where the agent approaches the ball from
ten different angles along a half circle arc around the ball
and attempts to kick the ball toward a specific target. The
parameters being optimized are the XYZ and RPY values of
the waypoints that define the curve of the kick, how quickly
the kicking foot moves through the curve, and also the target
offset from the ball to move toward during the kick approach.
The fitness of an agent is measured by the average distance
the ball travels toward the target across all kick attempts.
The agent is given a penalty fitness of -1 for every kick during
which it falls over, runs into the ball, or isn’t able to kick
the ball after ten seconds have passed. Penalizing the agent
for taking too long to kick encourages kicking agility while
having the agent approach the ball from multiple angles and
penalizing for falling promote kicking robustness.

5.3 Kick Performance
While our kicking system shows a lot of promise, we found

out after the competition that our agent does slightly better
without kicking turned on during self play. A version of
our agent with the kicking system turned off was able to
beat our agent that does kick by an average of .15 goals per
game across 100 games with a standard error of .07. This
resulted in a tally of 27 wins for the agent that does not
kick, 12 wins for that agent that does kick, and 61 ties. We
believe the reason for this slight degradation in performance
when kicking is due to our kicking agent needing to slow
down a little when approaching the ball to kick it, instead
of maintaining a full speed walk while dribbling the ball,
so as to not accidentally run into the ball. Additionally we
have yet to implement a strategy for passing and only kick
in the direction we want to dribble if an opponent agent
is approaching to take the ball away. We therefore include
a description of the kick in this paper as a key component
of the overall agent, even though it was not necessary for
winning this year’s competition.

With better tuning such that the agent can approach the
ball without needing to slow down, and the addition of a
strategy to take full advantage of the ability for kicking to
quickly move the ball, we expect our kick system to provide
a substantial gain in the performance of the agent. The
kicking system has already shown some promise when used
with walks that are not as effective at dribbling as our cur-
rent walk. When playing kicking and non-kicking versions
of our agent with slow initial walk parameters, as described
in Section 4.1, against each other the kicking agent scored 8
goals while the non-kicking agent failed to score.

6. DYNAMIC ROLE ASSIGNMENT AND

POSITIONING SYSTEM
While low level skills such as walking and kicking are vi-

tally important for having a successful soccer playing agent,
the agents must work together as a team in order to maxi-
mize their game performance. One often thinks of the soccer
teamwork challenge as being about where the player with
the ball should pass or dribble, but at least as important
is where the agents position themselves when they do not
have the ball [10]. Positioning the players in a formation
requires the agents to coordinate with each other and deter-
mine where each agent should position itself on the field. In
our team, players’ roles are determined in three steps. First,
a full team formation is computed; second, each player com-
putes the best assignment of players to roles in this forma-
tion according to its own view of the world; and third, a
coordination mechanism is used to communicate and choose
among all players’ suggestions. In this section, we use the
terms (player) position and (player) role interchangeably.

6.1 Formation
In general, the team formation is determined by the ball

position on the field. As an example, Figure 5 depicts the
different role positions of the formation and their relative
offsets when the ball is at the center of the field. As can be
seen in the figure, the formation can be broken up into two
separate groups, an offensive and a defensive group. Within
the offensive group, the role positions on the field are deter-
mined by adding a specific offset to the ball’s coordinates.
The onBall role, assigned to the player closest to the ball,

133

Figure 5: Formation role positions.

is always based on where the ball is and is therefore never
given an offset. On either side of the ball we have two for-
ward roles, forwardRight and forwardLeft. Directly behind
the ball we have a stopper role as well as two additional
roles, wingLeft and wingRight, located behind and to either
side of the ball. When the ball is near the edge of the field
we adjust some of the roles’ offsets from the ball so as to
prevent them from moving outside the field of play.

Within the defensive group there are two roles, backLeft
and backRight. To determine their position on the field a
line is calculated between the center of our goal and the ball.
Both backs are placed along that line at specific offsets from
the end line. The goalie positions itself independently of its
teammates in order to always be in the best position to dive
and stop a shot on goal. If the goalie assumes the onBall
role, however, a third role is included within the defensive
group, the goalie role. A field player assigned to the goalie
role is told to stand in front of the center of the goal to cover
for the goalie going to the ball.

6.2 Assigning Agents to Roles
Given a desired team formation, we need to map players

to roles (target positions on the field). A näıve mapping
having each player permanently mapped to one of the roles
performs poorly due to the dynamic nature of the game.
With such static roles an agent assigned to a defensive role
may end up out of position and, without being able to switch
roles with a teammate in a better position to defend, allow
for the opponent to have a clear path to the goal. In this
section, we present a dynamic role assignment algorithm.
A role assignment algorithm can be thought of as imple-
menting a role assignment function, which takes as input
the state of the world, and outputs a one-to-one mapping
of players to roles. We start by defining three properties
that a role assignment function must satisfy (Section 6.2.1).
We then construct a role assignment function that satisfies
these properties (Section 6.2.2). Finally, we present a dy-
namic programming algorithm implementing this function
(Section 6.2.3).

6.2.1 Desired Properties of a Valid Role Assignment
Function

Before listing desired properties of a role assignment func-
tion we make a couple of assumptions. The first of these is
that no two agents and no two role positions occupy the
same position on the field. Secondly we assume that all
agents move toward fixed role positions along a straight line

Figure 6: Lowest lexicographical cost (shown with
arrows) to highest cost ordering of mappings from
agents (A1,A2,A3) to role positions (P1,P2,P3).
Each row represents the cost of a single mapping.

1:
√

2 (A2→P2),
√

2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)

3:
√

5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√

2 (A2→P2),
√

2 (A3→P1)

at the same constant speed. While this assumption is not
always completely accurate, the omnidirectional walk de-
scribed in Section 4 gives a fair approximation of constant
speed movement along a straight line.

We call a role assignment function valid if it satisfies the
following three properties:

1. Minimizing longest distance - it minimizes the maxi-
mum distance from a player to target, with respect to
all possible mappings.

2. Avoiding collisions - agents do not collide with each
other as they move to their assigned positions.

3. Dynamically consistent - a role assignment function f
is dynamically consistent if, given a fixed set of tar-
get positions, if f outputs a mapping m of players to
targets at time T , and the players are moving towards
these targets, f would output m for every time t > T .

Based on our two given assumptions, the first two prop-
erties guarantee that the chosen role assignment is one that
minimizes the time to its completion, and the third prop-
erty guarantees that once a role assignment is decided, it is
unchanged as long as the target positions are not changed.

6.2.2 Constructing a Valid Role Assignment
Function

Let M be the set of all one-to-one mappings between play-
ers and roles. If the number of players is n, then there are n!
possible such mappings. Given a state of the world, specif-
ically n player positions and n target positions, let the cost
of a mapping m be the n-tuple of distances from each player
to its target, sorted in decreasing order. We can then sort all
the n! possible mappings based on their costs, where com-
paring two costs is done lexicographically. Sorted costs of
mappings from agents to role positions for a small example
are shown in Figure 6.

Denote the role assignment function that always outputs
the mapping with the lexicographically smallest cost as fv.
Here we provide an informal proof sketch that fv is a valid
role assignment; we provide a longer, more thorough deriva-
tion in a technical report [11].

Theorem 1. fv is a valid role assignment function.

It is trivial to see that fv minimizes the longest distance
traveled by any agent (Property 1) as the lexicographical or-
dering of distance tuples sorted in descending order ensures

134

this. If two agents in a mapping are to collide (Property
2) it can be shown, through the triangle inequality, that fv

will find a lower cost mapping as switching the two agents’
targets reduces the maximum distance either must travel.
Finally, as we assume all agents move toward their targets
at the same constant rate, the distance between any agent
and target will not decrease any faster than the distance
between an agent and the target it is assigned to. This
serves to preserve the lowest cost lexicographical ordering of
the chosen mapping by fv across all timesteps thereby pro-
viding dynamic consistency (Property 3). The next section
presents an algorithm that implements fv.

6.2.3 Dynamic Programming Algorithm for Role
Assignment

Clearly fv could be calculated using a brute force method
to compare all possible mappings. As there are 8 field play-
ers, this would require creating 8! = 40, 320 mappings, then
computing the cost of each of the mappings, and finally sort-
ing them lexicographically and choosing the smallest one.
However, as our agent acts in real time, and fv needs to
be computed during a decision cycle (0.02 seconds), a brute
force method is too computationally expensive. Therefore,
we present a dynamic programming implementation shown
in Algorithm 1 that is able to compute fv within the time
constraints imposed by the decision cycle’s length.

Algorithm 1 Dynamic programming implementation

1: HashMap bestRoleMap = ∅
2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do
5: for each a in Agents do
6: S =

`n−1
k−1

´

sets of k − 1 agents from Agents − {a}
7: for each s in S do
8: Mapping m0 = bestRoleMap[s]
9: Mapping m = (a → pk) ∪ mo

10: bestRoleMap[a ∪ s] = mincost(m, bestRoleMap[a ∪ s])
11: return bestRoleMap[Agents]

Theorem 2. Let A and P be sets of n agents and posi-
tions respectively. Denote the mapping m := fv(A, P). Let
m0 be a subset of m that maps a subset of agents A0 ⊂ A to
a subset of positions P0 ⊂ P . Then m0 is also the mapping
returned by fv(A0, P0).

A key recursive property of fv that allows us to exploit dy-
namic programming is expressed in Theorem 2. This prop-
erty stems from the fact that if within any subset of a map-
ping a lower cost mapping is found, then the cost of the com-
plete mapping can be reduced by augmenting the complete
mapping with that of the subset’s lower cost mapping. The
savings from using dynamic programming comes from only
evaluating mappings whose subset mappings are returned
by fv. This is accomplished in Algorithm 1 by iteratively
building up optimal mappings for position sets from {p1}
to {p1, ..., pn}, and using optimal mappings of k − 1 agents
to positions {p1, ..., pk−1} (line 8) as a base when construct-
ing each new mapping of k agents to positions {p1, ..., pk}
(line 9), before saving the lowest cost mapping for the cur-
rent set of k agents to positions {p1, ..., pk} (line 10).

As
`

n−1
k−1

´

agent subset mapping combinations are evalu-
ated for mappings of each agent assigned to the kth position,
the total number of mappings computed for each of the n
agents is thus equivalent to the sum of the n − 1 binomial

Table 1: Full game results, averaged over 100 games.
Each row corresponds to an agent with varying for-
mation and positioning systems as described in Sec-
tion 6.3. Entries show the goal difference from 10
minute games versus our agent using the dynamic
role positioning system and formation described in
Section 6. Values in parentheses are the standard
error.

Team Goal Difference

Defense .29 (.06)
Static .32 (.07)
AllBall .43 (.09)
Boxes 1.26 (.10)

coefficients. That is,

n
X

k=1

n − 1

k − 1

!

=

n−1
X

k=0

n − 1

k

!

= 2n−1

Therefore the total number of mappings that must be eval-
uated using our dynamic programming approach is n2n−1.
For n = 8 we thus only have to evaluate 1024 mappings
which is very manageable.

6.3 Formation Evaluation
To test how our formation and role positioning system

affects the team’s performance we created a number of teams
to play against by modifying the positioning system of UT
Austin Villa that was used in the competition.

AllBall No formations and every agent except for the goalie
just goes to the ball.

Static Each role is statically assigned to an agent based on
its uniform number.

Defense Defensive formation in which only two agents are
in the offensive group (one on the ball and the other
directly behind the ball)

Boxes Field is divided into fixed boxes and each agent is
dynamically assigned to a home position in one of the
boxes. Similar to the positioning system used in [14].

Results of UT Austin Villa playing against these modified
versions of itself are shown in Table 1. We see that a very
defensive formation used by the Defense agent hurts per-
formance a little likely because the best defense is a good
offense. Dynamically assigning roles is better than statically
fixing them as is clear in the degradation in performance of
the Static agent. Having and maintaining formations is also
important which is evident by the positive goal difference
recorded when playing against the AllBall agent. The poor
performance of the Boxes agent, in which the positions on
the field are somewhat static and not calculated as rela-
tive offsets to the ball, underscores the importance of being
around the ball and adjusting positions on the field based
on the current state of the game.

7. COMPETITION RESULTS
UT Austin Villa 2011 won all 24 of its games during the

RoboCup 2011 3D simulation competition, scoring 136 goals
and conceding none. Even so, competitions of this sort do
not consist of enough games to validate that any team is
better than another by a statistically significant margin. In

135

Table 2: Full game results, averaged over 100
games. Each row corresponds to an agent from the
RoboCup 2011 competition, with its rank therein
achieved. Entries show the goal difference from 10
minute games versus our final optimized agent. Val-
ues in parentheses are the standard error.

Rank Team Goal Difference

3 apollo3d 1.45 (.11)
5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)
13-18 nexus3d 7.35 (0.13)
13-18 hfutengine3d 7.37 (0.13)
13-18 futk3d 7.90 (0.10)
13-18 naoteamhumboldt 8.13 (0.12)
19-22 nomofc 10.14 (0.09)
13-18 kaveh/rail 10.25 (0.10)
19-22 bahia3d 11.01 (0.11)
19-22 l3msim 11.16 (0.11)
19-22 farzanegan 11.23 (0.12)

order to validate the results of the competition, in Table 2 we
show the performance of our team when playing 100 games
against each of the other 21 teams’ released binaries from
the competition. UT Austin Villa won by at least an av-
erage goal difference of 1.45 against every team. Further-
more, of these 2100 games played to generate the data for
Table 2, our agent won all but 21 of them which ended in
ties (no losses). The few ties were all against three of the
better teams: apollo3d, boldhearts, and robocanes. We can
therefore conclude that UT Austin Villa was the rightful
champion of the competition.

While there were multiple factors and components that
contributed to the success of UT Austin Villa in winning
the competition, its omnidirectional walk was the one which
proved to be the most crucial. When switching out the om-
nidirectional walk developed for the 2011 competition with
the fixed directional walk used in the 2010 competition, and
described in [15], the team did not fare nearly as well. The
agent with the previous year’s walk had a negative aver-
age goal differential against nine of the teams from the 2011
competition, suggesting a probable tenth place finish. Also
this agent lost to our 2011 agent by an average of 6.32 goals
across 100 games with a standard error of .13

8. SUMMARY AND DISCUSSION
We have presented the architecture and key components

of the UT Austin Villa 2011 RoboCup 3D simulation league
team. These key components include an omnidirectional
walk engine and associated walk parameter optimization
framework, an inverse kinematics based kicking architecture,
and a dynamic role and formation positioning system.

Our ongoing research agenda includes applying what we
have learned in simulation to the actual Nao robots which we
use to compete in the Standard Platform league of RoboCup.

For next year’s competition we expect to better integrate
and utilize our kicking system in order to improve the per-
formance of the team. Additionally, we would like to learn
and add further parameter sets to our team’s walk engine for
important subtasks such as goalie positioning to get ready
to block a shot.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. Thanks especially to UT
Austin Villa 2011 team members Michael Quinlan, Nick
Collins, and Art Richards. Also thanks to Yinon Bentor
and Suyog Dutt Jain for contributions to early versions of
the optimization framework employed by the team. LARG
research is supported in part by NSF (IIS-0917122), ONR
(N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).
Patrick MacAlpine and Samuel Barrett are supported by
NDSEG fellowships.

9. REFERENCES
[1] Aldebaran Humanoid Robot Nao.

http://www.aldebaran-robotics.com/eng/.
[2] Open Dynamics Engine. http://www.ode.org/.
[3] RoboCup. http://www.robocup.org/.
[4] SimSpark. http://simspark.sourceforge.net/.
[5] E. Angel. Interactive Computer Graphics. Pearson

Education, Inc., 5th edition, 2009.
[6] S. Behnke, M. Schreiber, J. Stückler, R. Renner, and

H. Strasdat. See, walk, and kick: Humanoid robots
start to play soccer. In Proc. of the 6th IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids 2006),
pages 497–503. IEEE, 2006.

[7] R. Diankov and J. Kuffner. Openrave: A planning
architecture for autonomous robotics. Technical
Report CMU-RI-TR-08-34, Robotics Institute,
Pittsburgh, PA, July 2008.

[8] C. Graf, A. Härtl, T. Röfer, and T. Laue. A robust
closed-loop gait for the standard platform league
humanoid. In Proc. of the 4th Workshop on Humanoid
Soccer Robots in conjunction with the 2009 IEEE-RAS
Int. Conf. on Humanoid Robots, pages 30 – 37, 2009.

[9] N. Hansen. The CMA Evolution Strategy: A Tutorial,
January 2009.
http://www.lri.fr/~hansen/cmatutorial.pdf.

[10] S. Kalyanakrishnan and P. Stone. Learning
complementary multiagent behaviors: A case study. In
RoboCup 2009: Robot Soccer World Cup XIII, pages
153–165. Springer, 2010.

[11] P. MacAlpine, D. Urieli, S. Barrett,
S. Kalyanakrishnan, F. Barrera, A. Lopez-Mobilia,
N. Ştiurcă, V. Vu, and P. Stone. UT Austin Villa 2011
3D Simulation Team report. Technical Report
AI11-10, The Univ. of Texas at Austin, Dept. of
Computer Science, AI Laboratory, December 2011.

[12] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange.
Reinforcement learning for robot soccer. Autonomous
Robots, 27(1):55–73, 2009.

[13] P. Stone. Layered Learning in Multi-Agent Systems.
PhD thesis, School of Computer Science, Carnegie
Mellon Univ., Pittsburgh, PA, USA, December 1998.

[14] P. Stone and M. Veloso. Task decomposition, dynamic
role assignment, and low-bandwidth communication
for real-time strategic teamwork. Artificial
Intelligence, 110(2):241–273, June 1999.

[15] D. Urieli, P. MacAlpine, S. Kalyanakrishnan,
Y. Bentor, and P. Stone. On optimizing
interdependent skills: A case study in simulated 3D
humanoid robot soccer. In Proc. of the Tenth Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pages 769–776, May 2011.

136

Session 4A
Robotics II

Property-driven design for swarm robotics

Manuele Brambilla, Carlo Pinciroli, Mauro Birattari and Marco Dorigo
Université Libre de Bruxelles

Brussels, Belgium
{mbrambil,cpinciro,mbiro,mdorigo}@ulb.ac.be

ABSTRACT
In this paper, we propose a novel top-down design method
for the development of collective behaviors of swarm robotics
systems called property-driven design. Swarm robotics sys-
tems are usually designed and developed using a code-and-fix
approach, that is, the developer devises, tests and modifies
the individual robot behaviors until a desired collective be-
havior is obtained. The code-and-fix approach can be very
time consuming and relies completely on the ingenuity and
expertise of the designer. The idea of property-driven de-
sign is that a swarm robotics system can be described by
specifying formally a set of desired properties. In an iter-
ative process similar to test-driven development, the devel-
oper produces a model of the system that satisfies the de-
sired properties. Subsequently, the system is implemented
in simulation and using real robots. Property-driven design
helps to minimize the risk of developing a system that does
not satisfy the required properties, and to promote the reuse
of hardware independent models. In this paper, we start by
giving a general description of the method. We then present
a possible way to apply it by using Discrete Time Markov
Chains (DTMC) and Probabilistic Computation Tree Logic*
(PCTL*). Finally, we conclude by presenting the applica-
tion of the proposed method to the design and development
of a swarm robotics system performing aggregation.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics

General Terms
Design, Verification

Keywords
Swarm robotics, Swarm engineering, Top-down design, Ag-
gregation

1. INTRODUCTION
Swarm robotics is a distributed approach to multi-robot

systems in which, through local interactions, robots achieve
a self-organized collective behavior. Swarm robotics systems

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Implement
simulation

Implement
on real robots

Improve

Improve

Figure 1: The most common method for the devel-
opment of a swarm robotics system. The individual
behavior is developed, tested and modified until the
desired collective behavior of the swarm is obtained.

have the potential to display interesting properties, such as
robustness, scalability and flexibility [13].

Swarm robotics systems are complex systems [9]. They
exhibit dynamics at two different levels: the collective, or
macroscopic, level, and the individual, or microscopic, level.
The collective behavior is the result of the interactions of
the individual robots with each other and with the envi-
ronment. In order to obtain a desired collective behavior,
the individual behaviors and the interactions of the robots
must be carefully designed. However, this design process is
usually non-trivial, as the dynamics of complex systems are
very often difficult to predict [1].

Despite the increasing attention on swarm robotics sys-
tems in the past two decades [4], a top-down methodology
for the design and development of this kind of systems has
not been defined yet. Swarm robotics systems are usually
designed and developed using a code-and-fix approach [7].
This means that, usually, the individual behavior is devel-
oped, tested and modified until the desired collective be-
havior is obtained. This process is often performed first in
computer simulations and eventually on real robots (see Fig.
1).

We believe that, to improve the quality of swarm robotics
systems and to reduce the effort for their development, it
is necessary to create a new, specific branch of engineer-
ing that we call swarm engineering. We define swarm en-
gineering to be the systematic application of scientific and
technical knowledge to specify requirements, design, realize,
verify, validate, operate and maintain an artificial swarm
intelligence system.

Traditional system engineering approaches are not suited
for swarm robotics systems. System engineering is mainly
aimed towards centralized systems or, in general, systems in
which the interactions of the components can be precisely

139

predicted. In this respect, swarm robotics systems, which
can have hundreds of interacting robots, present unprece-
dented challenges [12].

In this paper, we propose a top-down design method, that
we call property-driven design. Property-driven design pro-
vides ways to specify requirements, design, develop, verify
and validate a swarm robotics system.

We believe that property-driven design has many advan-
tages compared with code-and-fix development: it helps to
formally specify the requirements of the system; to reduce
the risk of developing the “wrong” system, that is, a system
that does not satisfy the requirements; to develop a set of
hardware independent models that can be reused for future
applications; and to shift the focus of the development pro-
cess from implementation to design, given that most of the
developing effort happens in the modeling phase.

In Section 2, we present related work on top-down design
methods and verification techniques for swarm robotics. In
Section 3, we present property-driven design. In Section 4,
we propose a possible way to specify properties and vali-
date a model for a swarm robotics system. In Section 5, we
present an example application of property-driven design to
the design and development of a system able to perform ag-
gregation. In Section 6, we discuss about the features and
limits of property-driven design. In Section 7, we conclude
this paper.

2. RELATED WORK
Design methods: Developing a top-down design me-

thod for complex systems is still an open challenge [31]. In
the last years, the effort on this topic has been quite limited.

Bachrach et al. [2] proposed a scripting language called
Protoswarm. This language enables the definition of a vec-
tor field on an abstract spatial machine. This vector field is
then translated by a middleware into individual robot be-
haviors. Protoswarm allows the developer to focus mostly
on the collective behavior, removing some of the effort nec-
essary to develop the individual behaviors. However, Pro-
toswarm is thought for situations in which the robots are
covering the entire environment and keep constant network
connectivity. Thus, it is more suited for sensor networks
than for swarm robotics systems. Another thing to note is
that Protoswarm is not a design method, but a scripting
language. As such, it can be used only as a development
tool, requiring an appropriate design method to guide the
process.

Kazadi et al. [19] proposed the Hamiltonian method, a de-
sign method based on Hamiltonian vector fields. This me-
thod allows one to develop systems by specifying one or more
numerical properties, such as the energy level of a particular
state of the system. One limitation of this design method is
that it is suited only for spatially-organizing behaviors. The
goal of spatially-organizing behaviors is to achieve a spe-
cific robot distribution in the environment, such as pattern
formation (e.g., [30]).

Another possible approach to the design of swarm robotics
systems are automatic design methods. Work on automatic
design methods for swarm robotics systems focuses mainly
on evolutionary robotics [24] and reinforcement learning [26].
Automatic design methods can be considered top-down ap-
proaches because, in principle, the development process is
driven by the desired collective-level goal behavior. How-
ever, a lot of domain knowledge is required to tackle medium

to complex applications. Moreover, once a system is ob-
tained, it is, in general, non-trivial to understand its behav-
ior and it is often very difficult to verify its properties or
adapt it to other applications, even if they are similar to the
original one.

Property verification: The problem of property ver-
ification in swarm robotics systems has been tackled only
in a limited way. Dixon et al. [14], used Linear Tempo-
ral Logic (LTL) to define properties of individual robots
and of the swarm. This method is based on modeling the
individual robot behavior with a Markov chain, and then
considering the collective behavior as the result of the and-
composition of these individual-level models. A limitation
of this approach is that linear temporal logic deals only with
binary values. This limits the possibility to analyze systems
displaying stochastic properties, such as non-trivial swarm
robotics systems. Furthermore, in this method, there is a
possible scalability problem, because the number of states of
the system grows exponentially with the number of robots:
∼ Θ(kn), where k is the number of states of the individual
Markov chain and n is the number of robots.

Recently, Konur et al. [20] proposed an approach to verify
formally the properties of a swarm behavior through prob-
abilistic computation tree logic [16]. Their approach is able
to overcome the limits of linear temporal logical while pro-
viding scalability.

3. PROPERTY-DRIVEN DESIGN
The idea behind property-driven design is that a swarm

robotics system can be formally described through a series of
properties. These properties are the distinguishing features
of the system the developer wants to realize. They can be
task specific, such as the system eventually completes the
task X, or they can express more generic properties, such
as the system keeps working as long as there are at least N
robots or the system will never enter state Y.

A schema showing the different steps of property-driven
design is presented in Figure 2.

Phase One: The first phase of property-driven design
consists in formally specifying the requirements of the sys-
tem by stating its desired properties. The clearer and more
complete these properties are in this phase, the more the
developed system will conform to the requirements.

Phase Two: In the second phase, a model of the sys-
tem is created. At first, similarly to test-driven development
[5], one cannot expect the system to satisfy all the desired
properties. In an iterative process, the developer expands
and improves the model, and checks whether the properties
are verified. The outcome of this process is a model of the
system that satisfies the stated properties. Note that the
model must be complete just enough to capture all the im-
portant characteristics of the system, avoiding unnecessary
complication. For example, to model failures, the devel-
oper could insert in the model only a general failure state,
without specifying all the possible hardware problems if not
necessary. Eventually, through this process, one obtains a
model that satisfies all the required properties.

At the end of this phase, the developed model is robot
independent. The developer can now identify a set of neces-
sary sensors and actuators to select the proper robot plat-
form to use in implementing the system.

Phase Three: In this phase, the developer can use
the model to guide the process of implementing the swarm

140

Define
properties

1 2

Validate
properties

Develop and
improve
model

3

if
necessary

Validate
properties

Implement
simulation

Improve
model

4

if
necessary

Validate
properties

Implement
simulation

Improve
model

Implement
on real robots

Figure 2: The four different phases of property-driven design to develop a swarm robotics system.

robotics system using, for instance, a physics-based com-
puter simulation (henceforth simply simulation). As dis-
cussed in Section 1, this phase can be challenging, as moving
from a macroscopic model to the microscopic implementa-
tion is a process that is guided mainly by the ingenuity and
expertise of the developer. However, the defined model gives
a clear picture of the system that can greatly help in its de-
velopment.

It is possible that the simulation does not validate the
model [22]. In this case the developer must go back to step
2, modify the model to include the results obtained from the
simulation, and verify whether the required properties still
hold true.

Phase Four: The last phase consists in deploying the
system on real robots.

Similarly to the transition between the model and the sim-
ulation, if the implementation on real robots reveals that
some assumptions made during the previous phases do not
hold, it might be necessary to modify the simulated version
or the model, in order to keep all levels consistent.

4. DTMC AND PCTL*
So far, we purposely did not mention how to model the

system or how to specify its properties. There are several
possible ways to perform this activity. Here, we do not dis-
cuss the different options available, as a review of the possi-
ble techniques for modeling swarm robotics system is out of
the scope of this paper. The interested reader can refer to
Lerman et al. [21].

Of all the various possibilities, the developer can choose
the one that best fits the system to develop and its personal
experience. In this section, we briefly introduce one possible
way to model a swarm robotics system and specify its prop-
erties based on Deterministic Time Markov Chains (DTMC)
and Probabilistic Computation Tree Logic* (PCTL*).

DTMC are often used to model swarm robotics systems
[21]. One of the main advantages of DTMC is that, in many
cases, the model comprises both the microscopic and the
macroscopic levels. At the microscopic level, the model rep-

A B

A

A

A

A

B

B

BBB

B

Figure 3: A simple Markov chain (on the left) and
its computation tree (on the right).

resents the behavior of a single robot. At the macroscopic
level, each state can be used to count the number of robots
in that particular state. For example, at the microscopic
level, one can model the behavior of a single robot with a
3-state DTMC. The same DTMC can be augmented by as-
sociating a counter to each state. Each counter keeps track
of the number of robots in the associated state. Another
advantage of DTMC is that their use can ease property ver-
ification, especially if the properties are written through the
use of logic predicates [11].

Among the many formal logical systems, we consider Prob-
abilistic Computation Tree Logic* (PCTL*). PCTL*, orig-
inally developed by Hansson and Jonsson [16], is an exten-
sion of CTL (Computation Tree Logic), a branching time
logic. CTL is based on the idea that a Markov chain can be
“expanded” in a computation tree. A computation tree is a
potentially infinite rooted tree in which the root is the initial
state of the corresponding Markov chain, and each node is a
possible state of the system. The edges link a state with its
next possible states. An example of a simple Markov chain
and its computation tree is displayed in Figure 3.

Through CTL, one can express time-related properties

141

such as property α will eventually become true or property
α will hold true for at least 10 seconds. PCTL* extends
CTL by introducing probabilities. In this way, one can ex-
press properties such as property α will eventually become
true with probability 0.45 or there is a 0.7 probability that
α will hold true for 10 seconds. PCTL* is well suited for
swarm robotics systems as it can capture the time-related
and stochastic aspects of this kind of systems. We do not
discuss the details of the presented logics, we refer the in-
terested reader to Ciesinski and Größer [10].

Our approach is based on model checking, a technique
that allows to verify automatically and completely whether
a set of formulae is satisfied by a given system. As model
checker software we choose PRISM [17]. PRISM is a prob-
abilistic model checker which supports DTMC and PCTL*
among many other models and logics. With PRISM, it is
possible not only to verify properties, but also to perform so
called “experiments,” in which the model checker computes
the probability of the property being true against different
parameter values. In this way, it is possible to find the pa-
rameter set that scores the best probability in verifying a
property.

5. AN EXAMPLE APPLICATION: AGGRE-
GATION

In order to show the characteristics of property-driven de-
sign, we present an example application: aggregation. In this
application the robots have to cluster in an area of the envi-
ronment. The robots have neither a map of the environment
nor knowledge of the position of the other robots. We choose
aggregation as a case study for four reasons:

• aggregation is a simple behavior: this allows us to focus
on the development process without being hampered
by the details of the system itself;

• aggregation is a common test-case behavior for the
swarm robotics community, and it has been studied
extensively in the past (see, for example, [3, 22, 29,
32, 6]);

• aggregation is a collective behavior that cannot be de-
veloped easily with Protoswarm [2], since the robots
can often lose network connectivity; or using the Hamil-
tonian method [19], since no specific spatial distribu-
tion is required once the aggregate is formed;

• aggregation possesses many of the salient traits of a
typical swarm robotics behavior. It is completely dis-
tributed, it is based on simple robot-to-robot inter-
actions, and it is characterized by stochasticity and
spatial requirements.

The collective behavior we study in this paper is similar to
the one presented by Jeanson et al. [18]. We consider a
dodecagonal environment with two black spots called area
A and area B. We call area C the remaining white area.
Each of the black spots is big enough to host all the robots.
See Figure 7 for a screenshot of the environment. In the
following, we will follow the 4-phase process explained in
Section 3 using DTMC and PTCL* as modeling tools and
PRISM as model checker.

Phase One: The property we focus on is “eventually all
the robots form an aggregate”. We would like that the aggre-
gate is formed as fast as possible (for example, in the first

a

Paa

b

Pbb

Pac Pcb

Pbc

c

Pcc

Pca

Figure 4: The DTMC model of the aggregation ex-
ample. Each state is used to count the number of
robots in that particular area.

1,000 seconds) but we do not differentiate between obtaining
the aggregate in area A or area B. Using PRISM syntax, we
can define this property as follows:

P=? [F<=1000 (a=N_total)|(b=N_total)] (1)

In less formal terms, we compute the probability (P=?) that,
in the first thousand seconds (F<=1000), the number of robots
in area A or in area B is equal to the total number of robots
in the swarm ((a=N_total)|(b=N_total)). Since we want
to maximize this probability, we do not specify a value for
it.

Another property we want for the system is that the ag-
gregate, once formed, is stable for a certain period. In this
example we set such period to 10 seconds. We verify this
property with probability greater or equal to 2

3
' 0.67:

(a=N_total)|(b=N_total) =>

P>=0.67 [G>=10 (a=N_total)|(b=N_total)]
(2)

In natural language, Property 2 can be expressed in this way:
from the aggregate state ((a=N_total)|(b=N_total)) is it
true with probability greater or equal to 0.67 (=> P>=0.67)
that the system stays for at least 10 seconds (G>=10) in the
aggregate state?

Phase Two: Once the above desired properties have
been specified we need to build the model. We start by
setting the total number of robots in the system. In order to
perform a scalability test, we selected three different group
sizes: Nt = 10, 20, 501. Then, we specify three states: state
Sa, Sb and Sc. A robot in area A or B is in state Sa or
Sb, respectively. Robots outside area A or B are in state
Sc. Moreover, three counters a, b and c are associated to
the respective states. These counters are used to keep track
of the number of robots that are in state Sa, Sb and Sc,
respectively. Note that a+b+c=Nt. See Figure 4 for the
DTMC model of the system.

We design the following behavior for a robot: it performs
random walk and when it finds a black area it stops with
probability 1. The robot then decides whether to leave ac-
cording to a certain probability.

1We tested the system also with 100 robots, but the probability
of obtaining an aggregate in less than 1000 seconds was close to 0.
We decided thus not to include these results in order to simplify
the explanation.

142

In this initial stage of the definition of the model, we as-
sume that our system can be effectively described by a non-
spatial model, that is, a model in which the trajectories of
the robots are ignored and a robot can move instantaneously
from area C to area A or B, and vice versa. Moreover, we
also ignore the effects of interferences between robots [21].
However, especially for larger group sizes, the performance
of the system may be reduced by the fact that robots must
avoid each other or that robots stopping in the black areas
prevent other robots from entering it. In case these assump-
tion proves to be not realistic and the results obtained with
the model do not match those obtained in simulation or with
real robots, we will modify them in the following phases, as
explained in Section 3. Note that a model of a similar system
is presented in O’Grady et al. [25].

Since our model is non-spatial and ignores interference,
we consider only the geometric properties of the areas to
compute pca. A robot in area C can either go in area A,
go in area B or stay in area C. This means that a robot
in area C has a probability of going from area C to area
A equal to pca = AA

Aarena
, of going from area C to area B

equal to pcb = AB
Aarena

, and of staying in area C equal to

pcc = AC
Aarena

= 1−(pca+pcb). In our scenarios we used three
different arena sizes for the three different group sizes. In
Table 1 it is possible to find the details about the parameters
used for the experiments.

We need to define the remaining probabilities. The ag-
gregate can be obtained in area A or area B, thus we set
the probabilities of leaving these two areas to be equal:
pac = pbc. Since the two areas have the same size we set
paa = pbb. A robot in area A can only return to area C or
stay in area A, thus paa = 1 − pac. The only independent
probability remaining is pac. Initially, we set pac to a fixed
value. Through model checking, we can find the value of
pac that maximizes the probability of satisfying Property 1.
The process consists in automatically testing the model for
different pac values and find the best one.

The best values found with PRISM are pac = 0.05, 0.04,
0.04 when Nt = 10, 20, 50, respectively. With these values,
the probabilities of satisfying Property 1 are 0.75, 0.15 and
8.8 × 10−5. Property 2 is not satisfied for any of the three
group sizes. The developed behavior, thus, obtains poor
results and the system does not cope well with increasing
group sizes.

It is thus necessary to improve the developed model by
modifying the behavior of the robots. A fixed pac does not
promote the formation of a single cluster. A better solution
is to let a robot decide whether to leave according to the
number of sensed robots around it [18]: with only few robots
nearby, the probability to leave the aggregate pac is high and
vice versa. We set pac = pmin−ac ∗ (Ns + 1), where pmin−ac
is the minimum staying probability we want for a robot and
Ns is the number of other robots sensed. We add 1 to the
number of robots sensed, as we want to include also the
robot that is choosing its next action. Subsequently, we use
PRISM to find the best value of pmin−ac for the different
group sizes. As reported in Table 1, results are better than
before, both for Property 1 and Property 2.

With the current model we are also able to define require-
ments on the hardware capabilities of the robots: a ground
sensor, to differentiate between the two black areas A and B
and the white area C; a sensor to detect nearby robots; and

Table 1: A table that presents the obtained results.
Column pmin−ac shows the best value of pmin−ac
found using PRISM. Column Pr 1 shows the prob-
ability of satisfying Property 1, and column Pr 2
shows whether Property 2 is satisfied.

Nt AA Aarena pca pmin−ac Pr 1 Pr 2
10 0.38m2 4.91m2 0.0784 [0.19, 0.24] 0.95 X
20 0.78m2 19.63m2 0.0625 0.12 0.79 X
50 3.14m2 50.26m2 0.0625 0.10 0.25 X

wheels to move. An example of such a robot is the e-puck
[23] robot which has a range and bearing board that allows
it to perceive the presence of neighboring robots [15].

Phase Three: In this aggregation example, the model
captures well the microscopic behavior of the single robots,
thus it is quite easy to implement the system in simulation.
However, several implementation details are not explicitly
present in the model, such as how the robots perform ran-
dom walk. These implementation details must be dealt with
in such a way that they do not falsify the model.

We implemented the system using the ARGoS simulator
[27]. Figure 6 shows a screenshot of the simulated system.
We performed three different sets of experiments, one for
each group size. To validate the model we measured the
average time necessary to form a complete aggregate on 100
runs with different values of pmin−ac. The robots were de-
ployed in a random position at the beginning of each experi-
ment. Each experiment stopped when a complete aggregate
was formed or after 10,000 seconds.

As reported in Figure 5, for all the three group sizes, the
best results were obtained with the value pmin−ac predicted
using the model. However, the results obtained for Property
1 with the simulated version of the system are usually worse
than those predicted by the model, in particular with 20
and 50 robots. With 10 robots and pmin−ac = 0.22 the sim-
ulated system was able to form a complete aggregate before
1,000 seconds 100 times out of 100, in line with the model
predictions. However, with 20 robots and pmin−ac = 0.12,
Property 1 was satisfied only 53 times out of 100, whereas in
the model it was satisfied with a probability of 0.79. With
50 robots and pmin−ac = 0.10 the difference is even more
evident: only 2 runs out of 100 resulted in an aggregation
time of under 1,000 seconds whereas the model predicted a
probability of satisfying Property 1 of 0.25.

As explained in Section 3, since the results obtained from
the model and from the simulation do not match, we need
to modify the model in order to make them consistent. The
discrepancy between the model and the simulated system is
due to the fact that, as the number of robots grows, interfer-
ence between robots reduces pca. This is because the robots
spend more time avoiding collisions and because the robots
stopping in the black areas prevent other robots from ac-
cessing them. Reducing pca in the model allows us to obtain
results that are closer to those obtained in simulation. For
20 robots and pca = 0.0475, we observe that Property 1 is
satisfied with probability 0.5275, which matches the results
obtained in simulation. For 50 robots we set pca = 0.041,
which gives a probability of satisfying Property 1 of 0.01.

We also tested Property 2. 100 runs of the simulated ex-
periments were executed for 10,000 seconds with the three

143

Aggregation times with 10 Robots

P_min−ac

T
im

e
 [

s
]

0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

1
0

0
0

5
0

0
0

1
0

0
0

0

Aggregation times with 20 Robots

P_min−ac

T
im

e
 [

s
]

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

1
0

0
0

5
0

0
0

1
0

0
0

0

Aggregation times with 50 Robots

P_min−ac

T
im

e
 [

s
]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

1
0

0
0

5
0

0
0

1
0

0
0

0

Figure 5: Some results obtained with the ARGoS
simulator. The graphs show the time necessary to
form the complete aggregate with different pmin−ac
over 100 runs for 10, 20 and 50 robots.

Figure 6: A screenshot of the simulated version of
the system using 20 robots.

Figure 7: A screenshot of the experiment performed
with the 10 e-puck robots.

group sizes. In the experiments, we measured whether the
system satisfies Property 2, that is, whether a complete ag-
gregate, once formed, lasts more than 10 seconds. In all
the cases in which a complete aggregate was formed before
10,000 seconds, Property 2 was satisfied.

Videos of the simulated experiments are available in the
supplementary pages [8].

Phase Four: In the last phase, we implement the sys-
tem using real e-pucks. We performed 10 experiments with
a group of 10 e-pucks in an arena identical to the simulated
one. A picture of an experiment can be seen in Figure 7.
Figure 8 shows a comparison between the results obtained
with the real robots and in simulation. A video of a run is
available in the supplementary pages [8].

In 10 runs out of 10, both Property 1 and Property 2
were satisfied. The results obtained with the real robots are
in line with those obtained in simulation, even though the
aggregation time is slightly longer. This is probably due to
a higher wheel speed in the simulated experiments.

6. DISCUSSION
Property-driven design aims at supporting the develop-

ment of swarm engineering, that is, a systematic applica-
tion of scientific and technical knowledge to specify require-
ments, design, realize, verify, validate, operate and maintain
a swarm intelligence system. The code-and-fix development
method for swarm robotics systems relies completely on the
ingenuity and experience of the developer. On the contrary,
the proposed property-driven design offers several advan-
tages.

First, property-driven design is an iterative process that
guides and helps the designer in developing the system. The
great majority of iterations occur when building the model.
This allows the developer to focus only on the important
aspects of the system because “whereas a simulation should
include as much detail as possible, a good model should
include as little as possible” [28],

Another advantage is that the risk of developing a sys-
tem that does not satisfy the required properties is reduced,
as these properties are evaluated at each step of the design
and development phase. With the code-and-fix development
these properties are either not verified or verified a poste-
riori, so the risk of developing the “wrong” system is high.
Note that this holds only if the model is “good”, meaning
that it is able to faithfully represent the system. In this

144

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Empirical Distribution Function

Time [s]

F
n

(x
)

l

l

l

l

l

l

l

l

l

l

0 200 400 600 800 1000

Real Robots

Simulation

Figure 8: A graph showing the empirical cumulative
distribution function (Fn(x)) of the results obtained
with real robots (10 runs) and in simulation (100
runs). In both cases pmin−ac = 0.22.

paper, we did not discuss in details model validation. The
interested reader can see, for example, Martinoli et al. [22].

Finally, since the developed model is hardware indepen-
dent, it can be used to choose the robotic platform that
fits best the characteristics of the system. Also, the model
can be partially or completely reused for other applications,
limiting the issue known as “reinventing the wheel”. In the
future, it is possible to imagine a set of publicly available
models for swarm robotics applications that can be reused
and modified by other developers.

While property-driven design has many advantages, it also
has some limits. Being based on modeling, property-driven
design inherits its advantages and limits. As with model-
ing, property-driven design can be applied to a large variety
of swarm robotics systems. However, modeling a swarm
robotics system is a hard task on its own. Many critical
aspects of a swarm robotics system, such as robot-to-robot
interaction or time and spatial aspects of the system are not
always easy to capture in a model. Fortunately, many as-
pects of modeling a swarm robotics system have been stud-
ied extensively over the years (see, for instance, a review on
modeling [21]).

Property-driven design can guide the developer in design-
ing and developing a swarm robotics system. However, de-
pending on the complexity of system to develop, implement-
ing the model in simulation (phase 3) might be complicated.
In these cases the ingenuity and expertise of the developer
are still necessary.

7. CONCLUSION
In this paper, we presented property-driven design: a top-

down design method based on the idea that a swarm robotics
system can be described through a series of properties. Once
these properties have been specified, it is possible to create a
model of the system that satisfies them. In an iterative pro-

cess, the model is improved until it correctly describes the
system that the developer wants to design and satisfies the
desired properties. The obtained model can then guide the
development of a computer simulated version of the system.

Property-driven design is one of the first attempts towards
the development of swarm engineering. Differently from
code-and-fix development, property-driven design offers a
systematic approach towards the development of a swarm
robotics system. Among the advantages of property-driven
design, compared with code-and-fix development, there are:
a shift of the focus of the development process from im-
plementation to design, given that most of the iterations
happen at the design level; a formal way to specify the re-
quirements of the system; a reduced risk of developing the
“wrong” system, that is, a system that does not satisfy the
requirements; and the possibility to develop a set of hard-
ware independent models that can be reused for future ap-
plications.

In the future we plan to apply property-driven design to
more complex applications, possibly using different model-
ing approaches. One problem to tackle is deriving the in-
dividual behavior of the robots starting from a collective
behavior. Several possibilities can be studied, such as the
integration of property-driven design with spatial computing
or artificial evolution.

8. ACKNOWLEDGMENTS
This work was partially supported by the European Union

through the ERC Advanced Grant “E-SWARM: Engineer-
ing Swarm Intelligence Systems” (contract 246939) and by
the Future and Emerging Technologies project “ASCENS”
(contract 257414).

Manuele Brambilla, Mauro Birattari and Marco Dorigo
acknowledge support from the F.R.S.-FNRS of Belgium’s
Wallonia-Brussels Federation, of which they are a F.R.I.A.
Research Fellow, a Research Associate and a Research Di-
rector, respectively.

9. REFERENCES
[1] R. Abbott. Emergence explained. Complexity,

12(1):13–26, 2006.

[2] J. Bachrach, J. Beal, and J. McLurkin. Composable
continuous-space programs for robotic swarms. Neural
Computation & Applications, 19:825–847, 2010.

[3] E. Bahçeci and E. Şahin. Evolving aggregation
behaviors for swarm robotic systems: A systematic
case study. In Proceedings of the 2005 Swarm
Intelligence Symposium - (SIS 2005), pages 333–340,
Piscataway, NJ, 2005. IEEE Press.

[4] L. Bayindir and E. Şahin. A review of studies in
swarm robotics. Turkish Journal of Electrical
Engineering, 15(2):115–147, 2007.

[5] K. Beck. Test-driven Development: By Example.
Addison-Wesley, Boston, MA, 2003.

[6] S. Berman, A. Halasz, M. Hsieh, and V. Kumar.
Optimized stochastic policies for task allocation in
swarms of robots. IEEE Transactions on Robotics,
25(4):927–937, 2009.

[7] B. Boehm. A spiral model of software development
and enhancement. Computer, 21(5):61–72, 1988.

[8] M. Brambilla, C. Pinciroli, M. Birattari, and
M. Dorigo. Property-driven design for swarm robotics:

145

Complete data, 2011. Supplementary information page
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-

018/.

[9] S. Camazine, J.-L. Deneubourg, N. R. Franks,
J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-Organization in Biological Systems. Princeton
Studies in Complexity. Princeton University Press,
Princeton, NJ, 2001.

[10] F. Ciesinski and M. Größer. On probabilistic
computation tree logic. In Validation of Stochastic
Systems, number 2925 in Lecture Notes in Computer
Science, pages 333–355. Springer, Berlin, Germany,
2004.

[11] E. Clarke. Model checking. In Foundations of Software
Technology and Theoretical Computer Science, number
1346 in Lecture Notes in Computer Science, pages
54–56. Springer, Berlin, Heidelberg, 1997.

[12] D. Cleary. Perspectives on complex-system
engineering. Collaborations, 3(2):1–4, 2005.

[13] E. Şahin. Swarm robotics: from sources of inspiration
to domains of application. In Swarm Robotics, volume
3342 of Lecture notes in computer science, pages
10–20. Springer, Berlin, Heidelberg, 2005.

[14] C. Dixon, A. Winfield, and M. Fisher. Towards
temporal verification of emergent behaviours in swarm
robotic systems. In Towards Autonomous Robotic
Systems, volume 6856 of Lecture Notes in Computer
Science, pages 336–347. Springer, Berlin, Heidelberg,
2011.

[15] A. Gutiérrez, A. Campo, M. Dorigo, J. Donate,
F. Monasterio-Huelin, and L. Magdalena. Open e-puck
range & bearing miniaturized board for local
communication in swarm robotics. In IEEE
International Conference on Robotics and Automation
– ICRA 2009, pages 3111–3116. IEEE Press,
Piscataway, NJ, 2009.

[16] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5):512–535, 1994.

[17] A. Hinton, M. Kwiatkowska, G. Norman, and
D. Parker. Prism: A tool for automatic verification of
probabilistic systems. In Tools and Algorithms for the
Construction and Analysis of Systems, number 3920 in
Lecture Notes in Computer Science, pages 441–444.
Springer, Berlin, Germany, 2006.

[18] R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco,
R. Fournier, C. Jost, and G. Theraulaz. Self-organized
aggregation in cockroaches. Animal Behaviour,
69(1):169–180, 2005.

[19] S. Kazadi, J. R. Lee, and J. Lee. Model independence
in swarm robotics. International Journal of Intelligent
Computing and Cybernetics, Special Issue on Swarm
Robotics, 2(4):672–694, 2009.

[20] S. Konur and C. Dixon. Formal verification of
probabilistic swarm behaviours. In Swarm Intelligence,
7th International Conference, ANTS 2010, volume
6234 of Lecture Notes in Computer Science, pages
572–573. Springer, Berlin, Germany, 2010.

[21] K. Lerman, A. Martinoli, and A. Galstyan. A review
of probabilistic macroscopic models for swarm robotic
systems. In Swarm robotics, volume 3342 of Lecture
Notes in Computer Science, pages 143–152. Springer,

Berlin, Heidelberg, 2005.

[22] A. Martinoli, A. J. Ijspeert, and F. Mondada.
Understanding collective aggregation mechanisms:
from probabilistic modelling to experiments with real
robots. Robotics and Autonomous Systems,
29(1):51–63, 1999.

[23] F. Mondada, M. Bonani, X. Raemy, J. Pugh,
C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey,
D. Floreano, and A. Martinoli. The e-puck, a robot
designed for education in engineering. In Proceedings
of the 9th Conference on Autonomous Robot Systems
and Competitions, volume 1, pages 59–65, Portugal,
2009. IPCB: Instituto Politécnico de Castelo Branco.

[24] S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology, Intelligence, and Technology of
Self-Organizing Machines. MIT Press, Cambridge,
MA, 2000.

[25] R. O’Grady, C. Pinciroli, A. L. Christensen, and
M. Dorigo. Supervised group size regulation in a
heterogeneous robotic swarm. In Proceedings of
ROBOTICA 2009 - 9th International Conference on
Autonomous Robot Systems and Competitions, pages
113–119. IPCB, Castelo Branco, Portugal, 2009.

[26] L. Panait and S. Luke. Cooperative multi-agent
learning: the state of the art. Autonomous Agents and
Multi-Agent Systems, 11(3):387–434, 2005.

[27] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini,
A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante,
G. A. Di Caro, F. Ducatelle, T. Stirling, A. Gutiérrez,
L. M. Gambardella, and M. Dorigo. ARGoS: a
modular, multi-engine simulator for heterogeneous
swarm robotics. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS’11), pages 5027–5034. IEEE Computer
Society Press, Los Alamitos, CA, 2011.

[28] J. M. Smith. Models in ecology. Cambridge University
Press, Cambridge, MA, 1978.

[29] O. Soysal and E. Şahin. A macroscopic model for
self-organized aggregation in swarm robotic systems.
In Swarm Robotics, volume 4433 of Lecture Notes in
Computer Science, pages 27–42. Springer, Berlin,
Heidelberg, 2007.

[30] W. M. Spears, D. F. Spears, J. C. Hamann, and
R. Heil. Distributed, physics-based control of swarms
of vehicles. Autonomous Robots, 17(2–3):137–162,
2004.

[31] S. Stepney, F. Polack, and H. R. Turner. Engineering
emergence. In 11th IEEE International Conference on
Engineering of Complex Computer Systems, 2006.
ICECCS 2006, pages 89–97. IEEE Press, Piscataway,
NJ, 2006.

[32] V. Trianni, R. Groß, T. H. Labella, E. Şahin, and
M. Dorigo. Evolving aggregation behaviors in a swarm
of robots. In W. Banzhaf, T. Christaller, P. Dittrich,
J. T. Kim, and J. Ziegler, editors, Proceedings of the
Seventh European Conference on Artificial Life
(ECAL 2003), volume 2801 of Lecture Notes in
Computer Science, pages 865–874. Springer, Berlin,
Heidelberg, 2003.

146

Multi-robot collision avoidance
with localization uncertainty

Daniel Hennes
Maastricht University

P.O. Box 616, 6200MD
Maastricht, The Netherlands
daniel.hennes@gmail.com

Daniel Claes
Maastricht University

P.O. Box 616, 6200MD
Maastricht, The Netherlands

danielclaes@me.com

Wim Meeussen
Willow Garage

68 Willow Rd., Menlo Park
CA 94025, USA

meeussen@willowgarage.com

Karl Tuyls
Maastricht University

P.O. Box 616, 6200MD
Maastricht, The Netherlands

k.tuyls@maastrichtuniversity.nl

ABSTRACT
This paper describes a multi-robot collision avoidance sys-
tem based on the velocity obstacle paradigm. In contrast
to previous approaches, we alleviate the strong requirement
for perfect sensing (i.e. global positioning) using Adaptive
Monte-Carlo Localization on a per-agent level. While such
methods as Optimal Reciprocal Collision Avoidance guaran-
tee local collision-free motion for a large number of robots,
given perfect knowledge of positions and speeds, a realis-
tic implementation requires further extensions to deal with
inaccurate localization and message passing delays. The pre-
sented algorithm bounds the error introduced by localization
and combines the computation for collision-free motion with
localization uncertainty. We provide an open source imple-
mentation using the Robot Operating System (ROS). The
system is tested and evaluated with up to eight robots in
simulation and on four differential drive robots in a real-
world situation.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation

Keywords
multi-robot systems, optimal reciprocal collision avoidance,
adaptive monte-carlo localization, robot operating system

1. INTRODUCTION
Local collision avoidance is the task of steering free of col-

lisions with static and dynamic obstacles, while following a

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

global plan to navigate towards a goal location. Figure 1
shows a configuration of two robots on collision course. The
task of the algorithm is to avoid collision with a minimal
deviation of the preferred path. Thus, local collision avoid-
ance differs from motion planning, global path planning and
local path planning. In motion planning the environment
of the robot is assumed to be deterministic and known in
advance, thus allowing to plan a complete path to the goal.
Global path planners usually operate on a static map and
find either the minimum cost plan (e.g. using A* or Di-
jkstra’s algorithm) or any valid plan (e.g. sample based
planners). Local path planners, such as Trajectory Rollout
and Dynamic Window Approaches (DWA), perform forward
simulations for a set of velocity commands; each resulting
trajectory is scored based on proximity to the goal location
and a cost map built from current sensor data. In principle
this allows to stay clear of dynamical obstacles; however, in
multi-robot settings two problems arise:

1. Robots are not merely dynamic obstacles; each robot
itself is a pro-active agent taking actions to avoid col-
lisions. Neglecting this might lead to oscillations and
thus highly inefficient trajectories or even collisions.

2. The sensor source (e.g. laser range finder) is usually
mounted on top of the robot’s base to allow for a max-
imal unoccluded viewing angle. In a system with ho-
mogenous robots this implies that there is very little
surface area that can be picked up by the sensors of
other robots and thus prevents the robots from observ-
ing each other.

Local collision avoidance addresses these challenges and is
an important building block in any robot navigation sys-
tem targeted at multi-robot systems. Although robot lo-
calization is a requirement for collision avoidance, most ap-
proaches assume perfect sensing and positioning and avoid
local methods by using global positioning via an overhead
tracking camera - or are purely simulation based. Neverthe-
less, to be able to correctly perform local collision avoidance
in a realistic environment, a robot needs a reliable position
estimation without the help of external tools.

147

	
	

	
	 vj Rj

rj

ri

Ri

pj - pi

vi

Figure 1: A workspace configuration with two
robots Ri and Rj on collision course.

Our approach uses Optimal Reciprocal Collision Avoid-
ance (ORCA) and the extension to non-holonomic robots
(NH-ORCA) [1] in combination with Adaptive Monte-Carlo
Localization (AMCL) [3].This effectively alleviates the need
for global positioning by decentralized localization on a per-
agent level. We provide a solution that is situated in be-
tween centralized motion planning for multi-robot systems
and communication-free individual navigation. While ac-
tions will remain to be computed independently for each
robot, information about position and velocity is shared us-
ing local inter-robot communication. This keeps the com-
munication overhead limited while avoiding problems like
robot-robot detection. The resulting algorithm is imple-
mented in the open source Robot Operating System (ROS),
which provides hardware abstraction and message-passing.
Our experiments in simulation and on a physical system il-
lustrate the feasibility and efficiency of the approach.

The remainder of the paper is structured as follows. Sec-
tion 2 provides background information about ORCA, NH-
ORCA, AMCL and ROS. Section 3 discusses key challenges
in applying velocity-based collision avoidance to real-world
robotic scenarios, leading to the proposed approach. In Sec-
tion 4, we introduce our novel method to incorporate local-
ization uncertainty. Experimental results are presented in
Section 5. The paper concludes with a brief discussion and
highlights future directions of this work in Section 6.

2. BACKGROUND
In this section, we will concisely describe the collision

avoidance algorithms ORCA and NH-ORCA and the Adap-
tive Monte Carlo Localization (AMCL) method. Addition-
ally, the Robot Operating System (ROS) will be introduced.

2.1 Optimal Reciprocal Collision Avoidance
Our work is based on the principle of Optimal Recip-

rocal Collision Avoidance (ORCA) introduced by van den
Berg et al. [10], an extension of Reciprocal Velocity Ob-
stacles (RVO) [11]. ORCA is a velocity-based approach [2]
to achieve collision avoidance in multi-agent systems taking
into account the motions of other agents. For simplicity, the
two dimensional case is assumed, but the formulations can
be extended into the third dimension.

ORCA describes a control policy were each agent selects
a collision-free velocity from the two dimensional velocity
space in x and y direction. This implies that a holonomic
robot is assumed in the original formulation, since the robot
has to be able to accelerate into every direction regardless of
its current state. However, the movement model of a non-
holonomic robot can be incorporated by limiting the velocity
space accordingly, see Section 2.2.

	
	

ri+rj

vj

pj - pi

vy

vx vi

VO

(a) velocity obstacle

	
	 	
	 (ri+rj) / τ

vy

vx

vj

vi

VOtrunc

(b) truncated obstacle

	
	 	
	

vy

vx

vj

vi

(c) translated obstacle

	
	 	
	

vy

vx

vj

vi

orcai,j

c u

vi - vj

(d) ORCA half-plane

Figure 2: Creating velocity obstacles and ORCA
half-planes based on the workspace configuration
shown in Figure 1. (a) Translating the situation
into velocity space and the resulting velocity obsta-
cle for Ri, assuming a static obstacle. (b) Truncating
the velocity obstacle (VO) for time frame τ . Every
velocity that is allowed will be collision-free for at
least time τ . (c) Translating the VO according to
the other robot’s velocity vj. Velocity vi points into
the translated VO, hence Ri is on collision course.
(d) Creating an ORCA half plane for Ri. Vector u is
the minimal vector to add to vi to be outside of the
VO. The perpendicular line to u at vi+cu is the set of
velocities that is closest to vi and avoiding collisions
for c ≥ 1. For c = 1

2
the robot Ri assumes that Rj will

take care of the other half of the collision avoidance.

Let us assume a workspace configuration with two robots
on a collision course as shown in Figure 1. If the position
of agent Rj is known to Ri, a region in the robot’s velocity
space can be calculated which is leading to a collision under
current velocities and is thus unsafe. If we assume disc-
shaped robots, which are not moving, the region of non-
allowed velocities is bounded by the half-lines emanating
from the origin, tangent to a disk at the relative position of
the two agents with the combined radius of the two robots
as in Figure 2(a). These unsafe regions are called velocity
obstacles (VO). Taking a velocity in direction of the other
agent will not immediately result in a collision, hence the
VO can be bounded by a given time frame τ , leading to a
truncated cone. Taking a velocity which is now available
again will be collision free for at least the given time frame,
see Figure 2(b). If we now assume that both agents are mov-
ing, the VO has to be translated into the direction the speed
of Rj as shown in Figure 2(c). Now, robot Ri’s velocity vec-
tor vi points into the VO, thus we know that Ri and Rj are
on collision course. Each agent computes a VO for each of
the other agents. If all agents at any given time step select

148

velocities outside of the VOs, the trajectories are guaranteed
to be collision free. However, oscillations can still occur [11].

To overcome the problem of oscillations and to enable effi-
cient calculation for safe velocities, Optimal Reciprocal Colli-
sion Avoidance (ORCA) was introduced by van den Berg et
al. [10]. Instead of velocity obstacles, agents independently
compute half-planes of collision-free velocities for each other
agent as shown in Figure 2(d). The half planes are selected
to be as close to the desired goal velocity as possible. Thus,
they are parallel lines to either one of the two legs of the VO.
If we assume reciprocal collision avoidance, the line can be
slightly insight the VO, assuming that the other robot will
take care of the other half of the collision avoidance. The
intersection of all half planes is the set of collision free veloc-
ities. The optimal velocity from this set can be calculated
by solving a linear program minimizing the distance to the
desired goal velocity.

Though each agent selects a new velocity independently, a
distributed implementation of ORCA on a physical system
of mobile robots requires perfect sensing of the shape, posi-
tion and velocities of other robots. A variant of the original
RVO called Hybrid Reciprocal Velocity Obstacles (HRVO) is
presented in [7]. This extension takes uncertainty of move-
ment and sensing into account; however, it uses global po-
sitioning via an overhead camera and does not incorporate
the ORCA formulation.

2.2 Kinematic constraints
As mentioned above, the original formulation of ORCA is

based on holonomic robots, which can accelerate into any di-
rection from every state. However, differential drive robots
with only two motorized wheels are much more common
due to their lower price point. To incorporate the differen-
tial drive constraints, Kluge et al. introduced a method to
calculate the effective center of a differential drive robot [5].
The effective center represents a translation of the center of
rotation to a point that can virtually move into all directions.
It can be incorporated in the ORCA formulation by virtually
enlarging the robots’ radii prior to the calculations. These
adaptations provide additional maneuverability to handle
the differential drive constraints. ORCA-DD [8] extends this
idea and enlarges the robot to twice the radius of the origi-
nal size to ensure collision free and smooth paths for robots
under differential constraints. The effective center is then
located on the circumference of the robot at the center of
the extended radius. However, this quadruples the virtual
size of the robot, which can result in problems in narrow
corridors or unstructured environments.

Another method to handle non-holonomic robot kinemat-
ics has been introduced by Alonso-Mora et al [1]: NH-ORCA
is the generalized version of ORCA for any non-holonomic
robot. The underlying idea is that any robot can track a
holonomic speed vector with a certain tracking error ε. This
error depends on the direction and length of the holonomic
velocity, i.e. a differential drive robot can drive along an arc
and then along a straight line which is close to a holonomic
vector in that direction. A set of allowed holonomic veloci-
ties is calculated based on the current speed and a maximum
tracking error ε. Resulting constraints are added to the lin-
ear program in the ORCA formulation. To allow smooth
and collision free navigation, the virtual robot radii have to
be increased by the tracking error ε, since the robots do not
track the desired holonomic velocity exactly. Additionally,

in dense configuration with many robots, turn in-place can
be included by adapting the allowed tracking error ε dy-
namically depending on the current state (i.e. proximitiy
to other robots and current velocities). The set of allowed
holonomic velocities can be calculated for any possible an-
gle and error. However, any further constraint in the linear
program slows down the computation, thus the feasible set
can be approximated by a polygon.

NH-ORCA is preferred over ORCA-DD, since the virtual
increase of the robots’ radii is only by a size of ε instead of
doubling the radii.

2.3 Adaptive Monte-Carlo Localization
The localization method employed in our work is based

on sampling and importance based resampling of particles,
in which each particle represents a possible pose and orien-
tation of the robot. More specifically, we use the adaptive
monte-carlo localization method, which dynamically adapts
the number of particles [3]. Monte-Carlo Localization (also
known as a particle filter), is a widely applied localization
method in the field of mobile robotics. It can be general-
ized in an initialization phase and two iteratively repeated
subsequent phases, the prediction and the update phase.

In the initialization phase, a particle filter generates a
number of samples N , which are uniformly distributed over
the whole map of possible positions. In the 2.5D case, every
particle si has a x- and y-value and a rotation si = (x̂, ŷ, θ̂).
The particles are usually initialized in such a way, that only
valid positions are taken into account, i.e. they cannot be
outside of the map or within walls.

The first iterative step is the prediction phase, in which
the particles of the previous population are moved based
on the motion model of the robot, i.e. the odometry. Af-
terwards, in the update phase, the particles are weighted
according to the likelihood of the robot’s measurement for
each particle. Given this weighted set of particles the new
population is resampled in such a way that the new samples
are selected according to the weighted distribution of parti-
cles in the old population. In the following, the two phases
are explained in further detail.

Prediction phase: After each movement, the position of
each particle is updated according to the belief of the agent.
More specifically, if the robot has moved forward 10 cm,
each particle is moved 10 cm into the direction of its ro-
tation. If the robot rotates, the particles are rotated ac-
cordingly. Thus, if a holonomic robot moves from state
xk = (xk, yk, θk) to xk+1 = (xk+1, yk+1, θk+1), the parti-
cles are translated by:

x̂k+1

ŷk+1

θ̂k+1

 =

x̂k + ρcos(θ̂k + ∆θ)

ŷk + ρsin(θ̂k + ∆θ)

θ̂k + ∆θ

 (1)

Where ρ =
√

∆x2 + ∆y2 and ∆θ = θk − θk+1. However,
both ρ and ∆θ are corrupted by noise due to errors in actu-
ators and odometry. Hence, the more accurate the robot’s
motion model is, the better the performance of the predic-
tion phase. For non-holonomic robots, the update equations
can be changed accordingly [9].

Update phase: After a sensor update, the expected mea-
surement for each particle is calculated. This means, mea-
sured sensor values are compared with the world view that

149

is expected if the robot would be at the position of the par-
ticle (i.e. by a laser scan matcher). The new weight (wik) is
the probability of the actual sensor measurement (zk) given
the particles position (sik) at time k as shown below:

wik+1 = p(zk|sik) (2)

As w is a probability distribution, the weight for each par-
ticle is re-normalized after each update:

wik =
wik∑
i w

i
k

(3)

The resampling can be done in linear time as described in [9].
After resampling, all the weights are reset to the uniform
weight of 1/N .

Resampling and variable sample set size: Particle
filters only need a large N to correctly identify the posi-
tion when the initial state is unknown. However, when the
present localization is quite accurate already, less particles
are needed to keep track of the position changes. Hence,
the number of samples can be changed adaptively depend-
ing on the position uncertainty. We use the approach of
KLD-sampling, which determines the minimum number of
samples needed, such that with probability 1 − δ the error
between the true posterior and the sample-based approxima-
tion is less than ε. The number of samples can be calculated
as:

n =
1

2ε
χ2
k−1,1−δ (4)

This can be approximated using the Wilson-Hilferty trans-
formation as:

n =
k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}
(5)

where k is the number of bins of the discrete distribution

from which the particles are sampled. For further details we
refer to [4].

Kidnapped robot and false localization: A common
problem occurs if there are several locations which are rep-
resented similar according to the sensor values. For example
two hallways, which have only one door on the right. In
these cases, it happens that the robot localizes itself at the
wrong position. Furthermore, the robot can be moved by an
external force, like a human. To incorporate sudden changes
or wrong localizations, a fraction of particles can be moved
to a random location. This increases the robustness of the
system.

In our work, AMCL is not used for global localization,
but rather initialized with a location guess that is within the
vicinity of the true position. This enables us to use AMCL
for an accurate position tracking without having multiple
possible clusters in ambiguous cases.

2.4 Robot Operating System (ROS)
The NH-ORCA and the AMCL algorithms are imple-

mented in the framework of the open source Robot Oper-
ating System (ROS) [6]. ROS provides many useful tools,
hardware abstraction and a message passing system between
nodes. Nodes are self contained modules that run indepen-
dently and communicate which each other over so called top-
ics using a one-to-many subscriber model and the TCP/IP

protocol. Naturally this is of great importance when work-
ing with distributed systems. In addition, the modularity
enables to easily create various configurations for different
settings; to run our system on ROS-enabled robots, only
the parameters need to be adapted according to the robot’s
motion and sensor model.1.

3. PROBLEM DESCRIPTION
AND APPROACH

We propose a system that builds upon the two main com-
ponents introduced in Section 2, i.e. NH-ORCA and AMCL,
to provide collision free motion in a real-world system of
robots. In this section we will revisit the assumptions com-
monly made by all velocity-based collision avoidance algo-
rithms and motivate our choice for per agent-based localiza-
tion in combination with position and velocity information
sharing using inter-robot communication. Furthermore, we
will point out the necessary addition of sensor uncertainty,
leading to our proposed algorithm Collision Avoidance with
Localization Uncertainty (CALU) explained in more detail
in Section 4.

3.1 Problem description
ORCA (and all its variants) does not require any inter-

robot negotiation to find optimal collision free motion tra-
jectories and is hence in principal fully distributed. However,
all methods require perfect information about the positions,
velocities and shapes of all other robots. In order to pre-
serve the distributed nature of this approach, robots need to
be able to accurately identify other robots using on-board
sensors; furthermore, positions and velocities have to be de-
duced from the same data. The list of typical sensors for
mobile robots includes stereo cameras, laser range finders
and lately 3D image sensors (e.g. Microsoft Kinect). These
sensors deliver large data-streams that require considerable
computational power to process even for the detection and
classification of static obstacles.

The computational requirement is not the only problem
when considering robot-robot detection. As low-end laser
range finders (e.g. Hokuyo URG-04LX) become widely avail-
able even for mobile robotic projects on a small budget, they
are the preferred sensor choice due to their high accuracy,
resolution and field of view. However, the laser range finder
is usually mounted on top of the robot’s base to allow for
a maximal unoccluded viewing angle. In a system with ho-
mogenous robots that means that there is very little surface
area that can be picked up by the sensors of other robots
and thus prevents the robots from observing each other.

Even though the laser range finder provides a high ac-
curacy in the readings, the localization and tracking of the
robot using AMCL will in general have the tendency to dif-
fer to some extent from the true position of the robot. If
the size of the localization and tracking error is in the order
of magnitude of the robots radius, collisions are bound to
happen.

Previous approaches have worked around these problems
by providing global positioning to all robots based on an
overhead tracking camera. Such a system is not distributed
since a host computer connected to the camera needs to
process the sensor data and communicate with all robots to

1For more information see: http://www.ros.org/.

150

Figure 3: CALU with four robots. ROS visualiza-
tion tool RVIZ is used to show the trajectories and
localization particles of four robots.

provide position and velocity data. If this machine fails the
system breaks.

3.2 Approach
We propose to utilize agent-based localization and inter-

robot communication to provide a system that is more re-
alistic in real-world scenarios (i.e. without the need for ex-
ternal positioning data) and also more robust (i.e. single
component failure does not lead to system failure). Our ap-
proach, called Collision Avoidance with Localization Uncer-
tainty (CALU), results in a fully decentralized system that
uses local communication to share robot state information
in order to ensure smooth collision free motion; an example
for 4 robots is shown in Figure 3. Below we describe the
four key components of this approach.

Platform: The robots are assumed to be differential drive
robots. Required sensors are a laser range finder and wheel
odometry. For simplicity we assume a circular footprint;
other shapes can be approximated by the circumscribed ra-
dius. In order to connect the different subsystems, including
device drivers and software modules, we use ROS (see Sec-
tion 2.4).

Sensor processing and localization: Each robot inte-
grates wheel odometry data which is in turn used to drive
the motion model of AMCL (see Section 2.3), hence tracking
the pose of the robot. Laser range finder scans are used in
the update phase of AMCL. The uncertainty of the current
localization, i.e. the spread and weight of the particles, is
taken into account for the calculation of collision free veloc-
ities as will be explained in further detail in Section 4. We
assume a prior static map that is used for localization and
available to all robots, thus providing a consistent global
coordinate frame.

Inter-robot communication: Each robot broadcasts its
position and velocity information in the global coordinate
frame on a common ROS topic. Each robot also subscribes
to the same topic and caches position and velocity data of
all other robots. Message delays are taken into account and
positions are forward integrated in time according to the
motion model of robots using the last known position and
velocity information.

Collision avoidance: NH-ORCA (see Section 2.2) is used
to compute optimal collision free velocities according to the
aggregated position and velocity data of all surrounding
robots. As a last step we incorporate localization uncer-
tainty in the NH-ORCA computation as detailed in Sec-
tion 4. The allowed tracking error is scaled depending on
current speed of the robot.

4. LOCALIZATION UNCERTAINTY
The key idea of CALU is to bound the error introduced

by localization. To derive this bound, we revisit the particle
filter described in Section 2.3.

Let xk = (x, y, θ) be the state of the system. The posterior
filtered density distribution p(xk|z1:k) can be approximated
as:

p(xk|z1:k) ≈
N∑

i=1

wik δ
(
xk − sik

)
(6)

where δ(·) is the Dirac delta measure. We recall that a par-

ticle state at time k is captured by sik = (x̂ik, ŷ
i
k, θ̂

i
k). In the

limit N →∞, Equation 6 approaches the real posterior den-
sity distribution. We can define the mean µ = (µx, µy, µθ)
of the distribution accordingly:

µx =
∑

i

wik x̂
i
k (7)

µy =
∑

i

wik ŷ
i
k (8)

µθ = atan2

(∑

i

wik sin(θ̂ik),
∑

i

wik cos(θ̂
i
k)

)
(9)

The mean gives the current position estimate of the robot.
However, the estimate is likely to be noisy and we have to
take this uncertainty into account in order to ensure collision
free motion. The probability of the robot residing within a
certain area A at time k is:

p(xk ∈ A|z1:k) =

∫

A
p(x|z1:k)dx (10)

We can rewrite (10) using (6) as follows:

p(xk ∈ A|z1:k) ≈
∑

∀i:sik∈A

wik δ
(
xk − sik

)
(11)

From (11) we see that for any given ε ∈ [0, 1) there is an A
such that:

p(xk ∈ A|z1:k) ≥ 1− ε (12)

Given sufficient samples, the localization uncertainty is thus
bounded and we can guarantee that the robot is located
within area A with probability 1− ε.

ORCA as well as NH-ORCA assume disc-shaped robots
to make calculations tractable. If a robot radius is inflated
by d, the center point of the robot can in turn be translated
by a maximum distance of d from its original position while
the resulting disc still circumscribes the entire robot. We
next derive d such that (12) holds.

We define a subset S ⊂ {s1, . . . , sN} with

dS = max
(x,y,θ)∈S

(
(x− µx)2 + (y − µy)2

)
(13)

the maximal distance to the mean. Furthermore, we define:

S : S ∈ S iff p(xk ∈ S|z1:k) ≥ 1− ε

151

of GT NH-ORCA NH-ORCA CALU CALU
robots σ = 0.0m σ = 0.2m σ = 0.0m σ = 0.2m

2 0 0 0 0 0
4 0 0 62 (11) 0 0
6 0 7 (4) 85 (11) 0 0
8 0 17 (5) 391 (35) 0 1 (1)

loc. – 0.064 0.127 0.061 0.117
error ± 0.009 ± 0.028 ± 0.011 ± 0.043

Table 1: Resulting collisions with various settings
summed over 50 runs. The number in brackets
shows the number of runs in which the collisions
occurred. AMCL is either initialized with a perfect
guess or initial guesses sampled from a two dimen-
sional normal distribution (σx = σy = 0.2m) centered
around the ground truth position.

There is a minimal subset S∗ ∈ S such that (12) holds and
the maximal distance to the mean is minimized:

S∗ = arg min
S∈S

dS (14)

Thus, if the robot radius is inflated by d = dS∗ the resulting
disc circumscribes the entire robot with a probability of 1−ε.

The implementation of this computation is straightfor-
ward and efficient. An implementation of AMCL as ex-
plained in Section 2.3 commonly tracks particles in a k-d
tree structure. The algorithm localizes the node closest to
the mean µ and subsequently increases the radius d while
adding particles that fall into the radius to the set S∗ and
accumulating the weight sum until the threshold 1 − ε is
reached.

5. EXPERIMENTS AND RESULTS
This section presents experiments and results of the pro-

posed system. We have evaluated our approach in simula-
tion using Stage [12] and in a real-world setting.

5.1 Simulation experiments
Simulation allows us to investigate the system performance

when using localization in comparison to ground truth po-
sitioning with perfect information. For evaluation we have
chosen seven different scenarios, using two to eight robots.
In each setting, the robots where located on a circle (equally
spaced) with a radius of 1.8 meter and the goals located on
the antipodal positions, i.e. each robot’s shortest path is
through the center of the circle. The goal is assumed to be
reached, when the robots center is within a 0.1 meter radius
of the true goal.

Configurations: Each scenario is tested with three differ-
ent configurations for localization:

Ground Truth (GT): Each robot gets perfect position and
velocity information through the simulation environment.

AMCL with σ = 0.0m: Each robot starts AMCL initialized
with the exact pose. The pose cloud is initialized with gaus-
sian noise in x and y direction with σ = 0.0m.

AMCL with σ = 0.2m: Each robot starts AMCL initialized
with initial guesses sampled from a 2-dimensional normal
distribution (σx = σy = 0.2m) centered around the ground
truth position.

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(a) GT (N = 4)

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(b) CALU (N = 4)

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(c) GT (N = 6)

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(d) CALU (N = 6)

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(e) GT (N = 8)

−4 −3 −2 −1 0
0

1

2

3

4

x [m]

y
 [

m
]

(f) CALU (N = 8)

Figure 4: Typical robot trajectories observed for dif-
ferent numbers of robots when comparing ground
truth (GT) to CALU.

All three settings were tested using NH-ORCA and CALU
for collision avoidance. When using ground truth both al-
gorithms are essentially the same leading to a total of five
different configurations.

Performance indices: We measure several performance
indices: a) number of collisions, b) time to complete run, c)
distance travelled, d) localization error and e) jerk cost. The
jerk cost measures the smoothness of a path and is defined
as:

Jerklin =
1

2

∫
...
x(t) dt , Jerkang =

1

2

∫
...
θ (t) dt ,

where x is the two dimensional position vector and θ the
robot’s heading.

System: Experiments were run on a single machine with
a quad core 3.07 GHz Intel i7 processor and 6GB of mem-
ory. Each setting was repeated 50 times and results were
averaged.

The results of the simulation experiments are summarized
in Table 1. We can observe that the number of collisions
using the original NH-ORCA rises immensely depending on

152

2 3 4 5 6 7 8

10

20

30

40

50

robots

T
im

e
 u

s
e

d
 [

s
]

CALU

GT

2 3 4 5 6 7 8

3.5

4

4.5

5

robots

D
is

ta
n

c
e

 t
ra

v
e

lle
d

 [
m

]

Figure 5: Total time (top) and distance travelled
(bottom) metric for CALU and ground truth (GT)
averaged over 50 simulations runs.

the localization error and the number of robots. Up to a
total of 391 collisions in 35 runs. CALU stayed collision free;
except for a single run, in which only one collision occurred.
Therefore, for the further discussion NH-ORCA is excluded
since it can not be seen as a realistic obstacle avoidance
method without our adaptations. This leads us to further
compare CALU and GT. To stay as realistic as possible, we
focus on runs with CALU and an initial guess corrupted by
gaussian noise. In reality, this will also be the case, since
it is almost impossible to determine the real position of a
robot on a map. Thus, when speaking of CALU in the
coming paragraphs, it is referring to CALU with a noisy
initial guess.

Some typical trajectories with ground truth (GT) and
CALU that we observed during the simulation runs are pre-
sented in Figure 4. For up to seven robots the resulting
trajectories are usually smooth. In the setting with eight
robots, the relatively small area gets very crowded and there
is hardly any space to maneuver, see Figure 4(f). Likewise,
we can observe that using CALU generally results in larger
arcs that are farther away than when using GT. This can
be explained by the inflated radius when using CALU due
to the sensor uncertainty.

As expected, the runtime and distance travelled increased
for more robots as presented in Figure 5. CALU generally
uses more time and travels longer than GT. This is also re-
flected in the average jerk costs, see Figure 6. Interestingly,
CALU uses a lot more angular jerk than GT already for two
and three robots, while GT increases a lot at first and then
stabilizes below the CALU amounts. We assume that the
large jerk costs already for only a few robots are due to the
inflated radii based on the localization uncertainty. Espe-
cially right after initialization, the localization uncertainty
is very large, since the particles are scattered more widely
thus inflating the radius by a larger factor. This only stabi-
lizes after a couple of update steps using the feedback from
the odometry and the laser measurements.

5.2 Real-world experiments
In addition to simulation runs, we have investigated the

performance of CALU in real-word settings up to four dif-

2 3 4 5 6 7 8

10
5

10
6

10
7

10
4

10
3

10
2

robots

J
e

rk
 c

o
s
ts

CALU Ang

GT Ang

CALU Lin

GT Lin

Figure 6: Linear and angular jerk costs for ground
truth (GT) and CALU averaged over 50 simulation
runs.

ferential drive Turtlebots2. The robots are based on the
iRobots Create platform and have a diameter of 33.5 cm.
In addition to the usual sensors, they are equipped with a
Hokuyo URG laser-range finder to enable better localization
in large spaces. All computation is performed on-board on a
Intel Atom D525 1.8GHz dual core CPU netbook. Commu-
nication between the robots is realized via a 2.4 GHz WiFi
link. Before set up the robots are driven remotely to their
initial positions and AMCL is initialized with an approxi-
mated initial guess.

Figure 7 shows the trajectories of an example run of the
four robots using CALU. The initial positions are approx-
imately 3.5 meters apart; the goal location are set to the
diagonally opposing start locations. The system success-
fully avoids collision and produces smooth paths; except for
a small jump in the localization that can be observed in the
path of robot starting in the upper right corner.

Additionally, we tested a realistic setting of two robots in a
narrow hallway. Each robot wants to get to the other side of
the hallway; thus having to pass the other robot. Figure 8
shows the setup and the resulting paths using CALU. To
overcome that the robots drive into the walls, two ORCA
lines where added to the robots. Adding these additional
lines automatically, based on the map and sensor data, is
topic of future work as described in the next section. The
resulting paths are very close, but still collision free.

6. CONCLUSIONS
While the proposed approach works well in many cases,

there are some limitations that we need to address. If the
workspace gets more and more crowded with multiple robots,
the resulting paths are not always smooth. (NH-)ORCA
computes an optimal velocity that is collision free and clos-
est to the desired velocity. However, in our experiments the
desired velocity points always straight to the goal. Without
a planning algorithm that plans multiple waypoints around
fixed obstacles (and motionless robots) there can occur sit-
uations where the resulting velocity would be zero.

Differential drive robots can not follow the ORCA veloc-
ities directly and always have to turn on the spot or track
an arc to accomplish the desired change of direction. In
crowded situations, robots do have to turn on the spot in
order to avoid collisions, while in open space collision avoid-

2For more information see: http://turtlebot.com.

153

Figure 7: Real-world collision avoidance with four
differential drive robots using CALU.

ance between only a few robots smoother arc tracking is
desired. This is accomplished by the dynamic adaptation of
the error bound depending on the speed.

If the size of the localization error is in the magnitude of
the robot radius, collisions are bound to happen and this is
shown in the results with NH-ORCA. This is resolved by in-
troducing CALU and adapting the robots radii according to
the localization uncertainty reported by AMCL. However,
the combination of the dynamically adapting error bound
and the inflation due to uncertainty might lead to oscilla-
tions, since previously free path become blocked and free
again depending on the other agents’ radii. To overcome this
the radius scaling can be filtered. Additionally, the AMCL
localization can jump and combined with delays in commu-
nication this can lead to collisions. An Extended Kalman
Filter could be a possible solution to this problem.

In future work we will investigate these idea and fur-
thermore extend our experiments to different scenarios, i.e.
larger map, various start and goal location configurations
and uncontrolled moving obstacles like humans. Addition-
ally, we will examine the possibility of how to implement
the presented algorithm as part of a global and local plan-
ner that will take the map and static obstacles obtained from
the sensor data into account.

7. REFERENCES
[1] Javier Alonso-Mora, Andreas Breitenmoser, Martin

Rufli, Paul Beardsley, and Roland Siegwart. Optimal
reciprocal collision avoidance for multiple
non-holonomic robots. In Proceedings of the 10th
International Symposium on Distributed Autonomous
Robotic Systems (DARS), 2010.

[2] Paolo Fiorini and Zvi Shiller. Motion planning in
dynamic environments using velocity obstacles.
International Journal of Robotics Research,
17:760–772, July 1998.

[3] Dieter Fox. Kld-sampling: Adaptive particle filters. In
Advances in Neural Information Processing Systems
14. MIT Press, 2001.

[4] Dieter Fox. Adapting the sample size in particle filters
through kld-sampling. International Journal of
Robotics Research, 22, 2003.

[5] Boris Kluge, Dirk Bank, Erwin Prassler, and Matthias
Strobel. Coordinating the motion of a human and a

Figure 8: Real-world collision avoidance with two
differential drive robots using CALU in a small hall-
way. To stay clear from the walls two extra ORCA
lines where added to both robot.

robot in a crowded, natural environment. In Advances
in Human-Robot Interaction, volume 14 of Springer
Tracts in Advanced Robotics, pages 231–234. Springer
Berlin / Heidelberg, 2005.

[6] Morgan Quigley et al. ROS: An open-source Robot
Operating System. In Proceedings of the Open-Source
Software workshop (ICRA), 2009.

[7] Jamie Snape, Jur van den Berg, Stephen J. Guy, and
Dinesh Manocha. Independent navigation of multiple
mobile robots with hybrid reciprocal velocity
obstacles. In Proceedings of the 2009 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, pages 5917–5922, 2009.

[8] Jamie Snape, Jur van den Berg, Stephen J. Guy, and
Dinesh Manocha. Smooth and collision-free navigation
for multiple robots under differential-drive constraints.
In Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010.

[9] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents series). The MIT Press, 2005.

[10] Jur van den Berg, Stephen Guy, Ming Lin, and Dinesh
Manocha. Reciprocal n-body collision avoidance. In
Robotics Research, volume 70, pages 3–19, 2011.

[11] Jur van den Berg, Ming Lin, and Dinesh Manocha.
Reciprocal velocity obstacles for real-time multi-agent
navigation. In ICRA 2008, pages 1928 –1935, 2008.

[12] Richard Vaughan. Massively multi-robot simulation in
stage. Swarm Intelligence, 2(2):189–208, 2008.

154

Decision-Theoretic Approach to Maximizing Observation
of Multiple Targets in Multi-Camera Surveillance

Prabhu Natarajan, Trong Nghia Hoang, Kian Hsiang Low, and Mohan Kankanhalli
Department of Computer Science, National University of Singapore

Computing 1, 13 Computing Drive, Singapore 117417, Republic of Singapore
{prabhu, nghiaht, lowkh, mohan}@comp.nus.edu.sg

ABSTRACT
This paper presents a novel decision-theoretic approach to control
and coordinate multiple active cameras for observing a number of
moving targets in a surveillance system. This approach offers the
advantages of being able to (a) account for the stochasticity of tar-
gets’ motion via probabilistic modeling, and (b) address the trade-
off between maximizing the expected number of observed targets
and the resolution of the observed targets through stochastic op-
timization. One of the key issues faced by existing approaches
in multi-camera surveillance is that of scalability with increasing
number of targets. We show how its scalability can be improved
by exploiting the problem structure: as proven analytically, our
decision-theoretic approach incurs time that is linear in the number
of targets to be observed during surveillance. As demonstrated em-
pirically through simulations, our proposed approach can achieve
high-quality surveillance of up to 50 targets in real time and its
surveillance performance degrades gracefully with increasing num-
ber of targets. We also demonstrate our proposed approach with
real AXIS 214 PTZ cameras in maximizing the number of Lego
robots observed at high resolution over a surveyed rectangular area.
The results are promising and clearly show the feasibility of our
decision-theoretic approach in controlling and coordinating the ac-
tive cameras in real surveillance system.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Tracking; I.2.9 [Robotics]: Commercial
robots and applications, Sensors

General Terms
Algorithms, Performance, Experimentation, Security

Keywords
Active camera networks, Smart camera networks, Multi-camera
coordination and control, Surveillance and security

1. INTRODUCTION
The use of active cameras in surveillance is becoming increas-

ingly popular due to the recent advances in smart camera technolo-
gies [4]. These active cameras are endowed with pan, tilt, and zoom

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems – Innovative Applica-
tions Track (AAMAS 2012), Conitzer, Winikoff, Padgham, and van der
Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

capabilities, which can be exploited to provide high-quality surveil-
lance. In order to achieve effective, real-time surveillance, an effi-
cient collaborative mechanism is needed to control and coordinate
these cameras’ actions, which is the focus of our work in this paper.

Monitoring a set of targets moving in an environment is a chal-
lenging and difficult task because (a) the motion of these targets is
often stochastic in nature, (b) it needs to address the non-trivial
trade-off between maximizing the expected number of observed
targets and the resolution of the observed targets, and (c) a cam-
era coordination framework should be scalable with an increasing
number of targets. To elaborate, (a) the uncertainty in the targets’
motion makes it hard for the active cameras to know where to ob-
serve in order to keep these targets within their fields of view (fov)
and they may consequently lose track of the observed targets, (b)
increasing the resolution of observing some targets through pan-
ning, tilting, or zooming may result in the loss of other targets be-
ing tracked, and (c) when the number of targets increases, a camera
coordination framework, if poorly designed, tends to incur expo-
nentially increasing computational time, which degrades the per-
formance of the entire system. These issues arise in many real-
world surveillance applications such as target surveillance, observ-
ing a group of players in sports, industrial monitoring of protected
sites, etc. Hence, we believe that, by addressing these practical
issues, a more effective surveillance system can be realized and
subsequently deployed in the real world. Note that our proposed
surveillance task differs from the typical sensor coverage problem,
the latter of which instead focuses on maximizing the spatial cov-
erage of the cameras that are independent of targets’ motion. In our
work, we try to maximize the coverage of the observed targets in
the environment.

This paper presents a novel principled decision-theoretic approach
to control and coordinate the active cameras for the surveillance of
multiple moving targets (Section 2). This approach is based on
the Markov Decision Process (MDP) framework, which allows the
surveillance task to be framed formally as a stochastic optimization
problem (Sections 3 and 4). In particular, our MDP-based approach
resolves the above-mentioned issues: (a) the motion of the targets
can be modeled probabilistically (Section 4.2), and (b) to address
the trade-off, the active cameras’ actions are coordinated to maxi-
mize the expected number of observed targets while guaranteeing a
pre-defined resolution of these observed targets (Section 4.4), and
(c) the scalability can be improved by exploiting the problem struc-
ture: as proven analytically (Section 4.5), our MDP-based approach
incurs time that is linear in the number of targets to be observed dur-
ing surveillance. One key problem faced by existing multi-camera
multi-target surveillance approaches is that of scalability with in-
creasing number of targets (Section 2). As demonstrated empir-
ically through simulations (Section 5), our MDP-based approach

155

Table 1: Comparison of related work based on (a) camera:target ratio, (b) primary criterion, and (c) uncertainty in targets’ motion.

Surveillance/tracking strategy n� m n� m n = m
Maximizing no. of
observed targets

Minimizing uncertainty
of targets’ locations

Uncertainty in
targets’ motion

Banerjee et al. [3] × ×
Costello et al. [5] × ×

Krahnstoever et al. [9] × ×
Qureshi et al. [13] × ×

Soto et al. [15] × ×
Sommerlade et al. [14] × ×

Huang et al. [8] × ×
Alfy et al. [6] × ×

Proposed MDP-based approach × × ×

can achieve high-quality surveillance of up to 50 targets in real
time and its surveillance performance degrades gracefully with an
increasing number of targets. The real-world experiments (Sec-
tion 5.3) show the practicality of our decision-theoretic approach
to control and coordinate cameras in surveillance systems.

2. RELATED WORK
Our proposed work is compared and contrasted with existing

approaches for active camera surveillance based on the following
classification: (a) ratio of number n of cameras to numberm of tar-
gets, (b) primary criterion - the main objective/goal of the surveil-
lance system, and (c) uncertainty in targets’ motion - whether the
targets’ motion uncertainty is considered in camera coordination
and optimal decision making. This comparison is shown in Ta-
ble 1. The camera:target ratio is further classified based on n� m,
n � m, and n = m. The camera:target ratio plays an important
role in the choice of primary criterion that is used in the existing
works, as explained below. The primary criterion is classified into:
(i) maximizing the number of observed targets with certain guar-
anteed resolution and (ii) minimizing the uncertainty of individual
targets’ locations. The targets’ motion is stochastic in nature and
hence needs to be predicted and subsequently exploited for coordi-
nating the cameras in a typical surveillance system. The existing
works are also classified based on whether they have accounted for
the uncertainty in targets’ motion in their optimization framework.

Table 1 shows that when the camera:target ratio is either n = m
[3] or n � m [5, 6, 8, 9, 13, 14, 15], the primary criterion is to
minimize the uncertainty of individual targets’ locations. By ob-
serving individual targets with more cameras, the uncertainty of
targets’ locations is decreased. In contrast, when the camera:target
ratio is n� m, the primary criterion is to maximize the number of
observed targets in the environment. In either criterion, the targets’
motion is inherently non-deterministic. But, none of the previous
works have accounted for the motion uncertainty in their optimiza-
tion framework. The works of [2, 12] aim to maximize the coverage
of static targets in omni-directional active sensors. Since the targets
are static, there is no notion of stochasticity of targets’ motion. All
the above-mentioned works use heuristic approaches to select the
best actions for the active cameras. Such approaches are therefore
tailored specifically to their own objectives and cannot be modified
to achieve other objectives. In contrast, our approach is a general
framework in which different surveillance goals can be modeled as
formal objective functions.

To summarize, our proposed work is different from the exist-
ing works in the following ways: (a) we use a formal, principled
Markov Decision Process (MDP) framework to select the optimal
actions for active cameras to maximize the expected number of ob-

served targets; (b) we account for the uncertainty in targets’ motion
by integrating a probabilistic motion model into our optimization
framework; and (c) many previous works ([9, 13, 14, 16], etc.)
face a serious scalability issue in terms of the number of targets to
be observed. We shall show in later sections how the state space
of the targets can be managed efficiently by exploiting the structure
and properties that are inherent in the surveillance problem.

3. SYSTEM ARCHITECTURE
The proposed surveillance framework consists of a supervised

surveillance environment and an MDP controller. The environ-
ment consists of targets, static cameras, and active cameras. The
targets are the moving objects (e.g., people, vehicles, robots, etc.)
in the surveillance environment whose motions are stochastic in
nature. The static cameras are wide-view cameras that can only
provide low-quality information of the surveillance environment.
These cameras are assumed to be calibrated and can obtain the 3D
location, direction, and velocity information of the targets. The
active cameras are PTZ (pan/tilt/zoom) cameras that can get high-
resolution images of the targets in the environment. The MDP con-
troller models the interaction between the active cameras and the
environment, and provides a platform to choose optimal actions for
these cameras in order to achieve high-quality surveillance tasks.

Fig. 1 shows the top view of a representative surveillance en-
vironment where the full fov’s of the active cameras are shown
in dotted lines and the current active fov’s are shaded. For sim-
plicity, the static cameras are not shown. The active cameras are
placed such that they can observe the complete environment by
pan/tilt/zoom operations but cannot observe all locations of the en-
vironment simultaneously. This makes the problem more practical
and challenging, thus emphasizing the need to control these ac-
tive cameras. The static cameras determine the location, direction,
and velocity of targets and pass these information to the MDP con-
troller. Based on these information, the MDP controller computes
the optimal actions of active cameras such that the expected utility
of the surveillance system is maximized. The utility of the surveil-
lance system corresponds to the high-level application goal that can
be defined formally using a real-valued objective function, as de-
scribed in Section 4.4.

Formally, the MDP controller is defined as a tuple (S,A, R, Tf)
consisting of a set S of discrete states of active cameras and tar-
gets, a set A of joint actions of active cameras, a reward function
R : S → R representing the high-level surveillance goal, and a
transition function Tf : S × A × S → [0, 1] denoting the prob-
ability P (S′|S,A) of switching from the current state S ∈ S to
the next state S′ ∈ S using the joint action A ∈ A. In the MDP
framework, the policy function π : S → Amaps from each state to

156

Actions for each active camera

camera 1 camera 2 camera 3

camera 5

ca
m
er
a
4

camera 6 camera 7

MDP Controller

ca
m
er
a
8

D
oo
r

Wall

Figure 1: System architecture.

a joint action of the cameras. Solving the MDP involves choosing
the policy that maximizes the expected reward for any given state.
The optimal policy, denoted by π∗, maximizing the expected utility
of the system in the next time step is given by

π∗(S) = arg max
A∈A

∑

S′∈S
R(S′) P (S′|S,A) .

The main challenge in the MDP is managing the state space S and
action spaceA. This is because the state space grows exponentially
in the number of active cameras and targets. Hence, the policy
computation time for our surveillance problem is exponential. In
practice, the structure of the problem and environment can usually
be exploited to reduce the number of states and the time required
to compute the optimal policy. We will show in Section 4.5 how
the state space can be managed for our surveillance problem, thus
allowing the MDP to be solved more efficiently.

The following assumptions are made in our surveillance task:
• The targets are oblivious to the cameras, in particular, non-evasive

(i.e., they do not try to escape from the cameras’ fields of view)
and their motion cannot be controlled nor influenced;
• The static cameras are calibrated accurately such that the 3D po-

sitioning errors of the targets are minimal. This can be achieved
by placing the cameras at high altitude;
• The total number of targets in the environment can be obtained

from static cameras and/or motion sensors at the entry and exit.

4. PROBLEM FORMULATION
Given a set of cameras and targets in a surveillance system, the

MDP controller determines the optimal actions for these cameras
such that the expected utility of the surveillance system is maxi-
mized. In this section, we describe how an MDP framework can
be applied to a generic active camera surveillance in order to maxi-
mize the expected utility of the surveillance system. We enumerate
each component of the MDP framework and show how these com-
ponents can be formulated for a typical surveillance system. In
this work, the objective/reward function of the MDP modeling the
high-level surveillance goal measures the total number of targets
observed by active cameras with a guaranteed resolution. Maxi-
mizing the number of observed targets with a guaranteed resolution
is a mandatory task in surveillance because we need to obtain the
high-resolution images of targets for biometric and forensic tasks

90o

45o
0o

+45o

+90oci= +45o
(a)

D
o
o
r

target location

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

Wall

(b)
Figure 2: (a) Camera states and (b) target locations.

like target detection, recognition, etc. In this work, we present a
decision-theoretic approach for maximizing the expected number
of targets observed by the active cameras.

4.1 States and Actions
A state of the MDP comprises the states of active cameras and

targets in the surveillance environment. The passive static cameras
are first calibrated based on common ground plane coordinates and
then used to obtain the targets’ approximate 3D location, veloc-
ity, and the direction information. Let n be the number of active
cameras and m be the number of targets in the environment such
that n � m. In this manner, the surveillance problem becomes
more challenging and interesting since there are more targets to be
monitored by fewer active cameras.

Let the set of possible states of each active camera in the envi-
ronment be denoted by C such that each state ci ∈ C corresponds
to a discretized pan/tilt/zoom position of camera i. For example, in
Fig. 2a, the set of possible states of camera i based on discretized
pan angles is given by C = {+90 ◦,+45 ◦, 0 ◦,−45 ◦,−90 ◦} and
the current state ci is +45 ◦.

Let the state space of a target be represented by a set of tuples of
location, direction and velocity, and denoted by T = Tl ×Td ×Tv
where Tl denotes a set of all possible locations of the target in the
environment, Td denotes a set of all possible discretized directions
between all pairs of locations in Tl, and Tv denotes a set of dis-
cretized velocities of the target. The surveillance environment is
discretized into grid cells such that the centers of the grid cells rep-
resent the possible locations of a target, as shown in Fig. 2b. The
approximate 3D location of the target observed by static cameras
will be mapped to the center of the nearest grid cell. The direction
and velocity of the target are determined based on its current and
previous locations. The static cameras detect the targets in their
fov’s and report their locations, directions, and velocities to the
MDP controller.

By calibrating the active cameras, the possible target locations in
the environment that lie within the fov of each active camera in its
various states can be pre-computed. For each state ci ∈ C of active
camera i, the subset of locations lying within its corresponding fov
is denoted by fov(ci) ⊂ Tl. For example, Fig. 3 illustrates the
fov (i.e., shaded polygon) of active camera 1 in its current state c1;
the subset of locations that are observed by camera 1 is given by
fov(c1) = {(0, 1), (0, 2), . . . , (2, 3), (2, 4)}.

To observe targets with a guaranteed resolution, the zoom pa-
rameter of an active camera can be adjusted to focus its fov so that
imageries of the targets detected within its fov satisfy a pre-defined
resolution. This requires limiting the depth of its fov, as depicted
by the horizontal line in Fig. 3. As a result, if a target is located
within fov(ci) of any camera i, then it is observed with a guaran-
teed resolution. For example, the minimum resolution of the human
face should be 24× 24 pixels, which is the base resolution for face
detection [18]. The resolution of the targets should be higher than

157

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

camera 1
fov(c1)

Figure 3: fov(c1) of camera 1.

24 × 24 pixels for other tasks like face recognition and expression
analysis, vehicle number plate detection and identification, etc.

Let the vector C = (c1, c2, . . . , cn) be the joint state of n active
cameras in the environment and the vector T = (t1, t2, . . . , tm)
be the joint state of m targets in the environment where tk ∈ T is
the state of target k. A state S ∈ S = T m × Cn of the MDP is
therefore of the form S = (T,C).

The actions of an active camera are pan/tilt/zoom commands to
move the camera to a specified state. Let ai be an action of cam-
era i corresponding to a pan/tilt/zoom command. We assume that
the delay in moving the camera to a specified state is negligible as
the state-of-the-art cameras are capable of panning at a speed of
360◦/sec [1]. The joint action of all cameras at any given time is
a vector A = (a1, a2, . . . , an) ∈ A. Since we assume that the
targets’ motion cannot be controlled, no action can be specified by
the MDP controller to influence their motion in the surveillance
environment.

4.2 Transition Function Tf
Recall that the transition function Tf of the MDP denotes the

probability P (S′|S,A) of moving from the current state S to the
next state S′ using the joint action A. In this subsection, we will
show how this transition probability can be factored into transi-
tion probabilities of individual active cameras and targets using the
conditional independence property, which is inherent in the state
transition dynamics of the surveillance environment. As a result,
the computation time of our optimal policy is significantly reduced
(i.e., from exponential to linear in the number m of targets), hence
alleviating the scalability issue (see Theorem 1).

Firstly, the transition probability P (S′|S,A) can be factored into
the transition probabilities of the active cameras and targets (i.e., re-
spectively, P (C′|C,A) and P (T ′|T)) due to conditional indepen-
dence (see first equality of (1)). Specifically, the transition proba-
bility P (C′|C,A) of the active cameras is conditionally indepen-
dent of the targets’ states. Since the targets are assumed to be obliv-
ious to the cameras, the transition probability P (T ′|T) (i.e., mo-
tion model) of the targets is conditionally independent of the active
cameras’ states and actions.

Next, the transition probability P (C′|C,A) of the active cam-
eras can also be factored into transition probabilities of individ-
ual active cameras due to conditional independence. The transi-
tion probability of an individual camera i is P (c′i|ci, ai) where
ci, c

′
i ∈ C are, respectively, its current and next states, and ai is

its action. Since the transition probability of each active camera
is conditionally independent of the other cameras given its current
state and action, P (C′|C,A) can be factored into P (c′i|ci, ai)’s

for i = 1, . . . , n (see second equality of (1)). Modern active cam-
eras are equipped with advanced functionalities that enable them to
move to the desired pan/tilt/zoom positions accurately [1]. Hence,
it is practical to assume the transition of camera i to be deter-
ministic and consequently represented by a deterministic function
c′i = execute(ci, ai) since P (c′i|ci, ai) evaluates to either 0 or 1.

Similarly, the transition probability P (T ′|T) of the targets can
be factored into transition probabilities (i.e., motion models) of in-
dividual targets by assuming conditional independence. The tran-
sition probability of target k is P (t′k|tk) where tk, t′k ∈ T are,
respectively, its current and next states. Since the transition proba-
bility of each target is conditionally independent of the other targets
given its current state, P (T ′|T) can be factored into P (t′k|tk)’s for
k = 1, . . . ,m (see second equality of (1)).

As discussed above, the transition probability P (S′|S,A) of the
MDP can be factored into transition probabilities of individual ac-
tive cameras and targets after repeatedly applying the conditional
independence property:

P (S′|S,A)

= P (C′|C,A) P (T ′|T)

=

n∏

i=1

P (c′i|ci, ai)
m∏

k=1

P (t′k|tk)

=

m∏

k=1

P (t′k|tk) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.

(1)

4.3 Transition Probability P (t′k|tk) of a Target
To calculate the transition probability of a target, we first pre-

dict a target’s movement in a surveillance environment using a gen-
eral velocity-direction motion model. Specifically, this model com-
prises two Gaussian distributions for the velocity v and direction d
of the target: v ∼ N (µv, σv) and d ∼ N (µd, σd) where the mean
parameters µv and µd are obtained from the static cameras at every
time step based on the previous location of the target, and the vari-
ance parameters σv and σd are learned from a dataset of targets’
trajectories in the given supervised surveillance environment.

Then, in every time step t, we draw paired samples of veloc-
ity v and direction d of the target from the Gaussian distributions,
compute its corresponding predicted location (xt, yt) in the envi-
ronment using

xt = xt−1 + v × cos(d)× dt
yt = yt−1 + v × sin(d)× dt (2)

and determine the proportion of samples in each grid cell to pro-
duce the transition probability P (t′k|tk) of the target. Fig. 4 shows
the transition probability distribution of a target that is located at
(xt−1, yt−1) = (5, 5) with µv = 2 cells per time step and µd =
45◦. The probability distribution of the neighboring locations that
the target will move to in time step t is shown as black dots. Since
the possible locations, directions, and velocities of the target are
finite, we can pre-compute the transition probabilities of the tar-
get and store them off-line. This helps to reduce the on-line policy
computation time, as discussed in Theorem 2.

4.4 Objective/Reward Function R
The advantage of using MDPs in surveillance systems is that

any high-level surveillance goal can be defined formally using a
real-valued objective/reward function. In this work, the goal of the
surveillance system is to maximize the number of observed targets
with a guaranteed resolution. Supposing the states of all targets are
known, such a goal can be achieved by defining a reward function

158

Transition probability distribution

for target

Target’s location at (5,5)

Y

X

Figure 4: Transition probability distribution of a target.

that measures the total number of targets lying within the fov of any
of the active cameras:

R(S) = R((T,C)) =

m∑

k=1

R̃(tk, C) (3)

R̃(tk, C) =

{
1 if target k’s location lies in fov(C),
0 otherwise; (4)

where fov(C) =
⋃n
i=1 fov(ci) denotes a set of target locations in

the environment, each of which lies within the fov of at least one
active camera when the cameras are in state C. So, if the location
of target k lies within fov(C), then it is guaranteed to be observed
at a predefined image resolution, as discussed in Section 4.1, and
R̃(tk, C) = 1 results.

4.5 Policy Computation
The states of the targets in the next time step are uncertain due

to stochasticity of their motion. Therefore, the optimal policy π∗

has to instead maximize the expected total number of targets that
lie within the fov of any of the active cameras in the next time step:

π∗(S) = π∗((T,C)) = arg max
A∈A

V (T,C,A) (5)

V (T,C,A) =
∑

T ′∈Tm
R((T ′, C′)) P (T ′|T) (6)

where T ′ and C′ are, respectively, the joint states of the targets
and active cameras in the next time step. The next joint state C′ of
the cameras can be determined deterministically from their current
joint state C and action A using the function c′i = execute(ci, ai)
for i = 1, . . . , n (Section 4.2).

Computing the policy π∗ (5) for a given state S incursO(|A||T |m)
time, which is exponential in the number m of targets. Its time
complexity can be significantly reduced by exploiting the inherent
structure of our surveillance problem, in particular, the conditional
independence property in the transition model of the MDP (Sec-
tion 4.3). As a result, the value function V (6) can be reduced to

V (T,C,A) =

m∑

k=1

Ṽ (tk, C
′) (7)

Ṽ (tk, C
′) =

∑

t′
k
∈T

R̃(t′k, C
′) P (t′k|tk) . (8)

For a detailed derivation of (7), see Appendix A. Computing the
policy π∗ for a given state S consequently incurs linear time in the
number m of targets, as shown in the result below:

THEOREM 1. If (1) holds, then computing policy π∗ (5) for a
given state S incurs O(|A||T |m) time.

To improve the real-time computation of policy π∗, the values of
Ṽ (tk, C

′) (8) for all tk ∈ T andC′ ∈ Cn can be pre-computed and
stored off-line. To do this, the values of P (t′k|tk) for all tk, t′k ∈ T
have to be pre-computed first, which incurs O(|T |2) time. The
values of R̃(t′k, C

′) for all t′k ∈ T and C′ ∈ Cn also have to be
pre-computed, which incurs O(|T ||C|n) time. Consequently, the
values of Ṽ (tk, C

′) (8) for all tk ∈ T and C′ ∈ Cn can be pre-
computed in O(|T |2|C|n) time. Hence, the total off-line computa-
tion time is O(|T |2|C|n). The on-line computation time to derive
policy π∗ can then be reduced to O(|A|m), which includes the
time taken to look up the values of Ṽ (tk, C

′) for m targets (7) and
over |A| possible joint actions (5). The result below summarizes
the computation time incurred by the on-line and off-line process-
ing steps:

THEOREM 2. If (1) holds, then computing policy π∗ (5) for a
given state S incurs off-line computation time of O(|T |2|C|n) and
on-line computation time of O(|A|m).

5. EXPERIMENTS AND DISCUSSIONS
In this section, we present empirical evaluation of our MDP-

based approach for maximizing the number of targets observed by
active cameras. Our proposed approach is simulated in Player/Stage
simulator [7] to perform extensive experimentations and imple-
mented using real AXIS 214 PTZ cameras to demonstrate its feasi-
bility in real surveillance system. Before describing them, it is im-
portant to point out that there is no standard benchmark surveillance
environments and datasets for active camera networks to compare
our proposed approach with the other systems in the literature (e.g.,
[9, 13, 14]). While the primary criterion of these systems is to min-
imize the uncertainty of targets’ locations, our objective function is
to maximize the number of targets observed in high-resolution im-
ages (see Table 1). These existing systems use heuristic approaches
that can optimize only their respective objective function and can-
not be used for other objective functions. These systems also suffer
from scalability issue when the number of targets is increased. Fur-
thermore, the optimization frameworks of these existing systems
determine the cameras’ actions (or schedule the cameras) for the
current time step based on the current locations of the targets. In
contrast, our approach determines the cameras’ actions for the cur-
rent time step based on the expected locations of the targets in the
next time step (see (7) and (8)). This makes our approach perform
better than the existing methods in maximizing the number of ob-
served targets. Our MDP-based approach is empirically compared
with the following existing heuristic methods:
• Krahnstoever’s (Krahns) Approach: The work of [9] provided an

optimization method to capture high-resolution images of a sin-
gle target. It schedules the tasks for active cameras based on the
location of the targets in the current time step and assumes that
the targets will not move out of the fov within the short duration;
• Systematic (Sys) Approach: The active cameras pan automati-

cally in a round robin fashion such that every camera pans to
each of its states for a finite duration;
• Static (Stat) Approach: The active cameras are fixed at specific

states such that they can cover maximum area to get high-resolu-
tion imageries of the targets.
Our approach and the above heuristic methods are evaluated us-

ing the following performance metric:

PercentObs =
100

τMtot

τ∑

i=1

M i
obs

159

camera 2

camera 1 camera 3

camera 4

camera 4 camera 3

camera 1 camera 2

Figure 5: Setups of corridor and hall environments.

where τ (i.e., set to 100 in simulations) is the total number of time
steps taken in our experiments, M i

obs is the total number of targets
observed by the active cameras at a given time step i, and Mtot

is the total number of targets present in the environment. That is,
the PercentObs metric averages the percentage of targets being
observed by the active cameras over the entire duration of τ time
steps. We will first discuss the environmental setup for the simu-
lated experiments and analyze the experimental results. Then, we
will show the results of the real camera experiments. Interested
readers can view our demo video1.

5.1 Simulated Experiments: Setup
In Player/Stage simulator, we have designed an active camera

model with functionalities to simulate real active cameras by con-
figuring the number of states across pan angles, as discussed in
Section 4.1. The targets’ motion are generated in Player/Stage sim-
ulator based on velocity-direction motion model (see (2)), which
resembles real human motion in surveillance environment. The lo-
cations of the targets are determined by a static camera, which is
the simulator itself. We have conducted our experiments for two
environmental setups (Fig. 5): corridor and hall. The sizes of the
corridor and hall environments are, respectively, 40 × 5 grid cells
and 20× 10 grid cells such that |Tl| = 200. The size of a grid cell
in the simulator is approximately mapped to 1 m2 in real world. We
have used up to n = 4 active cameras with |C| = 3, 5, and tested
up to m = 50 targets. We have also conducted experiments for the
camera resolutions |fov(ci)| ≈ 25, 16 by reducing the size of the
camera’s fov polygon in the simulator. The set fov(ci) of target
locations that are observed by each active camera is determined by
calibrating the active cameras in each of its state.

5.2 Simulated Experiments: Results
Figs. 6 and 7 show the performance of our MDP-based approach

for corridor and hall setups with n = 4, |Tl| = 200, target’s ve-
locity v = 3 cells per time step, and with varying m, |fov(ci)|,
|C|, and sizes of clusters of targets that follow the Poisson distribu-
tion (λ = 3). The rest of this subsection describes the observations
from our experiments.

Our MDP-based approach performs better for any of the target’s
velocity v = 1, 2, 3 cells per time step. This is because the cam-
eras are controlled based on the predicted locations of a target by
matching its corresponding transition probabilities with respect to
its observed state. It can be observed from the experiments that
the performance of MDP is much better that the other approaches
when (a) the velocity of the targets is higher, (b) the targets move
in clusters, and (c) when the resolution of the cameras is increased
(i.e., |fov(ci)| is decreased). This is because when the velocity
of the targets is high (i.e., v = 2.5, 3 cells per time step), all
the targets will almost certainly move out of the fov’s of the cam-
eras in Krahns approach as the cameras are controlled based on

1http://www.comp.nus.edu.sg/∼lowkh/camera.html

the current location of the targets, hence producing worse perfor-
mance (see Figs. 6a and 7a). When the targets move in clusters,
then the Krahns approach suffers even more performance degra-
dation because it has high tendency to lose clusters of targets. On
the other hand, since the MDP has the correct transition model, it
gives superior performance even when the targets move in high ve-
locity. By increasing the resolution of the active cameras (i.e., by
reducing |fov(ci)| ≈ 25 to 16), it can be observed that the MDP
performs much better when compared to the Krahns approach
(Figs. 6c, 6d, 7c, and 7d). This is because when the targets are
moving at a velocity of v = 3 cells per time step and are observed
at higher resolution (i.e., |fov(ci)| is smaller), the chance of losing
the targets is high when the cameras are controlled based on current
observed locations of the targets. Since MDP has transition model
that predicts the next locations of the targets, it outperforms the
other approaches when the targets are clustered and the resolution
of the cameras is high.

The Sys and Stat approaches perform worse in almost all cases
except when |fov(ci)| ≈ 16 (Figs. 6c, 6d, 7c, and 7d) where the
Sys approach performs better than Krahns approach. This is
due to the fact that the cameras are controlled independently of
the targets’ information in both Sys and Stat approaches. This
shows that the targets’ information (e.g., location, direction, etc)
play a vital role in achieving high-quality surveillance. But, when
|fov(ci)| ≈ 16, the Sys approach performs slightly better than
Krahns because the chance of targets moving out of the fov is
higher in Krahns approach if the velocity of the targets is v = 3
cells per time step and the fov is reduced to |fov(ci)| ≈ 16. In all
cases, the MDP outperforms the Sys and Stat approaches.

When the number of states of each camera is increased from
|C| = 3 (Figs. 6c and 7c) to |C| = 5 (Figs. 6d and 7d), the per-
formance improves because more targets can be observed due to
the additional camera states. The MDP-based approach performs
better than the other approaches even when the transition model
is inaccurate. This is tested by keeping the velocity of the targets
moving at v = 3 cells per time step and matching the transition
probabilities computed with velocities v = 2, 2.5, 3 cells per time
step (Figs. 6c, 6d, 7c, and 7d). The performance of MDP computed
with inaccurate transition probabilities is still much better than the
other approaches. This is because the reward function is optimized
with respect to the expected locations of the targets.

When the number of cameras is increased from n = 2, 3 to 4,
the increase in performance of MDP is much better than the other
approaches for m < 10 targets and comparable to (if not better
than) other approaches for m > 10. This is because the prediction
capability of our approach outperforms the other approaches with
every addition of a new camera. The graph with increasing number
of cameras is not shown here due to space limitation.

From these observations, we find that our MDP-based approach
performs better than the other tested approaches in all the cases due
to its prediction capability. Specifically, it outperforms Krahns
approach when the velocity of the targets and the resolution of the
cameras are high.

5.3 Real Experiments
We have conducted real experiments with n = 3 AXIS 214 PTZ

cameras to monitor up to m = 6 Lego robots (targets) in an envi-
ronment with the size of |Tl| = 11× 9 grid cells. The size of each
grid cell is 0.5 m2. Each camera has |C| = 3 states. The states
of the cameras are determined such that all the cells of the envi-
ronment can be observed at high resolution by at least one camera.
Given any joint state C of the cameras, only a subset of cells in the
environment can be observed by these cameras, i.e., fov(C) ⊂ Tl.

160

0 10 20 30 40 50
40

45

50

55

60

65

70

75

80

85

90

m

P
er
ce
n
tO

b
s

MDP(v=3)

Krahns

Sys

Stat

(a)
0 10 20 30 40 50

40

45

50

55

60

65

70

75

80

85

90

95

m

P
er
ce
n
tO

b
s

MDP(v=3)

Krahns
Sys

Stat

(b)
0 10 20 30 40 50

30

35

40

45

50

55

60

65

70

75

80

85

m

P
er
ce
n
tO

b
s

MDP(v=2)

MDP(v=2.5)

MDP(v=3)

Krahns
Sys

Stat

(c)
0 10 20 30 40 50

15

20
25
30

35
40
45
50

55
60
65
70

75
80
85
90

m

P
er
ce
n
tO

b
s

MDP(v=2)

MDP(v=2.5)

MDP(v=3)

Krahns

Sys

Stat

(d)

Figure 6: Graphs of PercentObs vs. number m of targets for corridor setup: (a) non-clustered targets with |fov(ci)| ≈ 25 cells,
|C| = 3 and clustered targets with (b) |fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 , |C| = 5.

0 10 20 30 40 50
45

50

55

60

65

70

75

80

85

90

95

m

P
er
ce
n
tO

b
s

MDP(v=3)

Krahns
Sys

Stat

(a)
0 10 20 30 40 50

45

50

55

60

65

70

75

m

P
er
ce
n
tO

b
s

MDP(v=3)

Krahns
Sys

Stat

(b)
0 10 20 30 40 50

15

20

25

30

35

40

45

50

55

60

65

70

75

m

P
er
ce
n
tO

b
s

MDP(v=2)

MDP(v=2.5)

MDP(v=3)

Krahns

Sys

Stat

(c)
0 10 20 30 40 50

10

15

20

25

30

35

40

45

50

55

60

65

70

75

m

P
er
ce
n
tO

b
s

MDP(v=2)

MDP(v=2.5)

MDP(v=3)

Krahns

Sys

Stat

(d)

Figure 7: Graphs of PercentObs vs. number m of targets for hall setup: (a) non-clustered targets with |fov(ci)| ≈ 25 cells, |C| = 3
and clustered targets with (b) |fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 , |C| = 5.

This makes the problem challenging for the active cameras to max-
imize the number of observed robots. We have a static camera that
can track these robots based on OpenCV Camshift tracker. The
static camera is calibrated using [17] to obtain the approximate lo-
cations of the robots at every time step. The direction and velocity
of the robots are determined based on their previous and current lo-
cations. The fov(C) is determined by calibrating the active cam-
eras in each of its state and determining the grid cells of the envi-
ronment in which the robots can be observed at a high resolution.
We guarantee the resolution of the robots that are observed by the
active cameras to be approximately more than 40 × 40 pixels. We
pre-computed the transition probabilities of an individual target for
all possible locations, directions, and velocities v = 1, 2 cells per
time step. The robots are moved based on the velocity-direction
motion model and are programmed to turn back or stop when they
hit the wall or cross other robots. Each robot is initialized with a
Camshift tracker in the static camera and is tracked to get its ap-
proximate 3D location, direction, and velocity.

We have tested our implementation up to m = 6 robots but we
keep one of the robots static. It can be observed that cameras 2 and
3 coordinate to observe the brown static robot (Fig. 8). Camera 2
pans to another state (see bottom two rows of Fig. 8) only when
camera 3 takes over the observation of the static target (see top two
rows of Fig. 8). This static target can be replaced by a portion of the
surveillance environment like the entrance/exit or reception where
we need to pay more attention. Table 2 shows the PercentObs
performance for the real experiments over τ = 50 time steps.

Our proposed approach has some limitations: (a) only when the
observations from static cameras are near-deterministic (i.e., with
the help of overhead static cameras), our proposed approach is ex-
pected to perform well; (b) MDP observes its targets less well when
their motion is more uncertain. In our future work, we will include
an observation model to handle location uncertainty due to static
cameras, which results in a Partially Observable Markov Decision
Process framework. We will also look into deploying active cam-
eras with a team of mobile robots [10, 11] for tracking and surveil-
lance of mobile targets.

Table 2: Performance for real experiments.
m 1 2 3 4 5 6

PercentObs 99.2 97 95.3 93.5 88 85.1

6. CONCLUSION
This paper describes a novel decision-theoretic approach to con-

trol and coordinate multiple active cameras for observing a number
of moving targets in a surveillance system. Specifically, it utilizes
the Markov Decision Process framework, which accounts for the
stochasticity of targets’ motion via a probabilistic motion model
and addresses the trade-off by maximizing the expected number of
observed targets with a guaranteed resolution via stochastic opti-
mization. The conditional independence property, which is inher-
ent in our surveillance problem, is exploited in the transition model
of the MDP to reduce the exponential policy computation time to
linear time. As shown in simulations, our approach can scale up
to 50 targets in real time. We have also implemented our proposed
decision-theoretic approach using real AXIS 214 PTZ cameras to
demonstrate its feasibility in real surveillance system.

7. REFERENCES
[1] AXIS 232D+ Network Dome Camera datasheet

(http://www.axis.com).
[2] J. Ai and A. A. Abouzeid. Coverage by directional sensors in

randomly deployed wireless sensor networks. J. Comb.
Optim., 11(1):21–41, 2006.

[3] S. Banerjee, A. Chowdhury, and S. Ghosh. Video
surveillance with PTZ cameras: The problem of maximizing
effective monitoring time. In K. Kant, S. V. Pemmaraju, and
K. M. Sivalingam, editors, ICDCN 2010, volume 5935 of
LNCS, pages 341–352. Springer-Verlag, 2010.

[4] A. N. Belbachir, editor. Smart Cameras. Springer, 2010.
[5] C. Costello and I.-J. Wang. Surveillance camera coordination

through distributed scheduling. In Proc. CDC, 2005.

161

camera 1 camera 2 camera 3 static camera
at

 t
im

e
=

 2
0

se
c

at
 t

im
e

=
 4

0
se

c
at

 t
im

e
=

 5
8
se

c

Figure 8: Results of real experiments: columns 1 to 3 show the high-resolution images of Lego robots captured by cameras 1, 2, and
3 while column 4 shows the targets’ trajectories tracked by the static camera.

[6] H. El-Alfy, D. Jacobs, and L. Davis. Assigning cameras to
subjects in video surveillance systems. In Proc. ICRA, 2009.

[7] B. P. Gerkey, R. T. Vaughan, and A. Howard. The
Player/Stage project: Tools for multi-robot and distributed
sensor systems. In Proc. ICAR, pages 317–323, 2003.

[8] C.-M. Huang and L.-C. Fu. Multitarget visual tracking based
effective surveillance with cooperation of multiple active
cameras. IEEE Trans. Syst., Man, Cybern. B, 41(1):234
–247, 2011.

[9] N. Krahnstoever, T. Yu, S.-N. Lim, K. Patwardhan, and
P. Tu. Collaborative Real-Time Control of Active Cameras in
Large Scale Surveillance Systems. In Proc. M2SFA2, 2008.

[10] K. H. Low, W. K. Leow, and M. H. Ang, Jr. Task allocation
via self-organizing swarm coalitions in distributed mobile
sensor network. In Proc. AAAI, pages 28–33, 2004.

[11] K. H. Low, W. K. Leow, and M. H. Ang, Jr. Autonomic
mobile sensor network with self-coordinated task allocation
and execution. IEEE Trans. Syst., Man, Cybern. C,
36(3):315–327, 2006.

[12] V. P. Munishwar and N. B. Abu-Ghazaleh. Scalable target
coverage in smart camera networks. In Proc. ICDSC, 2010.

[13] F. Qureshi and D. Terzopoulos. Planning ahead for PTZ
camera assignment and handoff. In Proc. ICDSC, 2009.

[14] E. Sommerlade and I. Reid. Probabilistic surveillance with
multiple active cameras. In Proc. ICRA, 2010.

[15] C. Soto, B. Song, and A. K. Roy-Chowdhury. Distributed
multi-target tracking in a self-configuring camera network.
In Proc. CVPR, pages 1486–1493, 2009.

[16] M. T. J. Spaan and P. U. Lima. A decision-theoretic approach
to dynamic sensor selection in camera networks. In Proc.
ICAPS, pages 279–304, 2009.

[17] R. Y. Tsai. An efficient and accurate camera calibration

technique for 3D machine vision. In Proc. CVPR, 1986.
[18] P. Viola and M. J. Jones. Robust real-time face detection.

IJCV, 57(2):137–154, 2004.

APPENDIX
A. PROOFS

Derivation of Equation 7
The value function V (6) is given by

V (T,C,A)

=
∑

T ′∈Tm
R((T ′, C′)) P (T ′|T)

=
∑

t′1∈T ,...,t′m∈T

m∑

k=1

R(t′k, C
′)

m∏

i=1

P (t′i|ti)

=

m∑

k=1

∑

t′
k
∈T

R(t′k, C
′) P (t′k|tk)

∑

T ′−k∈Tm−1

∏

i 6=k
P (t′i|ti)

=

m∑

k=1

∑

t′
k
∈T

R(t′k, C
′) P (t′k|tk)

=
m∑

k=1

Ṽ (tk, C
′)

where T ′−k = (t′1, . . . , t
′
k−1, t

′
k+1, . . . , t

′
m). The second equality

is obtained using (1) and (3). The fourth equality follows from
∑

T ′−k∈Tm−1

∏

i6=k
P (t′i|ti) =

∑

T ′−k∈Tm−1

P (T ′−k|T−k) = 1 .

162

Segregation in Swarms of e-puck Robots
Based On the Brazil Nut Effect

Jianing Chen, Melvin Gauci, Michael J. Price and Roderich Groß
Natural Robotics Lab

Department of Automatic Control and Systems Engineering
The University of Sheffield, UK

{j.n.chen, m.gauci, r.gross}@sheffield.ac.uk, michaelprice@theiet.org

ABSTRACT
When a mixture of particles with different attributes under-
goes vibration, a segregation pattern is often observed. For
example, in muesli cereal packs, the largest particles—the
Brazil nuts—tend to end up at the top. For this reason, the
phenomenon is known as the Brazil nut effect. In previous
research, an algorithm inspired by this effect was designed to
produce segregation patterns in swarms of simulated agents
that move on a horizontal plane.

In this paper, we adapt this algorithm for implementation
on robots with directional vision. We use the e-puck robot
as a platform to test our implementation. In a swarm of e-
pucks, different robots mimic disks of different sizes (larger
than their physical dimensions). The motion of every robot
is governed by a combination of three components: (i) at-
traction towards a point, which emulates the effect of a grav-
itational pull, (ii) random motion, which emulates the effect
of vibration, and (iii) repulsion from nearby robots, which
emulates the effect of collisions between disks. The algo-
rithm does not require robots to discriminate between other
robots; yet, it is capable of forming annular structures where
the robots in each annulus represent disks of identical size.

We report on a set of experiments performed with a group
of 20 physical e-pucks. The results obtained in 100 trials of
20 minutes each show that the percentage of incorrectly-
ordered pairs of disks from different groups decreases as the
size ratio of disks in different groups is increased. In our
experiments, this percentage was, on average, below 0.5% for
size ratios from 3.0 to 5.0. Moreover, for these size ratios, all
segregation errors observed were due to mechanical failures
that caused robots to stop moving.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation, Reliability

Keywords
Brazil nut effect, Collective intelligence, Emergent behavior,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: A segregation pattern in a swarm of
20 e-puck robots. The robots have organized into
a center-periphery pattern around a light bulb.
Robots with green and red top markers emulate
disks of radius 8 cm and 16 cm, respectively. Each
robot’s motion is governed by a combination of three
components: (i) attraction towards the light bulb,
(ii) random motion, and (iii) repulsion from nearby
robots.

Multi-robot systems, Segregation, Self-organization

1. INTRODUCTION
Segregation is a process whereby objects or individuals

separate into distinct groups. It can be observed on various
scales, ranging from the molecular to the macroscopic scale.

In this paper, we consider forms of segregation that are
driven by self-organized processes [6]. We focus on the prob-
lem of making a swarm of physical robots self-organize into
an annular structure. The robots are all identical in hard-
ware; yet, by executing different behaviors, they are able
to form a center-periphery pattern, as shown in Figure 1.
We restrict our study to segregation between two groups
of robots, mainly because of the limited number of physi-
cal robots available. However, the algorithm we use can, in
principle, form annular structures with an arbitrary number
of groups (and thus layers).

The formation of annular structures, and of center-peri-
phery patterns in particular, might be useful in a range of

163

applications. Examples include reconfigurable nested mem-
brane structures in biomedical applications and dynamically
constructed defense structures in military applications.

A number of studies have looked at spatial segregation
using simulated robotic agents. For example, Şahin et al. [8]
implemented a control law based on a probabilistic frame-
work. Kumar et al. [13] implemented a control law based on
artificial potential functions. In these studies, segregation
is the result of “individual choices that discriminate” [18].
In contrast, our robots are anonymous, and thus unable to
discriminate between each other.

Other studies have looked at spatial segregation in the
context of macroscopic self-assembly [11]. Bowden et al. [5]
observed center-periphery structures when millimeter scale
objects of two different heights interacted with each other
by lateral capillary forces. Ngouabeu et al. [16] observed
segregation phenomena in a system of vibrating and non-
vibrating mechatronic modules that float on the surface of
water.

Segregation phenomena observed in ant colonies [10] have
inspired the implementation of control laws for robots that
organize two distinct groups of items into center-periphery
patterns [20, 14] (see also [1]). Unlike these works, our
robots segregate themselves and are unable to discriminate
between robots (or items) of different groups.

The Brazil nut effect [17] refers to the segregation that
occurs when shaking a mixture of granular material of dif-
ferent sizes. Barker and Grimson [3] explain it as follows:
“During the periods when shaking loosens the packing, in-
dividual small particles can move into voids beneath large
particles and so prevent them from returning to their pre-
vious positions. It is far less probable that several small
particles will move together so as to create a void that can
be occupied by a single large particle. The net effect is that
the smaller particles occupy the lower positions during the
active part of the shaking process and then become trapped
there when the grains fix into a new arrangement”.

In previous research, a segregation algorithm based on the
Brazil nut effect was developed and tested in computer sim-
ulation [12]. This algorithm assumed that every robot can
instantly measure the relative position of all the robots in its
vicinity. Here, we show how this algorithm can be modified
to allow for an implementation using directional vision. This
implies that (i) robots have to revolve in order to obtain an
omni-directional picture and (ii) the algorithm has to cope
with misperceptions, for example, due to visual occlusion
(see Figure 5). We report on a series of experiments using
the modified algorithm that show near error-free segregation
in a swarm of 20 physical robots.

2. METHODS

2.1 e-puck Robot
We use a mobile robot called e-puck (see Figure 2), which

was developed for educational and research purposes [15]. It
has a circular body of approximately 7.5 cm diameter, and
weighs approximately 150 g. The e-puck is a differential-
wheeled robot, having an inter-wheel distance of 5.1 cm.

In order to facilitate visual detection of robots by each
other, we fitted every e-puck with a black paper skirt. More-
over, in order to allow for tracking of different groups of
robots using an overhead camera system, we fitted the e-
pucks with color-coded top markers. Figure 2(a) shows an

(a)

Forward Direction

Used FOV: 45°

 Camera

Infrared Sensors

Left Wheel

(b)

Figure 2: The e-puck robot. (a) An e-puck fitted
with a black skirt and a green top marker. (b)
Top-view schematic of an e-puck, indicating the lo-
cations of its wheels, camera [including the field of
view (FOV)] and infrared sensors.

e-puck fitted with a skirt and a green marker.
The e-puck has an RGB color camera located at its front.

The camera has a resolution of 640 × 480 pixels (width ×
height), but the image taken was subsampled to 40 × 15
pixels. The e-puck also has eight infrared (IR) sensors, which
are distributed around its body. Here, they are used in a
passive mode, in order to detect the angular position of a
light bulb within the arena. Figure 2(b) shows a top view
of an e-puck, indicating the locations of the wheels, camera
and IR sensors.

The robot has an IR receiver which allows IR signals to be
sent to it, for example using an IR remote control. Here, we
make use of this receiver in order to issue a starting signal
to all of the robots at the beginning of every trial.

2.2 Controller
The controller used here is based on the one presented

in [12]. Some modifications had to be made in order to port
the algorithm onto physical e-puck robots. In the follow-
ing, we describe the algorithm used here and highlight the
modifications made.

The robots emulate a mixture of differently-sized disks
subjected to vibration on a 2-dimensional plane. In partic-

164

IR Radiation Source

Figure 3: The three behavioral components of robot
i. Vector ~vi,taxis points towards the estimated loca-
tion of the infrared radiation source. Vector ~vi,rand

points in a random direction. Vector ~vij,repul is due
to the repulsion effect on robot i by robot j. Robot i
is repelled by robot j if it perceives the virtual body
of robot j as intersecting with its own virtual body.
As robot i has no means of measuring the virtual
radius of robot j (rj), it assumes that rj = ri.

ular, robot i emulates a disk of radius ri, whose motion is
governed by a combination of three components (see Fig-
ure 3):

1. ~vi,taxis: attraction towards a point common to all the
disks, which emulates the effect of a gravitational pull,

2. ~vi,rand: random motion, which emulates the effect of
vibration and

3. ~vi,repul: repulsion from nearby disks, which emulates
the effect of collisions.

Hereafter, the disk a robot represents is also referred to
as the virtual body of the robot. The radius of the disk is
also referred to as the virtual radius of the robot.

The behavior is implemented using the motor schema para-
digm [2]. In every control cycle, robot i calculates the afore-
mentioned three vectors. These are then combined as fol-
lows:

~vi = ~vi,taxis + crand~vi,rand + f(~vi,repul). (1)

Vector ~vi,taxis is always a unit vector. Vector ~vi,rand is
also a unit vector but a parameter crand is used to weight
its magnitude. Vector ~vi,repul can have a large magnitude
because it is computed as a sum of possibly many vectors
(for details, see Section 2.2.3); therefore, its magnitude is
capped by function f (·). Here, we use crand = 0.6 and a
maximum allowed magnitude of 6.4 units for ~vi,repul. These
settings follow suggestions from simulation results1 [12].

1The algorithm in [12] uses an additional parameter to

After constructing motion vector ~vi, robot i first turns to
point in its direction, and then moves forward for a fixed
duration. The speed at which it moves forward is propor-
tional to the magnitude of the vector, so that the maximum
magnitude possible (i.e., 1+0.6+6.4 = 8 units) corresponds
to the maximum speed of the robot (12.8 cm/s).

The length of the control cycle used here is 5 s, which is
substantially longer than that used in simulation (0.1 s). The
main reason for this is that the e-puck robots are equipped
with directional cameras, whereas the simulated robots had
omni-directional perception [12]. In each cycle, the robot
spends around 2.4 s in revolving to obtain an omni-directional
image, 1.3 s in turning to point in the direction of ~vi, and
1.3 s in moving forward.

In the following, we detail how vectors ~vi,taxis, ~vi,rand and
~vi,repul are computed.

2.2.1 Attraction to Center of Gravity
The algorithm requires a point of attraction in the envi-

ronment to emulate the effect of a gravitational pull. Each
robot is required to estimate the angular position of this
point (the distance to it is not needed).

In our experimental setup, we use an infrared radiation
source—a light bulb—as the point of attraction. In order
to estimate its angular position, each robot makes use of
its eight infrared sensors. In every control cycle, the three
sensors giving the highest readings are selected. Each read-
ing is then represented as a vector pointing from the center
of the robot to the physical location of the sensor, with a
magnitude proportional to the sensor’s reading. The three
vectors are summed, and the resulting vector is normalized
to have a unit magnitude, giving ~vi,taxis.

2.2.2 Random Motion
The random motion vector ~vi,rand is taken to be a unit

vector pointing in a random direction in the interval (0, 2π].
This direction is taken with respect to the robot’s orientation
at the beginning of the control cycle.

2.2.3 Repulsion
In principle, each robot should be repelled by every other

robot whose virtual body overlaps with its own virtual body.
This would require the robots to know the virtual radii of
nearby robots. However, as shown in [12], segregation can
still be effectively achieved if every robot assumes for all
other robots a constant virtual radius, which is a parameter
that needs to be fixed a priori. Here, we propose and use an
alternative, parameter-free heuristic: robot i assumes that
the virtual radius of all other robots is equal to its own, that
is, ri.

In our implementation each robot uses its camera to esti-
mate the angular position of and distance to nearby robots.
In every control cycle, a robot turns through one revolution
in eight steps of 45◦ each. In each step, its camera takes a
picture. From the center of this picture, a horizontal line
of 32 pixels is extracted (corresponding to a field of view
of 45◦). The pixel lines extracted from the eight images
are concatenated to give a panoramic view of the scene (see
Figure 4). The concatenated image is traversed horizontally

weight ~vi,repul. This is not used here because the repulsion
mechanism has been modified. The weightings used here are
identical to [12] when one considers the maximum allowed
magnitude of ~vi,repul.

165

1

2

3

4

56

(a)
1 23 4,5,6

(b)

Figure 4: Image processing. (a) Overview of a scene
with seven robots. (b) The corresponding concate-
nated image (here, with the original 15 pixel height)
formed by the green robot as it takes eight images in
one revolution. Note how the green robot sees the
red robots 4, 5 and 6 as a single object that appears
closer (see also Figure 5).

to scan for nearby robots. This is achieved by identifying
blocks of dark pixels. Each block represents a perceived
robot j. The angular position of that robot is estimated
from the position of the block. Vector ~vij,repul points in the
direction away from robot j. The distance to the robot,
dij , is estimated from the width of the block. The amount
of repulsion from a perceived robot j is proportional to the
perceived amount of intersection. Formally,

||~vij,repul|| =
{
k (2ri − dij) dij < 2ri;

0 dij ≥ 2ri,
(2)

where k = 0.2.
The total repulsion on robot i, ~vi,repul, is giving by sum-

ming the individual repulsion vectors for all blocks.
The vision based implementation differs from [12] in that

two types of misperceptions can occur: (i) it is possible for
several robots to be perceived as a single block of pixels [see
Figure 5(a)]; (ii) it is possible for a robot to occlude one or
more robots completely [see Figure 5(b)]. In order to com-
pensate for these misperceptions, our repulsion mechanism
places more emphasis on robots that are perceived to be
close [see Equation (2)]. This is in contrast with the mecha-
nism used in simulation [12], where the amount of repulsion
is constant regardless of the distance to a perceived robot.

2.3 Experimental Setup
We use n to denote the number of robots in the swarm.

Furthermore, we use m to denote the number of groups,
and nk to denote the number of robots in group k, k ∈
{1, 2, . . . ,m}. The robots in group k all have virtual radius

r(k). Recall that ri denotes the virtual radius of robot i.

Robot i

Perceived

Robot j

(a)

Robot i

Occluded

Robots

Perceived

Robot j

(b)

Figure 5: Possible misperceptions. (a) Robot i sees
three overlapping robots as a single object, j. It
incorrectly perceives a single robot at distance dij.
(b) Robot i can not see the two robots occluded by
robot j.

Thus, ri = r(k), if robot i is in group k.
We consider a system with n = 20 robots and with m = 2

different groups. The virtual radius of robots from group k
is chosen as follows:

r(k) = abk−1, (3)

where a is the size (in cm) of the smallest disk and b is the
minimum size ratio between disks of different groups. We
use a = 8 cm and b ∈ {1, 2, 3, 4, 5}.

Ideally, we expect the robots to organize into an annular
structure, where the disks of radius r(k), k ∈ {1, 2, . . . ,m},
are fully contained within the area of the annulus formed by
the concentric circles of radii (k − 1)g and kg in the center
of the environment. Parameter g represents the “thickness”
of the annulus and can be controlled by group size n [12].

An approximation of the ideal pattern can be obtained by
choosing nk as follows [12]:

nk =

2k−1

(r(k))2

m∑
j=1

2j−1

(r(j))2

n. (4)

166

Table 1: Overview of configurations studied.

radius factor b n1 r(1) n2 r(2)

1.0 5 8.0 cm 15 8.0 cm

2.0 11 8.0 cm 9 16.0 cm

3.0 15 8.0 cm 5 24.0 cm

4.0 17 8.0 cm 3 32.0 cm

5.0 18 8.0 cm 2 40.0 cm

In our physical implementation, the robots moved in a
square arena of sides 2.5 m. A light bulb was placed over the
center of the arena, acting as the infrared radiation source,
that is, the point of attraction.

The initial placement of the robots was done as follows: a
square grid of 6 × 6 points was marked on the arena floor,
centered around the light bulb, with all points being 20 cm
apart. For each trial, 20 points were chosen randomly with-
out replacement. Additionally, for each robot, the orienta-
tion was selected randomly from four possibilities: north,
south, east and west.

Each trial was recorded from start to finish with an over-
head camera system.

2.4 Performance Metric
To measure the quality of segregation, we calculate the

segregation error (SE) as defined in [12]. Consider two
robots i and j and let xi and xj denote their positions. Fur-
thermore, let o denote the position of the ‘center of gravity’
in the same co-ordinate system, that is, the point to which
all robots are attracted.

The pair of robots (i, j) contributes to the segregation
error if one of the robots has a larger virtual radius and is
closer to o than the other one. It does not contribute to the
segregation error if either the robots have identical virtual
radii, or if the robot with a smaller virtual radius is closer
to o than the other one. Formally,

eij =

1 (ri < rj) ∧ (‖xi − o‖ ≥ ‖xj − o‖) ;

1 (ri > rj) ∧ (‖xi − o‖ ≤ ‖xj − o‖) ;

0 otherwise.

The segregation error is given by summing eij over all
pairs of robots, and normalizing by (only) the number of
errors possible. Formally,

SE =

∑n
i=1

∑n
j=1 eij

n2 −∑m
k=1 n

2
k

, (5)

where SE ∈ [0, 1]. Randomly placed robots will have a seg-
regation error of 0.5 on average. An error of 1.0 is achieved
if the robots are in an ‘inverse Brazil nut’ configuration, that
is, if for all (i, j) s.t. ri < rj , ‖xi − o‖ ≥ ‖xj − o‖.

3. RESULTS
We considered m = 2 groups of robots. Robots of the

first group represented disks of radius r1 = 8 cm, whereas
robots of the second group represented disks of radius r2 =
8b cm, b ∈ {1, 2, 3, 4, 5}. As reported in [19], the size ratio

●

●

●
●

●

●

●
● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

radius factor, b

se
gr

eg
at

io
n

er
ro

r

1 2 3 4 5

Figure 7: Box-and-whisker plot showing the segre-
gation error observed in experimental trials with 20
e-puck robots for different radius factors (20 trials
per radius factor). Each box comprises of observa-
tions ranging from the first to the third quartile.
The median is indicated by a horizontal bar within
the box. The whiskers extend to the farthest data
points that are within 1.5 times the inter-quartile
range. Outliers are indicated as circles.

b is a critical variable—increasing it results in a decrease in
the segregation error.

For each value of b, we performed 20 trials with n = 20
robots each, that is, we ran 100 experimental trials in total.
Every trial lasted for 20 minutes. Table 1 shows the number
of robots in each group [see Equation (4)].

Figure 6 shows a sequence of snapshots taken during three
typical trials with radius factor b = 1, 2 and 4.

3.1 Influence of Size Ratio on
Segregation Error

Figure 7 shows a box-and-whisker plot [4] of the segrega-
tion errors for the different radius factors (b).

For b = 1, all e-pucks represented disks of identical size.
Consequently, the segregation error (47.3%) was, on average,
similar to the expected error for purely randomly distributed
e-puck robots (50%). In no trial was perfect segregation
observed.

For b > 1, the median segregation errors are all 0. The
mean segregation errors are 1.31%, 0.07%, 0.49% and 0.28%
for b ∈ {2, 3, 4, 5}, respectively. For b = 2, error free segre-
gation was observed in 14 out of 20 trials. For b ∈ {3, 4, 5},
error free segregation was observed in 19, 18 and 19 of the
20 trials, respectively. That is, in these trials, all 20 e-pucks
were spatially distributed as intended.

In 4 out of 60 trials for b ∈ {3, 4, 5} the segregation was not
error free. This was due to mechanical failures that caused
robots to stop moving. For example, a robot became stuck
on the arena floor, or lost contact with its battery.

167

(a0) (a1) (a2) (a3)

(b0) (b1) (b2) (b3)

(c0) (c1) (c2) (c3)

Figure 6: Sequences of snapshots taken during trials with radius factor b equal to 1 (top), 2 (center) and 4
(bottom). Robots with green markers represent disks of 8 cm radius. Robots with red markers represent
disks of radius 8 cm (top), 16 cm (center) and 32 cm (bottom). The first and last images in each sequence
(from left to right) show the initial and final configurations after 0 and 1200 s. The other two images show
intermediate situations.

3.2 Influence of Size Ratio on
Spatial Distribution

To understand better the effect of the size ratio (b), we
analyzed the spatial distribution of robots of both groups.
Figure 8 shows the distances of all robots from the center
of the arena as observed at the end of the trial. The data
is grouped according to the two groups of robots presenting
disks of different sizes in addition to the radius factor used.

For b = 1, robots of both groups were similarly distributed
in space. The mean distances from the center of ‘smaller’
robots (green marker) and ‘larger’ robots (red markers) were
16.9 cm and 17.5 cm, respectively.

As b increased, the distance between robots of different
groups increased.

For robots representing small disks (of 8 cm radius), the
mean distance from the center of the arena mainly depends
on the number of disks of that size. The largest number of
small disks was present for b = 1 (in this case, all 20 robots
were identical). For b ∈ {2, 3, 4, 5}, the numbers were 11,
15, 17, and 18, respectively (see Table 1).

The mean distance of ‘larger’ robots from the center grew
almost linearly with the radius factor, setting them spatially
apart from the other group. This caused the segregation

error to decrease.

3.3 Segregation Dynamics
Figure 9 shows the segregation error over time as observed

in trials with radius factor b = 4. Initially, the segregation
error rapidly decreased until it became zero after 3.5 mins in
most of the trials.

4. CONCLUSIONS
In this paper, we studied spatial segregation in a swarm of

physical robots. We described how to port an algorithm in-
spired by the Brazil nut effect from computer simulations [12]
to the miniature mobile robot e-puck. The algorithm lets e-
pucks mimic a mixture of disks under vibration.

We presented a series of experiments with 20 e-puck robots
that confirm the efficacy of the algorithm. The e-pucks were
programmed to simulate a system of two groups of disks.
The desired target pattern was an annular structure around
a common point of attraction, where the robots in each an-
nulus represent disks of identical size. The percentage of
incorrectly-ordered pairs of disks from different groups de-
creased as the size ratio of disks in different groups was in-

168

●

●

●

●

●

●

0
20

40
60

80

radius factor, b

di
st

an
ce

 to
 c

en
te

r
(c

m
)

●

●
●●

●

●

●●

●
●

●
●

●

●

●
●

●●
●

●

0
20

40
60

80

1 2 3 4 5

Figure 8: Box-and-whisker plot showing the dis-
tances of all robots from the center of the arena
for groups of different radius factor (400 data points
per radius factor). Green (light gray) boxes rep-
resent data from those robots that used the basic
virtual radius, whereas red (dark gray) boxes repre-
sent data from those robots with the corresponding
radius factor applied.

time (min)

se
gr

eg
at

io
n

er
ro

r

0 1 2 3 4 5 6 7 8 9

0
0.

2
0.

4
0.

6
0.

8
1

Figure 9: Segregation error over time for 15 experi-
mental trials with 20 e-puck robots and radius factor
b = 4.0. Data from the remaining five trials are not
included because of some missing frames in the cor-
responding video recordings.

creased.2 This percentage was, on average, below 0.5% for
size ratios from 3.0 to 5.0. Moreover, for these size ratios, all
segregation errors observed were due to mechanical failures
that caused robots to stop moving. To the best of our knowl-
edge, this is the first example of segregation in a swarm of
physical robots with such a high level of accuracy.

The original algorithm in [12] assumed that every robot
can instantly measure the relative position of all the robots
in its vicinity. Here, we showed how this algorithm can be
modified to allow for an implementation using directional
vision. This implies that (i) robots have to revolve in order
to obtain an omni-directional picture and (ii) the algorithm
has to cope with misperceptions, for example, due to visual
occlusion. We believe that the new algorithm is applicable
to a wider range of robotic platforms when compared to the
original algorithm. In principle, the new algorithm can be
implemented on any wheeled robot with a camera or equiva-
lent sensor to detect nearby robots. Note that the robot also
needs to sense the angular position of a point of attraction
in the environment (to emulate the effect of a gravitational
pull). Here, we used a light bulb, which was perceived by the
e-puck’s infrared sensors. In principle, the light bulb could
be perceived as well using the directional camera while the
e-puck revolves to obtain the omni-directional picture.

The algorithm does not require the robots to communi-
cate, nor does it require them to discriminate between each
other. Therefore, the performance of the algorithm could
possibly scale well with both the number of robots and the
number of groups. Simulation results [12] support this claim;
in these, the segregation error decreased exponentially with
the size ratio and error free segregation was reported for 150
agents of three distinct groups.

In principle, the algorithm could form annular structures
with an arbitrary number of nested layers as well as struc-
tures in three dimensions [9]. A present limitation, however,
is that the robots’ minimum sensing range could be required
to increase exponentially with the number of layers.

5. ACKNOWLEDGMENTS
The research work disclosed in this publication is funded

by the Marie Curie European Reintegration Grant within
the 7th European Community Framework Programme (grant
no. PERG07-GA-2010-267354).

M. Gauci acknowledges support by the Strategic Educa-
tional Pathways Scholarship (Malta). The scholarship is
part-financed by the European Union – European Social
Fund (ESF) under Operational Programme II – Cohesion
Policy 2007–2013, “Empowering People for More Jobs and
a Better Quality of Life”.

The authors thank Andrew Hills for helpful comments on
an earlier version of this paper.

6. REFERENCES
[1] M. Amos and O. Don. Swarm-based spatial sorting.

International Journal of Intelligent Computing and
Cybernetics, 1(3):454–473, 2008.

[2] R. C. Arkin. Motor schema-based mobile robot
navigation. Int. J. Robot. Res., 8(4):92–112, 1989.

[3] G. Barker and M. Grimson. The physics of muesli.
New Sci., 126(1718):37–40, 1990.

2Video recordings of the experimental trials can be found in
the online supplementary material [7].

169

[4] R. A. Becker, J. M. Chambers, and A. R. Wilks. The
new S language. A programming environment for data
analysis and graphics. Chapman & Hall, London, 1988.

[5] N. Bowden, A. Terfort, J. Carbeck, and G. M.
Whitesides. Self-assembly of mesoscale objects into
ordered two-dimensional arrays. Science,
276(5310):233–235, 1997.

[6] S. Camazine, J.-L. Deneubourg, N. R. Franks,
J. Sneyd, G. Theraulaz, and E. Bonabeau.
Self-organization in biological systems. Princeton
Univ. Press, Princeton, NJ, 2001.

[7] J. Chen, M. Gauci, M. J. Price, and R. Groß. Online
supplementary material. http://naturalrobotics.
group.shef.ac.uk/supp/2012-001, 2012.

[8] E. Şahin, T. Labella, V. Trianni, J.-L. Deneubourg,
P. Rasse, D. Floreano, L. Gambardella, F. Mondada,
S. Nolfi, and M. Dorigo. Swarm-bot: Pattern
formation in a swarm of self-assembling mobile robots.
In Proc. of the 2002 IEEE Int. Conf. on Systems,
Man and Cybernetics (SMC 2002), volume 4. IEEE
Computer Society Press, Los Alamitos, CA, 2002.

[9] S. Foster and R. Groß. Forming nested 3D structures
based on the Brazil nut effect. In Proc. of the 12th
Conf. Towards Autonomous Robotic Systems (TAROS
2011), volume 6856 of Lecture Notes in Artificial
Intelligence, pages 394–395, Berlin, Germany, 2011.
Springer-Verlag.

[10] N. R. Franks and A. B. Sendova-Franks. Brood
sorting by ants: distributing the workload over the
work-surface. Behav. Ecol. Sociobiol., 30(2):109–123,
1992.

[11] R. Groß and M. Dorigo. Self-assembly at the
macroscopic scale. P. IEEE, 96(9):1490–1508, 2008.

[12] R. Groß, S. Magnenat, and F. Mondada. Segregation
in swarms of mobile robots based on the Brazil nut
effect. In Proc. of the 2009 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS 2009), pages
4349–4356. IEEE Computer Society Press, Los
Alamitos, CA, 2009.

[13] M. Kumar, D. Garg, and V. Kumar. Segregation of
heterogeneous units in a swarm of robotic agents.
IEEE T. Automat. Contr., 55(3):743–748, 2010.

[14] C. Melhuish, A. B. Sendova-Franks, S. Scholes,
I. Horsfield, and F. Welsby. Ant-inspired sorting by
robots: the importance of initial clustering. J. R. Soc.
Interface, 3(7):235–242, 2006.

[15] F. Mondada, M. Bonani, X. Raemy, J. Pugh,
C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey,
D. Floreano, and A. Martinoli. The e-puck, a robot
designed for education in engineering. In Proc. of the
9th Conf. on Autonomous Robot Systems and
Competitions, volume 1, pages 59–65. IPCB: Instituto
Politécnico de Castelo Branco, 2009.

[16] A. M. T. Ngouabeu, S. Miyashita, R. M. Füchslin,
K. Nakajima, M. Göldi, and R. Pfeifer. Self-organized
segregation effect on self-assembling robots. In Proc.
of the 12th Int. Conf. on the Synthesis and Simulation
of Living Systems (Artificial Life XII), pages 232–238.
MIT Press, Cambridge, MA, 2010.

[17] A. Rosato, K. J. Strandburg, F. Prinz, and R. H.
Swendsen. Why the Brazil nuts are on top: size
segregation of particulate matter by shaking. Phys.

Rev. Lett., 58(10):1038–1040, 1987.

[18] T. C. Schelling. Models of segregation. Am. Econ.
Rev., 59(2):488–493, 1969.

[19] J. C. Williams and M. I. Khan. The mixing and
segregation of particulate solids of different particle
size. The Chemical Engineer, 269:19–25, 1973.

[20] M. Wilson, C. Melhuish, A. B. Sendova-Franks, and
S. Scholes. Algorithms for building annular structures
with minimalist robots inspired by brood sorting in
ant colonies. Auton. Robot., 17(2–3):115–136, 2004.

170

Model-Driven Behavior Specification for Robotic Teams

Alexandros Paraschos
∗

IAS Lab
TU-Darmstadt

Darmstadt, 64287, Germany
paraschos@ias.tu-darmstadt.de

Nikolaos I. Spanoudakis
Department of Sciences

Technical University of Crete
Chania, 73100, Greece

nikos@science.tuc.gr

Michail G. Lagoudakis
Department of ECE

Technical University of Crete
Chania, 73100, Greece

lagoudakis@ece.tuc.gr

ABSTRACT
Modern model-driven engineering and Agent-Oriented Soft-
ware Engineering (AOSE) methods are rarely utilized in
developing robotic software. In this paper, we show how a
Model-Driven AOSE methodology can be used for specifying
the behavior of multi-robot teams. Specifically, the Agent
Systems Engineering Methodology (ASEME) was used for
developing the software that realizes the behavior of a physi-
cal robot team competing in the Standard Platform League
of the RoboCup competition (the robot soccer world cup).
The team consists of four humanoid robots, which play soc-
cer autonomously in real time utilizing the on-board sensing,
processing, and actuating capabilities, while communicating
and coordinating with each other in order to achieve their
common goal of winning the game. Our work focuses on the
challenges of coordinating the base functionalities (object
recognition, localization, motion skills) within each robot
(intra-agent control) and coordinating the activities of the
robots towards a desired team behavior (inter-agent con-
trol). We discuss the difficulties we faced and present the
solutions we gave to a number of practical issues, which, in
our view, are inherent in applying any AOSE methodology
to robotics. We demonstrate the added value of using an
AOSE methodology in the development of robotic systems,
as ASEME allowed for a platform-independent team be-
havior specification, automated a large part of the code
generation process, and reduced the total development time.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies;
I.2.9 [Artificial Intelligence]: Robotics—Commercial robots
and applications

General Terms
Design

Keywords
Agent-Oriented Software Engineering, Robotic Software De-
velopment, Intra-Agent Control, Model-Driven Engineering

∗Work performed while at the Technical University of Crete.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
The Model-Driven Engineering (MDE) paradigm has gai-

ned popularity among software developers and a number
of methodologies, models, and tools have been developed
to facilitate task decomposition, enable software reusability,
minimize coding mistakes, and allow for inexpensive soft-
ware maintenance. Even though some of this technology has
been extended to cover the needs of agent-oriented software
development, it is rarely exploited to address the needs of
robotic software. Indeed, the real-time constraints and the
concurrency of device operation in robotics typically impose
a low-level of coding, whereas the potential of programming
high-level behaviors that exploit the lower-level functionali-
ties at a meta-level of coding remains largely unexplored.

Agile processes address several modern software devel-
opment needs, such as the need for coping with continu-
ously changing requirements, the need for continuous eval-
uation, and the need for less bureaucracy related to the
extensive production of models that few people (only the
developers) can read [8]. Thus, agile processes are very useful
for projects, such as the development of a RoboCup team,
whereby an autonomous robot team competes against an-
other and the behavior of the robots may need to change
between games to cope with skilled opponents.

Given that robots capture the inherent properties of agents
(autonomy, social ability, reactivity, proactiveness), in this
paper, we show how an Agent-Oriented Software Engineer-
ing (AOSE) methodology can be used for specifying the be-
havior of multi-robot teams encompassing the model-driven
and agile characteristics described above. More specifically,
we focus on the Agent Systems Engineering Methodology
(ASEME) [21] and the domain of robotic soccer. Accord-
ing to Schlegel et al. [17], software engineering for robotics
is different in some important aspects from software engi-
neering for other, even related, areas, such as distributed
and real-time systems. Thus, in our work we had to adapt
the ASEME process to accommodate the needs of robotic
software development. In this context, we defined a generic
transformation tool (IAC2Monas) for instantiating the sta-
techart models of ASEME (the platform-independent mo-
dels [11]) to our Monas robot software architecture [14] for
integration with implemented functionalities and execution
on our robots; this coupling provided automatic code gener-
ation and execution on a generic multi-threaded statechart
engine along with the Monas software modules. As a result,
instead of specifying complex team behavior using hundreds
of lines of conventional code, the developer can now accom-
plish this task using an intuitive graphical representation

171

with advanced control modes. Our work demonstrates the
added value of using the ASEME methodology in robotics,
as it allowed for a platform-independent team behavior spec-
ification, automated a large part of the code generation pro-
cess, eliminated common coding mistakes, and reduced the
total development time.

2. BACKGROUND AND MOTIVATION
It is common practice for roboticists to specify a robot’s

behavior using conventional procedural code, whereby a com-
plex arrangement of conditional statements determines what
the robot is supposed to do in each condition. A higher-
level practice is to specify a robot’s behavior using the for-
malism of Finite State Automata (FSA) whose graphical
representation with nodes (states) and edges (transitions)
offers a more intuitive way of synthesizing the desired beha-
vior. However, as robots become more complex and employ
the computing power of modern processors, their program-
ming also becomes more demanding, requiring concurrent
and threaded code to support efficient implementations of
advanced operations, such as machine learning and signal
processing algorithms. Thus, there is a clear need for modern
software engineering methods in developing robotic software.

Statecharts [6], a formal model familiar to software develo-
pers, have been widely used for specifying agent plans, even
in the RoboCup domain [12, 13]. Murray [12], in particular,
proposes the use of extended statecharts (with synch states
for synchronizing the actions of different agents) for defin-
ing the behavior of RoboCup simulation players. This work
is also supported by an editing tool (StatEdit). Both pro-
posals [12, 13] support semi-automatic code generation for
Robolog, a robot programming language based on Prolog.
These approaches have been used only in RoboCup simula-
tion leagues and it is not clear how they could be adapted
for use on real robots. In that case, base functionalities,
such as perception and locomotion, which are provided freely
in the simulation leagues, will have to be inserted into the
statechart. It is not straightforward how this can be done,
when a procedural programming language, such as Python
or C++, is used for implementing these functionalities.

Recent developments in Multi-Agent Systems (MAS) have
demonstrated that high-level approaches, such as the Exten-
sible Agent Behavior Specification Language (Xabsl) [15]
and Petri Net Plans (PNPs) [25], can be utilized for the
behavioral modeling of robots. Despite their different for-
mal models, hierarchical FSAs for Xabsl and Petri Nets for
PNPs, both approaches offer hierarchical decomposition of
complex behaviors, concurrent action support within their
formalism, and multi-robot coordination. Although, PNPs
have a more compact representation than FSAs, they still
require more semantics than statecharts. Integration with
state-of-the-art frameworks (B-Human [16] for Xabsl and
OpenRDK [1] for PNPs) provides a threaded, low-latency
environment for efficient runtime execution. Analysis and
validation of the designed models can be done using standard
tools, due to the use of formal and widely-used representa-
tions. Both approaches have been employed successfully in
the RoboCup competition. However, both of them model
only behavioral, but not functional, aspects of the system.
Moreover, inter-agent coordination protocols cannot be in-
tegrated directly into their formal models.

In their work, De Loach et al. [2] apply the Multi-agent
Systems Engineering (MaSE) methodology for designing te-

ams of cooperating robots. They use a top-down approach,
starting from system goals and gradually refining them to
simpler goals. They use sequence diagrams for designing in-
teraction protocols and independent instances of finite state
machines (called concurrent task diagrams) for designing
the behavior of each identified agent role. However, their
approach is quite limiting, as it allows only for bilateral con-
versations, thus favoring centralized coordination schemes.
Moreover, the lack of hierarchical structure in the agent
plans leads to flat, large, and complex representations.

Other authors, such as Gascuena and Fernandez-Caballero
[5], used the Prometheus methodology [23] to specify the
behavior of a robot. Prometheus provides specific diagrams
for depicting the agent roles, their resources, and exchanged
messages with other roles. It uses AUML Agent Interaction
Protocol (AIP) diagrams (extended UML1 sequence dia-
grams) for specifying agent interactions. However, the seven
different types of diagrams they propose are always con-
structed manually anew. The support for implementation,
testing, and debugging of Prometheus models is limited and
available only for the JACK agent platform. Finally, they
do not address the multi-tasking issue on a single robot,
but rather identify each component/task as a distinct agent.
Nevertheless, in practice a lot of information coming from
sensors and other modules accomplishing specific tasks need
to be processed concurrently and the timing between these
tasks is critical. Finally, AUML agent coordination protocols
are not integrated seamlessly in agent plans.

A method coming from the MDE community is presented
by Schlegel et al. [17]. The authors argue for switching the
traditional code-driven robotic software development to a
model-driven one. They define strict interfaces for wrapping
existing components and then utilize a statechart-based ap-
proach for specifying the behavior of robots. Then, they use
MDE techniques for transforming the platform-independent
model they define to executable code. Their approach is a
significant step towards model-based software engineering
for robots, lacking mostly in the multi-agent aspect, as there
is no catering for agent interaction protocols definition.

The Agent Systems Engineering Methodology (ASEME)
[21] fills this particular gap. ASEME supports a modular
agent design approach and introduces the concepts of intra-
and inter- agent control. The former defines the agent’s be-
havior by coordinating the different modules that implement
its own capabilities, while the latter defines the protocols
that govern the coordination of the society of the agents.
ASEME applies an MDE approach to multi-agent systems
development, so that the models of a previous development
phase can be transformed to models of the next phase. The
transition from one phase to another is assisted by automatic
model transformation leading from requirements to com-
puter programs. The ASEME platform-independent model,
which is the output of the design phase, is a statechart that
can be instantiated in a number of platforms using existing
Computer-Aided System Engineering (CASE) tools.

ASEME specifies three levels of abstraction for each phase
of the software development process. The first is the societal
level, in which the whole multi-agent system functionality
is modeled. Then, the agent level zooms on each member
of the society, i.e. the individual agent. Finally, the details
that compose each of the agent’s parts are defined in the

1The Unified Modeling Language (UML) is a standardized
object-oriented modeling language: www.uml.org

172

Figure 1: ASEME phases and AMOLA products.

capability level. The concept of capability is defined as the
ability of an agent to achieve specific tasks that require
the use of one or more functionalities. The latter refers to
the technical solution(s) to a given class of tasks. More-
over, capabilities are decomposed to simple activities, each
of which corresponds to exactly one functionality. Thus,
an activity corresponds to the instantiation of a specific
technique for dealing with a particular task (a unique charac-
teristic compared to the other statechart-based approaches).
ASEME is mainly concerned with the first two abstraction
levels, assuming that development in the capability level
can be achieved using classical (or even technology-specific)
software engineering techniques.

In Figure 1, the ASEME phases, the different levels of
abstraction, and the models related to each one of them are
presented. ASEME uses the models of the Agent Modeling
Language (AMOLA) [19]. The AMOLA metamodels have
been formally defined using the Eclipse Modeling Framework
of the Eclipse Modeling Project2. Eclipse technology has
been employed for developing model transformations and
graphical editing tools for both models and processes3.

3. ROBOCUP, NAO, AND SPL
In its short history, the RoboCup competition [10] (robot

soccer world cup) has grown to a well-established annual
event bringing together the best robotics researchers inter-
nationally. To succeed in playing soccer autonomously, the
core problems of artificial intelligence and robotics (per-
ception, cognition, action, coordination) must be addressed
simultaneously under real-time constraints. The proposed
solutions are tested through soccer games in various leagues.
A key aspect of most RoboCup leagues is the multi-agent
environment. The robots in each team cannot simply act
as individuals; they must focus on teamwork in order to
cope effectively with an unknown opponent team and such
teamwork requires coordination.

The Standard Platform League (SPL)4 is among the most
popular leagues, featuring four humanoid Aldebaran Nao
robot players in each team. The Nao is a 58cm, 4.3Kg hu-

2The Eclipse Modeling Project provides a unified set of mod-
eling frameworks, tooling, and standards implementations:
www.eclipse.org/modeling
3The AMOLA metamodels and ASEME transformation
tools are freely available from: www.amcl.tuc.gr/aseme
4SPL Web Site: www.tzi.de/spl

Figure 2: The System Actors Goals (SAG) model.

manoid robot developed by Aldebaran Robotics in Paris,
France. It is equipped with an x86 AMD Geode processor at
500 MHz, 256 MB SDRAM, 2 GB flash disk, two color ca-
meras, two ultrasound sensors, an inertial unit (2 gyroscopes
and 3 accelerometers), an array of force sensitive resistors on
each foot, encoders on all servos, and a total of 21 degrees
of freedom (4 in each arm, 5 in each leg, 2 in the head, and
1 in the pelvis). SPL games take place in a 4m × 6m field
marked with white lines on a green carpet with two colored
(skyblue and yellow) goals. Each game consists of two 10-
minutes halves and teams switch sides at halftime. There are
several rules enforced by human referees during the game.

In SPL, all teams use the same robotic hardware and
differ only in terms of their software. Therefore, research
efforts focus on developing more efficient algorithms and
techniques for visual perception, active localization, omni-
directional motion, skill learning, individual robot behavior
specification, and team coordination strategies. This paper
focuses on the last two challenges.

4. SOFTWARE ENGINEERING PROCESS
In this section, we describe the proposed model-based

agent-oriented software engineering process in a step-by-step
manner following the principles of AMOLA and using the
RoboCup domain as our case problem.

4.1 Requirements Analysis Phase
In the requirements analysis phase, AMOLA defines the

System Actors and Goals (SAG) model, containing the main
actors in the system and their goals. For the Robocup do-
main, the actors are the players and the goalie of the team
(see Figure 2). The player aims to score and defend, both
goals depending also on the other players. The goalie aims
to defend its post (individual goal), but also to coordinate
the defense (depending on the players).

4.2 Analysis Phase
In the analysis phase, AMOLA proposes the System Use

Cases (SUC) model, where the different activities that re-
alize the agent capabilities are defined in a top-down de-
composition process, the Agent Interaction Protocol (AIP)
model, which specifies the coordination between agents, and,
finally, the System Roles Model (SRM), through which the
previously-defined activities are integrated to define the dy-
namic behavior of the roles of the agents. Initially, the SAG
model from the previous phase is transformed to the SUC
model (see Figure 3). The SAG goals are transformed to
SUC use cases and the SAG actors to SUC roles. The mo-
deler optionally adds roles and �includes� use cases. The
goals transformed to use cases form the roles’ capabilities.

In Figure 3, the score capability has been decomposed to
simpler use cases using the �includes� relation. Thus, for
scoring, the player can kick the ball towards the goal (kick
ball use case) or participate in the coordinated attack use

173

Figure 3: The System Use Cases (SUC) model.

Table 1: The AIP model for the attack protocol.
Participants center center for
Engagement no robot has control of the ball and
Rules center is the robot closest to the ball and

center for is the robot farthest from the ball
Outcomes the center for shoots to goal or

an opponent takes control of the ball or
the ball goes out of bounds

Process WalkTowardsBall. WalkTowardsGoal.
[passBall] [WalkTowardsBall.

[kickBall]]

case. Note that the attack use case has also been associated
with two new roles, the center and center for, which are
connected to new use cases, decomposing further the attack
use case. Thus, the center walks towards the ball and passes
it to the center for, while the center for walks towards the
opponent’s goal post to receive the pass, then walks towards
the ball and kicks it. The SUC model does not specify the
order in which use cases are employed by the roles. The AIP
and SRM models fill exactly this gap; the former specifies
how to coordinate the cooperative roles’ activities and the
latter how to coordinate the individual role’s activities.

Thus, as the human soccer team coach sketches the play-
ers’ movements for a coordinated team action in real soccer,
the robotic team coach uses the AIP model to sketch the ro-
botic team’s coordinated activities. The AIP model lists the
participants along with the preconditions and postconditions
in free text format. The process of each participant, how-
ever, is described formally using liveness formulas. Liveness
formulas connect activities using the Gaia operators [24].
Briefly, A.B means that activity B is executed after activity
A, Aω means that A is executed continuously (it restarts
as soon as it finishes), A|B means that either A or B is
executed, A||B means that A and B are executed in parallel,
and [A] means that A is optional.

The attack protocol with two participant roles (i.e. center
and center for) is presented in Table 1. The rule for engaging
in these roles is depicted in the second row, followed by
the expected outcomes in the third row, and the process
for each role defined using liveness formulas in the fourth
row. In particular, the player closer to the ball becomes the
center and the other players become center for. The center
is expected to approach the ball and pass it to a center for
who, in turn, is expected to be near the opponent’s goal
post to receive the pass and shoot to score. The protocol
may terminate early, if an opponent takes control of the ball
or the ball goes out of bounds.

The System Roles Model (SRM) defines each concrete role

(corresponding to a SAG actor) by specifying the protocols
in which the role participates and liveness formulas defining
its dynamic behavior including the relevant process parts of
the AIP model. Figure 4 shows the SRM for the player role.
Note that this role can participate in the attack protocol
either as a center or as a center for. While in the AIP model
process part the activities are abstractly defined, in the SRM
liveness formula all activities are connected to specific func-
tionalities of the robot. The identified functionalities in our
case are the following:

• Sensors, for collecting and filtering all data from the
robot sensors (accelerometers, buttons, bumpers, etc.),

• RobotController, for listening to external information
about the game state coming from the game controller,

• LedHandler, for managing the operation of the colored
LEDs of the robot (eyes, ears, buttons),

• MotionController, for scheduling and executing motion
commands (walk, kick, stand-up, special actions, etc.),

• Vision, for detecting the ball and the goals in the ca-
mera image and estimating their distance and bearing,

• Localization, for estimating the position and orienta-
tion of the robot and the ball in the field,

• ObstacleAvoidance, for planning obstacle-free paths in
a local polar map using ultrasonic range measurements,

• HeadHandler, for managing the movements of the robot
head and, thus, the camera (scanning, tracking, etc.).

The self-explained activities named Stand, CalibrateCamera,
CheckForBallObservation, ScanForBall, TrackBall, WalkTo-
wardsBall, KickBall, PassBall, WalkTowardsOpponentGoal
are provided either directly by the above functionalities or
by combining information coming from some of them (for
example, Vision with ObstacleAvoidance and MotionCon-
troller to realize WalkTowardsBall). Similarly to the work
of Schlegel et al. [17], all functionalities are wrapped with
standard interfaces. In our Monas architecture they are de-
fined through XML configuration files.

4.3 Design Phase
In the design phase, AMOLA defines the intEr-Agent Con-

trol (EAC) model and the Intra-Agent Control (IAC) model,
which are based on the formalism of statecharts and define
both the functional and behavioral aspects [6] of the multi-
agent system. The ASEME SRM2IAC tool is used to trans-
form the process formulas of an AIP model protocol to an
EAC model and the liveness formulas of an SRM role to an
IAC model. The EAC and IAC models are statecharts, where
the developer can insert events, conditions, and actions in
the transition expressions, thus controlling each role’s pro-
cess either for satisfying the needs of a protocol (in the EAC
model) or for coordinating the agent’s capabilities (in the
IAC model). There are six types of states in a statechart [6]:

• start, showing where execution starts

• end, showing where execution stops

• or, having sub-states (of any kind) related by“exclusive-
or”, i.e. only one is executed at any given time

174

Role: player
Protocols: attack: center, attack: center for
Liveness:
player = Sensorsω || RobotControllerω || LedHandlerω || MotionControllerω || (initialize . activate)
initialize = Stand . CalibrateCamera
activate = Visionω || Localizationω || ObstacleAvoidanceω || HeadHandlerω || decisionω

decision = CheckForBallObservation . (ScanForBall | action)
action = TrackBall || (WalkTowardsBall | KickBall | center | center for)
center = WalkTowardsBall . [PassBall]
center for = WalkTowardsOpponentGoal . [WalkTowardsBall . [KickBall]]

Figure 4: The SRM model for the player (participating as center or center for in the attack protocol).

• and, having or -states as sub-states related by “and”,
i.e. all of them are executed concurrently

• basic, having no sub-states, representing an activity

• condition, offering only conditional transitions (also
known as OR-connector or conditional transition)

The state at the highest level (the one with no parent
state) is called the root. Each transition from one state
(source) to another (target) is labeled by an expression,
whose general syntax obeys the pattern e[c]/a, where e
is the event that triggers the transition; c is a condition
that must be satisfied for the transition to be taken, when
event e occurs; and a is an action that takes place, when the
transition is taken. All elements of the transition expression
are optional. The scope of a transition is the lowest level or -
state, which is a common ancestor of both the source and
target states. When a transition occurs all states in its scope
are exited and the target states are entered.

Having defined the statechart, as it is used in AMOLA [20],
it is now possible to proceed to the definition of the inter-
agent control (EAC) model. The EAC is a statechart that
contains an initial (start) state, an and-state named after
the protocol, and a final (end) state. The and-state con-
tains as many or -states as the protocol roles, named after
these roles. One transition connects the start-state to the
and-state and another transition the and-state to the end-
state. Transitions can be triggered by a timeout event or
by the completion of the executed state activity. Thus, for
the attack protocol, since the two participating roles operate
simultaneously in parallel, the SRM2IAC tool transforms
the following formula along with the process part of the AIP
model protocol into a statechart:

action = center || center_for

The result of the automatic model transformation is de-
picted graphically in the form of an ordered rooted tree
(Figure 5) that defines the statechart. In the fragment of
the statechart shown in Figure 5, the reader can see the
center role. The nodes of the tree (rounded rectangles) de-
fine the states (gray lines point to parent nodes in the tree
structure). Each node includes the state name and the state
type. Labeling the nodes properly helps the modeler identify
the position of a node within the tree. For example, the A.1
label means that the node labeled with A is the parent of
the node labeled with A.1. Nodes without a name coming
from the formula, e.g. start nodes, are named after their
label. Each or -state includes a start-state and, usually an
end-state (except in the cases where a state loops infinitely
to its self, thus no end state is needed) to note where execu-
tion starts and where it stops. The modeler can now define

transition expressions for all the transitions (depicted with
red/dark lines) using the grammar defined in Figure 6 in
EBNF format [9]. In Figure 5, the modeler has just defined
a condition for the transition having as source the condition-
state at the bottom of the figure and target the basic state
to its right named passBall. It checks if the ball is within
an angle of 10 degrees from the current orientation of the
robot’s torso and within a distance of 6 cm from the center
of its feet, i.e. the robot can kick the ball to pass it.

The intra-agent control (IAC) model is also initiated by
the SRM2IAC tool for each role. Again, the modeler must
define the transition expressions and the variables contained
in these expressions. By convention, the user should not
define new transitions, although the statechart formalism
allows for transitions between any two states, because the
resulting IAC model will no longer represent the process de-
fined by the liveness formulas. Moreover, the modeler must
ensure that the branches of the statechart that come from
EAC models are transferred unchanged in the statechart
(their transition expressions must not change). Only in this
way are the protocols guaranteed to be executed as planned.
The RoboCup player ’s statechart (IAC model) is shown in
Figure 7, with the zoom window focusing on the center part
of the attack protocol. Notice that the example condition
introduced earlier appears unchanged at the correct place.

Figure 5: The EAC model for the attack protocol.

175

transitionExpression = [event] [’[’ condition ’]’] [’/’ actions]
event = string
condition = expr | expr (compOp | logicOp) condition

| ’(’ condition ’)’ | notOp condition

actions = action | action ’;’ actions

action = expr | variable ’=’ expr | ’read_messages’
| ’write_messages’ ’.’ topic ’.’ commType ’.’ msgType

expr = varVal | function ’(’ args ’)’

function = string

args = varVal | varVal ’,’ args
varVal = variable | value
value = constant | stringLiteral
compOp = ’<’ | ’<=’ | ’>’ | ’>=’ | ’==’ | ’!=’
logicOp = ’&&’ | ’||’
notOp = ’!’

variable = host ’.’ topic ’.’ commType ’.’ msgType ’.’ member
| topic ’.’ commType ’.’ msgType ’.’ member

commType = ’signal’ | ’state’ | ’data’
host = string

topic = string

msgType = string

member = string

stringLiteral = ’"’ string ’"’

string = letter (letter | digit)*
letter = ’A’..’Z’ | ’a’..’z’ | ’_’
digit = ’0’..’9’

constant = [’+’ | ’-’] digit digit* [’.’ digit digit*]

Figure 6: The transition expression grammar.

Figure 7: The IAC model for the RoboCup player.

4.4 Implementation Phase
To facilitate the code generation process, we built the

IAC2Monas transformation tool [14], which translates the
IAC model automatically to C++ source code adhering to
the Monas architecture. IAC2Monas is a model-to-text (M2T)
transformation tool. Thus, the platform-independent model
(IAC) is transformed to a platform-specific model (code),
which is subsequently cross-compiled to produce the exe-

#include ”AttackerPlan . h”

namespace { Sta techar tReg i s t ra r<AttackerPlan > : :
Type temp(”AttackerPlan ”) ; }

AttackerPlan : : AttackerPlan (Communicator∗ com) {

s t c = new Statechar t (”Player ” , com) ;
Sta techar t ∗ Node0 = s t c ;
s t a t e s . push back (Node0) ;

OrState∗ Node0212 = new OrState
(”Robo tCon t r o l l e r f o r ev e r ” , Node021) ;

s t a t e s . push back (Node0212) ;

IAc t i v i t y ∗ ActivI02122 = Act iv i tyFactory : :
Ins tance ()−>CreateObject (”RobotContro l ler ”) ;

a c t i v i t i e s . push back (Act ivI02122) ;
Bas i cState ∗ Node02122 = new Bas i cState

(”RobotContro l l er ” ,Node0212 , Act ivI02122) ;
s t a t e s . push back (Node02122) ;

ICondit ion ∗ CondI02TO03 = new TrCond02TO03 ;
c ond i t i o n s . push back (CondI02TO03) ;

t r a n s i t i o n s . push back (new Transit ionSegment
<State , State>(Node02 , Node03 , CondI02TO03)) ;

Figure 8: An extract of the auto-generated code.

cutable for the robot. In order to build this tool we used the
Xpand language offered by the Eclipse Modeling Project fol-
lowing the practice proposed by ASEME for the IAC2JADE
transformation [21]. Xpand is used to define the templates
for the required C++ classes, which are instantiated using
information from the IAC metamodel elements, and is inte-
grated with Xtend to handle the instantiation of complex ex-
pressions. An extract from the automatically generated sta-
techart definition file (by the IAC2Monas tool) is presented
in Figure 8. The reader can get an idea of how or -states,
basic states, and condition states are defined in C++. The
generation of a node (state) requires a name and the parent
node as arguments, with the exception of the Statechart

class, which appears only at the top of the hierarchy.
To support this phase, we had to develop two important

software libraries: (a) the communication framework both
for inter-agent (i.e. between different agents) and intra-agent
(i.e. between activities on a single agent) communication and
(b) the statechart engine for executing statecharts.

Our communication framework [22] is based on the pub-
lish/subscribe messaging pattern [4] and supports multi-
ple ways of communication, including point-to-point and
multicast connections. The information that needs to be
communicated between nodes (agents or activities) is formed
as messages, tagged with appropriate topics, and relayed
through a message queue for delivery. We used Google Pro-
tocol Buffers5 to facilitate the serialization of data and the
structural definition of the messages. Additionally, the black-
board paradigm [7] is utilized to provide efficient access
to shared information stored locally at each node and is
extended to support history queries and a mechanism that
controls the information updates.

Our statechart engine [14] was built on top of existing
open-source projects. Its main distinguishing characteristic

5Protocol Buffers are Google’s language- and platform-
independent, extensible mechanism for serializing structured
data. http://code.google.com/apis/protocolbuffers

176

from other frameworks, e.g. UML and Boost6, is the multi-
threaded statechart execution that provides the required
concurrency and meets the real-time requirements of the
activities on each robot.

These libraries are linked to the automatically generated
code at compilation time. A blackboard is instantiated (a)
for each agent and (b) for each or -state that is a substate
of an and-state. This way, the shared information is dis-
tributed, not only among network nodes (agents), but also
among the concurrently executed parts of each agent. The
latter allows for a significant increase in run-time perfor-
mance, as it eliminates starvation and producer/consumer
problems. The presented models do not include explicit com-
munication activities, because coordination occurs through
the read_messages and write_messages actions. These ac-
tions allow the use of shared information from the black-
boards as variables in the transition expressions (see the
grammar rules for action and variable in Figure 6).

5. EMPIRICAL EVALUATION
To empirically evaluate our approach, we compared it

to our previous practice, i.e. using Aldebaran’s middleware
for Nao (NaoQi) which provides, besides the API, a plat-
form for modular software development and a thread-safe
mechanism for communication. As a proof of concept, a
student familiar with both development methods was asked
to develop the same behavior for the RoboCup team. The
empirical results in terms of some development performance
metrics are shown in Table 2. Run-Time Performance refers
to the system load average over 5 minutes of execution.
Values greater than one indicate CPU overload. The NaoQi-
based agent had inferior performance, due to system over-
load caused by the vast amount of exchanged information
between the modules. Writing C++ code had its impact on
Total Development Time, which was considerably higher in
NaoQi, whereas the statechart graphical editing tool allowed
for quicker development. The ASEME-based agent consisted
of more Lines of Source Code, however the vast majority of
them were Auto-Generated. The NaoQi-based agent required
the maintenance of several State Variables to indicate the
current state of the agent, whereas in the ASEME-based
agent it was represented explicitly in the statechart. The
advantages of the ASEME approach were also reflected on
the Debugging Phase, where NaoQi exhibited increased De-
bugging Time with a larger Number of Bugs.

Our experience from our RoboCup team7 indicates that
the model-based ASEME methodology with the automated
transformation tools (SRM2IAC, IAC2Monas) is advanta-
geous over our previous practice. New students familiarize
themselves with robot team behavior specification in signifi-
cantly less time. New ideas on team behavior can be quickly
prototyped and existing behaviors can be easily explained.
ASEME proves itself in behavior update or modification,
which rarely involves the introduction of new functionality
and typically amounts to changes in the agent’s process and
team protocols. This feature turned out to be extremely
useful in the RoboCup 2011 competition, where we were able
to modify our team behavior even at half-times or during
timeouts. ASEME was one of this year’s innovations that

6Boost is a set of free peer-reviewed portable C++ libraries:
www.boost.org
7TUC RoboCup team Kouretes: www.kouretes.gr

Table 2: Comparison of development methods.

Metric / Concept NaoQi ASEME

Run-Time Performance (load) 1.3 0.8
Development Phase

Total Development Time 8 hours 5 hours
Lines of Source Code 490 826
Auto-Generated Lines N/A 805
Number of State Variables 18 N/A

Debugging Phase
Total Debugging Time 12 hours 5 hours
Number of Bugs 16 4

contributed to a significantly better team performance in
the SPL games of RoboCup 2011 compared to RoboCup
2010 and led to winning the second place in the SPL Open
Challenge Competition. The reader may watch our robot
players in action at: www.kouretes.gr/aamas2012.mp4.

6. DISCUSSION
We faced several challenges in applying the ASEME AOSE

methodology to multi-robot behavior specification, which,
in our view, are inherent in this process and every AOSE
practitioner will face in a similar endeavor.

Firstly, most AOSE methodologies take for granted that
the agents communicate and coordinate through message
passing. This does not always hold in robotic applications,
where coordination can be based on diverse communication
means, such as inter-agent messages, blackboards, or even
sensory information. Even though ASEME defines interac-
tion protocols based on the activities of the participants,
the original statechart transition expression language [18]
assumed that a FIPA8-like communication language would
be used for message exchange. This is not true for most
multi-robot applications, where the real-time constraints for-
bid the use of Java, on which the most successful agent
platforms and those that comply to FIPA are based. The use
of the publish/subscribe communication framework and the
blackboard paradigm for local storage, forced us to modify
the transition expression language.

Additionally, the transformation of the platform-indepen-
dent model, typically the output of the design phase, to the
platform-specific model is not straightforward. The com-
putational limitations of robotic platforms make existing
model-to-text transformations of the AOSE methodologies
obsolete and new transformations need to be defined. To-
wards this end, it is very important that the AOSE metho-
dology delivers a platform-independent model with a clear
and compact meta-model. Statecharts offer more compact
semantics than PNPs [25], behavior trees [3], and hierarchi-
cal FSAs [15], and additionally capture both the functional
and behavioral aspects of the system.

Finally, behavior specification is not a trivial task. The de-
velopment of the simple player, which served as our running
example, led to a statechart with 99 states in a hierarchy
with a depth of 17 (Figure 7). This shows the added value
of starting with the early ASEME models and particularly
using the automatic transformation of liveness formulas to a
statechart, as opposed to starting the design directly with a
statechart CASE tool, such as StatEdit [12], or using a flat
statechart model, such as the plan diagrams of MaSE [2].

8Foundation for Intelligent Physical Agents www.fipa.org

177

7. CONCLUSION
In this paper we showed how the ASEME model-driven

AOSE methodology can be extended for multi-robot beha-
vior specification. The modeler is assisted by the existing
graphical and model transformation tools of ASEME and
by the IAC2Monas transformation tool that allows the auto-
mated code generation for the defined behavior coupled with
a generic multi-threaded statechart engine and a blackboard
publish/subscribe messaging system.

We discussed the challenges we faced, to share our experi-
ence with any AOSE practitioner aiming to move to robotic
agents’ development. The solutions proposed in our work
can serve as a first guide on how to go about addressing
such challenges.

Our future work lies in enhancing the code generation
tool with tight checking functionalities for minimizing user
errors, e.g. for semantic validation of the transition expres-
sions. Moreover, we plan to work on making the graphical
editing tools more efficient and more flexible in visualizing
and manipulating statecharts. The collection of our tools for
ASEME-based robot software development, including the
entire code of our RoboCup team, has been released to the
community through www.kouretes.gr/aseme.

8. ACKNOWLEDGMENTS
The authors would like to thank Mr Antonis Argyriou,

Mrs Aggeliki Topalidou-Kyniazopoulou, Mrs Shabana Shaikh,
and all members of the Kouretes team for their valuable as-
sistance. Also, Chipita S.A.–Molto for sponsoring our team.

9. REFERENCES
[1] D. Calisi, A. Censi, L. Iocchi, and D. Nardi.

OpenRDK: A modular framework for robotic software
development. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 1872–1877, September 2008.

[2] S. DeLoach, E. T. Matson, and Y. Li. Applying agent
oriented software engineering to cooperative robotics.
In Proceedings of the 15th International Florida
Artificial Intelligence Research Society Conference
(FLAIRS), pages 391–396. AAAI Press, May 2002.

[3] R. Dromey. From requirements to design: Formalizing
the key steps. In Proceedings of the First International
Conference on Software Engineering and Formal
Methods (SEFM), pages 2–11, September 2003.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35:114–131, 2003.

[5] J. M. Gascuena and A. Fernandez-Caballero.
Agent-oriented modeling and development of a
person-following mobile robot. Expert Systems with
Applications, 38(4):4280–4290, 2011.

[6] D. Harel and A. Naamad. The Statemate semantics of
statecharts. ACM Transactions on Software
Engineering and Methodology, 5:293–333, 1996.

[7] B. Hayes-Roth. A blackboard architecture for control.
Artificial Intelligence, 26(3):251–321, 1985.

[8] J. Highsmith and M. Fowler. The agile manifesto.
Software Development Magazine, 9(8):29–30, 2001.

[9] ISO/IEC. Extended Backus-Naur form (EBNF).
14977, 1996.

[10] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda,
E. Osawa, and H. Matsubara. Robocup: A challenge
problem for AI. AI Magazine, 18(1):73–85, 1997.

[11] A. G. Kleppe, J. Warmer, and W. Bast. MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley, 2003.

[12] J. Murray. Specifying agent behaviors with UML
statecharts and StatEdit. In RoboCup 2003: Robot
Soccer World Cup VII, volume 3020 of Lecture Notes
in Computer Science. Springer, 2004.

[13] O. Obst. Specifying rational agents with statecharts
and utility functions. In RoboCup 2001: Robot Soccer
World Cup V, volume 2377 of Lecture Notes in
Computer Science. Springer, 2002.

[14] A. Paraschos. Monas: A flexible software architecture
for robotic agents. Diploma thesis, Technical
University of Crete, Greece, 2010.

[15] M. Risler. Behavior Control for Single and Multiple
Autonomous Agents Based on Hierarchical Finite
State Machines. PhD thesis, Technische Universität
Darmstadt, Germany, 2009.

[16] T. Röfer et al. B-Human team report and code
release, 2009. Only available online: www.b-human.de.

[17] C. Schlegel, T. Hassler, A. Lotz, and A. Steck. Robotic
software systems: From code-driven to model-driven
designs. In Proceedings of the International Conference
on Advanced Robotics (ICAR), pages 1–8, June 2009.

[18] N. Spanoudakis. The Agent Systems Engineering
Methodology (ASEME). PhD thesis, Paris Descartes
University, France, 2009.

[19] N. I. Spanoudakis and P. Moraitis. The agent
modeling language (AMOLA). In Proceedings of the
13th International Conference on Artificial
Intelligence: Methodology, Systems, and Applications
(AIMSA), volume 5253 of Lecture Notes in Computer
Science, pages 32–44. Springer, September 2008.

[20] N. I. Spanoudakis and P. Moraitis. Gaia agents
implementation through models transformation. In
Proceedings of the 12th International Conference on
Principles of Practice in Multi-Agent Systems
(PRIMA), volume 5925 of Lecture Notes in Computer
Science, pages 127–142. Springer, December 2009.

[21] N. I. Spanoudakis and P. Moraitis. Using ASEME
methodology for model-driven agent systems
development. In Agent-Oriented Software Engineering
XI, Revised Selected Papers of the 11th International
Workshop AOSE 2010, volume 6788 of Lecture Notes
in Computer Science, pages 106–127. Springer, 2011.

[22] E. Vazaios. Narukom: A distributed, cross-platform,
transparent communication framework for robotic
teams. Diploma thesis, Technical University of Crete,
Greece, 2010.

[23] M. Winikoff and L. Padgham. Developing Intelligent
Agent Systems: A Practical Guide. Halsted Press,
2004.

[24] M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and
design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

[25] V. Ziparo, L. Iocchi, P. Lima, D. Nardi, and
P. Palamara. Petri net plans. Autonomous Agents and
Multi-Agent Systems, 23:344–383, 2011.

178

Session 5A
Robotics III

Active Visual Sensing and Collaboration on Mobile Robots
using Hierarchical POMDPs

Shiqi Zhang
Department of Computer Science

Texas Tech University
s.zhang@ttu.edu

Mohan Sridharan
Department of Computer Science

Texas Tech University
mohan.sridharan@ttu.edu

ABSTRACT
A key challenge to widespread deployment of mobile robots inthe
real-world is the ability to robustly and autonomously sense the en-
vironment and collaborate with teammates. Real-world domains
are characterized by partial observability, non-deterministic action
outcomes and unforeseen changes, making autonomous sensing
and collaboration a formidable challenge. This paper posesvision-
based sensing, information processing and collaboration as an in-
stance of probabilistic planning using partially observable Markov
decision processes. Reliable, efficient and autonomous operation is
achieved using a hierarchical decomposition that includes: (a) con-
volutional policies to exploit the local symmetry of high-level vi-
sual search; (b) adaptive observation functions, policy re-weighting,
automatic belief propagation and online updates of the domain map
for autonomous adaptation to domain changes; and (c) a probabilis-
tic strategy for a team of robots to robustly share beliefs. All algo-
rithms are evaluated in simulation and on physical robots localizing
target objects in dynamic indoor domains.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms, Experimentation

Keywords
Integrated perception, cognition, and action; Robot planning (in-
cluding action and motion planning); Robot teams, multi-robot sys-
tems, robot coordination.

1. INTRODUCTION
Autonomous and robust sensing and collaboration is a key chal-

lenge to widespread deployment of mobile robots in the real-world.
Real-world application domains are characterized by partial ob-
servability, non-deterministic action outcomes and unforeseen dy-
namic changes. A robot equipped with multiple sensors (e.g., cam-
eras and range finders) can use different algorithms to process sen-
sory inputs with varying levels of reliability and computational
complexity. It is not feasible for the robot to observe the entire
domain or process all sensory inputs with all available algorithms
and still respond to dynamic changes. At the same time, robust

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

operation requires that the robot make best use of relevant infor-
mation. Furthermore, each robot in a team can possess different
capabilities and communication between robots can be unreliable.
Autonomous and robust sensing and collaboration on robots de-
ployed in the real-world is hence a formidable challenge.

This paper poses vision-based sensing and collaboration asa
planning task and uses partially observable Markov decision pro-
cesses (POMDPs) [8] to enable each robot in a team to tailor sens-
ing and processing to the task at hand. Although POMDPs ele-
gantly model the non-determinism and partial observability of real-
world domains, the state space of these domains typically increases
exponentially and even state of the art (approximate) POMDPsolvers
have high computational complexity [14, 19]. Our prior workin-
troduced a hierarchical decomposition in POMDPs for reliable and
efficient visual sensing and processing in simulation and simplistic
tabletop scenarios [22, 23]. This paper builds on our prior work to
enable a robot to autonomously direct sensing to relevant locations,
and consider the reliability and complexity of available algorithms
to determine the sequence of sensing and processing actionsbest
suited to a given task. Each robot then shares beliefs (acquired by
processing sensory cues) with teammates to collaborate robustly in
real-world domains. The following novel contributions aremade:
• Local symmetries in visual sensing are exploited to learn convo-

lutional policies for efficient operation over large state spaces.
• Adaptive observation functions, policy re-weighting and auto-

matic belief propagation in the hierarchy are used in conjunction
with online revisions to domain map (based on range data) to
enable the robot to adapt to dynamic changes.

• A probabilistic belief sharing strategy is used to enable a team of
robots to merge individual and communicated beliefs to collab-
orate robustly despite unreliable communication.

These contributions enable the use of POMDPs for reliable, effi-
cient and autonomous visual sensing and collaboration on mobile
robots. All algorithms are evaluated in simulation and on phys-
ical robots deployed to localize target objects in dynamic indoor
domains. The remainder of the paper is organized as follows.Sec-
tion 2 summarizes related work, while Section 3 describes the hier-
archical planning approach. Experimental results are described in
Section 4, followed by conclusions in Section 5.

2. RELATED WORK
Research in vision, planning and robotics has produced sophis-

ticated algorithms for planning a pipeline of visual operators for
a high-level goal. Many such algorithms use deterministic action
models whose preconditions and effects are propositions that need
to be true apriori, or are made true by executing the operator. How-
ever, such formulations are insufficient for application domains with
partially observable state and non-deterministic action outcomes.

181

In vision research, image interpretation has been modeled us-
ing MDPs and POMDPs. Li et al. [12] used human-annotated im-
ages to determine the reward structure, explore the state space and
compute value functions—actions that maximize the learnedfunc-
tions are chosen during online operation. Similarly, active sensing
has been used to decide sensor placement and information process-
ing, using particle filters and relative entropy maximization for es-
timating a joint multitarget probability density [10]. Sensor place-
ments in spatial phenomena have also been modeled as Gaussian
processes using submodular functions [9]. However, many visual
planning tasks are not submodular, and it is difficult to model prob-
ability densities using manual feedback over many trials onrobots.

Since a POMDP formulation can become intractable due to the
exponential state explosion of real-world domains, researchers have
focused on imposing structure on application domains. Pineau and
Thrun [16] proposed a hierarchical approach for behavior control
of a robot assistant. The top level action is a collection of simpler
actions modeled as smaller POMDPs and solved completely to en-
able bottom-up planning and top-down plan execution. Similar ap-
proaches have been used for robot navigation [7] but a significant
amount of data for the hierarchy and model creation is hand-coded.
Recent work has focused on learning POMDP observation mod-
els [1]; using information maximization for POMDP-based visual
search [4, 23], and developing factored representations and faster
POMDP solvers [14, 19]. Researchers have also focused on inte-
grating human input in POMDPs for human-robot interaction [18].
However, these methods are still not suitable for dynamic domains
with large state spaces, and do not enable automatic model creation
and belief propagation that is essential for robot domains.

Many algorithms continue to be developed for multiagent and
multirobot collaboration in a variety of domains [15]. Sophisticated
algorithms have also been developed recently for using decentral-
ized POMDPs (Dec-POMDPs) for multiagent and multirobot col-
laboration [11]. However, the computational complexity ofthese
formulations is more than that of POMDP formulations [2]. Re-
search has also shown that using complex communication strate-
gies does not necessarily improve task completion times [21]. This
paper addresses these challenges using hierarchical POMDPs that
enable autonomous active visual sensing on each robot and robust
collaboration between a team of robots.

3. PROBLEM FORMULATION
Figure 1 summarizes the POMDP hierarchy for visual sensing,

processing and collaboration. Each robot uses the hierarchy to lo-
cate one or more target objects. The top-level visual sensing (VS)-
POMDP determines the sequence of 3D scenes to process to lo-
cate a specific target, as described in Sections 3.1–3.3. Foreach
chosen scene, the scene processing (SP)-POMDP determines the
sequence of regions to process in a sequence of images using the
appropriate set of algorithms. The SP-POMDP has one or two lay-
ers depending on the characterization of the learned objectmodels,
as described in Section 3.4. The hierarchy is then augmentedwith
a communication layerthat enables each robot in a team to share
beliefs with teammates to collaborate robustly despite unreliable
communication, as described in Section 3.5.

3.1 POMDP Planning
In real-world domains, the robot has to move and analyze differ-

ent scenes to locate target objects that can exist in different loca-
tions. Consider the situation where a robot has learned a domain
map [6] and has to locate a specific target. The 3D area is repre-
sented as a discrete 2Doccupancy gridand each grid cell stores
the probability of occurrence of the target object. The VS-POMDP

Figure 1: Overview of POMDP hierarchy for target localization.

poses sensing as the task of maximizing information gain, i.e., re-
ducing the belief state entropy in a grid withN cells. The POMDP
tuple〈S,A,T,Z,O,R〉 is defined as:
• S: si , i ∈ [1,N] is the state vector;si corresponds to the event that

the target is in grid celli.
• A : ai , i ∈ [1,N] is the set of actions. Executingai causes the robot

to move to and analyze grid celli.
• T : S× A× S→ [0,1] is the state transition function. It is an

identity matrix here because actions do not change state.
• Z : {present, absent} is the observation set that indicates if the

target is detected.
• O : S×A×Z → [0,1] is the observation function (see below).
• R : S×A → R is the reward specification that is based on belief

entropy (see below).
The robot maintains abelief state, a probability distribution over
the state. Theentropyof belief distributionBt is given by:

H (Bt) = −
N

∑
i=1

bi
t log(bi

t) (1)

wherebi is the ith entry of the belief distributed over theN grid
cells. With no prior knowledge of target location, the belief is uni-
formly distributed and entropy is maximum. The VS-POMDP aims
to choose actions that significantly reduce the entropy by causing
the belief distribution to converge to likely target locations. The re-
ward of actionat at timet is hence defined as the entropy reduction
between belief stateBt−1 and the resultant belief stateBt :

R(at) :=H (Bt−1)−H (Bt) (2)

=∑
k

bk
t log(bk

t)−∑
j

b j
t−1log(b j

t−1)

The observation function models the probability of target detection
as a function of the robot position and target position:

if isBlocked(sj ,ak) (3)

O(zi = present,sj ,ak) = Pr(zi = present|sj ,ak) = β
else

O(zi = present,sj ,ak) = η ·exp{−λ µ2/2σ2}
O(zi = absent,sj ,ak) = 1−O(zi = present,sj ,ak)

where the probability of observation “present” in celli given that
the target is in cellj and the focus is on cellk, i.e., p(zi |sj ,ak), is a
Gaussian distribution whose mean depends on the target location,
the grid cell being examined and the field of view:µ = fµ (sj ,ak).
The variance of the Gaussian represents the sensitivity of sensory
cues to the object’s distance from the sensor—there is more un-
certainty associated with the observation of a target at a greater
distance. The factorη is a normalizer. If there is any obstacle be-

182

tween the robot and the target, i.e.,isBlocked(sj ,ak), β is a small
probability that the target can still be observed. This observation
function is used to perform belief updates after sensing actions pro-
vide observations, and to generate observations in the simulated
experiments. Given these model parameters, belief update in the
VS-POMDP proceeds as follows:

Bt+1(s
′) =

O(s′,at+1,ot+1)∑sT(s,at+1,s′) ·Bt(s)
p(ot+1|at+1,bt)

(4)

POMDP solvers take such a model and compute apolicy that maps
belief states to actions:π : Bt 7→ at+1 . In the VS-POMDP, the
computed policy has to minimize entropy inBt over a planning
horizon. Policy gradient algorithms are used to compute thepolicy
in the form of stochastic action choices, i.e., the policy islearned as
a matrix of “weights” that are used (during plan execution) to prob-
abilistically choose an action for specific belief states [3]. Actions
in the VS-POMDP require the robot to physically move between
grid cells, expending time and effort. Instead of the formulation
described above, motion costs are addressed in a post-processing
step, as described in Section 3.3.

3.2 Convolutional Policy
In real-world domains, the state space of the VS-POMDP can

increase exponentially, making it intractable to compute the pol-
icy in real-time even with sophisticated solvers. This challenge is
addressed by exploiting the local shift and rotation symmetries of
visual processing. Specifically, if the robot is analyzing aspecific
grid cell, only the beliefs immediately around that grid cell change
substantially, i.e., the performance is a function of (and can affect)
only a small number of surrounding cells. The robot capturesthis
local influence by learning apolicy kernelbased on abaselinepol-
icy for a map with a small number of grid cells. The policy for
a larger map with a larger number of grid cells is generated au-
tomatically by an inexpensive convolution operation. Thissection
describes the creation of policy kernels and the use of convolutional
policies for efficient sensing and processing.

3.2.1 Kernel Extraction
Consider the stochastic baseline policy generated for a 5×5 map,

which has 25 states and 25 actions. In the 2D matrix of action
weights, each column corresponds to an action and each row cor-
responds to a state. The matrix is re-organized into layers,where
each layer corresponds to action weights for a particular state and
is a represented as a 2D matrix of the same size as the map. This
re-organization enables the robot to use the local symmetries (i.e.,
shift and rotation invariance) to extract a kernel without significant
loss of information:

K̄(s) = (πV ⊗ CK
m)(s) =

∫
πV(s̃)CK

m(s− s̃)ds̃, (5)

K = (∑
states

K̄) ·/W

whereK̄ is the un-normalized kernel,πV is baseline policy gener-
ated for the VS-POMDP over the 5×5 map andCK

m is the convolu-
tion mask of the same size as the target kernel. Since the maskonly
considers action weights within a local region, the layers of the re-
sultant kernel are summed up and normalized usingW, a matrix
that stores the count of the number of accumulated weights across
all layers. For instance, a 3×3 policy kernel is computed by con-
volving a 3×3 mask with the 5×5 policy layers and normalizing
the weights in the region covered by the mask.

The computed kernel does not assign action weights to grid cells
further away from the center of the convolution mask. Since these
action weights are usually much lower than values in the kernel,

they can all be set to a small default value:

wd =

∑
actions

∑
states

πV −∑ ∑
states

K̄

Nactions×Nstates−∑W
(6)

where the default action weightwd is a function of the number of
states (Nstates) and actions (Nactions). To prevent the summation
of “small weights” from overwhelming the kernel’s weights when
generating policies for large maps,wd is revised to make the ratio
of importance assigned to the area covered and left uncovered by
the kernel to be similar over maps of different sizes:

ŵd = wd − ln(
NE

states−sz(W)

NK
states−sz(W)

) (7)

whereNE
statesandNK

statesare the number of states in the large map
and kernel respectively, andsz(W) is the number of entries inW.

3.2.2 Policy Extension
Once a policy kernel has been learned, it can be used to effi-

ciently compute the convolutional policy for a larger map:

πV
C (s) = (K ⊗CE

m)(s) =
∫

K(s̃)CE
m(s− s̃)ds̃ (8)

whereπV
C is the convolutional policy,K is the policy kernel and

CE
m is the convolution mask of the same size as the target map. For

instance, for a 10× 10 map,CE
m is a 10× 10 mask over which the

3× 3 policy kernel is convolved. The desired policy is generated
one layer at a time by centering the kernel on the state represented
by the layer. Since the kernel covers only grid-cells in a small area,
other cells are assigned the weight computed in Equation 7 and the
resultant policy is normalized. Although it may take some time for
the robot to learn a baseline policy for a small map, it is a one-time
computation. The kernel extracted from a baseline policy needs to
be revised only when the robot’s sensors change substantially.

3.3 Motion Costs and Path Planning
Unlike visual search over an image, a mobile robot has to phys-

ically move between grid cells. The movement takes time and is
associated with unreliability that has a cumulative effectas the dis-
tance traveled increases. Each action is hence assigned a cost pro-
portional to the distance to be traveled by revising the action’s pol-
icy weights during policy execution:

ŵ(i) = w(i)
1

1+
dA∗ (ai ,aj)

speed

(9)

wheredA∗(ai ,a j) is the distance between the current grid cell and
the candidate grid cell, which is computed using theA∗ search al-
gorithm [20]. TheA∗ search includes a heuristic cost to the target
grid cell and a path cost to account for obstacles (e.g., walls) in the
domain map. The revised policy trades off the expected likelihood
of locating the target in a specific grid cell against the costof travel-
ing to that location. When the domain map changes due to changes
in object configurations (e.g., objects are moved and/or newob-
stacles are created), the robot automatically revises the map using
laser-based simultaneous localization and mapping (SLAM)algo-
rithms. The modified map is used to recompute distances between
grid cells and revise action weights for subsequent computations.

In addition to revising action weights to model motion-based
costs, hill-climbing is used to make the search more efficient in
large maps. Consider Figure 2, which shows a domain map (sim-
ilar to Figure 8) discretized into grid cells. The green gridis the
current position of the robot after executing the most recent action.
At this point, there are three grid cells in the map with significantly

183

Figure 2: Illustration of hot-spot detection.

higher weights than the other cells: the orange and pink grids have
w = 0.3 and the blue grid hasw = 0.2. Since the robot’s current
position is equidistant from the pink and orange grids, these grids
have an equal chance of being the next grid cell visited by therobot.
However, given that the robot has three valid candidates of similar
relevance, it makes sense to visit the pink cell first becauseit is also
close to the blue grid cell. Instead of looking for a grid cellwith the
largestŵ (Equation 9), the robot therefore selects the path through
the candidate grid cells that has the largest summation of ˆw val-
ues. Since it is computationally expensive to estimate an optimal
path by evaluating all paths through all grid cells in a largemap,
the robot detects “hot-spots”, i.e., grid cells with sufficiently large
beliefs, and plans a path through them.

To compute hot-spots,N seeds are randomly selected and then
refined based on hill-climbing to arrive at local maxima, i.e., cells
similar to the orange, blue and pink grids in Figure 2. These hot-
spots are considered to be the interesting areas for furtheranalysis.
The robot then computes the values of pathswp through combina-
tions of these hot-spots:

wp([h0,h1, . . . ,hN]) =
N

∑
i=1

f (wi ,
i

∑
j=1

dA∗(h j−1,h j)) (10)

where,hn is thenth hot-spot,h0 is the current position of the robot
and other entries are chosen by hill-climbing. The functionf is
defined in Equation 9. In Figure 2, the values of thepink-blue-
orangeandorange-pink-bluepaths are 0.0672 and 0.0591 respec-
tively, making the pink grid cell the most likely choice for being
analyzed next. This path planning doesnot imply that the robot
will move through all the hot-spots—once a robot arrives at agrid
cell, the corresponding observation revises the belief distribution
and hence the planned path. The path planning ensures that the
robot’s attention is directed towards the most interestinggrid cells.

3.4 Scene Processing
Invoking the VS-POMDP policy computed for a specific target

causes a 3D scene to be chosen for analysis. The robot moves
and captures images of this scene. As stated earlier, there are two
options for scene processing depending on the scene complexity
and learned object models—specific examples are provided inSec-
tion 4. In uncluttered scenes with unique objects, the SP-POMDP
is a two layered POMDP as described in [22]. Each input image
is analyzed to extract salient regions of interest (ROI). Each ROI is
modeled as a lower-level (LL)-POMDP, where actions are infor-
mation processing operators (e.g., to detect color or shape). The LL
policy provides the best sequence of operators to apply on a specific
ROI to detect the target. The LL policies of all image ROIs areused
to automatically create a high-level (HL)-POMDP. Executing an
action in the corresponding HL policy directs robot’s attention to a
specific ROI. The result of executing the corresponding LL policy
causes an HL belief update and action choice until presence or ab-
sence of the target in the image is determined. In cluttered scenes

with sophisticated learned object models, the robot may need to
process the entire image. Scene processing is then reduced to a sin-
gle POMDP over the image. With either version of SP-POMDP, the
result of scene processing causes a belief update in the VS-POMDP
and subsequent analysis of grid cells until the target is found or a
time limit is exceeded. The entire hierarchy operates automatically
and efficiently for dynamic domains.

3.5 Multirobot Collaboration
Consider (next) a team ofX robots trying to locateY targets.

Each robot maintains a belief vector for each target, and uses the
hierarchical POMDPs to detect each target. This section describes
an algorithm for a team of robots to share beliefs and collaborate to
locate all targets reliably and efficiently.

We assume that the targets are visually distinguishable andthat
the observations of different targets are independent of each other.
Each robot now stores a data structure:

{Bi , fi}, ∀i ∈ [1, |TL|] (11)

whereBi is the belief vector for a specific targeti among the list of
target objects (TL) and fi is a binary flag that indicates discovery
of a target. The robot also stores an action mapM , a vector of the
same size as the belief vector. Each entry in this vector stores the
number of times the robot has visited the corresponding gridcell:

M = 〈m1, · · · ,mN〉 (12)

wheremi is the count of the number of times grid-celli has been
visited. For moving targets, values in the action map decay over
time if they are not reinforced by more recent visits. Each robot
uses the POMDP hierarchy to update the appropriate belief vectors
based on observations. After the belief update, each robot shares
the belief information with its teammates by broadcasting apack-
age that includes its current belief vectors (∀i Bi), discovery flags
(∀i f i) and the action map (M).

There is uncertainty associated with sensing on each robot and
communication between robots—the information from a teammate
(when received successfully) may reinforce or contradict the infor-
mation acquired by the robot by processing sensory inputs. At the
same time, the communicated estimates provide useful information
about map locations that the robot has not visited. Each robot hence
merges own and communicated beliefs by assigning a trust factor to
beliefs based on whether the robot that generated this belief vector
has recently observed the corresponding map region:

b j,own
i =

mj,own
i ·b j,own

i +mj,comm
i ·b j,comm

i

mj,own
i +mj,comm

i

(13)

∀ j ∈ [1,N], ∀i ∈ [1, |TL|]

whereb j
i is j th entry of the belief vector of theith target, while

mj,own
i and mj,comm

i are action map entries of the robot and the
teammate whose communicated belief is being merged. Although
this merging process can be sensitive to processing order, it works
well in practice. Next, the target discovery flags are updated:

F = { f own
i || f comm

i ;∀i ∈ [1, |TL|]} (14)

where each target is considered to be found when at least one robot
has localized it. Once a target is discovered, a robot that requires a
new target chooses an undiscovered object from the list (|TL|):

targetID= argmaxi{max
j

Bi(j)} (15)

where the robot chooses the target object whose location it is most
certain about, i.e., the target that is likely to require theleast amount

184

of work to localize. The robot makes this choice based on current
beliefs that include the beliefs communicated by teammates. This
target selection approach (intentionally) includes some overlap of
targets among robots to account for unreliable communication, but
robots in the team distribute tasks and rarely go to the same target.
Furthermore, an additional cost is included to trade-off distance of
travel against expected likelihood of locating the target (or priority
of target, if known), similar to Equation 9.

4. EXPERIMENTAL RESULTS
This section describes the results of experiments performed to

evaluate the robot’s ability to: (a) useconvolutional policiesand
the POMDP hierarchy for reliable, autonomous and efficient vi-
sual sensing and processing in complex domains; and (b) proba-
bilistically merge own beliefs with communicated beliefs of team-
mates to achieve robust collaboration. Experiments were hence
conducted in simulation and on robots to evaluate the following
hypotheses: (I) the constrained convolution (CC) policy ismore ef-
ficient than the non-convolutional (i.e., baseline) policywhile pro-
viding similar accuracy; (II) the POMDP hierarchy results in better
target localization in comparison to heuristic search strategies; and
(III) the belief merging strategy enables a team of robots toshare
beliefs and collaborate robustly despite unreliable communication.

4.1 Experimental Setup
Before describing the experimental results, this section describes

the initial setup and the modifications necessary for experimental
trials on robots. The initial setup consisted of a semi-supervised
learning phase, where some objects with known labels were placed
in front of the robot. The robot applied different processing oper-
ators on images of these objects to learn object models and some
model parameters of the VS-POMDP and SP-POMDP (e.g., ob-
servation functions, reward specifications). Examples of learned
object models are described in Sections 4.3.1 and 4.3.2. Therobot
also used data from a laser range finder to learn a domain map that
was revised continuously during experimental trials.

For any detected object, the robot computes the relative distance
and bearing using geometric transforms. However, including ori-
entation as a parameter in the observation set will destroy the local
symmetry in visual sensing. The belief update in Equation 4 was
therefore modified as:

if ¬ target (16)

B(s′) =
O(s′,a,o)∑s∈ST(s,a,s′)b(s)

Pr(o|a,b)
=

O(s′,a,o)b(s)
Pr(o|a,b)

else

B(s′) =
O(s′, â,o)∑s∈ST(s, â,s′)b(s)

Pr(o|â,b)
=

O(s′, â,o)b(s)
Pr(o|â,b)

whereB(s′) is the updated belief for states′ after actiona. Since the
transition functions are identity matrices, the update equation can
be simplified as shown. The robot’s estimate of its own position and
the relative distance and bearing of a detected target are used to find
the target’s global location in the domain map. The belief isthen
updated as if the action corresponding to this global location had
been executed: ˆa. This belief update scheme also models the fact
that false positives are rare while false negatives are common when
sensing (or processing) actions are executed on mobile robots. Fur-
thermore, a robot moving between grid cells may receive sensory
inputs relevant to the current task, e.g., it may unexpectedly have
the target in its field of view. The robot therefore periodically pro-
cesses input images at low-resolution to update the currentbelief.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Number of Steps

A
cc

ur
ac

y

Baseline Policy

Convolutional Policy

Figure 3: CC policy performs as good as the baseline policy.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Covered Distance (Normalized by Number of Grids)

A
cc

ur
ac

y

Heuristic Strategy

Proposed Strategy

Figure 4: CC policy performs better than a heuristic strategy.

4.2 Simulation Experiments
All three hypotheses were evaluated extensively in simulation

using domain maps that represented different sections of the map
shown in Figure 8. Each data point in the figures in this section
is the average of 1000 simulated trials. To evaluate hypothesis I,
a baseline policy computed for a 5× 5 map was used to extract a
policy kernel that was used to compute policies for larger maps.
Figure 3 compares the CC policy against the baseline policy for a
7× 7 map—the x-axis shows the number of times the policy was
invoked, as a fraction of the number of states. In each trial,the
initial positions of the target and the robot were set randomly and
the trial was deemed successful if the target was localized correctly.
There is no statistically significant difference in the target localiza-
tion accuracies of the CC and baseline policies. However, ittakes
a few hours to compute the baseline policy for the 7×7 map.

Hypothesis II was evaluated by comparing the CC policy’s per-
formance against a heuristic policy that makes greedy action choices
or selects random actions based on the presence/absence of prior
knowledge. The results shown in Figure 4 correspond to a 15×15
convolutional policy generated from a 5× 5 kernel. The locations
of the robot and the target were randomly selected for each trial.
Existence of prior knowledge was simulated by adding bias tothe
initial belief—70% of the belief was uniformly distributedover
all grid cells, while the remaining 30% was Gaussian-distributed
around the target. To generate the data points in Figure 4, trials
were terminated after a certain distance had been traveled and the
grid cell with the largest belief value was taken to be the target’s lo-
cation. The robot’s performance is scored as the weighted distance
between the actual and detected locations of the target. Figure 4
shows that the CC policy significantly reduces the number of ac-
tion steps required to locate the target with high accuracy.

Experiments were conducted next to evaluate the multirobotcol-
laboration capability, i.e., hypothesis III. Assuming that all robots
in a team move at the same speed, the average distance moved by
the robots in a team (in an episode/trial) was used as a measure
of the team’s performance. In each trial, robots and targetswere
placed randomly in a grid map, with no more than one robot or tar-
get in each grid-cell. A Gaussian bias (20%) was added to the initial

185

1 2 3 4 5
0

100

200

300

400

Number of Robots

A
ve

ra
ge

 C
ov

er
ed

 D
is

ta
nc

e

Number of targets: 1
Number of targets: 2
Number of targets: 3
Number of targets: 4

(a) Multirobot search.

0.1 0.3 0.5 0.7 0.9
0

50

100

150

200

Prior Knowledge on Belief

A
ve

ra
ge

 C
ov

er
ed

 D
is

ta
nc

e

2 robots searching for 2 targets
3 robots searching for 1 targets

(b) Effect of Bias.

0 0.2 0.4 0.6 0.8 1
50

100

150

200

Communication Success Rate

A
ve

ra
ge

 C
ov

er
ed

 D
is

ta
nc

e

Number of robots: 2
Number of robots: 3
Number of robots: 4
Number of robots: 5

(c) Effect of CSR.

Figure 5: (a) Belief merging and hierarchical POMDPs resultin robust multirobot collaboration; (b) Performance improves if prior informa-
tion is incorporated; and (c)Performance is robust to dropped communication packages.

Table 1: Proposed algorithms enable a robot team to localizetargets
more accurately than random and heuristic search strategies.

Algorithm Normalized covered distance
0.5 1.0 1.5 2.0

Random 0.033 0.171 0.382 0.537
Heuristic 0.079 0.334 0.549 0.817
Proposed 0.153 0.544 0.825 0.957

belief in a 3×3 area around every target—the belief vector was then
normalized. When the belief in a grid cell exceeded 0.9, the grid
cell was assumed to contain a target. To simulate unreliablecom-
munication, acommunication success rate(CSR) parameter was
introduced and set to 0.5, i.e., every other broadcasted package was
not received. Figure 5(a) shows results for different combinations
of robots and targets in a 15×15 grid map—the robots collaborate
effectively to find the targets. Similar results were obtained for grid
maps of different sizes (4× 4 to 25× 25) that represent different
sections of the real-world office domain shown in Figure 8.

Next, the ability of the proposed collaboration algorithm to in-
corporate prior knowledge of target locations was evaluated. Fig-
ure 5(b) shows examples of the team’s performance for a specific
number of robots and targets as a function of the bias in the initial
belief. As expected, the performance improves, i.e., the robots are
able to localize targets faster, as more information about the loca-
tions of targets is made available.

Next, the effect of communication uncertainty on multirobot col-
laboration was measured. Figure 5(c) shows results of experiments
as a function of varying CSR, where robot teams were asked to
locate two targets. Though a low likelihood of successful commu-
nication hurts the team’s performance, the target localization capa-
bility soon stabilizes and is then no longer sensitive to theCSR.

Table 1 shows results of an experiment where two robots local-
ized two targets in a 15×15 map. The initial positions of robots and
targets were randomly assigned in each trial. The POMDP-based
approach is compared to a policy that randomly selects actions and
assigns targets to robots, and a heuristic policy which selects targets
and actions based on the grid cell with the largest belief. Tosimu-
late more realistic scenarios, prior belief was assigned tomultiple
areas in the map (including the target location). The proposed ap-
proach results in significantly better performance, with the robots
traveling a much smaller distance to localize targets with high ac-
curacy. Over extensive simulation experiments (and robot trials,
see below) in different maps (3×3 to 25×25), using the hierarchi-
cal POMDP and collaboration strategy enables a team of robots to
collaborate and localize target objects reliably and efficiently.

Figure 6 is a pictorial representation of the proposed approach
for multirobot collaboration, with two robots repeatedly localizing
two targets in a 20×20 map with obstacles. The robots had no prior
knowledge of target locations. Intuitively, each robot should first
look around its starting position and then explore other areas. Once

Figure 6: Simulated trials with 2 robots and 2 targets. Obstacles
are shown inblue, targets indark redand robot starting positions
in red. Other cells show the number of times they were visited
using colors ranging fromblueto red along the visible spectrum.

a target is sighted, the robot should localize the target accurately.
The actions taken by the robots are recorded over 100 simulated
trials—each trial ends when the targets are located. In Figure 6,
each grid cell’s color changes fromblue to red along the visible
spectrum based on the relative number of visits by a robot—results
are shown separately for each robot. Figure 6 shows that obstacles
are avoided and grid cells near the targets are visited more often
than other grid cells. In the absence of prior knowledge, there is
no clear path from initial robot positions to the targets. The ra-
dius of the yellow region reflects the largest distance of effective
observation. The two robots start searching for different targets in
different trials, but there are hardly any trials when they both go for
the same target. Similar performance is observed for different grid
maps with different numbers of targets and robots.

4.3 Robot Experiments

(a) Erratic robot (b) Nao robots
Figure 7: Robot platforms used in experiments.

Experiments were conducted on a wheeled robot and a team of
humanoid robots to test the proposed algorithms for reliable, effi-
cient and autonomous sensing and collaboration.

4.3.1 Experiments on Wheeled Robot
The algorithms for POMDP-based visual sensing and process-

ing were evaluated on theErratic robot platform shown in Fig-
ure 7(a). This robot is equipped with stereo and monocular cam-
eras, in addition to a laser range finder that can provide range in-
formation over an angular range of±135o for a distance of 30m.

186

Figure 8: Occupancy-grid map of the third floor of the Computer Science department at Texas Tech University.

All processing is performed using an on-board dual-core 2.6GHz
processor. The robot was used to conduct experiments in an in-
door office domain—the corresponding occupancy-grid map was
generated using a SLAM algorithm, as shown in Figure 8. This
map corresponds to an entire floor of the CS department at Texas
Tech University—it has three research labs, 13 faculty offices and
a conference room. The experiments reported below were mostly
conducted over the shaded portion of this map, which includes all
research labs and nine rooms—this region was discretized into cells
to form the grid map.

Given the complexity of the domain, objects were characterized
using color distributions and the Binary Robust Independent El-
ementary Features (BRIEF) [5], i.e., local image gradients. Al-
though BRIEF features are not inherently rotation and scaleinvari-
ant, images of an object (captured during the learning phase) are
automatically rotated and scaled to generate a set of imagesthat
encapsulate a range of rotations and scale changes—features ex-
tracted from these images are used to populate the object model.
Figure 9 shows a screenshot of local feature detection and match-
ing on a test object. Target objects consist ofboxes, cups, books
and otherrobotsin complex (i.e., cluttered) backgrounds.

Figure 9: BRIEF descriptor.

To enable modular software architecture, the popular Robotics
Operating System (ROS) [17] was installed on the robot and the
algorithms described above were implemented on top of ROS. Fig-
ure 10 presents an overview of the implementation—it is a sub-
set of the graph generated by the ROS command<rxgraph>.
The planning algorithms are placed within thevs_plannernode
that is the control center of the system. It repeatedly accepts mes-
sages from thevs_visionnode, which processes input images to
provide the ID of any detected object, in addition to relative dis-
tance, bearing and detection probability, in the<v_pack> pack-
age. Belief updates occur under two situations: (1) robot arrives
at a desired grid cell and processes some images of the scene—
updates consider presence or absence of the target object; or (2)
robot detects the target by processing images during navigation
to a desired grid cell. The planner node sends the coordinates of
any desired grid cell to the motion control nodemove_baseand
then waits for a response from the node, which can be one of:
arrived, canceled or not-arrived. Thenot-arrived

response is usually caused by a dynamic change in the environment,
e.g., a door being closed, which makes an office unavailable to the
robot. The node of the platform drivererratic_base_drivermoves
the robot platform based on the velocity commandcmd_vel. The
hokuyo_nodeprovides the laser (range) readings to the motion con-
trol node and the localization nodeamcl. Theamclnode computes
the robot’spos (position and orientation) and themap_serverre-
vises the domainmap continuously.

Figure 10: Node connections in ROS.

Over a sequence of 40 trials, the robot successfully identified the
desired target objects. The robot only fails when a valid path to
the target does not exist. The performance was significantlybetter
than the heuristic search strategy used in Table 1. Videos ofthe
robot’s performance can be viewed online:www.cs.ttu.edu/
~smohan/Movies/Planning/visplan_aamas12.mp4

4.3.2 Experiments on Humanoid Robots
The humanoid Nao robots [13] were used for multirobot col-

laboration experiments because multiple wheeled robots were not
available. Since stable navigation is a challenge on humanoids, ex-
periments were conducted in the robot soccer domain, where ateam
of robots play a competitive game of soccer on a 4m× 6m indoor
soccer field. This moderately constrained domain still captures all
the collaboration challenges we seek to address. Each robothas
a domain map and localizes based on domain landmarks such as
goals and field corners (whose positions in the map are known)de-
tected in input images. All computation is performed on-board the
robots using a 500MHz processor.

Target objects include boxes and balls of different colors and
shapes, as shown in Figure 7(b). Since objects are composed of ho-
mogeneous colors, gradient features cannot be used to learnobject
models. The robot has to process 30 frames/sec and computational
resources are limited. Algorithms that detect object colorand shape
were hence used. Scene processing was modeled as a two-layered
POMDP, with a POMDP that selects operators to apply on each
salient region of interest in an image, and a POMDP that controls
the selection of image ROIs for processing. The transfer of con-

187

trol between SP-POMDP and VS-POMDP occurred as described
in Section 3.4. Obstacles were artificially introduced to force the
robot to walk around to see the desired targets.

Experiments consisted of 25 trials, where a team of robots had to
detect and localize one or more targets. The robots successfully lo-
calized all targets in all trials, and the performance was significantly
better than the heuristic (i.e. greedy) policy for target and action se-
lection, similar to the results reported in Table 1. The collaboration
strategy was also robust to sudden changes in the team composi-
tion. For instance, when a robot was suddenly introduced in an
existing team of robots, the new robot automatically (and quickly)
chose to search for a relevant target using the communicatedbeliefs
of teammates. Similarly, when a robot was removed from the team,
the remaining robots automatically distributed the targets among
themselves. These experiments show that the robots are ableto
use visual cues to reliably, efficiently and autonomously sense the
environment and collaborate with teammates.

5. CONCLUSION
This paper described an approach for reliable, efficient andau-

tonomous visual sensing and multirobot collaboration. A hierarchi-
cal POMDP with convolutional policies, adaptive observation func-
tions, policy re-weighting and automatic belief propagation enables
each robot to adapt sensing and information processing to that task
at hand in dynamically changing environments. Each robot shares
its beliefs with teammates and the multirobot collaboration algo-
rithm enables the robot to merge its beliefs with the communicated
beliefs of teammates. As a result, a team of mobile robots is able
to collaborate robustly in simulation and in the real-world. The
experiments reported in this paper assumed that robots havesimi-
lar actuation capabilities. One direction of further investigation is
to model and incorporate the sensing and actuation capabilities of
heterogeneous robot platforms in the collaboration algorithm. Ex-
periments will also be conducted using a larger number of physical
robots and targets. Furthermore, the proposed hierarchy will be
adapted to inputs from other sensors on mobile robot platforms.
The ultimate goal is to enable reliable, efficient and autonomous
multirobot (and human-robot) interaction in complex and dynamic
real-world application domains.

Acknowledgment
This work was supported in part by the ONR Science of Autonomy
award N00014-09-1-0658.

6. REFERENCES
[1] A. Atrash and J. Pineau. A Bayesian Method for Learning

POMDP Observation Parameters for Robot Interaction
Management Systems. InThe POMDP Practitioners
Workshop, 2010.

[2] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.
The Complexity of Decentralized Control of Markov
Decision Processes.Mathematics of Operations Research,
27(4), November 2002.

[3] O. Buffet and D. Aberdeen. The Factored Policy-Gradient
Planner.Artificial Intelligence, 173(5-6):722–747, 2009.

[4] N. J. Butko and J. R. Movellan. I-POMDP: An Infomax
Model of Eye Movement. InThe IEEE International
Conference on Development and Learning (ICDL), 2008.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF:
Binary Robust Independent Elementary Features. In
European Conference on Computer Vision, September 2010.

[6] G. Dissanayake, P. Newman, and S. Clark. A Solution to the
Simultaneous Localization and Map Building (SLAM)
Problem.Transactions on Robotics and Automation,
17(3):229–241, 2001.

[7] A. F. Foka and P. E. Trahanias. Real-time Hierarchical
POMDPs for Autonomous Robot Navigation. InIJCAI
Workshop on Reasoning with Uncertainty in Robotics, 2005.

[8] L. Kaelbling, M. Littman, and A. Cassandra. Planning and
Acting in Partially Observable Stochastic Domains.Artificial
Intelligence, 101:99–134, 1998.

[9] A. Krause, A. Singh, and C. Guestrin. Near-optimal Sensor
Placements in Gaussian Processes: Theory, Efficient
Algorithms and Empirical Studies.JMLR, 9:235–284, 2008.

[10] C. Kreucher, K. Kastella, and A. Hero. Sensor Management
using An Active Sensing Approach.IEEE Transactions on
Signal Processing, 85(3):607–624, 2005.

[11] J. Kwak, R. Yang, Z. Yin, M. Taylor, and M. Tambe.
Teamwork and Coordination under Model Uncertainty in
DEC-POMDPs. InThe AAAI Workshop on Interactive
Decision Theory and Game Theory, 2010.

[12] L. Li, V. Bulitko, R. Greiner, and I. Levner. Improving an
Adaptive Image Interpretation System by Leveraging. In
Australian and New Zealand Conference on Intelligent
Information Systems, 2003.

[13] Nao. The Aldebaran Nao Robots, 2008.
http://www.aldebaran-robotics.com/.

[14] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee. Planning
Under Uncertainty for Robotic Tasks with Mixed
Observability.International Journal of Robotics Research,
29(8):1053–1068, July 2010.

[15] L. Panait and S. Luke. Cooperative Multi-Agent Learning:
The State of the Art.JAAMAS, 11(3):387–434, 2005.

[16] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun.
Towards Robotic Assistants in Nursing Homes: Challenges
and Results. InRAS Special Issue on Socially Interactive
Robots, 2003.

[17] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source
robot operating system. InICRA Workshop on Open Source
Software, 2009.

[18] S. Rosenthal, M. Veloso, and A. Dey. Learning Accuracy and
Availability of Humans who Help Mobile Robots. In
Twenty-Fifth Conference on Artificial Intelligence (AAAI),
San Francisco, USA, August 2011.

[19] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online
Planning Algorithms for POMDPs.JAIR, 32:663–704, 2008.

[20] S. J. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, New Jersey, USA, 2003.

[21] P. E. Rybski, A. Larson, H. Veeraraghavan, M. LaPoint, and
M. Gini. Communication strategies in Multi-Robot Search
and Retrieval: Experiences with MinDART. InSymposium
on Distributed Autonomous Robotic Systems, 2004.

[22] M. Sridharan, J. Wyatt, and R. Dearden. Planning to See:A
Hierarchical Aprroach to Planning Visual Actions on a Robot
using POMDPs.Artificial Intelligence, 174:704–725, 2010.

[23] S. Zhang, M. Sridharan, and X. Li. To Look or Not to Look:
A Hierarchical Representation for Visual Planning on
Mobile Robots. InInternational Conference on Robotics and
Automation, 2011.

188

What am I doing? Automatic Construction of an Agent’s
State-Transition Diagram through Introspection

Constantin Berzan
Department of Computer Science

Tufts University
Medford, MA 02155, USA

constantin.berzan@tufts.edu

Matthias Scheutz
Department of Computer Science

Tufts University
Medford, MA 02155, USA

mscheutz@cs.tufts.edu

ABSTRACT
Infrastructures for implementing agent architectures are cur-
rently unaware of what tasks the implemented agent is per-
forming. Such knowledge would allow the infrastructure to
improve the agent’s autonomy and reliability. For exam-
ple, the infrastructure could detect abnormal system states,
predict likely faults and take preventive measures ahead of
time, or balance system load based on predicted compu-
tational needs. In this paper we introduce a learning al-
gorithm to automatically discover a state-transition model
of the agent’s behavior. The algorithm monitors the com-
munication between architectural components, in the form
of function calls, and finds the frequencies at which various
functions are polled. It then determines the states according
to what polling frequencies are active at any time. The two
main novel features of the algorithm are that it is completely
unsupervised (it requires no human input) and task-agnostic
(it can be applied to any new task or architecture with min-
imal effort).

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
introspection, state-transition model, unsupervised

1. INTRODUCTION
The architectures of robotic agents are often implemented

in some middleware or software infrastructure [7]. The in-
frastructure’s purpose is to abstract over hardware details
and provide various advanced services to the architecture,
such as automatic distribution of components over different
computational resources, location-independent service dis-
covery, communication with remote components, and vari-
ous others. Infrastructures might have mechanisms to mon-
itor their distributed network of components (e.g. to au-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

tomatically restart crashed components) [10]. But infras-
tructures do not “know” what tasks the implemented agent
is performing. Such knowledge could improve an agent’s
reliability and autonomy, especially in long-term sustained
operations. For example, the infrastructure could detect ab-
normal system states, predict likely faults and take preven-
tive measures ahead of time, or balance system load based
on predicted computational needs.

The challenge is to obtain the knowledge needed to pre-
dict the agent’s behavior. One possibility is for the designer
to explicitly represent all possible system states. This is
clearly difficult even for fairly small systems, such as a robot
that performs navigation tasks. Moreover, such a descrip-
tion might fail to specify how the agent reacts to environ-
mental contingencies, such as the appearance of an obstacle.
Hence, in addition to the overall description of the system,
some kind of learning component is necessary to integrate
information about how environmental factors influence the
agent’s behavior.

Since the infrastructure would need an online learning
component anyway, the other possibility would be for the
infrastructure to discover the entire operation of the imple-
mented agent, without any need to specify abstract system
behavior or relevant system states. This means that the
infrastructure would have to extract state information from
the agent’s internal, subjective perspective only, since it does
not have access to any external, objective information such
as the agent’s global coordinates.

In this paper we introduce an unsupervised agent-centric
learning algorithm to automatically discover a model of the
agent’s behavior. The algorithm monitors the communica-
tion patterns among architectural components, and builds a
state diagram that reflects the agent’s task model. We start
with some background on related approaches for learning be-
havioral models. We then introduce our proposed approach,
and demonstrate its operation in several robotic tasks im-
plemented in the ADE infrastructure [10]. We show that
the state diagrams generated automatically from the agent’s
internal perspective can nicely match state diagrams cre-
ated manually from an external observer’s perspective. We
then discuss properties and shortcomings of the proposed
method, provide a summary of our contributions, and out-
line future steps for improving results and performing larger-
scale evaluations.

2. BACKGROUND
Conventional methods for modeling the behavior of an

autonomous agent are based on observing the agent from

189

an external perspective. This external approach is based on
methods used by ethologists in describing animal behavior
[5]. First, we observe the agent and determine a set of low-
level actions that it performs. For a rodent, these could
include resting, walking, grooming, eating, and drinking [6].
Once the low-level action repertoire is defined, we describe
the environmental conditions that cause the agent to switch
between actions. This way we obtain a state diagram of the
agent’s behavior, where the states are the low-level actions,
and the transitions are the observable conditions that cause
action switches.

The behavior of an autonomous agent is typically repre-
sented as some variation of a Hidden Markov Model (HMM).
If the set of states is known in advance and we have a
training sequence of observations, we can learn the param-
eters of a HMM using algorithms such as Baum-Welch [1,
9]. For example, Guillory et al. [5] learn a model of the
agent’s behavior using Input/Output HMMs. Their ap-
proach requires as input a set of possible perceptions for the
agent, and human-labeled example trajectories. Similarly,
Delmotte and Egerstedt [2] learn simple control programs
from externally-observed data. Goldberg and Mataric [4]
present an algorithm for learning Augmented Markov Mod-
els (AMMs), which are similar to HMMs, but allow each
state to produce a single symbol. Their algorithm takes a
sequence of symbols and processes it online to update an
initially empty AMM.

The strength of the external approach is that the state
labels are directly meaningful to human beings, because the
model was built based on observed behavior. On the down-
side, the external approach always requires some amount of
domain-specific knowledge, such as a model of the agent’s
perceptions, or labels for an execution trajectory. Label-
ing can be difficult when the observer’s action abstraction
does not directly correspond to the agent’s internal action
representation. For example, a robot may use several dif-
ferent actions to follow a corridor, depending on its current
goal. But an external observer might treat all these ac-
tions as the same. Similarly, an external observer might
discriminate among multiple actions (e.g. approach wall,
turn away from wall) even though the agent’s control sys-
tem does not discriminate among them (e.g. because the
agent uses a potential-based approach for traversing hall-
ways). As a result, the state-transition diagram will contain
states that have no counterpart in the agent control system.
Furthermore, the external approach treats the agent like a
black box, and will miss unobservable state changes (such as
perceiving a door and storing its location for future explo-
ration). The external approach will also miss any behaviors
exhibited outside of the observation period. And, in gen-
eral, it might not be possible to observe the agent in certain
situations (e.g. a cleaning robot in the sewage system).

To overcome some of these complications we turn to the
internal approach, where the observer is the infrastructure
in which the agent control system is implemented. Unlike
any external observer, the infrastructure has exact informa-
tion about component interactions. The agent is no longer
a black box. On the other hand, the infrastructure usually
has no information about the functional role of these compo-
nents in the agent architecture. Wallace [12] discusses the
advantages of self-assessment (internal monitoring) as op-
posed to external monitoring for detecting runtime errors.
Other unsupervised approaches for acquiring a model of the

world and self are being explored in the field of developmen-
tal robotics [13, 11]. Our work is most similar to the robot-
introspection work of Fox et al. [3], which learns a HMM of
the robot’s behavior from raw sensor data. They start with
a set of human-labeled states, which they then refine. Our
method requires no labeling whatsoever for model construc-
tion, but only for evaluation. Furthermore, the variables
and sensory features used by Fox et al. have to be chosen
by hand for each task, whereas the log data we use requires
no human pre-processing. Also, Fox et al. require multi-
ple runs of the same task to learn the model, whereas our
method allows building a model from a single run.

The ADE infrastructure mediates communication between
the agent’s components. During task execution we can record
the interaction between components, in the form of function
calls. The patterns in the recorded call log can be used to de-
fine states, which can then be organized in a state-transition
model. These states will reflect the agent’s control system,
and as discussed above, they will not necessarily correspond
to states described by an external observer. In general, the
best we can hope for from the internal approach is that it
will come reasonably close to an external model built from
human observations. We are looking for a middle ground be-
tween a model that is overly specific (too many states) and
one that is overly general (too few states). If this goal can be
achieved, the internal approach will have several advantages
over the external approach. First, internal modeling does
not require any human labeling effort. This means that it
can easily be applied to new tasks or architectures, and it
can, in principle, run online while the robot is performing its
task. Second, the model corresponds closely to the actual
control flow of the robot, so there is no risk of “cheating”
by imposing structure that is not really there (which an ex-
ternal observer might be tempted to do). Finally, and most
importantly, the robot itself knows what state it is in, and it
can use its own model to make predictions. This can enable
the robot to balance load or to predict failures before they
happen.

3. METHOD
Our state extraction algorithm is based on the following

key observation: Throughout the execution of the task, the
architecture polls various functions at regular intervals. For
example, while going through a hallway, the robot might poll
the checkMotion function, but not the getLaserReadings

function. When entering a door, the robot might poll get-
LaserReadings, but not checkMotion. We associate each
distinct polling pattern with a state. The states detected
this way are grounded solely in subjective data collected in-
ternally by the robot.

To explain our method, we use a short example task,
where the robot turns inside a room, and then exits through
the door and into the hallway. The input data is an exe-
cution log, containing a list of function calls. Each call is
identified by a time stamp, a component and function name,
and a set of arguments (which we currently ignore). Figure
2a shows some sample log entries.

We first determine the possible polling frequencies for each
function. Then, we identify the time intervals when each
polling frequency is active (we call these the instances of a
given polling frequency). We define a state as a set of active
polling frequencies. We use the detected instances to de-
termine the states, and the state-transition history. Finally,

190

we prune the state-transition history to remove superfluous
states, and we use the pruned transition history to construct
a state diagram. We proceed to describe this process in
greater detail, together with the parameters that each step
requires. It is helpful to follow Figure 2 while reading the
rest of this section.

3.1 Polling frequencies
We start by computing the time difference between pairs

of consecutive calls to the same function. If there are n calls
to function f, we get n − 1 values, which we call the ca-
dence values for f. If some caller polls f every 100ms, we
expect to see a cluster of cadence values around 100ms. Fig-
ure 2b shows a histogram plot of the cadence values for our
example task. We can see clusters for getLaserReadings,
checkMotion, updateMoveToRel, and getPlan. To extract
these clusters, we make a single-linkage hierarchical cluster-
ing1 of the cadence values for each function. We then put
two cadence values in the same flat cluster if the difference
between them is less than a threshold Dmax. If a cluster
is supported by less than Nmin cadence values, we discard
it. Figure 2c shows the resulting clusters (the clusters are
ranges of values, and we identify them by their center). In
general, there can be more than one cluster for any given
function. We refer to a function (e.g. getLaserReadings)
together with one of its clusters (e.g. 327ms) as a polling
frequency (e.g. getLaserReadings at 327ms).

This step has the following parameters:

• Dmax: maximum difference between adjacent cadence
values for them to belong to the same cluster

• Nmin: minimum number of cadence values to consti-
tute a polling frequency

3.2 Instances of each polling frequency
In the next step, we want to find all instances when a given

polling frequency is active. For example, for the polling
frequency “f at 200ms,” we want to find all time intervals
(tbegin, tend) when f is being polled at 200ms. To find these
intervals, we sweep over the logged calls in the order they
occurred, keeping track of which polling frequencies are pos-
sible at each point. If over an interval of time, we see at least
Cmin calls to f, and the time difference between each con-
secutive pair of calls is within a tolerance T of 200ms, we
save an instance for this polling frequency. Since calls that
are slightly off-time happen often, we forgive an early or late
call, if the next call is on time. Figure 2d shows a timeline
of the logged calls. Figure 2e shows the detected instances
for each polling frequency.

This step has the following parameters:

• Cmin: minimum number of calls to constitute an in-
stance

• T : tolerance with respect to a polling frequency (for a
call to be counted towards an instance)

3.3 States and the state diagram
We define a state to be a set of active polling frequen-

cies. We extract states from the instances detected in the
previous step. At each point in time, a given set of polling
frequencies is active, and if this set does not correspond to

1We also tried k-means, RANSAC, and Gaussian Mixture
Model fitting, but the simple hierarchical clustering worked
best.

an existing state, it becomes a new one. Figure 2f shows
the states and state-transition history discovered this way.
Because instances of different polling frequencies are never
perfectly aligned, this process results in a lot of superflu-
ous states, in which very little time is spent. We therefore
prune the state-transition history, discarding all state visits
shorter than Vmin. The time spent in a discarded state is
redistributed to the previous and next state in the transi-
tion history. Figure 2g shows the states and state-transition
history after pruning.

This step has a single parameter:

• Vmin: minimum time spent in a state (for pruning)

Finally, we use the pruned state-transition history to build
a state diagram of the task, shown in Figure 1. We indicate
the start state with an arrow, and the final state with a
double border.

R1

R2 R3

Figure 1: The state diagram obtained for the example task.

We use this simple way of constructing a diagram to illus-
trate the results of our state-extraction method. The state-
transition history obtained in the final step (Figure 2g) is
simply a sequence of states, which we could use to train a
HMM or AMM if desired.

4. EXPERIMENTAL RESULTS
Evaluation is one of the main difficulties of robot intro-

spection. Because the learned model is grounded in the
robot’s subjective observations, there is no “ground truth”
that we can use for a direct comparison. Instead, as pointed
out by Fox et al. [3], we are forced to compare the learned
model with a human observer’s interpretation of what the
robot actually did. We cannot escape the limitation that
interpretations may differ across observers.

We evaluate our algorithm by looking for bisimilarity be-
tween the constructed state diagram DR and another state
diagram DO, representing a human observer’s interpreta-
tion of the robot’s behavior. Bisimilarity (or bisimulation)
is a relationship between two state-transition systems that
behave in the same way, in the sense that one system simu-
lates the other and vice-versa. Park [8] provides a technical
definition in the context of automata theory.

We have tested our state-extraction algorithm on three
different tasks, using the ADE simulator. In the Boxes
task, the robot moves objects from several source boxes into
a destination box. In the Hallway task, the robot traverses
a hallway looking for wounded people in every open room.
The Combined task is a composition of the two tasks above.
The robot traverses a hallway and performs the Boxes task
inside each room.

We used the following parameters in our experiments:
Dmax = 5ms, Nmin = 10, Cmin = 3, T = 20ms, Vmin =
1.3s. For each task, we performed the following steps:

1. Run the task, generating the log and recording a screen-
cast of the simulator window.

191

system time component name function name arguments
1306509565603 CALL: com.motion.MotionServer moveToRel 0.0020581365076 0.890346846488
1306509565878 CALL: com.adesim.SimPioneerServer getLaserReadings
1306509573546 CALL: com.motion.MotionServer checkMotion 1306509573522

(a) Sample log entries

0.0 0.1 0.2 0.3 0.4 0.5
seconds

SimPioneerServer.getLaserReadings (23)
MotionServer.checkMotion (405)

MotionServer.moveToRel (0)
MotionServer.timeMove (0)
MotionServer.timeTurn (2)

MotionServer.updateMoveToRel (19)
FODDServer.getPlan (97)

(b) Cadence histogram. The number of cadence values for each
function is shown in parentheses.

function polling frequencies
getLaserReadings 327ms

checkMotion 26ms
updateMoveToRel 327ms

getPlan 202ms

(c) Detected polling frequencies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(turn around) (align to door) (exit door)

seconds

SimPioneerServer.getLaserReadings
MotionServer.checkMotion

MotionServer.moveToRel
MotionServer.timeMove
MotionServer.timeTurn

MotionServer.updateMoveToRel
FODDServer.getPlan

(d) Timeline of function calls, with the observed events shown on the bottom (the algorithm does not use these labels)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

(1) SimPioneerServer.getLaserReadings @0.327s

(2) MotionServer.checkMotion @0.026s

(3) MotionServer.updateMoveToRel @0.327s

(4) FODDServer.getPlan @0.202s

(e) Detected instances for each polling frequency

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

state 1 (polling frequencies [0 0 0 0])
state 2 (polling frequencies [0 1 0 0])
state 3 (polling frequencies [0 1 0 1])
state 4 (polling frequencies [1 1 0 1])
state 5 (polling frequencies [1 0 0 1])
state 6 (polling frequencies [1 0 1 1])
state 7 (polling frequencies [0 0 1 1])
state 8 (polling frequencies [0 0 0 1])

(f) States and state-transition history before pruning. The states are identified by a set of active polling frequencies.
For example, state 3 is marked [0 1 0 1], which means the second (checkMotion at 26ms) and fourth (getPlan at
202ms) polling frequencies are active.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
seconds

state 1 (polling frequencies [0 1 0 1])

state 2 (polling frequencies [1 0 1 1])

state 3 (polling frequencies [0 0 0 1])

(g) States and state-transition history after pruning

Figure 2: Our method, described in section 3. From the log, we obtain the cadence values (b), which we cluster to obtain the
polling frequencies (c). We then traverse the log (d), find the instances of each polling frequency (e), determine states based
on what polling frequencies are active (f), and finally prune the state-transition history (g).

192

2. Watch the screencast and create a state diagram based
on the behavior we observe. We call this the observer’s
state diagram, DO.

3. Run the state-extraction algorithm on the robot’s log,
obtaining an unlabeled state diagram.

4. Label the state diagram given by the algorithm, by
watching the screencast and observing the robot’s be-
havior during each of the detected states. We call the
result the robot’s state diagram, DR.

5. Create an expanded state diagram, DE , such that ev-
ery state in DE corresponds to exactly one state in DO,
and exactly one state in DR. (We view DO and DR as
two different ways to decompose the robot’s behavior
into states, and DE as their common denominator.)

6. Show that DR and DO are bisimilar, by defining a
function f mapping states in DO to states in DE , and
a function g mapping states in DR to states in DE .

4.1 The Boxes Task
In this task, the robot is in a room with a destination box

and several source boxes, which may be empty or contain
a single object. The robot first does a 360-degree sweep
to determine the location of the boxes. Then it visits each
source box, and if it finds an object inside, it carries the
object to the destination box. We stop the run after the
robot visits four source boxes. Figure 3 depicts the robot’s
environment and trajectory.

empty source box

filled source box

destination box

robot sweeps 360 degrees

robot position at run start

robot position at run end

wounded person

healthy person

robot speaks

Legend for all tasks:

Figure 3: Map of the Boxes task, with legend.

The robot’s state diagram DR has two states, depicted
in Figure 6a, and the observer’s state diagram DO has six
states, shown in Figure 6b. For this task, the expanded state
diagram DE is identical to DO. The full state-transition
histories for DR and DO are given in Figure 6c. The bisim-
ilarity between DR and DO is given by:

f = {R1 7→ {O1, O3, O5}, R2 7→ {O2, O4, O6}}

4.2 The Hallway Task
In this task, the robot traverses a hallway with several

rooms. Upon seeing an open door, the robot enters the room
and does a 360-degree sweep, looking for wounded people.
If it finds a wounded person, the robot pauses and sends
a spoken message to the operator. It then exits the room
and continues traversing the hallway. We stop the run after
the robot visits three rooms. Figure 4 depicts the robot’s
environment and trajectory. (Please consult the legend on
the right side of Figure 3.)

The robot’s state diagram DR has six states, depicted in
Figure 7a. The observer’s state diagram DO has five states,
depicted in Figure 7c. The expanded state diagram DE has
eleven states, shown in Figure 7b. The full state-transition

Figure 4: Map of the Hallway task.

histories for DR, DE , and DO are given in Figure 7d. The
bisimilarity between DR and DE is given by:

f = {R1 7→ {E1}, R2 7→ {E2}, R3 7→ {E3}, R4 7→ {E4, E9},

R5 7→ {E5, E7, E10}, R6 7→ {E6, E8, E11}}

and the bisimilarity between DO and DE is given by:

g = {O1 7→ {E1, E2}, O2 7→ {E3, E4, E5, E6}, O3 7→ {E7},

O4 7→ {E8}, O5 7→ {E9, E10, E11}, }

4.3 The Combined Task
This task is a composition of the Hallway and Boxes

tasks. The robot traverses a hallway with several rooms.
Upon seeing an open door, the robot enters the room and
performs the Boxes task: It does a 360-degree sweep to
find any boxes, and carries any objects from source boxes to
the destination box. When finished (or if no source boxes
are found), the robot exits the room and continues travers-
ing the hallway. The run starts with the robot sweeping
the first room, and it ends after the robot exits the third
room. Figure 5 depicts the robot’s environment and trajec-
tory. (Please consult the legend on the right side of Figure
3.)

Figure 5: Map of the Combined task.

The robot’s state diagram DR has six states, depicted in
Figure 8a. The observer’s state diagram DO has ten states,
depicted in Figure 8c. The expanded state diagram DE has
sixteen states, shown in Figure 8b. The full state-transition
histories for DR, DE , and DO are given in Figure 9. The
bisimilarity between DR and DE is given by:

f = {R1 7→ {E2, E4, E6, E9, E15},

R2 7→ {E1, E3, E5, E7, E10, E16}, R3 7→ {E8, E14},

R4 7→ {E11}, R5 7→ {E12}, R6 7→ {E13}}

and the bisimilarity between DO and DE is given by:

g = {O1 7→ {E1}, O2 7→ {E2}, O3 7→ {E3}, O4 7→ {E4},

O5 7→ {E5}, O6 7→ {E6}, O7 7→ {E7},

O8 7→ {E8, E9, E10}, O9 7→ {E11, E12},

O10 7→ {E13, E14, E15, E16}}

193

R2 Pause / UseBox

R1 Sweep / GoToBox

(a) DR: robot’s state diagram

O2 Pause

O4 TakeFromBox O5 GoToDestBox

O6 PutIntoBoxO3 GoToSrcBox

O1 Sweep

(b) DO: observer’s state diagram

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1

O1 O2 O3 O4 O5 O6 O3 O4 O5 O6 O3 O4 O5 O6 O3 O4 O5 O6 O3

(c) State-transition history in DR (top) and DO (bottom). Time moves from left to right (not drawn to scale).

Figure 6: State diagrams for the Boxes task. The start state has a loose arrow coming into it. The end state has a double
border. To illustrate bisimilarity, the states corresponding to R1 are shaded in red, and the states corresponding to R2 are
shaded in green.

R6 Enter / TurnAround / Exit

R5 Align3 / Speak

R4 Align2

R3 Align1

R2 Traverse

R1 PrepareTraverse

(a) DR: robot’s state diagram

E5 AlignEnter3

E4 AlignEnter2

E3 AlignEnter1

E1 PrepareTraverse

E7 Speak

E6 Enter E8 TurnAround

E9 AlignExit1

E10 AlignExit2

E11 Exit

E2 Traverse

(b) DE : expanded state diagram

O1 Traverse

O3 Speak O4 TurnAround

O2 Enter O5 Exit

(c) DO: observer’s state diagram

R1 R2 R3 R4 R5 R6 R5 R6 R4 R5 R6 R1 R2 R3 R4 R5 R6

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E1 E2 E3 E4 E5 E6 E8

O1 O2 O3 O4 O5 O1 O2 O4

...

...
R4 R5 R6 R1 R2 R3 R4 R5 R6 R4 R5 R6 R1 R2

E9 E10 E11 E1 E2 E3 E4 E5 E6 E8 E9 E10 E11 E1 E2

O5 O1 O2 O4 O5 O1

(d) State-transition history in DR (top), DE (middle), and DO (bottom). Time moves from left to right (not drawn to scale).

Figure 7: State diagrams for the Hallway task. We illustrate bisimilarity by shading some states in DR and DO, and their
corresponding states in DE (R4 in green, R5 in red, R6 in blue, and O1 in yellow).

R5 Traverse R6 Align1

R4 PrepareTraverse R3 Align2

R1 UseBox /

Align3 / Pause
R2 TurnAround / Sweep

/ GoToBox / Enter / Exit

(a) DR: robot’s state diagram

E5 GoToDestBox

E12 TraverseE13 AlignEnter1

E14 AlignEnter2

E7 TurnAroundE2 Pause

E3 GoToSrcBox

E4 TryTakeFromBox

E10 ExitRoom

E6 PutIntoBox

E8 AlignExit1E1 Sweep

E9 AlignExit2E16 Enter

E11 PrepareTraverse

E15 AlignEnter3

(b) DE : expanded state diagram

O7 TurnAround

O5 GoToDestBox

O9 TraverseO10 EnterRoom

O1 Sweep

O2 Pause

O3 GoToSrcBox

O4 TryTakeFromBox

O8 ExitRoom

O6 PutIntoBox

(c) DO: observer’s state diagram

Figure 8: State diagrams for the Combined task. We illustrate bisimilarity by shading R1 in red and R2 in green, showing
the corresponding states in DE .

194

R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R1 R2 R4 R5 R6 R3 R1 R2

E1 E2 E3 E4 E3 E4 E5 E6 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E1

O1 O2 O3 O4 O3 O4 O5 O6 O3 O4 O5 O6 O7 O8 O9 O10 O1

...

...
R1 R2 R3 R1 R2 R4 R5 R6 R3 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R3 R1 R2

E2 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E1 E2 E3 E4 E3 E4 E5 E6 E7 E8 E9 E10

O2 O7 O8 O9 O10 O1 O2 O3 O4 O3 O4 O5 O6 O7 O8

Figure 9: State-transition history for the Combined task, in DR (top), DE (middle), and DO (bottom). Time moves from
left to right (not drawn to scale).

5. DISCUSSION
We start by discussing how the extracted state diagrams

relate to the real world. As noted before, the only informa-
tion used by our algorithm is the function-call log given by
the infrastructure. This means that the algorithm has no
knowledge of the meaning of a function call, and so cannot
derive the meaning of a state, either. Consider the state
diagram DR extracted by the algorithm for the Hallway
task (Figure 7a). We can imagine a state diagram that has
the same number of states, the same arrows, and the same
start and end state. But if the states have completely dif-
ferent labels, the semantics of the state diagram would also
be radically different. This is the price we pay for being
completely agent-centric: Our algorithm has no way to get
at the semantics of states.

Despite this limitation, we were able to show how the ex-
tracted state diagrams DR are bisimilar to state diagrams
made by an external observer DO. We did this by build-
ing a more fine-grained (“expanded”) state diagram DE , and
showing that DR and DO are both bisimilar to DE . This cor-
respondence is encouraging, because it shows that the states
detected introspectively often correspond to distinct observ-
able behaviors. Note that bisimilarity is a rather strong
requirement, and that we would need something weaker if
some state transitions were not detected (e.g. if we usu-
ally detect Ra → Rb → Rc, but sometimes we just detect
Ra → Rc).

Comparing the extracted state diagrams with those made
by an external observer illustrates some limitations of intro-
spection. For example, in the Boxes task our algorithm was
unable to distinguish between the Pause, TakeFromBox,
and PutIntoBox states, and lumped the three together in
R2 (Figure 6a). The reverse can also happen: In the Hall-
way task, our algorithm split the observer’s single state En-
ter into the sequence R3 → R4 → R5 → R6. This shows
that parts of the extracted state diagram can be either more
coarse-grained or more fine-grained than what an observer
sees.

We now turn to a discussion of our method. Our original
idea for extracting states was to slide a fixed-size observa-
tion window over the call log, count the number of calls to
each function in each observation, and cluster the result-
ing vectors. This turned out to work very poorly, because
the fixed-size window introduced discretization errors, states
with a short time span tended to be ignored, and observa-
tions taken at the transition between two states gave rise
to spurious clusters. Moreover, the number of clusters had
to be known in advance. We developed our current method
after we realized that most functions were being polled at
regular intervals, and that we could take advantage of the
polling patterns to distinguish between states. (One could
presumably design an architecture that performs no polling

whatsoever; in that case our algorithm would need to be
adapted.)

Our method has five parameters: two for finding the polling
frequencies, two more for detecting the instances of each
polling frequency, and one for pruning the state-transition
history. For our experiments, we set the parameters by
hand, noticing how they affect the algorithm’s behavior on
the three tasks. For example, if Dmax or T are too small,
then we would most likely miss slow polls (e.g. one call every
second). If they are too large, then we might detect spurious
polling frequencies and instances. If Nmin or Cmin are too
large, we might miss states that the robot visits for only a
short time. If they are too small, then we would most likely
have many spurious state transitions. Finally, Vmin has to
strike a balance between pruning too much (joining states
that should be distinct), and pruning too little (leaving spu-
rious states). We believe that the optimal setting for these
parameters depends on variables in the infrastructure, such
as the call latency.

We briefly sketch the time complexity of each part of our
algorithm. The hierarchical clustering to find polling fre-
quencies takes O(N2

c log Nc) time and O(N2
c) space, where

Nc is the number of calls to a given function. Therefore, for
Nf , functions that are being polled, finding all polling fre-
quencies takes O(Nf ·N2

c log Nc) time. After that, assuming
Npf polling frequencies were detected, finding the instances
naively takes O(Npf ·Nc) time. For Ni instances, extracting
the states takes O(Ni) time. If the resulting state-transition
history has Nt transitions, pruning it takes O(N2

t) naively,
and can be improved to O(Nt log Nt) by using a heap.

The initial clustering of cadence values appears to be the
bottleneck. In our experiments, the cadence values had mil-
lisecond precision. To keep the running time reasonable,
it was sufficient to reduce the number of duplicate cadence
values to Nmin (this does not affect the results). For con-
venience, we used single-linkage hierarchical clustering, and
we then created flat clusters based on a distance threshold.
It should be possible to replace this expensive part of the
algorithm with simply sorting the cadence values, and then
traversing them, finding the flat clusters directly, and avoid-
ing the hierarchical clustering altogether. Such an approach
would take O(Nc log Nc) time per function. Based on this
back-of-the-envelope analysis, we expect our algorithm to
scale well with increasingly complex tasks.

Finally, we discuss how our method could help with fault
detection and load balancing. (We plan to evaluate these
proposals in future work.) Suppose the robot performs a
task for which it has already built a state diagram. If it
encounters a previously unseen state transition, the robot
could signal to the operator that something unexpected is
happening. Using introspection alone, the robot would be
unable to distinguish between a fault (in which case it should

195

state visit time spent
count mean std

R1 4 3.68 s 1.22 s
R2 4 14.33 s 7.09 s
R3 3 2.18 s 0.64 s
R4 6 4.81 s 1.75 s
R5 7 2.37 s 0.93 s
R6 7 17.11 s 6.93 s

Table 1: Mean and standard deviation of the time spent in
each state of the Hallway task.

notify the operator) and a new state (in which case it should
update its internal model). The only way to clarify the situa-
tion is to ask the operator: “Am I doing something wrong?”
or “Is this supposed to happen?” Spending too much or
too little time in a state may also indicate a failure. To
detect this, the robot could maintain statistics about the
time spent in each state. Table 1 shows the statistics col-
lected during the Hallway task. The standard deviations
are high, indicating that the time spent in a state depends
on environmental features (e.g. the length of hallway be-
tween two rooms), and not just on what the robot is doing.
This suggests that applying the unmodified AMM-learning
algorithm of Goldberg and Mataric [4] could be problematic,
because a state with high variance would be split in two.

To perform load balancing, the robot needs to know what
components of the architecture are active in each state. We
can obtain this information directly from the logs. Know-
ing its current state and the possible next states, the robot
can instantiate components on different hosts to achieve load
balancing. It can also conserve energy by suspending a com-
ponent if it is unlikely to be used in the near future.

6. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is an algorithm to ex-

tract a state diagram of an agent’s behavior from the com-
munication patterns of its architectural components. The
algorithm monitors function calls between components, and
finds the frequencies at which various functions are polled.
It then determines the states according to what polling fre-
quencies are active at any time. Unlike external approaches
to modeling robot behavior, our algorithm is completely un-
supervised (it requires no human input) and task-agnostic (it
can be applied to any new task or architecture with minimal
effort).

We evaluated the algorithm in three robotic example tasks.
We demonstrated that the state diagrams extracted by the
algorithm are bisimilar to state diagrams made by an exter-
nal observer who watches the robot perform its task. We
also discussed how our algorithm can be used for fault de-
tection and load balancing.

The most immediate direction for future work is to make
the algorithm work online, which would allow the robot to
learn during task execution and take advantage of what it
has learned so far. To turn the current version into an online
algorithm, we would need to detect new polling frequencies
and instances iteratively, without maintaining a full history
of every call so far. Using the online version, we intend to
demonstrate fault detection and load balancing based on an
actual robot.

Another extension to our algorithm is to consider “rare”

calls: occasional calls to functions that occur without polling.
This should enable us to distinguish among states that are
very similar otherwise (e.g. TakeFromBox and PutInto-
Box). We are also looking into extending our algorithm
by incorporating sensor data and function-call arguments,
and by building a probabilistic state-transition model, while
remaining completely unsupervised and task-agnostic. Fi-
nally, it would be interesting to see how much better the
state-transition model can get if we are allowed to occasion-
ally ask the operator questions, such as “What am I doing
right now?” or “Am I doing the same thing that I was doing
a minute ago?”.

7. REFERENCES
[1] E. Charniak. Statistical Language Learning. Language,

Speech, and Communication. MIT Press, 1996.

[2] F. Delmotte and M. Egerstedt. Reconstruction of
low-complexity control programs from data. In 43rd
IEEE Conference on Decision and Control, volume 2,
pages 1460–1465, 2004.

[3] M. Fox, M. Ghallab, G. Infantes, and D. Long. Robot
Introspection through Learned Hidden Markov
Models. Artificial Intelligence, 170(2):59–113, 2006.

[4] D. Goldberg and M. J. Mataric. Augmented Markov
Models, 1999.

[5] A. Guillory, H. Nguyen, T. Balch, and C. L. Isbell.
Learning executable agent behaviors from observation.
In Proc. of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, 2006.

[6] H. Jhuang, E. Garrote, X. Yu, V. Khilnani, T. Poggio,
A. D. Steele, and T. Serre. Automated home-cage
behavioural phenotyping of mice. Nature
communications, 1(6):68, 2010.

[7] J. Kramer and M. Scheutz. Robotic development
environments for autonomous mobile robots: A
survey. Autonomous Robots, 22(2):101–132, 2007.

[8] D. Park. Concurrency and automata on infinite
sequences. In P. Deussen, editor, Theoretical
Computer Science, volume 104 of Lecture Notes in
Computer Science, pages 167–183. Springer Berlin /
Heidelberg, 1981. 10.1007/BFb0017309.

[9] L. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257 –286, feb 1989.

[10] M. Scheutz. ADE - Steps towards a distributed
development and runtime environment for complex
robotic agent architectures. Applied Artificial
Intelligence, 20(4-5), 2006.

[11] D. Stronger and P. Stone. Towards autonomous sensor
and actuator model induction on a mobile robot.
Connection Science, 18(2):97–119, June 2006.

[12] S. A. Wallace. S-assess: a library for behavioral
self-assessment. In Proceedings of the fourth
international joint conference on Autonomous agents
and multiagent systems, AAMAS ’05, pages 256–263,
New York, NY, USA, 2005. ACM.

[13] J. Weng, J. McClelland, A. Pentland, O. Sporns,
I. Stockman, M. Sur, and E. Thelen. Artificial
intelligence. Autonomous mental development by
robots and animals. Science, 291(5504):599–600,
January 2001.

196

Learning from Demonstration with Swarm Hierarchies

Keith Sullivan
Department of Computer Science

George Mason University
Fairfax, VA 22030

ksulliv2@cs.gmu.edu

Sean Luke
Department of Computer Science

George Mason University
Fairfax, VA 22030

sean@cs.gmu.edu

ABSTRACT
We present a supervised learning from demonstration system
capable of training stateful and recurrent collective behaviors
for multiple agents or robots. A model space of this kind is
often high-dimensional and consequently may require a large
number of samples to learn. Furthermore, the inverse prob-
lem posed by emergent macrophenomena among multiple
agents presents major challenges to supervised learning meth-
ods. Our approach reduces the size of the state space, and
shortens the gap between individual behaviors and macrophe-
nomena, by manually decomposing individual behaviors and
arranging the agents into a tree hierarchy. This makes it
possible to train potentially large numbers of agents using a
small number of samples. We demonstrate our system using
hundreds of agents in a simulated foraging task, and on real
robots performing a collective patrolling task.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Performance

Keywords
Learning from Demonstration, Multiagent Systems, Robotics

1. INTRODUCTION
Programming agent behaviors is a tedious, time consuming

task involving multiple code, test, and debug cycles. Creat-
ing these behaviors requires significant programming ability,
which makes training the agents attractive. One training
approach is Learning from Demonstration (LfD), where the
agent learns a behavior in real-time based on examples pro-
vided by a human demonstrator. LfD teaches an agent a
policy which maps environmental features to agent actions.

Supervised learning methods are a natural fit for LfD, as
the trainer is directly providing examples. But we note that
supervised cooperative multiagent training has a surprisingly
small literature. From an extensive survey of cooperative

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June,
4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

multiagent learning [15] it was found that only a small num-
ber of papers deal with supervised learning, and most of
those are in the area of agent modeling, whereby agents learn
about one another, rather than being trained by the experi-
menter. The lion’s share of the remaining literature tends
to fall into feedback-based methods such as reinforcement
learning or stochastic optimization (genetic algorithms, etc.).
For example, in one of the more well-known examples of
multiagent layered learning [17], the supervised task (“pass
evaluation”) may be reasonably described as agent-modeling,
while the full multiagent learning task (“pass selection”) uses
reinforcement learning. This is not unusual.

Why is this so? Supervised training, as opposed to agent
modeling, generally requires that agents be told which micro-
level behaviors to perform in various situations; but the
experimenter often does not know this. He may only know
the emergent macro-level phenomenon he wishes to achieve.
This inverse problem poses a significant challenge to the appli-
cation of supervised methods to such problems. The standard
response to inverse problems is to use a feedback-based tech-
nique. But there is an alternative: to decompose the problem
into sub-problems, each of which is simple enough that the
gulf between the micro- and macro-level behaviors is reduced
to a manageable size. This is our approach.

Our multiagent training method rests upon an LfD system
we have developed called Hierarchical Training of Agent
Behaviors (or HiTAB). In its basic form this system is a
single-agent training system which learns a hierarchical finite
state automaton (HFA) represented as a Moore machine.
Individual states in the automaton either correspond to
agent behaviors, or may themselves be another HFA. An
HFA is constructed iteratively: using with a behavior library
consisting solely of atomic behaviors (e.g., turn, go forward),
the demonstrator trains an automaton describing a more
complicated composed behavior, which is then saved to the
behavior library. The now expanded behavior library is again
used to train a more abstract and capable automaton, which
is likewise saved to the library. This process continues until
the desired behavior is trained.

Our goal is to apply this training technique not just to
single agents but to supervised training of teams and swarms
of arbitrary size. Our approach is as follows. We organize
the agents into an agent hierarchy, a tree structure where leaf
nodes are the individual agents or robots performing tasks,
and non-leaf nodes are (possibly virtual) controller agents.
After we have trained and distributed individual behaviors
to the leaf-node agents using HiTAB, we the group them into
small, manageable teams (perhaps of size five), each headed

197

by a controller agent. We then train the controller using
HiTAB in much the same way that the individual agents
were trained: but his states dictate the collective behaviors
of his small team. After we have trained the small team, we
group controller agents together in teams, each such team
headed by a higher-level controller agent. This training and
grouping continues until the entire swarm has been organized
into a hierarchy.

This tree-structured organization fits between fully decen-
tralized (“swarm”-style) multiagent systems and fully cen-
tralized systems. While the tree structure has obvious dis-
advantages (e.g., it is not robust to agent failure), it has
one overriding scaling advantage: regardless of its size, at
any position in the structure an agent must deal only with
a fixed number of agents (his superior and immediate sub-
ordinates). We are taking advantage of this to make the
multiagent training task feasible regardless of the size of the
swarm. At all times we are training a controller to direct a
small number of agents (his immediate subordinates), regard-
less of the position of the controller in the hierarchy. The
micro-to-macro gulf is much smaller and simpler with five
or fewer agents than it it is with hundreds or thousands of
agents. Furthermore, the use of HFAs at the controller level
allows us to decompose complex team behaviors into simpler
ones in much the same way that we simplified the problem
in the single-agent HiTAB case.

Hierarchies are a natural fit for organizing heterogeneous
agent swarms, but interestingly they’re also useful for swarms
of agents with homogeneous behaviors too. In this paper we
show this: we train hierarchies of behaviors to control ho-
mogeneous agents, and demonstrate trained behaviors which
are superior to those found in flat (“swarm”-style) structures.

2. RELATED WORK
Agent Hierarchies. Hierarchies have long been employed
to control a robot programmatically, from the traditional
multi-tier planner/executive/control hierarchical frameworks,
to behavior hierarchies establishing precedence among com-
peting robot behaviors, of which an early example is the
Subsumption architecture [2]. A significant body of liter-
ature has constructed groups of agents, with each agent
employing its own internal hierarchical behavior mechanism
[16, 5, 21]. Hierarchies among agents are less common, for
example [6]. Some recent literature has focused on hierar-
chies of control among heterogeneous agents [8]. Hierarchies
may also be constructed dynamically as a mechanism for
task allocation [12].

Learning from Demonstration. Much of the learning from
demonstration literature may be divided into systems which
learn plans (for example [14, 20]) and those which learn
policies, that is, stateless mappings from the agent’s feature
vector to a desired action [1, 4, 10, 13]. Some work involves
stateful models related to ours, notably via Hidden Markov
Models. For example, [9] treat states not as behaviors but
as hidden world conditions which the learner is attempting
to discover and optimize for. [7] learns transitions between
states corresponding to behaviors, though it does not label
the transitions.

Multiagent Learning. One of the primary challenges ad-
dressed by this paper is in applying learning from demon-
stration — at its heart a supervised task — to the multiagent

case. As noted in [15], supervised learning methods are
not very common in multiagent learning: by far the lion’s
share of literature is based on reward-based methods such
as reinforcement learning or stochastic optimization. Of
those supervised methods, many fall in the category of agent
modeling, where agents learn about one another rather than
about a task given to them by demonstrator. For example,
in the celebrated [18], the supervised task (“pass evaluation”)
is reasonably described as agent modeling, while the full
multiagent learning task (“pass selection”) uses reinforcement
learning. Multiagent learning may also be achieved via confi-
dence estimation rather than reinforcement learning [3]. An
alternative way to bridge the macro-micro gulf is to eliminate
the macrobehaviors entirely by issuing separate micro-level
training directives each individual agent [11, 19]. We argue
that this approach is unlikely to scale.

3. AGENT BEHAVIOR TRAINING
HiTAB develops behaviors in the form of hierarchical finite-

state automata (HFA), where each state in an automaton is
either an atomic behavior in the agent, or another automaton.
Multiple states in the automaton may map to the same
atomic behavior or lower-level automaton. As the objective
is to enable learning from demonstration with a minimum
number of samples, the trainer first defines the behavior by
manually decomposing it into a hierarchy of sub-behaviors.
For each sub-behavior, he then selects the features of the
environment and the states needed to learn the behavior.
HiTAB thus learns only the transition functions from each
state within the HFA. These simplifications, made possible
by decomposition, radically reduce the dimensionality of the
problem and enable learning on a much smaller number of
samples. Formally, the HFA is a tuple 〈S,B, F, T 〉 ∈ H:

• S = {S1, . . . , Sn} is the set of states in the automaton.
Included is one special state, the start state S0, and zero
or more flag states. Exactly one state is active at a time,
designated St.

The purpose of a flag state is simply to raise a flag in the
automaton to indicate that the automaton believes that
some condition is now true. Two obvious conditions might
be done and failed, but there could be many more. Flags
in an automaton appear as optional features in its parent
automaton. For example, the done flag may be used by
the parent to transition away from the current automaton
because the automaton believes it has completed its task.

• B = {B1, . . . , Bk} is the set of basic behaviors. Each
state is associated with either a basic behavior or another
automaton from H, though recursion is not permitted.

• F = {f1, . . . , fm} is the set of observable features in the
environment. At any given time each feature has a nu-
merical value. The collective values of F at time t is the
environment’s feature vector ~ft = 〈f1, . . . , fm〉.

• T = ~ft × S → S is the transition function which maps the

current state St and the current feature vector ~ft to a new
state St+1.

• Optional free variables (parameters) G1, . . . , Gn for basic
behaviors and features generalize the model: each behav-
ior Bi and feature fi are replaced as Bi(G1, . . . , Gn) and
fi(G1, . . . , Gn). The evaluation of the transition function

198

and the execution of behaviors are based on ground in-
stances of the free variables. For example, rather than have
a behavior called go to the ball, we can create a behavior
called goTo(A), where A is left unspecified. Similarly, a
feature might be defined not as distance to the ball but
as distanceTo(B). If such a behavior or feature is used in
an automaton, either its parameter must be bound to a
specific target (such as “the ball” or “the nearest obsta-
cle”), or it must be bound to some higher-level parent
of the automaton itself. Thus HFAs may themselves be
parameterized.

Single-Agent Training. Training is an iterative process be-
tween a training mode and a testing mode. In the training
mode, the agent performs exactly those behaviors as directed
by the demonstrator. During training, each time the demon-
strator chooses a new behavior, the agent records a training

example: a tuple 〈St, ~ft, St+1〉 which stores the current fea-
ture vector, along with the states corresponding to the old
and new behaviors. If state St+1 must be executed exactly
once, then no additional examples are recorded. Otherwise,

a default example is stored: 〈St+1, ~ft, St+1〉, which tells the
agent to continue in the current state if the given feature
vector is observed again. The feature vector is specified by
the user from a library of predefined but parameterizable
features selected for the behavior.

Once enough examples are collected, the demonstrator
switches to the testing mode, which causes the agent to learn
the transition functions within the finite-state automaton.
For a given state Si, HiTAB takes all examples of the form
〈Si, ft, Sj〉 and reduces them to 〈ft, Sj〉. HiTAB then applies
a classification algorithm to these examples, using the ft as
data and Sj as their labels. At present HiTAB uses decision
trees with probabilistic leaf nodes for our classifiers.

After all the transition functions are built, the agent be-
gins performing the learned behavior. If the demonstrator
observes the agent performing an incorrect behavior, he may
issue corrections, causing the agent to switch back to training
mode and collect additional examples, then reenter testing
mode with revised training functions. This continues until
the demonstrator is satisfied with the behavior, and saves
it to the behavior library. At this point, unused states and
features are trimmed from the automaton, and any param-
eterized behaviors and features are bound to a target (e.g.,
“nearest obstacle”), or to a parameter of the automaton itself.
The behavior is now available as a state for training another,
higher-level HFA.

Multiagent Training. Once we have trained a library of
useful individual behaviors using HiTAB, how might we
extend this to training collective multiagent behavior? The
obvious (distributed) approach is to simply endow all agents
with the same top-level behavior. An alternative centralized
approach is to define a single master controller agent in charge
of all subsidiary agents. The subsidiary agents all have the
same behaviors in their libraries; but the controller agent has
its own separate library of behaviors, both basic behaviors
and learned automata. A controller agents’ basic behaviors
do not manipulate the controller, but instead correspond to
a unique behavior in the libraries of the subsidiaries. When
a controller agent transitions to a new basic behavior, this
directs the subsidiaries to immediately start performing the
corresponding behavior in their libraries.

(A)

Patrol Patrol Patrol Patrol

(C)

Attack Attack Disperse Disperse

Collective Patrol Collective Patrol

Save Humanity

(B)

Disperse Disperse Disperse Disperse

Collective Patrol

Figure 1: Three notions of homogeneity. (A) Each
agent has the same top-level behavior, but acts in-
dependently. (B) The top-level behavior all agents
is the same, but may all be switched according to
a higher-level behavior under the control of a con-
troller agent. (C) Squads in the team are directed
by different controller agents, whose behaviors are
the same but may all be switched by a higher-level
controller agent (and so on).

Our framework is in-between: we define a hierarchy of con-
troller agents. The basic agents are grouped into subgroups,
each headed by a level-1 controller agent; then various level-1
controller agents are grouped as subsidiaries to level-2 agents,
and so on, up to level-m agents forming one or more roots.
Just as all basic agents have the same behaviors, all controller
agents at a given level have the same behaviors. The actual
structure of the hierarchy (number of levels, number of agents
per controller, etc.) is pre-defined by the user. Depending
the configuration of the hierarchy, this framework can range
from fully distributed to fully centralized, with many points
in-between.

The agents are trained starting at the leaf nodes, and
working towards the root node one level at a time. After
training basic agents in the usual fashion, we may then train
a level-1 controller agent, then a level-2 controller agent, and
so on. All agents at a given level within the hierarchy run
the same HFA, but at any time they may be in different
states of that HFA. controller agent training is essentially
the same as for basic agents: the user directs the controller
agent to perform various behaviors, which in turn cause the
controller’s subsidiaries to perform behaviors. This adds
examples to a database from which transitions are learned.

While the basic behaviors for a controller agent are straight-
forward, what is a controller agent’s set of features? We
presume that, unlike a basic agent, a controller agent isn’t
embodied: his features are derived from statistical results
from his subsidiaries: for example “a basic agent in my group
is stuck (or isn’t)”, or “all my immediate subsidiaries are
‘done’ (or not)”, or “the average Y position of basic agents
in my group”. Typically a controller agent only accesses its
immediate subsidiary agents, but there are no restrictions as
to how deep in the hierarchy the controller agent can gather
information. Like an agent’s basic features, the choice of
features available to a controller agent are domain-specific.

We ultimately plan to use this method to develop hetero-
geneous team behaviors: but for now we are concentrating
on homogeneous behaviors. We note that this embedding of
the HFA training into an agent hierarchy suggests at least
three different notions of “homogeneous” behaviors, as shown
in Figure 1. First, all agents may simply perform the exact
same HFA, but independent of one another. But we can go

199

Figure 2: Learned multi-robot behavior. Demon-
strator is holding a green (“intruder”) target.

further than this and still stay within the aegis of homogene-
ity: we may add a controller agent which controls which HFA
the agents are performing. It does so by running its own HFA
with those subsidiary HFA as basic behaviors. Coordination
may continue further up the chain: second- or higher-level
controller agents may also dictate their subsidiaries’ choice
of HFAs.

4. ROBOT DEMONSTRATION
We begin with a simple demonstration which illustrates

this approach on actual robots, using a simple hierarchy of
four Pioneer robots under the control of a single controller
agent. We trained this group to perform a pursuit task while
also deferring to and avoiding a “boss”. Each robot had a
color camera and sonar, and was marked with colored paper.
The boss, intruders to pursue, and a home base were also
marked with paper of different colors. (See Figure 2).

The task was as follows. Ordinarily all agents would Dis-
perse in the environment, wandering randomly while avoiding
obstacles (by sonar) and each other (by sonar or camera).
Upon detecting an intruder in the environment, the robots
would all Attack the intruder, servoing towards it in a stateful
fashion, until one of them was close enough to “capture” the
intruder and the intruder was eliminated. At this point the
robots would all go to a home base (essentially Attack the
base) until they were all within a certain distance of the base.
Only then would they once again Disperse. At any time, if
the boss entered the environment, each agent was to Run
Away from the boss: turn to him, then back away from him
slowly, stopping if it encountered an obstacle behind.

This task was designed to test and demonstrate every
aspect of the hierarchical learning framework: it required
the learning of hierarchies of individual agent behaviors,
stateful automata, behaviors and features with targets, both
continuous and categorical features, multiple agents, and
learned hierarchical behaviors for a controller agent.

Each robot was provided the following simple basic be-
haviors: to continuously go Forwards or Backwards, to con-
tinuously turn Left or Right, to Stop, and to Stop and raise
the Done flag. Transitions in HFAs within individual agents
were solely based on the following simple features: whether
the current behavior had raised the Done flag; the minimum
value of the Front Left, Front Right, or Rear sonars; and the X
Coordinate or the Size of a blob of color in the environment
(we provided four colors as targets to these two features,
corresponding to Teammates, Intruders, the Boss, and the
Home Base). Each robot was dressed in the Teammate color.

We began by training agents to learn various small parame-

terized HFAs, as detailed in Figure 3, Subfigures 1 through 7.
Note that the Servo and Scatter HFAs are stateful: when the
target disappeared, the robot had to discern which direction
it had gone and turn appropriately. Since our system has only
one behavior per state, we enabled multiple states with the
same behavior by training the trivial HFAs in subfigures 3A
through 3D. Training these behaviors required approximately
30 minutes.

We then experimented with the “basic” homogeneous be-
havior approach as detailed in Figure 1(A): each agent simply
performing the same top-level behavior but without any con-
troller agent controlling them. This top-level behavior was
Patrol (Figure 3, Subfigure 8), and iterated through the three
previously described states: dispersing through the environ-
ment, attacking intruders, and returning to the home base.
We did not bother to add deferral to the “boss” at this point.

Coordinated Homogeneity. Simple homogeneous coordi-
nation like this was insufficient. In this simple configuration,
when an agent found an intruder, it would attack the in-
truder until it had “captured” it, then go to the home base,
then resume dispersing. But other agents would not join in
unless they too had discovered the intruder (and typically
they had not). Furthermore, if an agent captured an intruder
and removed it from the environment, other agents presently
attacking the intruder would not realize it had been captured,
and would continue searching for the now missing intruder
indefinitely!

These difficulties highlighted the value of one or more
controller agents, and so we have also experimented with
placing all four robots under the control of a single controller
that would choose the top-level behavior each robot would
perform at a given time. The controller was trained to follow
the CollectivePatrol behavior shown in Figure 3, Subfigure
9. This HFA was similar to the Patrol behavior, except that
robots would attack when any robot saw an intruder, would
all go to the Home Base when any robot had captured the
intruder, and would all resume dispersing when all of the
robots had reached the Home Base. This effectively solved
the difficulties described earlier.

We provided the controller with three simple features:
whether any robot had seen the Intruder’s color; whether
any robot was Done, and whether all robots were Done.
We trained a simple hierarchical behavior on the controller
agent, called CollectivePatrolAndDefer (Subfigure 10). We
first added a new statistical feature to the controller agent:
whether anyone had seen the Boss color within the last N−10
seconds. The controller agent would perform CollectivePatrol
until someone had seen the Boss within the last 10 seconds,
at which point the controller agent would switch to the
RunAway behavior, causing all the agents to search for the
Boss and back away from him. When no agent had seen
the Boss for 10 seconds, the controller would resume the
CollectivePatrol behavior (Figure 2).

Summary. This is a reasonably comprehensive team behav-
ior, with a large non-decomposed finite-state automaton,
spanning across four different robots acting in sync. We
do not believe that we could train the agents to perform
a behavior of this complexity without decomposition, and
certainly not in real-time. There are too many states and
aliased states, too many features (at least 12), and too many
transition conditions. However decomposition is straightfor-

200

1. Wander

ForwardsL

ForwardsR

Left

Right

Start Servo(Color) Stop, Signal Done

Forwards

Start

3A. ForwardsL

Start

Forwards

3B. ForwardsR

Start

Backwards

3C. BackwardsL

Start

Backwards

3D. BackwardsR

Start CollectivePatrolStart RunAway(B)

Right

3. Various Cover FSAs

Start

No(Color)
Left(Color)

Wander

Left

Right(Color)

No(Color)

Left(Color)
Right(Color)

FarLeft(Color),
No(Color)

FarRight(Color),
No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)
FarRight(Color)

BackwardsL

BackwardsR

Left

Right

Start

Left(Color)
Right(Color)

FarLeft(Color),
No(Color)

FarRight(Color),
No(Color)

Right(Color)

Left(Color)

FarLeft(Color)

FarRight(Color)

Right(Color)

Left(Color)

FarLeft(Color)
FarRight(Color)

Close(Color)

StopStart

Rear
Clear

Rear
BlockedScatter(Color)

Disperse(T)Start Attack(I)

Attack(H)

Someone
Sees(I)

Someone is DoneAll are Done

Disperse(T)Start Attack(I)

Attack(H)

See(I)

DoneDone

Someone
Saw(B)

In Last N
Seconds

No One Saw(B)
In Last N Seconds

2. Disperse(Color)

5. Scatter(Color)

4. Servo(Color) 6. Attack(Color)

7. RunAway(Color)

8. Patrol

9. CollectivePatrol

10. CollectivePatrolAndDefer

Right

Start

FrontLeft
Blocked

Fowards

Left

FrontRight
Blocked

Front
Clear

Front
Clear

("Go Home")

("Go Home")

Basic Behavior Macro(Parameter)Start Condition(Parameter)

Unconditional Transition ConditionalTransition
T Team Color
I Intruder Color
H Home Base Color
B Boss Color

LEGEND COLORS

Figure 3: Decomposed hierarchical finite-state automaton learned in the demonstration. See discussion in the
text on each subfigure. Most behaviors form a hierarchy within an individual robot, but CollectivePatrol and
CollectivePatrolAndDefer form a separate hierarchy within the team controlling agent. Though the transition
condition descriptions here are categorical sounding, most are in fact derived from continuous values: for
example, Left(Color) is trained based on X coordinates of the color blob in the field of view.

ward into simple, easily trained behaviors with small numbers
of features and states, simple (indeed often trivial) and easily
trained transition functions, and features and states which
may vary from behavior to behavior.

5. SIMULATION EXPERIMENTS
After conducting the robot demonstration above, we pro-

ceeded to conduct simulation experiments to quantify the
benefit of controller agents, particularly as the hierarchy grew
from a single controller to multiple levels of controllers. We
applied our multiagent homogeneous hierarchies to a simu-
lated box foraging problem: agents hunt for boxes, then pull
them to a known deposit location. The boxes are randomly
distributed throughout the environment, and after collection
at the deposit, the box disappears and a new box is placed
randomly in the environment. The environment consists
of various circular “boxes” of different sizes, which likewise
require different numbers of agents (5, 25, 125) to pull them.

We performed experiments involving swarms of indepen-
dent agents, groups of agents under a single layer of controllers
(called Level 1 controllers), and groups of agents under mul-
tiple layers of controllers (Level 1, Level 2, and so on). To
perform these experiments required training three kinds of
behaviors. First, we trained behaviors for each basic agent,
then we trained behaviors for Level 1 controllers (designed
to control basic agents), and finally we trained behaviors for
Level N≥2 controllers (designed to control other controllers).

This set of behaviors was sufficient to scale to any number
of levels. We now describe the basic behaviors and features,
and trained decompositions.

Basic Agent Behavior Decomposition. We decomposed
and trained a basic agent’s behavior hierarchy as follows:

• Agents’ basic features were DistanceTo(X), DirectionTo(X),
ICanSeeABox, IAmAttachedToABox, and Done. The first
two features were parameterizable to either visible boxes
or to the deposit location. The last feature was true when
the done flag had been raised. Boxes could only be seen if
they were within 10 units.

• Agents’ basic behaviors were Forward, RotateLeft, Rota-
teRight, GrabBox, ReleaseBox, ReleaseBoxAndFinish, and
Done. Both ReleaseBox and Done would raise the done
flag and (as normal) immediately transfer to the start
state. ReleaseBoxAndFinish would as well, except that it
would also raise a finished flag in the agent which could
be detected by controllers as a feature. Boxes could only
be grabbed if they were sufficiently close (5 units).

• Using Forward, RotateLeft, and RotateRight, we trained
Wander, which wandered randomly.

• Using Forward, RotateLeft, and RotateRight, plus the Dis-
tanceTo(X) and DirectionTo(X) features, we trained the
behavior Goto(X), which servoed to a given target.

201

Home Base

2

66
6

46

4

4
4

4
6

6

6 4

4
4

Figure 4: A screenshot of our system in action (show-
ing part of the environment). The large grey circles
are the boxes, and the X in the middle is the col-
lection location. Note that while the agents pulling
the box on left are all from the same subgroup, the
box in the bottom is being pulled by agents from
different subgroups.

• Using Goto(X), GrabBox, ReleaseBoxAndFinish, and Dis-
tanceTo(X), we trained ReturnWithBox, which pulled the
box back to the deposit location and released it when the
agent was close enough to home.

• Using Wander and ReturnWithBox, we trained Forage, a
simple top-level composition which foraged for boxes and
brought them to the deposit.

If agents were acting on their own (they had no controller),
their top-level behavior would be simply Forage. When
acting under a Level 1 controller, the current behavior of the
agent would be determined by the controller. Training the
agent’s behavior required approximately 30 –40 minutes.

Level 1 Controller Agent Behavior Decomposition. A
Level 1 controller’s behavior hierarchy was as follows:

• A controller’s basic features were SomeoneIsFinished and
SomeoneIsAttachedToABox. The latter feature was true
if any subsidiary agent had raised its finished flag. A con-
troller also had access to an additional target: closest-
attached-agent, which pointed to the subsidiary agent
which had grabbed the box (if any).

• A controller’s basic behaviors corresponded to the full set
of behaviors of its subsidiary agents: Forward, RotateLeft,
RotateRight, GrabBox, ReleaseBoxAndDone, Done, Wan-
der, Goto(X), ReturnWithBox, and Forage.

• Using Goto(closest-attached-agent), ReleaseBox, Return-
WithBox, Forage, SomeoneIsAttachedToABox, and Some-
oneIsFinished, we trained the behavior ControlForage,
which directed agents to Forage until an agent found a box.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 25000 50000 75000 100000

M
ea

n
C

ol
le

ct
ed

 B
ox

es

TimeStep

Trained Swarm
Trained Groups

Hand-Coded Swarm
Hand-Coded Groups

Figure 5: Mean number of boxes collected over time
for the first experiment.

Then, the controller would direct agents to Goto(closest-
attached-agent); once agents where close to the attached
agent, they would grab the box and begin pulling it towards
the deposit location. Once one agent finished pulling the
box, the controller would direct the agents to ReleaseBox,
and to resume Forage. We also trained trivial Return-
WithBox and Goto(X) behaviors which simply called their
corresponding basic behaviors.

If the agents were acting on their own (they had no Level 2
controller), their top-level behavior would be simply Control-
Forage. When acting under a Level 2 controller, the current
behavior of the Level 1 controllers would be determined by
their Level 2 controllers. Training Level 1 controller agents
required a few minutes.

Level N≥2 Controller Agent Behavior Decomposition.
All controller agents at levels ≥ 2 used exactly the same
behavior hierarchy, which was:

• A controller’s basic features were SomeoneIsFinished and
SomeoneNeedsHelp. The former feature is true if a sub-
sidiary agent knows of a box which requires more agents
to push it than are available to the subsidiary agent. A
Level N≥2 controller also had an additional target: biggest-
attached-agent, which is the agent attached to the largest
box that the N≥2 controller “knows about”. The controller
would learn of such boxes from its superior, or from sub-
sidiary controllers unable to manage the box themselves.

• A Level N≥2 controller’s basic behaviors corresponded to
behaviors from its subsidiary controllers: ControlForage,
ReturnWithBox, Goto(X).

• We trained a version of ControlForage similar to the
Level 1 ControlForage behavior. The difference is that
the Level N≥2 behavior directs agents to Goto(biggest-
attached-agent) when a Level 1 controller requires help. We
also trained trivial ReturnWithBox and Goto(X) behaviors
which simply called their corresponding basic behaviors.
Training level N ≥ 2 controller agents required a few min-
utes for each level.

A Level N≥2 controller’s top behavior was ControlForage.

202

 0

 20

 40

 60

 80

 100

 120

0 25000 50000 75000 100000

M
ea

n
C

ol
le

ct
ed

 B
ox

es

TimeStep

Level 1
Level 2

Figure 6: Mean number of boxes collected over time
for the second experiment.

5.1 Experiments
For the first two experiments, we considered three hierarchi-

cal structures: (1) 50 independent agents (2) ten independent
Level 1 controller agents, each heading a five-agent subgroup
(3) two independent Level 2 controller agents, each heading
five Level 1 controller agents, each heading a five-agent sub-
group. These structures roughly correspond to the notions
illustrated in Figure 1.

In the first experiment, we sought to demonstrate that a
simple hierarchy can out-perform a group of independent
agents; and additionally, that the behaviors learned in this
experiment would perform adequately compared to fine-tuned
hand-coded behaviors. In the second experiment, we sought
to demonstrate that a two-layer hierarchy could outperform
a one-layer hierarchy. In these experiments, the environment
was 200× 200 units and agents moved 0.1 units per timestep.
Agents started at uniformly randomly distributed locations.

Finally, we tried a scalability experiment, comparing a dif-
ferent, even larger hierarchy against 625 independent agents.

Each experimental run lasted 100,000 timesteps, and each
treatment had 100 independent runs. Treatments were
gauged based on the mean number of boxes returned. Differ-
ences in results were measured at the final timestep with a
95% confidence, using Bonferroni-corrected two-tailed t-tests.

First Experiment: 1-Level Hierarchies. We began by
comparing an entirely distributed swarm of 50 agents against
a group of ten controller agents, each in charge of five basic
agents. For each of these configurations, we performed runs
using a set of trained behaviors and using a set of hand-coded
behaviors. Figure 5 shows the results of all four sets of runs.

Independent Agents Versus Hierarchies: We expected the
controller agents to outperform a distributed swarm due
to the semi-centralized coordination available, because the
controller enabled specific groups of agents to work together
on a single box. Without controller agents, agents could
become stranded at boxes waiting for other agents to help
pull. These waiting agents simply relied on random discovery
of the box by other agents to gather enough helpers. Figure
5 verifies the expected improvement due to the controllers.
The improvement was statistically significant in both cases.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0 25000 50000 75000 100000

M
ea

n
C

ol
le

ct
ed

 B
ox

es

TimeStep

Level-4 Group
Swarm

Figure 7: Mean number of boxes collected over time
for the third experiment.

Hand-Coded Versus Trained: We then compared the trained
versions of the two previous structures with hand-coded ver-
sions of the same. Figure 5 again shows the results. We
had expected the hand-coded solutions to perform better,
since trained solutions contained significant training error.
But in fact, in the Level 1 hierarchy case, the trained so-
lution actually performed statistically significantly better
than the hand-coded solution! This was due to a more ran-
dom exploration strategy which allowed agents to disperse
throughout the environment better. This same exploration
strategy didn’t fare as well in the swarm case, however, be-
cause this strategy resulted in too many agents distributed
across multiple boxes rather than pulling on the same box.
While the results do not present a clear advantage to either
training or programming, they do suggest that training the
agents will crucially not significantly impair performance.

Second Experiment: 2-Level Hierarchies. We then com-
pared the same Level 1 hierarchy as before against a two-level
hierarchy: two Level 2 controllers, each in charge of five Level
1 controllers, each in charge of five agents. We changed the
scenario to favor two levels of coordination: the environment
now had eight boxes which each required five agents to pull,
and two boxes which each required twenty-five agents to
pull. Just as the first experiment was constructed so as
to demonstrate the value of some degree of homogeneous
coordination, the second experiment is meant to show the
value of homogeneous coordination at two levels.

As shown in Figure 6, two levels significantly outperformed
a single level, and for similar reasons as the first experiment.
If in the one-level case a group discovered a 25-agent box,
4 other groups had to randomly discover the box before it
could be moved and all the groups freed. But with two layers
of coordination, we could train agents to work together not
only in 5-agent groups but also in 25-agent groups.

Third Experiment: Large Numbers of Agents. Finally,
we reran the first experiment using a four-level hierarchy: a
single Level 4 controller in charge of five Level 3 controllers,
each in charge of five Level 2 controllers, each in charge of
five Level 1 controllers, each in charge of five agents. This
arrangement results in 625 agents and 156 controller agents.

203

We compared this against a swarm of 625 independent agents.
With the larger number of agents, we expanded the environ-
ment to 225× 225, and provided the environment with 25
size-5 boxes, five size-25 boxes, and one size-125 box.

As would be expected, this was no contest: the swarm of
agents were simply outclassed, as shown in Figure 7. This
somewhat unfair contest was not intended to show the efficacy
of the hierarchy, but simply that it this approach is capable
of scaling to large numbers of agents and more complex
environments.

6. CONCLUSIONS
This paper demonstrates a novel approach to the challeng-

ing task of multiagent learning from demonstration. The
approach makes progress against the inherent inverse prob-
lem by performing macro-behavior decomposition throughout
a swarm hierarchy, to the point that the differences between
the micro-level and macro-level behaviors are small enough
to be surmounted. It also applies behavior decomposition
on the individual agent level, enabling a variety of tricks to
significantly reduce the complexity and dimensionality of the
learning space, so as to get by on a very small number of
samples.

Though the obvious target for hierarchies in swarms is
heterogeneous behaviors (and that is our first task as future
work), the demonstrations here show that hierarchies may
still be of benefit in the homogeneous behavior case. In
this case, such hierarchies provide an alternate method of
consistent, learnable coordination among agents.

We note that, from a machine learning perspective, the
individual learned behaviors shown here are often quite sim-
ple. But this is exactly the point. Our goal is to enable
rapid agent and robot behavior development. From this
perspective, decomposition of a very complex joint model
into many simple models promises to allow even novices to
build multiagent behaviors rapidly because the number of
samples need not be large.

7. REFERENCES
[1] D. C. Bentivegna, C. G. Atkeson, and G. Cheng.

Learning tasks from observation and practice. Robotics
and Autonomous Systems, 47(2-3):163–169, 2004.

[2] R. Brooks. A robust layered control system for a
mobile robot. IEEE Journal Of Robotics And
Automation, RA-2:14–23, April 1986.

[3] S. Chernova. Confidence-based Robot Policy Learning
from Demonstration. PhD thesis, Carnegie Mellon
University, 2009.

[4] J. Dinerstein, P. K. Egbert, and D. Ventura. Learning
policies for embodied virtual agents through
demonstration. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages
1257–1252, 2007.

[5] E. H. Durfee and T. A. Montgomery. A hierarchical
protocol for coordinating multiagent behaviors. In
Proceedings of the 8th National Conference on Artificial
Intelligence (AAAI-90), pages 86–93, Boston, MA,
USA, 1990. AAAI Press.

[6] D. Goldberg and M. J. Mataric. Design and evaluation
of robust behavior-based controllers. In T. Balch and
L. E. Parker, editors, Robot Teams: From Diversity to
Polymorphism, pages 315–344. A. K. Peters, 2002.

[7] D. Goldberg and M. J. Mataric. Maximizing reward in
a non-stationary mobile robot environment.
Autonomous Agents and Multi-Agent Systems, 6:2003,
2002.

[8] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis,
and P. K. Khosla. Heterogeneous teams of modular
robots for mapping and exploration. Autonomous
Robots, July 2000.

[9] G. E. Hovland, P. Sikka, and B. J. McCarragher. Skill
acquisition from human demonstration using a hidden
markov model. In Proceedings of the IEEE
International Conference on Robotics and Automation,
pages 2706–2711, 1996.

[10] M. Kasper, G. Fricke, K. Steuernagel, and E. von
Puttkamer. A behavior-based mobile robot architecture
for learning from demonstration. Robotics and
Autonomous Systems, 34(2-3):153–164, 2001.

[11] M. F. Martins and Y. Demiris. Learning multirobot
joint action plans from simultaneous task execution
demonstrations. In Proceedings of Autonomous Agents
and Multi-Agent Systems Conference (AAMAS), pages
931–938, 2010.

[12] J. McLurkin and D. Yamins. Dynamic task assignment
in robot swarms. In Robotics: Science and Systems
Conference, 2005.

[13] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng,
S. Schaal, and M. Kawato. Learning from
demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems, 47(2-3):79–91, 2004.

[14] M. N. Nicolescu and M. J. Mataric. A hierarchical
architecture for behavior-based robots. In The First
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 227–233.
ACM, 2002.

[15] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art. Autonomous Agents and
Multi-Agent Systems, 11(3):387–434, 2005.

[16] L. Parker. ALLIANCE: An architecture for fault
tolerance multi-robot cooperation. IEEE Transactions
on Robotics and Automation, 14(2), 1998.

[17] P. Stone and M. Veloso. Layered learning and flexible
teamwork in robocup simulation agents. In M. Veloso,
E. Pagello, and H. Kitano, editors, RoboCup-99: Robot
Soccer World Cup III, volume 1856 of Lecture Notes in
Computer Science, pages 65–72. Springer Berlin /
Heidelberg, 2000.

[18] P. Stone and M. M. Veloso. Layered learning. In R. L.
de Mántaras and E. Plaza, editors, 11th European
Conference on Machine Learning (ECML), pages
369–381. Springer, 2000.

[19] B. Takács and Y. Demiris. Balancing spectral clustering
for segmenting spatio-temporal observations of
multi-agent systems. In IEEE International Conference
on Data Mining (ICDM), pages 580–587, 2008.

[20] H. Veeraraghavan and M. M. Veloso. Learning task
specific plans through sound and visually interpretable
demonstrations. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2599–2604. IEEE, 2008.

[21] T. Vu, J. Go, G. Kaminka, M. Veloso, and B. Browning.
MONAD: a flexible architecture for multi-agent control.
In AAMAS 2003, pages 449–456, 2003.

204

Autonomous Robot Dancing Driven by
Beats and Emotions of Music

Guangyu Xia
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
gxia@andrew.cmu.edu

Junyun Tay
∗

Mechanical Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

junyunt@cmu.edu
Roger Dannenberg

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

rbd@cs.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

veloso@cmu.edu

ABSTRACT
Many robot dances are preprogrammed by choreographers
for a particular piece of music so that the motions can be
smoothly executed and synchronized to the music. We are
interested in automating the task of robot dance choreogra-
phy to allow robots to dance without detailed human plan-
ning. Robot dance movements are synchronized to the beats
and reflect the emotion of any music. Our work is made up
of two parts: (1) The first algorithm plans a sequence of
dance movements that is driven by the beats and the emo-
tions detected through the preprocessing of selected dance
music. (2) We also contribute a real-time synchronizing al-
gorithm to minimize the error between the execution of the
motions and the plan. Our work builds on previous research
to extract beats and emotions from music audio. We created
a library of parameterized motion primitives, whereby each
motion primitive is composed of a set of keyframes and du-
rations and generate the sequence of dance movements from
this library. We demonstrate the feasibility of our algorithms
on the NAO humanoid robot to show that the robot is capa-
ble of using the mappings defined to autonomously dance to
any music. Although we present our work using a humanoid
robot, our algorithm is applicable to other robots.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, and generation

General Terms
Algorithms

Keywords
autonomous robot dancing, motion-emotion mapping,
scheduling, real-time synchronization

∗Junyun Tay is in the Carnegie Mellon University-Nanyang
Technological University Dual PhD Programme.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Dancing motions for robots are usually created by chore-

ographers and designed for a particular piece of music. If
the piece of music changes, the dance movements of the
robot will have to be recreated. We are interested in au-
tomating the task of robot dance choreography by generat-
ing sequences of dance movements from a motion library.
The automatically generated choreography should satisfy
several goals. First, the choreography should be safe for
performance. For example, it should not cause the robot
to fall or break. Second, the choreography should reflect
the emotional character of the music. Peaceful music should
be choreographed differently from music that sounds angry.
Third, the dance should be synchronized to the music. Fi-
nally the dance should not be deterministic. Even when the
emotion and tempo of the music remain constant, the dance
should contain interesting variations.

To address the goal of safety, we compose dances from
sequences of motion primitives. A motion primitive is a
sequence of keyframes (static poses), interpolated to form a
continuous motion. The motion primitives are designed to
be interesting and safe when performed in any sequence.

We represent emotion using a two-dimensional activation-
valence emotion space, which is commonly used to describe
emotional states. We create a large library of motion prim-
itives, by dividing the joints of the NAO humanoid robot
into 4 categories, where each category of joints can actuate
independently. Given that there is a large number of mo-
tion primitives, we contribute another algorithm that uses
labelled emotional static postures data, collected with the
NAO humanoid robot, to estimate the activation-valence
values for each motion primitive. Motion primitives are then
selected to match the emotional state of the music.

To synchronize dance to the music, we use the fact that
motion primitives can be executed with different durations.
We adjust the duration of each motion primitive so that the
duration will be an integer multiple of beats. In practice, as
the movements on the NAO humanoid robot may not exe-
cute according to the planned schedule of motion primitives,
we maintain synchronization with the music by adjusting the
durations of motion primitives in real time to compensate for
differences between the schedule and the actual execution.

205

To create interesting variations in the dance, we use a
first-order Markov model to generate dances stochastically.
States correspond to motion primitives. The state transi-
tion probabilities are designed to produce smooth motion
sequences by favoring next states that begin with a keyframe
near the final keyframe of the current state. The state tran-
sition probabilities also depend upon the current emotion in
the music, such that at any given time, state transition prob-
abilities will prefer states that reflect the current emotion in
the music. Figure 1 summarizes the process we described.
We demonstrate the feasibility of our algorithms on the NAO
humanoid robot to show that the robot is capable of using
the mappings defined to autonomously dance to any music.
Our algorithms are applicable to other robots as well.

Figure 1: Summary of system diagram

2. RELATED WORK
Robot dances are generally preprogrammed by choreogra-

phers specifically for a piece of music. Researchers created
motions for robots using motion capture data of humans
dancing [13]. Our algorithm enables the robot to dance au-
tonomously to any piece of music that is preprocessed using
a library of predefined motions. Many explored emotional
expressions of robots using the robot’s facial features [2, 10]
and did not consider using entire body postures and move-
ments. Paul Ekman proposed 6 primary emotions: Happy,
Sad, Angry, Surprised, Fear and Disgust [3], and we explore
the use of body postures on humanoid robots to express 6
primary emotions. We use the information collected from
these static emotion body postures to estimate the emotion
of dance movements and organized them to reflect the emo-
tions detected in music.

The creation of dancing characters is a common theme in
computer animation research [8, 9, 11, 14, 15]. [11] uses a
given sequence of motions to synthesize music, while others
use given music to synthesize motion sequences. The work
[14] focuses on a topological model of dance styles, while [8,
9, 15] focus on synthesizing motions according to musical
beat times, which are very similar to our approach. Among
them, only [15] synthesizes motions according to musical
emotion. However their system uses only the intensity of
music as an indicator of emotion. Our work enhances the
use of beats by adopting a more recent and more accurate
technique to identify beats and tempo. We also use a state-
of-the-art emotion detection system coupled with our motion
primitives for robots to convey richer emotions.

3. DANCE MOTIONS FORMALIZATION
We demonstrate our work on a NAO humanoid robot (Fig-

ure 2). The NAO robot has 21 joints and is a stand-alone
autonomous robot with no facial features, except for LEDs
in the eyes and ears. We group the joints into 4 categories:

1. Head (Head): HeadYaw, HeadPitch

2. Left Arm (LArm): LShoulderPitch, LShoulderRoll,
LElbowYaw, LElbowRoll

3. Right Arm (RArm): RShoulderPitch, RShoulderRoll,
RElbowYaw, RElbowRoll

4. Legs (Legs): LHipYawPitch, LHipRoll, LHipPitch,
LKneePitch, LAnklePitch, LAnkleRoll, RHipRoll,
RHipPitch, RKneePitch, RAnklePitch, RAnkleRoll

Figure 2: NAO humanoid robot

Each category of joints is defined to be c = 〈Jc,1, . . . , Jc,|c|〉,
where c ∈ {Head,LArm,RArm,Legs} and Jc,1, . . . , Jc,|c| are
the indices of the joints in the category. |c| is the total
number of joints in the category c. E.g., Head = 〈1, 2〉 where
1 is the index of HeadYaw and 2 is the index of HeadPitch.

3.1 Motion Primitive
Each keyframe is associated with a category c, and is de-

fined as Kc = 〈Vc,1, . . . , Vc,|c|〉, where Vc,j contains the joint
angle of joint index Jc,j . A motion primitive is Mc(β) =
〈Kc,1, βD1,Kc,2, . . . ,Kc,F−1, βDF−1,Kc,F 〉 where F is the
number of keyframes in Mc. D is the minimum time that it
takes to move (interpolate) from one keyframe, Kc,f , to the
next keyframe, Kc,f+1, and is pre-defined. We parameterize
the motion primitive with β, where β ∈ R and β ≥ 1. β is
calculated using the beat times of the music so as to syn-
chronize the motion primitive with the music (Section 5.2).

We assume independence of each body part by ignoring
the effects of dynamics generated by motions. This catego-
rization of joints according to body parts enables us to create
a large variety of motion primitives, as we can create motion
primitives for each category independently. We have a total
of 8(Head)× 9(LArm)× 9(RArm)× 26(Legs) = 16, 848 pos-
sible motion primitive combinations. The number of motion
variations is actually much greater because motions primi-
tives do not necessarily start and end synchronously. The 52
parameterized motion primitives are manually generated.

3.2 Schedule of Motion Primitives
A schedule of motion primitives belonging to the category

c is defined as Sc = 〈Kc,D,Mc,1, I1,Mc,2, . . . , Ip−1,Mc,p〉,
where p is the total number of motion primitives in Sc. Kc

contains the initial joint angles of the robot andD is the time
to interpolate from Kc to the first keyframe of Mc,1. Im is
the time to interpolate from the last keyframe of Mc,m to
the first keyframe of Mc,m+1. We show how to calculate Im
in Section 5.2.1. We plan 4 schedules of motion primitives—
SHead, SLArm, SRArm, SLegs independently according to the
emotions and beats of the music. Although the 4 schedules
are generated independently, the robot can execute these 4
schedules simultaneously. The behaviour of the robot at a
given point in time h is Bh = 〈MHead,MLArm,MRArm,MLegs〉

206

where Mc is the current motion primitive in Sc at time h
where c ∈ {Head,LArm,RArm,Legs}.

Our formalization of the motion primitive, schedules of
motion primitives and behaviour is general to use on differ-
ent robots given the independence of the joints of the robot
and that the joints can be actuated simultaneously.

4. MUSIC INFORMATION EXTRACTION
We obtain information directly from music audio signals

to coordinate the robot dance motions with music. The ex-
tracted information consists of emotions, so that the robot’s
motions can be consistent with the mood of the music, and
beats, which allow the robot to synchronize to musical pulses.

4.1 Emotion Extraction
It is well known that musical emotion has a significant

impact on human dancers’ movements. Our autonomous
robot dance algorithm is driven by musical emotions.

We use SMERS [7], a state-of-the-art music emotion recog-
nition system based on audio features and support vector
regression (SVR). SMERS performs a forced classification
into 11 emotion categories and achieved a 94% agreement
with expert human labelers.

4.1.1 Emotion Representation
SMERS adopts Thayer’s 2-dimensional Activation-Valence

(AV) model [16] to represent musical emotion (Figure 3).

Figure 3: 2-dimensional emotion model

The emotion of a piece of music is represented by an AV
value, (a, v) where a denotes Activation and v denotes Va-
lence; a, v ∈ R, a ∈ [−1, 1], v ∈ [−1, 1]. SMERS was devel-
oped and tested assuming each track of music (song) has a
single main emotion. We consider that emotion may change
over time within a piece, so we use a 30-second sliding win-
dow with a 15-second overlap. Therefore, music emotion is
represented by a vector of (a, v) coordinates. The ith el-
ement in the vector (indexing starts at 0) represents the
emotion of the music at time 15i+ 15 seconds.

4.1.2 SVR training and decoding
Emotion labeling relies on SVR, which learns a mapping

between feature vectors and emotion vectors. In our appli-
cation, the feature vector xi ∈ R6 is a vector of extracted
music audio features, which include estimated key (one of 12

major or minor keys), average energy and standard devia-
tion of energy, estimated tempo, standard deviation of beat
duration, and harmonicity (see [7] for more details). The
emotion vector is an (a, v) coordinate denoted by yi ∈ R2.
Since the original training data contains music audio with
emotion labels such as Peaceful or Happy, we replace these
labels with the (a, v) coordinates of the middle of the corre-
sponding block as shown in Figure 3. Given a set of training
data (x1, y1), (x2, y2), . . . , (xn, yn), SVR will try to find the
optimal mapping function between input xi and output yi.
In the decoding step, for a segment of music audio, we ex-
tract the feature vector x and apply the learned regression
model to get the output (a, v) coordinates of the piece of
music. These coordinates could be quantized to obtain a
discrete label (e.g. Angry), but for choreography, we use
the continuous numerical representation directly.

4.2 Beat Tracking
Musical beats reflect the basic period or pulse of music.

It is typical for humans to synchronize the dance motions
to the musical beats, so it is important for our algorithm to
detect and track beats in music audio.

Much work has been done in the area of beat tracking.
Currently, most algorithms are based on autocorrelation anal-
ysis or onset component detecting [1, 4, 5, 6]. Most recently,
[1] proposed a beat tracking method that combines autocor-
relation analysis and Neural Networks learning. The work
done by Goto [6] is based on onset component and rhythm
structure analysis. In nearly all cases, beat detection is
based on some audio feature associated with note onsets
and drum beats, such as change in amplitude or spectrum.
Peaks in these features mark likely candidates for beat lo-
cations. Since musical beats mostly occur with an overall
stable frequency (tempo), these candidate locations are fil-
tered by looking for ones that are regularly spaced. Our
approach estimates a global tempo (the overall beats per
minute of a piece of music) by analyzing the autocorrelation
of onset features throughout a piece, and then finds the best
beat times by using dynamic programming [4]. This method
performed well in the MIREX-06 evaluations [4] and gener-
ally works well when there are clear beats and steady tempo.

4.2.1 Global tempo estimation
The global tempo estimation algorithm is executed in three

steps. First, the onset strength envelope (Figure 4) of the
whole piece of music is calculated from a crude perceptual
model (see [4] for more details). Second, the autocorrelation
of the onset strength is computed. When the lag matches
the beat or its multiples, the autocorrelation should be closer
to 1. The result of one piece of music is shown in Figure 5.
Third, the highest peak (ignoring the peak at 0) is detected
and the corresponding lag is chosen as the global tempo.

4.2.2 Find best beat times
Local beat times correspond to perceived onsets in the

audio signal of a piece of music. Given the global tempo,
the beat times should not only be local onset peaks but
should be equally spaced according to the global tempo. An
objective function is defined to reflect these two goals.

S(T) = α

N∑

i

Onset(ti)− (1− α)

N∑

i+1

dist(ti − ti−1, C) (1)

Here, T = [t1, t2, . . . , tN] refers to the sequence of beat

207

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time(s)

Figure 4: Part of the onset envelope of the music

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

lag(s)

a
u

to
c
o

rr
e

la
ti
o

n

Figure 5: Autocorrelation as function of lag

times. α ∈ (0, 1) is a weighing parameter to balance the im-
portance of the two terms. Onset(ti) represents the onset
strength of the audio signal at time ti, while dist(ti−ti−1, C)
represents the difference between the beat interval and the
global tempo C, which is determined as described above. We
use dynamic programming to optimize the objective func-
tion by recursively finding each ti and hence the best T.

5. DANCING PLANNING
In this section, we explain how musical emotions and beat

times automatically determines the behaviour of the robot.
The musical emotion decides the motion primitive, while
beat times control fine timing and synchronization.

5.1 Generate Schedule of Motion Primitives
To generate a schedule of motion primitives according to

the emotions of the music, we need to have emotion labels
assigned to the motion primitives. It is time-consuming to
label each motion primitive with an AV value, so we devel-
oped an algorithm that estimates the AV value from emotion
labels of the static postures within the motion primitive.

5.1.1 Mapping Motion Primitive to Activation-
Valence Space From Static Postures Data

We collected 4 static postures of the NAO humanoid robot
for each of Ekman’s 6 basic emotions: Happy, Sad, An-
gry, Surprised, Fear and Disgust. Hence, we have a total

of 24 emotional static postures. Motion primitives are con-
tructed from these. The arms and head of a NAO humanoid
robot can be freely positioned, but there are only 5 differ-
ent heights and 5 different tilts of the robot to choose from
as shown in Figure 6. Static postures to express each emo-
tion using the NAO humanoid robot were collected inde-
pendently. Figure 7 shows a subset of the data we collected.

Figure 6: 5 heights and 5 tilts of the NAO robot

Figure 7: Examples of static postures and corre-
sponding selected keyframes in motion primitives.
Red circles indicate the points of interest

Table 1: AV Value for Paul Ekman’s six emotions
Emotion Activation (A) Valence(V)
Happy 1 1

Sad -1 -1
Angry 1 -1

Surprised 1 0
Fear 0.5 -1

Disgust -0.5 -0.5

We assigned each of the 6 basic emotions with an AV value
shown in Table 1. We recorded the joint angles of each emo-
tional static posture in a keyframe. To label each motion
primitive, we form a weighted sum based on the similarity
between motion primitives and static postures with known
AV values. SP[em] returns a vector of four static postures
(keyframes), where em ∈ {Happy, Sad,Angry,Disgusted,
Fear, Surprised}, e.g., SP[Happy] returns a vector of four
keyframes that reflect the Happy emotion. Algorithm 1 first
determines the most similar static posture for each em to
the motion primitive by using the points of interest (POI),

208

shown in Figure 7. The POI are chosen based on the con-
cepts of markers in motion capture systems. Algorithm 1
calculates DIST, the sum of the Euclidean distances be-
tween the 3-dimensional positions of the POI in each static
posture with emotion em and the 3D positions of POI of
the keyframes in the motion primitive Mc,n with the func-
tion GetDist and returns the least sum of Euclidean dis-
tances. Next, Algorithm 2 ranks the least sum of Euclidean
distances from each emotion and computes an exponential
weighting for each emotion based on its ranking and the
Euclidean distance. Lastly, Algorithm 3 estimates the AV
values of the motion primitives with the weights found and
the AV values in Table 1. Figure 7 shows keyframes from
motion primitives that best reflect the emotions. Figure 8
shows the estimated emotion values of all motion primitives.

Algorithm 1 Calculate the least sum of Euclidean distances
of points of interest of a motion primitive Mc,n and the
emotional static posture in SP[em]

GetLeastDiffEm(Mc,n, em)

1: for KF = 1 to |SP[em]| do
2: total← 0
3: for kf = 1 to numOfKeyframes(Mc,n) do
4: total← total + GetDist(Mc,n[kf], SP[em][KF])
5: end for
6: DIST[KF]← total
7: end for
8: return minKF(DIST[KF])

Algorithm 2 Calculate the vector of weights based on the
ranking of the Euclidean distances

GetWeightsBasedRank(distances)

1: for i = 1 to |distances| do
2: flippedDistances[i]← (

∑
j distances[j])− distances[i]

3: end for
4: sorted← sortAscending(flippedDistances)
5: meanValue← mean(flippedDistances)
6: for i = 1 to |flippedDistances| do

7: weights[i]← ek +
flippedDistances[i]

meanValue
where

sorted[k] = flippedDistances[i]
8: end for
9: for i = 1 to |weights| do

10: weights’[i]← weights[i]
∑
j weights[j]

11: end for
12: return weights’

5.1.2 The Markov Dancer Model
Suppose there is a dancer who dances with a piece of mu-

sic. At each time point, the dancer strives both to reflect
the emotion in the music and to achieve continuity of mo-
tions. We want to generate a schedule of motion primitives
by mimicking this process. To be specific, this problem is
modeled as a Markov chain, which is a generative stochastic
motion model. A separate model (Figure 9) is used for for
each category, e.g., Head. A Markov chain is used to se-
lect the motion primitives Mc,i for each schedule Sc (SHead,
. . . , SLegs). We want to generate Mc,i with the probability

Algorithm 3 Estimate AV value of Mc,n

GetActivationValence(Mc,n)

1: for emID = 1 to 6 do
2: emDiff[emID]← GetLeastDiffEm(Mc,n, emID)
3: end for
4: weights← GetWeightsBasedRank(emDiff)
5: act← 0
6: val← 0
7: for emID = 1 to 6 do
8: act← act + weights[emID] ∗ em[emID].activation
9: val← val + weights[emID] ∗ em[emID].valence

10: end for
11: act ← bound(act, -1, 1)
12: val ← bound(val, -1, 1)

Happy

Sad Angry

Surprised

Fear

Disgust

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1

Activation

 Valence
Head
Arms
Legs

Figure 8: Labeled motion primitives (AV values)

P (Mc,i|Mc,i−1, e), where e is the emotion detected at the
end of Mc,i−1. As a special case, when i = 1, we select Mc,1

according to P (Mc,1|e).
The motion primitive sequence generated by this model

should (i) be continuous, (ii) reflect the musical emotion,
and (iii) be interestingly non-deterministic. We set the prob-
ability function according to Equation 2.

P (Mc,i|Mc,i−1, e) = C · E ·N (2)

Here, we call C and E the continuity factor and emotion
factor, respectively. They are based on the transition be-
tween different motion primitives and the emotion-motion
primitive relationships. N is a constant normalizing factor.

Continuity factor : The continuity factor is designed to
encourage continuity from each motion primitive to the next.
Specifically, we want a quick and smooth interpolation from
the last key frame of the current motion primitive to the
first key frame of the next motion primitive. We denote the
minimum required time interval computed from Algorithm 4
of this interpolation by distM (Mc,i+1,Mc,i) in Equation 3.

C =
1√

2πσ2
M

exp

(
−dist2M (Mc,i+1,Mc,i)

2σ2
M

)
(3)

Here, σ2
M is a constant. The continuity factor is big when

the minimum transition time is short.
Emotion factor : The emotion foctor is designed to se-

209

Figure 9: An example of the Markov dancer model
shown with only 3 motion primitives for simplicity

lect motion primitives whose emotions are similar to the
musical emotion. We denote the (a, v) coordinate of Mc,i by
E(Mc,i), and denote the Cartesian distance between E(Mc,i)
and e on the AV plane by diste(E(Mc,i), e) in Equation 4.

E =
1√

2πσ2
e

exp

(
−dist2e(E(Mc,i), e)

2σ2
e

)
(4)

Here, σ2
e is a constant. The emotion factor is big when the

emotional difference is small. Again, e refers to the detected
emotion at the end of Mc,i−1.

5.2 Determine Interpolation Times and Tim-
ing Parameters β in Schedule of Motion
Primitives

After describing the process to select the sequence of mo-
tion primitives, we provide an algorithm to synchronize the
schedule of motion primitives with the detected beat times,
where each motion primitive in the schedule should end on
a beat time. When a motion primitive ends, we begin inter-
polating to the first keyframe of the next motion primitive.

5.2.1 Calculate Time to Interpolate Between Motion
Primitives

Algorithm 4 calculates the time needed to interpolate from
the last keyframe, Kj , of the previous motion primitive
Mc,m−1, to the first keyframe, Kl, of Mc,m, using the joint
angles Vj of Kj and Vl of Kl. Although we can interpolate
between two keyframes with maximum joint angular speeds
given the joint angles, we want the robot to dance stably. As
we do not implement the controller for the actuators of the
robot to account for dynamics, we weight the minimum du-
ration for the interpolation with a multiplier in Algorithm 4.
We define λ as the maximum time multiplier, where λ = 0.4
(e0.4 ≈ 1.5) so that the maximum time multiplier ≤ 1.5γ.
We define γ for each category (Table 2). E.g., we assign
a higher γ of 3 for the legs and 1.5 for the head, so that
the robot’s legs move slower than the head and the robot is
more stable at the bottom. We weighted the time multiplier
more heavily when the avgtime ≈ maxtime which implies
that all the joints move almost equally fast.

5.2.2 Calculate Timing Parameter β
The time required for each motion primitive includes the

interpolation time between two primitives computed from
Algorithm 4 and the times between the keyframes in the
motion primitive. If only one beat-time interval is insuf-
ficient to execute the motion primitive, we add subsequent
beat-time intervals until the total time offered is long enough

Algorithm 4 Calculate duration required to interpolate
from Kj to Kl

GetDuration(Kj ,Kl)

1: for JI = 1 to |Kj | do
2: time[JI]← |Vl,JI − Vj,JI| ÷MaxAngularSpeed[JI]
3: end for
4: maxTime← max(time)
5: avgTime← average(time)
6: if maxTime = 0 then
7: return 0
8: end if
9: timeMultiplier← eavgTime/maxTime∗λ ∗ γ

10: return maxTime ∗ timeMultiplier

Table 2: γ values for joint categories
Category Head Arm Leg

γ 1.5 2 3

for execution (Figure 10). To make each motion primitive
end at a beat time, we stretch the duration by increasing
the parameter, β, in each motion primitive to fill the time
interval from its starting beat time to the next beat time.
In practice, the schedule of motion primitives for each body
part is planned independently and executed simultaneously.

Figure 10: Synchronizing motion primitive with
beat times

5.2.3 Emotion For Next Motion Primitive
Motion primitives are selected sequentially and stretched

to fill a whole number of beat times. To choose the next
motion primitive, we need the emotion at the end of the
previous motion primitive. We simply estimate the emotion
at each beat time by linearly interpolating the (a, v) values,
which are computed at 15-second intervals.

6. EXECUTION
The schedule of motion primitives computed in Section 5.1

needs to be synchronized to the music based on beat times
during execution. Since there are always latency and other
differences between desired timing and real timing in robot
motion, the starting and ending times of planned motion
primitives will diverge from the plan and therefore become
totally out of phase with respect to the music. To correct
this drift, we use an adaptive real-time synchronizing algo-
rithm (Algorithm 5), which is inspired by work on real-time

210

automatic music accompaniment [12]. Here, start and end
are the two variables keeping track of ideal starting and end-
ing times of each motion primitive Mc,m. Due to the exe-
cution error, the motion Mc,m−1 will not precisely end at
its ideal ending time. Therefore, Mc,m will start whenever
Mc,m−1 ends and we recalculate the duration from the actual
real time returned by the function, getTime. The duration
is calculated so that Mc,m will end at the ideal end time.
Again, Mc,m will not actually finish at exactly this ideal end-
ing time. Therefore, Mc,m+1 will again calculate a duration
and move on. This algorithm adjusts the execution duration
of every motion primitive by updating the parameter, β, in
the motion primitive using the function updateBeta to avoid
the accumulated timing errors. updateBeta adjusts the total
time that it originally takes to execute the motion primitive
to be the same as the updated duration by changing β of the
motion primitive.

Algorithm 5 Adaptive Real-time Synchronizer

Synchronizer(Sc)

1: start← getTime()
2: for all Mc,m in Sc do
3: end← start +Mc,m.duration
4: duration← end− getTime()
5: updateBeta(Mc,m, duration)
6: execute(Mc,m)
7: start← end
8: end for

7. RESULTS
Table 3 is a contrast experiment to show how the continu-

ity and emotion factors affect the plan for a Pleased piece of
music and right arm motion primitives as an example. The
first column is the average minimum duration for the inter-
polation from one motion primitive to the next one. Smaller
numbers indicate greater continuity. The second column is
the average Euclidean distance between the emotion of the
motion primitives and the emotion of the music on the AV
plane. Smaller numbers indicate greater correspondence be-
tween the dance emotion and the music emotion. The first
row is the experimental trial, which takes both the continu-
ity and emotion factors into account, while the second and
the third row are control trials, which eliminate the continu-
ity factor and emotion factor, respectively. The fourth row
is also a control trial, which eliminates both factors and gen-
erates a random dancing plan. The results show that both
emotion and continuity factors are beneficial.

Table 3: A contrast experiment to show how conti-
nuity and emotion affect dancing plan

Trial Behavior distance Emotion distance
E and C 0.55 0.61

E 0.94 0.49
C 0.4 0.63
R 0.79 0.68

Figure 11 shows a planned schedule of motion primitives
for the RArm for a short snippet of Peaceful music whereas
Figure 12 shows a planned schedule of motion primitives the
RArm for Angry music. Figure 11 and Figure 12 plot the
music signals and beat times and we show that the planned
schedule of motion primitives corresponds to the beats.

Figure 11: RArm motion primitives schedule for
Peaceful music

Figure 12: RArm motion primitives schedule for An-
gry music

We also show that different motion primitives are selected
for Pleased music and Angry music in Figure 13. Figure 14
shows how the real-time synchronizer reduces timing errors.
The dotted line shows executed time using real-time syn-
chronizer and is a good match to the ideal time. The black
line shows the executed time without a real-time synchro-
nizer, which is totally out of phase after a minute.

Figure 15 shows snapshots of the NAO humanoid robot
dancing with a piece of Angry music. Most of these snap-
shots show the NAO robot leaning forward, the head bent
forward, and putting the arms at the side of the body. These
postures are similar to the Angry static postures collected.

8. CONCLUSIONS
We show that we can automate robot dancing by forming

schedules of motion primitives that are driven by the emo-
tions and the beats of any music on a NAO humanoid robot.
The algorithms are general and can be used on any robot.
From emotion labels given for static postures, we can es-
timate the activation-valence space locations of the motion
primitives and select the appropriate motion primitives for
emotions detected in music. We also show that we can mon-
itor the execution of the schedule of motion primitives and
compensate for any timing errors found, ensuring synchro-

211

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A

V

RArm

LArm

Legs

Head

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

A

V

RArm

LArm

Legs

Head

(b)

Figure 13: Activation-Valence coordinates of motion
primitives chosen for (a) Pleased music, and (b) An-
gry music. Motion primitives visited multiple times
are drawn with slight offsets to convey their number.

nization between robot dance motions and the music.

Acknowledgments
This work is supported by a generous gift awarded to the
School of Computer Science, Carnegie Mellon University.
We wish to thank Byeong-jun Han for the comments on
music emotion recognition. We also wish to thank Somchaya
Liemhetcharat for his help on data collection and feedback
on the algorithms.

9. REFERENCES
[1] S. Bock and M. Schedl. Enhanced beat tracking with

context-aware neural networks. In Proc. Int. Conf.
Digital Audio Effects, 2011.

[2] C. Breazeal. Emotion and sociable humanoid robots.
Int. J. of Human-Computer Studies, 59:119–155, 2003.

[3] P. Ekman. Are there basic emotions? Psychological
Review, 99(3):550–553, 1992.

[4] D. Ellis. Beat tracking with dynamic programming.
MIREX Audio Beat Tracking Contest sys. desc., 2006.

[5] A. J. Eronen and A. P. Klapuri. Music tempo
estimation with k-nn regression. Trans. Audio, Speech
and Lang. Proc., 18(1):50–57, 2010.

30 40 50 60 70 80
30

40

50

60

70

80

90

The ideal time(s)

E
xe

cu
te

d
tim

e
(s

)

with synchronizer
without synchronizer

Figure 14: Executed time difference: with a real-
time synchronizer (RTS) vs. no RTS

Figure 15: Video keyframes of NAO humanoid robot
dancing with Angry music

[6] M. Goto. A study of real-time beat tracking for
musical audio signals. Ph.D. thesis, 1998.

[7] B. Han, S. Rho, R. Dannenberg, and E. Hwang.
SMERS: Music emotion recognition using support
vector regression. In ISMIR’09, pages 651–656, 2009.

[8] G. Kim, Y. Wang, and H. Seo. Motion control of a
dancing character with music. In IEEE/ACIS Int.
Conf. Comp. Info. Science, pages 930–936, 2007.

[9] T.-h. Kim, S. Park, and S. S. Y. Rhythmic-motion
synthesis based on motion-beat analysis. ACM
Transactions on Graphics, 2003.

[10] R. Kirby, R. Simmons, and J. Forlizzi. Modeling affect
in socially interactive robots. In Proc. Int. Symp.
Robot Human Interact. Comm., pages 558–563, 2006.

[11] H. Lee and I. Lee. Automatic synchronization of
background music and motion. Computer Graphics
Forum, 24:353–362, 2005.

[12] D. Liang, G. Xia, and R. Dannenberg. A framework
for coordination and synchronization of media. In
Proc. Int. Conf. New Interfaces Musical Expr., 2011.

[13] S. Nakaoka, S. Kajita, and K. Yokoi. Intuitive and
flexible user interface for creating whole body motions
of biped humanoid robots. In IEEE Int. Conf.
Intelligent Robots and Systems, pages 1675–1682, 2010.

[14] J. Oliveira, L. Naveda, F. Gouyon, M. Leman, and
L. Reis. Synthesis of variable dancing styles based on
a compact spatiotemporal representation of dance. In
IEEE Int. Conf. Intelligent Robots and Systems, 2010.

[15] T. Shiratori, A. Nakazawa, and K. Ikeuchi.
Dancing-to-music character animation. Computer
Graphics Forum, 25:449–458, 2006.

[16] R. E. Thayer. The Biopsychology of Mood and
Arousal. Oxford University Press, New York, 1989.

212

Session 1B
Teamwork I

Coordination Guided Reinforcement Learning

Qiangfeng Peter Lau♠, Mong Li Lee† and Wynne Hsu§
Department of Computer Science
National University of Singapore

13 Computing Drive, Singapore 117417, Republic of Singapore
{plau♠,leeml†,whsu§}@comp.nus.edu.sg

ABSTRACT
In this paper, we propose to guide reinforcement learning
(RL) with expert coordination knowledge for multi-agent
problems managed by a central controller. The aim is to
learn to use expert coordination knowledge to restrict the
joint action space and to direct exploration towards more
promising states, thereby improving the overall learning rate.
We model such coordination knowledge as constraints and
propose a two-level RL system that utilizes these constraints
for online applications. Our declarative approach towards
specifying coordination in multi-agent learning allows knowl-
edge sharing between constraints and features (basis func-
tions) for function approximation. Results on a soccer game
and a tactical real-time strategy game show that coordi-
nation constraints improve the learning rate compared to
using only unary constraints. The two-level RL system also
outperforms existing single-level approach that utilizes joint
action selection via coordination graphs.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Reinforcement learning, guiding exploration, coordination
constraints, factored Markov decision process

1. INTRODUCTION
Expert knowledge is commonly employed in large-scale re-

inforcement learning (RL) in a variety of ways. In particular,
hierarchical RL handles single agent Markov decision pro-
cesses (MDPs) by recursively partitioning them into smaller
problems using a task hierarchy [19, 7, 1]. The task hierar-
chy constrains the solution space (policies) of the learning
problem so that only relevant actions for a task can be se-
lected at each time step. Learning a good task selection

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

policy will direct exploration towards the more promising
parts of the MDP.

For multi-agent problems, each agent has a set of actions
whose Cartesian product forms the joint action space. This
space is exponential in the number of agents and therefore,
RL with naive exploration is slow. Hierarchical RL has been
adapted to multi-agent problems [15, 9] by having one task
hierarchy per agent where the actions are selected jointly.
Once each individual agent’s task is selected, it will have a
constrained (reduced) set of actions to consider. However,
this framework cannot be easily extended to incorporate co-
ordination behavior among multiple agents.

Consider Fig. 1 which depicts a state in a soccer game and
player P1 has the ball. Let N , S, E, W , be the four com-
pass directions. P1’s action set is A1 = {S,E, pass2, pass3,
shoot} where pass2 and pass3 denote passing the ball to
players P2 and P3 respectively, and shoot denotes the action
to kick the ball into the goal. Players P2 and P3 have the ac-
tion set A2 = {N,S,E,W} and A3 = {N,W} respectively.
We denote a joint action as 〈a1, a2, a3〉 ∈ A1 × A2 × A3.
The size of this joint action space is 5× 4× 2 = 40. A closer
examination reveals that much of this space does not need
be explored as they are unlikely to lead to a winning state.
For example, P1 certainly should not pass the ball to P2 if
P2 is moving adjacent to an opponent as the ball can easily
be intercepted. With this simple coordination strategy, the
set of disallowed joint actions is {pass2} ×{S,E,W} × A3.
Similarly, P1 should not pass the ball to P3 and the set of
disallowed joint actions is {pass3}×A2 ×A3. Immediately,
the size of the joint action space is reduced by 35%.

P1

P2 P3

(a) Bad pass

P1

P2

P3

(b) Good pass

Figure 1: Example states in a simplified soccer
game. The white . versus black J players.

In this paper, we focus on a central learner with multiple
agents where communication is free. This corresponds to the
scenario of a computer player managing an army in real-time
strategy (RTS) games or a team of players in soccer. We aim
to exploit coordination knowledge for improving the learning
rate of good policies by modeling coordination among agents

215

as hard constraints. We refer to these hard constraints as
coordination constraints (CCs), and use CCs to limit the
joint action space for exploration. Unary constraints defined
on single agents are a special case of CCs.

We propose a two-level RL system where the top level
learns to choose the CCs to constrain the bottom level’s
learning of joint actions. The RL system learns to guide
itself, i.e., deciding which CCs to use in various states is
part of the learning process. This is a necessary flexibility
because not all CCs are always useful in every state. For
example, in Fig. 1a, the CC that P1 should not pass the
ball to P2 is appropriate since there are opponents close to
P2. However, this CC may not be suitable, e.g., in Fig.
1b, where P2 is standing directly in front of the goal as it
may be better to pass to P2 so that P2 can try to score.
Such a two-level system is different from RL for constrained
MDPs [8] as the two-level system dynamically learns to use
different constraints to improve learning, instead of using
static constraints to prevent failure.

The proposed CCs are useful in addition to existing meth-
ods of modeling coordination with a communication struc-
ture such as a coordination graph (CG) for joint action selec-
tion [11, 12]. Unlike task-based methods where single agents
are restricted based on individual tasks, CCs define these
restrictions based on expert knowledge of multi-agent coor-
dination. Such coordination is not easily expressed within
single agent tasks. Existing works usually delegate them
to the CG structure as features (basis functions) [15] or as
static rules [16]. This further motivates us to investigate the
potential of CCs in a more active role for improving learning
performance.

Using CCs for online RL has three challenges. First, the
system must be able to efficiently learn to activate the var-
ious CCs from its interaction with the environment. How-
ever, different combinations of activated CCs lead to large
number of bottom level value functions to be learned. We
address this by formulating learning equations that exploit
similarities among the bottom level components of our sys-
tem. Second, choosing CCs at the top level introduces an
exponential top level joint action space to explore. We over-
come this by identifying those CCs which can never be vio-
lated in a given state. Once identified, these CCs are deac-
tivated, reducing the top level action space for exploration.
Last, the system must integrate well with other useful meth-
ods for multi-agent learning in large state-action spaces.

To the best of our knowledge, this is the first online RL
system that uses coordination to guide learning in multi-
agent problems with a central controller. Our model-free ap-
proach frees the user from designing models for large MDPs
with many variables. A major benefit of our system is that
existing predicate definitions of features can be reused to
specify CCs. This sharing of predicate components between
CCs and features aids the user in encoding knowledge for
the top level of the system. Experiments show that CCs
give better results compared to having unary constraints or
with coordination knowledge encoded only as a CG. For do-
mains that require heavy coordination, using CCs leads to
better policies, and hence better overall goal achievement.

2. TWO-LEVEL RL SYSTEM
An MDP is a 4-tuple 〈S,A,P,R〉 where S is a set of

states, A is a set of primitive actions, P(s′|s, a) is a tran-
sition probability model that gives the probability of going

from state s to s′ when action a is taken, and R(s, a, s′) is
a reward model that gives the reward of taking a in s and
reaching s′. The set of available actions at state s is written
as A(s). With N agents, the joint action space is factored
as A = A1 × ...× AN , where An is the action variable that
corresponds to the n-th agent. S may also be factored into
multiple variables in a similar way.

A solution to the MDP is a policy π : S 7→ A and the
optimal policy π∗ is one that maximizes the expected to-
tal discounted reward in any given state. Let the expected
discounted sum of rewards when taking a in s at time t,
observing reward rt, and following π thereafter with dis-

count rate γ be Qπ(s, a) = Eπ{
∑∞
t′=t γ

t′−trt′ |s, a}. Then
π∗(s) = argmaxa∈A(s)Q

∗(s, a). By learning Q∗ directly, we
obtain π∗ without learning P and R [18].

Top Level

Environment

Top Action
(Coordination Constraints)

Primitive Action

Sub-MDP i Sub-MDP 2K…
Bottom Level

selects

activates

selects

taken in

State &
Reward

produces

observes

Learning
System

Sub-MDP 1 …

Figure 2: Two-level learning system

Fig. 2 depicts the proposed two-level learning system.
The top level determines which CCs are relevant to the cur-
rent state. The top level action space A0 consists of the
activation or deactivation of each CC. With K constraints,
the size of A0 is 2K . However, in practice, the number of
CCs that may be activated is typically small. The activated
CCs restrict the bottom level to a sub-MDP, i ∈ [1, 2K], as
shown in Fig. 2. Therefore, sub-MDP i corresponds to a
unique top level action in A0. The joint action space of sub-
MDP i, denoted by Ai, is a subset of the original joint action
space A. This allows the bottom level to learn the original
joint actions quickly. After the bottom level has taken an
action in the environment, execution returns to the top level.
Details of the learning equations, action selection and spec-
ification of CCs are given in Sections 2.1, 2.2 and 2.3. We
also discuss how A0 can be reduced in Section 2.4.

2.1 Learning Equations & Updates
To model the system’s two-level learning, we augment the

original MDP’s state space with an index i that keeps track
of the position within the hierarchy. The top level corre-
sponds to i = 0, and i ∈ [1, 2K] refers to one of the sub-
MDPs. Note that when i ∈ [1, 2K], it also refers to a unique
top level action in A0. The augmented MDP’s state space is
S ′ = [0, 2K]×S, and 〈i, s〉 ∈ S ′ is an augmented state. The
augmented action space is the union A′ = A0 ∪ A. Let an
action in A′ be ã. Then, the transitions between levels in
the hierarchy are deterministic while those between original
states follow P, resulting in the transition model,

P ′(〈i′, s′〉|〈i, s〉, ã) =

P(s′|s, ã) if i 6= 0 ∧ i′ = 0 ∧ ã ∈ A
1 if i = 0 ∧ i′ = ã ∧ ã ∈ A0

0 otherwise

(1)

216

and the reward model is

R′(〈i, s〉, ã, 〈i′, s′〉) =

{
R(s, ã, s′) if i′ = 0

0 otherwise
(2)

that is, the original reward model R is used when transiting
between original states, all other transitions are zero. Note
that the augmented MDP is also an MDP.

Fig. 3 illustrates the dynamics of the augmented MDP
from the system’s point of view and that of the original en-
vironment. Solid arrows indicate deterministic transitions
while dotted-dashed arrows indicate non-determinism. Num-
bers describe a sequence of transitions between two original
states. In Fig. 3a, the RL system operates as if the top level
is part of the environment. Conversely in Fig. 3b, the origi-
nal environment only receives original joint actions from the
central controller that consists of multiple agents.

Augmented MDP

Two Level Learning System

i
〈i, s〉, 0

a

〈0, s〉, r

1

2

3

4
Top Level

Original MDP

(a) RL System View

Two Level Learning System

i
〈i, s〉, 0

a

〈0, s〉, r

1

2

3

4
Top Level

Original MDP

Environment

Controller

(b) Environment View

Figure 3: Interactions between RL system, aug-
mented MDP, and environment (MDP).

Let the hierarchical policy, π : S ′ 7→ A′, that solves the
augmented MDP be represented by a set of policies {πi} in-
dexed by i such that π(〈i, s〉) = πi(s). That is, π0 denotes
the top level policy, and πi>0 denotes a policy constrained to
the action spaceAi(s) of the sub-MDP i. The Bellman equa-
tion of the action value function for the augmented MDP is,

Qπ(〈i, s〉, ã) =
∑

〈i′,s′〉∈S′
P ′(〈i′, s′〉|〈i, s〉, ã)

× [R′(〈i, s〉, ã, 〈i′, s′〉) +Qπ(〈i′, s′〉, πi(s′))]. (3)

Suppose we only use discounting (γ) for transitions between
original states, we can rewrite and simplify Eq. 3 into two
parts, ∀i > 0, for the top level,

Qπ(〈0, s〉, i) =
∑

s′∈S
Pi(s′|s, πi(s))[R(s, πi(s), s

′)

+γQπ(〈0, s′〉, π0(s′))] (4)

and for the bottom level,

Qπ(〈i, s〉, a) =
∑

s′∈S
Pi(s′|s, a)[R(s, a, s′)

+γQπ(〈0, s′〉, π0(s′))]. (5)

Note that i in Eq. 4 refers to a unique top level action
in A0, and we subscript P with i to indicate primitive ac-
tions that are disallowed based on i. Eq. 4 expresses the
expected reward of taking a top level action i and follow-
ing πi for one step before returning to the top and follow-
ing π0 thereafter. Eq. 5 expresses the expected reward

at the bottom level that returns to the top level imme-
diately after one step and following π0 thereafter. Now
we can select greedy primitive actions in s by separately
computing π0(s) = argmaxi∈A0(s)

Qπ(〈0, s〉, i), followed by
πi(s) = argmaxa∈Ai(s)Q

π(〈i, s〉, a).

Updating the 2K Qπ(〈i, ·〉, ·) functions at the bottom level
requires exponential space and time. However we observe
that, although Pi and Pj for two sub-MDPs have different
domains as their actions are from Ai and Aj respectively,
their probabilities are contained in the original MDP’s P.
This is because the transition probability is a conditional
probability where values are normalized over the state space
but not the action space. Hence, given 2K sub-MDPs, ∀s ∈
S, i, j ∈ [1, 2K], a ∈ Ai(s) ∩ Aj(s), we have

Qπ(〈i, s〉, a) = Qπ(〈j, s〉, a). (6)

Consequently, the various sub-MDP functions are the same
for their intersected domains. This leads to a single bottom
level function definition: ∀i > 0, a ∈ Ai(s),

Uπ(s, a) = Qπ(〈i, s〉, a) (7)

that is independent of i. Incidentally, Uπ is similar to the
action value function for the original MDP but constrained
to the joint actions in Ai(s) by the two-level policy π.

We use linear function approximation to learn the value
functions Qπ(〈0, ·〉, ·) and Uπ. This employs a linear combi-
nation of m number of features (basis functions), φp, with
weights, wp, to be learned. In other words, given a func-
tion F (s, a), we want to find ~w = 〈w1, ..., wm〉 such that,

F (s, a) ≈ ~w · ~φs,a, where ~φs,a = 〈φ1(s, a),· · · ,φm(s, a)〉.
To obtain ~w for each optimal value function, we perform

on-policy temporal difference (TD) updates using the hierar-
chical policy π given by {πi}, where each πi is a GLIE policy
[7], and online samples of the form 〈〈0, s〉, i, 〈i, s〉, a, r, 〈0, s′〉〉.
The first two entries in the sample denote that the top level
is in the augmented state 〈0, s〉 and it chooses the action
π0(s) = i ∈ A0(s). The next two entries in the sample in-
dicate the state 〈i, s〉 of the bottom level and the primitive
action πi(s) = a ∈ Ai(s) taken by it. The final two entries
indicate that both levels observe reward r and go to next
state s′. Note that when the bottom level policy chooses an
exploratory action, i.e., πi(s), it does so by choosing a ran-
dom action within the constrained joint action space Ai(s)
as specified by the top level action i.

Let Qπ(〈0, s〉, i) ≈ ~w0 · ~φ0s,i, U
π(s, a) ≈ ~wU · ~φUs,a, and α

be the step size parameter that decreases over time. Then,
the weights ~w0 and ~wU are updated as follows:

~w0 ← ~w0 + α[r + γQπ(〈0, s′〉, π0(s′))

−Qπ(〈0, s〉, i)] ~φ0s,i (8)

~wU ← ~wU + α[r + γQπ(〈0, s′〉, π0(s′))

−Uπ(s, a)] ~φUs,a (9)

2.2 Action Selection
Applying the policies πi often requires selecting some prim-

itive action within Ai(s) that maximizes the value functions.
For example, the ε-greedy bottom level policy is to select a
maximal action πi(s) = argmaxa∈Ai(s) U

π(s, a) with 1 − ε
probability, or a random action within Ai(s) with ε proba-
bility. In our system, Ai(s) is subjected to the constraints
activated by the top level. This implies that the problem

217

of finding a maximal action, argmaxa∈Ai(s) U
π(s, a), can be

modeled as a constraint optimization problem (COP) over
the full original action space A as follows:

argmax
a∈A

Uπ(s, a), subject to: (10)

ci,1(s, a), ..., ci,p(s, a) c0,1(s, a), ..., c0,q(s, a)

where the constraints ci,j(s, a) are activated by the top level
action i, termed dynamic CCs, and the constraints c0,j(s, a)
are always activated regardless of i, termed static CCs.

Let each constraint be a function on a subset of variables
in S and A that returns −∞ if violated, or 0 otherwise.
Then the objective function to maximize for the COP is

Uπ(s, a) + C0(s, a) + Ci(s, a) (11)

where C0 and Ci are the sum of their respective constraints
c0,j and ci,j . Note that to switch to selecting random ac-
tions within Ai(s), we can simply replace Uπ with a random
function. Likewise, the selection of action for the top level,
e.g., argmaxi∈A0(s)

Qπ(〈0, s〉, i), can be similarly modeled.
Depending on the characteristics of the COPs, we employ

different strategies to solve them. If the problem consists
of features and constraints that can be additively decom-
posed into component functions involving up to two action
variables, we can utilize the coordination graph (CG) [11]
with bucket elimination for sparse CGs, or the Max-plus
algorithm [14] for dense CGs. CGs are formed by having
one vertex for each agent (action variable) and an edge be-
tween two agents that have a non-zero component function
involving them. We further employ domain reduction tech-
niques to prune A. If the problem involves higher arity
features and constraints, more generalized solvers can be
employed [17]. Furthermore, if top level actions activating
CCs are presumed to be independent, we may use features
for Qπ(〈0, ·〉, ·) that only involve the state and one action
variable corresponding to one CC. Consequently, top level
actions can be selected independently in O(K) time while
bottom level actions are selected jointly. This turns out to
be sufficient for good performance shown in Section 3.

2.3 Features & Constraints
Next, we show how existing predicate definitions of fea-

tures can be reused to specify the CCs. We further describe
how the top and bottom levels’ BFs may share predicate
components in their design and highlight a type of features
that may be useful for certain multi-agent problems.

Predicates are a natural way to encode expert knowledge
as features for RL. For example, the expert knowledge of a
bad pass can be written as the predicate:

BadPass(s, ax, ay) := HasBall(Px) ∧ IsPass(Py, ax)

∧MoveNextToOpp(s, ay),

where HasBall(Px) is true if player Px has the ball,
IsPass(Py, ax) is true if the action of player Px, ax, is to
pass the ball to Py, and MoveNextToOpp(s, ay) is true if
the action of player Py is to move next to an opponent.

With this predicate BadPass, we can derive the corre-
sponding list of propositional features (PFs) by binding the
variables Px, Py to specific players. For example, for P1, P2

we have the PF, φBadPass1,2(s, a) = BadPass(s, a1, a2), for
brevity we write BadPass1,2. The value of a PF is in {0, 1}.

PFs are commonly employed in existing RL systems to
approximate the value function [15, 13, 2]. We also uti-

lize PFs for the bottom level function Uπ. An immediate
advantage is that the predicates for PFs can be reused for
specifying CCs. For each PF φρ(s, a), we can formulate it
into a constraint that disallows the proposition ρ, i.e.:

cρ(s, a) = −∞ · φρ(s, a). (12)

If φρ(s, a) = 1, cρ(s, a) returns −∞, signifying that the con-
straint cρ that represents the condition ¬ρ is violated.

Reusing PFs in Uπ as CCs has an added advantage during
bottom level action selection. Instead of specifying individ-
ual constraints ci,j to sum for Ci in the objective function
in Eq. 11, we can simply set the corresponding PFs’ weights
of the activated CCs to −∞. In so doing, the set of actions
that are disallowed by the CCs will never be chosen due to
its −∞ weight.

Note that we restore the original weights of these PFs
during the updates (Eq. 9). This is because in practice, in-
complete COP solvers like Max-plus may still select actions
that violate certain activated CCs. When this happens, we
can learn the weights for the violated constraint PFs that are
useful for updating other weights. Hence PFs can be used
both as constraints for guiding exploration and for function
approximation.

The top level value function Qπ(〈0, ·〉, ·) is also a linear
approximation. Here, we describe how the predicates for
bottom level PFs can be reused for the top level features. We
observe that the activation of a constraint is often dependent
on the state of the environment. Hence, we encode such
state-dependent activation knowledge as the top-level PFs in
the following manner: Let Activated(c) be true if constraint
c is activated. For each c corresponding to some PF for the
bottom level, we conjunct Activated(c) or its negation with
selected state predicates of agents involved in c.

For example, in the soccer scenario, we would like to de-
activate the BadPass1,2 constraint if the receiving player
P2 is near the enemy goal, i.e., NearGoal(P2) is true as
shown in Fig. 1b. This is because it may turn out to be
better to take a chance at scoring. Hence, we define a predi-
cate NearGoal(Py)∧¬Activated(BadPassx,y) for each pair
of players to capture this condition in the top level value
function. This simple strategy allows us to design top level
features easily by reusing bottom level features’ predicates.

For applications where the agents are homogeneous or
their quantity changes over time, a new class of features
called relational features (RFs) can be utilized [20]. Here,
we modify the relations used in [10, 2] for function approx-
imation by aggregating PFs that share the same predicate
into RFs. RFs are additively decomposable into components
involving a subset of agents, e.g. an RF of BadPassx,y
can be the count of true bound predicates for each pair
of players, Px, Py. A weight is learned for the RF instead
of one for each of the PFs, i.e., the update by observing
the true proposition BadPass1,2 will have its effect gen-
eralized to other pairs of players for BadPass. RFs can
greatly reduce the number of weights for the top level PFs
relating to multi-agent CCs. For example, the predicate
NearGoal(Py) ∧ ¬Activated(BadPassx,y) can be used to
construct an RF to reduce N(N−1)/2 weights to one weight.

2.4 Top Level Learning Efficiency
Finally, we discuss how the 2K top level action space can

be reduced for exploration and consequently, faster learning.
In many domains, we observe that the top level action space,

218

A0, may be heavily constrained based on the current state, s.
This yields a smallerA0(s) to explore. In fact, this reduction
to A0(s) can be directly derived from the predicates used to
create the CCs. If it can be inferred that a CC cannot be
violated in the current state s, then the CC need not be
activated. This can be done in O(K) time as we only need
to inspect the predicates of each of the K CCs.

Consider the BadPass2,3 CC. Since only player P1 has
the ball (see Fig. 1), HasBall(P2) is false and CC for
BadPass2,3 can be deactivated. We can also deactivate
BadPassx,y CCs for other pairs of players where Px does
not have the ball, thus reducing the quadratic number of
BadPassx,y CCs to a linear number of BadPass1,y CCs.

Another observation is that agents who are very far apart
do not need to coordinate. We can define a Nearbyx,y pred-
icate that is true if two agents are within a given distance
and conjunct it with those predicates involving them. This
simple strategy has proven effective in reducing A0 for di-
recting top level exploration in practice.

3. EXPERIMENT RESULTS
We carried out experiments to evaluate the proposed ap-

proach on two domains: simplified soccer (Fig. 1) and tacti-
cal real-time strategy (RTS) [4]. The environments are fully
observable and episodic. All learning is online as no expe-
rience is saved and replayed. We compare four RL players.
Independent player – each agent selects their own action in-
dependently and learns a separate policy [6]. Flat player
– RL using single level on-policy learning with coordination
graph (CG) defined by features for joint action selection [12].
Solo player – a representative of having individual task hi-
erarchies for each agent. Only unary constraints are used.
Coordinated player – uses our full two-level learning system.
For function approximation, the solo and coordinated play-
ers use the same features as the flat player for their bottom
level value function. Hence they have the same CGs defined
by the features. The independent player has only features
that involve single agents.

We design three types of experiments to investigate the
performance of the two-level learning system. Each experi-
ment progressively includes other methods that make RL in
multi-agent domains practical. A video of the sample runs
of our policies can be viewed at: http://youtu.be/aloAOTBEUZ4.

3.1 Simplified Soccer Domain
In soccer, the objective is to score the first goal in the

shortest time. The soccer field is a grid world. Soccer players
can stay, move in 4 directions, or the player with the ball
may pass or shoot with a probabilistic chance of success
weighted by distance. The ball changes ownership to the
opposing team if the player with the ball collides with any
player or if a pass fails. A failure to score a goal results
in the ball going to the nearest player to the goal. In each
time step, submitted player actions are randomly shuffled
and executed. Rewards are 1 for winning, and −1 for losing.

There are three types of scripted opponents in order of
difficulty: random players select actions at random; defen-
sive players stay around the home quarter of the field and
move to intercept the ball if it enters, the player with the
ball does a solo counter-attack; aggressive players always go
for the ball, once attained, the player with the ball heads for
the goal while each of the other players stays near (marks)
their respective enemy players. In soccer, good policies may

require agents to have specific roles.
In addition to unary CCs, for pairwise CCs in soccer, we

used a predicate for static collision CCs and three predi-
cates for dynamic CCs including: BadPass, not jointly in-
tercepting as opponent with the ball, and jointly blocking
opponents’ movements.

3.1.1 Only Exact Methods
For the first type of experiments, we examine our proposed

two-level RL system without any approximation, using ex-
act tabular functions and action selection via enumeration.
This is to investigate if the extra top level is indeed useful
for learning performance. A tabular function is equivalent
to a linear function approximation where each feature is a
boolean variable corresponding to an entry in the table. We
only compare tabular flat and coordinated players.

The soccer field is 6× 4 units and the RL players have 2
soccer players versus 1 player for each type of scripted op-
ponent. RL players used discounting (γ = 0.99), ε-greedy
policies with constant ε = 0.1, and constant step size (α =
10−3). The coordinated player used only pairwise CCs and
no unary CCs for this experiment. Its top level has 3 dy-
namic CCs giving a top joint action space of size 23. With
tabular functions the number of parameters to learn are
more than 10,000 for each RL player. Hence we run the
experiments for many episodes.

Fig. 4 shows the results for the three scripted opponents.
1 million episodes are used against random, and 10 mil-
lion episodes against both defensive and aggressive oppo-
nents. From the results we see that learners have poorer goal
achievement against harder opponents. The coordinated
player performs consistently better than the flat player. This
verifies that the top level of our system is stable and im-
proves learning performance when there are no other factors.

3.1.2 With Function Approximation
For the second type of experiments, we evaluate the RL

system using propositional features (PFs) for linear value
function approximation and exact action selection through
bucket elimination. Top level action selection is independent
(see Section 2.4). The soccer field is 12 × 8 units. The RL
players have 4 soccer players versus 6 players each using the
defensive and aggressive scripts. The size of the state space
is at least 1013 and the size of the action space is 84. The top
level has 6 static CCs and 18(= 6×3) dynamic pairwise CCs.
The learners used discounting with γ = 0.99, and ε-greedy
policies with decaying step size (α) and exploration (ε) pa-
rameters written as param = 〈initial, final, decay rate〉: all
players used ε = 〈1.0, 0.01, 0.998〉, the flat player used α =
〈0.2, 0.1, 0.998〉, and the rest used α = 〈0.1, 0.01, 0.998〉.

Fig. 5 shows the cumulative average discounted rewards
for the soccer setup against the two different scripted strate-
gies. Note that the plots start from the tenth episode. For
all opponents, the flat player performs better than the inde-
pendent player, indicating that coordination is important for
simplified soccer. The solo and coordinated players’ policies
converged and performs better than the flat and indepen-
dent players. This shows that our proposed system results
in better policies than flat RL with coordination graphs.
The coordinated player performs better than the solo player
against both the defensive and aggressive opponents. Its
benefit came from good early exploration compared to the
other RL players. This indicates that CCs are effective in

219

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x1000)

flat (90.6%)
coordinated (94.9%)

(a) Random, 2 v. 1 soccer players, 1M episodes

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x10000)

flat (75.0%)
coordinated (80.4%)

(b) Defensive, 2 v. 1 soccer players, 10M episodes

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x10000)

flat (49.7%)
coordinated (57.3%)

(c) Aggressive, 2 v. 1 soccer players, 10M episodes

(Final win rates in brackets)

Figure 4: Soccer results for Section 3.1.1, each plot
averaged over 10 runs.

the online setting where it is generally harder to improve
better policies due to the exploration-exploitation trade-off.

3.2 Tactical RTS Domain
The goal in tactical RTS is to eliminate the enemy team

of marines quickly in a 240 × 240 point based map. Each
marine occupies a point on the map with a fixed radius and
a number of hit points. When its hit points reaches zero,
it is destroyed. A marine’s action domain consists of the 8
compass directions, an attack action for each possible enemy,
and idle. The size of the action space is at least 1010 while
the huge state space consists of all the possible marines’
positions and hit points.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x10)

flat (77.5%)
solo (81.5%)

coordinated (84.2%)
independent (69.7%)

(a) Defensive, 4 v. 6 soccer players.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 100 200 300 400 500 600 700 800 900 1000
C

u
m

u
la

ti
v
e

 A
v
e

ra
g

e
 D

is
c
o

u
n

te
d

 R
e

w
a

rd

Episodes (x10)

flat (67.8%)
solo (79.5%)

coordinated (81.5%)
independent (57.3%)

(b) Aggressive, 4 v. 6 soccer players.

(Final win rates in brackets)

Figure 5: Soccer results for Section 3.1.2. 10K
episodes averaged over 10 runs each.

We pit the RL players against two scripted opponents:
aggressive marines head for the nearest enemy and shoot
enemies in range, unpredictable marines move in random
directions and shoot enemies in range. The unpredictable
opponent may be strong if its marines move in the same
direction towards the enemy, or weak if they scatter. Oppo-
nents’ marines are able to shoot and move at the same time
giving them an advantage. RL players must quickly learn
to shoot and exploit teamwork as marines die easily. This
makes it difficult to explore winning episodes. Rewards are
−0.1 per time step and 103 for opponent team elimination.

3.2.1 Relational Features & Inexactness
The final type of experiment integrates methods to deal

with large multi-agent problems where the number of agents
change over time. We incorporate the use of relational fea-
tures (RFs) for generalization of learning and approximate
primitive action selection using the Max-plus algorithm.

Four setups are used in our experiments: (a) 10 RL marines
versus 10 aggressive marines, (b) 10 RL marines versus 13
unpredictable marines, (c) 10 RL marines versus 13 aggres-
sive marines, (d) 10 RL marines versus 5 unpredictable super
marines. The super marines in setup (d) have twice the fire-
power and hit points, hence coordination for the RL players
is very crucial for success.

For each setup, the RL players use γ = 1 with the same
decaying parameters. Setup (a), (c), (d) used ε = 〈1, 0.01,
0.998〉, α = 〈0.01, 10−4, 0.998〉, while (b) used ε = 〈1, 0.1,
0.998〉, α = 〈0.01, 10−6, 0.998〉. Setup (b) was given more

220

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

flat (0.2%)
solo (69.8%)

coordinated (92.6%)
independent (14.6%)
coord-static (66.6%)

(a) Aggressive, 10 v. 10 marines.

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

flat (0.0%)
solo (29.1%)

coordinated (76.1%)
independent (2.2%)
coord-static (27.6%)

(b) Unpredictable, 10 v. 13 marines.

-50

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

flat (0.0%)
solo (16.9%)

coordinated (27.1%)
independent (0.1%)
coord-static (17.3%)

(c) Aggressive, 10 v. 13 marines.

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 A
v
e

ra
g

e
 R

e
w

a
rd

Episodes (x10)

flat (0.0%)
solo (22.5%)

coordinated (37.1%)
independent (0.0%)
coord-static (16.4%)

(d) Unpredictable, 10 normal v. 5 super marines.

(Final win rates in brackets. Approximate action selection using Max-plus.)

Figure 6: RTS results for Section 3.2.1. 10K episodes averaged over 10 runs each.

exploration due to the unpredictable nature of the oppo-
nent. Agents need to coordinate if they are within 30 points
of each other, otherwise their pairwise features are set to
zero. RFs are useful for RTS as the number of agents vary
over time, except for the independent player that learns sep-
arate policies. We used 45 static collision CCs and 90 dy-
namic CCs from predicates for troop formation to maximize
overlapping firepower, and to protect wounded teammates.

Fig. 6 shows the cumulative average reward for the RTS
setups. We also included a new RL player, coord-static,
which utilized only the static collision CCs in addition to
the capabilities of the solo player. Total percentage wins
are shown in brackets. We observe that all the RL players’
policies converged over time. As seen in soccer, all two-level
players: solo, coord-static, and coordinated; out-performed
existing approaches of independent, and flat players. The
coordinated player was able to learn quickly in all the four
setups. The flat player experienced few winning episodes
and ended up trying to lose as fast as possible to reduce the
total negative reward obtained from each time step. The
independent player managed to learn some strategy in Fig.
6a and wins more episodes than the flat player in the other
setups. However, its reward is less than the flat player in
those setups.

The results for the coord-static and solo players are mostly
comparable. This is because the coord-static’s marines tend
to spread out more often and are destroyed easily when iso-
lated. This occurs while ε is high and it has yet to learn

a good formation. After sufficient exploration, the coord-
static player is competitive with the solo player, although it
learned a poorer policy in (d).

Conversely, the performance gains by the coordinated
player with dynamic pairwise CCs are large compared to the
others. Hence CCs are obviously crucial for tactical RTS. It
is clear that most learning benefits came from the dynamic
CCs. The coordinated player has more coordination than
the solo player. This is also confirmed in our video which
shows the coordinated player overcoming the enemy force
simply by having better coordination among its marines.
The results indicate that allowing the RL system to guide
its exploration via dynamic CCs is effective for improving
the learning rate in MDPs with large joint action spaces.

4. DISCUSSION & RELATED WORK
Previous works in task-based RL for multiple agents [15,

9, 16] require users to define tasks, terminating conditions,
reward decomposition among tasks and agents, and new fea-
tures for every level in the task hierarchy to represent them.
They learn high level actions to constrain the exploration of
the original MDP’s actions based on single agent tasks. But
it is not straightforward to incorporate coordination among
agents to aid exploration. In contrast, the proposed two-
level RL system employs declarative CCs and allows exist-
ing predicates for features to be reused as CCs to guide
itself. Our results show that the two-level learning system
outperforms task-based RL with coordination graphs when

221

comparing their ability at constraining exploration. This
demonstrates that dynamic multi-agent CCs are important.

The work in [16] presented a two-level method where the
top level assigns tasks and the bottom level learns with the
task restrictions. Our work differs as our top level explores
CC activations that are defined on multiple agents, and
learns a value function that eliminates the need for a costly
nested maximization when selecting CCs to activate. The
proposed CCs are distinct from methods that learn coordi-
nation structure [13] within the value functions themselves.
In our work, we use CCs to direct exploration by specify-
ing subsets of the joint action space to be pruned. This
is dynamically learned by our two-level system. The work
in [5] presented a method that used constraints involving
multiple agents. They require an offline phase for learning
with constraints, and the constraints are static. Our work is
fully online from the onset and learns to use CCs in different
states. In [21], fixed heuristic supervisor agents biased base
agents’ policies with a coarse-grained approach. In contrast,
ours employs fine-grained RL at the top level using the orig-
inal reward signal and state observations.

Another branch of works deal with zero communication
multi-agent problems known as Markov games where the fo-
cus is on handling the non-stationary environment due to
independent learning and the setting is mostly adversarial
[22]. In [3], heuristics can be provided to influence learning
when the policy selects a maximal action. Their heuristics
do not affect exploratory actions and are used in an adver-
sarial setting with a much smaller action space.

5. CONCLUSION
We have investigated the use of expert coordination knowl-

edge to improve RL via CCs for multi-agent MDPs from a
centralized perspective. The proposed system’s top level
learns to activate CCs to guide the bottom level’s explo-
ration towards better experience. Learning to activate CCs
allows flexibility in discovering good policies. Conversely,
having only static CCs may lead to over-constraining the
policy. We conducted experiments that progressively inte-
grate our system with other useful methods for multi-agent
problems. Our results on different domains demonstrate
that the two-level RL system leads to better policies com-
pared to existing approaches. Further, RL with CCs makes
better use of early exploration, especially with multi-agent
CCs. This is advantageous for online applications as overall
higher goal achievement is attained. Future work involves
automating the construction of CCs to reduce reliance on
expert knowledge. Others include decentralized learning for
distributed applications with communication costs, and fus-
ing our method with task-based methods.

6. ACKNOWLEDGMENTS
This work was supported by A*STAR Exploit Flagship

Grant ETPL/10-FS0001-NUS0.

7. REFERENCES
[1] D. Andre and S. J. Russell. State abstraction for

programmable reinforcement learning agents. In
AAAI, pages 119–125, 2002.

[2] N. Asgharbeygi, D. J. Stracuzzi, and P. Langley.
Relational temporal difference learning. In ICML,
pages 49–56, 2006.

[3] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R.
Costa. Heuristic selection of actions in multiagent
reinforcement learning. In IJCAI, pages 690–696, 2007.

[4] M. Buro. Call for AI research in RTS games. In AAAI
Workshop on AI in Games, pages 139–141. AAAI
Press, 2004.

[5] G. Chen, Z. Yang, H. He, and K. M. Goh.
Coordinating multiple agents via reinforcement
learning. AAMAS, 10:273–328, 2005.

[6] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In AAAI/IAAI, pages 746–752, 1998.

[7] T. G. Dietterich. Hierarchical reinforcement learning
with the MAXQ value function decomposition. JAIR,
13:227–303, 2000.

[8] P. Geibel. Reinforcement learning for mdps with
constraints. In ECML, volume 4212 of LNCS, pages
646–653, 2006.

[9] M. Ghavamzadeh, S. Mahadevan, and R. Makar.
Hierarchical multi-agent reinforcement learning.
AAMAS, 13(2):197–229, 2006.

[10] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia.
Generalizing plans to new environments in relational
mdps. In IJCAI, pages 1003–1010, 2003.

[11] C. Guestrin, D. Koller, and R. Parr. Multiagent
planning with factored mdps. In NIPS, pages
1523–1530, 2001.

[12] C. Guestrin, M. G. Lagoudakis, and R. Parr.
Coordinated reinforcement learning. In ICML, pages
227–234, 2002.

[13] J. R. Kok, P. Jan, H. Bram, and B. N. Vlassis. Utile
coordination: Learning interdependencies among
cooperative agents. In IEEE Sym. on CIG, pages
29–36, 2005.

[14] J. R. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. Journal
of Machine Learning Research, 7:1789–1828, 2006.

[15] B. Marthi, D. Latham, S. Russell, and C. Guestrin.
Concurrent hierarchical reinforcement learning. In
IJCAI, pages 779–785, 2005.

[16] S. Proper and P. Tadepalli. Solving multiagent
assignment markov decision processes. In AAMAS,
volume 1, pages 681–688, 2009.

[17] R. Stranders, F. M. D. Fave, A. Rogers, and N. R.
Jennings. A decentralised coordination algorithm for
mobile sensors. In AAAI, pages 874–880, 2010.

[18] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[19] R. S. Sutton, D. Precup, and S. P. Singh. Between
MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial
Intelligence, 112(1-2):181–211, 1999.

[20] P. Tadepalli, R. Givan, and K. Driessens. Relational
reinforcement learning: An overview. In ICML’04
Workshop on Relational Reinforcement Learning,
pages 1–9, 2004.

[21] C. Zhang, S. Abdallah, and V. Lesser. Integrating
organizational control into multi-agent learning. In
AAMAS, volume 2, pages 757–764, 2009.

[22] C. Zhang and V. R. Lesser. Multi-agent learning with
policy prediction. In AAAI, pages 927–934, 2010.

222

On Coalition Formation with Sparse Synergies

Thomas Voice, Sarvapali D. Ramchurn, Nicholas R. Jennings
Agents, Interaction and Complexity Group

School of Electronics and Computer Science
University of Southampton, UK

{tdv,sdr,nrj}@ecs.soton.ac.uk

ABSTRACT
We consider coalition formation problems for agents with an
underlying synergistic graph, where edges between agents
represent some vital synergistic link, such as communica-
tion, trust, or physical constraints. A coalition is infeasible
if its members do not form a connected subgraph, mean-
ing parts of the coalition are isolated from others. Current
state-of-the-art coalition formation algorithms are not de-
signed for problems over synergistic graphs. They assume
that all coalitions are feasible and so involve redundant com-
putation when this is not the case. Accordingly, we propose
algorithms, namely D-SlyCE and DyCE, to enumerate all
feasible coalitions in a distributed fashion and find the op-
timal feasible coalition structure respectively. When eval-
uated on a variety of synergistic graphs, D-SlyCE is up to
660 times faster while DyCE is up to 7 × 104 times faster
than the state-of-the-art algorithms. For particular classes
of graphs, D-SlyCE is the first to enumerate valid coalition
values for up to 50 agents and DyCE is the first algorithm
to find the optimal coalition structure for up to 30 agents in
minutes as opposed to months for previous algorithms.

Categories and Subject Descriptors
I.2.11 [Distributed AI]: Multi-Agent Systems

General Terms
Algorithms

Keywords
Coalition Formation, Networks

1. INTRODUCTION
Coalition formation is one of the fundamental approaches in
multi-agent systems for establishing collaborations among
agents, each with individual objectives and properties [10].
Key computational tasks in coalition formation involve cal-
culating the value of each potential coalition and finding
the best set of coalitions to be formed (i.e., the coalition
structure generation problem) [9]. To date, existing work
has typically studied coalition formation in abstract settings,
where every set of agents can be considered to be a potential
coalition [3, 5, 7, 10]. Such approaches are limited to solving
problems involving at most 30 agents (28 in the case of coali-
tion structure generation). However, this may be severely

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

inefficient for problems where only some coalitions are fea-
sible. We believe that many real-world applications involve
constraints as to which coalitions can exist based on sparse
synergies (i.e., necessary peer-to-peer connections) between
individual agents in the system [2, 8]. These constraints may
be due to communication constraints (e.g., non-overlapping
communication loci or energy limitations for sending mes-
sages across a network), social or trust relationships (e.g.,
energy consumers who prefer to group with their friends
and relatives in forming energy cooperatives), or physical
constraints (e.g., emergency responders that have enough
fuel to join only specific teams or have life-saving capabili-
ties that match only a limited number of other responders).

Against this background, in this paper we provide efficient
algorithms to form coalitions in environments that have an
underlying synergistic graph, where edges in the graph rep-
resent vital synergistic links between agents that constrain
which coalitions may form. In more detail, we consider coali-
tion formation problems where each coalition is only feasible
if its members form the vertices of a connected subgraph of
the constraining graph. By taking advantage of these struc-
tures, we aim to improve on the performance of the current
state-of-the-art coalition formation algorithms which were
not designed with synergistic graphs in mind.

In this setting,1 we advance the state-of-the-art in the fol-
lowing ways. First, we provide a new exact coalition enumer-
ation procedure, SlyCE (Sequentially connected Coalition
Enumeration). Second, we provide D-SlyCE (Distributed
SlyCE), a variant which aims to evenly distribute the SlyCE
computation amongst agents at negligible communication
and computation cost. Third, building upon SlyCE, we
provide a complete algorithm, DyCE (Dynamic program-
ming for optimal connected Coalition structure Evaluation)
to find the optimal coalition structure. Fourth, we bench-
mark our solutions against the state-of-the-art algorithms
and show that D-SlyCE can be up to 660 times faster and
DyCE can be up to 7× 104 times faster. Moreover, for par-
ticular classes of graphs, our algorithms are the first to be
able to enumerate coalition values for 50 agents and find
the optimal coalition structure for up to 30 agents within
minutes compared to months for the state-of-the-art.

The rest of the paper is structured as follows. In Section
2 we discuss related work. Then, in Section 3, we formally
describe the problem of coalition formation with sparse syn-
ergies. In Section 4 we describe SlyCE and discuss its prop-

1The reader is referred to [2, 4] for a cooperative game the-
oretic analysis (which is not the goal of this paper) of our
setting for the case where agents are self-interested.

223

erties. We then propose the D-SlyCE algorithm in Section
5, to distribute the computation of SlyCE amongst agents
fairly. Then, we turn to the coalition structure generation
problem in Section 6 and describe our solution, DyCE. We
empirically benchmark D-SlyCE and DyCE in Section 7.
Lastly, Section 8 concludes.

2. BACKGROUND
The formation of coalitions within synergistic graphs (as de-
fined in this paper) has typically been studied in the field
of economics where the focus is on the definition of cooper-
ative game-theoretic solutions [2, 4]. In contrast, this paper
is concerned specifically with the coalition value calculation
and coalition structure generation problems over synergistic
graphs.

The challenge in coalition value calculation is to enumer-
ate all the feasible coalitions and efficiently distribute this
computation among the agents. The main algorithms that
deal with this specifically are Shehory et al.’s [10] and DCVC
[5]. The latter is the fastest and is able to enumerate coali-
tions for up to 30 agents in reasonable time. Under DCVC,
for each s = 1, . . . n, each agent calculates the coalition val-
ues for an nth share of a lexicographically ordered list of all
coalitions of size s. DCVC does this in such a way that ev-
ery coalition value is calculated precisely once, and no agent
communication is required. While DCVC also efficiently re-
computes coalition values where individual agents may be
removed or new agents added dynamically, it has no way of
avoiding infeasible coalitions.

Turning to the coalition structure generation problem (ef-
fectively a set partitioning problem), a number of recent
works in this area have attempted to solve the problem
in both centralised and distributed ways along with pro-
viding anytime quality guarantees [9, 6, 3, 7]. In particu-
lar, we note the two approaches taken in this area (i) low-
complexity (O(3n)) complete algorithms based on dynamic
programming, such as DP and IDP, that have guaranteed
run-times for arbitrary coalition value distributions (ii) high
worst-case complexity (O(nn)) complete algorithms, based
on branch-and-bound techniques, that have anytime prop-
erties but heavily depend on the coalition value distribution
in order to establish bounds on segments of the search space
and therefore prune huge parts during the search process.
While the latter algorithms have been shown to be faster
than the former given specific coalition value distributions,
their approach is undefined for cases where only some coali-
tions are feasible. Simply treating infeasible coalitions as
being feasible but with value −∞ would not be suitable,
as they use averages of coalition values to compute lower
bounds. In contrast, IDP (the fastest dynamic program-
ming approach) makes no requirements on coalition value
distributions and thus, we can treat infeasible coalitions as
being feasible coalitions with value −∞. This has no ef-
fect on the runtime of IDP, which only depends on n. We
therefore use IDP to benchmark DyCE.

Another candidate set of techniques to solve the coalition
structure generation problem is Integer Programming based
solvers. These have been shown to be particular inefficient
when all coalitions are deemed feasible (due to the size of
the input) but tend to be very efficient in solving other com-
binatorial optimisation problems (combinatorial auctions or
set packing problems). Hence, we also benchmark DyCE
against IBM’s ILOG CPLEX in Section 7.

Finally, another related algorithm to ours is Rahwan et
al.’s CCF algorithm [8] which does solve coalition structure
generation problems with constraints on which coalitions can
be formed but they consider a different constraint model to
ours.

3. MODEL
In this section, we model the problem of Coalition Formation
with Sparse Synergies (CFSS). We identify a set of agents
with the set of positive integers I = {1, 2, ..., n}, where n is
the total number of agents in the system. Agents can form
coalitions C ⊆ I , however the set of feasible coalitions, C,
is constrained by a graph G = (I,E), where E is a set of
edges between agents. We consider the situation where a
coalition of agents C is feasible if and only if there exists a
connected subgraph G′ = (C, E′) with edges E′ ⊆ E and
vertex set exactly equal to C. By forming coalitions, agents
can perform tasks in the environment and their effective-
ness in performing such tasks depends on the synergies in
their abilities generated by them being in the same coali-
tion. To capture such synergies, we define the value of a
coalition using a characteristic function v : C → R. The
function v(·) may be arbitrarily defined according to the do-
main, however coalition values are always independent of
any other coalitions that may exist. We address the prob-
lem of enumerating and evaluating all feasible coalitions for
CFSS problems by providing the SlyCE and D-SlyCE algo-
rithms, in Section 4. Now, given the coalition values, a key
challenge is to choose the best coalition structure, that is,
the best set of disjoint coalitions that collectively cover all
agents. This problem is termed the coalition structure gen-
eration problem. To find the optimal coalition structure in
CFSS, we need to consider the set of feasible coalition struc-
tures, F(G), that is, the set of coalition structures that only
contain feasible coalitions. The coalition structure genera-
tion problem which DyCE, given in Section 6, attempts to
solve is then to find arg maxCS∈F(G)

∑
C∈CS v(C). In the

next section, we proceed with our description of the SlyCE
and D-SlyCE algorithms.

4. THE SLYCE ALGORITHM
The SlyCE algorithm proceeds by conducting a depth first
search over a tree representation of the set of feasible coali-
tions in G. At each point in the search, SlyCE maintains a
root node, R, which represents the current coalition being
evaluated, and a frontier set, F , that contains agents that
may be added to the root node to form a feasible coalition.
The individual steps of SlyCE are described in Algorithm 1,
where we use the function N(·, ·) which we define to be:

N(F, R) = {j|j > min(R ∪ F)} ∩N(F) \ (N(R) ∪R ∪ F),

for N(·) denoting the set of neighbours of a subset of I in
G, that is, N(R) = {j : ∃i ∈ R, (i, j) ∈ E}. The algorithm
recursively traverses the search tree in two phases. The first
phase, (lines 2 and 3), involves generating a new root node
R by combining the current root node with a subset of the
frontier set. Having updated the root node, (and evaluated
it on line 4), in the second phase, (line 5), a new frontier set is
created by choosing neighbouring agents to expand the root
with. The algorithm then calls itself (line 6) to continue the
recursive search. The key point here is that SlyCE chooses
those agents in the root creation and expansion phases so

224

that it will not recompute an already computed coalition.
We elaborate on these two phases next.

1

4

3

1

Original Graph

1

111

Root nodes created starting from agent 1

12 123 1413124

12

1234

5

1451245 12345

134

1345

Figure 1: Root expansion process emanating from
agent 1.

1. Root expansion — given an existing root R ⊆ I and a
frontier set F ⊆ I , form a new root node R′ such that
R′ = R ∪ F ∗ where F ∗ ⊆ F . Simply put, given an
existing root node, we expand it to include agents that
are not currently included and that lie at the frontier
of the existing root. Figure 1 shows an example of this.

2. Frontier expansion — given a new root node R′ =
R ∪ F ∗ formed from existing root node R ⊆ I and
set F ∗, we set the new frontier set F ′ to be the set
of agents j such that, j > min(R′), j /∈ R′, j /∈ N(i)
for all i ∈ R, and j ∈ N(k) for some k ∈ F ∗. That is,
the ids of all agents in F ′ should be numerically higher
than the id of the agent with the lowest id in R′, and
F ′ should consist of agents who are neighbours of F ∗,
but are neither neighbours nor members of R′.

Figure 1 shows how SlyCE expands to other root nodes,
starting with R = {1}. These are evaluated and their value
stored. The same process, starting from the other agents,
will generate totally different coalitions (e.g., 5 will only gen-
erate {5}, while 4 will generate {4} and {4, 5}).

Algorithm 1 slyce(R,F, m)

1: if F 6= ∅ and m > 0 then
2: for all F ∗ ⊆ F with 1 ≤ |F ∗| ≤ m do
3: R′ ← F ∗ ∪ R {Generate new root node.}
4: compute and store v(R′) {Evaluate new root node.}
5: F ′ ← N(F ∗, R) {Generate new frontier set}
6: slyce(R′, F ′, m− |F ∗|) {Recursive call.}
7: end for
8: end if

In order to enumerate all coalitions of size up to m, SlyCE
should search from each agent singleton, which can be achieved
by calling slyce(∅, {i}, m) for all i ∈ I .

4.1 Properties of SlyCE
We now elaborate on the key properties of SlyCE, in partic-
ular its correctness, completeness, and non-redundancy. We
first note that SlyCE only evaluates feasible coalitions. To be
more precise, we claim that, provided that R is feasible and
F ⊆ N(R), then for any m, slyce(R,F, m) only calls v(C)
for feasible coalitions C ⊆ I . To see this, note that for such
F and R, for any F ∗ ⊆ F , F ∗ ⊆ N(R) and so when v(R′) is
evaluated, R′ = F ∗ ∪R is a feasible coalition. Furthermore,

for F ′ = N(F ∗, R), F ′ ⊆ N(F ∗) ⊆ N(F ∗ ∪ R) = N(R′),
and so the recursive call to slyce(R′, F ′, m− |F ∗|) also sat-
isfies F ′ ⊆ N(R′). This recursively proves our claim. It
remains to note that when slyce(∅, {i}, m) is called for some
i ∈ I , after the first level of recursion, all subsequent F and
R satisfy F ⊆ N(R). Hence, SlyCE only evaluates feasible
coalitions and is thus, correct. It is also important to show
that SlyCE is complete, that is, that it can enumerate all
feasible coalitions. We do so in the following proposition.

Proposition 1. For each i ∈ I, and m ≥ 1, if the SlyCE
algorithm is called with parameters slyce(∅, {i}, m) then ev-
ery feasible coalition C ⊆ I such that i = min(C) and
1 ≤ |C| ≤ m will be evaluated.

Proof. First, we should note that since at least one agent
is added to R before it is passed to the next level of recursion,
we have that at the lth level of recursion, |R| ≥ l. Thus,
the algorithm cannot go beyond the mth level of recursion,
and must terminate. This means that if slyce(R,F, k) is
evaluated, the main for all loop reaches every subset of F
of size up to k.

Now, suppose C is a feasible coalition with i = min(C)
and 1 ≤ |C| ≤ m. Let E′ ⊆ E be the set of all edges
(j, k) ∈ E such that j, k ∈ C. For all j, k ∈ C, let d(j, k) be
the number of vertices in the minimal path between j and k
over the subgraph G′ = (E′, C), and let s be the maximum
value of d(i, j) for j ∈ C. If s = 1 then C = {i} and v(C) is
evaluated during the initial call of slyce(∅, {i}, m).

We now consider the case where s > 1. Let us define
the sets F1, F2, . . . , Fs as being Fl = {j : d(i, j) = l}, for
l = 1, . . . , s, and H0, H1, . . . , Hs as being H0 = ∅, Hl = {j :
d(i, j) ≤ l} for l = 1, . . . , s. Consider the set Fl+1 for some
l = 1, . . . , m − 1. Since i = min(C), we must have that, for
all j ∈ Fl+1, j > i. Furthermore, for all j ∈ Fl+1, j cannot
lie in Hl−1 nor can it be a neighbour of Hl−1, otherwise
there would be a path shorter than l+1 from j to i through
G′. So, the first step along the path of length l + 1 from j
to i through G′ must be from j to an agent in Fl and hence
j ∈ N(Fl). Thus, Fl+1 ⊆ N(Fl, Hl−1).

We now claim that during the operation of slyce(∅, {i}, m),
slyce(Hl, N(Fl, Hl−1), m − |Hl|) will be called for all l =
1, . . . , s − 1. This can be proved inductively. For l = 1,
we have H1 = F1 = {i}, and H0 = ∅. From the defini-
tion of the algorithm, slyce({i}, N({i}, ∅), m − 1) is called
as part of the main loop of slyce(∅, {i}, m). Now suppose
that for some l < s, slyce(i, Hl, N(Fl, Hl−1)) is called. Since
Fl+1 ∪ Hl ⊆ C, then |Fl+1| + |Hl| ≤ s and so |Fl+1| ≤
s − |Hl|. As shown above, Fl+1 ⊆ N(Fl, Hl−1), and so
slyce(i, Hl∪Fl+1, N(Fl+1, Hl)) must be called as part of the
operation of slyce(i,Hl, N(Fl, Hl−1)). As Hl ∪Fl+1 = Hl+1

this proves our claim by induction. It remains to note,
when slyce(Hm−1, N(Fm−1, Hm−2), m − |Hm−1|) is called,
the value of v(Fm ∪ Hm−1) = v(C) is evaluated, as re-
quired.

Thus, for every feasible coalition C ⊆ I , v(C) is evaluated
during the operation of slyce(∅, {min(C)}, n). It is also true
that SlyCE is non-redundant, that is, during its operation,
it never evaluates the same coalition twice. We can see that
this is true by noting that, when a subset F ∗ ⊆ F is chosen
during SlyCE and R ∪ F ∗ is set as a root, then, from that
depth of recursion onwards, the root will always contain R,
and thus the frontier nodes will never again contain any

225

agent in F ⊆ N(R). If we have two paths through the root
expansion process that diverge, at the point of divergence,
they must choose different root expansions, meaning that at
least one of the paths adds at least one agent that can never
be added at a later stage in the other path. Thus, there is no
way to reach the same coalition twice through the recursive
calls in SlyCE.

So, if the SlyCE algorithm is run as slyce(∅, {i}, m) for
each agent i ∈ I , then for every feasible coalition C (|C| ≤
m), v(C) is evaluated and stored precisely once, and no in-
feasible coalitions are evaluated. Indeed, this can be run in
parallel with each agent i ∈ I computing slyce(∅, {i}, m).
Thus, SlyCE may be implemented as a distributed algo-
rithm. Moreover we can use SlyCE to do more than simply
enumerate all feasible coalitions. As we describe in the fol-
lowing subsection, we can use SlyCE to cycle through feasi-
ble coalitions that are subsets of a given feasible coalition, a
process which will be useful in DyCE (see Section 6).

4.2 SlyCE Over Coalition Subsets
The SlyCE algorithm, as we have defined it, enumerates
all feasible coalitions of size up to some limit m for a given
graph G = (I, E). However, given a feasible coalition C ⊆ I ,
we can also use SlyCE to enumerate all feasible coalitions
that are subsets of C. We simply have to apply SlyCE to
the subgraph that G induces over the nodes of C. Since
this is, itself, a connected graph, the desirable properties of
SlyCE discussed above will still hold. For notational con-
venience, in preparation for our later description of DyCE,
we define the function nextslyce(·, ·, ·) to be such that, for
feasible coalitions C′ ⊆ C ⊆ I and integer m, with |C′| ≤ m,
nextslyce(C′, C, m) returns the subset of C that would fol-
low C′ during the process of SlyCE iterating through all
feasible coalition subsets of C of size at most m. Thus, if
we begin with C′ = {a}, for a ∈ C, then repeated calls to
C′ ← nextslyce(C′, C, m) will conduct the entire SlyCE it-
eration slyce(∅, {a}, m) over the subgraph induced by G on
C. If C′ is the last in this SlyCE iteration, we stipulate that
nextslyce(C′, C, m) should return the empty set.

Having elaborated on the properties of SlyCE above, we
next discuss how the SlyCE computation may be distributed
more fairly amongst agents, using our D-SlyCE algorithm.

5. THE D-SLYCE ALGORITHM
As noted above, SlyCE may be run as a distributed algo-
rithm by having each agent i ∈ I compute slyce(∅, {i}, m).
However, in that case, agents with higher ids will have fewer
computations than those with lower ids. Indeed, the agent
with the highest id, only computes the value of one coali-
tion, the singleton containing itself (agent 5 in Figure 1).
In contrast, the agent with the lowest id would evaluate
all feasible coalitions that contain it. Accordingly, in this
section, we propose the Distributed SlyCE algorithm (D-
SlyCE), under which the SlyCE algorithm is distributed
across the agents such that the task assigned to each agent is
determined with no communication overhead. Furthermore
it generates no repeated coalition evaluations and spreads
tasks reasonably fairly amongst agents (as shown in Sec-
tion 7).2 The full operation of D-SlyCE is defined in Algo-

2D-SlyCE is suitable for problems where evaluating v(·) is
not computationally intensive. If the operation of SlyCE is
a negligible overhead compared to the evaluation of v(·) for

Algorithm 2 dslyce(i,m)

1: compute and store v({i})
2: x← i− 1
3: for all agents a ∈ I do
4: F ← N({a}, ∅) {Assign frontier set.}
5: for all r = 1 . . . , min(|F |, m) do

6: j ← ⌊
(|F |

r
)
× x/n⌋{Index of beginning of share.}

7: while j < ⌊
(|F |

r

)
× (x + 1)/n⌋ do

8: F ′ ← L(F, j + 1, r) {Set next addition to root.}
9: j ← j + 1

10: compute and store v(F ′ ∪ {a}) {As in SlyCE.}
11: slyce(F ′ ∪ {a}, N(F ′, {a}), m− (r + 1))
12: end while
13: x← (x + 1) mod n {Rotate share allocation.}
14: end for
15: end for

rithm 2. It uses some combinatorial functions, which we
define here. We use

(m
r

)
to denote the number of sub-

sets of size r that may be drawn from a set of m unique
agents, so

(m
r

)
= m!/r!(m − r)!. For any set of agents C,

for any r = 1, . . . , |C| and i = 1, . . . ,
(|C|

r
)

we let L(C, i, r)
denote the ith element of the set of all subsets of |C| of
size r under the lexicographic ordering induced by the ids
of the agents. For any such i, L(C, i, r) can be found easily,
and if L(C, i, r) is known then L(C, i + 1, r) can be found
quickly, using known lexicographic techniques that are de-
scribed in [5].

D-SlyCE is called with the agent’s id and the maximum
coalition size m it should generate (in a similar vein to
DCVC), such that if all coalitions must be generated, m = n.
It then divides up the computation of the SlyCE algorithm
amongst the agents by splitting up the operation of the first
two levels of recursion of slyce(∅, {i}, m) for all i ∈ I . This
division is done first by having each agent a ∈ I evaluate
v({a}) (line 1). Then, each agent a ∈ I is apportioned an
approximately equal share of the subsets of N({i}, ∅) for
each i ∈ I (line 6–7), that a must evaluate as per the main
loop in slyce({i}, N({i}, ∅), m−1) (lines 10–11). Since larger
frontier sets are likely to represent a greater computational
burden, in order to make sure a gets an approximately fair
allocation of tasks, for each agent i, a is given a 1/n share of
the lexicographically ordered list of subsets of N({i}, ∅) of
size r for all r = 1, . . . , |N({i}, ∅)| (lines 6–7). Each time this
dividing process occurs, the algorithm deterministically ro-
tates the order in which shares are allocated to agents (line
13). This is because lexicographically earlier frontier sets
contain lower id numbered agents, and thus are likely to rep-
resent a greater computational burden. As the full operation
of D-SlyCE covers precisely the calls to v(·) and slyce(·, ·, ·)
as in the first two levels of recursion of slyce(∅, {i}, m), for
all i ∈ I (lines 10–11), then D-SlyCE covers exactly the
same calls to v(·) as SlyCE. This means that D-SlyCE has
the same desirable properties as SlyCE, that is, D-SlyCE is
correct, complete and non-redundant.

An example of how the computational burden of SlyCE is

every feasible coalition, then the fairest way to distribute
these evaluations would be for each agent to use SlyCE to
create lists of all feasible coalitions, grouped together by size,
and then evaluate a fair share from each list.

226

123 1413 124 1234

1451245 12345

134

1345

12

2

23
3 5

11

4

45
Agent 4

Agent 1 Agent 2

Agent 3

Agent 5

Figure 2: Distribution of coalition evaluation calcu-
lations under D-SlyCE.

divided up by D-SlyCE is given in Figure 2, which shows the
distribution of coalition valuations prescribed by D-SlyCE
for the graph given in Figure 1. Thus, we see that the first
generation of descendants from each of the single node sets
are divided up between the agents. Note that due to the way
the shares of the lexicographical lists of subsets are rotated,
agent 1 ends up computing {4, 5}. In general, the process
results in a much fairer distribution than if each agent was
simply allocated the frontier expansion tree that branches
from their respective singleton coalition (i.e., {2} and {2, 3}
for agent 2 or {5} for agent 5 in SlyCE). Indeed, on complete
graphs, D-SlyCE mimics the operation of DCVC, and thus
is optimally fair.

Since single vertex root nodes with the lowest id repre-
sent the greatest computational burden, and the D-SlyCE
distribution methods are most effective for root nodes with
many frontier sets, we can further increase the fairness of the
distribution by ensuring that the agents with highest degree
have the lowest id number. This may be done in a fast, de-
terministic manner by each agent before it runs dslyce. In
the next section, we move to solve the problem of coalition
structure generation in synergistic graphs, using SlyCE as
an important building block of DyCE.

6. THE DYCE ALGORITHM
In this section, we describe the operation of the DyCE algo-
rithm, and prove its correctness. DyCE operates in a similar
manner to IDP (see Section 2). However, it speeds up the
search for the optimal coalition structure by using SlyCE to
enumerate all feasible coalitions, thus allowing it to ignore
infeasible coalitions during the search. DyCE further im-
proves upon IDP by using SlyCE when evaluating feasible
coalition subsets of coalitions (using the procedure described
in Section 4.2).

DyCE solves a CFSS coalition structure generation prob-
lem by exploring the edges in the feasible coalition structure
graph of the synergy graph. For any graph G = (I,E),
we define the feasible coalition structure graph of G, to be
the directed graph with node set F(G), and directed edges
E(G), where there is an edge from each CS ∈ F(G) to ev-
ery CS∗ ∈ F(G) that can be formed by splitting a coali-
tion in CS into two smaller feasible coalitions. That is,
E(G) is equal to the set of (CS, CS∗) where CS \ {C} =
CS∗ \ {C′, C \ C′} for some C ∈ CS and some C′ ⊂ C.
Crucially, to improve tractability, we consider a reduced
set of edges, E∗(G) ⊂ E(G), where for (CS, CS∗) ∈ E(G)
with CS \ {C} = CS∗ \ {C′, C \ C′}, (CS, CS∗) ∈ E∗(G) if
|C′| ≤ n− |C| or C = I . In [7], a similar coalition structure
graph is considered, and it is shown that it is possible to
reach any coalition structure from {I} along a similar re-

duced set of edges. DyCE requires the corresponding result
to be true for our feasible coalition structure graph. This
cannot be derived from the result in [7] because, although
their set of reduced edges is similar to ours, paths along
their coalition structure graph may pass through interme-
diary coalition structures that contain infeasible coalitions
and thus are not in F(G). Instead, we prove the desired
result in the following theorem.

Theorem 1. For every feasible coalition structure CS ∈
F(G), there is a directed path of edges from E∗(G) that leads
from {I} to CS.

Proof. Let us suppose this result does not hold. Let CS
be the coalition structure with minimal |CS| out of those
CS ∈ F(G) that cannot be reached from {I} by following
the directed edges in E∗(G). We must have that |CS| >
1, otherwise CS would equal {I}. Further, |CS| > 2, as
otherwise ({I}, CS) would be in E∗(G).

Let C be the coalition in CS with maximal |C|. Suppose
there were two coalitions C′, C′′ ∈ CS \{C} such that there
is at least one edge in G between C′ and C′′. Let CS∗ be,

CS∗ = {C′ ∪ C′′} ∪ CS \ {C′, C′′}.
Since there is at least one edge between C and C′, C′ ∪ C′′

is feasible and so CS∗ ∈ F(G). Since |CS∗| < |CS| we
must be able to get from {I} to CS∗ by following edges
in E∗(G), by choice of CS. However, since |C′| ≤ |C| and
C ⊂ (I \ (C′ ∪ C′′)) we must have |C′| ≤ n− |C′ ∪ C′′| and
so (CS∗, CS) ∈ E∗(G). This leads to a contradiction, as we
can now go from {I} to CS∗ and then to CS.

Thus, no two coalitions in CS \ {C} have any edges be-
tween them. Since G is connected this means that there
must be at least one edge between C and each coalition in
CS \ {C}. Now, let C′ be the coalition in CS \ {C} with
minimal |C′|. Let CS∗ be,

CS∗ = {C ∪ C′} ∪ CS \ {C, C′}.
Since there is at least one edge between C and C′, C ∪C′ is
feasible and so CS∗ ∈ F(G). As |CS∗| < |CS|, by choice of
CS there must be a directed path from {I} to CS∗ consisting
of edges from E∗(G). As noted above, |CS| > 2, and so
there must be some C′′ ∈ CS \ {C, C′}. Since C′′ is disjoint
from C ∪ C′, we must have n − |C ∪ C′| ≥ |C′′| ≥ |C′|, by
choice of C′. Thus, (CS∗, CS) ∈ E∗(G), which leads to a
contradiction, as now we can go from {I} to CS∗ and then to
CS. Hence, no such CS can exist and the result follows.

In order to explain how the feasible coalition structure
graph relates to the operation of DyCE, we first need some
definitions. For a graph G = (I, E), and for any coalition
structure CS ∈ F(G), let D(CS) be the set of coalition
structures that can be reached from CS along directed paths
made up of edges from E∗(G) (including CS itself). Theo-
rem 1 shows that D({I}) = F(G). For a graph G = (I,E)
and a coalition valuation function v(·), we define the func-
tion w : C → R so that for any feasible coalition C, w(C)
is set equal to the maximum of:

∑
C′∈CS∗:C′⊆C v(C′), over

CS∗ ∈ D(CS), for CS ∈ F(G) such that C ∈ CS. Infor-
mally, if C is in some feasible coalition structure CS, then
w(C) is the maximum total value of subsets of C for coali-
tion structures in D(CS). This is well defined and does
not depend on choice of CS containing C because the set
of splits that can occur as you move along edges in E∗(G)

227

only depend on the coalition being split. From Theorem 1,
w(I) must be equal to the maximum of

∑
C′∈CS v(C) over

all CS ∈ F(G). So, w(I) is the optimal feasible coalition
structure value. For notational convenience if C ⊂ I is not
a feasible coalition then we let w(C) = −∞.

The full operation of DyCE is described in Algorithm 3.
DyCE proceeds by recursively calculating w(·) for all feasible
coalitions, in increasing order of size. First, a memory block
large enough to contain all coalitions of I is initialised, with
every entry being given the value −∞ (Line 1–3). Then,
DyCE uses SlyCE to evaluate each feasible coalition (using
procedure nextslyce described in Section 4.2) and its value
is stored in memory, (lines 5–9). After initialisation, DyCE
goes through each coalition of size s for s = 1, 2, . . . n (lines
10–29). For each coalition C of size s, if C is feasible, then
DyCE calculates w(C) and replaces the value of v(C) in
memory with w(C). In order to calculate w(C) for a coali-
tion C 6= I , DyCE uses SlyCE to cycle through every feasible
coalition subset C′ ⊂ C that is smaller than n−|C| and |C|/2
(lines 11–14), and evaluates w(C′)+w(C\C′) (line 24). The
value of w(C) is then the maximum of these values and v(C)
(line 23). Note, we only go up to subsets C′ of size |C|/2 as,
for larger C′, if C \C′ is feasible then w(C \C′)+w(C′) will
be evaluated anyway. DyCE also records the most recent set
C′ ⊂ C such that w(C) = w(C′) + w(C \C′), if such exists.
Lastly, w(I) is calculated similarly by cycling through sub-
sets C ⊂ I with |C| ≤ n/2 and maximising w(C)+w(I \C).

The optimal coalition structure is then determined (us-
ing Algorithm 4) from w(I) by starting with CS = {I} and
then recursively replacing each coalition C ∈ CS with C′

and C \ C′ where w(C) = w(C′) + w(C \ C′), if such ex-
ist. Note, if no such replacement is possible for a coalition
C ∈ CS, then we must have that w(C) = v(C). Further-
more, each time a replacement occurs,

∑
C∈CS w(C) does

not change. Hence the resulting coalition structure will be
such that w(C) = v(C) for all C ∈ CS (since the algorithm
only stops when no further subdivisions are possible) and∑

C∈CS v(CS) =
∑

C∈CS w(CS) = w(I). Hence CS is op-
timal. We can reduce memory requirements by not storing
the particular subsets required to calculate this optimum,
but instead, finding them once the values of w(·) have been
found by searching through the subsets, as in [7].

To give an example of DyCE in operation, consider the
graph given in Figure 1 with some coalition valuation func-
tion v(·). DyCE begins by using SlyCE to go through each
feasible coalition C, evaluating v(C) and recording the re-
sult. Then it goes through all sets of size m = 1, 2, 3, 4, 5
evaluating w(C) for each feasible C, ignoring C if it is infea-
sible (i.e., if v(C) was not recorded during the initial phase).
For |C| = 1, w(C) = v(C), and so this phase does not re-
quire any work. For 1 < |C| ≤ 4, DyCE must go through
some subsets of C in order to evaluate w(C). DyCE has
to evaluate for subsets of size up to min(|C|/2, n − |C|)
which is < 2 for such C. Thus w(C) is the maximum of
v(C) and w({a}) + w(C \ {a}) for each agent a ∈ C such
that C \ {a} is feasible. Hence, for example, w({1, 4, 5}) =
max(v({1, 4, 5}), w({1})+w({4, 5}), w({5})+w({1, 4})). For
C = {1, 2, 3, 4, 5} = I , we evaluate w(C′) + w(C \ C′) for
all feasible coalitions C′ such that I \ C′ is also a feasible
coalition and |C′| ≤ n/2 = 2.5. This is the same as evaluat-
ing w(C′)+w(C′′) for all disjoint pairs of feasible coalitions
C′, C′′ with C′ ∪ C′′ = I . To give an example of why this
process works, let us consider the set C = {1, 2, 3, 4}. Now,

Algorithm 3 dyce()

1: for all C ⊂ I do
2: W (C)← −∞ {Initialise memory.}
3: end for
4: for all a ∈ I do
5: C ← {a}
6: while C 6= ∅ do
7: W (C)← v(C) {Store coalition value.}
8: B(C)← ∅ {Initialise best subset.}
9: C ← nextslyce(C,I, n) {Get the next coalition gen-

erated by SlyCE.}
10: end while
11: end for
12: for all s = 1 . . . n do
13: m← ⌊s/2⌋
14: if s < n then
15: m← min(m, n− s)
16: end if{Maximum subset size}
17: for i = 1, . . .

(n
s

)
do

18: C ← L(I, i, s) {Go through sets of size s.}
19: if W (C) > −∞ then {Ignore C if infeasible}
20: for all a ∈ C do
21: C′ ← {a}
22: while C′ 6= ∅ do
23: if W (C′) + W (C \ C′) > W (C) then
24: W (C)←W (C′) + W (C \ C′)
25: B(C)← C′

26: end if{Evaluate subset}
27: C′ ← nextslyce(C′, C, m)
28: end while{Calculate w(C)}
29: end for
30: end if
31: end for
32: end for
33: return bestcs(I)

Algorithm 4 bestcs(C)

if B(C) = ∅ then
return {C}

else
return bestcs(B(C))∪ bestcs(C \B(C))

end if

when calculating w(C), all possible splittings into feasible
coalition subsets are considered, except {1, 4} and {2, 3}.
This means that w(C) could possibly be less than v({1, 4})+
v({2, 3}). However, the only coalition structure that con-
tains {1, 4} and {2, 3} is {{1, 4}, {2, 3}, {5}} and w(I) is still
greater than or equal to w({2, 3}) + w({1, 4, 5}) which is
greater than or equal to v({2, 3}) + v({1, 4}) + v({5}). So
even though not every subset of every subset is considered,
every coalition structure value is bounded by w(I).

7. EMPIRICAL EVALUATION
In this section, we evaluate D-SlyCE and DyCE on a num-
ber of synergistic graph topologies. We benchmark D-SlyCE
against DCVC, and DyCE against IDP and IBM’s ILOG
CPLEX (which solves the well known Integer Program for-
mulation for the set partitioning problem posed by CFSS).
Since our claim is that D-SlyCE and DyCE are particularly
good in problems involving sparse graphs, we experiment

228

with a variety of graphs of different densities. While, in the
case of D-SlyCE, as argued in Section 5, we expect the dis-
tribution of enumeration tasks among agents to depend on
the degree of the graph, in DyCE, we expect the degree of
the graph to affect the time to evaluate all feasible coalition
structures and the cost of checking the size of individual
coalitions (as in nextslyce).

In our experiments,3 we focus on those topologies most
commonly found in synergistic networks such as social net-
works, the internet, and peer-to-peer communication be-
tween emergency responders, as follows: (i) Scale-free graphs
— a network generated according to a power law. We use the
standard Barabási-Albert [1] preferential attachment gener-
ation model, with parameters k = 1, 2, 3. Thus, as the graph
is constructed, new agents are attached to k existing agents
such that each new agent is attached to existing agent j
with probability di∑

j dj
where dj is the degree of agent j for

all j ∈ I . (ii) Random trees – an acyclic graph rooted at a
vertex to simulate hierarchical organisations. These graphs
are constructed by attaching each new agent to a single ran-
domly picked existing agent and (iii) Complete graphs — an
edge exists between each pair of agents, and so all coalitions
are feasible. This is not a sparse graph and is unlikely to
arise as a social context for large numbers of agents, but we
include it as a worst case scenario. We next elaborate on
the experiment results for D-SlyCE and DyCE in turn.

7.1 Benchmarking D-SlyCE
In running D-SlyCE and DCVC on the graphs described
above, we recorded the individual runtimes of each agent
and computed the ratio between the mean runtime and the
maximum for different numbers of agents. This is used to
analyse the fairness of the computation distribution among
the agents. Using our setup, given this, we are able to run
DCVC for up to 40 agents in 2.6 hours. For complete graphs

15 20 25 30 35 40

10
−2

10
0

10
2

10
4

No. of Agents

T
im

e
to

 c
om

pl
et

e
(lo

g
sc

al
e)

DCVC & D−SlyCE (Complete)
D−SlyCE (SF3)
D−SlyCE (SF2)
D−SlyCE (SF1)
D−SlyCE (Tree)

14s

2.6 hrs

Figure 3: Runtimes for D-SlyCE (SFk = scale-free
with parameter k).

3All our experiments are carried out on a 64 bit, quad-core
PC with 12GB of RAM. In evaluating D-SlyCE, we repeated
each experimental run 100 times (except for 40 agents where
we ran only 20 times given the long runtimes) and for DyCE
(on the more complex coalition structure generation prob-
lem), we repeated all the experiments 50 times (except for
28 agents onwards for trees/scale free parameter 1 and 23
agents onwards for the rest, which we repeated 20 times).
In both sets of experiments, we recorded the mean, vari-
ance and 95% confidence intervals of the runtimes of the
algorithms under study.

(see Figure 3 for runtime results), our algorithm matches the
performance of DCVC, and, over sparse graphs (trees and
scale free), outperforms DCVC for all numbers of agents.
For trees and scale-free graphs, the worst case is 2.5 times
faster (3700s compared to 9300s for a scale-free graph with
k = 3 at 40 agents) and, in the best case, it is about 660
times faster (14s compared to 9300s for DCVC on a tree
with 40 agents)! We note that in the case of random trees,
D-SlyCE can evaluate all feasible coalitions for 40 agents
within about 14 seconds and indeed D-SlyCE easily runs on
trees of up 50 agents within 14 minutes! To date, no ex-
isting distributed coalition value calculation algorithm has
been shown to have comparable performance. Also, note
that as the density of the graph increases (i.e., as the num-
ber of connections per agent increases in k), the runtimes of
the D-SlyCE algorithm increase as expected. This confirms
that the density of the graph is a key determinant of the
improvement that D-SlyCE makes over DCVC. Turning to
the fairness of the computation distribution, as measured by
the ratio of mean agent runtime against maximum runtime
(such that 1 = equal computation distribution), the values
obtained were (with SFk = scale-free with parameter k) —
Trees: 0.09, SF1: 0.3, SF2: 0.6, SF3: 0.8, and Complete
graph: 1 respectively. In the case of trees, a number of ver-
tices that are well connected (e.g., high in the hierarchy)
create disproportionately large task shares. However, in the
increasingly dense scale-free graphs, all agents tend to get
an increasingly fairer share of the computation as their rela-
tive degrees get closer (with the complete graph generating
a perfect split of shares). When relating these results to the
runtimes, however, we can see that in the case of random
trees, the low overall computation time more than compen-
sates for the unfair distribution.

7.2 Benchmarking DyCE
In this section, we describe two experiments (Exp1 and Exp2
respectively), one to evaluate how DyCE, IDP, and CPLEX
compare in terms of runtime on the same instances and one
where we evaluate the performance of DyCE as the graph
density increases (see results in Figure 5). The latter is par-
ticularly important to consider since the number of feasible
coalition structures (and calls to nextslyce) increases with
graph density (see Algorithm 3). Thus, the gain from iden-
tifying feasible coalition structures is expected to tail off as
the number of redundant coalition structures decreases (as
graph degree increases).

Exp1: In terms of runtime, our results (see Figure 4) clearly
show that DyCE outperforms IDP and CPLEX significantly
on scale-free graphs and random trees. On complete graphs
(by up to 7 × 104 times on trees for 30 agents compared
to IDP), DyCE incurs an overhead that tails off (indicat-
ing a lower growth than that of the algorithm) and runs
slower than IDP by a small amount. Due to long runtimes
(and given that the trends are deterministic (i.e., growing
in O(3n) for IDP) we extrapolated the results as follows:
from 24 agents onwards for DyCE (Complete) and IDP, and
from 29 onwards for DyCE (SF3) and 30 agents for DyCE
(SF2). CPLEX, instead, is fast on small problems but sur-
prisingly runs only up to 27 agents on trees (19 on SF3,
20 on SF2, 25 on SF1) — we do not plot these graphs for
clarity). Moreover, we note that DyCE ran to completion
within 5.3 minutes for 30 agents on trees.

229

10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

No. of Agents

R
un

tim
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

IDP
CPLEX (Tree)
DyCE (Complete)
DyCE (k=3)
DyCE (k=2)
DyCE (k=1)
DyCE (Tree)

9 months

9 days

2.3 days

5.3 mins

1.5 hours

CPLEX (Tree) breaks

Figure 4: Runtimes for DyCE, IDP, and CPLEX.

Exp2: In this experiment, we evaluated DyCE with 20
agents on a scale-free graph with parameter k ∈ {1, 10},
where k > 5 results in a graph where each agent will be
connected to more than half the number of agents (hence a
dense graph). Given this, we note (from figure 5) that DyCE
outperforms IDP for values of k up to 5, beyond which the
graph is so dense that the coalition size checks in nextslyce
become slightly more costly than the gain in avoiding in-
feasible coalitions which renders DyCE slightly slower on
complete graphs (a fixed overhead which we believe could
be improved through a faster implementation of nextslyce).
Hence, it can be concluded that DyCE will work very well
for most domains which have reasonably sparse synergies.

1 2 3 4 5 6 7 8 9 10

10
3

10
4

10
5

k

R
un

tim
e

in
 m

s
(lo

g
sc

al
e)

DyCE
IDP

Sparse Graph

Dense graph:
> 1/2 of the edges

 of the complete graph

Figure 5: Runtime for k ∈ {1, 10} in SFk (n = 20).

When taken together, our results allow us to say that D-
SlyCE is the fastest distributed coalition enumeration algo-
rithm over constraining graphs, and can help solve problems
of more than 40 agents within reasonable time (in seconds,
minutes, or hours depending on the graph). Moreover, we
establish the benchmark for coalition structure generation
algorithms in constraining graphs as DyCE can solve prob-
lems for up to 30 agents within minutes as compared to
months for the state-of-the-art IDP.

8. CONCLUSIONS
In this paper we addressed the problem of coalition forma-
tion with sparse synergies where the set of feasible coalitions
is constrained by the edges of a graph. Our aim was to see
whether knowledge of the topology of an underlying social
or organisational context graph could be used to speed up
the task of coalition enumeration and structure generation.

We first developed the SlyCE algorithm and D-SlyCE to
enumerate and evaluate all feasible coalitions over any graph

in a distributed fashion such that agents end up with a fair
share of computation. Theoretical results showed that (D-)
SlyCE is correct, complete, and non-redundant. We then
turned to the more challenging problem of coalition struc-
ture generation and proposed the DyCE algorithm to solve
it using SlyCE as a building block.

Our empirical evaluation of D-SlyCE and DyCE, showed
that they both outperformed the state-of-the-art algorithms
by orders of magnitude (660 times for D-SlyCE and 7 ×
104 times for DyCE), and for the first time, managed to
enumerate coalition values for up to 50 agents in reasonable
time, and find the optimal coalition structure for 30 agents
within 5.3 minutes on random trees.

In general, our algorithms establish the benchmarks for
many multi-agent applications where sparse synergies exist
(e.g., decentralised coordination of sensors or emergency re-
sponders) where computing the optimal solution has, so far,
not been possible due to the exponential time required to
solve the coalition formation problems they generate. In fu-
ture work, we aim to further improve DyCE by combining it
with branch-and-bound techniques to further speed up the
search and prune the synergistic graph to render the search
feasible within reasonable time while providing quality guar-
antees on solutions returned. We also seek methods to au-
tomatically identify whether a problem has sparse synergies
(i.e., based on graph degree) and thus help in the choice of
the right algorithm to use.

9. REFERENCES
[1] R. Albert and A. L. Barabási. Statistical mechanics of

complex networks. Reviews of Modern Physics,
74:47–97, 2002.

[2] G. Demange. On group stability in hierarchies and
networks. Journal of Political Economy,
112(4):754–778, 2004.

[3] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge,
P. Mcburney, and N. R. Jennings. A distributed
algorithm for anytime coalition structure generation.
In Autonomous Agents And MultiAgent Systems
(AAMAS 2010), pages 1007–1014, 2010.

[4] R. Myerson. Graphs and cooperation in games.
Mathematics of Operations Research, pages 225–229,
1977.

[5] T. Rahwan and N. R. Jennings. An algorithm for
distributing coalitional value calculations among
cooperating agents. AIJ, 171(8-9):535–567, 2007.

[6] T. Rahwan and N. R. Jennings. Coalition structure
generation: Dynamic programming meets anytime
optimisation. In Proc 23rd Conference on AI (AAAI),
pages 156–161, 2008.

[7] T. Rahwan and N. R. Jennings. An improved dynamic
programming algorithm for coalition structure
generation. In Proc 7th Int Conf on Autonomous
Agents and Multi-Agent Systems, pages 1417–1420,
2008.

[8] T. Rahwan, T. Michalak, E. Elkind, P. Faliszewski,
J. Sroka, M. Wooldridge, and N. R. Jennings.
Constrained coalition formation. In The 25th
Conference on Artificial Intelligence (AAAI), 2011.

[9] T. W. Sandholm, K. Larson, M. Andersson,
O. Shehory, and F. Tohme. Coalition structure
generation with worst case guarantees. AIJ,
111(1–2):209–238, 1999.

[10] O. Shehory and S. Kraus. Methods for task allocation
via agent coalition formation. AIJ, 101(1-2):165–200,
1998.

230

Decentralised Channel Allocation and Information Sharing
for Teams of Cooperative Agents

Sebastian Stein∗
ss2@ecs.soton.ac.uk

Simon A. Williamson†

swilliamson@smu.edu.sg
Nicholas R. Jennings∗
nrj@ecs.soton.ac.uk

∗University of Southampton, SO17 1BJ, Southampton, UK
†School of Information Systems, Singapore Management University, Singapore

ABSTRACT
In a wide range of emerging applications, from disaster manage-
ment to intelligent sensor networks, teams of software agents can
be deployed to effectively solve complex distributed problems. To
achieve this, agents typically need to communicate locally sensed
information to each other. However, in many settings, there are
heavy constraints on the communication infrastructure, making it
infeasible for every agent to broadcast all relevant information to
everyone else. To address this challenge, we investigate how agents
can make good local decisions about what information to send to
a set of communication channels with limited bandwidths such
that the overall system utility is maximised. Specifically, to solve
this problem efficiently in large-scale systems with hundreds or
thousands of agents, we develop a novel decentralised algorithm.
This combines multi-agent learning techniques with fast decision-
theoretic reasoning mechanisms that predict the impact a single
agent has on the entire system. We show empirically that our algo-
rithm consistently achieves 85% of a hypothetical centralised opti-
mal strategy with full information, and that it significantly outper-
forms a number of baseline benchmarks (by up to 600%).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—multi-agent systems

General Terms
Algorithms

Keywords
teamwork, multi-agent learning, communication

1. INTRODUCTION
It is envisaged that teams of heterogeneous software agents will be
increasingly used to tackle complex real-world problems. These in-
clude intelligent sensor networks, autonomous vehicles that explore
hostile environments and portable devices that provide emergency
responders with situational awareness during a disaster situation.
In all these multi-agent systems, and many others besides, coor-
dination is typically achieved through communication between the
agents, who share their beliefs about the state of the problem so
that together they can find a better, coordinated response.

However, communication infrastructures in real-world problems
often have considerable constraints. As dedicated high-bandwidth

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

networks are costly to develop and deploy, or may simply be un-
available in an emergency situation, agents often need to rely on
very limited existing communication means. These may include
using mobile ad hoc networks [3], power line communications [13]
or cognitive radio [1], where agents compete to utilise the spare ca-
pacity of other communication networks via spectrum sharing and
channel allocation [11]. Now, using any of these constrained me-
dia introduces a new coordination challenge: how to best utilise the
available capacity to communicate information effectively across
agent teams.

To date, research on such systems has largely concentrated on
finding a fair division of bandwidth between competing, self-inter-
ested agents in a decentralised setting. For example, there are pro-
tocols such as FDMA (Frequency Division Multiple Access) [1]
and approaches that model the problem as a multi-armed bandit
[12, 2] or as a congestion game [10]. However, all these solutions
assume identical information needs and that each agent is only in-
terested in maximising its own bandwidth.

Hence, existing work neglects the fact that a constrained com-
munication system may be used by cooperative teams of agents
to solve a joint problem whose global utility is not maximised by
giving each of them fair access. To exemplify this challenge, we
ground our work on a disaster management scenario where teams
of ambulance, fire brigade and police agents must respond to an
earthquake in an urban area (such as seen in the RoboCupRescue1

competition [8]). Here, the overall joint problem is to contain the
disaster and minimise damage to civilians and property. However,
the individual capabilities of agents are very specific — ambulance
agents rescue civilians, police agents clear roads and fire brigades
control fires. Therefore, while agents may discover any type of
information (e.g., an ambulance may discover a new fire), their
individual information needs are highly heterogeneous (e.g., fire
brigades are mostly interested in detailed information about the lo-
cation and severity of fires), and to solve the overall problem effec-
tively, relevant information needs to reach the right agents.

Now, in this setting, agents can communicate such information
using a limited set of channels, which represent different parts of
the radio spectrum or even entirely different communication me-
dia. However, communication on these channels is severely con-
strained, both in the number of channels an individual agent can ac-
cess simultaneously (due to technological or cognitive constraints)
and in the available bandwidth on each channel. Moreover, these
constraints typically preclude the use of explicit or centralised co-

1Another application is distributed sensor optimisation, where dif-
ferent types of sensors for tracking environmental phenomena are
coordinated, whilst trying to share an underlying restricted com-
munication infrastructure. Also, to reduce deployment costs, ubiq-
uitous computing often utilises existing communication media,
which are shared between applications, e.g., in a smart house.

231

ordination, due to time constraints and because coordination mes-
sages would themselves congest the channels. Examples of such
coordination approaches include decentralised task allocation mod-
els such as Max-Sum [7], reward shaping [15] or auctions [9],
which consider how to optimally allocate tasks and distribute dis-
parate beliefs. However, these models often make heavily restric-
tive assumptions about the communication infrastructure and net-
work topology, which do not hold in the settings we consider (such
as assuming that neighbours in a network can communicate with
each other at zero cost).

Another option is to solve the communication problem optimally,
by casting it as a decentralised POMDP [14]. Here, both centralised
and decentralised algorithms can be used, which analyse the future
impact of sending a specific message on a given channel [4]. How-
ever, this approach is computationally intractable [5] and not appro-
priate for a scalable solution in systems with hundreds of agents.

To address this setting, we propose a new decentralised approach
that converges to a good overall channel allocation, which, un-
like previous work, considers the asymmetric information needs
of agents. Specifically, it generally allocates agents that are inter-
ested in certain types of information to specific channels (such that,
e.g., all fire brigades use a specific channel to share information
about fires). However, in doing this, our approach considers sub-
tle synergies between different agents, potentially placing several
heterogeneous types of agents on the same channel if they share
common information needs. It also takes into account bandwidth
availability and team sizes to select appropriate channels, and it
deals flexibly with low channel availability by sometimes allowing
even agents with no common information needs to share the same
channels. Crucially, this behaviour is based on principled calcu-
lations that predict the overall impact of a channel allocation on
the global system utility, and it requires no a priori coordination or
channel assignment. Furthermore, agents in our approach continu-
ously monitor and learn the value of information locally to decide
when to break from a given allocation, either temporarily (to pass
on information to other types of agents) or permanently (to find a
better overall allocation).

In addressing this problem, we make several key contributions.
First, we present a novel decentralised channel allocation problem
and show that solving it is inherently hard. Then, we develop our
new decentralised algorithm that uses local learning and decision
rules to solve it. Finally, we show empirically that this converges
to a good solution that is typically within 85% of a hypothetical
centralised optimal approach and outperforms a number of standard
benchmarks (achieving a 6-fold improvement in some cases).

The remainder of this paper is structured as follows. In Sec-
tion 2, we formalise the channel allocation problem we solve in
this paper and then discuss how this problem could be solved in a
centralised manner in Section 3. This discussion then informs our
decentralised learning solution, which we outline in Section 4. In
Section 5, we evaluate our approach experimentally and conclude
in Section 6.

2. CHANNEL ALLOCATION PROBLEM
We begin by formally outlining the channel allocation problem
(CAP) we address in this paper. Specifically, we consider a sys-
tem that consists of heterogeneousagentsthat need to sharefacts
about the world with each other. These facts constitute key items
of information about the state of the world that help the agents in
solving their joint problem. Generally, these facts could include
sensor readings, locations of other agents and new tasks that have
been discovered. Normally, we assume these facts are known with
complete certainty (but they could also represent probabilistic in-

formation that improves the agents’ decisions). Critically, not all
facts are equally important and some may only be of interest to a
subset of agents.

More formally, A = {a1,a2, . . . ,aA} denotes the set of agents,
each of which has a type given bym:A → S , whereS = {s1,s2, . . . ,
sS} is the set of all types (we will sometimes refer to the agents of
a specific type as ateam). Furthermore,F = { f1, f2, . . .} is the set
of all possible facts, with each fact having a deadlined : F → N+

0 ,
which refers to a specific time step (we assume discrete time steps),
after which the fact is no longer relevant to any agent. For example,
such a deadline could represent when a building on fire burns out
or when an injured civilian can no longer be saved.

Now, in our model, agents derive an explicit reward for knowing
about facts. This describes the relative importance of those facts
and captures the intrinsic value that knowledge of them adds to the
problem-solving ability of an individual agent. We assume these
rewards are known a priori, representing the domain knowledge
of the system designer, although in practice, they could be proba-
bilistic estimates rather than deterministic values. In more detail,
r : (F × S)→ R+ describes the reward per time step that an agent
of a particular type generates for knowing a specific fact (this func-
tion is available to all agents, e.g., a fire brigade is aware of the
value of a civilian position to an ambulance). Thus, the total re-
ward an agent generates per time step is the sum of the rewards (for
its specific type) of all facts that it knows about and that have not
exceeded their deadlines yet. Similarly, the overall reward gener-
ated in the system is the sum of all the agents’ individual rewards,
and this is the key objective we seek to maximise in our work.

We assume that new facts are discovered gradually over time by
individual agents at the beginning of each time step (according to
some random process), and they immediately start to generate re-
wards. However, to maximise rewards, agents can communicate
the facts they know about on a set of highly constrained communi-
cation channels,C = {c1,c2, . . . ,cC}. Importantly, due to cognitive
or technological constraints, agents can only use a limited number
of channels each time step, as given byl : S →N+

0 . When an agent
decides to use a channel, it can post a single fact on that channel
and listen to the facts that other agents have posted on that channel.
Each channel has a finite bandwidth,c : C → N+

0 , the number of
facts that the channel can carry in a single time step. Any surplus
facts are discarded uniformly at random.

Given this, the choice for the agents is which channels to sub-
scribe to and which facts to send on these channels. This is done
in two steps — first, all agents simultaneously choose the subset of
channels they wish to subscribe to (up to their channel limitl and,
critically, without knowledge of the others’ choices), they then dis-
cover who else subscribed to the chosen channels, and finally all
agents choose simultaneously what facts, if any, to post on those
channels. At the end of the time step, agents are informed of all
facts that were successfully posted on their subscribed channels and
these now become shared knowledge among all subscribers (start-
ing to generate rewards from the next time step).

Now, making these two decisions — first, deciding which chan-
nels to subscribe to, and, second, which facts to post on the chan-
nels — comprise the key channel allocation problem we consider
in the paper. Its difficulty lies in the fact that agents cannot co-
ordinate a priori on their choice of channels (and may therefore
subscribe to channels that will contain no interesting facts) and be-
cause they do not know what facts others may post to the channel
(and may therefore post low-value facts that displace other more
valuable ones). Our overall aim here is to solve this problem in
a decentralised manner with agents that use only local knowledge.
However, to gain a better insight into what a good solution looks

232

like, we will first discuss a (hypothetical) centralised solution in the
next section.

3. CENTRALISED SOLUTION
In this section, we present two centralised solutions for the prob-
lem of maximising the overall reward during channel allocation —
one is optimal, but tractable only in small problems and the other
is locally optimal and scales to larger problems. Although cen-
tralised solutions are infeasible in realistic settings, defining these
provides us with useful benchmarks to compare our approaches
against. Specifically, they constitute upper bounds for the perfor-
mance of decentralised approaches, as they assume full information
and control over all agents. Furthermore, examining the optimal
centralised solution will guide our decentralised approach.

Now, as solving the CAP to maximise long-term rewards is in-
tractable due to the huge search space (as in a decentralised POM-
DP), we here (and in our decentralised approaches) concentrate on
myopic solutions. These consider only the actions available in the
current time step and do not plan ahead. In small environments,
where a long-term optimal can be found, we observed that the my-
opic performs close to this, as there is often little benefit in planning
ahead and it is usually optimal to send facts that immediately gen-
erate large rewards.

However, we first show the complexity of the optimal solution.

3.1 Complexity Result
We will show that even the myopic version of the centralised CAP
is NP-complete.

DEFINITION 1 (MYOPIC CENTRALISED CAP (MCCAP)).
Given the model in Section 2 and the agents’ current beliefs (here,
we let Bi denote agent i’s belief, i.e., the facts that it is aware of),
are the agents able to generate a total reward of at least x, for a
given x∈R, assuming that no more facts are generated or commu-
nicated in future time steps?

First, recall the well-known NP-complete Hitting Set problem:

DEFINITION 2 (HITTING SET). Given a collection S′ of sub-
sets of some universe U and a constant k∈ N, is there a subset
X ⊆U, such that X intersects every element of S′ and|X| ≤ k?

THEOREM 1. MCCAP is NP-complete.

PROOF. We need to show that MCCAP is both in NP and also
NP-hard. The first is straight-forward — given a solution of which
channels each agent should subscribe to and what facts to send, we
can calculate the reward generated by all agents in subsequent time
steps in linear time and verify this is at leastx.

To show that MCCAP is NP-hard we show that any instance of
HITTING SET can be reduced in polynomial time to an instance
of MCCAP. To do this, defineF = U , such that every fact cor-
responds to an element inU and set its deadline to 1,d(f j) = 1
(assuming the current time is 0). Now, for each elementI ∈ S′,
create an agentaI with an empty belief (BI = /0) and a unique type
for that agent,sI , i.e., m(aI) = sI . Limit the agent to subscribing
only to one channel,l(sI) = 1. Then, for each elementi ∈ I , set the
reward foraI knowing the corresponding fact to 1, while all other
rewards for that agent are 0, i.e.,r(fi ,sI) = 1 if i ∈ I , otherwise
r(fi ,sI) = 0. Finally, define an agenta0 with types0 that knows all
facts (with beliefB0 = F), but set all its rewards to 0 (r(fi ,s0) = 0
for all i). Set its subscription limit tok, i.e.,l(s0) = k. Finally, there
arek channels,C = {c1,c2, . . . ,ck}, each with a bandwidth of 1.
We now set the value threshold tox = |S′|.

Given this transformation, which can be performed in polyno-
mial time in the size of the original instance, the solution of the
original HITTING SET instance isyes, if and only if the solution to
the new MCCAP instance is alsoyes. This is because each of the
agents corresponding to the elements inS′ generates a reward of 1
if and only if a fact corresponding to an element of its associated
set I ∈ S′ is placed on one of thek channels (no more than 1 can
be generated by each agent due to their subscription limits and the
channel bandwidth constraints). Since at mostk facts can be placed
on the channels, all of these agents generate a reward (i.e., the over-
all value generated is|S′|), if and only if there is a subset ofX ⊆U
with |X| ≤ k, such that it intersects all elements inS′.

Given this, it is trivial to show that the non-myopic version of
CAP is NP-hard, as the same transformation can be applied. This
indicates that a centralised myopic solution is generally intractable,
especially for larger problems. For this reason, we next present two
algorithms: an optimal one that can be used in smaller settings and
a suboptimal one that scales to larger problems. This allows us to
see how close our decentralised algorithms are to optimal in small
problems, and also have a good idea in larger problems.

3.2 Centralised Myopic Optimal
In the centralised myopic optimal solution (OPTIMAL), at every
timestepx, a centralised authority gathers information about the
facts held by each agent and solves the MCCAP instance optimally
before distributing the allocation and facts to send to each agent.
We achieve this by formulating MCCAP as an integer linear pro-
gram and solving it using ILOG CPLEX.

Whilst this algorithm provides the optimal myopic solution, it is
far from scalable. Specifically, even when looking for a myopic
solution, the search space is doubly exponential in the number of
agentsA and the number of channels that can be subscribed tol .
Next, we address the scalability of this solution.

3.3 Centralised Myopic Local Search
In the centralised myopic local search solution (CMLS), the same
centralised authority gathers all information and distributes an allo-
cation as forOPTIMAL. However, rather than considering the entire
search space as inOPTIMAL, we start with a random solution and
then carry out local improvements.

More specifically, given an initial allocation where agents ran-
domly send facts to channels, we apply the single best deviation
that an agent could perform (by switching or removing a fact to
send, switching a subscribed channel or both). Then, we iteratively
apply such deviations until a local optimum is reached and no more
deviations yield a higher utility. The resulting allocation is then se-
lected as the overall solution.

Clearly, this algorithm is suboptimal since it only allows a fi-
nite step size in the improvement phase. If this was relaxed, then
combinations of new partial allocations could be considered in or-
der to find a global optimum. However, the reduction in the state
space used here does result in a substantially more scalable algo-
rithm which is still guaranteed to find a local optimum for the my-
opic case. That said, the algorithms presented in this section are
centralised and also compute solutions over all agents, facts and
channels. However, it is useful to consider what an optimal solu-
tion to the channel allocation problem looks like, in order to inform
our decentralised approach, as we do next.

3.4 Analysis
By examining actual channel allocation decisions made by the cen-
tralised solution, we can make several general observations about

233

c1 c2 c3

2

2

5

1

5

7

3

7
3

5
5

3

1

4

Fact posting

Listening

Fire Brigade

Ambulance

Figure 1: Example optimal channel allocation.

desirable behaviour in our problem domain. First, we note that gen-
erally it is beneficial for agents of the same type to use a dedicated
channel for facts that they are interested in. That way, the over-
all reward generated by a posted fact is maximised as all interested
agents receive it immediately, and there is typically no incentive for
such a group to split up and use several channels. Conversely, it is
usually not beneficial for agents of different types to share the same
channel for their respective facts (unless the posted facts are rele-
vant to both types), as this reduces the effective bandwidth of each
team. Thus, our decentralised algorithm will dynamically desig-
nate channels to certain types and post only relevant facts to these.

Second, however, it is clearly suboptimal to restrict agents to
posting and listening only to their designated channels. As each
agent may find out about facts that are relevant to agents of other
types, they need to occasionally communicate these by posting
them to other channels (e.g., when an ambulance discovers a fire).
However, this also means that the sending agent generates no addi-
tional reward by listening to more relevant facts on its own channel.
For this reason, our algorithm will solve a local decision problem
that explicitly balances the reward that the agent expects to generate
by staying on its own channel with that generated by communicat-
ing a fact for a different agent type.

This general decision-making behaviour is reflected by the ac-
tions of the hypothetical centralised optimal strategy. To illustrate
this, Figure 1 shows an optimal decision in an example scenario
from RoboCupRescue. Note that this is the best allocation the
agents could choose if they could perfectly coordinate their actions
and had full knowledge of each others’ available facts. Clearly, this
is unrealistic, but we use it to illustrate what a good allocation looks
like. In this example,2 there are two types of agents, fire brigades
and ambulances (shown as shaded and white circles, respectively).
These can only subscribe to one channel each, but they have in-
formation about a variety of newly discovered facts that they can
communicate to the others — these comprise information about
both injured civilians (white squares) and fires (shaded squares).
Ambulances are interested in injured civilians, while fire brigades
derive rewards from finding out about fires (all rewards are notedin
the figure). There are three channels with a bandwidth of two each.

In the optimal channel allocation shown here, we first note that
channels are used exclusively for a particular type of fact (c1 is
used for facts about civilians andc2 is used for fire), and most of
the agents only listen to the channels for their respective type. The
only exception to this is the ambulance in the centre (with one fire
fact worth 7 and a civilian fact worth 3), which posts information
about a particularly critical fire to the channel of the fire brigades.
Although this means that this ambulance does not gain any reward

2An equivalent example from sensor networks sees two types of
sensor: a ground based static sensor for detecting troops and UAVs
for tracking faster-moving vehicles. These may detect targets for
each other but would not take any direct action, instead communi-
cating them to the respective agent. In ubiquitous computing, en-
ergy management devices need to communicate information about
power usage with each other; however, the security system may
need to track a threat and switch on high power devices over that
same channel.

Algorithm 1 Basic Decentralised Learning Algorithm
1: while truedo
2: Observe new facts and update fact beliefs.
3: Choose channels and facts to post using local beliefs.
4: Subscribe to channels and post facts.
5: Update channel beliefs.

itself from hearing about civilians, the value of its information to
the fire brigades is high enough to warrant this decision. We note
also that the third channel,c3, is completely unused, because mov-
ing any of the agents and posting further facts there does not in-
crease the overall rewards generated.

We will use these observations in the construction of a decen-
tralised algorithm which avoids the complexity issues of the cen-
tralised approaches, but still performs well in comparison.

4. DECENTRALISED SOLUTION
In this section, we develop a decentralised learning algorithm to
solve this problem in realistic settings. With this, agents use only
local information and previous observations to decide which fact to
send on which channel. More specifically, we assume agents know
only the facts they have discovered themselves and those they have
heard on channels, but they do not know what facts are known by
others. They also know the channels and their characteristics, and
they know what other agents are present in the system and their
types (although our algorithm can easily be extended to discover
this at run-time).

As we argued in Section 1, this problem can be solved optimally
by casting it as a decentralised POMDP. However, that methodol-
ogy is intractable for even small agent teams. Further to this, that
solution still requires a complex coordination mechanism (or com-
munication) to execute the decentralised policies and full knowl-
edge of the fact generating function in order to obtain the policies
in the first place. Consequently, we look towards reinforcement
learning of the underlying problem, together with a simple coordi-
nation mechanism, as an efficient means to finding a decentralised
solution. Now, this section will first describe the overall approach
we take in our solution, followed by its individual components and
finally the overall algorithm is presented.

4.1 High-Level Approach
Our problem requires that the agents find a common agreement on
how to divide the channels into their respective types, and then,
agents need to decide when they should send facts (or listen) to
their own channel and when they should communicate facts to other
types. We address these two challenges separately, focusing first on
the channel division and then on the fact communication problem.

Before considering the details, Algorithm 1 shows the high-level
approach used in our decentralised solution. To make good deci-
sions, our algorithm maintains beliefs about the system, including
fact beliefs about the characteristics of the fact generation process
in the system, andchannelbeliefs, which include historical fre-
quencies over what types of agents have been observed on the var-
ious channels and some information about the value of facts that
have been posted to the channels in the past. These beliefs are
updated regularly at every time step based on new facts that are
observed (line 2) as well as the agents and facts that are seen on
channels (line 5).

The key decision about what channels to subscribe to and what
facts to post is made in line 3. This is clearly critical, but it is im-
portant here to note that this can depend only on the agent’s local
beliefs, without knowing the beliefs of other agents or their future

234

decisions. However, these local beliefs (in particular the channel
beliefs) are shaped by the past actions of other agents in the sys-
tem. As such, our algorithm constantlylearnsandadaptsto the
actions of others, allowing it to respond better in the future. This is
very similar to fictitious play [6], which has been used successfully
in more competitive settings, such as congestions games. However,
although our setting is cooperative in nature, fictitious play has sev-
eral desirable properties — it is known to converge to Nash equilib-
ria, and it represents a simple, tractable learning technique (rather
than resorting to complex optimal approaches, such as POMDPs).
This makes it suitable for our problem.

As part of making the decision about what channels to subscribe
to and what facts to post, an agent needs to first know what teams
are assigned to what channels. We will consider this question in
Section 4.2. Second, given that it has this channel allocation, it then
needs to decide what facts to post (if any) and on what channels.
We treat this problem in Section 4.3. Finally, we present an overall
algorithm in Section 4.4.

4.2 Channel Division
Dividing the channels effectively between the agent types is a cen-
tral part of our algorithm. The aim of this is to find a function
division : S → P(C), which maps each agent type to the set of
channels used by that type (note these can overlap). All agents
need to agree on this and the mapping needs to also consider the
bandwidth of channels (it may be more beneficial to share a single
channel with a large bandwidth between several types than have
one type use a very small channel).

To quickly find a consensus for thedivision function, the agents
treat their own type and other types differently. Specifically, they
assign other types simply to the channels that have the highest par-
ticipation by those agents, based on previous observations made
when subscribing to channels, up to the channel limit of that type.
For its own channel assignment, each type first designates a leader,
who decides on the best channels for its type.3

The leader’s decision is based on probabilistic knowledge about
arrivals of new facts (its fact beliefs), which it uses to calculate the
expected utility of choosing a particular channel. In more detail,
we denote by ¯u(S ′,si), with S ′ ⊆ S andsi ∈ S , the total reward an
agent of typesi expects to gain from a randomly chosen fact, given
that the fact has a non-zero reward for at least one of the members
of S ′. With this, the expected utility generated by a particular set
of agent typesS ′ using channelci is estimated as:

r̄(S ′,ci) = c(ci) · ∑
sj∈S ′

ū(S ′,sj) ·
(

size(sj)−
size(sj)

total(S ′)

)
, (1)

where size(sj) is the total number of agents of typesj and total(S′) =
∑sk∈S ′ size(sk). As such, it is the expected reward all agents on
channelci expect to generate through communication per time step,
given that the channel is always fully utilised for sending new facts,
that agents choose to send facts randomly from among those that
are relevant to at least one other agent on the channel and that all
agents in the team subscribe to the channel. These are simplifying
assumptions, but they serve to allow an agent to quickly compare
the relative merit of choosing a particular channel over another. In

3This can be achieved without explicit communication, using, e.g.,
unique identifiers, such as IP or MAC addresses of the agents en-
countered so far. Throughout this section, we will assume that an
agent has a priori knowledge of all other team members and their
identifiers, but even when this is not available, a simple adaptive
leader election protocol based only on team members observed so
far could be designed. We leave this, and the re-assignment of miss-
ing leaders, to future work.

doing so, the calculation considers the relative sizes of a team on a
channel (as all agents but the sender benefit from a posted fact), the
bandwidth of the channel, as well as taking into account the rela-
tive frequencies of facts, e.g., when facts for a particular type are
more frequent than those for another type (this is intrinsically part
of ū(S ′,sj)).

Given this, the leader then uses Equation 1 to evaluate the overall
impact of choosing a particular channel for its type (keeping the al-
locations of other types constant, as given by thedivisionfunction),
and greedily chooses the channels with the highest respective util-
ities, up to the channel limit for its type. Its other team members,
in turn, also adopt these chosen channels (if necessary by searching
for the channels the leader subscribes to, as will be explained later).
Assigning a single leader agent in this way allows the team to con-
verge quickly to a set of channels, which can be easily recomputed
at any time, e.g., to take into account dynamically changing reward
distributions, team sizes or available channels.

4.3 Fact Communication
So far, we have described how agents reach consensus about a con-
sistent channel division between the agent types. However, the
agents only derive value from actually sending facts to channels.
As we argued in Section 3.4, agents will generally send facts only
on their own channels, unless they have a particularly valuable fact
for a different type. To determine which facts to send to which
channels, we use a decision-theoretic approach and estimate the ex-
pected total reward that an agental would contribute to the system
by sending a given factfi at timet to channelc j :

E(rsend(al , fi , t,c j)) = ∑
sk∈onChannel(c j)

size−l (sk)

· (r(fi ,sk) · (d(fi)− t)− (1− total−l (c j)
−1) · s̄(sk)), (2)

where onChannel(c j) is the set of agent types that are mapped to
channelc j by the division function, size−l (sk) is the number of
agents of typesk excludingal , total−l (c j) is the total number of
agents of the types given by onChannel(c j) excludingal ands̄(sk)
is the reward that a single bandwidth unit on a channel for the given
typesk is expected to generate (again, based on previous observa-
tions, and, to avoid bias, excluding the facts the agent previously
posted itself). Thus, this equation is positive if the fact improves
on what is otherwise expected to be posted on the bandwidth unit
it would occupy.

As this assumes that posted facts are new to all agents on the
channel, we allow agents to only post facts they themselves have
discovered and that have not been sent successfully to this chan-
nel (or other channels occupied by the same types) before — this
greatly simplifies the decision problem, as agents do not need to
keep track of the belief states of other agents.

Apart from E(rsend(fi , t,c j)), agental expects to benefit from
listening when posting to a particular channelc j (if this is one of its
own channels). We denote this expected benefit asE(r listen(al ,c j))
and note that it is 0 when the channel is not one of its own (i.e.,
m(al) /∈ onChannel(c j)), otherwise it is ¯s(m(al)) · (l(c j)−1).

Thus, we can obtain an overall valuation for an agental of send-
ing a fact fi at timet to channelc j :

E(roverall(al , fi , t,c j) = E(rsend(al , fi , t,c j))+E(r listen(al ,c j))
(3)

Using Equation 3, the agent can now greedily choose the best facts
to post, or stay silent and listen to its own channels when this is
more beneficial (the utility of this is ¯s(m(al)) · l(c j) — slightly
higher thanE(r listen(al ,c j)) because the agent potentially hears one
additional fact).

235

4.4 Overall Algorithm
Our approaches for choosing a consistent channel allocation and
deciding what facts to post on what channels constitute the core of
our decentralised algorithm. In addition to these decision-making
procedures, however, it is important for the agents to sometimes
choose actions that allow them to better update their beliefs, rather
than simply maximise their expected rewards through posting facts.
This is because our algorithm relies on some statistical knowledge
that is learnt at run-time, but when this is inaccurate, an agent
may lack the incentive to further subscribe to the affected channels
and update its knowledge. This exploration/exploitation tradeoff is
common in learning problems, and we adopt an approach that is
often employed there:ε-greedy. More specifically, with a small
probability4 ε = 0.01, agentsrandomlypick a subset of channels
to subscribe to, rather than considering all possible channels. This
ensures both that thedivisionfunction is updated when other teams
move channels, and, similarly, that ¯s is learnt.

Given this, Algorithm 2 summarises the overall decision-making
mechanism each agent follows. In brief, each agent starts a time
step by observing its environment and gathering new facts about
the world (line 5). These are used to update the agent’s local ¯u
function (line 6). Next, the agent calls a procedure depending on
whether it is a leader or not (line 9).

As a leader, it first re-evaluates the current channel division with
a small probability,ϕ = 0.05. Here, the FINDBESTDIVISION pro-
cedure (line 16) finds the best channels to use for the agent’s own
type, given the currentdivision for all other types (as described
previously), and returns this only if it is at leastδ = 5% better than
the current choice. Note thatϕ andδ are included here to prevent
the agent from switching channel divisions too quickly. If no ex-
ploration takes place, and the leader has not subscribed to its own
channels for at leastmaxAbsence= 5 time steps, it is forced to
only consider its own type’s channels (line 18), which allows other
agents to easily detect when the leader has chosen to change chan-
nels (hence, a longer absence indicates that the leader has changed
channels). If this is not the case, the leader chooses random chan-
nels with probabilityε, where RANDOMCHANNELS returns a set
of random channels of size equal to the agent’s subscription limit
(line 20).

As a follower, if the leader has not been observed for more than
maxAbsencetime steps, the agent starts searching, where SEARCH-
CHANNELS returns channels that have not been visited recently
(line 23). Otherwise, the follower also chooses random channels
with probabilityε (line 25).

Next, the agent chooses the best facts to post to the eligible set of
channels(line 10). This is done using the procedure described in
the previous section. The agent then follows this, first subscribing
to channels and then posting facts (lines 11 and 12). Finally, it uses
information observed on its subscribed channels (i.e., participating
agents and posted facts) to update a number of statistics (line 13).

Concluding this section, as we noted earlier, our algorithm can be
seen as a form of fictitious play, i.e., each agent effectively plays the
best response to the other agents’ actions (as learnt by thedivision
and s̄ functions). This allows our strategy to adapt to a dynamic
environment. For example, when only a few, low-value facts are
sent to a particular channel (as indicated by a low average reward
per bandwidth, ¯s), agents decrease their threshold for sending facts,
but when congestion is high, only very valuable facts are sent.

4We stress our algorithm does not depend on the exact choice of
this parameter and others mentioned in this section. However, we
list the parameters used in our implementation for completeness.

Algorithm 2 Decentralised CAP Algorithm (DecCAP)
1: ai ←myself ⊲ Agent executing this
2: leaderAbsent← ∞ ⊲ When was the leader last seen?
3: ownFacts← /0 ⊲ Facts discovered by this agent
4: while truedo ⊲ For each time step
5: newFacts← OBSERVEENVIRONMENT() ⊲ Gather new facts
6: ū← UPDATEFACTSTATS(newFacts) ⊲ Update fact statistics
7: ownFacts← ownFacts∪newFacts
8: channels← C ⊲ Channels to consider
9: LEADERLOGIC() / FOLLOWERLOGIC() ⊲ Depends on whether leader

10: decision← CHOOSEBESTFACTS(channels,ownFacts) ⊲ Facts to post
11: SUBSCRIBE(decision) ⊲ Subscribe to chosen channels
12: heardFacts← POSTFACTS(decision) ⊲ Post facts
13: division, leaderAbsent, s̄← UPDATECHANNELSTATS(heardFacts)

14: procedure LEADERLOGIC() ⊲ Leader’s decision-making logic
15: if Random(0,1)≤ ϕ then ⊲ Explore new channel division?
16: division← FINDBESTDIVISION(division,δ)
17: else if leaderAbsent≥maxAbsencethen ⊲ Stick to own channels?
18: channels← division(m(ai))
19: else ifRandom(0,1)≤ ε then ⊲ Random exploration?
20: channels← RANDOMCHANNELS()

21: procedure FOLLOWERLOGIC() ⊲ Follower’s decision-making logic
22: if leaderAbsent> maxAbsencethen ⊲ Search for leader?
23: channels← SEARCHCHANNELS()
24: else ifRandom(0,1)≤ ε then ⊲ Random exploration?
25: channels← RANDOMCHANNELS()

5. EMPIRICAL RESULTS
In this section, we comprehensively evaluate the performance of
our algorithm,DecCAP, against the interesting space of problems
captured by our model. To measure its performance, we compare it
to a number of benchmarks:

• OPTIMAL/CMLSis the centralised optimal5 algorithm from
Section 3. As such, it is clearly not realistic in practice, but
rather serves as anupper bound.

• RANDOM subscribes to random channels placing a single
random fact from its current beliefs on each channel.

• BEST-FACTsubscribes to random channels and then places
the fact that promises to generate the highest reward on each
channel. This is based on the agent’s local beliefs about what
facts are already known by others.

• EPSILON-GREEDY(ε) generally subscribes to the channel
that has generated the highest overall average reward for that
agent (based on past observations), but with probabilityε, it
picks a random channel instead for exploration. When sub-
scribed, it behaves as theBEST-FACTstrategy. As such, it
represents a common solution approach to work that models
the channel allocation problem as a multi-armed bandit [2].

In the following, we restrict our analysis to a problem setting
from the recent RoboCupRescue competition (since this was cre-
ated to be a taxing problem with all of the challenges discussed
earlier) and then explore some interesting parameters within this
domain. Specifically, we first consider the standard setting from
RoboCupRescue with three types of agents: ambulances, police
and fire brigades. These are interested in three types of informa-
tion: new civilians, road blocks and fires. We assume facts are dis-
covered randomly, such that each agent discovers one new fact on
average every four time steps (using a Poisson distribution), each
fact is of a random type, has a reward drawn uniformly at ran-
dom from [0,1], and a deadline drawn uniformly at random from

5Due to the complexity of this, we use myopic optimality here, and,
for more than 10 agents, we replace theOPTIMAL by the greedy
CMLS, which achieves thesameperformance asOPTIMALon the
smaller settings.

236

 0

 5

 10

 15

 100 200 300 400 500

Number of Agents

Average Realised Reward (per Time, per Agent)

OPTIMAL/CMLS
DecCAP

EPSILON−GREEDY(0.1)
BEST−FACT

RANDOM

Figure 2: Performance as the number of agents is increased.

{2,3, . . . ,10} (to represent buildings that burn out or civilians that
die). We also consider a highly constrained communication infras-
tructure with five channels that can contain only two facts each.

Given this setting, we are first interested in establishing the rela-
tive performance of our approach to the benchmarks and to evaluate
whether it scales to large systems.

5.1 Basic Benchmarks
To first establish howDecCAPperforms in increasingly large set-
tings, Figure 2 shows the results6 with increasing numbers of agents.
It is clear here thatDecCAPsignificantly outperforms the two base-
line benchmarks,RANDOMandBEST-FACT, improving on them
by up to 600%, as it is able to select a good channel allocation and
communicate the best facts to the right agents. The learning ap-
proachEPSILON-GREEDYis also outperformed byDecCAP(we
only plot ε = 0.1 here as one of the best performing parameter
choices). This is because the former quickly converges to a local
optimum, in which all agents communicate on the same channel.

Finally, we observe thatDecCAPalso consistently achieves 85%
or more ofOPTIMALandCMLS. This is a significant result, given
that those assume full information and complete control over all
agents’ actions. Finally, we note that we could only runCMLSup
to 100 agents, beyond which it became exceedingly slow, while
DecCAPstill made fast decisions in less than 0.5 ms per agent and
time step with 1000 agents, using a Java implementation on an Intel
2.2GHz laptop (not shown on the graph for readability).

5.2 Explicit Coordination
While we argue that theOPTIMAL/CMLScentralised approach is
unrealistic in most settings, it could be achieved in practice through
the use of explicit coordination between agents. In order to do this,
agents need to exchange coordination messages, which places an
additional burden on the communication infrastructure and thereby
reduces the effective bandwidth that can be used to exchange facts.

To capture this class of coordination approaches, exemplified by
the Max-Sum algorithm [7] or auctions for resource allocation [9],
we define a new benchmark,COORD(c), which behaves as the cen-
tralised approach, but incurs a small communication cost ofc per
agent in the system. Here,c can be seen as the size of a single coor-
dination message that each agent needs to send in order to achieve
a fully coordinated response. More specifically, the costc is an
expected loss of bandwidth on every channel at each time step per
agent, such thatc = 0.01 in a system of 50 agents implies that one
fact less can be posted on each channel every other time step.

6The reward is the average achieved per time step during steps 2000
– 2050, to give our learning algorithm time to converge in settings
with hundreds of agents. For statistical significance (at thet < 0.01
level), we sample each point 500 times.

 0

 5

 10

 10 20 30 40 50 60 70 80 90 100

Number of Agents

Average Realised Reward (per Time, per Agent)

OPTIMAL/CMLS
DecCAP

COORD(c=0.01)
COORD(c=0.02)
COORD(c=0.05)

Figure 3: Performance with explicit coordination.

 0

 5

 10

 15

 100 200 300 400 500

Number of Agents

Average Realised Reward (per Time, per Agent)

DecCAP(listen,switch)
DecCAP(listen)

DecCAP(switch)
DecCAP(none)

Figure 4: Performance ofDecCAP variants.

The results for representative costs 0.05, 0.02, 0.01 and 0 (the
latter being equivalent toOPTIMAL/CMLS) are shown in Figure 3.
These demonstrate that approaches using explicit communication
perform well in smaller settings, but as soon as the number of
agents grows, the communication costs for coordination become
non-negligible, and they begin to be outperformed byDecCAP.

5.3 Strategy Components
To highlight the benefits of the various components ofDecCAP, we
here briefly evaluate a number of variants ofDecCAP. As described
in Section 4.3,DecCAPsometimes forces agents tolisten to their
own channels, i.e., stay silent when this appears more beneficial,
while other times agents activelyswitchto channels used by other
teams to post particularly valuable facts. We here examine the ben-
efits of these behaviours, usingDecCAP(listen,switch)to denote
a strategy that implements both behaviours, whileDecCAP(listen)
denotes one that implements only the listening, and so on.

The results are shown in Figure 4. This clearly highlights that
both the listening and the switching behaviours are key to achiev-
ing a high overall performance. Interestingly, the benefit of switch-
ing is more pronounced in settings with fewer agents, while lis-
tening becomes more important in settings with more agents. In-
tuitively, this is because fewer facts are discovered in the smaller
settings, and so agents benefit from disseminating information to
other teams, to fully utilise the available bandwidth. On the other
hand, when there are many agents and channels are typically con-
gested, agents gain more from simply listening to the high-value
facts posted to their own channels.

5.4 Convergence
Since our strategy relies on learning channel allocations and fact
distributions, it takes some time to converge to a good solution. To
evaluate how long this takes in practice, Figure 5 shows the perfor-
mance ofDecCAPover time, for a small problem with 30 agents

237

 5

 10

 15

 0 500 1000 1500 2000 2500 3000

Time Step

Average Realised Reward (per Time, per Agent)

DecCAP (250 Agents)
DecCAP (30 Agents)

Figure 5: Convergence ofDecCAP learning.

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

Relevant Fact Types Per Agent Type

Average Realised Reward (per Time)

CMLS
DecCAP

Figure 6: Performance as heterogeneity increases.

and a larger problem with 250 agents. This shows that the strategy
converges in a reasonable amount of time. While the maximum
in the larger setting is reached after around 2000 time steps, it al-
ready achieves 50% of the maximum after 200–300 time steps. In
the smaller setting, the maximum is reached more quickly, after
around 300 time steps.

5.5 Heterogeneity and Team Synergies
Finally, we consider a more heterogeneous setting where some facts
are of interest to multiple types of agents (these synergies also exist
in some RoboCupRescue strategies, e.g., when an ambulance uses
information about fires to identify particularly critical civilians).
We also increase the heterogeneity of the setting under considera-
tion. Thus, we now assume there are five agent types, and each is
interested inn out of 10 different types of facts, where we varyn
from 1 to 10. Asn increases, so do the synergies between teams
(more are likely to be interested in the same facts). We also ran-
domly vary the bandwidth of channels, ranging from 0 to 5, we
consider 30 agents, and randomly vary the size of agent teams. We
choose these parameters to test a more heterogeneous environment
where the best performance is not necessarily achieved by allocat-
ing each team to a single channel.

The results are given in Figure 6. First, this shows an overall
increase in rewards, as each generated fact is increasingly likely to
benefit several agent types. Here,DecCAPachieves a performance
that is within 80–85% ofCMLS. There is a small drop in reward
(relative toCMLS) aroundn= 5. This is becauseCMLScan benefit
here from re-assigning agents instantaneously between time steps,
depending on the overlap of currently known facts. Clearly, such
a strategy is not feasible without a central coordinator with full in-
formation about all agents (as assumed forCMLS). Despite this,
DecCAPachieves 80% of the centralised near-optimalCMLS, in-
dicating that it chooses a suitable channel allocation that performs
well in the long run. In more detail, examining the decisions made

by DecCAPshows that it initially (forn = 1) separates different
agent types into different channels, but, as fact synergies increase,
they increasingly converge to shared channels. This confirms our
algorithm flexibly adapts to the problem parameters and communi-
cation constraints.

6. CONCLUSIONS
In this paper, we presented an algorithm for channel allocation and
information sharing in cooperative agent teams with a highly con-
strained communication medium. This setting requires the agents
not only to reason about who to communicate with and about what,
but also how to allocate a restricted communication resource. We
present a tractable and fully decentralised learning approach which
uses reinforcement learning ideas to learn a channel allocation and
then principled decision-theoretic approaches to evaluate the utility
of sending pieces of information to others, or even to break from
the previously adopted channel allocation, which cannot be done
using existing techniques, e.g., in cognitive radio. We compared
our approach to benchmarks and showed that it converges quickly
to a solution that typically achieves 85% of a centralised optimal
strategy.

With this established, we intend to explore the relationship with
existing congestion game models including investigating if a finite
improvement policy exists, which would allow simple local tech-
niques to converge to Nash equilibria here. This is important since
it would allow us to bound our solution quality (which is only em-
pirically demonstrated at present).

AcknowledgementThis work was funded by the ALADDIN and
ORCHID projects (www.aladdinproject.org andwww.orchid.
ac.uk).

7. REFERENCES
[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. Next

generation/dynamic spectrum access/cognitive radio wireless networks: A
survey.Computer Networks, 50(13):2127–2159, 2006.

[2] A. Alaya-Feki, E. Moulines, and A. LeCornec. Dynamic spectrum access with
non-stationary multi-armed bandit. InSPAWC 2008, pages 416–420, 2008.

[3] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic.Mobile Ad Hoc
Networking. Wiley-Blackwell, 2004.

[4] R. Becker, A. Carlin, V. Lesser, and S. Zilberstein. Analyzing Myopic
Approaches for Multi-Agent Communication.Computational Intelligence,
25(1):31–50, February 2009.

[5] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of
decentralized control of markov decision processes. InUAI 2000, pages 32–37,
Stanford, USA, 2000.

[6] G. W. Brown. Iterative solution of games by fictitious play. In T. C. Koopmans,
editor,Activity Analysis of Production and Allocation, pages 374–376. New
York, 1951.

[7] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised
coordination of low-power embedded devices using the max-sum algorithm. In
Proc. AAMAS-08, pages 639–646, May 2008.

[8] K. Hiroaki. Robocup rescue: A grand challenge for multi-agent systems. In
Proc. ICMAS 2000, pages 5–12, Boston, MA, USA, 2000.

[9] S. Koenig, P. Keskinocak, and C. Tovey. Progress on agent coordination with
cooperative auctions. InProc. AAAI-10, pages 1713–1717, 2010.

[10] M. Liu, S. H. A. Ahmad, and Y. Wu. Congestion games with resource reuse and
applications in spectrum sharing. InProc. GameNets’09, pages 171–179, 2009.

[11] U. Mir, L. Merghem-Boulahia, and D. Gaiti. A cooperative multiagent based
spectrum sharing.Proc. AICT 2010, pages 124–130, 2010.

[12] A. Motamedi and A. Baha. Optimal channel selection for spectrum-agile
low-power wireless packet switched networks in unlicensed band.EURASIP
Journal on Wireless Communications and Networking, 2008.

[13] N. Pavlidou, A.J. Han Vinck, J. Yazdani, and B. Honary. Power line
communications: state of the art and future trends.IEEE Commun. Mag.,
41(4):34–40, 2003.

[14] L. Peshkin, K. Kim, N. Meuleau, and L. Kaelbling. Learning to cooperate via
policy search. InProc. UAI 2000, pages 307–314, San Francisco, USA, 2000.

[15] S. A. Williamson, E. H. Gerding, and N. R. Jennings. Reward shapingfor
valuing communications during multi-agent coordination. InProc. AAMAS–09,
pages 641–648, Budapest, Hungary, 2009.

238

A New Approach to Betweenness Centrality Based on
the Shapley Value∗

Piotr L. Szczepański
Institute of Informatics,
Warsaw University of

Technology
Pl. Politechniki 1

00-661 Warsaw, Poland

Tomasz Michalak
Institute of Informatics,
University of Warsaw

02-097 Warsaw
ul. Banacha 2, Poland

Talal Rahwan
Electronics and Computer

Science, University of
Southampton

SO17 1BJ
University Road, UK

ABSTRACT
In many real-life networks, such as urban structures, protein inter-
actions and social networks, one of the key issues is to measure
the centrality of nodes, i.e. to determine which nodes and edges are
more central to the functioning of the entire network than others. In
this paper we focus on betweenness centrality — a metric based on
which the centrality of a node is related to the number of shortest
paths that pass through that node. This metric has been shown to
be well suited for many, often complex, networks. In its standard
form, the betweenness centrality, just like other centrality metrics,
evaluates nodes based on their individual contributions to the func-
tioning of the network. For instance, the importance of an intersec-
tion in a road network can be computed as the difference between
the full capacity of this network and its capacity when the inter-
section is completely shut down. However, as recently argued in
the literature, such an approach is inadequate for many real-life ap-
plications, as, for example, multiple nodes can fail simultaneously.
Thus, what would be desirable is to refine the existing centrality
metrics such that they take into account not only the functioning of
nodes as individual entities but also as members of groups of nodes.
One recently-proposed way of doing this is based on the Shapley
Value — a solution concept in cooperative game theory that mea-
sures in a fair way the contributions of players to all the coalitions
that they could possibly participate in. Although this approach has
been used to extend various centrality metrics, such an extension to
betweenness centrality is yet to be developed. The main challenge
when developing such a refinement is to tackle the computational
complexity; the Shapley Value generally requires an exponential
number of operations, making its use limited to a small number
of player (or nodes in our context). Against this background, our
main contribution in this paper is to refine the betweenness central-
ity metric based on the Shapley Value: we develop an algorithm
for computing this new metric, and show that it has the same com-
plexity as the best known algorithm due to Brandes [7] to compute
the standard betweenness centrality (i.e., polynomial in the size of
the network). Finally, we show that our results can be extended to
another important centrality metric called stress centrality.

∗The authors would like to thank all four anonymous reviewers for
their useful comments that significantly improved the paper.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

; D.2.8 [Software Engineering]: Metrics—complexity measures,
performance measures

General Terms
Algorithms, Graph Theory, Game Theory

Keywords
Betweenness Centrality, Shapley Value

1. INTRODUCTION
Networks (or graphs) are a very natural representation of a va-

riety of real-life domains such as, among others, urban structures
[20], protein interactions [6], social networks [25] and computer
communication networks [13, 27]. Networks are also an impor-
tant modeling paradigm in Multi-Agent System (see, e.g., [2, 11]).
In many of these applications, it is often paramount to determine
which nodes (or vertices) and edges are more critical (or central)
to the functioning of the entire network than others. For example,
one may need to know the most influential persons in a social net-
work or the most important routes in a road network. To this end,
various centrality metrics, such as degree, closeness, eigenvalue or
betweenness, have been extensively studied in the literature.1 In
this paper we focus on betweenness centrality — a metric based on
which the centrality of a node is related to the number of shortest
paths that pass through that node. The importance of this central-
ity metric stems from the fact that it characterizes well many, often
complex and extensive, networks. In particular, a variety of natu-
rally evolving real-life networks, such as the internet or social net-
works, feature a power-law distribution of betweenness centrality
(as well as degree centrality) [3, 13]. Intuitively, in these so called
scale-free networks, there are relatively few nodes that contribute
to a large number of shortest paths. This implies that such networks
are hardly affected by random impairments but, at the same time,
they can be relatively easily affected by the removal of the most
central nodes [4]. For example, it was shown in the epidemiology
literature that the immunization of the most central nodes signifi-
cantly hinders epidemics [19]. As another example, in the internet
context, the betweenness centrality can be used to identify nodes
in a local network that are able to trace the communications of as
many users as possible [21].
1An overview of the most important centrality metrics can be found
in Koschützki at al. [18].

239

Due to a variety of important applications, an ongoing line of re-
search tries to develop better centrality metrics that are more suit-
able for diverse real world situations [14]. Consider, for example,
the problem of designing an infrastructure network, such as a com-
munication network or power grid, where the design is required
to be resistant to random node failures. In this respect, centrality
metrics, which in this case are called vitality measures [18], simply
test the performance of a network with and without a given node.
For instance, the importance of an intersection in a road network
can be computed as the difference between the full capacity of this
network and its capacity when the intersection is completely shut
down. Naturally, the more adverse the consequences of a node fail-
ure are, the higher the centrality of this node becomes. Neverthe-
less, such an approach to computing centrality is often inadequate
for many real-life network applications.2 In more detail [1]:

• It is often insufficient to merely consider failures of individ-
ual nodes. This is because, in many real-world situations,
multiple nodes can fail simultaneously. This was, for in-
stance, the case with the Japanese power grids that were de-
stroyed during the 2011 tsunami. Whereas not much capacity
is lost when individual nodes fail in such a network, multi-
ple concurrent failures of certain critical nodes can be highly
detrimental. Such issues, however, are not considered in the
standard centrality metrics;

• A related impediment of standard centrality metrics is the
implicit assumption of node failure independence. This as-
sumption does not hold in many real-world situations when
nodes break down sequentially in a short period of time [26].

In an attempt to address the above shortcomings, the notion of
group centrality [12] has been proposed by which centrality is mea-
sured not only for individual nodes but also for groups of them.
Whereas, in principle, this notion tackles the issue of group fail-
ures, its use is rather limited. This is because it only answers the
question of how important a certain group of nodes is. However, it
is often unknown ex ante which particular groups of nodes should
be considered, e.g., in a natural disaster scenario, where it is not
possible to identify a priori the nodes that will be affected. Even
if we evaluate all possible groups, we are still left without a syn-
thetic ranking of individual nodes’ importance. Thus, what would
be more desirable is to have a metric of importance of an indi-
vidual node that takes into account many (preferably all) potential
groups that this node can belong to. One such metric is the recently-
proposed notion of the game theoretic network centrality [15, 24]
based on the Shapley Value. In more detail, the Shapley Value is
one of the key solution concepts in game theory. It advocates a
fair division of payoff from a coalitional game and is computed
as the weighted average of marginal contributions of players to all
the coalitions that they could potentially participate in. The basic
idea behind the Shapley Value-based centrality is to define a game
over the network, where nodes are players and collections of nodes
are coalitions. In this game, the value of any coalition reflects the
consequences of a simultaneous failure of all the nodes involved
in this coalition. The marginal contribution of a node to a coali-
tion is interpreted as the change in severity of such a failure if this
additional node failed with all the other nodes already involved in
the coalition. The Shapley Value computed for such a game shows
the weighted average of all the marginal contributions of each node
to all the potential coalitions of nodes. This addresses both prob-
lems related to the standard centrality metrics. Note, however, that
2A failure of a node should be understood as an inability to perform
its previous role, e.g. to control the information flow.

computing the Shapley Value in the general case requires a number
of operations that is exponential in the number of players. This is
clearly not desirable, especially given networks with large numbers
of nodes. Thus, to be able to use Shapley Value-based metrics in
practice, it is crucial that this complexity is significantly reduced.

Against this background, our contributions in the present paper
can be summarised as follows:

1. To date, the Shapley Value was used to refine two standard
metrics: degree centrality [24] and closeness centrality [1].
Our first contribution in this paper is to develop the refine-
ment of the betweenness centrality metric based on the Shap-
ley Value;

2. We propose a polynomial-time algorithm for computing the
new metric. Interestingly, although our algorithm involves
the computation of the Shapley Value, we show that it has the
same complexity as the best known algorithm due to Brandes
[7] to compute the standard betweenness centrality.

3. Finally, we show that the above results can be extended to
another centrality metric, namely the stress centrality [23,
18] — a concept closely related to betweenness centrality.

The remainder of the paper is organized as follows. In Section 2,
basic notations and definitions are presented. In Section 3, we in-
troduce the new betweenness centrality based on the Shapley Value.
The polynomial time algorithm to compute the new metric is de-
scribed in Section 4. In Section 5, we summarize our results and
present the most promising directions for future research. Finally,
a proof is provided in the appendix.

2. PRELIMINARIES
In this section we introduce basic concepts from cooperative

game theory that are needed in our analysis.
A graph (or network) G is composed of vertices (or nodes) and

edges. Their sets will be denoted V (G) and E(G), respectively,
where every edge in E(G) connects two vertices in V (G). An
edge connecting vertices u, v ∈ V (G) will be denoted by (u, v).
We will also consider weighted networks in which a weight (label)
is associated with every edge in E(G). Informally, a path is a se-
quence of connected edges. The shortest path between two given
vertices u and v is a path that ends with these vertices and mini-
mizes the weights of the involved edges (or minimizes the number
of edges in the case of unweighted networks). It will be denoted by
u

p
; v or simply p if there is no risk of confusion.
Next, we define the notion of a coalitional game and the Shapley

Value [22]. In particular, by A = {a1, . . . , a|A|} we will denote
the set of players that participate in a coalitional game. A charac-
teristic function ν : 2A → R assigns to every coalition C ⊆ A
a numerical value representing its performance. It is assumed that
ν(∅) = 0. A coalitional game in a characteristic function form
is then a tuple (A, ν). It is usually assumed that the grand coali-
tion, i.e. the coalition of all the players in the game, has the high-
est value and, therefore, is formed. One of the fundamental ques-
tions in cooperative game theory is how to divide the payoff from
the grand coalition between the players. Whereas, in principle,
there may be an infinite number of such divisions, we are inter-
ested in those that meet certain desirable criteria. In this respect,
in his highly-regarded paper, Shapley proposed to evaluate the role
of each player in the game proportionally to a (weighted) average
marginal contribution of this player to all possible coalitions. The
importance of the Shapley Value stems from the fact that it is the

240

unique division scheme that meets the following four fairness cri-
teria:

1. Efficiency — the entire payoff of the grand coalitions is dis-
tributed among players;

2. Symmetry — all players with the same marginal contribu-
tions to all coalitions receive exactly the same payoff;

3. Null player — players with no marginal contribution to every
coalition receive no payoff; and

4. Additivity — values for two given games sum up to the value
computed for the sum of both games.

To formalize this concept we denote by π ∈ Π(A) a permutation
of players inA, and by Pπ(i) the coalition made of all predecessors
of player ai in π. In more detail, denoting by π(j) the location of
aj in π, we have Pπ(i) = {aj ∈ π : π(j) < π(i)}. Shapley [22]
defined the value of ai, denoted SVi(A, ν), as the average marginal
contribution of ai to coalition Pπ(i) over all π ∈ Π. Formally:

SVi(A, ν) =
1

|A|!
∑

π∈Π

[ν(Pπ(i) ∪ {ai})− ν(Pπ(i))]. (1)

The intuition behind the above formula is as follows: suppose
that the players arrive at a certain meeting point in a random order.
Furthermore, assume that every player ai who arrives receives the
marginal contribution that this arrival brings to those already at the
meeting point. The payoff of player ai from the coalitional game is
then the average of these contributions taken over all the possible
orders of arrival.

The above formula can be rewritten into an equivalent form as:

SVi(A, ν) =
∑

S⊆A\{ai}

|S|!(|A| − |S| − 1)!

|A|! [ν(S ∪ {ai})− ν(S)]. (2)

In the network context, we will denote a coalitional game defined
on network G by (V (G), ν), where a set of vertices is a set of
players, A = V (G), and ν : 2V (G) → R is the characteristic
function, where ν(∅) = 0. Sometimes, we will use the phrase
“value of coalition S” when referring to ν(S).

3. SHAPLEY VALUE-BASED
BETWEENNESS CENTRALITY

In this section we propose the Shapley Value-based betweenness
centrality. We start with the definition of the standard betweenness
centrality [14]:

Definition 1. The betweenness centrality of a vertex v is defined
as a function c : V → R : cb(v) =

∑
s 6=v 6=t

σst(v)
σst

, 3 where σst is
the number of shortest paths from s to t (if s = t then σst = 1), and
σst(v) is the number of shortest paths from s to t passing through
vertex v (if v ∈ {s, t} then σst(v) = 0).

Intuitively, the betweenness centrality metric represents the load
placed on a given vertex in a network. One of the key applications
of this metric is to measure the ability of different nodes to control
the information flow within a network. However, as we will now
show, there are cases where the standard betweenness centrality
metric does not produce accurate measurements in such applica-
tions. Consider, for example, the network in Figure 1. By comput-
ing the centrality of each node in this network using the standard
3To deal with unconnected graphs it is assumed that 0

0
= 0.

Figure 1: Sample network.

betweenness metric, we find that both v9 and v10 are ranked equally
(i.e., cb(v9) = cb(v10) = 98)! This is clearly not accurate since
the failure of v9 has more adverse consequences on the ability to
pass information through the network than the failure of v10. For
example, if v10 fails, then the bottom right nodes (i.e., v16, v17,
v18, and v19) can still communicate with one another. On the other
hand, if v9 fails, then the bottom left nodes (v12, v13, v14, and v15)
can no longer communicate with each other.

In an attempt to deal with this issue, Everett and Borgatti [12]
proposed the notion of group betweenness centrality of the form:

cgb(S) =
∑

s/∈S
t/∈S

σst(S)

σst
,

where S ⊆ V (G) is a subset of vertices under consideration, and
σst(S) is the number of the shortest paths from s to t passing
through some vertex in S (if s ∈ S or t ∈ S then σst(S) = 0). This
centrality metric, however, only evaluates a given subset of vertices
S, and this implies that the evaluation of individual nodes remains
unchanged. For instance, given the network in Figure 1, group be-
tweenness centrality gives exactly the same ranking of v9 and v10

as the standard betweenness centrality, i.e., cgb(v9) = cgb(v10) =
98 (the only difference is that the former centrality evaluates {v9}
and {v10}, while the latter one evaluates v9 and v10, respectively;
this change does not affect the evaluations of those two nodes).
Therefore, even if we evaluate all possible 2|V (G)| subsets using
group centrality, we are still left without one synthetic ranking of
individual vertices’ importance.

To address this problem, we now introduce the Shapley Value-
based betweenness centrality:

Definition 2. Given a network G, the Shapley Value-based be-
tweenness centrality of a vertex v ∈ V (G) is defined as a function
cSh : V → R : cSh(v) = SVv(V (G), ν), where ν is the charac-
teristic function defined as ν : 2V (G) → R : ν(S) =

∑
s/∈S
t/∈S

σst(S)
σst

with S ⊆ V (G).

As mentioned in Section 2, the Shapley Value divides the payoff
of the grand coalition among players by evaluating their marginal
contributions to any coalition they may possibly belong to. Simply,
the higher these marginal contributions are, the higher the Shap-
ley value of a player is. Or, to rephrase it in the context of this
paper, the more a vertex contributes to the performance of any
possible group of vertices (that this vertex belongs to), the higher

241

its betweenness centrality should be. Thus, unlike the group be-
tweenness centrality, our Shapley Value-based centrality provides
synthetic ranking of individual vertices’ importance. Coming back
to the example in Figure 1, we find that: cSh(v9) = 18.2, while
cSh(v10) = 16.0833. In other words, our metric is able to reflect
the difference in centrality between v9 and v10 because the evalu-
ation of each node is done from a global perspective of all subsets
in the network. This approach, among other advantages, grasps
a nuance that {a10, a11} play the the same role as {v9}, and this
because cgb({v9}) = cgb({v10, v11}).

Our notion can be seen as analogous to the Shapley Value-based
degree and closeness centralities. Having defined it, in the next
section we will propose a polynomial time algorithm to compute it.

4. ALGORITHMS TO COMPUTE THE SHAP-
LEY VALUE BASED BETWEENNESS CEN-
TRALITY

Although the formula for the Shapley Value in (2) is less compu-
tationally involved than in (1), it still requires analyzing a number
of coalitions that is exponential in the number of players. Specifi-
cally, in our network context one would need to analyseO(2|V (G)|)
coalitions, i.e., groups, of vertices. To circumvent this major ob-
stacle, we propose in this section two polynomial algorithms for
computing the Shapley Value-based betweenness centrality: one
for weighted graphs, and the other for unweighted graphs. Inter-
estingly, we show that the first algorithm has the same complexity
as the best known algorithm to compute the betweenness centrality
in the standard form (due to Brandes [7]). Furthermore our both
algorithms can be easily adapted to work on directed graphs.

4.1 A Look at Marginal Contributions
Given a graph G and some vertex v ∈ V (G), we would like to

compute the expected marginal contribution of this vertex to the set
of vertices Pπ(v) occurring before v in a random permutation π of
all vertices of the graph. We split our analysis into two cases: one
of positive and one of negative marginal contributions, respectively.

Firstly, we consider positive contributions. In what follows, let
us focus on some particular shortest path p which contains vertex
v. Recall that we denote by σst the number of shortest paths be-
tween vertices s and t, and by σst(v) the number of shortest paths
between vertices s and t where every path passes through vertex v
and v 6= t 6= s. Every path in σst(v) has a positive contribution to
the coalition Pπ(v) through v if and only if it is not yet controlled
by any vertex from set Pπ(v). In this case, the positive contribu-
tion equals 1

σst
. The necessary and sufficient condition for this to

happen can be expressed by Ψ(p) ∩ Pπ(v) = ∅, where Ψ(p) is
the set of all vertices lying on the path p including endpoints. That
is, vertices s and t, as well as the rest of the vertices from path p,
should not belong to Pπ(v).

Now, let us introduce a Bernoulli random variable B+
v,p which

indicates whether vertex v makes a positive contribution through
path p to set Pπ(v). Thus, we have:

E[
1

σst
B+
v,p] =

1

σst
P [Ψ(p) ∩ Pπ(v) = ∅],

where P [·] denotes probability, and E[·] denotes expected value. In
other words, we need to know the probability of having v precede
all other vertices from Ψ(p) \ {v} in a random permutation of all
vertices in the graph. Combinatorial arguments (see the Appendix)
show that this happens with probability 1

|Ψ(p)| . Thus:

E[
1

σst
B+
v,p] =

1

σst|Ψ(p)| . (3)

Secondly we examine a potential negative contribution of vertex
v to set Pπ(v). Such a contribution happens when path p ends with
v. Specifically, if coalition Pπ(v) already controls path p, along
with vertex v, then not only is there no value added from v becom-
ing a member of this coalition, but there is a negative effect of this
move. In particular, the group betweenness centrality assumes that
a set of vertices S controls only those paths with both ends not be-
longing to S. Therefore, when v becomes a member of coalition
Pπ(v), its negative contribution through path p is − 1

σsv
, where,

following the previous convention, we denote the number of paths
that start with some s end with v by σsv .

Now, we will analyse a probability of such a negative contri-
bution to happen by considering a complementary event in which
path p makes neutral contribution to set Pπ(v). This happens if
and only if either vertex s belongs to set Pπ(v), or this path is
not controlled by any of the vertices in Pπ(v). Formally: s ∈
Pπ(v) ∨ (Ψ(p) ∩ Pπ(v)) = ∅. Now, by introducing a Bernoulli
random variable B−v,p which indicates whether that vertex v makes
a negative contribution through path p to set Pπ(v), we get the fol-
lowing expression:

E[− 1

σsv
B−v,p] = − 1

σsv
(1−P [s ∈ Pπ(v)∨(Ψ(p)∩Pπ(v)) = ∅]).

Again, one can show with combinatorial arguments that this prob-
ability is P [Ψ(p)∩Pπ(v) = ∅] = 1

|Ψ(p)| and due to symmetry that
P [s ∈ Pπ(v)] = 1

2
. Finally, from the disjointness of these two

events, we

E[− 1

σsv
B−v,p] =

2− |Ψ(p)|
2σsv|Ψ(p)| . (4)

Before proceeding, we define ∂st to be the set of all shortest
paths from s to t, and, analogously, ∂st(v) to be the set of shortest
paths from s to t passing through vertex v.4 Now, using the ex-
pected value of Bernoulli random variables (3) and (4) we are able
to compute the Shapley Value of vertex v, which is the expected
marginal contribution of v to Pπ(v), as:

SVv(V (G), ν) =
∑

s 6=v 6=t

∑

p∈∂st(v)

E[
1

σst
B+
v,p] +

∑

s 6=v

∑

p∈∂sv
E[− 1

σst
B−v,p]

=
∑

s 6=v 6=t

∑

p∈∂st(v)

1

σst|Ψ(p)| +
∑

s 6=v

∑

p∈∂sv

2− |Ψ(p)|
2σsv|Ψ(p)| .

(5)

The above equation provides insight into the Shapley Value-based
betweenness centrality: it is not simply the classical betweenness
centrality scaled by the number of vertices that belong to each path.
This is because, the second part of the sum resembles the closeness
centrality, but with distances measured as the number of vertices
on the shortest paths. So, if the vertex lays in the middle of many
shortest paths, then its value will be higher.

4.2 The Case of Unweighted Graphs
In this subsection we will construct an efficient algorithm for

computing the Shapley Value-based betweenness centrality for un-
weighted graphs. Specifically, in such graphs, the number of ver-
tices in the shortest path between s and t is simply equal to the
distance between s and t, denoted as d(s, t).5 In other words, we

4Note that σst = |∂st| and σst(v) = |∂st(v)|.
5For notational convenience we assume that distance between two
vertices is the number of vertices on the shortest path between them
(not the number of edges), e.g. d(s, s) = 1.

242

have: |Ψ(p)| = d(s, t). Based on this, it is possible to simplify (5)
as follows:

SVv(V (G), ν) =
∑

s 6=v 6=t

∑

p∈∂st(v)

1

σstd(s, t)
+
∑

s 6=v

∑

p∈∂sv

2− d(s, v)

2σsvd(s, v)

=
∑

s 6=v

(∑

t6=v

σst(v)

σstd(s, t)
+

2− d(s, v)

2d(s, v)

)
. (6)

The above equation provides some interesting insights: by trans-
forming the second element of the inner sum 2−d(s,v)

2d(s,v)
= 1

d(s,v)
+ 1

2

we find that, in unweighted graphs, the Shapley Value using group
betweenness centrality as a characteristic function is in fact the sum
of the distanced scaled betweenness centrality (introduced by Bor-
gatti and Everett in [5]) and the closeness centrality, shifted by half.

Now, we adopt the framework presented in [7] so as to accom-
modate equation (6). We denote by δs,t(v) = σst(v)

d(s,t)σst
a pair-

dependency, which is the positive contribution that vertices s and t
make to the assessment of vertex v in equation (6). Analogously,
we denote by δs,·(v) =

∑
t∈V δs,t(v) one-side dependency, which

is the positive contribution that vertex s makes to the evaluation of
vertex v in the equation (6).

A naive way to compute the betweenness centrality is to first
compute the number of shortest paths between all pairs, and then
sum all pair-dependencies. This process takesO(|V |3) time. Bran-
des [7] proposed an algorithm to improve this complexity by using
some recursive relation. This algorithm runs in O(|V | · |E|) time,
and requiresO(|V |+ |E|) space. We will now show that, although
our new centrality is based on the Shapley Value, it can be com-
puted with the same complexity as Brandes’s algorithm.

Building upon Brandes [7], and its modification for distanced
scaled betweenness centrality presented in [8] we have:

δs,·(v) =
∑

w: (v,w)∈E
d(s,w)=d(s,v)+1

σsv
σsw

(
1

d(s, w)
+ δs,·(w)

)
. (7)

Now, we are able to compute our Shapley Value-based between-
ness centrality for a vertex v by iterating over all other vertices and
summing their contributions. Using (6) and (7) we get:

SVv(V (G), ν) =
∑

s 6=v

(
δs,·(v) +

2− d(s, v)

2d(s, v)

)
. (8)

Algorithm 1 modifies Brandes’s approach and computes the Shap-
ley Value-based betweenness centrality. It runs inO(|V |·|E|) time,
and requires O(|V |+ |E|) space.

Firstly, in lines 7 - 15, the algorithm calculates both the distance
and the number of shortest paths from a source s to each vertex.
While doing that, for each vertex v, all directly preceding vertices
occurring on shortest paths from s to v are stored in memory. This
process uses Breadth-First Search [10] which takes O(|V |) time
and O(|V | + |E|) space. In the second step (lines 20 and 22),
the algorithm uses formula (8) to calculate the contribution of the
source s to the value of our betweenness centrality for each vertex
that is reachable from the source. This step also takes O(|V |) time
and O(|V |+ |E|) space.

As visible in formula (8), in an undirected graph, each path is
considered twice. Thus in line 20 which is inside the loop we mul-
tiply the influence of the vertex s by two. At the end of the al-
gorithm, in line 23, we halve the accumulated result. Finally, we
note that it is very easy to adopt Algorithm 1 to directed graphs. To
this end, we remove the loop from line 23 and halve the contribu-

Algorithm 1: Computing Shapley Value-based betweenness
centrality for unweighted graphs

Input: Graph G = (V,E)
Data: queueQ, stack S for each v ∈ V and some source s:
d(s, v) : distance from v to the source s
Preds(v) : list of predecessors of v on the shortest paths from
source s
σsv : the number of shortest paths from s to v
δs,·(v) : the one-side dependency of s on v
Output: cSh(v) Shapley Value-based betweenness centrality

for each vertex v ∈ V
1 foreach v ∈ V do
2 cSh(v)← 0;

3 foreach s ∈ V do
4 foreach v ∈ V do
5 Preds(v)← empty list; d(s, v)←∞; σsv ← 0;

6 d(s, s)← 1; σss ← 1; enqueue s→ Q;
7 whileQ is not empty do
8 dequeue v ← Q; push v → S;
9 foreach w such that (v, w) ∈ E do

10 if d(s, w) =∞ then
11 d(s, w)← d(s, v) + 1
12 enqueue w → Q
13 if d(s, w) = d(s, v) + 1 then
14 σsw ← σsw + σsv;
15 append v → Preds(w);

16 foreach v ∈ V do δs,·(v)← 0;
17 while S is not empty do
18 pop w ← S;
19 foreach v ∈ Preds(w) do
20 δs,·(v)← δs,·(v) + σsv

σsw
(1
d(s,w)

+ δs,·(w));

21 if w 6= s then
22 cSh(w)← cSh(w) + δs,·(w) + 2−d(s,w)

d(s,w)
;

23 foreach v ∈ V do
24 cSh(v) = cSh(v)

2
;

tion of the vertex s from line 22, which now should look as follows:

22 : cSh(w)← cSh(w) + δs,·(w) + 2−d(s,w)
2d(s,w)

;

4.3 The Case of Weighted Graphs
While the focus of the previous subsection was on unweighted

graphs, in this subsection we show how to compute the Shapley
Value-based betweenness centrality for weighted graphs. In partic-
ular, we consider one of the most popular semantics of weighted
graphs, where the weight λ(v, u) of the edge between v and u is
interpreted as the distance between v and u . Thus, it is very likely
that for some shortest path s

p
; t it holds that |Ψ(p)| 6= d(s, t).

We will denote by Υst the sum of the reciprocals of the num-
ber of vertices belonging to all particular shortest paths between
vertices s and t. Formally:

Υst =
∑

p∈∂st

1

|Ψ(p)| . (9)

Furthermore, following our convention, we also define Υst(v) =

243

∑
p∈∂st(v)

1
|Ψ(p)| . Now, using (9) it is possible to simplify (5) as

follows:

SVv(V (G), ν) =
∑

s 6=v

(∑

t 6=v

Υst(v)

σst
+

Υsv

σsv
− 1

2

)
. (10)

In order to compute this value efficiently, we need to overcome
two main algorithmic challenges. The first is how to efficiently
compute Υst for each s and t. The second challenge is how to
recursively compute the term

∑
t6=v

Υst(v)
σst

, which is the one-side
dependency in weighted graphs (denoted as δs,·(v)). That is,

δs,·(v) =
∑

t∈V

Υst(v)

σst
. (11)

In the above equation, counting all shortest paths between source
s and each vertex t, as well as the number of vertices in each such
path, is not challenging: it can be done using O(V 2) space. How-
ever, it is not clear whether there exists any recursive relation that
computes (11), i.e. a similar relation to that used in (7).

In order to compute (11) recursively, we will define an array
Tst which stores the number of shortest paths between vertices s
and t. as well as the number of vertices in each such path. More
specifically, Tst[i] : i ∈ {1, . . . , |V |} is the number of shortest
paths between s and t that contain exactly i vertices. The array Tst
uniquely determines the polynomial Wst with terms Tst[i]xi. We
define seven operation on such arrays:

Shifting T→st and T←st increase or decrease the indices of all values
of the array by one, respectively. This takes O(|V |) time.

Evaluating ‖Tst‖ returns
∑|V |
i=1

Tst[i]
i

. Time complexity isO(|V |).

Adding Tsv⊕Tsu is an operation of adding two polynomialsWsv

and Wsu. It takes O(|V |) time. We will denote by
⊕

the
sum of a series of polynomials.

Multiplying Tsv⊗Tvt is an operation of multiplying two polyno-
mials Wsv and Wvt. This takes O(|V | log |V |) time using
the polynomial multiplying algorithm from [10].

Dividing Tsv � Tvt is an operation of dividing polynomials Wsv

and Wvt. This takes O(|V | log |V |) time.

Dividing by real Tsv ÷ k means dividing every value in the array
by the real value k. This operation takes O(|V |) time.

Resetting Tsv ← 0 is an operation that assigns 0 to each cell in
Tsv .

Observe that ‖Tst‖ = Υst. Therefore, to overcome the first
algorithmic challenge, it is sufficient to compute ‖Tst‖. We will
use the following relation:

Tsv =
⊕

u: d(s,u)+
λ(u,v)=d(s,v)

T→su . (12)

Using Dijkstra’s algorithm [10], as well as equation (12), we
can compute Tst for every t and some source s. If vertex u pre-
cedes vertex v on some shortest path from source s, all shortest
paths stored in Tsu extended by vertex v are part of the set of
shortest paths stored in Tsv . This procedure takes O(|V |2|E| +
|V |2 log |V |) time.

To solve the second algorithmic challenge, it is necessary to no-
tice the following relationship:

Tst(v) = (Tsv ⊗ Tvt)←st = Tsv ⊗ T←vt . (13)

Following our convention, Tst(v) is an array that stores informa-
tion about the paths between s and t that pass through the vertex v.
Every path stored in the array Tsv can be extended by every path
stored in the array Tvt. This operation, which is in fact the multi-
plication of two polynomials Wsv and Wvt, gives us information
about all shortest paths from s to t passing through v. The vertex v
is counted twice, so by shifting left the result of multiplication we
shorten all paths by one.

Now, we are able to infer the recursive relation. Changing type of
one-side dependency (11) to the type of the proposed array δ∗s,·(v) =⊕

t∈V
Tst(v)
σst

, using (13), and using the property of a polynomial
operation, we obtain the following relation 6:

δ∗s,·(v) =
⊕

w: d(s,v)+
λ(v,w)=d(s,w)

(
T→sv
σsw
⊕ Tsv ⊗ (δ∗s,·(w)� T←sw)

)
. (14)

Equations (10) and (11), and definition of δ∗s,·(v) give us the
ultimate formula:

SVv(V (G), ν) =
∑

s6=v

(∥∥δ∗s,·(v)
∥∥+
‖Tsv‖
σsv

− 1

2

)
. (15)

We use the above result to construct Algorithm 2 that computes
the Shapley Value-based betweenness centrality for weighted graphs
inO(|E|·|V |2 log |V |) time. The algorithm requireO(|V |2) space.

Algorithm 2 shows great similarity to Algorithm 1. The only
difference is that we do not operate on numbers of shortest paths
between vertices, but on the special array introduced, which is the
reason behind the higher complexity. However, analogously to Al-
gorithm 1, we are able to easily adapt this algorithm to work on
directed graphs. It is necessary to remove the loop from line 27 and
halve the contribution of vertex s from line 26. Thus, for the case
of directed graphs, this lines becomes:

26 : cSh(w)← cSh(w) +
∥∥δ∗s,·(w)

∥∥+ ‖Tsw‖
σsw

− 1
2
;

4.4 Shapley Value-based Stress Centrality
We will now show how to adapt Algorithms 1 and 2 so that they

efficiently compute the stress centrality based on the Shapley Value.
Intuitively, the stress centrality [23, 18] is used to identify the ver-
tices that are exposed to high loads. Formally,

Definition 3. The stress centrality of node v is defined as a func-
tion c : V → R : cs(v) =

∑
s 6=v 6=t σst(v).

Although the stress centrality has a very similar functional form
to the betweenness centrality, both metrics may rank nodes differ-
ently. The above definition of centrality can be refined to the Shap-
ley Value-based stress centrality, as follows:

Definition 4. Given network G, the Shapley Value-based stress
centrality of vertex v ∈ V (G) is defined as a function cSh : V →
R : cSh(v) = SVv(V (G), ν), where ν is the characteristic func-
tion defined as ν : 2V (G) → R : ν(S) =

∑
s/∈S
t/∈S

σst(S) with

S ⊆ V (G).
6We omit the precise description of a derivation which is analogous
to Brandes’ derivation of the equation (7).

244

where group stress centrality is defined in an analogous way to that
of the group betweenness centrality in Section 3. The analysis of
the expected marginal contribution of some vertex v ∈ V (G) to
the set of vertices Pπ(v) in the context of group stress centrality c
leads to the following equation:

SVv(V (G), c) =
∑

s6=v 6=t

∑

p∈∂st(v)

E[B+
v,p] +

∑

s 6=v

∑

p∈∂sv
E[−B−v,p]

=
∑

s6=v 6=t

∑

p∈∂st(v)

1

|Ψ(p)| +
∑

s 6=v

∑

p∈∂sv

2− |Ψ(p)|
2|Ψ(p)| ,

(16)

where we use the same notation as in Section 4.1.

Algorithm 2: Computing Shapley Value-based betweenness
centrality for weighted graphs

Input: weighted graph G = (V,E), with weight function
λ : E → R+

Data: priority queueQ with key d(), stack S for each
vertex v ∈ V and some source s:
d(s, v) : the distance from s to v
Preds(v) : the list of predecessors of v on the shortest paths
from source s
σsv : the number of shortest paths from s to v
δ∗s,·(v) : one-side dependency of s on v with type of the array
Tsv : the number of shortest paths from s to v with accuracy to
the number of vertices belonging to them stored in array
Output: cSh(v) Shapley Value-based betweenness centrality

1 foreach v ∈ V do
2 cSh(v)← 0;

3 foreach s ∈ V do
4 foreach v ∈ V do
5 Preds(v)← empty list; d(s, v)←∞; σsv ← 0;

6 d(s, s)← 1; σss ← 1; enqueue s→ Q;
7 whileQ is not empty do
8 extract v ← Q with minimal d(s, v);
9 push v → S;

10 foreach w such that (v, w) ∈ E do
11 if d(s, w) > d(s, v) + λ(v, w) then
12 d(s, w)← d(s, v) + λ(v, w)
13 insert/update w → Q with d(s, w);
14 σsw ← 0; Tsw ← 0;
15 Preds(w)← empty list;

16 if d(s, w) = d(s, v) + λ(v, w) then
17 σsw ← σsw + σsv;
18 append v → Preds(w);
19 Tsw = Tsw ⊕ T→sv ;

20 foreach v ∈ V do δ∗s,·(v)← 0;
21 while S is not empty do
22 pop w ← S;
23 foreach v ∈ Preds(w) do
24 δ∗s,·(v)← δ∗s,·(v)⊕ T→sv

σsw
⊕Tsv⊗ (δ∗s,·(w)�T←sw);

25 if w 6= s then
26 cSh(w)← cSh(w) +

∥∥δ∗s,·(w)
∥∥+ 2‖Tsw‖

σsw
− 1

27 foreach v ∈ V do
28 cSh(v) = cSh(v)

2
;

Using (16), and following similar steps to those that we took dur-
ing the analysis of the betweenness centrality, we infer analogous
recursive equations for computation one-side dependency δs,·(v).
In case of unweighted graphs, we get δs,·(v) =

∑
t∈V (G)

σst(v)
d(s,t)

and obtain:

δs,·(v) =
∑

w: (v,w)∈E
d(s,w)=d(s,v)+1

σsv

(
1

d(s, w)
+
δs,·(w)

σsw

)
. (17)

The modification of Algorithm 1 based on equations (16) and
(17) consists of changing lines 20 and 22 so that they become:

20 : δs,·(v)← δs,·(v) + σsv(1
d(s,w)

+
δs,·(w)

σsw
);

22 : cSh(w)← cSh(w) + δs,·(w) + σsw(2−d(s,w)
d(s,w)

);

Then, in case of weighted graphs, where δ∗s,·(v) =
⊕

t∈V Tst(v)
we obtain:

δ∗s,·(v) =
⊕

w: d(s,v)+
λ(v,w)=d(s,w)

(
T→sv ⊕ Tsv ⊗ (δ∗s,·(w)� T←sw)

)
. (18)

Equations (16) and (18) result in changing lines 24 and 26 from
Algorithm 2 into the following:

24 : δ∗s,·(v)← δ∗s,·(v)⊕ T→sv ⊕ Tsv ⊗ (δ∗s,·(w)� T←sw);

26 : cSh(w)← cSh(w) +
∥∥δ∗s,·(w)

∥∥+ 2 ‖Tsw‖ − σsw;

This concludes the necessary modifications of Algorithms 1 and
2 in order to compute the Shapley Value-based stress centrality.

5. SUMMARY AND FUTURE WORK
In Table 1, we present a summary of the results obtained in this

paper. To date, following the seminal work of Gómez et al. [15],
the game theoretic refinements for the degree [24] and closeness [1]
centralities were proposed and their computational properties were
studied in Aadithya et al. [1]. In the present paper we propose
the Shapley Value-based betweenness centrality and develop two
polynomial algorithms for computing it. We also show that these
results can be easily extended to the related notion of the stress
centrality.

Standard Group SV-based Efficient
centrality centrality centrality computation

node [12] [24] [1]
closeness [12] [1] [1]

betweenness [12] this paper this paper
stress this paper this paper this paper

Table 1: Summary of the results obtained in this paper.

Regarding future research, our work can be extended to a variety
of other centrality metrics. In particular, similarly to the stress cen-
trality, there are other, though less known, versions of the between-
ness centrality [8] to which our results stretch straightforwardly.
Another interesting, and indeed more challenging, extension is to
derive (and efficiently compute!) the Shapley Value-based forms of
other metrics such as the graph centrality [17], the reach centrality
[16], the edge centrality [18], the flow betweenness centrality [18],
and current flow centrality [9].

245

6. REFERENCES
[1] K.V. Aadithya, B. Ravindran, T.P. Michalak, and N.R.

Jennings, Efficient Computation of the Shapley Value for
Centrality in Networks, WINE’10, 2010.

[2] Satomi Baba, Atsushi Iwasaki, Makoto Yokoo, Marius-Calin
Silaghi, Katsutoshi Hirayama, and Toshihiro Matsui,
Cooperative problem solving against adversary: quantified
distributed constraint satisfaction problem, AAMAS, 2010,
pp. 781–788.

[3] M. Barthelemy, Betweenness centrality in large complex
networks, The European Physical Journal B - Condensed
Matter 38 (2004), no. 2, 163–168.

[4] B. Bollobas and O. Riordan, Robustness and vulnerability of
scale-free random graphs , Internet Mathematics 1 (2003),
no. 1, 1–35.

[5] S. P. Borgatti and M. G. Everett, A Graph-theoretic
perspective on centrality , Social Networks 28 (2006), no. 4,
466–484.

[6] P. Bork, L. J. Jensen, von C. Mering, A. K. Ramani, I. Lee,
and E. M. Marcott, Protein interaction networks from yeast
to huma, Curr. Opin. Struct. Biol. 14 (2004), no. 3, 292–299.

[7] U. Brandes, A faster algorithm for betweenness centrality, J.
of Mathematical Sociology 25 (2001), no. 2, 163–177.

[8] , On variants of shortest-path betweenness centrality
and their generic computation , Social Networks 30 (2008),
no. 2, 136–145.

[9] Ulrik Brandes and Daniel Fleischer, Centrality measures
based on current flow, 2005.

[10] T.H. Cormen, Introduction to algorithms, MIT Press, 2001.
[11] Mathijs M. de Weerdt and Yingqian Zhang, Preventing

under-reporting in social task allocation, Proceedings of the
10th workshop on Agent-Mediated Electronic Commerce
(AMEC-X) (Han La Poutre and Onn Shehory, eds.),
IFAAMAS, 2008.

[12] M. G. Everett and S. P. Borgatti, The centrality of groups
and classes , Journal of Mathematical Sociology 23 (1999),
no. 3, 181–201.

[13] M. Faloutsos, P. Faloutsos, and Faloutsos C., On power-law
relationships of the internet topology, SIGCOMM Comput.
Comm. Rev. 29 (1999), no. 4, 251–262.

[14] L.C. Freeman, Centrality in social networks: Conceptual
clarification, Social Networks 1 (1979), no. 3, 215–239.

[15] D. Gómez, E. González-Arangüena, C. Manuel, G. Owen,
M. Del Pozo, and J. Tejada, Centrality and power in social
networks: A game theoretic approach, Mathematical Social
Sciences 46 (2003), no. 1, 27–54.

[16] R. J. Gutman, Reach-Based Routing: A New Approach to
Shortest Path Algorithms Optimized for Road Networks, In
Proceedings of the 6th Workshop on Algorithm Engineering
and Experiments, SIAM, 2004, pp. 100–111.

[17] P. Hage and F. Harary, Eccentricity and centrality in
networks. , Social Networks 17 (1995), 57–63.

[18] D. Koschützki, K.A. Lehmann, L. Peeters, S. Richter,
D. Tenfelde-Podehl, and O. Zlotowski, Centrality indices.
network analysis, Lecture Notes in Computer Science, vol.
3418, pp. 16–61, Springer, 2005.

[19] R. Pastor-Satorras and A. Vespignani, Immunization of
complex networks , Phys. Rev. E 65:036104 (2002).

[20] S. Porta, P. Crucitti, and V. Latora, The network analysis of
urban streets: a primal approach, Environment and Planning
B: Planning and Design 33 (2006), no. 5, 705–725.

[21] R. Puzis, D. Yagil, Y. Elovici, and D. Braha, Collaborative
attack on internet users’ anonymity , Internet Research 19
(2009), no. 1, 60–77.

[22] L. S. Shapley, A value for n-person games, In Contributions
to the Theory of Games, volume II (H.W. Kuhn and A.W.
Tucker, eds.), Princeton University Press, 1953, pp. 307–317.

[23] A. Shimbel, Structural parameters of communication
networks , Bull. of Math. Biophysics 15 (1953), 501–507.

[24] N.R. Suri and Y. Narahari, Determining the top-k nodes in
social networks using the Shapley Value, AAMAS ’08:

Proceedings of the Seventh International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2008,
pp. 1509–1512.

[25] S. Wasserman and K. Faust, Social network analysis:
Methods and applications, England: Cambridge University
Press., 1994.

[26] D.J. Watts and S.H. Strogatz, Collective dynamics of
small-world networks, Nature 393 (1998), no. 6684,
440–442.

[27] S. H. Yook, H. Jeong, and A.-L. Barabasi, Modeling the
internet’s large-scale topology, Proceedings of the National
Academy of Science 99 (2002), no. 21, 13382–13386.

APPENDIX: Combinatorial Proof
Theorem 1. Let K be a set of elements such that |K| = k. Let

L and R be two disjoint subsets of K, such that: |L| = l, |R| = r.
Now, given some element x ∈ K, where x /∈ L ∪ R, and given
a random permutation π ∈ Π(K), the probability of having every
element in L before x, and every element in R after x, is:

P [∀e∈Lπ(e) < π(x) ∧ ∀e∈Rπ(e) > π(x)] = 1

(l+1)(l+r+1
r)

PROOF. Let us first count the permutations that satisfy the as-
sumption: ∀e∈Lπ(e) < π(x) ∧ ∀e∈Rπ(e) > π(x). Specifically:

• Let us choose l + r + 1 positions in the sequence of all ele-
ments from K. There are

(
n

l+r+1

)
such possibilities.

• Now, in the first l chosen positions, place all elements fromL.
Directly after those, place the element x. Finally, in the last r
chosen positions, place all elements from R. The number of
such line-ups is l!r!.

• The remaining elements can be arrange in (n− (l+ r+ 1))!
different possibilities.

Thus, the number of permutations satisfying our assumption is:
(

n
l+r+1

)
l!r!(n− (l + r + 1))! = n!

(l+1)(l+r+1
r)

,

From Theorem 1 we can obtain the probability of an event in
which the vertex v laying on the path p precedes all the other ver-
tices from this path in a random permutation of all vertices in the
graphG. Now, by settingK = V (G), L = ∅ andR = Ψ(p)\{v},
we obtain the desired probability: 1

|Ψ(p)| .

246

Maintaining Team Coherence
under the Velocity Obstacle Framework

Andrew Kimmel
University of Nevada, Reno
1664 N. Virginia St., MS171

Reno, NV 89557
akimmel@cse.unr.edu

Andrew Dobson
University of Nevada, Reno
1664 N. Virginia St., MS171

Reno, NV 89557
dobsona@cse.unr.edu

Kostas Bekris
University of Nevada, Reno
1664 N. Virginia St., MS171

Reno, NV 89557
bekris@cse.unr.edu

ABSTRACT
Many multi-agent applications may involve a notion of spa-
tial coherence. For instance, simulations of virtual agents of-
ten need to model a coherent group or crowd. Alternatively,
robots may prefer to stay within a pre-specified communica-
tion range. This paper proposes an extension of a decentral-
ized, reactive collision avoidance framework, which defines
obstacles in the velocity space, known as Velocity Obsta-
cles (VOs), for coherent groups of agents. The extension,
referred to in this work as a Loss of Communication Ob-
stacle (LOCO), aims to maintain proximity among agents by
imposing constraints in the velocity space and restricting the
set of feasible controls. If the introduction of LOCOs results
in a problem that is too restrictive, then the proximity con-
straints are relaxed in order to maintain collision avoidance.
If agents break their proximity constraints, a method is ap-
plied to reconnect them. The approach is fast and integrates
nicely with the Velocity Obstacle framework. It yields im-
proved coherence for groups of robots connected through an
input constraint graph that are moving with constant veloc-
ity. Simulated environments involving a single team moving
among static obstacles, as well as multiple teams operating
in the same environment, are considered in the experiments
and evaluated for collisions, computational cost and prox-
imity constraint maintenance. The experiments show that
improved coherence is achieved while maintaining collision
avoidance, at a small computational cost and path quality
degradation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Design, Experimentation

Keywords
AAMAS proceedings, multi-agent, collision avoidance, team
coherence, communication constraints

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Two agents navigating around a static ob-
stacle: (a) the agents split to reach their goals with-
out collisions, while in (b) the agents move together
as a coherent team. The second behavior must be
achieved in a decentralized manner.

1. INTRODUCTION
Many practical applications of decentralized collision avoid-

ance may involve a secondary objective, where teams of
agents need to maintain a certain level of coherence. Co-
herence often implies that the agents should remain within
a certain distance of one another. In games and simulations,
the agents may need to remain within a certain distance be-
cause of implied social interactions, or because they need to
reach their destination together so as to be more effective in
completing an objective at their goal. For instance, a team
of agents in a game will be more effective in attacking an en-
emy if all the units move together against the opponent and
do not split into multiple groups. In mobile sensor networks,
robots may have to respect radial communication limits.

The Velocity Obstacle (VO) formulation [8, 27, 22] is a
framework for reactive collision avoidance. It is fast as it op-
erates directly in the velocity space of each agent. It is also a
decentralized approach as each agent reasons independently
about its controls, as long as it can compute the position and
velocity of its neighbors. Current work in Velocity Obstacles
does not directly address the issue of coherence. Consider
the situation in Figure 1, where two agents are required to
avoid an obstacle and reach their desired destination. An
application of the basic VO framework may result in the two
agents splitting and passing the obstacle from opposite ends.
It would be desirable, however, for the agents to select, in
a decentralized manner, a single direction to follow so as to
avoid the obstacle and reach their goal while maintaining

247

coherence. The decentralized nature of the solution will be
especially helpful in robotic applications because no commu-
nication will be required between robots. It will also provide
improved scalability in simulations and games.

This paper proposes a method for maintaining team co-
herence within the VO framework in a decentralized manner.
The desired coherence for a problem can be defined as a
graph of dependencies between agents. An edge in the graph
implies that the corresponding agents should remain within
a predefined distance as they move towards their goal. Given
this input graph, an agent constructs an additional obstacle
in the velocity space for each neighbor with which it wants
to maintain connectivity. This construction is referred to in
this work as a Loss of Communication Obstacle (LOCO).

Building on top of the VO framework allows LOCOs to focus
on coherence maintenance, rather than obstacle avoidance.
In order to construct the LOCO, the assumption is that a
neighbor will maintain its current control, as in the origi-
nal VO framework. Then, a LOCO defines the set of velocities
that will lead the two agents to be separated beyond a de-
sired distance within a certain time horizon. A scheme is
proposed for integrating information from the multiple VOs
defined for collision avoidance and the LOCOs defined for co-
herence maintenance. If the set of velocities that satisfy
both constraints is not empty for a satisfactory time hori-
zon, then the velocity in this set that brings the agent closer
to its goal is chosen. A valid velocity implies that, given
the neighbor does not change control, following this velocity
will not lead the agent into a collision or violation of prox-
imity constraints for the given horizon. If the set of valid
velocities is empty, then the objective of maintaining coher-
ence is dropped in favor of guaranteeing collision avoidance,
which should be satisfiable, unless oscillations appear in the
selected controls of agents. If two agents that are supposed
to retain proximity end up violating the distance constraint,
the proposed method makes them move in a direction that
will allow them to reconnect.

This paper describes the LOCO method and provides sim-
ulations which show that, by reasoning about distance con-
straints, it is possible to solve decentralized collision avoid-
ance problems while improving the coherence of a team. The
approach is built on top of and compared against a formula-
tion of velocity obstacles proposed in the literature for teams
of agents that execute the same protocol, referred to as Re-
ciprocal Velocity Obstacles [27, 22]. The experiments con-
sider disk-shaped agents that move with a constant speed
in a holonomic manner, i.e., the agents can freely choose
to follow any direction instantaneously. First, a series of
static environments are tested with a single team of agents
navigating while maintaining coherence. Different types of
formations between the teams are considered. Then, tests
for multiple teams of agents navigating in the same environ-
ment while maintaining coherence are performed.

The organization of the paper is as follows. First, in Sec-
tion 2, the relevant work to this problem is reviewed. Sec-
tion 3 provides a formal description of the problem as well
as the applicable notation used throughout the manuscript.
The Velocity Obstacle framework is outlined in Section 4
together with the proposed approach for maintaining team
coherence. Section 5 describes relevant results on various
experimental setups. Lastly, Section 6 concludes the paper
with a discussion of the technique and possible future work.

2. BACKGROUND

2.1 Virtual Agent Applications
The need to move multiple agents as a coherent team

arises in many virtual agent applications [25, 18], ranging
from crowd simulation [17], to pedestrian behavior analy-
sis [16, 19], to shepherding and flocking behaviors [15, 29].
Many methods make use of “steering behaviors”, with the
objective of having agents navigate in a life-like and im-
provisational manner [20]. These steering behaviors can be
combined to achieve higher-level goals, such as “get to the
goal while avoiding obstacles”or“join a group of characters”.
Similar is the objective of the social force model [10].

2.2 Coupled Multi-Robot Path Planning
There is also extensive literature on motion coordination

and collision avoidance in robotics. The multi-robot path
planning problem can be approached by either a coupled ap-
proach or a decoupled one [12, 13]. The coupled approach
plans for the composite robot, which has as many degrees
of freedom as the sum of degrees of freedom of each individ-
ual robot. Integrated with complete/optimal planners, the
coupled algorithm achieves completeness/optimality. Nev-
ertheless, it becomes intractable due to its exponential de-
pendency on the number of degrees of freedom.

2.3 Decoupled Multi-Robot Path Planning
Decoupled approaches plan for each agent individually.

In prioritized schemes, paths are computed sequentially and
high-priority agents are treated as moving obstacles by low-
priority ones [6]. Searching the space of priorities can assist
in performance [4]. Such decoupled planners tend to prune
states in which higher priority agents allow lower priority
ones to progress, which may eliminate the only viable solu-
tions. Search-based decoupled approaches consider dynamic
prioritization and windowed search [21], as well as spatial
abstraction for improved multi-agent heuristic computation
[24, 30]. In particular, mobile robotic sensor networks re-
quire that robots move while maintaining communication.
Techniques which attempt to tackle this issue have to bal-
ance a trade-off between centralized and decentralized plan-
ning. There are techniques that create networks of robots
to compute plans in a centralized manner across distributed
systems [5] or in a fully decentralized manner [3].

2.4 Formations
There is a significant amount of work on formation con-

trol, which is a way of moving multiple agents as a coherent
team. One direction is to use a virtual rigid body struc-
ture to define the shape of a formation, and then plan for
this rigid body [14]. Other techniques attempt to have more
flexible structures, where interactions between robots are
modeled as flexible joints [1]. An alternative is to first gen-
erate a feasible trajectory for the group’s leader according
to its constraints and then use feedback controllers for the
followers [7, 2].

2.5 Reactive Obstacle Avoidance
Many techniques attempt to solve the problem of colli-

sion avoidance using reactive methods. One technique used
in robotics is the Dynamic Window approach, which oper-
ates directly in the velocity space of a robot, reasoning over
the achievable velocities within a small time interval [9]. An

248

Figure 2: Agents a and b share a proximity con-
straint dprox. Agent a moves with velocity va where
‖v‖ = s and can sense all agents within dsense.

alternative approach, known as the Velocity Obstacle (VO),
assumes that neighboring agents will keep following their
current control. Based on this assumption, it defines conic
regions in velocity space, which are invalid to follow, as they
lead to a collision with the neighbor at some time in the
future [8]. If the future trajectory of other robots is known,
non-linear VOs can be constructed [11]. The basic VO for-
mulation can result in oscillations in motion when multiple
agents execute the same algorithm. The reciprocal nature
of other robots can be taken into account in order to avoid
these oscillations, which leads to the definition of Reciprocal
Velocity Obstacles [27]. Using this idea of reciprocity, the
robots can attempt to optimally steer out of collision courses
with other robots using an extension of this framework called
Optimal Reciprocal Collision Avoidance (ORCA) [26]. This
technique was extended to 3D cases using simple-airplane
systems [23]. Further work extends the VO formulation to
work with acceleration constraints as well as many kinemat-
ically and dynamically constrained systems [28].

2.6 Contribution
This work uses a reactive technique to define new obsta-

cles in the velocity space, called Loss of Communication Ob-
stacles (LOCO). LOCOs are computed quickly and, when inte-
grated with Velocity Obstacles, allow robots to reactively
avoid static and dynamic obstacles while maintaining a bet-
ter sense of coherence. The new technique does not impose
communication requirements, yet maintains connectivity in
a decentralized manner. The approach still requires that
robots are able to sense the position and velocity of other
robots in the scene, as well as the position of static obstacles.

3. PROBLEM SETUP
Consider n planar, holonomic disks moving with constant

speed s. Let the set of all agents beA. Each disk agent a ∈ A
has radius ra and can instantaneously move with a velocity
vector va that has magnitude s. Agents are assumed to be
capable of sensing the position and velocity of other agents
in the environment within a sensing radius dsense. Further-
more, the agents have available a map M of the environment
that includes the static obstacles. The configuration space
for each agent is Q = R2, and it can be partitioned into two

sets, Qfree and Qobst, where Qfree represents the obstacle
free part of the space, and Qobst is the part of the space
with obstacles. Each agent follows a trajectory qa(t), where
t is time. Initially an agent is located at a configuration
qa(0) = qinita and has a goal location qgoala .

Consider the distance d(a, b, t) between agents a and b at
time t (Figure 2). If d(a, b, t) < ra + rb, then agents a and
b are said to be in collision at time t. Collisions with static
obstacles occur when qa(t) ∈ Qobst. An input graph G(A,E)
is provided that specifies which agents need to be in close
proximity. The vertices of graph G correspond to the set
of agents A and an edge (a, b) implies that agents a and b
must satisfy d(a, b, t) ≤ dprox, where dprox is a proximity
constraint.

The objective is for the agents to move from qinit to qgoal

without any collisions with obstacles or among them, while
satisfying as much as possible the proximity constraints spec-
ified in the input graph G. More formally, all agents should
follow trajectories qa(t) for 0 ≤ t ≤ tfinal, so that ∀a ∈ A :
• qa(0) = qinita ,
• qa(tfinal) = qgoala ,
• qa(t) ∈ Qfree, ∀t ∈ [0, tfinal],
• and ∀b : ra + rb < d(a, b, t) < D, where

- D = dprox, if ∃(a, b) ∈ E of graph G,
- and D =∞ otherwise.

4. APPROACH

4.1 Velocity Obstacle Framework
Velocity obstacles are defined in the relative velocity space

of two agents. V O∞a|b can be geometrically constructed as
in Figure 3. Agent a’s geometry is reduced to a point by
performing the Minkowski sum of agent a and agent b: a⊕b.
Then, tangent lines to the Minkowski sum disk a ⊕ b are
constructed from agent a. These tangent lines bound a conic
region. This region represents the space of all velocities va
of agent a that would eventually lead into collisions with
agent b assuming that b has zero velocity. Given that agent
b has a velocity vb, the conic region needs to be translated
by the vector vb. This construction assumes an infinite time
horizon. In practice, it is often helpful to truncate the VO

based on a finite time horizon τ . This VO represents all
velocities va, which will lead into a collision within time
t ≤ τ , given that agent b keeps moving with velocity vb.

This work adopts a modification of the basic VO frame-
work, which deals with the case that the two agents are
reciprocating [27]. Reciprocal Velocity Obstacles (RVOs) are
created by translating the VO according to a weighted aver-
age of the agents’ velocities, (α · vA) + ((1−α) · vB) where α
is a parameter representing the level of reciprocity between
agents A and B. If both agents are equally reciprocal, then
α = 0.5.

Given this framework, an algorithm for calculating valid
velocities for decentralized collision avoidance can be de-
fined. Agent a will have a set of reachable velocities and
the task is to select one such velocity, which is collision-free.
For holonomic disk agents moving at constant speed s, the
set of reachable velocities would be Vreach = {v|‖v‖ = s}.
Let the set of velocities which are invalid according to all
the VOs for neighbors of a be defined as follows: Vinv =
{v| ∃ VOa|b s.t. v ∈ VOa|b, b ∈ A, a 6= b}. Then, the set of
feasible velocities which are reachable but not in the invalid
set is defined as Vfeas = Vreach \ Vinv. The selected veloc-

249

Figure 3: Construction of V O∞a|b for an infinite time
horizon. The Minkowski sum of a and b, a ⊕ b is
used to define a cone in velocity space, which is then
translated by vb. The shaded region represents all
velocities va, which lead a into collision with b.

Figure 4: Construction of LOCOτa|b and VVCτa|b. The cir-
cular region represents the viable velocities to main-
tain d(a, b, t) ≤ dprox for time horizon τ . The shaded
region outside the disk represents invalid velocities
for agent a.

ity should be feasible, v ∈ Vfeas, and typically minimizes a
metric relative to the preferred velocity vprefa , e.g., a velocity
vector that points to the goal. More details will be provided
regarding the specific velocity selection scheme used in this
work, in section 4.4.

4.2 Loss of Communication Obstacles
The proposed approach extends the VO framework by cre-

ating new obstacles in the velocity space. These obstacles
aim to prevent loss of communication, or more generally,
to satisfy proximity constraints between agents in the form
d(a, b, t) ≤ dprox for agents a and b for at least a finite time
horizon τ . The LOCO imposed by agent b on agent a for a
horizon τ , denoted as LOCOτa|b, is the set

LOCO
τ
a|b = {v| ∀ t ∈ [0, τ] : d(a, b, t) ≤ dprox},

under the assumption that agent b follows its current veloc-
ity vb for at least time τ .

Assume agents a, b ∈ A for which (a, b) ∈ E of the input
graph G. The relative position of agent b for agent a will be

denoted as qab = qb− qa. If the relative position at time t is
q(ab)(t), then at time t + τ the relative position of the two
agents is going to be:

qab(t+ τ) = q(ab)(t) + τ ∗ (Vb − Va).

For the two agents to be able to communicate at time t+ τ ,
it has to be that:

(qXab(t+ τ))2 + (qYab(t+ τ))2 ≤ d2prox ⇒

(qXab(t)+τ∗(V Xb −V Xa))2+(qYab(t)+τ∗(V Yb −V Ya))2 ≤ d2prox ⇒

(
qXab(t)

τ
+ V Xb − V Xa)2 + (

qYab(t)

τ
+ V Yb − V Ya)2 ≤ dprox

2

τ2
⇒

(V Xa −
qXab(t)

τ
− V Xb)2 + (V Ya −

qYab(t)

τ
− V Yb)2 ≤ (

dprox
τ

)2

The last expression implies that the velocity Va of agent a
has to be within a circle with center (qab

τ
+ Vb) and radius

dprox
τ

. This circle will be referred to as the valid velocity
circle (VVCτa|b) and is the complement of the LOCOτa|b. Figure
4 gives an example of a VVC circle.

An agent a, however, may have multiple neighbors leading
to the definition of multiple LOCOs and VVCs. A choice that is
made for simplicity is to consider the same time horizon τ for
the definition of all the LOCOs for all the neighbors. Then,
the set of velocities va that will not allow a to maintain
connectivity with at least one neighbor b in the graph G is
the union of individual LOCOs:

LOCO
τ
a =

⋃

∀b | ∃(a,b)∈E
LOCO

τ
a|b

There are two complications arising from this definition.
Firstly, it is not straightforward to compute the longest
horizon for which this union is not the entire plane, i.e.,
the longest horizon for which the intersection of VVCs is not
empty. The problem is that both the centers and the radii
of the VVCs are changing for different time horizons. Sec-
ondly, the resulting region is rather complex to describe,
as it corresponds to multiple circle intersections. This rep-
resentation can impose significant computational overhead
when the LOCOs are integrated with VOs.

Instead of computing the exact intersection of VVCs, this
paper proposes a conservative approximation that is easier
to represent and beneficial for computational purposes. The
approximation of the valid set of velocities corresponds to a
circle inside the intersection of VVCs. Figure 5 illustrates the
procedure for two and three neighbors. Given two circles
with centers Cb and Cc and radii rb and rc, the inscribed
circle of their intersection has the following radius and cen-
ter:

rbc =
rb + rc − ||Cb, Cc||

2

Cbc = Cb + (rb − rbc) Cc − Cb||Cb, Cc||
The procedure works in an incremental manner. First it
computes the inscribed circle (Cbc, rbc) of the intersection of
two VVCs, and then computes the inscribed circle of (Cbc, rbc)
with another VVC and so on.

250

Figure 5: The conservative approximation of VVCτa in
the velocity space of agent a for two (left) and three
(right) neighbors. The white circle corresponds to
velocities that are guaranteed to maintain connec-
tivity with the neighbors for time τ .

4.3 Integration of VOs and LOCOs
The final step for computing the LOCOτa is to select a suit-

able time horizon. A tuning approach over consecutive sim-
ulation steps is used. Given the horizon τ from the previous
time step, the LOCOτa is computed as in Figure 5. Then the
set Vvalid = Vreach \LOCOτa is computed, which considers the
reachable controls that do not violate the LOCO constraints.
This operation can be done in an efficient manner especially
for systems with constant speed s, as it corresponds to a cir-
cle to circle intersection. In the general case for systems with
varying velocity there are still computational advantages, as
the circular representation of the VVC greatly increases the
speed in which Vvalid can be computed. Once Vvalid is avail-
able for a given τ , the measure of |Vvalid| is compared against
a predefined threshold |Vthresh|. If |Vvalid| < |Vthresh|, then
τ is decreased and Vvalid is recomputed. A smaller τ implies
that a bigger set of valid velocities for proximity mainte-
nance will be returned that provides guarantees for a shorter
horizon. Alternatively, if |Vvalid| > |Vthresh|, then τ is in-
creased. This will return a smaller set of valid velocities
but will provide guarantees for a longer horizon. This tun-
ing process continues until Vvalid comes close to Vthresh, but
this takes place over multiple simulation steps and adapts
on the fly to changes in the relative configuration of agents.
The effects of tuning τ can be seen in Figure 6.

Once LOCOτa has been computed, it must then be included
in the list of constraints in order to correctly compute Vfeas,
which is now redefined to be Vfeas = Vvalid \ Vinv, as in
Figure 6. Sometimes, the additional constraints imposed
by LOCOs, cause Vfeas to become empty. In this situation,
the LOCO constraints are ignored, as attempting to maintain
communication may be perilous to the agent’s safety.

4.4 Velocity Selection
Each agent has a preferred velocity it would like to fol-

low, denoted as vprefa for agent a. Ignoring the proximity
constraints and in obstacle-free environment, the preferred
velocity should be in the direction of the goal configuration
vgoal = qgoala − qa. If there are obstacles, however, setting
the goal velocity in the same manner can lead the agents
into local minima, causing the agent to become stuck be-
hind the obstacle. This work avoids this issue by computing
a discrete wave-front function in environments with obsta-
cles. The goal velocity is computed as the direction to the

Figure 6: An example of how changing the horizon
affects the set of feasible controls. The left image has
a larger value for τ while the right has a smaller value
of τ . Larger values of τ provide stronger guarantees
for communication maintenance, but make finding a
feasible control more difficult.

cell with the minimum distance to the goal within a 3 × 3
region from the current cell of the agent.

In order to account for agents violating proximity con-
straints, a weighted velocity selection scheme is employed
that takes neighbors into account. For some agent a, let di
be the distance from agent a to another agent i and Xi be
the state of agent i, where agent i is part of the proxim-
ity graph of agent a. Then, for n agents in the proximity
graph of agent a, the average weighted configuration can be
computed as:

qavg =

∑n
i

di
dprox

qi
∑n
i

di
dprox

Then, davg = ||qa − qavg|| is the distance between agent a
and qavg. Let vavg = qavg − qa be the vector pointing to
qavg, and let vgoal be the vector towards the goal computed
through the wavefront. Then, agent a’s preferred velocity is
computed as follows:

vprefa =
davg
dprox

vavg +
dprox − davg

dprox
vgoal

Thus, agents which are farther away from their proximity
constraints (i.e., have violated constraints) will be inclined to
shorten this distance, whereas agents that have not violated
any proximity constraints move towards their goals.

Once vprefa is computed, it can be checked for validity
given the set Vfeas. If vprefa is feasible, then agent a will
use it. In the case that vprefa is not in Vfeas, a different
feasible control must be computed. In the general case, the
region Vfeas defines an area in velocity space which must be
searched to find a control. The control found is the velocity
v ∈ V afeas which minimizes distance between v and vprefa .

The distance metric used in this approach is the Euclidean
distance in the velocity space. Other metrics for finding the
distance between velocities in this space are possible [28]. A
list of intersections of the boundaries of the RVOs with V areach
is generated and a rotational sweep algorithm determines
which points are valid. These points define the boundaries
of the V afeas regions. They are checked to find which one
of them minimizes the distance to the preferred velocity :

251

Figure 7: The environments on which the experiments were executed

Figure 8: Examples of input proximity graphs used
in the experiments.

minv∈V a
feas

[d(v, vprefa)]. In the general case, V afeas will be a

non-convex region or possibly disjoint non-convex regions in
the velocity space where a variant of the simplex algorithm
can be used to find the optimum.

In the event that there is no valid velocity available, the
agent will select its current velocity. The reasoning behind
this is that in the V O framework, agents assume that their
neighbors will keep using their current control. Thus, choices
that keep the current control are preferable for this scheme.

5. RESULTS
The approach was implemented using a simulation soft-

ware platform. Experiments were run on computers with a
3.06 GHz Intel Core 2 Duo processor and 4GB of RAM. The
experiments are organized in the following manner. First,
experiments were conducted using a single team of agents
moving in an environment with obstacles. Then, experi-
ments with multiple teams were run both in an obstacle-
free world and in an environment with obstacles. A team
of agents corresponds to a connected component of the in-
put graph G. The experiments conducted compare the LOCO

formulation against RVOs. The reason for comparing against
RVOs, rather than other formation techniques, is due to the
decentralized nature of the LOCO algorithm, which requires
no additional information outside the VO framework. In ad-
dition, LOCOs utilize the notion of coherence, which is more
abstract in nature than formations. Thus, RVOs are the most
relevant technique to experiment against. Each experiment

was measured with regards to the following metrics:
• total number of collisions during the entire experiment,
• computation time per frame,
• total time to solve the problem,
• average ratio of respected proximity links per frame,
• and number of successful runs.

For each variation of the environment, input graph G and
algorithm, there were 10 runs executed. Each run had a ran-
dom initial qinit and goal configuration qgoal, which, satisfied
the proximity link in the graph G.

5.1 Single Team
For the single team scenarios, two different environments

were tested with varying numbers of agents. The PACHINKO

environment uses a series of walls with small gaps (Figure
7(left)), and a team of 10 agents was considered in this case.
The proximity graph imposed on the team is shown in Figure
8(top left). The WEDGE environment (Figure 7(middle left))
attempts to split the agents into two lanes. The proximity
graph imposed on the team is shown in Figure 8(top right).

Table 1: Results for a single team.

Figure 9: Coherence over time for 24 agents in the
wedge grid experiment.

252

Table 1 shows that there is a significant improvement in
terms of the percentage of links maintained by the LOCO-
based approach relative to RVOs. Another interesting statis-
tic to examine is the coherence of agents over time, shown
in Figure 9, which the LOCO-based approach also improves.
This comes at the cost of a slightly increased computational
cost and increased time taken by the algorithm to bring all
of the agents to their goals. An example of the paths taken
by 24 agents in the PACHINKO environment is shown in Figure
10. Both approaches were able to solve all of the problems
and without any collision, with the exception of one experi-
ment for the WEDGE environment, where a single collision was
reported.

Figure 10: An example of the paths taken by 24
agents in the PACHINKO environment for the RVO (left)
and LOCO (right) approach.

5.2 Multiple Teams
The performance of LOCOs was evaluated against RVOs in

a scenario involving four teams of agents navigating in an
obstacle-free environment as shown in Figure 7(middle right)
(CROSSROADS) and for the connectivity graph for each team
shown in Figure 8(bottom left). There were four agents
in each team. The last setup involved again four teams
of agents, each one of which had six agents connected as in
Figure 8(bottom right). This time the environment involved
a random set of rectangular obstacles as in Figure 7(right).
For each of the 10 runs the rectangles were randomly placed.
The results are shown in Table 2.

In both the random and crossroads examples, LOCOs out-
perform RVOs as far as connections are concerned, though
oftentimes LOCOs take more time to solve the specified prob-
lem. On different problems, both approaches can take some
extra time to complete the problem for two different rea-
sons. The VOs take extra time as agents will sometimes get
caught on obstacles or are pushed away from their goals by
agents on other teams. LOCOs may take extra time as they
spend effort navigating agents in densely-packed situations
that occur at the center of the environment as they cross
over. Furthermore, LOCOs exhibit a flocking behavior which
sometimes causes agents to overshoot their goals.

Table 2: Results for multiple teams.

In the random obstacle environment, LOCOs imposed a
very small computational overhead. The crossroads scenario
resulted in a more significant increase, because all agents
meet in the center of the environment nearly at the same
point in time. This increases computational cost, as LOCOs
must tune their horizon and reconnect broken proximities
more frequently. In both environments, LOCOs and RVOs re-
sulted in no collisions, with the exception of one run of RVOs
in the random environment. The main focus of these re-
sults, however, is the improvement in maintained links. The
LOCO-based approach maintained 95% of the proximity links,
which was an improvement over RVOs. LOCOs cause a small
degradation in path quality, which is measured in the num-
ber of steps it took for agents to solve the environment. In
addition to this, LOCO failed to solve one of the randomly
generated environments, because agents tend to spread to
the edge of their proximity constraints, which may cause
problems when agents move around obstacles. Overall, the
results seem to validate the initial approach, as the goal of
LOCOs is to maintain safety while providing better proximity
maintenance is experimentally supported.

6. DISCUSSION
This work provides the formal definition for a new kind of

obstacle in the velocity space of moving agents, referred to as
a Loss of Communication Obstacle (LOCO), which correspond
to proximity constraints with neighboring agents. These
obstacles can be easily computed and integrated into the
existing framework of Velocity Obstacles for decentralized
collision avoidance. Additionally, an approach for tuning
the time horizon parameter for these obstacles over multiple
simulation steps is provided. These additional constraints
increase the overall coherence of teams of agents while navi-
gating through environments with static obstacles and other
moving bodies. LOCOs can be dropped if it is determined that
it is too difficult to maintain proximity without jeopardizing
safety. The implementation of the technique shows improved
coherence for agents who share communication links without
sacrificing safety at a small computational overhead.

A natural extension is to consider more challenging sys-
tems, including kinematically and dynamically constrained
systems. Adapting LOCOs to work in these cases is possible,
as there have already been extensions on using VOs with
dynamics. Since these extensions are in an orthogonal di-
rection to the LOCO algorithm, it is easy so as to achieve
decentralized coherence maintenance for dynamic systems.
Further extending the work to applications of real robots will
require introducing a method for handling sensor errors, as
well creating a more robust reconnection strategy built on
this error model. One drawback of reactive techniques is
that they may get stuck in local minima. It is interesting to
better study the integration with the wavefront approach or
another global planner so as to guarantee that agents will
make progress towards their goal while guaranteeing safety
and connectivity. A global planner can also improve the
performance of the reconnection strategy. Currently, the di-
rection to the agent with which connectivity has been lost
ignores the existence of local obstacles. Another interesting
direction is to study reciprocity tuning. More constrained
agents, such as those who create a bridge for two otherwise
disconnected agents, may be less able to reciprocate than
others. Further reducing the computational overhead of the
technique would also have great benefits, since larger-scale

253

tests could be performed and have practical application ar-
eas, as in crowd simulation and video games.

7. REFERENCES
[1] Balch, T. and Hybinette, M. Social potentials for

scalable multi-robot formations. In Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, volume 1, pages 73–80,
2000.

[2] T. D. Barfoot and C. M. Clark. Motion planning for
formations of mobile robots. Journal of Robotics and
Autonomous Systems, 46(2), Feb. 2004.

[3] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki. Safe
and distributed kinodynamic replanning for vehicular
networks. Mobile Networks and Applications, 14(3),
February 2009.

[4] M. Bennewitz, W. Burgard, and S. Thrun. Finding
and Optimizing Solvable Priority Schemes for
Decoupled Path Planning Techniques for Teams of
Mobile Robots. Robotics and Autonomous Systems,
41(2):89–99, 2002.

[5] C. M. Clark, S. M. Rock, and J.-C. Latombe. Motion
Planning for Multiple Robots using Dynamic
Networks. In IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 4222–4227, 2003.

[6] M. Erdmann and T. Lozano-Perez. On multiple
moving objects. In IEEE Intern. Conference on
Robotics and Automation (ICRA), pages 1419–1424,
1986.

[7] R. Fierro, C. Belta, J. Desai, and V. Kumar. On
controlling aircraft formations. In Decision and
Control, 2001. Proceedings of the 40th IEEE
Conference on, volume 2, pages 1065 –1070 vol.2,
2001.

[8] P. Fiorini and Z. Shiller. Motion planning in dynamic
environments using velocity obstacles. Int. Journal of
Robotics Research, 17(7), 1998.

[9] D. Fox, W. Burgard, and S. Thrun. The dynamic
window approach to collision avoidance. IEEE
Robotics and Automation Magazine, 4(1), 1997.

[10] D. Helbing, L. Buzna, A. Johansson, and T. Werner.
Self-organized pedestrian crowd dynamics:
Experiments, simulations and design solutions.
Transportation Science, 2005.

[11] F. Large, C. Laugier, and Z. Shiller. Navigation
among moving obstacles using the NLVO: Principles
and applications to intelligent vehicles. Autonomous
Robots, 19(2), 2005.

[12] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, MA, 1991.

[13] S. M. LaValle. Planning Algorithms. Cambridge, 2006.

[14] M. A. Lewis and K.-H. Tan. High precision formation
control of mobile robots using virtual structures.
Auton. Robots, 4:387–403, October 1997.

[15] J. M. Lien, S. Rodriguez, J. P. Malric, and N. Amato.
Shepherding behaviors with multiple shepherds. In
Intern. Conf. on Robotic and Automation, 2005.

[16] S. Paris, J. Pettre, and S. Donikian. Pedestrian
reactive navigation for crowd simulation: A predictive
approach. Computer Graphics Forum, September
2007.

[17] N. Pelechano, J. Allbeck, and N. Badler. Controlling
individual agents in high-density crowd simulation. In
ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA), volume 3, pages 99–108,
San Diego, CA, 2007.

[18] N. Pelechano, J. Allbeck, and N. Badler. Virtual
Crowds: Methods, Simulation and Control. Morgan
and Claypool Publishers, 2008.

[19] J. Pettre, J. Ondrej, A.-H. Olivier, A. Cretual, and
S. Donikian. Experiment-based modeling, simulation
and validation of interactions between virtual walkers.
In Symposium on Computer Animation. ACM, 2009.

[20] C. W. Reynolds. Steering behaviors for autonomous
characters. In Proc. of the Game Developers
Conference (GDC), pages 763–782, San Jose, CA,
1999.

[21] D. Silver. Cooperative pathfinding. In The 1st
Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’05), pages 23–28, 2005.

[22] J. Snape, S. J. Guy, J. van den Berg, S. Curtis,
S. Patil, M. C. Lin, and D. Manocha. Independent
navigation of multiple robots and virtual agents. In
Proc. of the 9th Int. Conf. on Autonomous Agents and
Multiagents Systems (AAMAS 2010), Toronto,
Canada, May 2010.

[23] J. Snape and D. Manocha. Navigating multiple
simple-airplanes in 3d workspace. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA),
May 2010.

[24] N. Sturtevant and M. Buro. Improving collaborative
pathfinding using map abstraction. In The Second
Artificial Intelligence for Interactive Digital
Entertainment Conference (AIIDE’06), pages 80–85,
2006.

[25] D. Thalmann. Populating virtual environments with
crowds. In Int. Conf. on Virtual Reality Continuum
and Its Applications. ACM, 2006.

[26] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha.
Reciprocal n-body collision avoidance. In Proc. Int.
Symposium of Robotics Research. International
Foundation on Robotics Research, aug. 2009.

[27] J. Van den Berg, M. Lin, and D. Manocha. Reciprocal
velocity obstacles for real-time multi-agent navigation.
In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2008.

[28] J. Van den Berg, J. Snape, S. Guy, and D. Manocha.
Reciprocal Collision Avoidance with
Acceleration-Velocity Obstacles. In IEEE Int. Conf.
on Robotics and Automation (ICRA), May 2011.

[29] C. Vo, J. F. Harrisong, and J. M. Lien. Behavior-based
motion planning for group control. In Intern. Conf. on
Intelligent Robots and Systems, St. Louis, Mo, 2009.

[30] K.-H. C. Wang and A. Botea. Fast and
memory-efficient multi-agent pathfinding. In
International Conference on Automated Planning and
Scheduling (ICAPS), pages 380–387, Sydney,
Australia, 2008.

254

Session 2B
Distributed Problem Solving

Stochastic Dominance in Stochastic DCOPs
for Risk-Sensitive Applications

Duc Thien Nguyen
School of Information Systems

Singapore Management University
Singapore 178902

dtnguyen@smu.edu.sg

William Yeoh
School of Information Systems

Singapore Management University
Singapore 178902

williamyeoh@smu.edu.sg

Hoong Chuin Lau
School of Information Systems

Singapore Management University
Singapore 178902

hclau@smu.edu.sg

ABSTRACT
Distributed constraint optimization problems (DCOPs) are
well-suited for modeling multi-agent coordination problems
where the primary interactions are between local subsets of
agents. However, one limitation of DCOPs is the assumption
that the constraint rewards are without uncertainty. Re-
searchers have thus extended DCOPs to Stochastic DCOPs
(SDCOPs), where rewards are sampled from known prob-
ability distribution reward functions, and introduced algo-
rithms to find solutions with the largest expected reward.
Unfortunately, such a solution might be very risky, that is,
very likely to result in a poor reward. Thus, in this pa-
per, we make three contributions: (1) we propose a stricter
objective for SDCOPs, namely to find a solution with the
most stochastically dominating probability distribution re-
ward function; (2) we introduce an algorithm to find such
solutions; and (3) we show that stochastically dominating
solutions can indeed be less risky than expected reward max-
imizing solutions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

General Terms
Algorithms, Experimentation

Keywords
DCOP, DPOP, Uncertainty, Stochastic Dominance

1. INTRODUCTION
Distributed constraint optimization problems (DCOPs)

are problems where agents need to coordinate their value
assignments to maximize the sum of the resulting constraint
rewards. They are well-suited for modeling multi-agent co-
ordination problems where the primary interactions are be-
tween local subsets of agents, such as the scheduling of meet-
ings [15], the coordination of sensors in networks [5, 14], the
coordination of first responders in disasters [11], the man-
agement of power plant networks [10] and the generation of
coalition structures [24].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the limitations of DCOPs is that they only model
problems with (constraint) rewards that are both known a
priori and without uncertainty. Thus, researchers have intro-
duced various DCOP extensions to address this limitation.
One example is the Distributed Coordination of Exploita-
tion and Exploration (DCEE) model [8, 23], where agents
initially do not know the constraint rewards and can only
discover them through exploration. The agents in a DCEE
problem coordinate to balance exploration and exploitation
such that they accumulate the maximum amount of reward
over a finite time horizon. Another example is the DCOP
under Stochastic Uncertainty model [12], where there are
random variables that take on values according to known
probability distribution functions. The values of these ran-
dom variables affect the overall reward. Finally, researchers
have introduced a Stochastic DCOP (SDCOP) model where
the constraint rewards are no longer deterministic values
but are sampled from known probability distribution func-
tions called reward functions [1]. Agents in these latter two
problems coordinate to maximize the expected reward of the
overall solution.

Finding a solution that maximizes the expected reward in
an SDCOP can be done in a straightforward manner if the
means of the probability distribution functions are known.
Since the sum of the expected reward of two functions equals
the expected reward of the convolution of the two functions
according to the linearity of expectations, one can map an
SDCOP to a DCOP by mapping the reward function in an
SDCOP to the mean of that function in a DCOP. One can
then use existing DCOP algorithms to solve the problem.

Our concern with the approach above is that a solution
with the maximum expected reward might be very risky,
that is, very likely to result in a poor reward, particularly in
high variance environments. As an example, one might pre-
fer to have a solution whose overall reward function follows a
unimodal distribution rather than a bimodal distribution es-
pecially if the expected reward of the unimodal distribution
is only slightly smaller than that of the bimodal distribution.
Thus, in this paper, we propose a stricter objective for SD-
COPs, namely to find a solution with the most stochastically
dominating probability distribution function of the reward
of the solution [6]. Intuitively, a stochastically dominating
function is less risky than the dominated function.

We also introduce Stochastic Dominance DPOP (SD-
DPOP), an extension of DPOP [18], to solve SDCOPs. Our
results show that stochastic dominating solutions found by
SD-DPOP are less risky compared to expected reward maxi-
mizing solutions found by DPOP for common risk functions.

257

Figure 1: Illustration of Mobile Agents

2. MOTIVATING DOMAIN
First responders in an earthquake hit area or soldiers in

the battlefield might need to deploy mobile agents to cre-
ate a mesh of communication network to coordinate their
actions [16]. Therefore, we motivate our work in this paper
with the problem of maximizing the signal strengths be-
tween neighboring mobile agents in a network [8]. Figure 1
shows an illustration of three mobile agents, whose positions
are represented by triangles. Straight dotted lines connect
neighboring agents. Each mobile agent can choose to be in
one of three possible nearby locations, which are denoted by
circular dotted lines. We assume that the mobile agents can
only move within a small range from their starting locations
and the topology of the network thus remains unchanged.
The signal strength between two neighboring agents depends
on their locations. For example, the further their distance,
the weaker the signal strength. The small movements of the
mobile agents can affect the signal strength significantly due
to radio interference. However, the signal strength between
a pair of neighboring agents can be modeled as an inde-
pendent random number drawn from some distribution [9].
In this paper, we will use Gaussian functions to model the
signal strengths. The objective in this problem is for the
agents to coordinate their choice of locations such that the
sum of the signal strength between every pair of neighbor-
ing agents is maximized. We use these two domains as our
motivating domains because they are examples that call for
one to be risk-averse. In both domains, losing the ability to
communicate can result in the loss of lives.

3. BACKGROUND
In this section, we provide a brief description of the DCOP

and Stochastic DCOP model as well as the DPOP algorithm.

3.1 DCOPs
A distributed constraint optimization problem

(DCOP) [17, 18] is defined as a tuple 〈A,X,D, F 〉.
A = {ai}n0 is the finite set of agents. X = {xi}n0 is the set of
variables, where xi is owned by agent ai. D = {di}n0 is the
set of finite domains, where domain di is the set of possible
values for agent ai ∈ A. F = {fi}m0 is the set of binary
constraints, where each constraint fi : di1 × di2 → R+ ∪ {0}
specifies its non-negative reward as a function of the values
of the two different variables xi1 , xi2 ∈ X that share the
constraint. Although the general DCOP definition allows
one agent to own multiple variables as well as the existence
of n-ary constraints, we restrict our definition here for sim-

a1

a3

a2

a1

a3

a2

for i < j

xi xj Rewards Reward Functions
0 0 5 N (5, 1)
0 1 8 N (8, 1)
1 0 20 N (20, 1)
1 1 3 N (3, 1)

(a) (b) (c)

Figure 2: Example DCOP

plification purposes. One can transform a general DCOP to
our DCOP using pre-processing techniques [2]. A solution
is a value assignment for a subset of variables. Its reward is
the sum of the constraint rewards of all constraints shared
by variables with assigned values. A solution is complete
iff it is a value assignment for all variables. Solving a
DCOP optimally means finding a reward-maximal complete
solution.

DCOPs are commonly visualized as constraint graphs,
whose vertices are the agents and whose edges are the
constraints. Most complete DCOP algorithms operate on
pseudo-trees, which are spanning trees of fully connected
constraint graphs such that no two vertices in different sub-
trees of the spanning tree are connected by an edge in the
constraint graph. Figure 2(a) shows the constraint graph of
an example DCOP with three agents controlling variables
that can each be assigned the values 0 or 1, Figure 2(b)
shows one possible pseudo-tree (the dotted line is called a
backedge, which is an edge of the constraint graph that does
not connect a pair of parent-child nodes), and the third col-
umn in Figure 2(c) shows the constraint rewards. We will
use this problem as a running example in this paper.

3.2 Stochastic DCOPs
Stochastic DCOPs (SDCOPs) are extensions of DCOPs

where each constraint fi : di1×di2 → P (xi1 , xi2) now speci-
fies a (potentially discretized) probability distribution func-
tion of the reward as a function of the values of the two
different variables xi1 , xi2 ∈ X that share the constraint [1].
We call these functions reward functions in this paper. For
example, the fourth column in Figure 2(c) shows the Gaus-
sian reward functions for the different pairs of values. We
assume that the reward functions are all independent of each
other. Solving an SDCOP optimally means finding a com-
plete solution X∗ that maximizes the expected sum of all
rewards:

X∗ = arg max
X∈d1×d2×···×dn

{
E
[∑

i

fi(xi1 , xi2 | xij ∈ X)
]}

(1)

One can solve for the this objective in a straightforward
manner if the mean of each reward function is known. Solv-
ing an SDCOP optimally is then equivalent to solving a
regular DCOP optimally, where the rewards of a constraint
are the means of the respective reward functions specified
by that constraint.

3.3 DPOP
Distributed Pseudo-tree Optimization Procedure

(DPOP) [18] is a complete DCOP algorithm that can
be viewed as a distributed version of the Bucket Elimina-
tion algorithm [3]. There are three phases in the operation
of DPOP:

258

x1 x2 Rewards
0 0 max(5+ 5, 8+8) = 16
0 1 max(5+20, 8+3) = 25
1 0 max(20+ 5, 3+8) = 25
1 1 max(20+20, 3+3) = 40

(a)

x1 Rewards
0 max(5+16, 8+25) = 33
1 max(20+25, 3+40) = 45

(b)

Table 1: UTIL Phase Computations in DPOP

(1) The first phase is the pseudo-tree generation phase,
where DPOP calls existing distributed pseudo-tree con-
struction algorithms like Distributed DFS [7] as a sub-
routine to construct its pseudo-tree.

(2) The second phase is the UTIL phase, where each agent,
starting from the leafs of the pseudo-tree, computes the
optimal sum of rewards in its subtree for each value
combination of its ancestor agents. The agent does so
by summing the rewards in the UTIL messages received
from its child agents and projects out its own variable
by optimizing over it. In our example problem, agent
a3 computes the optimal reward for each value combi-
nation of variables x1 and x2 as shown in Table 1(a)
and sends the rewards to its parent agent a2 in a UTIL
message. Agent a2 then computes the optimal reward
for each value of variable x1 as shown in Table 1(b)
and sends the rewards to its parent agent a2 in a UTIL
message.

(3) The third phase is the VALUE phase, where each agent,
starting from the root of the pseudo-tree, determines
the optimal value for its variable. The root agent does
so using the UTIL messages received in the second
phase. In our example problem, agent a1 determines
from the UTIL message from agent a2 that the value
with the largest reward for its variable is 1 with a re-
ward of 45. It then sends this information down to its
child agent a2 in a VALUE message. Upon receiving
the VALUE message from its parent agent, agent a2
determines that the value with the largest reward for
its variable assuming that x1 = 1 is 0 with a reward
of 45. It then sends this information down to its child
agent a3 in a VALUE message. Finally, upon receiving
the VALUE messages from its parent agent, agent a3
determines that the value with the largest reward for
its variable assuming that x1 = 1 and x2 = 0 is 0 with
a reward of 25.

4. STOCHASTIC DOMINANCE
Although finding a solution that maximizes the expected

reward in an SDCOP is a reasonable and intuitive objec-
tive, it fails to characterize “risk” very well. To illustrate
this, Figure 3 shows two probability distribution functions,
where the expected reward of the unimodal distribution is
slightly smaller than that of the bimodal distribution but
the variance is also smaller. Hence if the problem domain
requires a decision maker to be risk-averse, then one might
prefer the unimodal distribution over the bimodal one. In
general, it is well-known (particularly in financial domains)
that maximizing utility without considering risk does not
yield good solutions in risky environments.

To incorporate the notion of risk, we propose a new
(stricter) goal for SDCOPs, namely, our aim is to find a com-
plete solution with the most stochastically dominating [6]

P
(R

e
w

a
rd

)

Reward

Figure 3: Unimodal and Bimodal Distributions

overall reward function. Intuitively, a stochastically domi-
nating function is less risky than any dominated function.
In this paper, we will use the second-order stochastic domi-
nance criteria [13] as the dominance criteria.

Let f1+2+...+m(X) denote the overall reward function for a
complete solution X, which is the convolution of the individ-
ual reward functions fi(xi1 , xi2 | xij ∈ X) over all i ∈ [0,m].

And let FXk (t) =
∫ t
−∞ f1+2+...+m(Xk)(t) dt denote the cor-

responding cumulative distribution function. We say that a
solution X1 dominates (written ≺) another solution X2 iff:

∫ x

−∞
FX1(t)− FX2(t) dt ≤ 0 (2)

for all values of x.
Our goal is hence to find a complete solution X∗ with the

most stochastically dominating overall reward function, i.e.:

f1+2+...+m(X∗) ⊀ f1+2+...+m(X) (3)

Notice however that there may exist functions that do not
dominate each other. As such, there can be a number of
pareto-optimal solutions, where a pareto-optimal solution is
a solution that is not dominated by any other solutions in
the set.

Unfortunately, the agents in SDCOPs cannot compare the
dominance of overall reward functions without transmitting
the individual functions to a centralized agent. Therefore,
we compute the dominance of the individual reward func-
tions and find a complete solution X∗ such that

∀i : fi(x
∗
i1 , x

∗
i2 | x

∗
ij ∈ X

∗) ⊀ fi(xi1 , xi2 | xij ∈ X) (4)

which implies Equation (3) according to Theorem 1, which
we will prove in Section 5.4.

Moreover, it is guaranteed that for any arbitrary risk func-
tion, the optimal solution (i.e. the solution that maximizes
the expected reward for that risk function) is a pareto-
optimal solution [13]. Thus, finding the pareto set is useful
in applications where the risk-averse function is not known
a priori and users want to hedge against all possible risk
functions. And once the risk function is known, we can find
the optimal solution by evaluating only the pareto-optimal
solutions (rather than all possible solutions).

5. SD-DPOP
We now introduce Stochastic Dominance DPOP (SD-

DPOP), an extension of DPOP, to solve SDCOPs. The
objective of SD-DPOP is to find the set of pareto-optimal
solutions (when the risk function is not known a priori) and

259

x1 x2 Reward Functions
0 0 dom(N (5+ 5, 1+1), N (8+8, 1+1)) = N (16, 2)
0 1 dom(N (5+20, 1+1), N (8+3, 1+1)) = N (25, 2)
1 0 dom(N (20+ 5, 1+1), N (3+8, 1+1)) = N (25, 2)
1 1 dom(N (20+20, 1+1), N (3+3, 1+1)) = N (40, 2)

(a)

x1 Reward Functions
0 dom(N (5+16, 1+2), N (8+25, 1+2)) = N (33, 3)
1 dom(N (20+25, 1+2), N (3+40, 1+2)) = N (45, 3)

(b)

Table 2: UTIL Phase Computations in SD-DPOP

Algorithm 1: SD-DPOP

/* Phase 1: Pseudo-tree Generation Phase */

1 Generate pseudo-tree

/* Phase 2: UTIL Phase */

2 if xi is a leaf node then
3 UTILxi ← CalcUtils();
4 Send UTIL message (UTILxi) to parent

5 end
6 Activate UTILMessageHandler()

/* Phase 3: VALUE Phase */

7 Activate VALUEMessageHandler()

Procedure UTILMessageHandler(UTILxk)

8 Store UTILxk
9 if received UTILmessage from every child then

10 if xi is a root node then
11 v∗i ← ChooseBestV alue(NULL)
12 VALUExi ← {(xi, v∗i)}
13 Send VALUE message (VALUExi) to every child

14 else
15 UTILxi ← CalcUtils()
16 Send UTIL message (UTILxi) to parent

17 end

18 end

then find an optimal solution for the risk function (once
the function is known). It finds the set of pareto-optimal
solutions using stochastic dominance. It finds an optimal
solution by evaluating the set of pareto-optimal solutions.

At a high level, SD-DPOP is similar to DPOP except that
the agents convolve the reward functions instead of sum the
rewards, choose values with the dominating convolved re-
ward function instead of values with the maximum reward,
and potentially find multiple pareto-optimal solutions in-
stead of one reward maximizing solution.

5.1 High Level Description
Algorithm 1 shows the pseudo-code of a simplified ver-

sion of SD-DPOP, where we assume that there is only one
stochastically dominating solution to ease readability.1 Like
DPOP, there are also three phases in the operation of SD-
DPOP. The first phase [Line 01] is identical to that of DPOP.
The second phase [Lines 2-6] is similar to that of DPOP ex-
cept for three differences:

1One can easily extend this simplified version to find mul-
tiple pareto optimal solutions by having each agent send in
its UTIL message a vector of reward functions in its pareto
set, and (b) send in its VALUE message a vector of values
corresponding to its value for each reward function in its
pareto set.

Procedure VALUEMessageHandler(VALUExk)

19 VALUExi ← VALUExk
20 v∗i ← ChooseBestV alue(VALUExi)
21 VALUExi ← VALUExi ∪ {(xi, v∗i)}
22 Send VALUE message (VALUExi) to every child

Function CalcUtils()

23 UTILxi ← Reward functions for all value combinations
of xi, its parent and pseudo-parents

24 UTILxi ← Join(UTILxi ,UTILxc) for all children xc
25 UTILxi ← Project(xi,UTILxi)
26 Return UTILxi

(1) The function Join() [Line 24] joins all constraints in-
volving xi by setting the reward function for each value
combination in the joined constraint to the convolu-
tion of the individual reward functions. In DPOP, the
reward for each value combination is the sum of the
individual rewards. In our example problem, agent
a3 convolves g13 = f13(x1 = 0, x3 = 0) and g23 =
f23(x2 = 0, x3 = 0) to determine the reward function
when x1 = 0, x2 = 0 and x3 = 0:

∫ ∞

−∞
g13(s)g23(t− s) ds = (g13 ∗ g23)(t)

= N (5, 1) ∗ N (5, 1)

= N (5 + 5, 1 + 1)

= N (10, 2)

(2) The function Project() [Line 25] projects the joined con-
straint down on xi by setting the reward function for
each value combination in the projected constraint to
the stochastically dominating reward function between
all corresponding functions in the pre-projected con-
straints. In DPOP, the reward for each value combi-
nation is maximum over all corresponding rewards in
the pre-projected constraints. In our example problem,
agent a3 sets the reward function for x1 = 0, x2 = 0
to the stochastically dominating reward functions be-
tween the functions for x1 = 0, x2 = 0, x3 = 0 (which is
N (5 + 5, 1 + 1) = N (10, 2)) and x1 = 0, x2 = 0, x3 = 1
(which is N (8 + 8, 1 + 1) = N (16, 2)). Tables 2(a)
and 2(b) show the Project() computations of agent a3
and a2, respectively, where the function dom() returns
the stochastically dominating solution.

(3) The agents send the projected convolved reward func-
tions instead of the maximum summed rewards to their
parent agents in UTIL messages.

Thus, by the end of the second phase, the root agent knows

260

the overall reward function of each pareto-optimal solution.
Once the risk function is known, the root agent evaluates
the overall reward function of each pareto-optimal solution
to find an optimal solution for the given risk function. It
then starts the third phase.

The third phase [Line 7] is similar to that of DPOP ex-
cept that the function ChooseBestValue() [Lines 11 and 20]
returns the value of the optimal solution. In DPOP, the
function returns the value with the maximum reward. In
our example problem, there is only one pareto-optimal solu-
tion and, thus, that solution is also the optimal solution for
any given risk function. Agent a1 thus chooses its optimal
value 1 for its variable and sends this information down to
its child agent a2 in a VALUE message.2 Upon receiving the
VALUE message from its parent agent, agent a2 determines
that the optimal value for its variable assuming that x1 = 1
is 0. Finally, upon receiving the VALUE messages from its
parent agent, agent a3 determines that the optimal value for
its variable assuming that x1 = 1 and x2 = 0 is 0.

5.2 Implementation Details
We now describe how one implement the convolution and

stochastic dominance determination of continuous and dis-
crete reward functions:

Case 1: The reward functions are continuous. One can
use the conv() and int() functions in Matlab to con-
volve two functions and compute integrals to check for
stochastic dominance, respectively. However, if the re-
ward functions are Gaussian functions, one can more ef-
ficiently convolve two functions – N (µ1 +µ2, σ

2
1 + σ2

2) =
N (µ1, σ

2
1) ∗ N (µ2, σ

2
2) – and check the stochastic dom-

inance of two functions – N (µ1, σ
2
1) � N (µ2, σ

2
2) if

µ1 ≥ µ2 and σ1 ≤ σ2 with at least either one being a
strict inequality. Lastly, instead of checking all pairs of
functions for stochastic dominance, one can also opti-
mize this check by using the property that if fi � fj and
fj � fk, then fi � fk.

Case 2: The reward functions are discrete and are repre-
sented by samples in discretized bins. To convolve two
reward functions, one can create a new sample whose
value is the sum of a pair of samples, one from each
reward function, for all possible pairs of samples. The
new samples represent the convolved reward function.
However, such a method does not scale up well with
the number of samples since the number of operations
is quadratic in the number of samples. We thus de-
scribe an optimized method whose number of operations
is quadratic in the number of bins. Algorithm 2 shows
the pseudocode, where function Sample(k, fi(j)) returns
the k-th sample in the j-th bin of function fi and njfi
is the number of samples in that bin. We now associate
a probability P (x) with each sample x, which we use to
compute the probability P (fi(j)) and mean µ(fi(j)) of
each bin j of each function fi [Lines 1-4], which we use
to create new samples [Lines 5-11]. One can further opti-

2In the more complicated case where there might be mul-
tiple pareto-optimal solutions, each agent stores all the re-
ward functions sent by its child agents and sends back the
reward function corresponding to the optimal solution down
to its child agents in VALUE messages. To reduce mem-
ory and message complexity, the agents can store and send
hash functions of the reward functions instead of the actual
reward functions.

Algorithm 2: Convolve(f1, f2)

1 foreach function fi and bin j do

2 P (fi(j))←
∑n

j
fi
k=1 P (Sample(k, fi(j))

3 µ(fi(j))←
∑n

j
fi
k=1 P (Sample(k, fi(j)) · Sample(k, fi(j))

P (fi(j))

4 end
5 foreach bin i of function f1 do
6 foreach bin j of function f2 do
7 Create a new sample x← µ(f1(i)) + µ(f2(j))
8 P (x)← P (f1(i)) · P (f2(j))
9 Place x in the appropriate bin of the convolved

function
10 end

11 end

mize the algorithm by ignoring empty bins and merging
neighboring bins if the probability of one of the bin is
less than a threshold.

To determine the stochastic dominance of two reward
functions f1 and f2, one first computes the cumulative
distribution function Fi(t) =

∑t
k=1 fi(k) of each reward

function fi. One then checks whether the following con-
dition hold for all values of x:

∑
t≤x F1(t)−F2(t) ≥ 0. If

so, then the reward function f1 stochastically dominates
f2.

5.3 Complexity Analysis
In DPOP, VALUE messages contain only the value of the

sending agent and UTIL messages contain a reward value
for each combination of values of the parent and pseudo-
parent of the sending agent. Thus, its message complexity
is O(maxDomw), where maxDom = arg maxi |di| and w is
the induced width of the pseudo-tree.

In SD-DPOP, VALUE messages contain each pareto-
optimal value of the sending agent and UTIL messages con-
tain a representation of the reward function for each pareto-
optimal solution and each combination of values of the par-
ent and pseudo-parent of the sending agent. Thus, if the
reward functions are continuous and one can represent the
function analytically with a constant number of parameters,
such as the Gaussian function, which can be represented
just by the mean and variance, then the message complex-
ity is O(p ·maxDomw), where p is the size of the pareto set.
If the reward functions are discrete and are represented by
samples in discretized bins, then the message complexity is
O(b · p ·maxDomw), where b is the largest number of bins
used to represent one reward function.

Therefore, like DPOP, SD-DPOP also suffers from an ex-
ponential memory requirement. However, one can likely ex-
tend SD-DPOP to make it memory-bounded, similar to how
researchers have bounded the memory of DPOP in exten-
sions like MB-DPOP [19] and PC-DPOP [20].

5.4 Correctness and Completeness
The completeness of SD-DPOP follow quite trivially from

that of DPOP since the main differences are that agents now
convolve reward functions instead of sum up reward values
and it chooses stochastically dominating reward functions
instead of the maximal reward value.

261

We now prove the correctness of SD-DPOP. Let fi+j de-
note the convolution of reward functions fi and fj and Fi
denote the cumulative distribution function of fi.

Lemma 1. For any two arbitrary reward functions fi and
fj, Fi+j(t) =

∫∞
−∞ Fj(t− x) fi(x) dx

Proof: Let fi and fj be two arbitrary reward functions.

Fi+j(t)
def
=

∫ t

−∞
fi+j(y) dy

=

∫ t

−∞

∫ ∞

−∞
fj(y − x) fi(x) dx dy

=

∫ ∞

−∞

∫ t

−∞
fj(y − x) fi(x) dy dx

=

∫ ∞

−∞

∫ t

−∞
fj(y − x) dy fi(x) dx

=

∫ ∞

−∞
Fj(t− x) fi(x) dx

Lemma 2. For any three arbitrary reward functions fi, fj
and fk, if fi � fj, then fi+k � fj+k.

Proof: Let fi, fj and fk be three arbitrary reward functions
where fi � fj .

∫ z

−∞
Fi+k(t)− Fj+k(t) dt

=

∫ z

−∞

∫ ∞

−∞

(
Fi(t− x)− Fj(t− x)

)
fk(x) dx dt

(Lemma 1)

=

∫ ∞

−∞
fk(x)

∫ z

−∞
Fi(t− x)− Fj(t− x) dt dx

=

∫ ∞

−∞
fk(x)

∫ z−x

−∞
Fi(y)− Fj(y) dy dx

We know that (1)
∫ k
−∞ Fi(y) − Fj(y) dy ≤ 0 for all val-

ues of k according to Equation 2 since fi � fj and (2)∫∞
−∞ fk(x) dx ≥ 0 since it is an integral of a probability

distribution function. Combining both inequalities, we get∫∞
−∞ fk(x)

∫ z−x
−∞ Fi(y)− Fj(y) dy dx ≤ 0, which implies that

fi+k � fj+k according to Equation 2.

Theorem 1. For any 2m arbitrary reward functions
fi1 , . . . , fim , fj1 , . . . , fjm , if fik � fjk for all values of k,
then fi1+...+im � fj1+...+jm .

Proof: Let fi1 , . . . , fim , fj1 , . . . , fjm be arbitrary reward
functions where fik � fjk for all values of k.

fi1+...+im � fj1+i2+i3+...+im (fi1 � fj1 and Lemma 2)

� fj1+j2+i3+...+im (fi2 � fj2 and Lemma 2)

� . . .
� fj1+j2+j3+...+jm (fim � fjm and Lemma 2)

Thus, fi1+...+im � fj1+...+jm .

Therefore, since convolving stochastically dominating in-
dividual reward functions result in a stochastically domi-
nating overall reward function according to Theorem 1, SD-
DPOP is correct.

6. RELATED WORK
Motivated by risk-sensitive applications, other researchers

have also independently investigated the use of dominance
to solve SDCOPs. For example, Stranders et al. defined
dominance with respect to a given risk function, where a
random variable X dominates a random variables Y for a
given function U iff E[U(X+Z)] ≥ E[U(Y +Z)] for all possi-
ble random variables Z with strict inequality for at least one
Z [22]. They then derived sufficient and necessary conditions
for such dominance to hold for one example risk function,
proposed U-GDL, an extension of the GDL algorithm that
uses the new conditions, and experimentally demonstrated
the benefits of their approach. Our work is different from
theirs in that SD-DPOP uses a stochastic dominance crite-
ria, which is applicable for the class of concave risk functions.

Another piece of related work is the Multi-Objective Max-
Sum (MOMS) algorithm by Delle Fave et al., which is an
algorithm that finds pareto-optimal solutions for a set of
objective functions [4]. Our work is different from theirs
in that MOMS needs to know the set of risk functions (set
of objectives) prior to finding the pareto-optimal solutions
while SD-DPOP does not. SD-DPOP actually finds the set
of pareto-optimal solutions for all possible risk functions,
which is an infinite set. However, MOMS can find pareto-
optimal solutions for arbitrary utility functions, while SD-
DPOP can only do so for concave risk functions. However,
we expect all these extensions to easily apply to all GDL-
based DCOP algorithms including DPOP, Max-Sum [5] and
Action-GDL [25].

7. EXPERIMENTAL EVALUATION
We now compare the stochastically dominating solutions

found by the SD-DPOP algorithm to the solutions that max-
imize the expected reward found by DPOP. We run our ex-
periments on a MacBook Pro with a 2.7GHz Intel Core i7
and 8GB memory. We use the same sensor network prob-
lem that we used as our motivating domain, where we ar-
ranged the sensors in a grid and each sensor can move in
the four cardinal directions or stay stationary. Thus, each
sensor has 5 possible values. Additionally, each sensor can
be constrained with any one of its four neighboring sensors.
We varied the size of the problem by increasing the number
of sensors in the grid and the number of constraints. Each
constraint between two sensors consists of 25 reward func-
tions corresponding to the 25 pairs of possible values of the
two sensors. Each reward function is a Gaussian function
whose mean and variance are randomly generated between
the ranges of 80 to 100 and 0 to 80, respectively.

We use the following risk functions to evaluate the utilities
of the solutions found:

g1(x, α, th) =

{
αx− (α− 1) th x ≤ th
th otherwise

g2(x, α, th) = − exp(−α (x− th)) + th

Both functions are commonly used risk functions in the lit-
erature [13, 21]. In both functions, the parameter α rep-
resents the level of risk aversion. The larger the value of
α, the higher the level of risk aversion. The parameter th
represents the threshold after which one obtains close to no
utility with increasing x.

We run experiments for both continuous and discretized

262

(a) SD-DPOP with Stochastic Dominating Solutions

no. of no. of runtime msg size g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
agents constraints (ms) (kB) µ σ µR µ σ µR µ σ µR µ σ µR

9 12 539 368 1391 92 1160 1412 103 1292 1369 84 1194 1390 91 1199
16 24 2588 7240 2613 142 2176 2611 141 2395 2542 115 -3261 2571 123 2397
25 37 81821 65963 4055 177 3619 4058 179 3698 3971 151 -1596 4004 159 3698

(b) DPOP with Expected Reward Maximizing Solutions

no. of no. of runtime msg size g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
agents constraints (ms) (kB) µ σ µR µ σ µR µ σ µR µ σ µR

9 12 100 75 1455 167 949 1455 167 1283 1455 167 -2.13E8 1455 167 11260
16 24 172 139 2689 225 1840 2689 225 2389 2689 225 -1.66E14 2689 225 -7336
25 37 252 215 4162 278 3397 4162 278 3694 4162 278 -1.34E16 4162 278 -775615

Table 3: Experimental Results for Continuous Reward Functions

(a) SD-DPOP with Stochastic Dominating Solutions for 9 Agents and 9 Constraints

no. of runtime msg size error error g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
samples (ms) (kB) in µ in σ µ σ µR µ σ µR µ σ µR µ σ µR

10 3203 2417 91 185 971 86 373 971 86 889 962 80 -1472 965 81 897
100 7775 3032 25 44 971 73 544 972 74 893 959 67 849 965 69 898
1000 12786 2909 30 41 972 74 546 972 74 893 958 66 847 968 71 898
10000 15802 2803 31 43 972 74 546 972 75 893 957 66 854 966 70 898

(b) SD-DPOP with Stochastic Dominating Solutions for 16 Agents and 16 Constraints

no. of runtime msg size error error g1(x, 50, th) g1(x, 0, th) g2(x, 0.05, th) g2(x, 0.025, th)
samples (ms) (kB) in µ in σ µ σ µR µ σ µR µ σ µR µ σ µR

10 35845 9458 340 258 1751 132 1143 1751 132 1591 1741 128 -2.76E7 1741 127 1562
100 58125 9792 65 85 1750 105 1399 1750 105 1596 1721 93 1092 1736 97 1599
1000 69050 9088 80 59 1751 106 1402 1750 105 1596 1719 91 1057 1734 97 1599
10000 79235 8869 79 58 1750 104 1403 1750 105 1596 1717 90 1178 1734 96 159

Table 4: Experimental Results for Discretized Reward Functions

reward functions. Tables 3 and 4 show our experimental re-
sults, where we average over 50 problem instances for each
configuration. For each problem instance, we run SD-DPOP
to find the pareto set, and for each risk function, we eval-
uate the risk of a pareto-optimal solution by taking 10,000
samples of the overall reward function for that solution and
evaluating those samples using the risk function. We then
return the solution with the largest mean as the optimal so-
lution. The root agent performs this sampling process since
it knows the overall reward function for each pareto-optimal
solution. After it determines the optimal solution, it prop-
agates that information down the pseudo-tree to the other
agents.

For each problem configuration, we use four risk functions:
g1(x, 50, th), g1(x, 0, th), g2(x, 0.05, th) and g2(x, 0.025, th),
where we set th to 100 times the number of constraints in
the problem. For each risk function, we report the mean (µ)
and standard deviation (σ) of the overall reward function of
the optimal solution as well as the mean (µR) of the evalu-
ation of overall reward function using the risk function. We
also report the error in the mean and standard deviation
(compared against the true mean and standard deviation)
of the overall reward function of the optimal solution for ex-
periments with discretized reward functions. We make the
following observations:

• The runtime and message size of DPOP and SD-DPOP
increases with the number of agents and constraints,
which is to be expected. The runtime and message size

of SD-DPOP is larger than that of DPOP. The run-
time is larger because agents in SD-DPOP find mul-
tiple pareto-optimal solutions while agents in DPOP
find only one solution. The message size is larger be-
cause agents in SD-DPOP sends more information in
each message, as described in Section 5.3.

• The means (µ) of the expected reward maximizing so-
lutions are larger than the means of the stochastic
dominating solutions, which is to be expected. How-
ever, the means (µR) of the evaluations of the expected
reward maximizing solutions using the risk functions
are smaller than those of the stochastic dominating
solutions, which implies that the solutions found by
SD-DPOP is less risky. The difference in the means in-
creases as α increases. Thus, the higher the level of risk
aversion, the more important it is to find stochastic
dominating solutions. An interesting future direction
of research would be to compute a theoretical bound
between µ and µR. However, this bound would be use-
ful for risk functions with small values of α only. The
reason is that if α is large or, equivalently, the risk
function has an almost vertical slope, then µ is likely
to be finite while µR is likely to be negative infinity.

• The runtime of SD-DPOP increases with the number
of samples, which is to be expected. The message size
increases as we increase the number of samples from 10
to 100. The reason is that the number of bins needed
by the samples increases. However, the message size

263

does not increase further, and can sometimes decrease
instead, as we increase the number of samples to 1000
or 10000. The reason is that as the number of samples
increases significantly, the samples all converge near
the mean of the distribution. As a result, the proba-
bility of bins at the tail ends become small. Since we
optimize the number of bins by merging neighboring
bins if the probability of one of the bin is less than a
threshold of 0.001, these bins at each of the tail ends
are merged into a single large bin.

• The errors in the mean and standard deviation de-
crease as we increase the number of samples from 10
to 100. The reason is that 10 samples is too small to ac-
curately represent the reward function. However, the
errors do not decrease further, and actually increase
instead, as we increase the number of samples to 1000
or 10000. The reason is that 100 samples is sufficient
to accurately represent the reward function and the
increase in error is likely due to sampling approxima-
tions.

8. CONCLUSIONS
The Stochastic DCOP (SDCOP) model is useful in model-

ing multi-agent coordination problems where the constraint
rewards are sampled from known reward functions. The goal
of SDCOPs is to find a solution that maximizes the expected
reward in such problems. However, these solutions might be
very risky and hence unacceptable in risk-sensitive appli-
cations. In this paper, we make three contributions: (1)
we propose a stricter objective for SDCOPs, namely to find
a solution with the most stochastically dominating reward
function; (2) we introduce SD-DPOP, an extension of DPOP
that finds such solutions; and (3) we show that stochastically
dominating solutions can indeed be less risky than expected
reward maximizing solutions. For future work, we would like
to bound the memory used by SD-DPOP in the same way
that researchers have done for MB-DPOP and PC-DPOP.
We believe that this is important since the exponential re-
quirement on memory prohibits the use of this algorithm in
large scale problems.

9. ACKNOWLEDGMENT
This research is supported by the Singapore National Re-

search Foundation under its International Research Centre
@ Singapore Funding Initiative and administered by the
IDM Programme Office. We would also like to thank our
anonymous reviewers for their comments and suggestions,
especially for pointing us to the work on the U-GDL and
MOMS algorithms.

10. REFERENCES
[1] J. Atlas and K. Decker. Coordination for uncertain

outcomes using distributed neighbor exchange. In Proc. of
AAMAS, pages 1047–1054, 2010.

[2] D. Burke and K. Brown. Efficiently handling complex local
problems in distributed constraint optimisation. In Proc. of
ECAI, pages 701–702, 2006.

[3] R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[4] F. Delle Fave, R. Stranders, A. Rogers, and N. Jennings.
Bounded decentralised coordination over multiple
objectives. In Proc. of AAMAS, pages 371–378, 2011.

[5] A. Farinelli, A. Rogers, A. Petcu, and N. Jennings.
Decentralised coordination of low-power embedded devices
using the Max-Sum algorithm. In Proc. of AAMAS, pages
639–646, 2008.

[6] S. Graves and J. Ringuest. Probabilistic dominance criteria
for comparing uncertain alternatives: A tutorial. Omega,
37(2):346–357, 2009.

[7] Y. Hamadi, C. Bessière, and J. Quinqueton. Distributed
intelligent backtracking. In Proc. of ECAI, pages 219–223,
1998.

[8] M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs
meet the real world: Exploring unknown reward matrices
with applications to mobile sensor networks. In Proc. of
IJCAI, pages 181–186, 2009.

[9] S. Kozono. Received signal-level characteristics in a
wide-band mobile radio channel. IEEE Transactions on
Vehicular Technology, 43(3):480–486, 1994.

[10] A. Kumar, B. Faltings, and A. Petcu. Distributed
constraint optimization with structured resource
constraints. In Proc. of AAMAS, pages 923–930, 2009.

[11] R. Lass, J. Kopena, E. Sultanik, D. Nguyen, C. Dugan,
P. Modi, and W. Regli. Coordination of first responders
under communication and resource constraints (Short
Paper). In Proc. of AAMAS, pages 1409–1413, 2008.

[12] T. Léauté and B. Faltings. E[DPOP]: Distributed
constraint optimization under stochastic uncertainty using
collaborative sampling. In Proc. of DCR, pages 87–101,
2009.

[13] H. Levy. Stochastic Dominance Investment Decision
Making under Uncertainty Studies in Risk and
Uncertainty. Springer, 1998.

[14] V. Lisỳ, R. Zivan, K. Sycara, and M. Péchoucek. Deception
in networks of mobile sensing agents. In Proc. of AAMAS,
pages 1031–1038, 2010.

[15] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and
P. Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed event scheduling. In
Proc. of AAMAS, pages 310–317, 2004.

[16] M. McClure, D. Corbett, and D. Gage. The DARPA
LANdroids program. SPIE, 7332:73320A, 2009.

[17] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149–180,
2005.

[18] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In Proc. of IJCAI, pages
1413–1420, 2005.

[19] A. Petcu and B. Faltings. MB-DPOP: A new
memory-bounded algorithm for distributed optimization. In
Proc. of IJCAI, pages 1452–1457, 2007.

[20] A. Petcu, B. Faltings, and R. Mailler. PC-DPOP: A new
partial centralization algorithm for distributed
optimization. In Proc. of IJCAI, pages 167–172, 2007.

[21] J. Pratt. Risk aversion in the small and in the large.
Econometrica, 32(1–2):122–136, 1964.

[22] R. Stranders, F. Delle Fave, A. Rogers, and N. Jennings.
U-GDL: A decentralised algorithm on DCOPs with
uncertainty. Technical report, Department of Electronics
and Computer Science, University of Southampton, 2011.

[23] M. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a “me” in “team”?: Distributed
multi-agent optimization under uncertainty. In Proc. of
AAMAS, pages 109–116, 2010.

[24] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition structure
generation based on distributed constraint optimization. In
Proc. of AAAI, pages 197–203, 2010.

[25] M. Vinyals, J. Rodŕıguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
DCOP algorithms via the Generalized Distributive Law.
Autonomous Agents and Multi-Agent Systems, 2010.

264

Max/Min-sum Distributed Constraint Optimization through
Value Propagation on an Alternating DAG

Roie Zivan and Hilla Peled
Industrial Engineering and Management department,

Ben Gurion University,
Beer-Sheva, Israel

{zivanr,hillapel}@bgu.ac.il

ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are NP-
hard and therefore the number of studies that consider incomplete
algorithms for solving them is growing. Specifically, the Max-sum
algorithm has drawn attention in recent years and has been applied
to a number of realistic applications. Unfortunately, in many cases
Max-sum does not produce high quality solutions. More specifi-
cally, when problems include cycles of various sizes in the factor
graph upon which Max-sum performs, the algorithm does not con-
verge and the states that it visits are of low quality.

In this paper we advance the research on incomplete algorithms
for DCOPs by: (1) Proposing a version of the Max-sum algo-
rithm that operates on an alternating directed acyclic graph (Max-
sum_AD), which guarantees convergence in linear time. (2) Identi-
fying major weaknesses of Max-sum and Max-sum_AD that cause
inconsistent costs/utilities to be propagated and affect the assign-
ment selection. (3) Solving the identified problems by introducing
value propagation to Max-sum_AD. Our empirical study reveals
a large improvement in the quality of the solutions produced by
Max-sum_AD with value propagation (VP), when solving prob-
lems which include cycles, compared with the solutions produced
by the standard Max-sum algorithm, Bounded Max-sum and Max-
sum_AD with no value propagation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]

General Terms
Algorithms, Experimentation

Keywords
DCOP, Incomplete Algorithms, GDL

1. INTRODUCTION
The Distributed Constraint Optimization Problem (DCOP) is a

general model for distributed problem solving that has a wide range
of applications in Multi-Agent Systems and has generated signifi-
cant interest from researchers [10, 12, 21, 15, 16].

A number of studies on DCOPs presented complete algorithms
[10, 12, 5]. However, since DCOPs are NP-hard, there is a growing

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

interest in the last few years in incomplete DCOP algorithms [9,
21, 17]. Although incomplete algorithms do not guarantee that the
obtained solution is optimal, they are applicable for large problems
and compatible with real time applications.

Local search algorithms for DCOPs are incomplete algorithms
whose general structure is synchronous. In each step of the al-
gorithm an agent sends its assignment to all its neighbors in the
constraint network and receives the assignment of all its neighbors.
They differ in the method agents use to decide whether to replace
their current value assignments to their variables, e.g., in the max
gain messages algorithm (MGM) [9]; the agent that can improve
its state the most in its neighborhood replaces its assignment. A
stochastic decision whether to replace an assignment is made by
agents in the distributed stochastic algorithm (DSA) [21].

An incomplete algorithm that does not follow the standard struc-
ture of distributed local search algorithms and has drawn much at-
tention recently is the Max-sum algorithm [4]. Max-sum is an in-
complete GDL algorithm [1]. In contrast to standard local search
algorithms, agents in Max-sum do not propagate assignments but
rather calculate utilities (or costs) for each possible value assign-
ment of their neighboring agents’ variables. The general structure
of the algorithm is exploitive, i.e., the agents attempt to compute
the best costs/utilities for possible value assignments according to
their own problem data and recent information they received via
messages from their neighbors.

The growing interest in the Max-sum algorithm in recent years
included its use for solving DCOPs representing various multi-
agent applications, e.g., sensor systems [17, 15] and task alloca-
tion for rescue teams in disaster areas [13]. In addition, a method
for approximating the distance of the solution found by Max-sum
from the optimal solution for a given problem was proposed [14].
This version required the elimination of some of the problem’s con-
straints in order to reduce the DCOP to a tree structured problem
that can be solved in polynomial time. Then, the sum of the worst
costs for all eliminated constraints serves as the bound on the ap-
proximation of the optimal solution.

Previous studies have revealed that Max-sum does not always
converge to a solution [4]. In fact, in some of the cases where it
does not converge, it traverses states with low quality and thus, at
the end of the run a poor quality solution is reported. This pathol-
ogy apparently occurs when the constraint graph of the problem in-
cludes cycles of various sizes [4]. Unfortunately, many DCOPs that
were investigated in previous studies are dense and indeed include
such cycles (e.g., [10, 5]). Our experimental study revealed that
on random problems of different density parameters and problem
sizes, and on problems with structured constraints (graph coloring),
Max-sum does not converge.

In this paper we contribute to the development of incomplete

265

algorithms for solving DCOPs by:

1. Proposing a new version of the Max-sum algorithm that uses
an alternating directed acyclic graph (DAG). The proposed
algorithm (Max-sum_AD) avoids cycles by performing iter-
ations of the algorithm in which messages are sent according
to a predefined order. The order divides the set of neigh-
bors for each agent to two disjoint subsets, one of agents that
come before it in the order in which it receives messages, and
the other of neighbors that come after it in the order in which
it sends messages (notice that the order is on the direction of
messages and not on the agents’ actions).

In order not to ignore constraints of the DCOP, after a num-
ber of iterations in which all agents perform concurrently,
which guarantees the convergence of the algorithm, the order
from which the direction of the DAG is derived is reversed.
Then, the algorithm is performed on the reversed DAG until
it converges again. We prove that the maximal number of
iterations in a single direction required for the algorithm to
converge is equal to the longest path in the DAG, l (linear
in the worst case). Thus, by performing l iterations in each
direction we converge to a solution after considering all the
constraints in the DCOP.

2. We identify major weaknesses of Max-sum and Max-sum_AD,
which are their performance in the presence of ties and the
possibility that best costs/utilities computed for the same vari-
able consider different value assignments and thus are not
valid. We demonstrate that the propagation of such incon-
sistent information results in a distorted selection of assign-
ments by the agents.

3. We solve the problems of inconsistent cost propagation and
tie breaking by using value propagation. After performing
the algorithm in both directions and allowing it to converge
for the second time after considering all the problem’s con-
straints, we require that agents add to the messages they send
the value assignment they have selected and that only con-
straints with these values are considered. Thus, we prevent
the possibility that different agents consider costs/utilities that
are based on conflicting value assignments. We note that
value propagation has been used in previous studies for com-
plete GDL algorithms [12, 18]) for breaking ties, including
for the production of the optimal solution for the tree struc-
ture factor graph in Bounded Max-sum [14]. However, to
best of our knowledge, ours is the first use of value propaga-
tion in GDL algorithms for solving DCOPs with cyclic factor
graphs.

Our empirical study demonstrates the success of Max-sum_AD
combined with value propagation in comparison with the standard
Max-sum algorithm and with Bounded Max-sum when solving ran-
dom DCOPs and graph coloring problems (problems that include
cycles on which Max-sum fails to converge).

The rest of this paper is organized as follows: We present related
work in Section 2. DCOPs are presented in Section 3. Section 4
presents the standard Max-sum algorithm. The Max-sum_AD al-
gorithm is presented in Section 5. Section 6 identifies the need for
value propagation (VP) and further describes how VP is combined
with Max-sum_AD. Section 7 includes an evaluation of the pro-
posed algorithm in comparison with Max-sum and Bounded Max-
sum. In Section 8 we discuss how dynamic spanning trees can
be generated as part of the Max-sum_AD algorithm which can be
used to produce bounded approximation of the optimal solution.
Our conclusions are presented in Section 9.

2. RELATED WORK
Many algorithms for solving DCOPs were proposed in the last

decade. These can be divided into complete and incomplete algo-
rithms. While some complete algorithms such as ADOPT, BnB-
ADOPT [10, 20], and AFB [5] perform distributed search, GDL-
based complete algorithms implement a dynamic programming ap-
proach [1, 12, 18]. The first to apply this approach to DCOP were
Petcu and Faltings by proposing the DPOP algorithm [12]. DPOP
performs dynamic programming on a pseudo-tree structure. Since
pseudo trees may have limited branching in dense problems, recent
studies investigated alternative structures (e.g., junction trees) in
order to increase the parallelism in GDL based algorithms [3, 18].

The other set of incomplete algorithms for solving DCOPs in-
cludes search algorithms as well. As mentioned in the Introduction,
in standard local search algorithms for DCOPs (e.g., DSA) agents
exchange messages in synchronous iterations and the algorithms
differ in the method agents use to decide when and how to replace
their assignment.

In [9, 11], a different approach towards local search for solving
DCOPs was proposed. In these studies, completely exploitive al-
gorithms are used to converge to local optima solutions, which are
guaranteed to be within a predefined distance from the global opti-
mal solution. The approximation level is dependent on a parameter
k, which defines the size of coalitions that agents can form. These
k size coalitions transfer the problem data to a single agent, which
performs a complete search procedure in order to find the best as-
signment for all agents within the k size coalition. As a result, the
algorithm converges to a state that is k optimal (k-opt) [11], i.e., no
better state exists if k agents or fewer change their assignments.

The production of k-opt solutions may require solving an expo-
nential number of problems of size k. To overcome this shortcom-
ing, recent studies have proposed alternatives for the selection of
small local environments that would be solved optimally in order
to produce quality guarantees on the overall solution. One alterna-
tive, t-distance, created environments dependent on the distance of
nodes in the constraint network [6]. While this alternative reduced
the number of problems that need to be solved it did not bound the
size of the problems that are solved. The most recent approach in-
cluded the generation of environments that were bounded both by
distance and size [19]. Thus, the number of problems to solve is
bounded by the number of agents and the problems to solve by the
predefined size.

Aggregation of agents’ constraints was also used in an attempt to
cope with the in-convergence of Max-sum [4]. It included the union
of groups of agents to clusters of adjacent agents represented by a
single agent in the cluster. The constraints between the agents in
the cluster were aggregated and held by the agent representing the
cluster. Thus, it required that some constraints would be revealed
in a preprocessing phase to agents that are not included in the con-
straints (the constraint between agents A1 and A2 is revealed to
agentA3). Furthermore, the amount of aggregated information was
not limited and in dense problems could result in a single agent
holding a large part of the problem’s constraints (partial central-
ization). Another approach is to aggregate constraints and unite
nodes in the constraint graph so that the resulting graph would be
a tree [18]. However, the result of this rearrangement of the con-
straint graph is the need to perform exponential computation and
transfer exponential communication that will result in a complete
solution.

In this paper we focus on incomplete GDL algorithms that avoid
partial centralization and clustering of agents, and attempt to solve
the original DCOPs as do standard complete algorithms (e.g., ADOPT
and DPOP), one-opt distributed local search algorithms (e.g., DSA

266

and MGM) and as the standard Max-sum algorithm does [14].
The alternating direction approach we implement in this paper

is inspired by algorithms for solving asymmetric distributed con-
straints problems [2]. However, unlike in the case of asymmetric
problems where the motivation for this approach was preserving
privacy, in this paper the motivation is strictly algorithmic.

3. DISTRIBUTED CONSTRAINT OPTIMIZA-
TION

To avoid confusion, and without loss of generality, in the rest of
this paper we will assume all problems are minimization problems
as presented in the early DCOP papers (e.g., [10]). Thus, we as-
sume that all constraints define costs and not utilities. The GDL
algorithm for minimization problems is actually a Min-sum GDL
algorithm. However, we will continue to refer to it as Max-sum
since this name is widely accepted. Our description of a DCOP
is also consistent with the definitions in many DCOP studies, e.g.,
[10, 12, 5].

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents
A1, A2, ..., An. X is a finite set of variables X1,X2,...,Xm. Each
variable is held by a single agent (an agent may hold more than
one variable). D is a set of domains D1, D2,...,Dm. Each do-
main Di contains the finite set of values that can be assigned to
variable Xi. We denote an assignment of value d ∈ Di to Xi
by an ordered pair 〈Xi, d〉. R is a set of relations (constraints).
Each constraint C ∈ R defines a non-negative cost for every pos-
sible value combination of a set of variables, and is of the form
C : Di1 × Di2 × . . . × Dik → R+ ∪ {0}. A binary con-
straint refers to exactly two variables and is of the form Cij :
Di × Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which
all constraints are binary. A partial assignment (PA) is a set of
value assignments to variables, in which each variable appears at
most once. vars(PA) is the set of all variables that appear in PA,
vars(PA) = {Xi | ∃d ∈ Di ∧ 〈Xi, d〉 ∈ PA}. A constraint
C ∈ R of the form C : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0} is
applicable to PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). The cost of
a partial assignment PA is the sum of all applicable constraints to
PA over the assignments in PA. A complete assignment is a partial
assignment that includes all the variables (vars(PA) = X). An
optimal solution is a complete assignment with minimal cost.

For simplicity, all DCOPs considered in this paper are binary
DCOPs in which each agent holds exactly one variable.

4. STANDARD MAX-SUM
The Max-Sum algorithm [4] is a GDL algorithm [1] that oper-

ates on a factor graph [7] that is a bipartite graph in which the
nodes represent variables and constraints. 1 Each node represent-
ing a variable of the original DCOP is connected to all function-
nodes that represent constraints that it is involved in. Similarly,
a function-node is connected to all variable-nodes that represent
variables in the original DCOP that are included in the constraint
it represents. Agents in Max-sum perform the roles of different
nodes in the factor graph. We will assume that each agent takes the
role of the variable-nodes that represent its own variables and for
each function-node, one of the agents whose variable is involved in
the constraint it represents, performs its role. Variable-nodes and
function-nodes are considered “agents" in Max-sum, i.e., they can
send messages, read messages and perform computation.

Figure 1 demonstrates the transformation of a DCOP to a factor
graph. On the top we have a DCOP with three agents, each holding
1We preserve the terminology of [4] and call constraint represent-
ing nodes in the factor graph “function-nodes".

Figure 1: Transformation of a DCOP to a factor graph

Max-sum (node n)
1. Nn ← all of n’s neighboring nodes
2. while (no termination condition is met)
3. collect messages from Nn
4. for each n′ ∈ Nn
5. if (n is a variable-node)
6. produce message mn′

using messages from Nn \ {n′}
7. if (n is a function-node)
8. produce message mn′

using constraint and messages from Nn \ {n′}
9. send mn′ to n′

Figure 2: Standard Max-sum.

a single variable. All variables are connected by binary constraints.
On the bottom we have a factor graph. Each agent takes the role
of the node representing its own variable and the role of one of the
function-nodes representing a constraint it is involved in, e.g., in
this factor graph agent A1 takes the role of function-node f1 which
represents the constraint between its own variable x1 and variable
x3 held by agent A3.

Figure 2 presents a sketch of the Max-sum algorithm.2 The
code for variable-nodes and function-nodes is similar apart from
the computation of the content of messages to be sent. For variable-
nodes only data received from neighbors is considered. In mes-
sages sent by function-nodes the content is produced considering
data received from neighbors and the original constraint represented
by the function-node.

It remains to describe the content of messages sent by the factor
graph nodes. A message sent from a variable-node x to a function-
node f at iteration i, includes for each of the values d ∈ Dx the
sum of costs for this value it received from all function neighbors
apart from f in iteration i − 1. Formally, for value d ∈ Dx the
message will include:

∑

f ′∈Fx,f ′ 6=f
cost(f ′.d)− α

where Fx is the set of function-node neighbors of variable x and
cost(f ′.d) is the cost for value d included in the message received
from f ′ in iteration i − 1. α is a constant that is reduced from
all costs included in the message (i.e., for each d ∈ Dx) in order
to prevent the costs carried by messages throughout the algorithm
2In contrast to previous papers on Max-sum, we present it using a
pseudo-code. This is following standard DCOP literature, e.g., [10,
12, 21]. Nevertheless, only the presentation is different. The algo-
rithm itself is identical to the algorithm presented in [4, 14].

267

from growing arbitrarily. Selecting α to be the average on all costs
included in the message is a reasonable choice for this purpose [4,
14]. Notice that as long as the amount reduced from all costs is
identical, the algorithm is not affected by this reduction since only
the differences between the costs for the different values matter.

A message sent from a function-node f to a variable-node x in
iteration i includes for each possible value d ∈ Dx the minimal cost
of any combination of assignments to the variables involved in f
apart from x and the assignment of value d to variable x. Formally,
the message from f to x includes for each value d ∈ Dx:

minass−xcost(〈x, d〉, ass−x)

where ass−x is a possible combination of assignments to variables
involved in f not including x. The cost of an assignment a =
(〈x, d〉, ass−x) is:

f(a) +
∑

x′∈Xf ,x′ 6=x
cost(x′.d′)

where f(a) is the original cost in the constraint represented by f
for the assignment a, Xf is the set of variable-node neighbors of
function-node f , and cost(x′.d′) is the cost that was received in
the message sent from variable-node x′ in iteration i − 1, for the
value d′ that is assigned to x′ in a.

While the selection of value assignments to variables is not used
to generate the messages in the Max-sum algorithm, in every iter-
ation an agent can select its value assignment and the assignment
selected by agents at the end of the run is the reported solution.
Each variable-node selects the value assignment that received the
lowest sum of costs included in the messages that were received
most recently from its neighboring function-nodes. Formally, for
variable x we select the value d̂ ∈ Dx as follows:

d̂ = mind∈Dx
∑

f∈Fx
cost(f.d)

Notice that the same information used by the variable-node to select
the content of the messages it sends is used for selecting its value
assignment.

5. MAX-SUM ON AN ALTERNATING DAG
(MAX-SUM_AD)

In order to guarantee the convergence of Max-sum we need to
avoid the pathology described in [4], caused by cycles in the fac-
tor graph. To this end we select an order on all nodes in the factor
graph. For example, we can order nodes according to the indices of
agents performing their role in the algorithm. A node whose role is
performed by agent Ai is ordered before a node whose role is per-
formed by agent Aj if i < j. For variable and function nodes held
by the same agent, we can determine (without loss of generality)
that a variable-node is ordered before the function-nodes and break
ties among function-nodes using their indices.

Once we define an order on all nodes in the factor graph, each
agent (node) can divide its set of neighbors to two disjoint subsets,
the subset of neighbors in the factor graph that come before it in the
order, from whom it receives messages, and the subset of neighbors
that are ordered after it, to whom it sends messages.

Next, we perform the algorithm for l iterations allowing nodes
to send messages only to nodes which are “after" them according
to this order (in the case of ordering by indices, send messages
only to agents with larger indices than their own). Notice that all
agents perform concurrently in each iteration of the algorithm, thus
the order does not affect the agents’ actions, only the direction of
messages.

Max-sum_AD (node n)
1. currebt_order ← select an order on all nodes in the factor graph
2. Nn ← all of n’s neighboring nodes
3. while (no termination condition is met)
4. Nprev_n ← {n̂ ∈ Nn :

n̂ is before n in current_order}
5. Nfollow_n ← Nn \Nprev_n

6. for(k iterations)
7. collect messages from Nprev_n

8. for each n′ ∈ Nfollow_n

9. if (n is a variable-node)
10. produce message mn′ using

messages from Nn \ {n′}
11. if (n is a function-node)
12. produce message mn′ using constraint

and messages received from Nn \ {n′}
13. send mn′ to n′

14. current_order ← reverse(current_order)

Figure 3: Max-sum_AD.

After l iterations in the selected direction, the order is reversed
and messages are sent for the next l iterations only in the opposite
direction (i.e., to agents with lower indices). In each direction the
Max-sum algorithm is performed as described in Section 4 with the
exception of the restriction on the messages that are sent. Agents
always consider the last message received from all their neighbors
(regardless of the direction) when producing a new message. For
example, when variable-node x produces a message it would send
to function-node f , all of the most recent messages x received from
its neighboring functions f ′ ∈ Fx, f ′ 6= f are considered. Notice
that the most recent message from a neighbor that is before x ac-
cording to the current order was received following the previous
iteration, while from a neighboring function-node that is after x ac-
cording to the current order, the last message was received before
the last alternation of directions.

The resulting algorithm Max-sum_AD has messages sent ac-
cording to a directed acyclic graph (DAG), which is determined
by the current order. Each time the order changes, we get a DAG
on which messages on each edge of the graph are sent only in a
single direction.

Figure 3 presents a sketch of the Max-sum_AD algorithm. It
differs from standard Max-sum in the selection of directions and the
disjoint sets of neighbors from whom the nodes receive messages
and to whom they send messages (lines 1, 4, 5 and 14).
Next we prove the convergence of Max-sum_AD when performed
in a single direction.

LEMMA 1. Given o, an order on the nodes of the factor graph
FG, for any node n ∈ FG, if l is the length of the longest path
in FG according to o that reaches n, then after l iterations, the
content of the messages n receives does not change as long as mes-
sages are sent according to o.

Proof: We prove by a complete induction on the length of the
longest path to node n according to o. A node n′, which is first
according to o, i.e., the length of the longest path that reaches it
according to o is equal to zero, does not receive messages from any
other node. We assume the correctness of the Lemma for any node
n′ that the longest path that reaches it is l′ < l. We now check
the correctness of the Lemma for node n, where the longest path
reaching it is equal to l. The longest path to all of the neighbors
of node n that are ordered before it according to o must be shorter
than l. Thus, according to the assumption, after l − 1 iterations of

268

Figure 4: Example of the need to break ties

the algorithm the messages they receive will not change. Since the
content of messages produced by agents in the Max-sum algorithm
is dependent on the content of messages they received last, then
from the l′th iteration and on these neighbors of node n will be
sending identical messages to n. Thus, the Lemma holds for node
n as well. �.

The first immediate corollary from Lemma 1 is that after a num-
ber of iterations equal to the diameter of the factor graph FG, all
the nodes in FG will continue to receive the same messages until
o is reversed. Moreover, since agents use the last messages they
have received in order to select their value assignments, the value
assignments will not change either. Thus, the algorithm converges
to a single complete assignment.

The decision to escape this fixed assignment by changing direc-
tion is an algorithmic decision. If this decision is made, the algo-
rithm will converge again after a linear number of iterations in the
reversed order, but not necessarily to a better solution. We demon-
strate in our empirical study that one version of Max-sum_AD mono-
tonically improves the states it converges to after each direction
change and that another does not.

Notice, that after the first alternation of direction, although we
send messages only in a single direction, the data passed in the
last messages that were received before the change in direction is
used for the calculation of the content of the following messages
to be sent and for value assignment selections. Thus, after the first
change of direction, all the constraints of the problem are consid-
ered.

6. MAX-SUM_AD WITH VALUE PROPAGA-
TION

In this section we introduce value propagation into the Max-
sum_AD algorithm. We start by presenting the motivation for this
addition and then go into the algorithmic details.

6.1 Motivation for Value Propagation
In order to understand the need for value propagation in Max-

sum in general and specifically in Max-sum_AD we identify two
phenomena that deteriorate the ability of agents to identify the value
assignments that will minimize the cost of the solution.

We illustrate the first phenomenon in the following example:
The factor graph depicted in Figure 4 presents the standard need
for value propagation as identified in previous studies on complete
GDL algorithms [12, 18]. Each of the function-nodes computes for
each of the values of its neighboring variable-nodes the minimal
cost that it can offer by assigning a value to its other variable-node
neighbor. In this specific symmetric example, each function identi-
fies that for each value a, when assigning b to the other variable the
cost is 0. Similarly for each value b, when assigning a to the other
variable the cost is 0 as well. Thus, all messages sent by function-
nodes to variable-nodes contain zeros for all values. As a result,

Figure 5: Example of the need for value propagation beyond
ties
messages from variable-nodes to function-nodes contain zero costs
as well. In other words, in this specific problem, no information is
propagated to the agents throughout the algorithm run. At the end
of the run the variable-nodes are indifferent regarding their possible
value assignments and if they all select value a the solution cost is
3. It is easy to see that there exists a solution in which one variable
is assigned a and the other two assign b with a cost of 1.

While for complete algorithms ties are the only motivation for
value propagation, the following example demonstrates that this is
not the case in an incomplete Max-sum algorithm such as Max-
sum_AD. Consider the factor graph depicted in Figure 5. Assume
the order is according to the agents’ indices. Function f1 will send
to x3 costs 2 and 1 for its values a and b, respectively. Similarly,
f2 will send to x2 costs 1 and 2 for its values a and b, respectively.
Thus, the algorithm will converge to a solution that includes as-
signments 〈x2, a〉 and 〈x3, b〉. However, the selection of a for x2
was under the assumption that value a is selected for x1 while the
selection of b for x3 is under the assumption that x1 is assigned
b. Since only one of them can be assigned to x1 the contribution
of functions f1 and f2 to the solution cost is 6. If we would have
selected first the assignment of x1 and then the assignments for x2
and x3 accordingly, we could have reached a solution in which the
contribution of those two functions was 3 (e.g., 〈x1, a〉,〈x2, a〉 and
〈x3, a〉). This inconsistency in the use of the information prop-
agated by Max-sum_AD does not affect only the assignment se-
lection. The information passed by messages is used to generate
additional messages and therefore inconsistent information is prop-
agated further to other agents in the distributed system. 3

6.2 Introducing value propagation into Max-
sum_AD

We overcome the pathologies we identified above by using a
value propagation procedure similar to the method used in com-
plete GDL algorithms for avoiding ties [12, 14, 18]. On iterations
in which we perform value propagation we require that variable-
nodes include in their messages to function-nodes their selected
value assignments. Function-nodes select the best cost considering
only the value assignments they received from their variable-node
neighbors, which are ordered before them. Formally, in iterations in
which we perform value propagation the message sent by function-
node f to variable x includes as before for each d ∈ Dx:

minass−xcost(〈x, d〉, ass−x)

However, for a variable-node from which a value assignment was
received in its latest message, the term minass−x considers only

3We demonstrate the phenomenon for Max-sum_AD since it is eas-
ier to follow. In standard Max-sum, such inconsistent information
concerning the conflicting assignment of some node is propagated
in all directions and through cycles, fed back to the node itself.

269

Figure 6: Solution cost of the Max-sum versions when solving
problems with low density (p1 = 0.2)

this value assignment. Specifically, if a value assignment was re-
ceived from each of the neighboring variable-nodes thenminass−x
is a single partial assignment.

In order to demonstrate the value propagation procedure, con-
sider once again the factor graph depicted in Figure 5. Variable-
node x1 selects value a and includes this selection in the messages
to function-nodes f1 and f2. Then f1 calculates for the values of x3
the costs 2 and 5 for values a and b, respectively. Similarly, func-
tion f2 calculates costs 1 and 5 to the values a and b of variable-
node x2.

The timing for starting value propagation has a major effect on
its success. If we would start value propagation from the first iter-
ation, the sum of costs that indicate to agents which value assign-
ments are better will not be propagated through the system. Thus,
the selection of the first value assignment will be done in complete
entropy and the following assignments can lead to an assignment
with low quality. Instead, we start the value propagation procedure
only after the algorithm converged in both directions (after the sec-
ond order alternation). At this time agents have considered all the
problem’s constraints and have enough knowledge to make a qual-
ity selection of value assignments. Our experimental study also
indicates that the best assignment found by Max-sum_AD without
value propagation is after its second convergence (just before the
second change of direction).

7. EXPERIMENTAL EVALUATION
In this section we present experiments that demonstrate the ad-

vantage of the proposed Max-sum_AD algorithm when combined
with value propagation, over existing versions of the Max-sum al-
gorithm.

The first set of experiments was performed on minimization ran-
dom DCOPs in which each agent holds a single variable. Each
variable had ten values in its domain. The network of constraints in
each of the experiments was generated randomly by selecting the
probability p1 for a constraint among any pair of agents/variables.
The cost of any pair of assignments of values to a constrained pair
of variables was selected uniformly between 1 and 10. Such uni-
form random DCOPs with constraint networks of n variables, k
values in each domain, a constraint density of p1 and a bounded
range of costs/utilities are commonly used in experimental eval-
uations of centralized and distributed algorithms for solving con-
straint optimization problems [8, 5].

The experimental setup included problems generated with 50
agents each. The factor graph generated for all versions of the
Max-sum algorithm had agents performing the role of the variable-
nodes representing their own variables, and for each constraint, we
had the agent with the smaller index involved in it perform the role

Figure 7: Solution cost when solving problems with high den-
sity (p1 = 0.6)

of the corresponding function-node.
We compared the Max-sum_AD algorithm with and without value

propagation with the Max-sum and Bounded Max-sum algorithms
[14]. We generated 50 random problems and ran the algorithms
for 1400 iterations on each of them. The results we present are
an average of those 50 runs. To make sure that the Max-sum_AD
algorithms converge, we changed directions every 100 iterations,
which is the longest possible path in the DAG (in case the graph
has a chain structure). For each of the algorithms we present the
sum of the costs of constraints included in the assignment it would
have selected in each iteration.

Figure 6 presents the costs of the solutions found by the four al-
gorithms when solving problems of relatively low density (p1 =
0.2). It is most apparent that the Max-sum algorithm does not con-
verge and it traverses complete assignments with high costs. The
results of Bounded Max-sum are slightly better than the results of
standard Max-sum. Max-sum_AD converges to a solution of lower
cost even before the first direction change (in the first 100 iter-
ations) and to a much better solution after the direction change.
However, after the following direction changes it converges to so-
lutions with higher costs. The solutions with the lowest costs are
found by Max-sum_AD with value propagation. Since we begin
the value propagation only after the second direction change, in the
first 200 iterations it is identical to Max-sum_AD. However, after
the second direction change it converges to a solution with a much
smaller cost. It is interesting to mention that after the following
direction changes it continues to improve until it finally converges
to the solution with the lowest cost after the fifth direction change.

Figure 7 presents similar results for problems with higher con-
straint density – p1 = 0.6. Here, it is notable that Bounded Max-
sum finds solutions with higher costs than the standard Max-sum
algorithm. This is reasonable since the more dense the problem
is, the more edges are removed from the graph by Bounded Max-
sum in order to produce the tree structured factor graph or, in other
words, more constraints are ignored when producing the solution.
The final difference in cost between the two versions of the Max-
sum_AD algorithm seems similar to the results obtained for low
density problems. However, here on dense problems, most of the
reduction in cost by Max-sum_AD_VP was made after the second
change of direction when the value propagation phase began. In
addition, it is notable that the value propagation version of Max-
sum_AD keeps improving even after 800 iterations (7 direction
changes).

In our second set of experiments we present the relation be-
tween the costs of the solutions found by the different versions of
the Max-sum algorithm and the optimal solution. Figures 8 and 9
present results of the four Max-sum versions solving smaller ran-
dom problems on which we could run an exhaustive algorithm and

270

Figure 8: Solution cost when solving small problems with low
density (p1 = 0.3)

find the optimal solution. The problems included 10 agents, each
holding a single variable with 5 values in its domain. Once again,
we generated sparse and dense problems. However, the density pa-
rameters used were p1 = 0.3 and p1 = 0.7. This is because a lower
density parameter for such small problems may generate problems
with multiple components. On these small problems we could guar-
antee convergence by changing directions in Max-sum_AD every
20 iterations. Therefore, we ran the algorithms for a smaller num-
ber of iterations (500). The results presented include the factor
from the optimal solution obtained by dividing the average cost of
the assignments found by the algorithms in each iteration by the
cost of the optimal solution.

It is interesting to observe that for both density parameters Max-
sum_AD with value propagation found a solution with an average
cost very close to the average optimal cost (1.12 factor for the
sparse problems and 1.07 for the dense problems). It is also no-
table that Bounded Max-sum finds solutions with low quality for
these problems (e.g., a factor larger than 2.5 of the average opti-
mal cost for the dense problems). We assume this is caused by
the smaller domains in these problems, which result in problems
in which the constraints have larger differences among them. Thus,
ignoring some of the constraints as done by Bounded Max-sum can
have a larger effect on the result. It is interesting to notice the phe-
nomenon that applies both to standard Max-sum and Max-sum_AD
without value propagation. They both produce better results in the
beginning of the run (i.e., in the early iterations of the algorithm)
and then their performance deteriorates. This phenomenon is more
apparent when solving low density problems. It is clear that the de-
terioration that these algorithms exhibit is prevented by value prop-
agation. Thus, we assume that this deterioration is related to the
propagation of inconsistent costs through the distributed system as
we described in Section 6.1.

In the last set of experiments we generated graph coloring prob-
lems that include many ties. The problems we used included 50
agents, each holding a single variable and 3 colors in the domain
of each variable. The density parameter was p1 = 0.05, i.e., each
agent had 2.5 neighbors on average. The problems are standard
graph coloring problems, i.e., neighbors with identical colors in-
duce a cost of 1 while for neighbors with different colors the cost is
zero. The results presented in Figure 10 validate the observation we
presented in Section 6.1 of Max-sum’s weakness in the presence of
ties. Both Max-sum and Max-sum_AD without value propagation
are stuck with their initial assignment since no information is prop-
agated through the system. On the other hand, Bounded Max-sum
and Max-sum_AD_VP both include value propagation; therefore
they are able to break the ties and produce high quality solutions.
Max-sum_AD with VP still finds a solution with a smaller cost than
Bounded Max-sum.

Figure 9: Solution cost when solving small problems with high
density (p1 = 0.7)

Figure 10: Solution cost when solving graph coloring problems

8. BOUNDED APPROXIMATION IN MAX-
SUM_AD

While incomplete algorithms are not guaranteed to find the opti-
mal solution, some of the recent studies on incomplete methods for
DCOPs have offered quality guarantees and bounds on the distance
of the produced solution from the optimal solution (e.g., [11, 14]).
Specifically, Bounded_Max-sum [14] exploits the ability of Max-
sum to find an optimal solution on a tree structured graph, and pro-
duces a bound from the optimal solution by reducing the problem
to such a graph and accounting for the costs of the removed edges.
This approach can be applied in Max-sum_AD as well. Using the
messages of the Max-sum_AD algorithm we can dynamically gen-
erate a spanning tree of the factor graph and then run the algorithm
on this tree in both directions to obtain the optimal solution.

In order to generate a spanning tree of the factor graph we need
to identify cycles in the factor graph. To this end, we can carry
the path (list of nodes) in a single direction on the algorithm’s
messages. When node n receives two messages in a single di-
rection from two different neighbors that indicate that a node n′

contributed to the costs calculation of both messages, it detects a
cycle. By removing one of the edges through which it received
these messages the agent can eliminate the cycle. If all cycles are
eliminated, the result will be a spanning tree that was found in lin-
ear time. Running Max-sum_AD in both directions on the gener-
ated tree and then using value propagation in an additional iteration
would give us the optimal assignment for this tree structured graph.
Accounting for removed edges as in [14] would result in a bounded
approximation.

We note that the method described above is naive in its selection
of removed edges and therefore is expected to give worse bounds
than the bounds found by [14]. We leave for future work the in-

271

vestigation of the information that can be accumulated in the alter-
nating process of Max-sum_AD that can result in producing tighter
bounds.

9. CONCLUSION
The Max-sum algorithm offers an innovative approach for solv-

ing DCOPs. Unfortunately, when problems include cycles of vari-
ous sizes in the factor graph, the algorithm does not converge and
the states it visits are of low quality.

In this paper we proposed a new version of the Max-sum algo-
rithm, Max-sum_AD, which guarantees convergence. Max-sum_AD
uses an alternating DAG to avoid cycles. We proved that when the
algorithm is performed in a single direction, it converges after a
linear number of iterations. After performing a linear number of
iterations in each direction the algorithm converges to a high qual-
ity solution after considering all of the problem’s constraints. If we
keep alternating directions the algorithm converges to states that
are not necessarily monotonically improving. In fact, our empirical
results reveal that after the second direction change, the algorithm
explores states of lower quality.

We further identify a possible reason for this behavior of the al-
gorithm. We demonstrate that costs calculated by the algorithm
propagated and used for selecting value assignments by agents are
often considering different value assignment for the same variable
and thus are inconsistent. In order to overcome this shortcoming
of the algorithm we propose the use value propagation. To vali-
date that we propagate values with high quality we begin the value
propagation phase after the algorithm has converged for the second
time and considered all the problem’s constraints.

Our empirical study shows the advantage of the combination of
Max-sum_AD with value propagation over previous versions of
the Max-sum algorithm. Value propagation allows the algorithm
to monotonically improve the solutions it finds in each direction
until it converges to a solution with much higher quality than the
other version of Max-sum find. On small problems for which we
were able to find the optimal solution using a complete algorithm,
Max-sum_AD_VP found solutions that approximate the optimal
solution by a factor of roughly 1.1 on average.

Acknowledgment: We thank Arnon Netzer and Or Peri for pro-
ducing the results of the complete algorithm and for their advice on
how to improve the paper.

10. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] I. Brito, A. Meisels, P. Meseguer, and R. Zivan. Distributed
constraint satisfaction with partially known constraints.
Constraints, 14(2):199–234, 2009.

[3] I. Brito and P. Meseguer. Improving dpop with function
filtering. In AAMAS, pages 141–148, 2010.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In Proc. 7th International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-08), pages 639–646, 2008.

[5] A. Gershman, A. Meisels, and R. Zivan. Asynchronous
forward bounding. J. of Artificial Intelligence Research,
34:25–46, 2009.

[6] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe.
Asynchronous algorithms for approximate distributed

constraint optimization with quality bounds. In AAMAS,
pages 133–140, 2010.

[7] F. R. Kschischang and B. J. F. andH. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE
TRANSACTIONS ON INFORMATION THEORY,
47:2:181–208, Febuary 2001.

[8] J. Larrosa and T. Schiex. Solving weighted csp by
maintaining arc consistency. Artificial Intelligence,
159:1–26, 2004.

[9] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for dcop: A graphical-game-based approach. In
Proc. Parallel and Distributed Computing Systems PDCS),
pages 432–439, September 2004.

[10] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
asynchronous distributed constraints optimizationwith
quality guarantees. Artificial Intelligence, 161:1-2:149–180,
January 2005.

[11] J. P. Pearce and M. Tambe. Quality guarantees on k-optimal
solutions for distributed constraint optimization problems. In
IJCAI, Hyderabad, India, January 2007.

[12] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, pages 266–271, 2005.

[13] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R.
Jennings. Decentralized coordination in robocup rescue.
Comput. J., 53(9):1447–1461, 2010.

[14] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artif. Intell., 175(2):730–759, 2011.

[15] R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings.
Decentralised coordination of continuously valued control
parameters using the max-sum algorithm. In AAMAS (1),
pages 601–608, 2009.

[16] M. E. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a "me" in "team"?: distributed
multi-agent optimization under uncertainty. In Proc. of the
9th conference on Autonomous Agents and Multi Agent
Systems (AAMAS 2010), pages 109–116, May 2010.

[17] W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy,
A. Rogers, and N. R. Jennings. Max-sum decentralised
coordination for sensor systems. In AAMAS ’08: Proceedings
of the 7th international joint conference on Autonomous
agents and multiagent systems, pages 1697–1698, 2008.

[18] M. Vinyals, J. A. Rodríguez-Aguilar, and J. Cerquides.
Constructing a unifying theory of dynamic programming
dcop algorithms via the generalized distributive law.
Autonomous Agents and Multi-Agent Systems,
22(3):439–464, 2011.

[19] M. Vinyals, E. Shieh, J. Cerquides, J. A. Rodriguez-Aguilar,
Z. Yin, M. Tambe, and E. Bowring. Quality guarantees for
region optimal dcop algorithms. In Proc. of 10th Int. Conf.
on Autonomous Agentsand Multiagent Systems (AAMAS
2011), pages 133–140, Tapei, 2011.

[20] W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: An
asynchronous branch-and-bound dcop algorithm. J. Artif.
Intell. Res. (JAIR), 38:85–133, 2010.

[21] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparishon and applications to constraints optimization
problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.

272

Improving BnB-ADOPT+-AC

Patricia Gutierrez Pedro Meseguer
IIIA - CSIC

Universitat Autonoma de Barcelona
08193 Bellaterra, Spain

{patricia|pedro}@iiia.csic.es

ABSTRACT
Several multiagent tasks can be formulated and solved as
DCOPs. BnB-ADOPT+-AC is one of the most efficient al-
gorithms for optimal DCOP solving. It is based on BnB-
ADOPT, removing redundant messages and maintaining soft
arc consistency during search. In this paper, we present sev-
eral improvements for this algorithm, namely (i) a better
implementation, (ii) processing exactly simultaneous dele-
tions, and (iii) searching on arc consistent cost functions.
We present empirical results showing the benefits of these
improvements on several benchmarks.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms

Keywords
distributed constraint optimization, soft arc consistency

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs)

provide a useful framework for modeling many multiagent
coordination tasks. Some of them are meeting scheduling
[9], sensor network [6], traffic control [7], coalition structure
generation [15], among others. DCOPs involve a number
of distributed agents handling variables with finite domains
and cost functions over positive integers. Agents exchange
messages to coordinate and find a complete variable assign-
ment with minimal cost.

Several distributed search algorithms have been proposed
to optimally solve DCOPs: ADOPT [13], DPOP [14], NCBB
[2], OptAPO [10], among others. In this paper we consider
BnB-ADOPT [16], which uses depth-first branch-and-bound
search. In particular, we work on the BnB-ADOPT+-AC
version [4], which combines BnB-ADOPT+ with soft arc
consistency (AC) in DCOP resolution. Soft arc consistency
allows to calculate lower bounds that are useful to identify

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

sub-optimal values, when the individual cost of a value sur-
passes a suitable upper bound. In BnB-ADOPT+-AC sub-
optimal values are removed dynamically during search, with
two consequences. First, the search space of the problem be-
comes smaller, so its traversal can be done more efficiently.
Secondly, as result of these deletions more informed lower
bounds might appear, leading to further deletions. Although
this process requires some extra computation and informa-
tion exchange over the version not including AC, its overall
effect is very beneficial for the global performance, leading
to a substantial decrement in the amount of communication
and computation required for optimal DCOP solving [4].

In this paper we present several improvements for BnB-
ADOPT+-AC, namely (i) a better implementation (ii) search-
ing on arc consistent cost functions and (iii) processing ex-
actly simultaneous deletions. We present an empirical inves-
tigation on two benchmarks, first comparing BnB-ADOPT+

with the DP2 heuristic [1], with AC and with the combina-
tion AC-DP2. Interestingly, results show that combining AC
with DP2 (something theoretically possible) produces better
results than any of them in isolation. Second, the proposed
modifications are empirically evaluated. Their combination
always obtains the best results in both communication and
computation for all problems tested. For some cases, savings
reach up to one order of magnitude.

The paper is structured as follows. In Section 2 we sum-
marize some concepts needed in the rest of the paper. In Sec-
tion 3 we present a better implementation of BnB-ADOPT+-
AC which substancially reduces computation. In Section 4
we describe the issue of simultaneous deletions, providing
solutions involving extra messages. In Section 5 we explain
preprocess and search process using AC cost functions. We
experimentally evaluate these points in Section 6. Finally,
we conclude the paper in Section 7.

2. PRELIMINARIES

2.1 DCOP
A Distributed Constraint Optimization Problem (DCOP)

is defined by 〈X ,D, C,A,α〉, where X = {x1, . . . , xn} is a set
of variables; D = {D1, . . . , Dn} is the set of finite domains
of X , such that x1 takes values in D1,...,xn takes values in
Dn; C is a set of cost functions used to evaluate the costs of
value assignments; A = {a1, . . . , ap} is a set of agents and
α : X → A maps each variable to one agent. We use binary
Cij : Di × Dj 7→ N ∪ {0,∞} and unary Ci : Di 7→ N ∪
{0,∞} cost functions. The cost of a complete assignment,
in which every variable has assigned a value, is the sum

273

of all binary and unary cost functions evaluated on those
values. We make the common assumption that one agent
handles only one variable, and thus we use the terms variable
and agent interchangeably. Agents communicate through
messages, which are never lost and are delivered in the order
that they were sent. Message delay is random but finite.

A DFS pseudo-tree is a graph structure used to represent
a DCOP instance, where nodes in the graph correspond to
variables and edges connect pairs of variables appearing in
the same binary cost function. There is a subset of edges
called tree edges that form a rooted tree and are chosen fol-
lowing a depth-first (DFS) traversal of the graph. All other
remaining edges are called backedges. Tree edges connect
parent-child nodes, while backedges connect a node with its
pseudo-parents and pseudo-children. Two variables sharing
cost functions are in the same branch of the DFS tree. Sev-
eral distributed algorithms exploit a pseudo-tree arrange-
ment of their variables [13, 16], which allow agents posi-
tioned in different branches of the DFS to perform search in
parallel.

2.2 BnB-ADOPT
BnB-ADOPT [16] is a distributed search algorithm that

optimally solves DCOP. It is a depth-first branch-and-bound
version of ADOPT [13] showing better performance.

Agents in BnB-ADOPT are first arranged in a DFS pseudo-
tree, so they know their parent, pseudoparents, children and
pseudo-children. Agents i and j sharing cost function Cij
maintain a local copy of the cost function. Every agent xi
maintain a context which contains its knowledge about the
current value assignments of its ancestors. The context is
updated through message exchange. For every domain value
d and the current context, xi maintains a lower and upper
bound LB(d) and UB(d), and the bounds LB and UB, cal-
culated in the following way:

δ(d) =
X

(xj ,dj)∈context
Cij(d, dj)

LB(d) = δ(d) +
X

xc∈children
lbc(d) LB = min

d∈Di
{LB(d)}

UB(d) = δ(d) +
X

xc∈children
ubc(d) UB = min

d∈Di
{UB(d)}

where lbc(d) and ubc(d) store the LB and UB values of
children xc for domain value d.

The goal of every agent is to explore and ultimately choose
the value that minimizes LB. For pruning, agents store a
threshold TH, which is an estimated upper bound calculated
with the cost of the best solution found so far. The use of
TH allows agents to change value more efficiently.

Some communication is needed to calculate the global cost
of agents assignments and coordinate search towards the op-
timal solution. Three types of messages are used: VALUE,
COST, and TERMINATE, with the following meaning:

• VALUE(i; j; val; th): agent i informs child or pseu-
dochild j that it has taken value val with threshold
th;

• COST(k; j; context; lb;ub): agent k informs parent j
that with context its bounds are lb and ub;

• TERMINATE(i; j): agent i informs child j that i ter-
minates.

Each agent executes the following loop: it reads and pro-
cesses all incoming messages, decides about its value assign-
ment and sends a VALUE message to each child or pseu-
dochild and a COST message to its parent.

BnB-ADOPT+ is a version of BnB-ADOPT which re-
moves most of the redundant messages largely improving
its efficiency, specially in communication. See [5] for details.

2.3 Soft Arc Consistency
Search can be improved by enforcing soft arc consistency,

as a result some sub-optimal values can be identified and
removed, making the search space smaller and therefore,
speeding up the search process. Let (i, a) be agent xi taking
value a, > the lowest unacceptable cost and Cφ a zero-ary
cost function that represents a lower bound of any complete
assignment, we consider soft local consistencies defined in
[8], as follows.

• Node Consistency* : (i, a) is node consistent* (NC∗) if
Cφ + Ci(a) < >; xi is NC∗ if all its values are NC∗

and there is a ∈ Di s.t. Ci(a) = 0; a problem is NC∗

if every variable is NC∗.

• Arc consistency* : (i, a) is arc consistency (AC) wrt.
cost function Cij if there is b ∈ Dj s.t. Cij(a, b) = 0; b
is a support of a; xi is AC if all its values are AC wrt.
every binary cost function involving xi; a problem is
AC∗ if every variable is AC and NC∗.

AC∗ can be reached modifying the original problem to ob-
tain supports to NC∗ values and removing not NC∗ values.
Supports are obtained on every value by (1) projecting the
minimum cost from its binary cost functions to its unary
costs, and (2) projecting the minimum unary cost into Cφ.
Projection (1) requires the decrement of a minimum cost
λ from the binary cost functions, and the increment of λ
in the unary costs. Projection (2) requires the decrement
of a minimum cost λ from the unary cost functions, and
the increment of λ to Cφ. Every time a not NC* value is
removed on agent xi the AC* property must be rechecked
on neighboring agents. The systematic application of these
operations maintains the optimum in the resulting prob-
lem. These problems –the original and the AC* modified
problem– are refered as equivalent [8].

NC∗ has become standard in the soft local consistency
community, to the point that higher local consistencies using
it are named without asterisk [3]. Following this trend, in
the rest of the paper AC∗ is written AC.

2.4 BnB-ADOPT+-AC
In [4] this algorithm is called BnB-ADOPT+-AC*. Since,

nowadays AC* is written AC [3], we follow this terminology
and refer to this algorithm as BnB-ADOPT+-AC (without
asterisk).

BnB-ADOPT+-AC [4] is an algorithm that combines dis-
tributed branch-and-bound search with soft arc consistency.
Its search process is based on BnB-ADOPT+, maintaining
the same data and communication structure. The main
difference is that agents are able to detect and delete sub-
optimal values. A value can be found sub-optimal as result
of enforcing AC on a copy of the original cost functions.

The inclusion of AC in BnB-ADOPT+ have caused a num-
ber of modifications in the original algorithm, both in the
structure of the exchanged messages and in the computation
done. Regarding messages:

274

• COST messages include the variable subtreeContr that
aggregates the costs of unary projections to Cφ made
on every agent of the DFS subtree;

• VALUE messages include >, which is constantly re-
fined with the best solution found so far, and Cφ. Both
are calculated at the root agent of the DFS;

• a new DEL message is introduced to inform deletions
to neighbors; with message DEL(i; j; d), i informs neigh-
bor j that it has deleted value d. When received, neigh-
bors recheck the AC property on their values, which
may lead to further deletions.

Regarding memory, the domain of neighbors have to be
represented in each agent, so memory requirements increase
in O(nd). Regarding computation, values are tested for dele-
tion and cost functions are projected (binary into unary,
unary into Cφ). A value d is proved sub-optimal and can
be deleted unconditionally from the domain of xi if Ci(d) +
Cφ > >. Only the agent owner of a variable can delete val-
ues in its domain. AC enforcing is done in a preprocessing
step and also during search every time a value is deleted.

When performing projections in two constrained agents i
and j, changes on Cij should be done carefully since i and
j operate asynchronously and after a while they might end
up with different copies of Cij . In [4] authors explain how
to maintain a Legal Representation of Cost Functions. To
maintain a legal representation, i has to simulate the action
of j on its Cij copy, and vice versa. This can be done in the
following way. There is a pre-established ordering for pro-
jections. In preprocess, agents always project first on higher
agents and afterwards on lower agents (where higher/lower
is referred to the position of agents in the DFS tree). When
a deletion occurs in one agent, the agent projects binary
costs over neighbors and sends DEL messages to neighbors.
When a DEL message is received on a neighbor, the neigh-
bor projects binary costs over self . By this, it is assured
that the same cost is not counted twice when performing
projections which may lead to delete optimal values. For
details, see [4].

3. IMPROVING BNB-ADOPT+-AC IMPLE-
MENTATION

In BnB-ADOPT+-AC, agents check their domain every
time there is a potential opportunity for deletion. For ex-
ample, every time an agent processes a COST or a VALUE
message, it checks if some values can be deleted from its
domain. Since Cφ and > are informed in VALUE messages
and the contribution of every children to Cφ is informed
in COST messages, every time this information is updated
a new opportunity for value deletion might appear. Now,
we propose to check for deletions after the agent has com-
pletely processed the input queue. Such as it happens when
agents decide to change value, agents will first gather all
information from incoming messages before checking its do-
main. Also, instead of sending one DEL message for every
deleted value, we send a list of all deleted values in the same
DEL message. These modifications reduce computational
cost and assure that agents will send at most one DEL mes-
sage to each neighbour per cycle.

In BnB-ADOPT+-AC unary projections to Cφ are done
every time there is a possibility to increment the agents local

contribution to Cφ. This can happen when a value is deleted
or when AC is reinforced. Now, we propose to perform this
operation after the agent has completely processed the input
queue. We do this for the following reason. Every time there
is a unary projection, the unary costs of the agent are decre-
mented. In the centralized case, this decrement is quickly
compensated with an increment in the global Cφ, but in a
distributed setting this compensation is not immediate, it
takes some time. First the agent contribution must travel in
COST messages to the root agent, where is aggregated with
other contributions. Afterwards the aggregated Cφ is in-
formed in VALUE messages to lower neighbours. Since this
process might take several cycles, we delay the decrement
of unary costs on an agent until the next COST message is
sent.

Delaying checking for deletions and projections of unary
contributions to Cφ reduce considerably the computational
effort made by BnB-ADOPT+-AC, although in some cases
this causes some extra messages (since these operations are
not done as early as they could be). For empirical results
on this see Section 6.

4. SIMULTANEOUS DELETIONS
If deletions are non-simultaneous in BnB-ADOPT+-AC

[4](that is, if two deletions never occur at the same time on
neighboring agents), it is easy to see that projections are
always done in the same order on every agent, so cost func-
tions on both agents eventually remain equivalent. However,
in the case that deletions occur at the same time on neigh-
bouring agents, something different happens.

Consider the example in Figure 1. First row correspond to
actions taking place inside agent i and second row actions
taking place inside agent j. Every column show simulta-
neous operations, occurring at the same time on i and j.
Agents i and j only store the unary costs of their own do-
main. Black domain values and costs are the actual values
and costs stored in an agent. Gray domain values and costs
are what an agent believes of the neighbor agent. Lines rep-
resent binary costs Cij with cost one. Initially, Cφ = 0,
Ci(b) = 1, Cj(b) = 1 and the rest of unary costs are zero.

a
i

a
j

a
i

a
j

a
i

a
j
(1) (1)a

b
a
b

a
b

a
b

a
b

a
b

(1)

ti

(1)

(1) (1) (1)b bb
c

b
c

b b
cA

ge
n

() () ()

Deletion on i Projection i → j
i receives DEL from j

A

Projection j → i
i receives DEL from j

i j i j i j
a
i

a
j

a
i

a
j

(1) a
i

a
j

(1)

b b b b b b

tj

(1) (1) (1)

c c
P j ti j i

c

A
ge

nt

P j i i jDeletion on j Projection j → i
j receives DEL from i

A Projection i → j

Figure 1: Agents i and j, and the process of two si-
multaneous deletions. Possible values for each agent
are a, b, c, unary costs appear between parenthesis.
In black, what an agent knows of itself. In grey,
what an agent believes of the other agent. Lines in-
dicate pairs of values with cost 1, no lines indicate
cost 0.

275

On the first column, two simultaneous deletions take place.
On second column, both agents make a projection over the
neighbor. When projecting over the neighbor, binary costs
are reduced from Cij and the agent assumes that an incre-
ment in the unary costs of neighbor will eventually occur
when the DEL message arrives to the neighbor. But notice
that, because these operations occur at the same time, the
order of resulting projections is opposite on agent i and j.
This would not be the case if one deletion would have pre-
ceded the other. Then both agents would have kept the same
ordering in projections (for example, a projection first from
i to j and after from j to i) and they would have obtained
Cφ = 1. Notice that in the example Cφ remains zero.

Both agents projected at the same time a binary cost of 1
to the unary cost of its neighbor, but this operation has not
actually taken place on the neighbor, so this cost has been
lost from the problem. Notice that costs are not counted
twice and no illegal deletions are produced, but we have
lost a cost of 1 from the problem, which diminish deletion
opportunities. In addition, on the last column the resulting
cost functions on i and j are not equivalent. 1

We can avoid this undesirable behavior assuring synchronous
deletions. It is impossible that two agents know they are per-
forming deletions at the same time, but it is possible that
they communicate beforehand and agree on the order to fol-
low. If one deletion always precedes the other, projections
on neighboring agents maintain the same order. This as-
sures that cost functions remain equivalent and no costs are
lost from the problem.

4.1 Synchronizing Deletions
To maintain synchronous deletions, two main changes must

be done in BnB-ADOPT+-AC:

• Two new messages are introduced to synchronize dele-
tions: SYNC1 and SYNC2

• Agents have a locked property. While an agent is locked
it is able to read and process messages, but it will not
change its value or send messages to neighbors, except
for synchronization messages SYNC1 and SYNC2. An
agent is locked because it is waiting to delete a value,
or because a deletion is occurring in one or several
neighbors. A locked agent changes to unlocked when
it is no longer locked with any of its neighbors.

On Figure 2 a pseudocode of the synchronous deletion
process for BnB-ADOPT+-AC is shown. The rest of the
algorithm is shown in Figure 3. The pseudocode is based
on the implementation proposed in [4]. Modifications are
described below.

Synchronizing deletion contains the following steps:

1. After completely processing the input queue, the back-
track method is invoked and the agent checks its do-
main looking for sub-optimal values [line 47].

1One may wonder if the approach of [4] is correct and com-
plete. The answer is yes because search is done using a copy
of the original cost functions which is only modified to reflect
value deletions. There is another copy of cost functions used
for AC enforcement, on which cost projections are done, but
this copy is not used for search. This is further elaborated
in section 5.

1 procedure CheckDomainForDeletions()
2 for each v ∈ Dself do
3 if Cself (v) + Cφ > > or (

P
ch∈children lb(ch, v) > >

4 and childrenContexts(ch, v) = {self}) then
5 valuesToDelete.add(v);
6 if valuesToDelete.size > 0 then
7 for each k ∈ neighbors(self) do
8 if ¬hasStopped(k) then
9 sendMsg:(DEL, self , k , valuesToDelete);
10 locked(k) = true;
11 UpdateLockStatus();

12 procedure ProcessDelete(msg)
13 if locked(msg.sender) and self < sender then
14 processPending(msg.sender) = msg;
15 else
16 Dsender ← Dsender − {msg.valuesToDelete};
17 BinaryProjection(self , sender);
18 sendMsg:(SYNC1 , self ,msg.sender);
19 if ¬hasStopped(msg.sender) then
20 locked(msg.sender) = true;
21 UpdateLockStatus();

22 procedure ProcessSYNC1(msg)
23 locked(msg.sender) = false;
24 UpdateLockStatus();
25 if ¬locked then
26 Dself ← Dself − valuesToDelete;
27 valuesToDelete← ∅
28 for each k ∈ neighbours do
29 BinaryProjection(k , self); sendMsg:(SYNC2 , self , k);
30 for each msg ∈ processPending do
31 ProcessDelete(msg);
32 processPending.remove(msg);

33 procedure ProcessSYNC2(msg)
34 locked(msg.sender) = false;
35 UpdateLockStatus();

36 procedure UpdateLockStatus()
37 locked = false;
38 for each k ∈ neigbors(self) do if locked(k) then locked = true;

39 procedure ProcessStop(msg)
40 if msg.sender == parent then receivedTerminate← true;
41 locked(msg.sender) = false;
42 UpdateLockStatus();
43 hasStopped(msg.seder) = true;

44 procedure Backtrack()
45 if locked then return;
46 UpdateLBUB();
47 CheckDomainForDeletions();
48 if locked then return;
49 if LB(value) ≥ min(TH,UB) then
50 value← argminv∈Dself {LB(v)};
51 UnaryProjectionOverCo();
52 if value has changed then
53 SendValueToLowerNeighbors();
54 else
55 SendValueToChildrenToUpdateTH();
56 if (receivedTerminate or self == root) and LB == UB and
57 LB(value) == UB(value) then
58 SendStopMessageToLowerNeighbors();
59 SendCostToParent();

Figure 2: Pseudocode for Syncronizing Deletions.

2. A value v is proved sub-optimal under certain condi-
tions [lines 3-4]: when its unary cost plus Cφ exceeds
> or when the sum of its lower bounds exceeds > and
this bounds were sent with a context that contains
only the self agent (the bounds do not depend on any
other agent, for more detail see [4]). When agent i re-
alizes that it can delete values from its domain, instead
of immediately erasing them, it marks them as pend-

276

60 procedure AC-Preprocess()
61 for each i ∈ neigbors(self) do
62 if i < self then
63 BinaryProjection(self , i);
64 BinaryProjection(i, self);
65 else
66 BinaryProjection(i, self);
67 BinaryProjection(self , i);
68 CheckDomainForDeletions();
69 UnaryProjectionOverCo();

70 procedure BinaryProjection(i, j)
71 for each a ∈ Di do
72 v ← argminb∈Dj

{Cij (a, b)};
73 α← Cij(a, v);
74 for each b ∈ Dj do
75 Cij(a, b)← Cij(a, b)− α;
76 if i = self then Ci(a)← Ci(a) + α;

77 procedure Start()
78 for each d ∈ Di , ch ∈ children(self) do
79 InitChild(ch, d);
80 InitSelf();
81 Backtrack();
82 loop forever
83 if (message queue is not empty) then
84 while (message queue is not empty) do
85 pop msg off message queue
84 Process(msg);
86 Backtrack();

87 procedure InitSelf()
88 value← argminv∈Dself {LB(v)};
89 TH =∞;

90 procedure InitChild(ch, d)
91 lb(ch, d) = 0;
92 ub(ch, d) =∞;

93 procedure ProcessVALUE(msg)
94 add (msg.sender,msg.value) to context
95 CheckContextWithChildren();
96 if (msg.sender == parent) then
97 TH = msg.threshold;
98 if Cφ < msg.Cφ then Cφ = msg.Cφ;
99 if > < msg.> then > = msg.>;

100procedure ProcessCOST(msg)
101 d← value of self in msg.context
102 PriorityMerge(context,msg.context);
103 CheckContextWithChildren();
104 if (context compatible with msg.context)
105 childrenContexts(msg.sender, d) = msg.context;
107 lb(msg.sender, d) = max{msg.lb, lb(msg.sender, d)};
108 ub(msg.sender, d) = min{msg.ub, ub(msg.sender, d)};
109 subtreeContr(msg.sender) = msg.subtreeContr;

110procedure CheckContextWithChildren()
111 for each d ∈ Di , ch ∈ children(self) do
112 if (childrenContexts(ch, d) incompatible with context) then
113 InitChild(ch, d);

Figure 3: Pseudocode for Preprocess and Process
Phase.

ing to delete and sends DEL messages to neighbours
k1, k2, ..ki . Afterwards, i is locked with neighbours
k1, k2, ..ki, so i can process incoming messages but it
can not change its value or send VALUE, COST or
DEL messages [lines 6-11].

3. When neighbor k receives a DEL message from i it
can be the case that k is already locked with i, this
means that simultaneous deletions are taking place.
In this case, the higher agent is the one that processes
the DEL message first, otherwise the message remains

as process pending [lines 13-14] and will be processed
afterwards when the agent is unlocked [lines 30-32]. To
process the DEL message, k deletes the values of i from
its domain copy of i, and performs a projection Pi→k
from i to k. After this, it sends a message SYNC1 to
i to inform that the deletion has been processed, and
change its status to locked with i [lines 16-21].

4. Only after receiving SYNC1 message from all its neigh-
bours i is unlocked. At this point, all neighbours k
have done a projection Pi→k from i to k. Then, i
deletes the values from its domain, makes projections
Pi→k on every neighbor k, and send a SYNC2 messages
to neighbours [lines 23-29].

5. When neighbour k receives a SYNC2 message from i,
it unlocks from i [lines 34-35].

6. A special case should be consider on termination. When
an agent terminates execution it informs its lower neigh-
bours [lines 40-43]. Once an agent has stopped, it
will no longer be considered in the synchronizing pro-
cess because it will not be able to respond, causing
other agents to freeze forever. Therefore, before send-
ing DEL messages to an agent or updating the locked
status with an agent, it is first checked that the agent
has not stopped execution [line 8, line 19].

5. SEARCH ON AC COST FUNCTIONS
One of the main goals of AC is to construct strong lower

bounds. Zero-ary cost Cφ is a lower bound of the optimal
solution. Unary cost Ci(v) +Cφ is a lower bound of domain
value v. Lower bounds are useful to identify sub-optimal
values when Ci(v) +Cφ > >. In addition, they can provide
a heuristics for value selection which may improve search
efficiency.

In [1] authors propose a preprocessing technique for ADOPT
algorithm, and show that by calculating lower bounds for ev-
ery domain value they are able to speed up ADOPT search.
In [11] authors transform the original problem into an equiv-
alent one projecting costs in a preprocessing step, then ADOPT
is executed in the equivalent problem with performance im-
provements. In these two approaches authors aggregate
lower bounds and use them during ADOPT search, but no
deletions are performed.

We think deletions are a key point when enforcing soft
arc consistency, since they lead to refinements in the lower
bounds and further deletions. We perform deletions dur-
ing AC preprocessing and also during search. Aiming at
maintaining such deletions, we would like to use the same
cost functions to perform search and to enforce AC: this
would provide us a good value ordering (because costs are
updated in the AC cost functions), combined with the dele-
tions caused by AC enforcing.

Unfortunately, using the same cost functions for search
and for AC enforcing is not an easy task. Consider the fol-
lowing case in Figure 4. Suppose an agent x has child ch,
descendant d and ancestor a. There is a back-edge between
a and d (Figure 4 (left)). Suppose a deletion takes place on
descendant d and some costs c are moved from Cda to Ca
(Figure 4 (center)). As result, an increment of costs occurs
in a and a decrement occurs in ch subtree (this is because
when calculating costs, agents aggregate their back-edges
costs). The problem arises when COST messages arrive to

277

a

x

ch

dd

a
Increment Ca

Projection P d→a
Decrement Cda COST

x

COST
ch

COST

dd
Deletion in d

a
Deletion in a

Projection P a→d
Decrement Cad COST

x
Cad

COST
ch

COST

d
Increment Cd

Figure 4: Performing projections during search pro-
cess. Left: a problem instance. Center: a deletion
takes place on a descendant. Right: a deletion takes
place on an ancestor

x or a. If these messages where sent before deletion, they will
contain in their LB, UB the cost c, but this cost is no longer
in ch subtree, so the message must be ignored. Furthermore,
the lb and ub tables in x and a should be reinitialized, be-
cause they may contain aggregated costs involving c, which
will be counted twice if a COST message is sent from this
agents without reinitialization.

Similarly, some problems occur if a deletion takes place on
ancestor a and a cost c is moved from Cad to Cd (Figure 4
(right)). There will be a cost increment in ch subtree and a
decrement in a. If tables lb and ub are not reinitialized in x
and a, the new COST messages from ch subtree containing
c might not be accepted because the algorithm assumes that
LB and UB improve monotonically, unless there is a context
change.

Therefore, after deletions lb and ub tables must be reini-
tialized on neighbouring agent and even on other agents
in the DFS branch. These reinitializations after deletions
might lead to a serious degradation in performance, which
makes deletion useless for efficiency gains.

To avoid reinitializations, we propose the following ap-
proach:

• Two copies of the cost functions are used: Csearch and
CAC . Initially, they are identical.

• In preprocess, projections are performed on CAC . Since
we proposed a mechanism to synchronize deletions, it
is assured that all projections are done in the same
order on every agent, so no costs are lost from the
problem and after preprocessing Csearch and CAC rep-
resent equivalent problems (one is AC, the other is not
neccesarily AC).

• After preprocess, we make Csearch = CAC

• During search, costs are calculated using Csearch ag-
gregating binary, unary and zero-ary costs. Any new
projection performed during search is done only on
CAC .

• During search, any value deletion computed using CAC
is applied on Csearch. Observe that this is a legal op-
eration.

Notice that syncronous deletions are needed during pre-
processing to search in AC cost functions.

6. EXPERIMENTAL RESULTS
We evaluate experimentally the changes proposed in BnB-

ADOPT+-AC on two benchmarks: random DCOPs and
structured Meeting Scheduling. Experiments are executed
on a discrete event simulator and performance is evaluated
in terms of the total number of messages exchanged among
agents (#Total Msgs) and the number of non concurrent
constraint checks (#NCCC) [12]. In every cycle of the sim-
ulator, agents read incoming messages from the message
queue, process them and send outgoing messages. The sim-
ulation stops when all agents have stopped and no messages
are exchanged.

Binary random DCOP are characterized by < n; d; p1 >
where n is the number of variables, d is the domain size and
p1 is the network connectivity. A random instance contains
p1 ∗ n(n − 1)/2 cost functions. We tested random DCOP
instances with: < n = 10; d = 10; p1 = 0.3, . . . , 0.8 >. Costs
are selected from an uniform cost distribution. To introduce
some variability among tuple costs, two types of binary cost
functions are used, small and large. Small cost functions
extract costs from the set {0, . . . , 10} while large ones extract
costs from the set {0, . . . , 1000}. The proportion of large
cost functions is 1/4 of the total number of cost functions.
Results appear in Table 1, averaged over 50 instances.

Meeting scheduling instances are obtained from the public
DCOP repository [17]. In this formulation, variable repre-
sent meetings, domain represent time sots assigned for a
meeting, and costs functions are set between meetings that
share participants. We present cases A (23 variables), B (26
variables), C (71 variables) and D (72 variables). Results
appear in Table 2, averaged over 30 instances.

We compare with several extensions of BnB-ADOPT. This
algorithm has proved to be clearly more efficient than ADOPT
and as efficient as NCBB for DCOP solving [16]. Compar-
ison with other complete algorithm such as DPOP or Op-
tAPO is truly difficult to measure –and scapes to the pur-
pose of this paper. DPOP uses a linear number of messages
but their size can be exponential, while BnB-ADOPT uses a
linear size and exponential number of messages. OptAPO is
a partially centralized algorithm while BnB-ADOPT is fully
decentralized.

For every case in Meeting Scheduling and every network
connectivity in random DCOPs we show results for:

1. First row: BnB-ADOPT+ including a preprocessing
step to calculate DP2 heuristic [1]. The preprocessing
requires a single pass of messages from leafs to the
root of the DFS tree calculating lower bounds for every
value to focus search. This version improves over the
basic BnB-ADOPT+.

2. Second row: BnB-ADOPT+-AC as described in [4].

3. Third row: BnB-ADOPT+-AC with the DP2 prepro-
cess.

4. Fourth row: BnB-ADOPT+-AC with DP2 preprocess
and the implementation improvements described in Sec-
tion 3.

5. Fifth row: BnB-ADOPT+-AC with DP2 preprocess,
implementation improvements described in Section 3,
synchronous deletions and searching on AC cost func-
tions as described in Sections 4 and 5.

278

p1 Algoritm #Total Msgs #NCCC
BnB-ADOPT+ with
DP2 5,237 57,233
AC 2,753 95,278
AC-DP2 1,455 55,837
AC-DP2-Opt 1,709 21,917

0.3 AC-DP2-Opt-Sync 1,145 14,900
DP2 74,412 991,071
AC 29,318 1,241,569
AC-DP2 21,292 929,218
AC-DP2-Opt 29,176 369,061

0.4 AC-DP2-Opt-Sync 12,711 151,028
DP2 114,615 2,041,320
AC 68,746 4,278,971
AC-DP2 48,168 3,719,577
AC-DP2-Opt 52,276 1,086,782

0.5 AC-DP2-Opt-Sync 13,492 152,007
DP2 393,487 6,290,061
AC 283,767 25,342,026
AC-DP2 148,158 12,629,504
AC-DP2-Opt 155,435 2,819,398

0.6 AC-DP2-Opt-Sync 44,037 766,606
DP2 1,128,513 23,430,101
AC 1,256,489 137,506,730
AC-DP2 734,539 76,132,133
AC-DP2-Opt 842,227 16,878,749

0.7 AC-DP2-Opt-Sync 173,850 3,080,989
DP2 1,207,525 28,551,056
AC 1,885,804 226,355,134
AC-DP2 782,946 90,405,429
AC-DP2-Opt 907,013 20,900,258

0.8 AC-DP2-Opt-Sync 217,847 4,382,452

Table 1: Experimental results on random DCOPs
(10 variables) averaged over 50 instances.

When using DP2, communication and computational ef-
fort (#Total Msgs, #NCCCs) of DP2 preprocessing are in-
cluded in the results. When searching on AC cost functions
(fifth row), it is necessary to execute first the AC preprocess
and afterwards the DP2 preprocess, so the bounds aggre-
gated by DP2 correspond to the AC cost functions that will
be used during search.

For random instances (Table 1), on small and medium
connectivities, less messages are needed enforcing simple AC
that using BnB-ADOPT+ with DP2 (first and second row),
on the other hand more NCCCs are needed since enforcing
AC requires more computational effort. When combining
BnB-ADOPT+-AC with DP2 (third row), we observe a con-
sistent decrement in messages and NCCCs. This confirms
empirically that these techniques aiming to different objec-
tives –the first to provide heuristic values during search, the
second to erase sub-optimal values– can be enhanced when
combined.

Optimizing the implementation of BnB-ADOPT+-AC -
(fourth row) combined with DP2 we obtain important reduc-
tions in NCCCs. We observe a moderate increment (10%-
20%) in the number of messages. This effect is due to the
slight delay in deletions and projections on Cφ (as mentioned
in Section 3). However the decrement in computational ef-
fort is so important that globally we consider the modifica-
tions introduced as an improvement.

p1 Algoritm #Total Msgs #NCCC
BnB-ADOPT+ with
DP2 59,529 310,984
AC 156,448 7,875,894
AC-DP2 45,830 1,176,493
AC-DP2-Opt 55,873 350,132

A AC-DP2-Opt-Sync 39,947 263,345
DP2 20,802 73,900
AC 82,234 2,601,983
AC-DP2 18,643 384,778
AC-DP2-Opt 19,172 94,092

B AC-DP2-Opt-Sync 6,859 41,999
DP2 43,916 129,500
AC 444,730 13,549,666
AC-DP2 38,051 584,284
AC-DP2-Opt 42,745 119,395

C AC-DP2-Opt-Sync 13,946 37,770
DP2 26,448 55,073
AC 304,214 6,157,253
AC-DP2 26,271 329,370
AC-DP2-Opt 29,155 70,428

D AC-DP2-Opt-Sync 17,712 53,405

Table 2: Experimental results on Meeting Schedul-
ing instances (23, 26, 71 and 72 variables) averaged
over 30 instances.

Including simultaneous deletions and searching in AC cost
functions (fifth row) shows clear benefits in the number of ex-
changed messages and NCCC. Savings are higher on medium
and higher connected problems, reaching up to one order of
magnitude in some cases. This makes sense because on high
connected problems, removing a sub-optimal value means
avoiding context changes and reinitializations in many con-
nected agents which are lower in the DFS tree.

In Meeting Scheduling problems (Table 2), we also observe
important benefits. In these problem a simple preprocess to
calculate DP2 heuristic is better than maintaining AC (first
and second row). Moreover, we noticed during experimen-
tation that the lower bound obtained in the root agent by
DP2 preprocessing is actually very close to the optimal cost.
This lead us to think that these instances, although contain
a higher number of variables and cost functions than the ran-
dom instances, are relatively easy to solve in the sense that
only by DP2 preprocess we obtain a good estimation of the
optimal cost, before starting the search. Observe that even
in this case, our improved BnB-ADOPT+-AC version (fifth
row) is able to reduce messages and NCCC in all instances,
in some cases by a factor of 2 or 3.

From these results we can extract some conclusions. First,
it is beneficial to combined soft AC techniques with DP2
heuristic, the joint effort of both techniques is effectively
summed-up and the result is an improvement in perfor-
mance. Second, the combination of the proposed modifi-
cations causes substantial savings in both communication
and computation effort with respect to existing versions of
the considered algorithm. Third, maintaining soft AC to
delete sub-optimal values provides more savings when the
problem is connected and is hard to solve (the problem re-
quires many messages and computation and the cost of the
optimal solution can not be inferred accurately from a single
pass preprocessing technique such as DP2).

279

7. CONCLUSIONS
In this paper we improve the algorithm BnB-ADOPT+-

AC, originally presented in [4], in several ways. First, we
propose some modifications in the implementation of the al-
gorithm, where checking for deletions and projections to Cφ
are delayed until the agent executes the Backtrack proce-
dure. Experimentally we show that this alternative reduces
significantly the number of constraint checks, although the
number of messages is slightly increased. This is due to the
fact that an agent does not refine the Cφ or identify sub-
optimal values as early as it could. However the decrement
in computational effort is so important that we globally con-
sider this change as an improvement.

Secondly, we address the issue of simultaneous deletions
in the asynchronous setting of BnB-ADOPT+-AC. When
neighboring agents perform deletions at the same time, the
order of projections in both agents is opposite and as a result
some costs might be lost from the cost functions where AC
is enforced. During search, BnB-ADOPT+-AC uses original
cost functions while AC is enforced in a copy of these cost
functions, so the reported issue on simultaneous deletions
does not affect optimality or termination. However by los-
ing costs from the problem we lose information which could
lead to identify sub-optimal values. To avoid this, we pro-
vide a synchronization mechanism to assure that projections
are always done in the same order on every agent. This syn-
chronization mechanism assures that no costs are lost but it
requires some extra synchronization messages.

Finally, we propose to search on AC cost functions ob-
tained after a preprocessing step since lower bounds calcu-
lated for every value can provide a heuristic for value selec-
tion. To do this, we need to assure synchronous deletions
so Coriginal and CAC are equivalent after preprocessing (no
costs are lost). Deletions are able to improve search and
the inclusion of synchronization messages to guarantee that
no costs are lost in the preprocessing, is compensated with
message savings during search.

The aggregation of these three modifications produces a
complete algorithm with communication and computation
efforts substantially smaller than previous versions of BnB-
ADOPT+ (including either AC [4], DP2 heuristics [1] or a
combination of both). In most cases, messages and NCCCs
are reduced by at least a factor of 2, reaching up to one
order of magnitude for some cases. These results allow us to
consider the proposed approach as an important step foward
towards more efficient algorithms for optimal DCOP solving.

It remains as future work to apply and evaluate the im-
pact of the proposed techniques in other distributed search
algorithms.

8. ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their

comments, they helped us to make a better paper. Patri-
cia Gutierrez has an FPI scholarship BES-2008-006653. She
and Pedro Meseguer are partially supported by the project
TIN2009-13591-C02-02.

9. REFERENCES
[1] S. Ali, S. Koenig, and M. Tambee. Preprocessing

techniques for accelerating the DCOP algorithm
ADOPT. Proc. of AAMAS, 2005.

[2] A. Chechetka and K. P. Sycara. No-commitment
branch and bound search for distributed constraint
optimization. In Proc. of AAMAS, pages 1427–1429,
2006.

[3] M. Cooper, S. de Givry, M. Sanchez, M. Zytnicki, and
T. Werner. Soft arc consistency revisited. Artificial
Intelligence, 174:449–478, 2010.

[4] P. Gutierrez and P. Meseguer. BnB-ADOPT+ with
several soft arc consistency levels. Proc. of ECAI,
pages 67–72, 2010.

[5] P. Gutierrez and P. Meseguer. Saving messages in
BnB-ADOPT. Proc. of AAAI, 2010.

[6] M. Jain, M. Taylor, M. Tambe, and M. Yokoo.
DCOPs meet the realworld: Exploring unknown
reward matrices with applications to mobile sensor
networks. Proc. of IJCAI, 2009.

[7] R. Junges and A. L. C. Bazzan. Evaluating the
performance of DCOP algorithms in a real world
dynamic problem. Proc. of AAMAS, 2008.

[8] J. Larrosa and T. Schiex. In the quest of the best form
of local consistency for weighted CSP. Proc. of IJCAI,
2003.

[9] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,
and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event
scheduling. Proc. of AAMAS, 2004.

[10] R. Mailler and V. Lesser. Asynchronous partial
overlay: A new algorithm for solving distributed
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 25:529–576, 2006.

[11] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and
H. Matsuo. Directed soft arc consistency in pseudo
trees. Proc. of AAMAS, 2009.

[12] A. Meisels, E. Kaplansky, Igor, Razgon, and R. Zivan.
Comparing performance of distributed constraints
processing algorithms. Proc. of DCR, pages 86–93,
2002.

[13] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180, 2005.

[14] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In Proc.
IJCAI-05, pages 266–271, 2005.

[15] S. Ueda, A. Iwasaki, and M. Yokoo. Coalition
structure generation based on distributed constraint
optimization. Proc. of 24th AAAI, pages 197–203,
2010.

[16] W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT:
Asynchronous branch-and-bound DCOP algorithm.
Journal of Artificial Intelligence Research, 38:85–133,
2010.

[17] Z. Yin. USC DCOP repository.
http://teamcore.usc.edu/dcop, 2008.

280

Optimal Decentralised Dispatch of Embedded Generation
in the Smart Grid

Sam Miller, Sarvapali D. Ramchurn, Alex Rogers
Agents, Interaction and Complexity Group

School of Electronics and Computer Science
University of Southampton, UK

{sjom106,sdr,acr}@ecs.soton.ac.uk

ABSTRACT
Distribution network operators face a number of challenges;
capacity constrained networks, and balancing electricity de-
mand with generation from intermittent renewable resources.
Thus, there is an increasing need for scalable approaches to
facilitate optimal dispatch in the distribution network. To
this end, we cast the optimal dispatch problem as a de-
centralised agent-based coordination problem and formalise
it as a DCOP. We show how this can be decomposed as
a factor graph and solved in a decentralised manner using
algorithms based on the generalised distributive law; in par-
ticular, the max-sum algorithm. We go on to show that
max-sum applied näıvely in this setting performs a large
number of redundant computations. To address this issue,
we present a novel decentralised message passing algorithm
using dynamic programming that outperforms max-sum by
pruning the search space. We empirically evaluate our al-
gorithm using real distribution network data, showing that
it outperforms (in terms of computational time and total
size of messages sent) both a centralised approach, which
uses IBM’s ILOG CPLEX 12.2, and max-sum, for large net-
works.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—intelligent agents, multiagent systems

General Terms
Algorithms, Theory, Performance

Keywords
DCOP, electricity, max-sum, coordination

1. INTRODUCTION
Due to recent incentives for cleaner electricity generation [13],
there has been an increasing amount of renewable generators
embedded in distribution networks [7, 9]. This poses a num-
ber of challenges for distribution network operators (DNOs).

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems – Inno-
vative Applications Track (AAMAS 2012), Conitzer, Winikoff,
Padgham, and van der Hoek (eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Firstly, electricity networks are already highly capacity con-
strained; adding additional generation that is not managed
effectively may overload the networks [14]. Secondly, it is
much harder to balance electricity demand with generation
from intermittent renewable resources. If the DNO fails to
balance the supply and demand, the network can potentially
become unstable which may result in brownouts, and in the
worst case, cascading blackouts.

Thus, there is a clear incentive for DNOs to implement
optimal dispatch1 methods that are able to address these
issues. That is, how should the generators be coordinated,
such that the cost of the network is minimised (i.e., in terms
of carbon dioxide (CO2) emissions or generator running ex-
penditure), whilst satisfying the loads and network con-
straints. Coordinating generators with respect to network
cost, is known as active network management (ANM), and
has recently been addressed in the power systems commu-
nity [3, 14].

Within the ANM domain, a number of authors address
the issues of coordinating generation from intermittent re-
sources in the transmission network (where lines are less
constrained than in the distribution network) [2, 8]. For
example, Davidson et al. present an algorithm for chang-
ing the power outputs of the generators in the transmission
network such that the cost of the network is minimised [2].
However, their technique involves a central authority calcu-
lating each generator’s power output; who must have all the
information about the entire network in order to calculate an
optimal solution. As the size of the network grows, solving
an optimisation problem in a centralised manner eventually
becomes infeasible due to the exponential nature of the con-
straints [6].

In contrast, others have attempted to improve upon cen-
tralised approaches by decomposing the optimal dispatch
problem and distributing the computation of its solution in
order to improve its scalability [8, 10, 16]. For example,
Kim and Baldick introduce a decentralised algorithm which
uses Lagrangian techniques [8]. However, their algorithm
has only been tested on problems containing up to two re-
gions. Thus, it is unclear whether this approach could be
applied to a large network. In the multi-agent systems liter-
ature, Kumar et al. introduce a message passing technique
which extends distributed pseudotree optimisation proce-
dure (DPOP) to solve the related area of research for re-
configuring feeder trees within a distribution network [10].
While this approach is decentralised, and was shown to work

1Optimal dispatch involves coordinating generators such
that the loads and constraints of the network are satisfied.

281

on realistic sized networks, it does not address the problems
highlighted above of incorporating an increasing amount of
distributed generators (DGs) in the distribution network,
and the need to coordinate their output.

Vytelingum et al. tackle the optimal dispatch problem
by managing the trading of electricity between nodes on a
network [16]. However, their technique has only been tested
on problems containing up to 16 nodes. Thus, again it is
unclear whether this approach could be applied to a larger
network. Moreover, their technique is partially centralised;
since each agent needs to know the entire network topology.
In a large network, maintaining this system-wide knowledge
is problematic, especially when faced with renewable gener-
ators whose output is continuously changing.

Against this background, in this paper we address the
challenge of coordinating large numbers of renewable gener-
ators, embedded in the distribution network, by decompos-
ing the optimal dispatch problem into a decentralised agent-
based coordination problem; represented as a distributed
constraint optimisation problem (DCOP). In more detail,
each node in the network is represented by an agent which
undertakes some of the computation required to solve the
optimal dispatch problem; such that demands within the
network are satisfied and CO2 emissions of the entire net-
work are minimised. We further decompose the DCOP as a
factor graph and solve in a decentralised manner using algo-
rithms based on the generalised distributive law (GDL) [1];
in particular, the max-sum algorithm [4]. We go on to show
that max-sum applied näıvely in this setting performs a large
number of redundant computations.

To address this issue, we present a novel message passing
algorithm, called DYDOP (DYnamic programming Decen-
tralised OPtimal dispatch), to calculate an optimal solution
in a decentralised fashion. In particular, we solve the op-
timal dispatch problem on the most common distribution
network types, namely radial networks, which tend to incor-
porate a high number of branches and sources [17]; for which
centralised solutions scale poorly. Other common types of
distribution networks include interconnected networks,2 typ-
ically found in urban settings [5]. However, relays through-
out the network ensure that all but one path is active at any
one time; Multiple paths are present for security of supply.
Therefore, our assumption of acyclic distribution networks
throughout this paper is fully justified. Crucially, our algo-
rithm handles the complexities of balancing flows within the
network, without needing central verification of a particular
solution. Thus, this paper makes the following contributions
to the state of the art:

1. We provide a new formalism of the optimal dispatch
problem as a DCOP. We show how this can be decom-
posed as a factor graph and solved using algorithms
based on the GDL family, such as max-sum.

2. We present DYDOP, a novel decentralised message
passing algorithm, that outperforms max-sum by only
exploring the search space of feasible generator and
distribution cable states.

3. We provide proof of the optimality of our algorithm
and empirically evaluate it, on a large distribution net-
work in India, showing that it outperforms (in terms

2In an interconnected network there are multiple paths from
a substation to a load.

of computational time and total size of messages sent)
both a highly optimised centralised approach, which
uses IBM’s ILOG CPLEX 12.2, and max-sum.

When taken all together, our results set the benchmarks for
the deployment of agent-based coordination algorithms to
solve the optimal dispatch problem in the smart grid.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the formal model of the electricity network
used for optimal dispatch. Section 3 details a new formalism
of the optimal dispatch problem as a DCOP, and Section 4
shows how it can be solved by using max-sum. Section 5
presents our novel decentralised message passing algorithm
DYDOP, presenting proof of optimality. Section 6 gives an
empirical evaluation of DYDOP and Section 7 provides a
discussion for future work. Finally, Section 8 concludes.

2. ELECTRICITY NETWORK MODEL
We now formally describe the model of an electricity network
for which we need to solve the optimal dispatch problem.
Hence, we consider the electric distribution network to be a
network of generators, loads and distribution cables.

In more detail, we consider a set of n generators G =
{g1, ..., gn}. Each generator gi has a certain discrete power
output variable αi ∈ Si kW, where Si = {si

1, ..., s
i
qi
}, si

qi
∈

R+, qi ∈ Z+ is the number of power output values for gen-
erator gi, and S is an n-ary Cartesian product of Si such
that S = {Si × ...× Sn}. Let α ∈ S denote the set of power
output variables for the generators in G. Let ei = CIiαi

denote the CO2 emissions that are produced when gi, with
carbon intensity CIi ∈ R+kgCO2/kWh, outputs αi.

We consider a set of m loads L = {l1, ..., lm}. Each load
li has a certain power consumption βi ∈ R− kW, where
β = {β1, ..., βm} is the set of power consumption variables
for the loads in L.

We denote V = {v1, ..., vk} as the set of k nodes within the
network. A node relays power to other nodes but can also
contain a combination of generators and loads. Let adj(vi)
denote all nodes that are connected to vi via a distribution
cable, let L(vi) be the set of loads that are at vi and G(vi)
be the set of generators that are at vi.

T is the set of s distribution cables within the network,
where tij ∈ T denotes the distribution cable between vi

and vj . Each distribution cable has an associated thermal
capacity tc

ij ∈ R+ kW, which is the maximum power the
cable can safely carry. It should be noted that we assume
that all the distribution cables have the same reactance.

Finally, W(V,T) is a finite undirected graph describing a
network of nodes and distribution cables. F is the set of all
power flows fij ∈ R kW, along the distribution cables in the
network. Given the above definitions, the optimal dispatch
problem, of finding an allocation of power outputs α , is
defined as the problem of minimising:

arg min
α

n∑

i=0

CIiαi (1)

subject to the following constraints:

Constraint 1 The flow along a distribution cable cannot
exceed its capacity:

|fij | ≤ tc
ij (2)

282

Constraint 2 The net flow from vi to vj must be the op-
posite of the net flow from vj to vi:

fij = −fji (3)

Constraint 3 The sum of the generators at vi, the sum
of the loads at vi and the net flow from all nodes w
connected to vi is zero:

∑

w∈adj(vi)

fwi +
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg = 0 (4)

Having presented a model of the electricity network, the
following section decomposes the problem into a DCOP.

3. DCOP REPRESENTATION
Formally, a DCOP is a tuple 〈X,D,U〉 consisting of a set
of h variables X = {x1, ..., xh} which can be assigned dis-
crete values in the set of finite domains D = {d1, ...,dh}
respectively. In our representation, X = {α,F}, with the
domain:

di =

Si when xi is a generator

when xi corresponds to the

{−tc
ab, ..., t

c
ab} distribution cable tab

between va and vb

(5)

We note the set of relations as U = {U1, ..., Uk} (also called
utilities) where Ui : di1 × ... × dij → R+ denotes the cost
of each possible combination of the involved variable values.
We denote A to be the set of k agents. Each variable is
assigned to an agent. Only the agent who is assigned the
variable has knowledge of its domain and control over its
value. Moreover, the utility Ui corresponds to the utility of
agent i. In the context of the electricity network, Ui maps
to the CO2 emissions of vi with respect to the constraints of
the network (i.e., a lower cost means lower CO2 emissions):

Ui =

∑

g∈G(vi)

CIgαg if Equation (4) holds for vi

∞ otherwise

(6)

where ∞ is used to penalise states that lead to inconsis-
tent flows within the network (i.e., states that do not satisfy
Equation 4).

With this in mind, it can be seen that the optimisation
function for the electricity network, Equation (1), can be fac-
torised in terms of the agent utility functions using Equation
(6). The goal of the agents is to find an assignment X∗ for
the variables in X that minimises the sum of the costs:

arg min
X∗

k∑

i=0

Ui (7)

Typically, a DCOP can be represented by a factor graph,
whose vertices correspond to variables and the edges denote
the dependencies between the variables (i.e., the utility func-
tions). Crucially, we provide a mapping of the DCOP to a
factor graph that preserves the acyclic topology of the elec-
tricity network. Moreover, this mapping balances all of loads
with generation, whilst satisfying the flow constraints of each
distribution cable, and the constraints of the generators, in
a fully decentralised way without needing centralised verifi-
cation. Figure 1(a) shows an electricity distribution network

consisting of distribution cables, generators and nodes. Ex-
ample values for generator’s maximum output, distribution
cable’s thermal capacity and power consumption at the loads
are given. Node v0 is connected to the rest of the electricity
grid. Figure 1(b) shows the corresponding factor graph. By
decomposing into a factor graph, the optimal dispatch prob-
lem can be solved using an algorithm from the GDL family,
such as max-sum.

We choose max-sum to solve the DCOP because it maps
directly onto a factor graph, and directly works with n-ary
constraints (i.e., functions connected to more than two vari-
ables, see U5 on Figure 1(b) for an example) without any
additional modifications. Other algorithms which transform
the DCOP into a depth first search (DFS) tree, such as
ADOPT [11] and DPOP [12], suffer from scaling issues with
the height and the width of the DFS tree respectively. Thus,
max-sum is a natural fit to the optimal dispatch problem in
a distribution network because networks of this nature often
contain a large number of nodes and branches.

In max-sum, functions and variables can be arbitrarily as-
signed to any agent. However, in our model, each agent is
assigned to compute one function which is associated to a
specific node within the network. Moreover, a natural as-
signment of variables to agents involves an agent controlling
the generator variables at its designated node, and the dis-
tribution cable variables connected to its node. If two or
more agent’s functions share the same variable, the variable
is arbitrarily assigned to one of them. In Figure 1(b), the
dashed circles give an example of the agents.

More importantly, since max-sum has been proven to con-
verge to an optimal solution on acyclic factor graphs, and
given that we provide a mapping from an acyclic electricity
network to an acyclic factor graph, max-sum will be able
to calculate the optimum solution to the optimal dispatch
problem. The following section introduces the max-sum al-
gorithm and explains how it can be applied to an electricity
network.

4. MAX-SUM OPTIMAL DISPATCH
The max-sum algorithm (or min-sum as is the case with
minimising CO2 emissions) uses message passing in order
to propagate the utilities of the variables around the factor
graph. Messages are sent from variable to function, and
from function to variable:

From variable to function:

Qb→a(xb) =
∑

a′∈A(b)\a

Ra′→b(xb) (8)

From function to variable:

Ra→b(xb) = min
Xa\b

Ua(Xa) +

∑

b′∈B(a)\b

Qb′→a(xb′)

 (9)

where B(a) is the set of variables connected to the function
a, A(b) is the set of functions connected to the variable xb,
and finally Xa\b ≡ {xb′ : b′ ∈ B(a)\b}.

A max-sum message being sent from function to distri-
bution cable variable is a function of the flow in the cable
with its domain bounded by the thermal capacity of the dis-
tribution cable. Consider the following example, shown in
Figure 1(a). Let the distribution cable t59 between v5 and
v9 have a thermal capacity tc

59 of 40kW, the load l9 at v3

283

v0

g0

t01
l0 t13

g1(30kW)

l3(-10kW)

l1v2 t35(100kW) g2(20kW)

v5

t12
l2 t24
v4

t58(20kW)

l5(-10kW)

l4
t46

v8

v6

t59(40kW)

l8(-40kw) v9

l6 t67
v7 g4(40kW)

l9(-10kW)

l7

g3

g5(30kW)

v1

v3

(a)

U0

U1

U2 U3

U4 U5

U6 U7
U8 U9

x0

x1

x2

x3
x4 x5

x6

x7 x8

x9 x10

x11
x12 x13

x14

(b)

v0

v1

v2 v3

v4 v5

v6

v7

v8 v9

t01

t12 t13

t24 t35

t46
t58 t59

t67

(c)

Figure 1: (a) An electricity distribution network. Showing example values for generator’s maximum output,
distribution cable’s thermal capacity and power consumption at the loads. Node v0 is connected to the rest
of the electricity grid. (b) A factor graph representation of the same network. (c) The tree representation
used by DYDOP.

be -10kW, and the generator g5 at v9 have a maximum out-
put of 30kW. The message R5→13(x13), sent from U5 to x13

on the corresponding factor graph, Figure 1(b), will have
domain x13 ∈ {−40, ..., 0, ..., 40}, having 81 utility values
corresponding to the 81 variable states, discretised by 1kW
steps. A +ve variable state indicates that the flow f59 is
traveling from v5 to v9, and a -ve variable state indicates
that f59 is traveling from v9 to v5.

A max-sum message being sent from function to generator
variable is bounded by the maximum output of the gener-
ator. Consider the following example. Let the generator
g1 at v3 have a maximum output of 30kW. The message
R3→1(x1) will have domain x1 ∈ {0, ..., 30}, having 31 util-
ity values corresponding to the 31 variable states. Each state
indicates the amount of power g1 is producing α1.

Messages are propagated around the factor graph until the
values of the messages converge. Messages are guaranteed
to converge to the optimal solution on acyclic graphs. At
which point each variable chooses its optimal state based on
the sum of the messages it has received:

Zb(xb) =
∑

a∈A(b)

Ra→b(xb) (10)

However, simply applying the max-sum algorithm näıvely
in this manner produces poor performance. This is because
much of the search space is infeasible and does not need to
be searched. For instance, consider the previous example
for the message R5→13(x13). The message has a total of 81
variable states. However, the maximum amount of power
that could travel along t59 from v5 to v9, in order to sat-
isfy l9, is only 10kW. Moreover, the maximum output of g5

means that the maximum amount of power that could travel
along t59 from v9 to v5, after l9 is satisfied, is 20kW. There-
fore, the utilities calculated for variable states {−40, ...,−21}
and {11, ..., 40} are all infeasible. This highlights the wasted
computation that a näıve implementation of max-sum per-
forms. The domain of the message is bounded by tc

59. How-

ever, the actual feasible states are dependant on the load and
the available generation at v9, which is considerably less. As
the network size grows, this wasted computation becomes a
major overhead (as we show in Section 5.1.2).

Thus, to address this issue, we present a novel decen-
tralised message passing algorithm, DYDOP, which prop-
agates messages from leaf nodes to the root of the tree net-
work, such that only the utility of feasible states are calcu-
lated. As we show later, doing so greatly reduces the com-
putation time as it allows us to prune much of the search
space.

5. DYDOP OPTIMAL DISPATCH
We represent an acyclic electricity network as an acyclic
network of nodes connected by distribution cables; Figure
1(c) shows the electricity network in Figure 1(a) transformed
into this representation. DYDOP is applied to the acyclic
network and uses a dynamic programming approach. Each
node, which is controlled by an agent, has exactly one par-
ent node and zero or more child nodes, apart from one node
v0 which is the root node and has no parent. Leaf nodes
have no children, v7, v8 and v9. Each node is assumed to
have one or more generators, each with an associated carbon
intensity, and one or more loads. DYDOP proceeds in two
phases (which we describe in more detail in the following
section):

Phase 1 – Value Calculation PowerCost messages are
sent from the leaf nodes to the root node. A node waits
until it has received PowerCost messages from all of its
children before computing its own PowerCost message
which it sends to its parent. Each PowerCost message
describes the CO2 emissions of its own generation and
the generation of its children.

Phase 2 – Value Propagation When the root node re-
ceives PowerCost messages from all of its children,
it calculates its optimum power output such that all

284

the demands of the network are satisfied and the CO2

emissions are minimised. It then propagates power
flow values to all its children which in turn propagate
power flow values to their children.

The algorithm terminates when all leaf nodes receive a power
flow value, at which point each node knows exactly what
power it needs to output. We elaborate on the two phases
below.

5.1 Phase 1: Value Calculation
In what follows we give a detailed overview of the DYDOP’s
value calculation phase. Section 5.1.1 introduces the struc-
ture of a PowerCost message, Section 5.1.2 describes how
a leaf node constructs its PowerCost messages, and finally
Section 5.1.3 details how a node merges its children’s Pow-
erCost messages.

5.1.1 PowerCost Messages
A PowerCost message sent from vi to its parent v̂i, is an
array of y flowCO elements:

PowerCosti→î = [flowCO1, ...,flowCOy] (11)

A flowCO element describes the CO2 emissions that occur,
when vi and all of its children chi(vi) output certain amounts
of power, such that there is a specified flow of power between
vi and its parent v̂i along the distribution cable tîi:

flowCoj =< fîi, γ(fîi) > (12)

where fîi ∈ Z kW is the resultant power flow travelling along
tîi, and |fîi| ≤ tc

îi
where tc

îi
is the thermal capacity of tîi.

Note that fîi > 0 denotes the resulting power is flowing out
of vi to v̂i, fîi < 0 denotes the resulting power is flowing
into vi from v̂i, fîi = 0 denotes no power is flowing between
vi and v̂i. The function γ : R → R+ kgCO2/h denotes
the CO2 emissions that result from vi and all of its children
generating certain amounts of power.3 Each flowCO element
that vi calculates maps to an OPCState which describes
vi’s power output along with the flowCO elements of each
of its children that results in the CO2 emission described
by the function γ. This mapping represents the dynamic
programming aspect of DYDOP since as power flow values
are propagated down the tree, during the value propagation
phase, the associated OPCState is used to find node vi’s
power output given a particular power flow fîi.

5.1.2 Constructing a PowerCost Message at a leaf
Only the leaf node’s power output needs to be taken into
consideration when a leaf PowerCost message is constructed.
For each power output vi can produce, it constructs a cor-
responding flowCO element with flow fîi calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg (13)

giving the resultant power flowing between vi and v̂i. The
CO2 emissions γ of the flowCO element, is calculated as:

γ(fîi) =
∑

g∈G(vi)

αgCIg (14)

3Node v9, Figure 1(c), with a carbon intensity of
0.3kgCO2/kWh and a power output of 20kW, will have a
resulting CO2 emissions of 6kgCO2/h and 10kW of result-
ing power travelling to v5.

Algorithm 1 Constructing a leaf node PowerCost message

1 . f o r αi ← 0 to genMax {
2 . rFlow ← αi + βi ;
3 . rCO ← αi ∗ CIi ;
4 . flowCO(rFlow , rCO) ;
5 . linkToOPCState (flowCO , αi) ;
6 .}
7 . sendPowerCostMessageToParent () ;

where CIg is the carbon intensity of generator g situated
at vi. See Algorithm 1 for a pseudocode representation of
constructing a leaf node PowerCost message. We iterate
through the generators different outputs, up to its maximum
(line 1). For each output the resultant flow is calculated,
(line 2) and the corresponding CO2 emissions, (line 3). A
flowCO element is created, (line 4), and then linked to the
generators output which resulted in the resultant CO2 emis-
sions, (line 5). All the flowCO elements created are added
to a PowerCost message and then sent to the nodes parent,
(line 7). Note that the OPCState’s that are linked to by
each flowCO element are never sent on to the parent node
and are instead kept for use during phase 2 of the algorithm.

Consider the following PowerCost9→5 message, which v9

sends to v5, see Figure 1(a). Let the distribution cable t59
have a thermal capacity tc

59 of 40kW, the load l9 be -10kW,
the generator g5 have a maximum output of 30kW and g5

have a carbon intensity CI5 of 0.1kgCO2/kWh. The follow-
ing is part of the PowerCost9→5 message:

flowCoj = < 0, 1.0 > → [+10kW]
flowCoj+1 = < 1, 1.1 > → [+11kW]
flowCoj+2 = < 2, 1.2 > → [+12kW]

Now, flowCoj+2 indicates that a flow 2kW, from v9 to v5,
will result in 1.2kgCO2 emission with g5 outputting 12kW.
The total number of flowCO elements in PowerCost9→5 is
31. By contrast, compare with the example R5→13(x13) mes-
sage in Section 4, which has 81 variable states instead. This
further highlights the wasted computation that the näıve
implementation of max-sum performs.

5.1.3 Merging PowerCost messages
For each vi that has at least one child, the PowerCost mes-
sages that it receives must be processed in order to produce
its own PowerCost message that it sends to v̂i. The amount
of power that can flow from vi to v̂i, or from v̂i to vi, is
bounded by tc

îi
. With these bounds, vi is able to calculate

each valid flow that can travel into or out of it. For each valid
flow, vi calculates the minimum CO2 emissions that result
from vi’s output, and all of its children’s outputs. To calcu-
late the flowCO element for each resultant flow with the low-
est CO2 emissions value, vi iterates through every possible
power output that it can produce and every flowCO element
from each of its children’s PowerCost messages. A state rep-
resents the combination of one flowCO element from each
of its children and vi’s power output. The flow fîi of this
state is calculated as:

fîi =
∑

l∈L(vi)

βl +
∑

g∈G(vi)

αg +
∑

c∈chi(vi)

fci (15)

285

Algorithm 2 Merging PowerCost messages

1 . f o r αi ← 0 to genMax {
2 . f o r each chi ldPowerCost {
3 . rFlow ← αi + load + sum(OPCState) ;
4 . rCO ← (αi ∗ CIi) + sum(OPCState) ;
5 . i f (min (rFlow , rCO)) {
6 . PowerCost (rFlow , rCO) ;
7 . setNewMinimum(PowerCost) ;
8 . linkToOPCState (PowerCost , αi) ;
9 . }

10 . }
11 .}
12 . sendPowerCostMessageToParent () ;

where
∑

c∈chi(vi)

fci is the sum of the chosen flowCO elements’

flows from each of vi’s children. In order to choose the mini-
mum state for each resultant flow, the CO2 emissions of the
state must be calculated as follows:

γ(fîi) =
∑

g∈G(vi)

αgCIg +
∑

c∈chi(vi)

γ(fci) (16)

where
∑

c∈chi(vi)

γ(fci) is the sum of the chosen flowCO ele-

ments’ CO2 emissions from each of vi’s children. See Algo-
rithm 2 for a pseudocode representation of merging Power-
Cost messages. We iterate through the generators different
outputs, up to its maximum (line 1). For each output, we
iterate through every possible combination of the flowCO el-
ements from each of the its children’s PowerCost messages
(line 2). For a particular OPCState (i.e., a combination of
flowCO elements, one from each child, and the generators
output) the resultant flow is calculated by summing each
flow of the flowCO elements, in the OPCState, with the
generator output and the load, (line 3). Similarly, the re-
sultant CO2 emission is calculated by summing each CO2

emission of the flowCO elements, in the OPCState, together
with the product of the generators output and its carbon
intensity, (line 4). If the resultant CO2 emissions is the
minimum recorded for the particular resultant flow, (line
5), then the flowCO element is created, (line 6), and set as
the new minimum for that particular resultant flow, (line
7). The flowCO element is linked to the OPCState, (line 8).
All the flowCO elements created are added to a PowerCost
message and then sent to the nodes parent, (line 12).

As an example of merging PowerCost messages, consider
the following PowerCost5→3 message, v5 sends to v3, see
Figure 1(a). Let tc

35 be 100kW, tc
58 be 20kW, tc

59 be 40kW,
l5 be -10kW, l8 be -40kW, l9 be -10kW, g2 have maximum
output 20kW, CI2 be 0.7kgCO2/kWh, g4 have maximum
output 40kW, CI4 be 0.25kgCO2/kWh, g5 have maximum
output 30kW and CI5 be 0.1kgCO2/kWh. The following is
part of the PowerCost5→3 message (after receiving messages
from v8 and v9):

flowCOj = < −10, 8 > → [+0kW]8(−20)9(20)

flowCoj+1 = < −9, 8.25 > → [+0kW]8(−19)9(20)

flowCoj+2 = < −8, 8.5 > → [+0kW]8(−18)9(20)

Now, flowCoj+1 indicates that a flow of 9kW, from v3 to v5,
will result in 8.25kgCO2 emission with g2 outputting 0kW,

a flow 19kW from v5 to v8, and a flow 20kW from v9 and v5.
The following section describes the second phase of DYDOP
whereby power output values are propagated from the root
node to the leaf nodes.

5.2 Phase 2: Value Propagation
Once the root node has received PowerCost messages from
all of its children, it calculates how much power to output
in order to satisfy all the loads within the network and min-
imise CO2 emissions. It does this by iterating through ev-
ery possible power output that it can produce and every
flowCO element from each of its children’s PowerCost mes-
sages. Equation (15) is used to calculate the resultant flow
of a state. If the flow is not equal to zero, then this par-
ticular state for the network is infeasible, since excess flow
means that supply and demand is imbalanced. For every
state that has a flow equal to zero, the CO2 emissions of the
network are calculated by using equation (16).

The state with the minimum CO2 emissions is selected as
the optimum state of the network. Power flow values are
then sent to each of the root node’s children telling them
which of their flowCO elements resulted in the minimum
CO2 emission. The child retrieves the correct flowCO ele-
ment by matching the power flow value sent to them with
the flow from the flowCO message. The OPCState which
is referenced by each child recipient’s corresponding flowCO
element tells the child exactly how much power to output.
The child recipient can then send the power flow of each
flowCO element specified in the OPCState to each of its
corresponding children. Power flow values are propagated
in this manner to the leaf nodes, at which point each node
in the network knows their optimum power output that re-
sults in the minimum CO2 emissions for the entire network.

5.3 Completeness and Correctness
In what follows, we prove that DYDOP applied to trees is
complete and correct:

Proposition 1. DYDOP is complete

Proof. To construct PowerCost messages, vi must iter-
ate through all of its own possible generator outputs, Si, and
every flowCO element from each of its children’s PowerCost
messages. Each flowCO element contains the minimum CO2

emissions that results from each l ∈ L(vi), and all of its chil-
dren’s loads, being satisfied. The root node chooses a feasible
state that results in the minimum CO2 emissions. There-
fore, at each node, all feasible states are evaluated and the
root node chooses the optimal state which minimises CO2.
Hence, the algorithm is complete.

Proposition 2. DYDOP is correct

Proof. This proof follows on from proposition 1. When
constructing messages, vi only evaluates feasible states; the
states that conform to equations (2) – (4) and each g ∈
G(vi)’s maximum power output. Each message will contain
the minimum CO2 emissions that result from a feasible set
of states. Therefore, any solution calculated by the algorithm
will be valid as it has explicitly conformed to the constraints
of the entire network. Hence, the algorithm is correct.

5.4 Computational Complexity
Here, the worst-case complexity of DYDOP is calculated,
with regards to the size of the network and the number of

286

children a node has, in order to show its suitability for large
optimal dispatch problems.

Proposition 3. The size of PowerCost messages that are
sent by DYDOP grows linearly with the size of the network

Proof. In the worst case, the maximum size of the mes-
sage vi has to create and send to v̂i is Φi:

Φi =
2tc

îi

Xαi

(17)

where Xαi ∈ Z+ is the discretisation of αi and is currently
1; since each generator can produce power in 1 unit inter-
vals. If generators are restricted to produce power in greater
intervals, the size of the messages sent by each node can be
reduced. In the worst case, the size of the messages DYDOP
has to create and send in total is:

∑

vi∈V\vr

Φi (18)

where vr is the root node. Therefore, the size of the messages
DYDOP sends grows linearly in O(|V|).

Proposition 4. The number of states that vi must iter-
ate through is exponential with |chii|

Proof. When merging PowerCost messages, vi must it-
erate through all states in the Cartesian product of all of its
children’s states and its own power output values. There-
fore, the number of states a node must iterate through in the
worst case grows exponentially in O(Mcmax), where cmax
is the number of children a node has and M is the number
of states a child has with a discretisation of Xαi .

Even though the worst-case complexity of DYDOP is expo-
nential in the number of children a node has, this is signifi-
cantly less than the total number of nodes in the entire net-
work. Thus, DYDOP may be able to exploit the structure
of the network, unlike a centralised algorithm that does not
explicitly take this structure into consideration, and com-
pute an optimal solution faster. Therefore, the following
section empirically evaluates DYDOP against a centralised
approach and max-sum.

6. EMPIRICAL EVALUATION
In order to empirically evaluate DYDOP against max-sum
and a centralised approach, we conducted an experiment on
a real distribution network. The distribution network used is
located in India and contains 76 substations;4 the majority
of the substations can further be connected to as many as
400 nodes. We only use one network because the topologies
of distribution networks are largely similar. Our experiment
was run in Java on a 2.67GHz Intel Xeon quadcore with
12GB of RAM, and was set up as follows. The number of
additional nodes that could be connected to each substation
was varied from 1 to 14, each with 50 iterations. During
each iteration, nodes are assigned uniformly random loads,
generators and carbon intensities. Each generator has 10
discrete power output levels and each distribution cable has
its specified thermal capacity.

4A substation connects several distribution cables together
and may contain generators, loads or transformers.

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6
x 10

4

Number of Nodes

T
im

e
to

 C
om

pu
te

 (
m

s)

Centralised
DYDOP
max−sum

Figure 2: Time to compute a solution. India dis-
tribution network, 76 substations, varied number of
nodes at each substation.

Figure 2 shows the computation time for the centralised
approach, max-sum and DYDOP (error bars omitted due
to being negligible). It can be seen that to start with, the
centralised approach is as fast at computing a solution com-
pared with DYDOP. However, after a network size of 460
nodes (which equates to only 6 additional nodes at each sub-
station) DYDOP becomes significantly faster at computing
a solution compared to the centralised approach. We used
IBM’s ILOG CPLEX 12.2 for the centralised approach which
is highly optimised for solving optimisation problems.

Both DYDOP and max-sum’s computation times increase
linearly with the size of the network. This is because they
both exploit the topology of the network. However, max-
sum’s computation time sharply increases compared with
DYDOP. This highlights the unnecessary computation that
max-sum is performing for infeasible variable states and
shows the advantage of DYDOP. This is further highlighted
in Figure 3 which shows that the total size of the messages
sent using max-sum is much higher than DYDOP. Max-sum
sends twice as many messages as DYDOP for the largest
number of nodes we tested.

In contrast, the centralised computation time increases
exponentially with the size of the network because it is un-
aware of the network structure, and seeks to solve the com-
binatorial optimisation by more standard approaches, such
as the simplex method. Thus, as more DGs are added to
distribution networks, it is clear that a centralised approach
will quickly take an infeasible amount of time to compute a
solution to the optimal dispatch problem.

In comparison, DYDOP is able to handle distribution net-
works with a large number of DGs and still calculate a solu-
tion in linear time. Therefore, our algorithm is a very good
candidate for DNOs to use when solving future optimal dis-
patch problems in the ever growing distribution networks.

7. DISCUSSION
We believe DYDOP can be readily applied in many real-
world electricity networks given the speed at which it re-
solves the generator outputs and the small amount of com-
munication it requires. Particular applications include micro-
grids with large numbers of small solar panels or micro-
storage devices (on University campuses or military bases).

287

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7
x 10

4

Number of Nodes

T
ot

al
 S

iz
e

of
 M

es
sa

ge
s

max−sum
DYDOP

Figure 3: Sum total messages sent. India distri-
bution network, 76 substations, varied number of
nodes at each substation.

These applications typically involve network topologies that
are either trees or radial and therefore match the type of
network that DYDOP works on. Moreover, since the gener-
ators in these settings are typically low-power and discretise
their power outputs (e.g. solar panels and batteries typically
have set power outputs and can either be on or off), the as-
sumptions we make about discretised generator outputs is
perfectly valid in such settings.

Generalising our work to settings with non-discrete gen-
erator outputs will instead require handling continuous vari-
ables within DYDOP and it may be possible to extend some
of the techniques introduced by [15] to do so. Moreover, to
consider other distribution network topologies such as ring
main,5 we believe [18] can act as a starting point as they
show that GDL algorithms can be made to converge on net-
works with a single loop.

8. CONCLUSIONS
In this paper we addressed the optimal dispatch challenges
faced by DNOs. Namely how an increasing amount of cleaner
DGs can be added to already highly constrained distribution
networks, and coordinated in an efficient fashion using op-
timal dispatch. We provided a DCOP formulation of the
optimal dispatch problem; we showed how this can be de-
composed as a factor graph and solved in a decentralised
manner using algorithms based on GDL; in particular, the
max-sum algorithm. Furthermore, we showed that max-sum
applied näıvely in this setting performs a large number of re-
dundant computations.

To address this issue, we presented DYDOP, a novel de-
centralised message passing algorithm using dynamic pro-
gramming, that outperforms max-sum by pruning the search
space. It does this by propagating messages from leaf nodes
to the root and only calculates the utility for feasible variable
states. We empirically evaluated our algorithm using real
distribution network data, showing that it outperformed (in
terms of computational time and total size of messages sent)
both a centralised approach and the max-sum approach for
large networks.

5A ring main topology consists of a number of radial net-
works connected in a ring.

9. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive

law. IEEE Transactions on Information Theory,
46(2):325–343, 2000.

[2] E. M. Davidson, M. J. Dolan, S. D. J. McArthur, and
G. W. Ault. The use of constraint programming for the
autonomous management of power flows. In Proc. of the
15th Intl. Conf. on Intelligent System Applications to
Power Systems, pages 1–7, Curitiba, Brazil, 2009.

[3] Department for Business Enterprise and Regulatory
Reform. Active network management (ANM) technology.
Technical report, 2008.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. In Proc. of the 7th Intl.
Conf. on Autonomous Agents and Multiagent Systems,
pages 639–646, Estoril, Portugal, 2008.

[5] T. Gönen. Electric power distribution system engineering.
McGraw-Hill New York, 2nd edition, 2007.

[6] M. E. Granada, M. J. Rider, J. R. S. Mantovani, and
M. Shahidehpour. Multi-areas optimal reactive power flow.
In Proc. of the Transmission and Distribution Conf. and
Exposition, pages 1–6, Bogota, Colombia, 2008.

[7] N. Hatziargyriou, N. Jenkins, G. Strbac, J. A. Pecas Lopes,
J. Ruela, and A. Engler. Microgrids-large scale integration
of micro-generation to low voltage grids. EU contract
ENK5-CT-2002-00610, Technical annex, 2002.

[8] B. H. Kim and R. Baldick. Coarse-grained distributed
optimal power flow. IEEE Transactions on Power Systems,
pages 932–939, 1997.

[9] J. K. Kok, M. J. J. Scheepers, and I. G. Kamphuis.
Intelligence in electricity networks for embedding
renewables and distributed generation. Intelligent
Infrastructures, pages 179–209, 2010.

[10] A. Kumar, B. Faltings, and A. Petcu. Distributed
constraint optimization with structured resource
constraints. In Proc. of the 8th Intl. Conf. on Autonomous
Agents and Multiagent Systems, pages 923–930, Budapest,
Hungary, 2009.

[11] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo.
ADOPT: asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence,
161(1-2):149–180, 2005.

[12] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In Proc. of the 19th Intl. Joint
Conf. on Artificial Intelligence, pages 266–271, Edinburgh,
Scotland, UK, 2005.

[13] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. R.
Jennings. Putting the “smarts” into the smart grid: a grand
challenge for artificial intelligence. Communications of the
ACM, 2011.

[14] D. Roberts. Network management systems for active
distribution networks: a feasibility study. DTI Distributed
Generation Programme (Contractor: SP PowerSystems
LTD), Contract Number: K/EL/00310/00/00, URN, 2004.

[15] T. Voice, R. Stranders, A. Rogers, and N. Jennings. A
hybrid continuous max-sum algorithm for decentralised
coordination. In Proc. of the 19th European Conf. on
Artificial Intelligence, pages 61–66, Lisbon, Portugal, 2010.

[16] P. Vytelingum, S. D. Ramchurn, T. D. Voice, A. Rogers,
and N. R. Jennings. Trading agents for the smart electricity
grid. In Proc. of the 9th Intl. Conf. on Autonomous Agents
and Multiagent Systems, pages 897–904, Toronto, Canada,
2010.

[17] B. M. Weedy and B. J. Cory. Electric Power Systems. John
Wiley & Sons, 4th edition, 2004.

[18] Y. Weiss. Correctness of local probability propagation in
graphical models with loops. Neural computation,
12(1):1–41, 2000.

288

DCOPs and Bandits: Exploration and Exploitation in
Decentralised Coordination

Ruben Stranders, Long Tran-Thanh, Francesco M. Delle Fave, Alex Rogers &
Nicholas R. Jennings

University of Southampton
{rs2, ltt08r, fmdf08r,acr,nrj}@ecs.soton.ac.uk

ABSTRACT
Real life coordination problems are characterised by stochas-
ticity and a lack of a priori knowledge about the interactions
between agents. However, decentralised constraint optimi-
sation problems (DCOPs), a widely adopted framework for
modelling decentralised coordination tasks, assumes perfect
knowledge of these factors, thus limiting its practical ap-
plicability. To address this shortcoming, we introduce the
MAB–DCOP, in which the interactions between agents are
modelled by multi-armed bandits (MABs). Unlike canoni-
cal DCOPs, a MAB–DCOP is not a single shot optimisation
problem. Rather, it is a sequential one in which agents need
to coordinate in order to strike a balance between acquir-
ing knowledge about the a priori unknown and stochastic
interactions (exploration), and taking the currently believed
optimal joint action (exploitation), so as to maximise the
cumulative global utility over a finite time horizon. We pro-
pose Heist, the first asymptotically optimal algorithm for
coordination under stochasticity and lack of prior knowl-
edge. Heist solves MAB–DCOPs in a decentralised fashion
using a generalised distributive law (GDL) message passing
phase to find the joint action with the highest upper confi-
dence bound (UCB) on global utility. We demonstrate that
Heist outperforms other state of the art techniques from the
MAB and DCOP literature by up to 1.5 orders of magnitude
on MAB–DCOPs in experimental settings.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms, Theory, Experimentation

Keywords
Coordination, Distributed Problem Solving, Uncertainty

1. INTRODUCTION
Many real life applications can be modelled as systems of
coordinating autonomous agents. Examples include wireless
sensor networks (WSN), teams of UAVs deployed in disaster
response scenarios and scheduling multi-processor jobs with
unknown duration in distributed computing environments.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

These application domains often require decentralised so-
lution techniques, as these yield scalable solutions, exhibit
rapid response times and are robust to failure by avoiding
the existence of a centralised point of control. As a result,
building effective and efficient coordination algorithms has
been a focus of attention within the multi-agent community.

This focus has led to the development of the framework
of the distributed constraint optimisation problem (DCOP)
[13]. In a DCOP, the agents’ objective is to maximise a
global utility function, that can be factorised into a sum
of local utility functions that represent the interactions be-
tween agents. However, the canonical DCOP framework
makes two strong assumptions that limit its practical appli-
cability. First, the local utility functions are assumed to be
known a priori. Second, it is assumed that the local utility
functions are non-stochastic, i.e. that the same interaction
always yields the same outcome. In reality, not only are util-
ity functions typically noisy, they are also unknown before
the agents’ deployment. As an example, consider a WSN
that is deployed by dropping sensor nodes from an aircraft.
Since their position, neighbourhood and the environmental
conditions are unknown before deployment, the utility func-
tions that model the information gain received from their
interactions need to be learnt online.

Crucially, in stochastic and a priori unknown environ-
ments, agents are no longer faced with a one shot optimi-
sation problem as encoded in a canonical DCOP. Rather,
we now have a problem in which agents have to coordi-
nate to solve a sequence of “DCOP-like” problems in order
to simultaneously reduce uncertainty about the local util-
ity functions (exploration) and maximise the global utility
(exploitation). This implies the need for striking a balance
between exploration and exploitation. Focusing solely on
exploration results in certainty about the agents’ environ-
ment, but wastes resources by taking suboptimal actions.
Similarly, consistently taking the joint action that is cur-
rently believed to be the best is also suboptimal because
this belief might be incorrect.

To date, this challenge has not been satisfactorily ad-
dressed by the DCOP community; existing DCOP algo-
rithms either do not consider the trade off between explo-
ration and exploitation, or fail to make this trade off in
a principled and efficient manner. Indeed, most existing
DCOP algorithms, such as ADOPT, DPOP, and max-sum,
are not able to represent either stochastic or unknown func-
tions [13, 5, 12, 15, 14]. In particular, other local approxi-
mate algorithms have been proposed for problems with func-
tions that are a priori unknown but non-stochastic [17, 6],
or stochastic but with a priori knowledge about the un-

289

derlying distributions [2]. More recently, the E-DPOP al-
gorithm has been proposed for solving DCOPs with utility
functions whose values are influenced by exogenous sources
of stochasticity. These sources are modelled by random vari-
ables, whose underlying probability distributions are either
known [10] or unknown [9]. Whilst a significant contribution
to the field, it divides exploration and exploitation into two
distinct phases, a process that is known to make its per-
formance dependent on the specific problem instance [16].
Moreover, as acknowledged by the authors, E-DPOP is an
incomplete algorithm when applied to non-linear evaluation
functions, and as a result can perform arbitrarily poorly on
general problem instances [10].

In contrast, the multi-armed bandit (MAB) community
has addressed the trade off between exploration and ex-
ploitation in a principled fashion from a single agent per-
spective [8, 3, 18]. A MAB is a simple analytical tool for
modelling decision making under uncertainty. In more de-
tail, a MAB is a slot machine with multiple arms, each of
which yields a reward, drawn from an unknown but fixed
probability distribution. The aim of the problem is to se-
quentially pull the arms so as to maximise the cumulative re-
ward over a finite time horizon. To achieve this, a number of
computationally efficient pulling algorithms have been pro-
posed, such as ε-first [4], ε-greedy [16] and upper confidence
bound (UCB) [3]. Whereas the former two are sensitive to
the choice of the ε parameter, the latter provides optimal
theoretical guarantees on the regret (the difference between
its performance and that of the theoretical optimal solution)
without any need for parameter tuning.

Thus, to address the shortcoming of canonical DCOPs, we
develop Heist1, which combines the robustness and scala-
bility of decentralised coordination with the optimal explo-
ration/exploitation trade off that the MAB algorithms pro-
vide. Heist solves MAB–DCOPs, an extension of canoni-
cal DCOPs, in which each local utility function becomes a
MAB. This effectively models both the stochastic nature of
realistic decentralised coordination problems, as well as the
absence of a priori knowledge. Unlike a DCOP, a MAB–
DCOP is not a single shot optimisation problem, but rather
a sequential problem in which agents need to coordinate
their joint actions over multiple time steps, so as to maximise
the cumulative global utility received over a finite time hori-
zon. Heist achieves this by repeatedly choosing the joint
action with the highest estimated upper confidence bound
(UCB) on the sum of local utilities received in a single time
step, which is a non-linear combination of the confidence
bounds on the local utilities. Heist optimally computes
this joint action using a message passing algorithm known
as generalised distributive law (GDL) [1]. The GDL algo-
rithm has been shown to be very efficient for solving various
factorisable optimisation problems, such as the one we face
in this paper. By using the GDL to maximise the UCB in
a decentralised fashion, Heist is computationally efficient,
and provides optimal asymptotic bounds on the regret of the
global cumulative performance.

In more detail, this paper contributes to the state of the
art as follows:

• We introduce MAB–DCOPs, a new formalism to rep-
resent decentralised coordination problems with stochas-
ticity and the absence of a priori knowledge about lo-
cal utility functions.

1Heist coordinates a group of bandits, hence its name.

• We develop Heist, a novel algorithm to solve MAB–
DCOPs, and prove that it provides optimal asymptotic
bounds on the regret of the global cumulative utility.

• We empirically evaluate Heist in a reproducible con-
trolled environment, and show that it outperforms other
state of the art techniques from the MAB and DCOP
literature (among which max-sum and ε-first) by up
to 1.5 orders of magnitude on MAB–DCOPs.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work on MABs and DCOPs. In
Section 3 we formally define MAB–DCOPs. In Section 4,
we present Heist, empirically evaluate it in Section 5, and
conclude in Section 6.

2. PRELIMINARIES
As discussed in the introduction, our approach lies on the
nexus of DCOPs and MABs. Therefore, in this section we
discuss these two bodies of literature in more detail.

2.1 DCOPs
Decentralised coordination problems can be encoded as DCOPs,
which are defined as follows:

Definition 1. A DCOP is a tuple 〈A, X, D, U, F 〉 where:

• A = {1, . . . , |A|} is a set of agents.

• X = {x1, x2, . . . , xn} is a set of variables.

• D = {D1, . . . , Dn} is a set of finite domains, where Di

is the domain of variable xi.

• F : X → A is a function that assigns variables to
agents. Each agent controls (the value of) the variables
that are assigned to it.

• U = {U1, . . . , Um} is a set of local utility functions
defined over a local scope xj ⊆ X, which assigns a real
value to each assignment to xj.

2

The solution of a DCOP is an assignment X∗ to variables
X that maximises the sum of the utility functions:

X∗ = arg max
X

m∑

j=1

Uj(xj) (1)

Many algorithms have been developed to solve DCOPs.
Some of these [15, 14] exploit the generalised distributive
law (GDL) to achieve computation and communication ef-
ficiency [1]. The GDL message passing algorithm exploits
the factorisability of a broad class of optimisation problems
(which includes DCOPs) in order to solve them in an ef-
ficient and decentralised manner. A defining property of
these problems is that the valuation algebra of their global
objective function is a commutative semi-ring, an algebraic
structure which is defined as follows:

Definition 2. A commutative semi-ring is a triple 〈R, ⊕, ⊗〉,
where R is a non-empty set and ⊕ and ⊗ are two (abstract)
binary associative and commutative operators over R, such
that ⊗ distributes over ⊕. Furthermore, there exists an iden-
tity element 0 ∈ R such that x ⊕ 0 = x for all x ∈ R, and
an identity element 1 ∈ R such that x⊗1 = x for all x ∈ R.

2In the DCOP literature, these are also known as constraint
functions.

290

The objective functions of the typology of problems solved
by the GDL can be defined in terms of operators ⊕ and ⊗, a
set of variables X and a set of functions U , similar to those in
Definition 1. They can be encoded as factor graphs [7], undi-
rected bipartite graphs in which vertices represent variables
X and functions U , and edges encode the “is a parameter
of” relation. The decentralised GDL message passing algo-
rithm operates directly on a factor graph, and consists of
two separate algorithms (Algorithms 1 and 2), one for each
type of factor graph vertex. Algorithm 1 performs the com-
putation associated with variables, and is executed by agent
F (xi) that controls variable xi, while Algorithm 2 performs
the computation associated with functions, and is executed
by one of the agents whose variables are a parameter of Uj .

Algorithm 1 The GDL algorithm for variable xi. M(i) is
the set of indices of neighbouring functions. Rj→i(xi) is a
message from function Uj computed in Algorithm 2

1: procedure GDL Variable(i)
2: while stopping condition has not been met do
3: for all j ∈ M(i) do ⊲ For all adjacent functions
4: if |M| = 1 or no messages received yet then
5: Send Qi→j(xi) = 1 to Uj
6: else
7: Send Qi→j(xi) =

⊗

k∈M(i)\j

Rk→i(xi) to Uj

8: end if
9: end for

10: Wait for new messages from all Uj : j ∈ M(i)
11: end while
12: return Zi(xi) =

⊗

j∈M(i)

Rj→i(xi)

13: end procedure

Algorithm 2 The GDL algorithm for function Uj . N (j) is
the set of indices of neighbouring variables. Qi→j(xi) is a
message from variable xi computed in Algorithm 1.

1: procedure GDL Function(j)
2: while stopping condition has not been met do
3: Wait for new messages from all xi : i ∈ N (j)
4: for all i ∈ N (j) do ⊲ For all adjacent variables
5: Send to xi message Rj→i(xi) =

⊕
xj\xi

Uj(xj) ⊗

⊗

k∈N (j)\i

Qk→j(xk)

6: end for
7: end while
8: end procedure

The following theorem is a fundamental property of the
GDL message passing algorithm:

Theorem 1. If the factor graph is acyclic and the stop-
ping criterion is chosen such that the algorithm is run for
a number of iterations equal to the diameter of the factor
graph, the following equation holds for each variable xi ∈ X:

Zi(xi) = ⊕
X\xi

m⊗

j=1

Uj(xj) (2)

For proof of this theorem, see [11] (Chapter 26) and [1] (The-
orem 3.1). The same result can be obtained for cyclic factor
graphs by first transforming these into junction trees and us-
ing a slightly modified formulation of this algorithm [1]. For

ease of exposition, in this paper we only consider acyclic fac-
tor graphs, in the knowledge that our algorithms and results
also apply to junction trees with minimal modifications.

By instantiating the GDL algorithm for the max-sum com-
mutative semi-ring 〈R, max, +〉, we obtain an algorithm for
solving DCOPs (this algorithm is known as max-sum [15]).
To see why this is the case, note that Equation 2 becomes:

Zi(xi) = max
X\xi

m∑

j=1

Uj(xj) (3)

This is the maximum marginal global utility that can be
obtained for each assignment to variable xi. As a direct
consequence of this, setting x∗

i = arg maxxi
Zi(xi) yields

the variable assignment that maximises Equation 1. Note
that this is only the case if the optimal solution is unique. If
not, the solution can be made unique by adding small ran-
dom values to the utility functions [15] (this is the method
used in our experiments), or an additional utility propaga-
tion phase may be used [14]. We return to the GDL algo-
rithm in Section 4 when we present Heist, which uses the
GDL algorithm instantiated for a special semi-ring designed
to maximise the upper confidence bound on received utility.

2.2 Multi–Armed Bandits
A MAB is a slot machine with K arms, each of which de-
livers rewards drawn from an unknown distribution. The
agent’s goal is to choose which arms to pull so as to max-
imise expected cumulative reward over a finite time horizon
T . In more detail, let P be a pulling policy (a sequence
of pulls), and i(t) denote arm chosen at time t by P , and
ri(t)(t) the reward received by pulling that arm at time t.
Then, we can formalise the agent’s goal as follows:

P ∗ = arg max
P

T∑

t=1

ri(t)(t) (4)

where P is the set of all possible policies. Clearly, if the
reward distributions of each arm were known, the optimal
policy would be to always pull the arm with the highest
expected reward. This hypothetical scenario sets a perfor-
mance benchmark known as regret against which to compare
any policy. The regret RP (T) of a policy P after T time
steps is the difference between the expected reward of the
theoretical optimal policy and that obtained by P :

RP (T) =
T∑

t=1

[µ∗ − µ(i(t))] (5)

where µ(i) is the expected reward of arm i and µ∗ = maxi µ(i).
As mentioned in the introduction, there exist a number of

pulling policies for minimising regret. Among these, UCB is
one of the most widely used, since it is non-parametric and
achieves asymptotically optimal regret. In more detail, UCB
pulls each arm once at the beginning, then at each subse-
quent time step t, UCB selects arm i∗(t) with the maximum
upper confidence bound on the expected reward:

i∗(t) = arg max
i∈[1,K]

[
µ̂(i, t) +

√
2 ln t

(umax − umin)2

n(i, t)

]
(6)

where µ̂(i, t) is the sample mean of the rewards of arm i
received until t, and n(i, t) is the number of times UCB
pulled arm i before time step t. UCB assumes the support
of the reward function is bounded, i.e. ri(t) ∈ [umin, umax].

291

Figure 1: The MAB–DCOP from Example 1

The two terms in Equation 6 determine the trade off be-
tween exploration and exploitation. The larger the first, the
more exploitation is favoured, since it is an estimate of the
expected reward of arm i. The larger the second, the more
exploration is favoured, since it represents the uncertainty in
this estimate. In Section 4, we show how Heist generalises
the UCB algorithm to maximise the sum of rewards received
from multiple (local) MABs in a MAB–DCOP and trades off
exploration and exploitation in a decentralised fashion.

3. MAB–DCOPS
A MAB–DCOP is a DCOP where each utility function Uj

is replaced by a MAB, such that each joint assignment xj ∈
Dxj of the agents connected to that MAB becomes an arm
of that bandit. Thus, in a MAB–DCOP, there is no a pri-
ori knowledge about the utility functions that govern the
agents’ interactions, and these interactions are subject to
stochasticity. In more detail, for each j ∈ {1, . . . , m}, the
utility Uj (xj) obtained by choosing xj ∈ Dxj is drawn
from an unknown, but fixed, distribution, with (unknown)
expected value µ (xj), and bounded support [umin, umax].
The agents’ goal is to choose an optimal joint assignment
X∗(t) = 〈x∗

1(t), . . . , x
∗
n(t)〉 at each time t, such that the

expected cumulative utility over a finite time horizon T is
maximised:

[X∗(1), . . . , X∗(T)] = arg max
X(1),...,X(T)

E

[
T∑

t=1

m∑

j=1

Uj(xj(t))

]

= arg max
X(1),...,X(T)

T∑

t=1

m∑

j=1

µ(xj(t)) (7)

where xj(t) is the chosen assignment to xj at time t. To
illustrate MAB–DCOPs, consider the following example.

Example 1. Consider the MAB–DCOP in Figure 1 with
two binary variables x1 and x2, and two functions U1(x1)
and U2(x2), at time t = 10. Utility functions are represented
as tables, each cell of which has a tuple (µ̂(xj , t), n(xj , t)),
where µ̂(xj , t) is the sample mean of the utility received for
the assignment xj at t, and n(xj , t) is the number of times
that assignment has been sampled. Given the current sample
means, assignment (x1 = 0, x2 = 0) seems to be optimal.
However, (x1 = 0, x2 = 1) could be the real optimal, since
U1(0, 1) and U2(1) have only been sampled at most twice.

As this example suggests, to solve MAB–DCOPs, agents
need to coordinate over the assignments to variables X at
each time step, in order to trade off exploration (reducing
uncertainty about the expected utility of each joint assign-
ment) and exploitation (using the joint assignment that is
believed to maximise reward).

Similar to MABs, we can define the regret of a coordina-
tion algorithm in a MAB–DCOP as a measure of the per-
formance of a particular algorithm. In more detail, let A =
XA(1), XA(2), . . . denote a coordination algorithm that choo-
ses joint assignment XA (t) = 〈xA

1 (t), . . . , xA
n (t)〉 at time t.

The regret RA (T) for T time steps can be formalised as:

RA (T) = T · max
X

m∑

j=1

µ(xj) −
T∑

t=1

m∑

j=1

µ
(
xA

j (t)
)

(8)

Heist, which is described next, is an algorithm that en-
ables agents to make the trade off between exploration and
exploitation in a principled manner by provably achieving
an asymptotically optimal regret.

4. THE HEIST ALGORITHM
In this section, we present Heist, an algorithm for solv-
ing MAB–DCOPs with asymptotically optimal regret. Us-
ing Heist, agents coordinate at each time step to identify
the best joint assignment to variables X, i.e. the arms that
should be pulled on the local MABs (functions U) to min-
imise regret over time horizon T . In more detail, at each
time step t, Heist uses a GDL message passing phase to
find the joint assignment X∗(t) that maximises the UCB
on the received utility. The formulation of this UCB is dif-
ferent from the UCB given in Equation 6—in fact, it is a
generalisation—since the objective in a MAB–DCOP is to
maximise the sum of rewards of multiple local MABs, in-
stead of a single MAB:

X∗(t) = arg max
X

m∑

j=1

µ̂(xj , t) +

√√√√2 ln t
m∑

j=1

(urange)2

n(xj , t)

(9)
Here, µ̂(xj , t) is the sample mean at time t of the utility
obtained by assignment xj from MAB Uj , n(xj , t) is the
number of times a specific assignment to xj was made, and
urange = umax − umin.

Example 2. In Example 1, X∗(10) = (x1 = 0, x2 =

1), with a UCB equal to 7 +
√

2 ln(10)
(
1 + 1

2

)
, assuming

urange = 1.

Calculating joint action X∗(t) in Equation 9 is not trivial.
For instance, this problem cannot be solved using a DCOP
algorithm, since the objective function is not decomposable
into a sum of factors (i.e. it is non-linear). As a result, the
application of a canonical DCOP algorithm to this prob-
lem can lead to sub-optimality [10] (which we will show in
the empirical evaluation). In contrast, Heist is optimal by
applying GDL to the GDL–UCB semi-ring, a special semi-
ring, which is guaranteed to preserve the joint assignment
with the optimal UCB.

Now, at each time t, Heist proceeds in two steps. First, it
uses GDL instantiated for the GDL–UCB semi-ring to com-
pute the maximum marginal UCB of each variable assign-
ment — the maximum UCB that can be achieved for each as-
signment to an individual variable—in a decentralised fash-
ion. Second, each agent uses the result of the first step to
choose the variable assignments for the variables it controls
that maximise the global UCB in Equation 9.

Before proceeding, with slight abuse of notation, we change
the signature of local utility functions to output tuples of
the form: Uj(xj , t) = (µ̂(xj , t), b(xj , t)

2). Here, µ̂(xj , t) is
the sample mean of assignment xj ∈ Dxj at time t and

b(xj , t) = urange

√
2 ln t/n(xj , t) is its (local) upper confi-

dence bound t (cf. the two terms in Equation 6).
Heist is split up into two algorithms, one for variables

(Algorithm 3) and one for functions (Algorithm 4). Before

292

Algorithm 3 The Heist message passing algorithm for
variable xi

1: tmin := maxk∈[1,m] |Dxk | ⊲ Wait for initial samples (line 7)

2: for t = tmin + 1 to T do ⊲ For each joint pull
3: Zi(xi) = GDL Variable(i) ⊲ See Algorithm 1

4: Set x∗
i (t) := arg max

xi

[
max

(µ̂,b2)∈Zi(xi)
(µ̂ + b)

]

5: Send message sample(x∗
i (t)) to all Uj : j ∈ M(i)

6: end for

Algorithm 4 The Heist message passing algorithm for
function Uj . Line numbering continued from Algorithm 3.

7: for each xj ∈ Dxj , sample Uj(xj) once

8: tmin := maxk∈[1,m] |Dxk |
9: for t = tmin + 1 to T do ⊲ For each joint pull

10: execute GDL Function(j) ⊲ See Algorithm 2
11: Wait for sample(x∗

i (t)) messages from all xi : i ∈ N (j)
12: Pull arm x∗

j (t) = {x∗
i (t) | i ∈ N (j)}

13: Update sample mean µ̂(x∗
j , t) and sample count n(x∗

j , t)

14: end for

communication commences, functions first sample the utility
for their local domains (line 7) which takes maxk∈[1,m] |Dxk |
time steps. This is analogous to the UCB algorithm, which
pulls each arm once at the start. Then, functions and vari-
ables execute the GDL message passing algorithm (lines 2
and 8) instantiated for the GDL–UCB semi-ring, which is
defined as follows:3

Definition 3. The GDL–UCB semi-ring is a semi-ring
〈R, max≻,+++〉 such that:

• R = P(R × R) a set of sets4 of tuples, which have
the same signature as the tuples output by functions
Uj—the first element of each tuple is a sample mean
µ̂, and the second is a squared bound b2. The identity
elements are 0 = {(−∞, −∞)} and 1 = {(0, 0)}.

• max≻ is an operator that takes multiple sets S1, . . . , Sk ⊆
R as input and outputs a set S′ such that:

S′ = max≻(S) =

{
s ∈

k⋃

i=1

Si | ∀s′ ∈
k⋃

i=1

Si : s′ 6≻ s

}

Operator max≻ filters out so-called dominated tuples
from sets S1, . . . , Sk—those that cannot maximise the
global UCB. Domination is formally defined by binary
operator ≻ such that (µ̂1, b

2
1) ≻ (µ̂2, b

2
2) iff:

(µ̂1 − µ̂2 > b2 − b1) ∧
(

µ̂1 − µ̂2 >
√

b22 + u2
range2 ln t −

√
b21 + (urange)22 ln t

)
∧

(
µ̂1 − µ̂2 >

√
b22 + u2

range

2 ln t

t
−
√

b21 + (urange)2
2 ln t

t

)

• +++ is a binary operator such that if S1, S2 ∈ R, then
S1 +++ S2 = {(µ̂1+µ̂2, b

2
1+b2

2) | ∀(µ̂1, b
2
1) ∈ S1, ∀(µ̂2, b

2
2) ∈

S2}. Thus, +++ sums all pairs of tuples in S1 and S2.

As a consequence of the non-linearity of the objective
function in Equation 9, choosing the assignment that max-
imises the sum of UCBs on local utility, does not (neces-
sarily) produce optimality of the UCB on the sum of local

3Proofs of correctness and explanation of the operators can
be found in the Appendix.
4Here, P(S) denotes the powerset of set S.

utilities. Thus, we cannot simply discard one tuple (µ̂1, b
2
1)

in favour of tuple (µ̂2, b
2
2) if µ̂1 + b1 < µ̂2 + b2. This problem

is addressed by the definition of the max≻ operator, which
is designed to discard only those tuples that are guaranteed
to lead to global sub-optimality. As a result, it imposes a
partial order over tuples to preserve the tuple that produces
global optimality.

Executing the GDL algorithm on the GDL–UCB semi-
ring yields the marginal function Zi(xi) for each variable xi

(line 3). It can be proved that for each assignment xi ∈ Di,
the set Zi(xi) contains a tuple (µ̂, b2), such that µ̂ + b is
the maximum achievable global UCB given that assignment
(Theorem 2). Using this marginal function Zi(xi), the sec-
ond phase of Heist first computes the maximum UCB for
each assignment xi (line 4, expression between brackets) and
then selects the assignment with the maximum UCB (re-
mainder of line 4). Then, in line 5, each variable informs
adjacent functions of its assignment, after which all func-
tions sample assignments (line 12).

Example 3. The following demonstrates the operation of
Heist on a single time step (t = 10) of the MAB–DCOP
from Example 1. Let c = 2 ln(10), and urange = 1.

GDL Iteration 1:

Q1→1(x1) = Q2→1(x2) = Q2→2(x2) = {(0, 0)}
R1→1(0) = {(5, c)}, R1→1(1) = {(2, c/3), (1.1, c)}
R1→2(0) = {(3, c/5)}, R1→2(1) = {(5, c)}
R2→2(0) = {(5, c/8)}, R1→2(1) = {(2, c/2)}

GDL Iteration 2:

Q1→1(x1) = (0, 0), Q2→1(x1) = R2→2(x1), Q2→2(x1) = R2→1(x1)

R1→1(0) = {(7, c(1 + 1/2))}, R1→1(1) = {(7, c(1/3 + 1/8))}
R1→2(0) = {(3, c/5)}, R1→2(1) = {(5, c)}
R2→2(0) = {(5, c/8)}, R1→2(1) = {(2, c/2)}

At this point, GDL has converged. We can now calculate
the marginals Zi(xi):

Z1(0) = (7, 2 ln(10)(1 + 1/2)), Z1(1) = (7, 2 ln(10)(1/3 + 1/8))

Z2(0) = (8, 2 ln(10)(1/5 + 1/8)), Z2(1) = (7, 2 ln(10)(1 + 1/2))

By calculating the UCB associated with these tuples, we

obtain x∗
1 = 0, x∗

2 = 1, with a UCB of 7+
√

2 ln(10)
(
1 + 1

2

)
,

which indeed maximises Equation 9 (cf. Example 2).

For the GDL message passing phase of Heist, we can derive
the following result:

Theorem 2 (Main result 1). If the factor graph is
acyclic and the stopping criterion is chosen such that GDL
message passing phase is run for a number of iterations that
is equal to the diameter of the factor graph, the following
equation holds for each t > maxk∈[1,m] |Dxk |:

max
(µ̂,b2)∈Zi(xi)

(µ̂+b) = max
X\xi

m∑

j=1

µ̂(xj , t) +

√√√√2 ln t
m∑

j=1

(urange)2

n(xj , t)

Put differently, Theorem 2 states that, after the initial pulls,
set Zi(xi) contains the tuple that yields the marginal maxi-
mum UCB that can be obtained for each assignment to xi,
i ∈ [1, n]. As a direct consequence, line 12 pulls the arm on
each function with the highest overall UCB (Equation 9).
This observation leads to the following theorem:

293

Theorem 3 (Main result 2). Suppose the factor graph
is acyclic and the stopping criterion is chosen such that
GDL message passing phase is run for a number of iter-
ations that is equal to the diameter of the factor graph at
every time t. Let XE = arg maxX

∑m
j=1 µ(xj) be the joint

assignment that maximises the (unknown) expected utility.
Let d (X) = µ

(
XE)

− µ (X) denote the difference between

the expected utility of the optimal action XE and that of a
particular joint action X. Given this, the cumulative regret
RHeist(T) of Heist after T time steps is at most:

∑

X 6=XE

urange8 ln T

d (X)
+

(
1 +

π2

3

) ∑

X 6=XE
d (X) (10)

Based on this result, we can show that Heist provides asymp-
totically optimal regret bounds, by comparing against best
achievable regret:

Theorem 4 (Main result 3). For any algorithm, there
exists a constant C ≥ 0, and a particular instance of the
MAB–DCOP problem, such that the regret of that algorithm
within that particular problem is at least C ln T .

Thus, the regret bound of Heist (Equation 10) only differs
from the best possible with a constant factor. The proofs of
the theorems can be found in the Appendix.

5. EMPIRICAL EVALUATION
In the previous section, we proved that the regret achieved
by Heist is guaranteed to be a constant factor away from
the optimal. However, further empirical analysis is needed
to gauge Heist’s practical performance, in terms of solution
quality as well as communication and computation overhead.
Moreover, such analysis can focus on the algorithm’s perfor-
mance when the GDL phase of the algorithm is not run until
convergence, one of the conditions for optimality in Theo-
rem 3. Instead, the number of iterations c of the GDL phase
can be a parameter for tuning the trade off between solu-
tion quality and overhead (i.e. computation and communica-
tion). Note that it is not the objective of these experiments
to study the properties of MAB–DCOPs and Heist across
all possible probability distributions, and instantiations of
the utility function U . Due to space constraints, we would
not be able to do justice to the requirements of different ap-
plication domains, and the specific configurations of Heist.
This is left for future work.

Therefore, in this section, we benchmark several versions
of Heist against existing approaches, taken from the state
of the art in the MAB and DCOP literature. Specifically,
we compare Heist against the following algorithms:

HEIST-c a version of Heist where the GDL message pass-
ing phase is run for c iterations. When taking joint ac-
tions is cheap compared to communication, or when ac-
tion is required before the GDL message passing phase
is able to converge, c can be set to a value smaller than
the diameter of the factor graph. In this case, optimal-
ity is no longer guaranteed, but it can lead to a good
trade off between communication and solution quality.

ε-first an algorithm that samples from the utility functions
(exploration) for the first εT time steps, and picks the
one that is believed to be optimal (exploitation) for
the remaining (1 − ε)T time steps. At the start of
the exploitation phase, this algorithm runs a standard
DCOP algorithm (max-sum) once to find the joint as-
signment that maximises the sum of the sample means

of the local utilities. Using a DCOP algorithm in this
way is equivalent to using E-DPOP [9] on a problem
where each local assignment xj for j ∈ [1, m] is mod-
elled by a single random variable. Thus, ε-first can
be considered as E-DPOP applied to a MAB–DCOP.
To perform well, ε needs to be tuned for each prob-
lem instance [3, 16]. After initial tests, we found that
ε = 0.02 leads to good performance for the problems
described below.

Monolithic UCB the (centralised) UCB algorithm that
considers a MAB–DCOP as a single “monolithic”MAB
with

∏n
i=1 |Di| arms.

Max-Sum a standard DCOP algorithm, applied to a DCOP
in which the objective is to compute X+(t) at every
t ∈ [1, T], such that:

X+(t) = arg max
X

m∑

j=1

[
µ̂(xj , t) +

√
(urange)22 ln t

n(xj , t)

]

(11)
By solving this DCOP, the sum of UCBs on local util-
ities is maximised, instead of the UCB on the sum of
utilities (Equation 9). Since the latter is clearly not
linear, Equations 9 and 11 are not equivalent (except
for m = 1). As a result, this decomposition leads to
loss of optimality in the sense of Theorem 4. Léauté et
al. observed a similar result for their (incomplete) algo-
rithm when using a linear decomposition to maximise
non-linear objective functions [10].

The ε-first and max-sum algorithms are included to demon-
strate that standard DCOP algorithms are unsuitable for
solving MAB–DCOPs, while the Monolithic UCB algorithm
is included to demonstrate the need for exploiting the fac-
torisability of a MAB–DCOP.

We randomly generated MAB–DCOP instances that can
be encoded as acyclic factor graphs, with n = 15 and m =
14, and |Di| = 3. Each utility function Uj(xj) is governed
by a set of normal distributions, one for each assignment to
xj . In more detail, Uj(xj) ∼ N (µ(xj), σ

2(xj)), where µ(xj)
and σ2(xj) are uniformly drawn from intervals [0, µmax] and
[0, 1] respectively. Parameter µmax is used to control the rel-
ative importance that needs to be given to exploration and
exploitation. When µmax is decreased, the received utili-
ties become more noisy and the balance should be shifted
towards exploration. Conversely, when µmax is increased,
the optimal joint action becomes more easily identifiable,
and agents start exploitation quite early on. For our experi-
ments, we chose µmax = 1 and µmax = 10. These values were
chosen during initial calibration to yield two sets of difficult
problems, which simultaneously demonstrate the difference
in required emphasis between exploration and exploitation.

The results are shown in Figures 2 and 3 for µmax = 1 and
µmax = 10 respectively. Each algorithm was run 64 times
on both problem classes to obtain statistically significant re-
sults. Error bars indicate the standard error of the mean.
Monolithic UCB is omitted from all figures, because its re-
gret converged approximately a factor of 315 slower than
Heist. This was expectated, as it regards the problem as a
MAB with 315 arms, instead of 14 MABs with 9 arms each.

Now, Figures 2(a) and 3(a) show the average regret for
the remaining algorithms, while Figures 2(b) and 3(b) show
the number of average suboptimal assignments. As can be
observed from these figures, Heist and Heist-4 outperform
all others in terms of regret (up to 1.5 orders of magni-
tude for µmax = 10). We found that for c ≥ 8, the per-

294

� ���� ���� ���� ����

��
��

��
�

���������	

�
��
��
�

��
��
�

���	�

���	���

���	���

�������

����	�

(a) Regret

� ���� ���� ���� ����
�

��

��

��

��

�

���������	

�
�

�
	�
�
�
�
��
�
��
�	
	�
�
�
�
��
�	

���	�

���	���

���	���

���� ��

����	�

(b) Suboptimal joint assignments

� ���� ���� ���� ����
�

�

�

�

!

�

�

�

"

���������	

�
�

�
�	
	�
�
�
�
��
�
�

�
�
�
�

���	�

���	���

���	���

����	��������

(c) Message size

Figure 2: Empirical results for µmax = 1

� ���� ���� ���� ����

��
��

��
��

��
�

��
�

���������	

�
��
��
�

��
��
�

���	�

���	���

���	��� �������

����	�

(a) Regret

� ���� ���� ���� ����
�

��

��

��

��

�

���������	

�
�

�
	�
�
�
�
��
�
��
�	
	�
�
�
�
��
�	

���	�
���	��� ���	���

���� ��

����	�

(b) Suboptimal joint assignments

� ���� ���� ���� ����
�

�

�

�

�

���������	

�
�

�

�	
	�

�
�

�
��

�
�

�
�
�
�

���	�

���	������	���

����	�
��� ���

(c) Message size

Figure 3: Empirical results for µmax = 10

formance of Heist (which was run for 30 iterations to en-
sure convergence) and Heist-c coincide, indicating that the
algorithm performs well even when conditions of Theorem
2 are not met. Max-sum—and indeed any algorithm that
solves Equation 11—is clearly suboptimal, as its regret does
not converge to zero, and it consistently produces subopti-
mal assignments. The fact the regret of max-sum increases
is counter intuitive. However, additional experimentation
showed that for smaller problem instances, the difference
between Heist and max-sum is much smaller, and their per-
formance often coincides for problems with m < 5, while for
m = 50, the difference in regret at T = 10000 was found to
be more than 3 orders of magnitude. This leads us to be-
lieve that for larger problems, the non-linearity of Equation
9 is more pronounced, increasing the difference between the
regret associated with assignments X+(t) and X∗(t). The
regret of the second DCOP based technique, ε-first, does
converge to zero, but at a much slower pace than Heist.
Based on these results, we can conclude that both DCOP
techniques are unsuitable for solving MAB–DCOPs.

Focusing on communication overhead, Figures 2(c) and
3(c) show the cumulative message size expressed as the num-
ber of floating point values exchanged between the agents.
Compared to ε-first (which needs a negligible number of mes-
sages to coordinate once) and max-sum (which exchanges
scalars, instead of sets of tuples), Heist requires more com-
munication. However, a good balance can be struck be-
tween solution quality and communication by reducing c to
4. Moreover, note that Heist requires each agent to ex-
change only 600 values per iteration of the MAB–DCOP,
a value that is well within the capabilities of bandwidth
constrained embedded agents. Finally, the computation re-
quired by Heist to solve problem instances with n = 50 and
T = 20000 never exceeded 4 hours on a standard desktop
PC, which is less than 200ms per agent per iteration. Again,
this is well within the reach of embedded agents.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we developed Heist, a novel algorithm for
coordination under stochasticity and the absence of a pri-
ori knowledge about the utility functions that govern the
agents’ interactions. Heist solves MAB–DCOPs, an exten-
sion to the canonical DCOP framework, in which the local
utility functions are transformed into MABs. By so doing,
a MAB–DCOP becomes a sequential problem, instead of
a single-shot optimisation problem, in which agents’ need
to trade off exploration and exploitation in a decentralised
fashion. We formalised this trade off as a problem of max-
imising the UCB on the global utility, which we showed is
a non-linear objective function. While previous algorithms
have been shown to be incomplete, i.e. are not guaranteed to
maximise such functions, Heist is provably optimal. This
is achieved by applying the GDL message passing algorithm
on the GDL–UCB semi-ring, which is specifically designed
to preserve the optimal joint variable assignment. We prove
that the regret of Heist is asymptotically optimal, i.e. it
only differs from the optimal achievable regret by a con-
stant factor. In addition, empirical results demonstrate that
Heist outperforms state of the art DCOP and MAB algo-
rithms by up to 1.5 orders of magnitude.

For future work, we intend to further reduce the commu-
nication overhead of Heist. In the empirical results, we al-
ready applied a technique for achieving this (Heist-c), but
this technique no longer carries the guarantee of optimal-
ity. Instead, we can let Heist automatically calibrate the
amount communication to suit the level of dynamism in the
environment, while maintaining optimality.

Acknowledgements This work was part of the ORCHID project

(http://www.orchid.ac.uk/).

7. REFERENCES
[1] S. M. Aji and R. J. McEliece. The Generalized Distributive

Law. IEEE Trans. Inf. Theory, 46(2):325–343, 2000.

295

[2] J. Atlas and K. Decker. Coordination for uncertain
outcomes using distributed neighbor exchange. AAMAS’10,
pages 1047–1054, 2010.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite–time
analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002.

[4] E. Even-Dar, S. Mannor, and Y. Mansour. Pac bounds for
multi–armed bandit and markov decision processes.
COLT’02, pages 255–270, 2002.

[5] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In Distributed Sensor
Networks, pages 257–295. Kluwer Academic Publishers,
2003.

[6] M. Jain, M. Taylor, M. Tambe, and M. Yokoo. DCOPs
meet the real world: Exploring unknown reward matrices
with applications to mobile sensor networks. IJCAI’09,
pages 181–186, 2009.

[7] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans. on
Information Theory, 47(2):498–519, 2001.

[8] T. L. Lai and H. Robbins. Asymptotically efficient adaptive
allocation rules. Adv. in Appl. Math., 6(1):4–22, 1985.

[9] T. Léauté and B. Faltings. E[DPOP]: Distributed
constraint optimization under stochastic uncertainty using
collaborative sampling. IJCAI–09 DCR Workshop, pages
87–101, 2009.

[10] T. Léauté and B. Faltings. Distributed constraint
optimization under stochastic uncertainty. AAAI’11, pages
68–73, 2011.

[11] D. J. C. MacKay. Information Theory, Inference, and
Learning Algorithms. Cambridge University Press, 2003.

[12] R. J. Maheswaran, J. Pearce, and M. Tambe. A family of
graphical-game-based algorithms for distributed constraint
optimization problems. In Coordination of Large-Scale
Multiagent Systems, pages 127–146. Springer-Verlag, 2005.

[13] P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees. Artif. Intell., 161(1-2):149–180, 2005.

[14] A. Petcu and B. Faltings. DPOP: A scalable method for
multiagent constraint optimization. IJCAI’05, pages 266 –
271, 2005.

[15] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings.
Bounded approximate decentralised coordination via the
max-sum algorithm. Artif. Intell., 175(2), 2011.

[16] R. S. Sutton and A. G. Barto, editors. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[17] M. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe.
When should there be a ”Me” in ”Team”?: Distributed
multi-agent optimization under uncertainty. AAMAS’10,
pages 109–116, 2010.

[18] J. Vermorel and M. Mohri. Multi-armed bandit algorithms
and empirical evaluation. ECML’05, pages 437–448, 2005.

Appendix – Proofs

Proof sketch of Theorem 2. We first show that op-
erator max≻ filters out tuples that cannot maximise the
global UCB. In particular, if there is at least one incom-
ing message, then (µ̂2, b

2
2) is dominated by (µ̂1, b

2
1) if and

only if for any incoming tuple (µ̂3, b
2
3), µ̂1 + µ̂3 +

√
b1 + b3 >

µ̂2 + µ̂3 +
√

b2 + b3 holds. This implies that µ̂1 − µ̂2 >√
b2 + b3 −

√
b1 + b3. By definition, b3 = urange

√
2 ln t
n3(t)

at

time t, where n3(t) is the number of samples included in
µ̂3. Note that 1 ≤ n3(t) ≤ t, and can take any arbi-
trary value within this interval. That is, u2

range
2 ln t

t
≤ b2

3 ≤
u2

range2 ln t. This implies that if at least one among the sec-
ond or the third clause in the definition does not hold, then
tuple (µ̂2, b

2
2) cannot be discarded (i.e. it is not dominated

by tuple (µ̂1, b
2
1). In addition, if there are no incoming mes-

sages, then breaking the first clause indicates that (µ̂2, b
2
2)

cannot be discarded either. That is, (µ̂2, b
2
2) is dominated

by (µ̂1, b
2
1) iff all the clauses hold.

The proof of the claim that the GDL message passing
phase yields Zi(xi), the maximum marginal UCB for each
assignment, follows a similar argument to that of Theorem
3.1 in [1], and thus, is omitted for brevity. ✷

Proof sketch of Theorem 3. At each time t, after GDL
message passing has converged, the joint assignment with
the maximum UCB is chosen (see Theorem 2). Suppose
that each time t, Heist chooses joint assignment X∗(t) =
〈x∗

1(t), . . . , x
∗
n(t)〉. In what follows, we estimate the expected

number times X∗(t) 6= XE is chosen, in order to estimate
the regret of Heist. In particular, let NT (X) denote the
number of times Heist chooses suboptimal joint assignment
X 6= XE before T . By estimating NT (X), we can estimate
the number of times Heist chooses a suboptimal joint as-
signment, and thus, derive a bound on its regret. That is,

RHeist(T) ≤
∑

X∈∏
Di

NT (X)d(X) (12)

We provide an upper bound for E [NT (X)] as follows. Note
that E [NT (X)] can be estimated by the following sum:

E [NT (X)] ≤ k +

T∑

t=1

P
(

X∗(t) = X, X 6= XE, Nt−1 (X) ≥ k
)

(13)

The latter term can be further upper bounded by:

T∑

t=1

P
(

µ̂(X(t), t) + b(X(t), t) ≥ µ̂(XE, t) + b(XE, t), Nt−1 (X) ≥ k
)

(14)

where b(X, t) =
√

2 ln(t)
∑m

j=1

(urange)2

n(xj ,t)
. Intuitively, the

probability that Heist chooses X∗(t) 6= XE can be bounded
by the probability that µ̂(X(t), t) + b(X(t), t) ≥ µ̂(XE, t) +
b(XE, t). This can be further bounded by:

T∑

t=1

t∑

sj=k

t∑

s=k

P
(

µ̂(X(sj), sj) + b (X (sj) , sj) ≥ µ̂(XE, s) + b(XE, s)
)

(15)

Now, it is true that if µ̂(X(sj), sj) + b (X (sj) , sj) ≥ µ̂(XE, s) +

b(XE, s) holds then at least one of the following must hold:

1. µ̂
(

XE, s
)

+ b
(

XE, s
)

≤ µ
(

XE, s
)
.

2. µ (X(sj), sj) ≤ µ̂ (X(sj), sj) + b (X(sj), sj).

3. µ
(

XE, s
)

− µ (X(sj), sj) ≤ 2b(X(sj), sj).

This can be shown by using similar argument to that of
Theorem 1 in [3], and thus, is omitted for brevity. By using
McDiarmid’s inequality, we can show that both (1) and (2)

hold with probability t−4, and if k ≥ ⌈urange8 ln T

d(X)
⌉, then (3)

does not hold. This implies that:

E [NT (x)] ≤ k +

T∑

t=1

t∑

s=1

t∑

sj=1

2t−4 ≤ k +
π2

3
(16)

for any k ≥ ⌈urange8 ln T

dx
⌉. The last inequality is obtained

from the Riemann Zeta Function for value of 2. Finally,
substituting this into Equation 12 concludes the proof. ✷

Proof sketch of Theorem 4. We can reduce all stan-
dard MAB problems to a MAB–DCOP with m = 1. Ac-
cording to [8], the best possible regret that an algorithm
can achieve on standard MABs is C ln T . Therefore, if there
is an algorithm for MAB–DCOPs that provides better re-
gret than C lnT , then it also provides better regret bounds
for standard MABs. ✷

296

Session 4B
Agent Societies

A Multiagent Evolutionary Framework based on Trust for
Multiobjective Optimization

Siwei Jiang Jie Zhang Yew Soon Ong
School of Computer Engineering

Nanyang Technological University, Singapore
{sjiang1, zhangj, asysong}@ntu.edu.sg

ABSTRACT
In an Evolutionary Algorithm (EA) for optimization prob-
lems, candidate solutions to the problems are individuals in a
population. They produce offsprings by taking evolutionary
operators with user-specific control parameters. The chal-
lenge is then how to effectively select evolutionary operators
and adjust control parameters from generation to genera-
tion and on different problems. We propose a novel mul-
tiagent evolutionary framework based on trust where each
solution is represented as an intelligent agent, and evolu-
tionary operators and control parameters are represented
as services. Agents select services in each generation based
on trust that measures the competency or suitability of the
services for solving particular problems. Multiobjective Op-
timization Problems (MOPs) are used to showcase the value
of our framework. Experimental studies on 35 benchmark
MOPs show that our framework significantly improves the
performance of the state-of-the-art EAs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; Multiagent systems

General Terms
Design; Algorithms

Keywords
Evolutionary Algorithm; Multiagent Systems; Trust and Rep-
utation; Multiobjective Optimization

1. INTRODUCTION
Evolutionary Algorithms (EAs) [1] are generic population-

based stochastic search techniques inspired by biological evo-
lution of nature selection for solving optimization problems.
In EAs, candidate solutions to the problems play the role of
individuals in a population. They produce offsprings by tak-
ing evolutionary operators (such as crossover and mutation)
with user-specific control parameters. EAs are well known
by its generality and simplicity that they often perform well
approximating solutions to all types of problems in many

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

fields such as engineering, economics, robotics, etc. How-
ever, evolutionary operators and control parameters may
vary for different problems. It is time-consuming to deter-
mine the operators and parameters by the trial-and-error
procedure. In addition, the competency of operators may
vary with generations. For example, crossover is often pow-
erful in the earlier stage of EAs, but mutation is effective
when the solutions are similar with each other in the later
stage of EAs. The challenge of EAs is thus how to effectively
select evolutionary operators and adjust control parameters
from generation to generation and on different problems.

Different techniques have been proposed to select evolu-
tionary operators and control parameters in EAs. Igel et
al. [3] propose CMA-ES as an evolution strategy that auto-
matically adjusts control parameters, including the step-size,
matrix mean and covariance. The methods of SaDE [5] and
CoDE [8] not only adjust control parameters but also select
evolutionary operators. However, both SaDE and CoDE in-
troduce some other parameters whose values are predefined
according to previous studies, which limits their generality.

In this paper, we propose a novel multiagent evolutionary
framework based on trust where each solution is represented
as an intelligent agent, and the pairs of evolutionary opera-
tors and control parameters are represented as services. In
our framework, the agents model the trustworthiness of the
services, based on whether the agents’ offsprings produced
by using the services survive to the next generations, which
represents the dynamic competency or suitability of the ser-
vices from generation to generation and on particular opti-
mization problems. The agents will then select the services
with the probabilities correlated to the trustworthiness of
the services. To demonstrate the value of our framework,
we consider the challenges of Multiobjective Optimization
Problems (MOPs) as a case study, whereas it is generally
applicable to other optimization problems. Experimental
results on 35 benchmark MOPs confirm that our framework
significantly improves the performance of the state-of-the-
art EAs. The present work thus represents a promising step
towards the use of multiagent based paradigms in the de-
sign of novel EAs as composing of intelligent agents that
adopt trust modeling techniques for selecting evolutionary
operators and control parameters in multiagent-based EAs.

2. RELATED WORK
CMA-ES [3] is a representative evolution strategy (ES)

to adaptively adjust control parameters for solving MOPs.
In CMA-ES, only one type of evolutionary operator is used
to produce offsprings by a Gaussian mutation. The mean

299

and variance of the Gaussian distribution are adjusted with
an iteration procedure. Our framework not only adjusts
control parameters but also selects evolutionary operators.
SaDE [5] and CoDE [8] are the two representative algo-
rithms proposed to select evolutionary operators and adjust
control parameters for solving single objective optimization
problems. In SaDE, operators and parameters are gradu-
ally self-adapted by learning from their previous experience
in generating promising solutions. In each generation, op-
erators and parameters are assigned to different individuals
in the current population according to the selection prob-
abilities learned from the previous generations. However,
SaDE computes simple statistics on the experience only af-
ter each 50 generations. In our framework, the competency
or suitability of evolutionary operators and control param-
eters (referred to as the trustworthiness of services) is mod-
eled by cumulating all previous experience based on well
established probabilistic modeling and in a dynamic man-
ner. Also, SaDE adjusts control parameters based on a
normal distribution with a predefined mean based on the
authors’ prior knowledge. The CoDE algorithm randomly
combines three DE operators and three predefined parame-
ters to generate offsprings. Although CoDE obtains better
performance over SaDE, its setting of the control parame-
ters relies on some prior knowledge. All in all, SaDE and
CoDE both introduce some other parameters whose values
are predefined based on previous studies on single objective
optimization problems, which limits their generality to other
problems, e.g. more complex Multiobjective Optimization
Problems (MOPs). In contrast, our selection of operators
and control parameters does not rely on any prior knowl-
edge about the problems. In addition, we design our frame-
work as a multiagent system where candidate solutions are
represented as intelligent agents capable of learning, coop-
eration and adaptation. This design offers great flexibility
and extendability for EAs to employ advanced multiagent
technologies for solving complex optimization problems.

Multiagent technologies have recently been widely used
to design Evolutionary Algorithms (EAs) for solving com-
plex problems [6]. For example, Stonedahl et al. [7] propose
a distributed multiagent-based Genetic Algorithm (GA) to
study how the network density of connections and the in-
teractions between agents affect the performance of the GA.
In the work of Zhong et al. [11] for solving single objective
optimization problems, every solution is considered as an
agent and all agents live in a lattice-like environment. The
actions of agents are advanced evolutionary operator (such
as orthogonal crossover and self-learning operators), but the
agents are not autonomous because they select actions only
based on predefined probabilities. In our framework, agents
autonomously select services by learning the trustworthiness
of the services. Trust plays a crucial role in agent-based ser-
vice selection [10, 9]. It is used by agents to measure the
quality of services and select services of high quality. One
particularly effective way of modeling trust is to use the col-
lective opinions of all agents about the services. We adopt
this method in our framework.

Thus, the contributions of our current work can be sum-
marized as follows: 1) majority of the adaptive EAs have
been proposed to work with single objective optimization
problems. Our generic framework can also be adopted to
solve MOPs and other complex optimization problems; 2)
the few existing adaptive EAs for MOPs adjust only control

parameters, whereas agents in our framework can also select
evolutionary operators; 3) to the best of our knowledge, mul-
tiagent technologies have been adopted to design adaptive
EAs for solving MOPs for the first time; 4) our framework
is also the first attempt to consider the use of trust model-
ing for measuring the dynamic competency of evolutionary
operators and control parameters.

3. BACKGROUND ON MOEA
We demonstrate our framework on solving Multiobjective

Optimization Problems (MOPs) [1]. MOPs involve several
conflicting objectives to be optimized simultaneously. A
minimization of MOPs can be stated as follows:

min F(x⃗) = (f1(x⃗), . . . , fm(x⃗))
s.t. g(x⃗) ≤ 0, h(x⃗) = 0, x⃗ ∈ Ω

(1)

where x⃗ = (x1, . . . , xD), Ω is decision (variable) space, Rm

is objective space, and F : Ω → Rm consists of m real-valued
objective functions with constraints g(x⃗) ≤ 0, h(x⃗) = 0, and
the feasible solution space is Ω = ΠD

i=1[LBi, UBi].
The challenge of MOPs is to find a Pareto set (PS) in-

cluding non-dominated solutions which are evenly scattered
along Pareto front (PF). Multiobjective Evolutionary Al-
gorithms (MOEAs) have been well established as efficient
approaches to solve various MOPs [1].

In MOEAs, the first population of solutions is randomly
generated as Xg = {x⃗i,g|i = 1, . . . , NP, g = 0}, where NP is
the population size and g is the generation index. The next
population is produced by evolutionary operators. We take
the “DE/rand/1/bin” operator as an example. At first, the
operator generates a vector v⃗i,g base on population Xg.

v⃗i,g = x⃗r1,g + F · (x⃗r2,g − x⃗r3,g) (2)

where r1, r2, r3 ∈ [1, NP] are random integer numbers and
r1 ̸= r2 ̸= r3 ̸= i. The control parameter F is the scaling
factor which amplifies or shrinks the difference vectors.

After that,“DE/rand/1/bin”applies the binomial crossover
operation to produce the offspring vectors:.

Ug = {u⃗i,j,g|i = 1, . . . , NP, j = 1, . . . , D} (3)

u⃗i,j,g =
{

v⃗i,j,g if randj(0, 1) ≤ CR or j = jrand

x⃗i,j,g otherwise.

where randj(0, 1) ∈ [0, 1] is a uniformly distributed random
number, jrand ∈ [1, D] is a randomly chosen integer. If
u⃗i,j,g < LBj , it is set to LBj , if u⃗i,j,g > UBj , set to UBj .
The control parameter CR is the probability for crossover.

Then, MOEAs select part of offsprings to enter the next
generation (u⃗i,g → Xg+1). MOEAs can be generally cate-
gorized into two major classes: decomposition-based (called
MOEA/D) [4] and Pareto dominance-based MOEAs [2, 12].

• In MOEA/D, u⃗i,g → Xg+1 if u⃗i,g ≽ x⃗j,g+1 (∀x⃗j,g+1 ∈
Xg+1)

1 under, for example, Tchebycheff approach [4].

• In Pareto dominance-based MOEAs, u⃗i,g → Xg+1 if
u⃗i,g ≽ x⃗j,g+1 (∀x⃗j,g+1 ∈ Xg+1) under, for example,
crowding distance (NSGAII) [2] or neighborhood den-
sity estimator (SPEA2) [12].

The performance of MOEAs is determined by the opera-
tors and their parameters (i.e. the operator“DE/rand/1/bin”,
and parameters F and CR in the operator mentioned above).
The purpose of our framework is to select proper evolution-
ary operators and control parameters in EAs (i.e. MOEAs).
1“≽” means “be better than or equal”.

300

4. OUR FRAMEWORK
In MOEAs, solutions in each generation produce offsprings

by performing evolutionary operators with some control pa-
rameters. A plenty of effective evolutionary operators have
been proposed, such as“DE/rand/1/bin”,“DE/rand/2/bin”,
“DE/current-to-rand/1/bin”[8], Simulated Binary Crossover
(SBX), and Polynomial mutation [2]. These operators, con-
figured with different control parameters, exhibit distinguish-
ing competence on different MOPs. The offsprings produced
by some operators and parameters may be able to survive
to the next generation, but some offsprings cannot.

In our multiagent evolutionary framework, each solution
is represented as an agent. The pairs of evolutionary opera-
tors with corresponding control parameters are represented
as services. In each generation, an agent selects a service to
produce a new offspring agent (i.e., by Equations 2 and 3),
which is also a solution. The new offspring agent competes
with other agents in the environment. If the offspring agent
can survive to the next generation, it means that the service
provides a positive outcome, otherwise, the service provides
a negative outcome. The trustworthiness of services can be
used to represent the competency of the services in produc-
ing positive outcomes. The larger number of outcomes a
service can produce, the more suitable the service is to solve
the given problem. Thus, agents in our framework model
the trustworthiness of the services based on the number of
positive and negative outcomes provided by the services in
the past generations. The modeling results will be used by
the agents to make decisions on which services to consume.

4.1 Probabilistic Modeling of Trustworthiness
The trustworthiness of services is normally modeled based

on the number of positive and negative outcomes produced
by them in the past. If we define s as the number of pos-
itive outcomes and f as the number of negative outcomes
provided by a service S, formulated as follows:

{
s = s + 1 if u⃗i,g → Xg+1

f = f + 1 otherwise
(4)

where u⃗i,g → Xg+1 means that the offspring u⃗i,g produced
in the generation g by the service can survive to the next
generation g+1. Whether u⃗i,g → Xg+1 is determined based
on different methods in MOEAs (see Section 3).

Beta distribution is commonly used to model the distribu-
tion of a random variable representing the unknown proba-
bility of a binary event. The Beta probability density func-
tions (PDF) of service S can then be formulated as:

Beta(p(S)|α, β) =
Γ(α + β)

Γ(α)Γ(β)
p(S)α−1(1 − p(S))β−1 (5)

where 0 ≤ p(S) ≤ 1 and α, β > 0 with the restriction that
p(S) ̸= 0 if α < 1 and p(S) ̸= 1 if β < 1.

The trustworthiness of S is then the probability expec-
tation value of the Beta distribution, which represents the
relative frequency of positive outcomes in future events [10].

T (S) =
α

α + β
, where α = s + 1, β = f + 1 (6)

4.2 Trustworthiness of Service
In this paper, we model the trustworthiness of services by

adopting probabilistic modeling introduced in the previous
section. One thing to note here is that MOEAs generally in-
volve much randomness. A evolutionary operator configured

with the same control parameters may still generate differ-
ent offsprings because of the random values of r1, r2, r3
and randj(0, 1) in Equations 2 and 3. Due to this random-
ness, the trustworthiness of a service cannot be accurately
estimated by a small number of outcomes produced by the
service for a particular family of agents (a solution and its
offsprings). Instead, in our framework, it is modeled based
on the outcomes produced by the service for all agents in
the past generations, which is referred to as reputation [10].

A service is represented by a evolutionary operator and
some control parameters. The evolutionary operator can be
any operator from a list of operators O = {O1, O2, . . . , O|O|}
proposed in MOEAs, where |O| is the number of available
evolutionary operators. Given a specific operator Ok ∈ O
in the service, there will be a set of control parameters
Ck = {Ck

l |l = 1, . . . , |Ck|} associated with the operator Ok,
where |Ck| is the number of control parameters. For exam-
ple, the operator “DE/rand/1/bin” has two control parame-
ters (CR and F) associated with it (see Section 3). Assume
that a parameter Ck

l takes a continuous value in the range as
Ck

l ∈ [0, 1]. In order to effectively learn the performance of
a control parameter, we divide the range [0, 1] into a set of q
disjoint segments as L = {[0, 1

q
), [1

q
, 2

q
), · · · , [q−1

q
, 1]}. Thus,

a service can be formally defined as a tuple (Ok, Ck) where
Ck = {Ck

l |Ck
l = L(Ck

l), l = 1, . . . , |Ck|} and L(Ck
l) is one of

the segments in L for the parameter Ck
l . In another word,

a service is a tuple of a evolutionary operator and a set of
segments for corresponding control parameters. Here, we do
not distinguish a parameter from its segment for simplicity.

For the service (Ok, Ck), we first compute the trustworthi-
ness of the operator Ok. It is modeled based on the number
of positive and negative outcomes generated by the agents
performing this operator in the past generations. The total
number of positive and negative outcomes up to the current
generation g is aggregated as follows:

{
sg(Ok) = (1 − η) · sg−1(Ok) + η · Ng,s(Ok)
fg(Ok) = (1 − η) · fg−1(Ok) + η · Ng,f (Ok)

(7)

where Ng,s(Ok) and Ng,f (Ok) are the number of positive and
negative outcomes produced by the agents performing the
operator Ok in the current generation g, respectively. The
parameter 0 ≤ η ≤ 1 is to determine how much to consider
the current and historical information, where η = 0 means
that only the historical information is considered, whereas
η = 1 only the current information is utilized. After having
sg(Ok) and fg(Ok), the trustworthiness of the operator Ok

in the current generation g, Tg(Ok), can then be computed
according to Equation 6.

In general, one operator is suitable for some specific types
of problems, but may not work well for other types. Even
for the same problem, the competency of the operator may
vary in different generations. For example, the operator
“DE/ran/1/bin” is suitable to multi-modal problems, which
has slow convergency in the earlier stage but exhibits strong
exploration in the later stage of EAs. Based on this phe-
nomenon, the trustworthiness of the operator needs to reflect
the varying competency of the operator under the condition
where trust is hard to build up, but easy to lose.

The aggregation function in Equation 7 is then revised as:

{
sg = (1 − Tg−1) · sg−1 + Tg−1 · Ng,s

fg = (1 − Tg−1) · fg−1 + Tg−1 · Ng,f
(8)

where Ok is dropped out for clarity and Tg−1 is the trust-

301

worthiness of operator Ok in generation g − 1. Equation 8
has two important advantages. It does not have predefined
parameters, compared to Equation 7 that has the parameter
η. Equation 8 also satisfies the above mentioned condition.
When the trustworthiness of the operator in the last gen-
eration g − 1, Tg−1(Ok) is low, the operator needs more
positive outcomes Ng,s(Ok) to build up its trust in the cur-
rent generation g. When Tg−1(Ok) is high, 1 − Tg−1(Ok)
is low, meaning that the less consideration will be given to
historical information. The trustworthiness of the operator
Tg(Ok) will be easy to decline when the number of negative
outcomes in the current generation Ng,f (Ok) is large.

For the service (Ok, Ck), we then compute the trustwor-
thiness of each parameter in Ck (i.e. the value range seg-
ment corresponding to each parameter). When computing
the trustworthiness a parameter, we also need to consider
the operator the parameter is associated with. Take the
parameter Ck

l as an example. The trustworthiness of Ck
l

associated with Ok in the current generation g, denoted as
Tg(Ck

l |Ok), can be calculated in the similar way as calcu-
lating the trustworthiness of the operator Ok (Equation 8),
by counting the numbers of positive and negative outcomes
produced by the operator Ok with the parameter Ck

l , which
are Ng,s(C

k
l |Ok) and Ng,f (Ck

l |Ok) respectively.
After having the trustworthiness of the evolutionary op-

erator Ok, which is Tg(Ok), and each control parameter Ck
l

given Ok, which is Tg(Ck
l |Ok), we can then compute the

trustworthiness of the service (Ok, Ck) by assuming the con-
trol parameters are independent, as follows:

Tg(Ok, Ck) = Tg(Ok) ·
|Ck|∏

l=1

Tg(Ck
l |Ok) (9)

4.3 Trust-based Service Selection
In our framework, agents select services based on the com-

puted trust results of the services. In order to balance be-
tween exploitation and exploration, services are selected in
a probabilistic manner where the probability for a service
to be selected is proportional to its trust. More formally,

there are
∑|O|

k |Ck| · m services in total because there are
|O| evolutionary operators, each operator Ok is associated
with |Ck| control parameters, and each parameter is repre-
sented by one of the q value range segments. The probability
for service (Ok, Ck) with the trust Tg(Ok, Ck) in the current
generation g to be selected in the next generation g + 1 is:

p(Ok, Ck) =
Tg(Ok, Ck)

∑∑|O|
k

|Ck|·m Tg(Ok, Ck)
(10)

Note that after an agent selects a service, e.g. (Ok, Ck),
each control parameter in Ck, e.g. Ck

l , is a value range
segment in L, not a specific value. In order for the service
to be used by the agent to produce an offspring, a specific
value for the parameter Ck

l is needed. We assume that the
values of the parameter Ck

l follow a normal distribution in
the range of L(Ck

l) as Normal(µg(Ck
l), σ) where µg(Ck

l) and
σ = 1

3q
are the mean and standard deviation, respectively,

and Ck
l ∈ [0, 1]. The mean µg(Ck

l) is calculated as follows:

µg(Ck
l) = (1 − Tg−1(C

k
l |Ok)) · µg−1(C

k
l)

+ Tg−1(C
k
l |Ok) · Mean(Vg(Ck

l |Ok)) (11)

where Vg(Ck
l |Ok) is the set of the values of the param-

eter Ck
l , which produces positive outcomes for the agent

performing the operator Ok in the current generation g.
Mean(Vg(Ck

l |Ok)) is the mean of the values in Vg(Ck
l |Ok).

The rationale behind Equation 11 is that the effectiveness
of the parameter Ck

l measured by Tg−1(C
k
l |Ok), reflects the

appropriation of its mean µg(Ck
l) up to the generation g−1.

To cope with the dynamics of the effectiveness of µg(Ck
l),

we formulate it in a similar spirit as Equation 8.

5. EXPERIMENTATION
The experiments are carried out on jMetal 3.12, a Java-

based framework aimed at facilitating the development of
metaheuristics for solving MOPs. The benchmark problems
include 35 test instances: 5 MOPs in the ZDTx family prob-
lems (ZDT1-4 and ZDT6 with 2 objectives), 7 MOPs in
the DTLZx family problems (DTLZ1-7 with 3 objectives),
and 23 MOPs in the CEC2009 MOEA competition. Among
the problems used in the CEC2009 MOEA competition that
involves unconstrained functions, UF1-7 have 2 objectives,
UF8-10 3 objectives, and UF11-13 5 objectives. In addi-
tion, The problems CF1-10 have one constraint except CF6-
7 have two constraints. The decision variables in the Pareto
sets (PSs) of the ZDTx and DTLZx are independent, and
those in the CEC2009 MOEA competition are dependent.
The 35 MOPs have different geometrical shapes in objective
space such as concave, convex, linear, discrete, uni-modal
and multi-modal Pareto fronts (PFs).

The experimental settings are outlined as follows. The
number of decision variables D used in ZDT1-3 is 30, D = 10
in ZDT4 and ZDT6, D = 7 in DTLZ1, D = 12 in DTLZ2-
6, D = 22 in DTLZ7, D = 30 in UF1-13, and D = 10 in
CF1-10. In MOEA/D, the population size NP is decided
by the number of weight vectors Cm−1

H+m−1 (m is the number
of objectives, H is a predefined integer). For problems with
two objectives, NP = 100 by setting H = 99, NP = 153
for tri-objective problems (H = 16), NP = 715 for five-
objective problems (H = 9). The other algorithms have the
same population size as MOEA/D on different MOPs. We
set the maximum number of function evaluations (FEs) to
be 300, 000 and independent run times to be 30.

We compare with classic MOEAs (NSGAII [2], SPEA2 [12]
and MOEA/D [4]). We also compare with the other ap-
proaches (CMA-ES [3], SaDE [5] and CoDE [8]) that select
evolutionary operators and/or control parameters. Five evo-
lutionary operators are considered, including“DE/rand/1/bin”,
“DE/rand/2/bin”, “DE/current-to-rand/1/bin” [8], “SBX”,
and “Polynomial mutation” [2]. In NSGAII and SPEA2, the
control parameters for SBX are set to ηc = 20 and pc = 0.9,
and those for Polynomial mutation are set to ηm = 20 and
pm = 1/D. In MOEA/D, the control parameters of the op-
erator “DE/rand/1/bin” are set to CR = 1.0 and F = 0.5.
The update approach used in decomposition-based MOEAs
is the Tchebycheff. In our framework, the number of value
range segments for the control parameters is set to q = 3.

All the algorithms are evaluated by the hypervolume met-
ric, which is strictly monotonic with regard to Pareto domi-
nance [12]. The obtained results are compared using median
values and interquartile range (IQR). In order to have statis-
tically sound conclusions, the Wilcoxon rank sum test with
95% confidence level is conducted on the experiment results.

2http://jmetal.sourceforge.net

302

0 500 1000 1500 2000
0.05

0.1

0.15

0.2

0.25

0.3

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(a) DTLZ1 by NSGAII-T

0 500 1000 1500 2000 2500 3000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(b) UF1 by NSGAII-T

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(c) CF1 by NSGAII-T

Figure 1: The Trustworthiness of Operators Tg(O) Derived by NSGAII-T on DTLZ1, UF1 and CF1

5.1 Improving MOEAs by Our Framework
In this experiment, we extend the classic MOEAs (NS-

GAII [2], SPEA2 [12] and MOEA/D [4]) by our framework
that selects the five evolutionary operators and adjusts con-
trol parameters based on trust. The extended versions of
NSGAII, SPEA2 and MOEA/D are NSGAII-T, SPEA2-T
and MOEA/D-T, respectively. The purpose is to evaluate
whether they can be improved by our framework.

Table 1: Statistical Comparison Results of Classic
MOEAs versus Those Extended by Our Framework

NSGAII-T SPEA2 SPEA2-TMOEA/DMOEA/D-T
NSGAII 18/13/4 17/11/7 19/8/8 19/7/9 22/5/8
NSGAII-T 14/8/13 15/8/12 17/6/12 20/5/10
SPEA2 19/12/4 14/6/15 17/8/10
SPEA2-T 14/7/14 17/6/12
MOEA/D 22/10/3

Table 3 (in the end of the paper) shows the detailed ex-
perimental results, where each tuple reports the median and
IQR of hypervolume over 30 independently runs on 35 MOPs
with 300,000 FES. Table 1 shows the win/tie/lose (w/t/l)
statistical results under the Wilcoxon rank sum test with
95% confidence level. Each tuple w/t/l means that the algo-
rithm at the corresponding column wins on w MOPs, ties on
t MOPs, and loses on l MOPs, compared to the algorithm at
the corresponding row. The results show that the w/t/l val-
ues between the extended versions by our framework and the
classic MOEAs and are 18/13/4, 19/12/4, 22/10/3, respec-
tively. This indicates that our framework can significantly
improve the performance of the classic MOEAs. We also
see that MOEA/D-T is the most effective to solve MOPs
than the classic MOEAs and the other extended MOEAs
(NSGAII-T and SPEA2-T).

5.2 Comparison with Adaptive Approaches
In this experiment, we implement the other adaptive ap-

proaches for selecting evolutionary operators and/or control
parameters (CMA-ES [3], SaDE [5], and CoDE [8]) to extend
MOEA/D for solving MOPs. The purpose is to compare the
effectiveness of them with our framework.

CMA-ES uses only one evolutionary operator (Gaussian
mutation), and adjusts the mean and variance of Gaus-
sian distribution in variable space. SaDE and CoDE select
operators among “DE/rand/1/bin”, “DE/rand/2/bin” and
“DE/current-to-rand/1/bin”. In SaDE, the control parame-

ters are generated by normal distribution, where σCR = 0.3,
µF = 0.5 and σF = 0.1. SaDE introduces four predefined
parameters, including the learning period of 50 generations.
CoDE combines the three operators with a set of fixed pa-
rameter settings, including [CR = 0.1, F = 0.1], [CR =
1.0, F = 0.5] and [CR = 0.2, F = 0.8]. Our framework se-
lects operators among “DE/rand/1/bin”, “DE/rand/2/bin”,
“DE/current-to-rand/1/bin”, “SBX” and “Polynomial muta-
tion”. To have a fair comparison, we implement MOEA/D-
T3 that uses our framework to select among only the first
three operators, which is the same as SaDE and CoDE. The
algorithm MOEA/D-T’ is implemented to use another ver-
sion of our framework that models the trustworthiness of
services with a fixed parameter η = 0.3 using Equation 7.

Table 4 (in the end of the paper) shows the detailed ex-
perimental results of comparing CMA-ES, SaDE and CoDE
with MOEA/D-T3, MOEA/D-T’ and MOEA/D-T, where
each tuple reports the median and IQR of hypervolume over
30 independently runs on 35 MOPs with 300,000 FES. Ta-
ble 2 shows the win/tie/lose (w/t/l) statistical comparison
results of the six algorithms under the Wilcoxon rank sum
test with 95% confidence level.

Table 2: Comparison Results for CMA-ES, SaDE,
CoDE, MOEA/D-T3, MOEA/D-T’, MOEA/D-T

SaDE CoDE MOEA/D-T3MOEA/D-T’MOEA/D-T
CMA-ES 27/4/4 25/8/2 27/7/1 26/8/1 30/4/1
SaDE 10/17/8 17/13/5 14/17/4 21/8/6
CoDE 11/21/3 10/16/9 22/11/2
MOEA/D-T3 6/20/9 9/24/2
MOEA/D-T’ 14/16/5

The w/t/l values between MOEA/D-T3 and CMA-ES
is 27/7/1, indicating that selecting evolutionary operators
is beneficial for solving MOPs. The w/t/l values between
MOEA/D-T3 and SaDE is 17/13/5. Our MOEA/D-T3 not
only has less predefined parameters than SaDE, but also is
more effective than SaDE. The w/t/l value between MOEA/D-
T3 and CoDE is 11/21/3. MOEA/D-T3 is more effective
than CoDE. CoDE fixes the two control parameters CR
and F before the algorithm starts. MOEA/D-T3 learns the
parameters as the algorithm progresses. It demonstrates
that parameter learning based on trust in our framework is
able to automatically adjust control parameters on different
MOPs. The w/t/l values between MOEA/D-T and CMA-
ES, SaDE, CoDE, MOEA/D-T3, MOEA/D-T’ are 30/4/1,
21/8/6, 22/11/2, 9/24/2 and 14/16/5, respectively. Our

303

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(a) DTLZ1 by MOEA/D-T

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(b) UF1 by MOEA/D-T

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Generations

T
ru

st
w

or
th

in
es

s
of

 o
pe

ra
to

r

DE/rand/1/bin
DE/rand/2/bin
DE/c−t−rand/1/bin
SBX
Polynomial

(c) CF1 by MOEA/D-T

Figure 2: The Trustworthiness of Operators Tg(O) Derived by MOEA/D-T on DTLZ1, UF1 and CF1

MOEA/D-T is the best among the six algorithms. The se-
lection on the two extra evolutionary operators “SBX” and
“Polynomial mutation” does show advantages. MOEA/D-
T outperforms MOEA/D-T’, confirming that the dynamic
modeling of the trustworthiness of services is more effective.

5.3 Effect of PSs on Operator Selection
An important factor that affects the searching ability of

Pareto dominance-based MOEAs (e.g. NSGAII) in variable
space is the interdependency among the decision variables
in Pareto sets (PSs). In this experiment, we want to exam-
ine the effect of PSs on the selection of evolutionary opera-
tors. We evaluate NSGAII-T on the problems DTLZ1, UF1
and CF1. In DTLZ1, decision variables in PSs are indepen-
dent, but in UF1 and CF1, the decision variables are inter-
dependent. Figure 1 shows the trustworthiness of operators
Tg(O) in different generations. We can see that in Pareto
dominance-based MOEAs, the evolutionary operators SBX
and Polynomial mutation show great contributions. It is also
evident that SBX does better in independent PSs (DTLZ1)
than interdependent PSs (UF1 and CF1), whereas Polyno-
mial mutation is more suitable to deal with the nonlinear
variable dependencies than independent variables.

5.4 Trustworthiness of Evolutionary Operators
The operators“DE/rand/1/bin”and“DE/rand/2/bin”are

quite similar. However, “DE/current-to-rand/1/bin” is dif-
ferent and it is formulated as follows:

v⃗i,g = x⃗i,g+rand() · (x⃗r1,g−x⃗i,g)+F · (x⃗r2,g−x⃗r3,g) (12)

where r1, r2, r3 ∈ [1, NP] are random integer numbers and
r1 ̸= r2 ̸= r3 ̸= i, x⃗i is the base vector, and rand() ∈
(0, 1) is a uniform random value. Operator “DE/current-
to-rand/1/bin” generates the new offsprings based on vector
x⃗i, whereas “DE/rand/1/bin” and “DE/rand/2/bin” search
new agent in the global region.

The effectiveness (competency) of evolutionary operators
is evaluated by the trustworthiness of them in our MOEA/D-
T. In this experiment, we investigate the different compe-
tency of the operators in different generations on different
MOPs. Figure 2 shows the trustworthiness of operators
Tg(O) on DTLZ1, UF1, and CF1 by MOEA/D-T in dif-
ferent generations. All results are means of 30 indepen-
dent runs. We can see that the trustworthiness (compe-
tency) of the operators vary from generations to generations

and on different problems. Under the decomposition-based
MOEA method, “DE/rand/1/bin”, “DE/rand/2/bin” and
“DE/current-to-rand/1/bin” are more effective than “SBX”
and “Polynomial”. The trustworthiness of “DE/current-to-
rand/1/bin” increases in the earlier stage then gradually de-
creases in the later stage, whereas the trustworthiness of
“DE/rand/1/bin” and “DE/rand/2/bin” gradually increases
as MOEA/D-T progresses. “DE/current-to-rand/1/bin”has
the search bias based on the base vector (x⃗i) and larger
perturbation (rand()). In the earlier stage of MOEAs, it
has good performance due to the biased search. But its
performance gradually deteriorates in the later stage be-
cause of the uncertain perturbation. “DE/rand/1/bin” and
“DE/rand/2/bin” do not prefer any search direction but
they have strong exploration capability. The competency
of them is low in the earlier stage because of their unbiased
search. But in the later stage, they are more effective than
“DE/current-to-rand/1/bin” due to the better exploration.
Thus, the trustworthiness of the operators modeled by our
framework well reflects their true competency.

5.5 Trustworthiness of Control Parameters
The effectiveness (suitability) of control parameters is also

evaluated by the trustworthiness of them in MOEA/D-T.
In this experiment, we investigate the different suitability of
the control parameters in different generations. Figures 3(a)
and 3(b) show the trustworthiness of the control parameters
(different value range segments for CR and F respectively),
Tg(CR) and Tg(F), on the problem UF1 by MOEA/D-T,
where {CR, F ∈ [0, 1]} is divided into three segments. Be-
cause of space limitation, we only show the results of the
parameters for the operator “DE/rand/2/bin”.

The trustworthiness of CR ∈ [0.67, 1.00] is high in the
later stage on UF1. The larger value of CR makes the op-
erator to search in a broad region, and it is beneficial for
MOEAs to maintain the population diversity. The trust-
worthiness of F ∈ [0.00, 0.33) gradually increases on UF1.
As the algorithm progresses, the agents (represent the so-
lutions) spread more evenly. It means that the difference
between agents (i.e., x⃗r1,g − x⃗r2,g in Equation 2) becomes
larger. So, in the later stage, the operator “DE/rand/2/bin”
needs to adjust the parameter F to be small for exploitation
to search in a neighboring region. Thus, the trustworthiness
of the control parameters modeled well reflects the varying
competency of them in different generations.

304

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generations

T
ru

st
w

o
rt

h
in

es
s

o
f

co
n

tr
o

l p
ar

am
et

er
s

CR∈ [0.00,0.33)
CR∈ [0.33,0.67)
CR∈ [0.67,1.00]

(a) UF1 by MOEA/D-T

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

T
ru

st
w

o
rt

h
in

es
s

o
f

co
n

tr
o

l p
ar

am
et

er
s

F∈ [0.00,0.33)
F∈ [0.33,0.67)
F∈ [0.67,1.00]

(b) UF1 by MOEA/D-T

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

M
ei

da
n

an
d

IQ
R

 o
f h

yp
er

vo
lu

m
e

on
 3

5
M

O
P

s

NSGAII
SPEA2
MOEA/D
MOEA/D−T q∈ [1,3,5,7,9]

(c) Effect of Control Parameters

Figure 3: (a, b) Trustworthiness of Parameters Tg(CR|O) and Tg(F |O) Derived by MOEA/D-T on UF1 and
O = “DE/rand/2/bin” in Different Generations; (c) MOEA/D-T with Different Values of Parameter q

5.6 The Effect of Parameter q

Our framework has only one predefined parameter q, which
is the number of value segments for control parameters. To
investigate the impact of this parameter setting, MOEA/D-
T with q = {1, 3, 5, 7, 9} are tested on 35 MOPs. Figure 3(c)
shows the median and IQR of hypervolume derived from NS-
GAII, SPEA2, MOEA/D and MOEA/D-T over 30 indepen-
dent runs. It is evident that MOEA/D-T is not sensitive to
the setting of q. For all q values, MOEA/D-T outperforms
NSGAII, SPEA2 and MOEA/D.

6. CONCLUSION AND FUTURE WORK
In this paper, a novel multiagent evolutionary framework

based on trust is proposed to effectively select evolutionary
operators and adjust control parameters (represented as ser-
vices), for solving complex optimization problems (such as
MOPs). In the framework, agents (representing solutions)
automatically select services by modeling their trustworthi-
ness based on the number of offsprings produced using them
will survive to the next generation. Experiments carried out
on 35 benchmark MOPs confirm that our framework sig-
nificantly improves the performance of the classic MOEAs
(NSGAII, SPEA2 and MOEA/D) and outperforms the other
three adaptive approaches (CMA-ES, SaDE and CoDE).

For future work, we will examine our framework in a dis-
tributed multiagent system where only partial (local and
neighboring) information about the outcomes of services is
known to agents, towards the development of a distributed
framework. We will also investigate the performance of our
framework on other complex problems, such as constraint
optimization, expensive optimization problems, etc.

Acknowledgment
This work is partially supported by the Media Development
Authority of Singapore, Singapore-MIT GAMBIT Game Lab
and the Center for Computational Intelligence (C2I) at the
Nanyang Technological University, Singapore.

7. REFERENCES
[1] C. A. C. Coello. Evolutionary multi-objective

optimization: a historical view of the field. IEEE
Computational Intelligence Magazine, 1(1):28–36,
2006.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transaction on Evolutionary
Computation, 6(2):182–197, 2002.

[3] C. Igel, N. Hansen, and S. Roth. Covariance matrix
adaptation for multi-objective optimization.
Evolutionary Computation, 15(1):1–28, 2007.

[4] H. Li and Q. Zhang. Multiobjective optimization
problems with complicated Pareto sets, MOEA/D and
NSGA-II. IEEE Transaction on Evolutionary
Computation, 13(2):284–302, 2009.

[5] A. Qin, V. Huang, and P. Suganthan. Differential
evolution algorithm with strategy adaptation for
global numerical optimization. IEEE Transaction on
Evolutionary Computation, 13(2):398–417, 2009.

[6] R. A. Sarker and T. Ray. Agent-Based Evolutionary
Search. Springer, 2010.

[7] F. Stonedahly, W. Randyz, and U. Wilensky.
Multi-agent learning with a distributed genetic
algorithm: Exploring innovation diffusion on networks.
In Proceedings of the AAMAS Workshop on
ALAMAS+ALAg, 2008.

[8] Y. Wang, Z. Cai, and Q. Zhang. Differential evolution
with composite trial vector generation strategies and
control parameters. IEEE Transaction on
Evolutionary Computation, 15(1):55–66, 2011.

[9] Y. Wang, J. Zhang, and J. Vassileva. Effective web
service selection via communities formed by
super-agents. In Proceedings of the IEEE/WIC/ACM
Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010.

[10] J. Zhang and R. Cohen. A comprehensive approach
for sharing semantic web trust ratings. Computational
Intelligence, 23(3):302–319, 2007.

[11] W. Zhong, J. Liu, M. Xue, and L. Jiao. A multiagent
genetic algorithm for global numerical optimization.
IEEE Transactions on System, Man, Cybernetics,
Part B: Cybernetics, 34(2):1128–1141, 2004.

[12] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
Technical report 103, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Zurich,
Switzerland, 2002.

305

Table 3: Hypervolume Median and IQR of NSGAII, NSGAII-T, SPEA2, SPEA2-T, MOEA/D, MOEA/D-T
MOPs NSGAII NSGAII-T SPEA2 SPEA2-T MOEA/D MOEA/D-T
ZDT1 6.60E-01±3.15E-04– 6.60E-01±3.66E-04– 6.62E-01±1.66E-04≈ 6.62E-01±4.65E-05+ 6.61E-01±2.08E-04– 6.62E-01±4.51E-07
ZDT2 3.27E-01±3.07E-04– 3.27E-01±2.91E-04– 3.28E-01±7.83E-05≈ 3.29E-01±3.85E-05+ 3.28E-01±1.15E-04– 3.28E-01±1.21E-08
ZDT3 5.15E-01±7.64E-05+ 5.15E-01±1.12E-04+ 5.16E-01±8.76E-05+ 5.16E-01±2.71E-05+ 5.14E-01±2.95E-05– 5.14E-01±8.61E-06
ZDT4 6.61E-01±1.83E-04– 6.60E-01±2.94E-04– 6.62E-01±5.06E-05+ 6.62E-01±1.67E-01≈ 6.61E-01±2.66E-04– 6.62E-01±1.05E-04
ZDT6 3.98E-01±3.84E-04– 4.00E-01±3.16E-04– 4.01E-01±2.48E-04– 4.01E-01±2.03E-05+ 4.01E-01±2.50E-07– 4.01E-01±6.21E-09
DTLZ1 7.78E-01±4.39E-03+ 7.76E-01±3.63E-03+ 7.97E-01±5.31E-04+ 7.97E-01±2.52E-04+ 7.61E-01±5.58E-04– 7.61E-01±1.22E-04
DTLZ2 3.93E-01±4.23E-03≈ 3.97E-01±4.28E-03+ 4.19E-01±1.42E-03+ 4.29E-01±8.00E-04+ 3.92E-01±1.30E-03≈ 3.93E-01±2.67E-04
DTLZ3 3.99E-01±7.80E-03+ 3.96E-01±4.96E-03+ 4.28E-01±1.42E-03+ 4.29E-01±8.24E-04+ 3.91E-01±2.12E-03– 3.93E-01±3.15E-04
DTLZ4 3.95E-01±3.33E-03+ 3.94E-01±4.08E-03+ 4.14E-01±1.33E-03+ 4.22E-01±5.10E-04+ 3.95E-01±2.38E-03+ 3.88E-01±2.04E-04
DTLZ5 9.41E-02±1.20E-04+ 9.41E-02±1.38E-04+ 9.45E-02±1.13E-04+ 9.47E-02±2.22E-05+ 9.15E-02±1.24E-05– 9.15E-02±2.49E-07
DTLZ6 9.51E-02±1.49E-02+ 9.46E-02±1.51E-04+ 9.56E-02±3.57E-05+ 9.56E-02±2.03E-05+ 9.24E-02±2.63E-06+ 9.23E-02±1.23E-07
DTLZ7 2.98E-01±2.71E-03+ 3.04E-01±2.91E-03+ 3.07E-01±1.67E-03+ 3.12E-01±1.29E-03+ 2.17E-01±2.27E-03≈ 2.17E-01±2.75E-03
UF1 5.71E-01±1.59E-02– 6.29E-01±1.39E-02– 5.44E-01±2.63E-02– 5.73E-01±3.61E-02– 6.57E-01±2.26E-03≈ 6.57E-01±1.34E-03
UF2 6.30E-01±7.40E-03– 6.48E-01±2.05E-03– 6.33E-01±8.49E-03– 6.42E-01±2.93E-03– 6.47E-01±9.69E-03– 6.56E-01±1.15E-03
UF3 4.67E-01±4.35E-02– 6.36E-01±1.18E-02– 4.37E-01±5.63E-02– 4.43E-01±2.93E-02– 6.37E-01±2.72E-02– 6.50E-01±8.98E-03
UF4 2.64E-01±1.17E-03– 2.79E-01±7.45E-03≈ 2.71E-01±7.26E-04– 2.80E-01±5.16E-04+ 2.27E-01±6.69E-03– 2.78E-01±9.98E-04
UF5 1.65E-01±1.31E-01≈ 3.27E-01±4.94E-02+ 1.87E-01±7.82E-02≈ 1.29E-01±2.03E-01– 9.18E-02±1.52E-01– 2.00E-01±1.12E-01
UF6 2.32E-01±5.92E-02≈ 2.33E-01±8.69E-02≈ 2.44E-01±1.08E-01≈ 2.25E-01±1.05E-01– 1.99E-01±1.35E-01– 2.51E-01±5.94E-02
UF7 4.43E-01±1.27E-01– 4.76E-01±3.68E-03– 4.36E-01±1.51E-01– 4.49E-01±1.26E-02– 4.88E-01±3.94E-03≈ 4.88E-01±2.45E-03
UF8 2.05E-01±1.14E-01– 1.35E-01±1.57E-01– 1.56E-01±8.86E-03– 2.59E-01±9.33E-02– 2.84E-01±5.70E-03– 3.02E-01±3.12E-03
UF9 3.82E-01±1.11E-01– 3.58E-01±1.74E-01– 5.44E-01±9.88E-02– 5.98E-01±1.36E-02≈ 5.32E-01±1.07E-01– 5.46E-01±1.07E-01
UF10 2.21E-02±4.52E-02– 3.76E-02±8.65E-02– 4.56E-02±3.72E-02– 1.14E-01±2.21E-02≈ 4.08E-02±4.72E-02– 1.32E-01±7.59E-02
UF11 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 3.25E-05±9.28E-05– 3.08E-04±2.86E-04
UF12 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
UF13 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
CF1 4.66E-01±1.71E-03+ 4.71E-01±8.97E-04+ 4.62E-01±2.69E-03+ 4.42E-01±5.23E-03– 4.39E-01±1.08E-05≈ 4.59E-01±2.00E-02
CF2 5.88E-01±3.55E-02– 6.09E-01±1.87E-03– 5.72E-01±2.74E-02– 5.61E-01±3.05E-02– 6.50E-01±1.28E-03– 6.51E-01±1.19E-03
CF3 7.56E-02±6.04E-02– 1.46E-01±9.96E-02≈ 1.03E-01±5.43E-02≈ 0.00E-00±5.87E-02– 1.14E-01±3.21E-02≈ 1.18E-01±5.46E-02
CF4 1.59E-01±9.84E-02– 2.02E-01±5.38E-02– 2.94E-02±1.70E-01– 7.55E-02±1.18E-01– 5.44E-01±7.82E-03– 5.49E-01±4.00E-03
CF5 0.00E-00±9.62E-02– 1.53E-01±2.18E-01– 0.00E-00±4.88E-02– 0.00E-00±0.00E-00– 3.17E-01±7.34E-02≈ 3.38E-01±2.00E-01
CF6 3.38E-01±1.48E-01– 4.18E-01±1.28E-01– 2.36E-01±2.50E-01– 1.07E-01±2.25E-01– 6.44E-01±1.52E-02– 6.58E-01±1.96E-03
CF7 1.79E-01±2.38E-01– 2.66E-01±1.79E-01– 0.00E-00±1.65E-01– 0.00E-00±0.00E-00– 4.31E-01±7.78E-02– 4.69E-01±1.94E-01
CF8 0.00E-00±9.89E-02– 1.62E-01±5.95E-02– 2.17E-01±1.97E-01≈ 2.00E-01±2.43E-01≈ 2.24E-01±9.42E-02≈ 2.04E-01±5.07E-02
CF9 2.03E-01±8.58E-02– 2.67E-01±2.05E-02– 2.85E-01±2.06E-02– 3.04E-01±1.96E-02– 3.31E-01±1.50E-02+ 3.25E-01±2.91E-02
CF10 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 1.85E-01±3.78E-02– 2.07E-01±6.46E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively

Table 4: Hypervolume Median and IQR of CMA-ES, SaDE, CoDE, MOEA/D-T3, MOEA/D-T’, MOEA/D-T
MOPs CMA-ES SaDE CoDE MOEA/D-T3 MOEA/D-T’ MOEA/D-T
ZDT1 6.16E-01±1.16E-02– 6.62E-01±9.38E-06– 6.62E-01±1.22E-05– 6.62E-01±2.15E-06≈ 6.62E-01±1.13E-08+ 6.62E-01±4.51E-07
ZDT2 2.99E-01±2.26E-02– 3.28E-01±3.18E-06– 3.28E-01±3.28E-01– 3.28E-01±7.88E-09+ 3.28E-01±3.05E-10+ 3.28E-01±1.21E-08
ZDT3 3.90E-01±5.47E-02– 5.14E-01±1.23E-05– 5.14E-01±1.77E-05– 5.14E-01±2.73E-06≈ 5.14E-01±4.86E-07+ 5.14E-01±8.61E-06
ZDT4 0.00E-00±0.00E-00– 2.10E-01±2.08E-01– 0.00E-00±0.00E-00– 1.08E-01±2.10E-01– 2.75E-01±2.33E-01– 6.62E-01±1.05E-04
ZDT6 2.57E-01±3.83E-02– 4.01E-01±5.60E-07– 4.01E-01±8.23E-08– 4.01E-01±2.24E-08≈ 4.01E-01±1.58E-09+ 4.01E-01±6.21E-09
DTLZ1 0.00E-00±0.00E-00– 7.61E-01±1.63E-04+ 1.06E-01±1.06E-01– 7.39E-01±6.55E-01– 7.61E-01±5.49E-05≈ 7.61E-01±1.22E-04
DTLZ2 3.90E-01±4.01E-03– 3.93E-01±3.00E-04+ 3.93E-01±2.77E-04+ 3.93E-01±2.32E-04≈ 3.93E-01±3.07E-04≈ 3.93E-01±2.67E-04
DTLZ3 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 3.93E-01±3.15E-04
DTLZ4 1.94E-01±3.06E-02– 3.89E-01±6.15E-04+ 3.89E-01±5.20E-04+ 3.88E-01±4.63E-04≈ 3.88E-01±4.29E-04≈ 3.88E-01±2.04E-04
DTLZ5 9.11E-02±5.47E-05– 9.15E-02±5.07E-07+ 9.15E-02±6.82E-07≈ 9.15E-02±1.50E-07≈ 9.15E-02±2.50E-08≈ 9.15E-02±2.49E-07
DTLZ6 0.00E-00±0.00E-00– 9.23E-02±6.59E-07≈ 9.23E-02±8.99E-07≈ 9.23E-02±5.58E-08≈ 9.23E-02±1.18E-10≈ 9.23E-02±1.23E-07
DTLZ7 2.28E-01±2.54E-02+ 2.15E-01±2.34E-03≈ 2.16E-01±2.55E-03≈ 2.17E-01±2.65E-03≈ 2.17E-01±2.61E-03≈ 2.17E-01±2.75E-03
UF1 5.22E-01±2.23E-02– 6.40E-01±4.48E-03– 6.55E-01±2.12E-03– 6.55E-01±2.61E-03– 6.53E-01±6.08E-03– 6.57E-01±1.34E-03
UF2 6.24E-01±7.82E-03– 6.49E-01±5.45E-03– 6.53E-01±2.91E-03– 6.52E-01±4.31E-03– 6.49E-01±4.57E-03– 6.56E-01±1.15E-03
UF3 4.52E-01±2.42E-02– 5.16E-01±1.03E-01– 6.34E-01±2.19E-02– 6.46E-01±1.60E-02≈ 6.19E-01±3.39E-02– 6.50E-01±8.98E-03
UF4 2.05E-01±3.66E-03– 2.81E-01±9.38E-04+ 2.77E-01±6.80E-04– 2.79E-01±1.03E-03+ 2.80E-01±1.99E-03+ 2.78E-01±9.98E-04
UF5 0.00E-00±0.00E-00– 1.87E-01±1.07E-01≈ 5.93E-02±1.27E-01– 1.72E-01±1.20E-01≈ 2.34E-01±1.04E-01≈ 2.00E-01±1.12E-01
UF6 7.49E-03±1.84E-02– 2.28E-01±5.13E-02– 2.14E-01±1.31E-01– 2.34E-01±4.18E-02≈ 2.33E-01±6.99E-02– 2.51E-01±5.94E-02
UF7 1.84E-01±1.19E-01– 4.76E-01±5.49E-03– 4.86E-01±3.26E-03– 4.86E-01±2.64E-03– 4.84E-01±7.08E-03– 4.88E-01±2.45E-03
UF8 1.99E-01±1.63E-02– 2.91E-01±6.63E-03– 3.02E-01±3.91E-03≈ 3.01E-01±5.89E-03≈ 2.96E-01±8.34E-03– 3.02E-01±3.12E-03
UF9 4.69E-01±3.80E-02– 6.20E-01±1.13E-01≈ 5.46E-01±1.10E-01≈ 5.45E-01±1.07E-01≈ 5.46E-01±1.06E-01≈ 5.46E-01±1.07E-01
UF10 0.00E-00±0.00E-00– 1.86E-01±4.19E-02+ 8.66E-02±7.76E-02– 1.14E-01±8.39E-02≈ 6.25E-02±1.51E-01≈ 1.32E-01±7.59E-02
UF11 3.18E-04±2.87E-04≈ 1.80E-04±1.91E-04– 3.39E-04±2.15E-04≈ 3.34E-04±2.88E-04≈ 3.08E-04±2.86E-04≈ 3.08E-04±2.86E-04
UF12 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
UF13 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
CF1 4.41E-01±2.00E-02– 4.39E-01±2.00E-02– 4.39E-01±2.00E-02≈ 4.39E-01±2.00E-02≈ 4.39E-01±2.00E-02– 4.59E-01±2.00E-02
CF2 5.72E-01±4.76E-02– 6.50E-01±3.79E-03– 6.50E-01±9.01E-04– 6.50E-01±1.52E-03– 6.50E-01±1.47E-03– 6.51E-01±1.19E-03
CF3 3.13E-02±4.62E-02– 1.44E-01±4.68E-02≈ 1.32E-01±1.23E-01≈ 1.45E-01±6.43E-02≈ 1.33E-01±1.35E-01≈ 1.18E-01±5.46E-02
CF4 3.67E-01±8.93E-02– 5.19E-01±1.07E-02– 5.44E-01±5.55E-03– 5.44E-01±4.30E-03– 5.40E-01±7.07E-03– 5.49E-01±4.00E-03
CF5 0.00E-00±0.00E-00– 2.91E-01±1.69E-01– 3.30E-01±1.68E-01≈ 4.23E-01±2.65E-01≈ 2.92E-01±2.04E-01≈ 3.38E-01±2.00E-01
CF6 6.41E-01±1.18E-02– 6.52E-01±7.46E-03– 6.56E-01±3.13E-03– 6.56E-01±2.53E-03– 6.45E-01±3.12E-02– 6.58E-01±1.96E-03
CF7 0.00E-00±9.56E-03– 5.02E-01±4.71E-02≈ 4.26E-01±2.16E-01– 5.39E-01±2.21E-01≈ 4.07E-01±2.31E-01– 4.69E-01±1.94E-01
CF8 2.02E-01±4.72E-02≈ 1.63E-01±8.09E-02– 1.71E-01±6.53E-02– 2.17E-01±5.64E-02≈ 2.05E-01±6.89E-02≈ 2.04E-01±5.07E-02
CF9 3.02E-01±2.67E-02– 2.78E-01±9.24E-03– 3.07E-01±4.08E-02– 3.15E-01±3.55E-02≈ 2.89E-01±2.80E-02– 3.25E-01±2.91E-02
CF10 0.00E-00±0.00E-00– 2.02E-01±2.61E-03– 2.03E-01±2.37E-03– 2.07E-01±4.39E-04≈ 2.07E-01±3.45E-04≈ 2.07E-01±6.46E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively

306

A qualitative reputation system for multiagent systems
with protocol-based communication

Emilio Serrano
Facultad de Informática
Universidad de Murcia

Murcia, Spain
emilioserra@um.es

Michael Rovatsos
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

mrovatso@inf.ed.ac.uk

Juan Botia
Facultad de Informática
Universidad de Murcia

Murcia, Spain
juanbot@um.es

ABSTRACT
We propose a novel method for assessing the reputation of
agents in multiagent systems that is capable of exploiting
the structure and semantics of rich agent interaction pro-
tocols and agent communication languages. Our method is
based on using so-called conversation models, i.e. succinct,
qualitative models of agents’ behaviours derived from the
application of data mining techniques on protocol execution
data in a way that takes advantage of the semantics of inter-
agent communication available in many multiagent systems.
Contrary to existing systems, which only allow for querying
agents regarding their assessment of others’ reputation in an
outcome-based way (often limited to distinguishing between
“successful” and “unsuccessful” interactions), our method al-
lows for contextualised queries regarding the structure of
past interactions, the values of content variables, and the
behaviour of agents across different protocols. Moreover,
this is achieved while preserving maximum privacy for the
reputation querying agent and the witnesses queried, and
without requiring a common definition of reputation, trust
or reliability among the agents exchanging reputation in-
formation. A case study shows that, even with relatively
simple reputation measures, our qualitative method outper-
forms quantitative approaches, proving that we can mean-
ingfully exploit the additional information afforded by rich
interaction protocols and agent communication semantics.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory, Design

Keywords
Trust and reputation, agent communication, data mining

1. INTRODUCTION
Reputation, i.e. the beliefs or opinions generally held about

other agents in a society, is one of the main means of eval-
uating the trustworthiness and reliability of individuals in

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

multiagent systems (MASs). In the trust and reputation lit-
erature [5], trust is usually taken to denote the belief that
a party will act cooperatively and not fraudulently, while
reputation normally refers to trust information propagated
through a social network of individuals [6]. The autonomy
and heterogeneity of agents in open MASs makes the use of
reputation in MASs particularly challenging, and often im-
pedes the use of centralised trustworthy authorities such as
the reputation models implemented in some internet-based
markets, e.g. Amazon [1] or eBay [2] (although such rep-
utation mechanisms are certainly most popular in the real
world [5]). Yet, from the point of view of an agent, a correct
assessment of others’ reputation may greatly enhance per-
formance, as it can be used to make appropriate decisions
regarding which agents to interact with and how to behave
in these interactions.

Existing trust and reputation approaches [5, 11, 8, 12]
mostly focus on a purely quantitative assessment of trust,
based on witness reports regarding positive/successful and
negative/unsuccessful interaction experiences, usually only
making binary (or one-dimensional numerical) distinctions
resulting focussing on a single property of interactions that
describes the trustworthiness or reliability of the target (i.e.
reputation-evaluated) agent. Even when these methods al-
low for queries with a more“semantic”content (to ask for the
reputation of an agent with regard to particular products,
types of services, etc) [8], the assessment is always entirely
outcome-oriented, and allows no assessment of the qualita-
tive properties of the interaction process, i.e. the content
and sequence of messages exchanged and physical actions
observed.

Adopting this quantitative perspective effectively ignores
the interaction mechanisms provided by many multiagent
systems, in particular complex structure-rich interaction pro-
tocols that use agent communication languages (ACLs) with
formal semantics. As opposed to low-level interaction mech-
anisms in other distributed systems, these languages and
protocols attempt to capture shared meaning for messages
exchanged in MASs, and the structure and“knowledge-level”
assumptions captured in ACLs and interaction protocols is
semantically rich and can be used to extract qualitative prop-
erties of observed conversations among agents.

In this paper, we introduce a novel reputation system
based on the qualitative context mining approach proposed
by Serrano et al [10], which allows us to exploit the seman-
tics and structure of agent interactions, in order to produce
better, contextualised assessments of reputation that can be
tailored to the needs of the reputation-evaluating agent and

307

inform her interaction decisions. Our method is based on ex-
tracting succinct models of the evaluated agents’ behaviour
from previous interaction data. These can be queried by the
evaluating agent (whether or not she is the modelling agent
who has constructed the conversation model) with respect
to specific protocols, paths within these protocols, or values
of constraint arguments that are part of the protocol defini-
tion. Our approach minimises information disclosure among
agents: The evaluating agent might request the entire con-
versation model from the modelling agent (which does not
require the modelling agent to share her original interac-
tion data, and thus also limits the bandwidth needed for
data exchange) and perform queries herself on it (to avoid
sharing definitions of what counts as “trustworthy” or “un-
trustworthy”to her). Alternatively, the evaluating agent can
share these definitions of trustworthiness and query a mod-
elling agent unwilling to transmit her conversation model,
and only obtain reputation assessments in return, without
access to the full conversation model.

What is more, through experiments in an example e-com-
merce scenario, we show that our reputation system is ca-
pable of effectively utilising the additional information pro-
vided by rich interaction protocols and ACLs, and results
both in better predictions of future interaction behaviour of
evaluated agents, and in improved responsiveness to unex-
pected changes in others’ behaviours. This can be achieved
by defining relatively straightforward reputation measures
on top of the qualitative reputation assessment mechanism.

The remainder of the paper is structured as follows: Sec-
tion 2 reviews the qualitative context mining approach sug-
gested in [10] and describes how it is used as a basis for
interaction data analysis in our system. In section 3, we
introduce the proposed reputation measures that can be de-
fined on top of our qualitative data analysis method. An
empirical analysis of our method is presented in section 4.
Section 5 discusses related work, and section 6 concludes.

2. MINING AGENT CONVERSATIONS
As described above, our reputation system uses the frame-

work proposed in [10] as a base method for interaction anal-
ysis. The context mining approach presented there does not
assume a specific protocol or agent communication language
for MASs, but represents protocols in a very general way as
graphs whose nodes are speech-act like messages placehold-
ers, and whose edges define transitions among messages that
give rise to message sequences specified as admissible ac-
cording to the protocol. The edges are labelled with logical
constraints, i.e. formulate logical conditions that the agent
using the protocol is able to verify. These act as guards
on a given transition, so that the message corresponding to
a child node can only be sent if the constraint(s) along its
incoming edge from the parent node (the message just ob-
served) can be satisfied.

[10] defines a protocol model as a graph G = (V,E) where
nodes v ∈ V are labelled with messages m(v) = q(X,Y, Z),
q is a performative and X, Y , and Z are sender/receiver/-
content variables, respectively. Edges are labelled with a
(conjunctive) list of logical constraints

c(e) = {c1(t1, . . . , tk1), . . . , cn(t1, . . . tkn)}
where each constraint ci(. . .) has arity ki, head ci and ar-
guments tj . Constraints can be arbitrary logical formulas
composed of predicates which may contain constants, func-

tions or variables, with all variables implicitly universally
quantified. It is assumed that all outgoing edges of a node
result in messages with distinct performatives, i.e. for all
(v, v′) ∈ E, (v, v′′) ∈ E

(m(v′) = q(. . .) ∧m(v′′) = q(. . .))⇒ v′ = v′′

so that each observed message sequence corresponds to (at
most) one path in G by virtue of its performatives. Figure 1
shows an example protocol model in this generic format.

The semantics of a protocol model G is based on con-

sidering finite paths π = v1
e1→ v2

e2→ . . .
en−1→ vn in the

graph G (which may include unfoldings of cycles, assum-
ing fresh variable names each time a node is revisited). If
m = 〈m1, . . . ,mn〉 are the ground messages observed in a
run, G(m) = 〈π, θ〉 returns the (unique) path π that can be
traced in G following the observed messages, and θ is the
most general unifier of the set

{m1, . . . ,mn} ∪ {m(vi)|1 ≤ i ≤ n}

and π = v1
e1→ . . .

en−1→ vn. In other words, the pair 〈π, θ〉
returns the path and variable substitution the message se-
quence m corresponds to in protocol model G. While con-
text models are defined in [10] based on an analysis of the
logical formula resulting from constraints along a path, for
our purposes it is sufficient to consider pairs 〈π, θ〉 that corre-
spond to message sequences m of past observed interactions
as samples for data mining algorithms.

To explain how we proceed in collecting and processing
samples of protocol executions, consider the protocol model
shown in figure 1. An execution run using this model will
consist of a sequence of messages and constraints satisfied
along that path (or, at least, presumably satisfied, assum-
ing that the other agent only utters a message when its pre-
conditions are satisfied) and will be translated to a list of
feature-value pairs where the features are variables used in
the messages, and the values their respective ground instan-
tiations. In terms of actual data mining methods used, we
restrict ourselves here to decision tree learning (we use J48,
an open source implementation of the C4.5 algorithm [3]).
Though [10] compares several other techniques, our system
operates on trees like the one shown in the example of fig-
ure 2 obtained from the protocol in figure 1. As in our
evaluation in section 4, this is derived from a scenario where
agents use the protocol to negotiate over cars using a well-
known database for car evaluation [4]. In this scenario, the
modelling agent (who builds the tree from past data) is a
potential customer (role A) who has requested offers from
a car selling agent (role B) where T specifies the technical
characteristics of the car, including number of doors, capac-
ity in terms of persons to carry, the size of the luggage boot,
the estimated safety of the car, price and maintenance cost.
We assume that a feature vector for terms is of the form

T = (doors, persons, lug boot , safety , price,maint)

where

doors ∈ {2 , 3 , 4 , 5 -more} persons ∈ {2 , 4 ,more}
maint ∈ {v -high, high,med , low} safety ∈ {low ,med , high}
price ∈ {v -high, high,med , low} lug boot ∈ {small ,med , big}

The conversation model shown in figure 2, for example,
shows that seller S8, for instance, performed 44 successful
negotiations but also that these involved cars with a low
maintenance cost, medium safety, and a low buying price.

308

request(A,B,T)

cannotOffer(B,A,T)

termsWantedA(T) inStockB(T)

alternativeB(T)

provide(B,A,T)

alternative(B,A,T)
acceptableA(T)

keepNegotiatingA(T)

acceptableA(T) ^ keepNegotiatingA(T)

accept(A,B,T)

quit(A,B,T)

saleDoneB(T)

succeed(B,A,T)

fail(B,A,T)

Figure 1: A simple negotiation protocol model: A requests a product with description T (the terms) from
B. The initial response from B depends on availability: if terms T cannot be satisfied, A and B go through
an iterative process of negotiating new terms for the item, depending on the keepNegotiating, acceptable, and
alternative predicates (for simplicity, we use a fixed variable T in the diagram, although in the course of a
negotiation its value may change). In case of acceptance (which implies payment), B may succeed or fail in
delivering the product. Edge constraints are annotated with the variable representing the agent that has to
validate them. Additional (redundant) shorthand notation ci/mj is introduced. Different out-edges represent
XOR if constraints are mutually exclusive.

maint = v−high : F (4 7 . 0)
maint = high : F (4 8 . 0)
maint = med : F (299 . 0)
maint = low
| s a f e t y = low : F (8 8 . 0 / 2 . 0)
| s a f e t y = med
| | B = S 1 : F (1 7 . 0 / 1 . 0)
| | B = S 2 : F (1 5 . 0)
| | B = S 3
| | | p r i c e = v−high : S (0 . 0)
| | | p r i c e = high : S (0 . 0)
| | | p r i c e = med : F (3 . 0)
| | | p r i c e = low : S (5 6 . 0)
| | B = S 4 : F (2 1 . 0)
| | B = S 5 : F (1 3 . 0)
| | B = S 6 : F (1 3 . 0)
| | B = S 7 : S (6 2 . 0 / 1 . 0)
| | B = S 8
| | | p r i c e = v−high : S (0 . 0)
| | | p r i c e = high : S (0 . 0)
| | | p r i c e = med : F (4 . 0)
| | | p r i c e = low : S (4 4 . 0)

Figure 2: J48 output for 1000 negotiations. The
notation a =v : S/F denotes that “if a has value v

the target predicate has value S/F”. Every leaf in-
cludes the number of instances classified in paren-
theses (the second number appearing to the right
of the “/” in some cases is the incorrectly classified
instances.

In what follows we shall assume, somewhat informally, that
a conversation model has the form of such a tree which can
provide path information for (potentially incomplete) sets of
variable-value pairs, and denote such tree structures gener-
ically as conversation models CM . In principle, many other
formalisms can be conceived of that achieve the same, such
as a relational database, a set of Horn clauses, a Bayesian
classifier, etc.

3. REPUTATION SYSTEM
As suggested in the introduction, our reputation system

includes an evaluating agent a who is trying to assess the

reputation of the target agent b using a conversation model
provided by a modelling agent (or witness) m, who may, but
need not be, the same agent as a.

3.1 Querying the modelling agent
Three modes of reputation calculation are possible in prin-

ciple: (i) a obtains the entire conversation model from m
which has been built by m based on a’s definitions of suc-
cess and failure, and then makes specific queries for specific
instances (i.e. lists of variable substitutions) in the model,
(ii) a is not granted access to the conversation model, but
instead sends only information about its definition of success
and failure to m and then m answers particular queries of a
regarding specific instances, or (iii) a receives the interaction
data from m and builds the conversation model herself.

In our system, we use a method that allows for a uniform
treatment of all three cases. This is achieved by splitting the
querying process into two steps: providing path classifica-
tion, where a informs m of which paths in the protocol model
it considers successful and which are deemed unsuccessful,
and m builds its classifier using the methods described in
the previous section to build the conversation model; and
instance querying, where a sends m a specific (though po-
tentially partial) substitution for variables occurring in the
model, and m returns a success/failure prediction based on
the conversation model previously constructed. With this,
whether case (i) or (ii) applies makes no difference from an
algorithmic point of view – the same two processing steps
are performed regardless of who holds the model. More-
over, since the path classification of a is probably stable
over time, whereas instance queries vary (and occur more
often), it makes sense to avoid rebuilding the conversation
model unless path classification changes, and issue instance
queries to the model that only rarely changes (except when
m wants to rebuild it based on new data, or is asked for
updating it by a). Case (iii) can be basically ignored, as it
simply amounts to a = m (in all other cases nothing can be
really gained from sending around the entire dataset, meth-
ods (i) or (ii) are preferable, at least as long as m is trusted).

Path classification requires that a send m a set of suc-
cessful paths S ⊆ (E × V)+ in protocol model G = (V,E),

309

and we write CM (G,S) (or simply CM , where G and S are
assumed to be specified) for the conversation model derived
by m adding an additional Outcome to each path s ∈ S with
value S (for success) and F (for failure) to all paths s 6∈ S.
The reason we allow for a set of paths to be specified as
successful, is that various types of untrustworthy behaviour
might occur. In our example protocol, B might claim to
provide terms that are not in stock, she might propose al-
ternatives unrelated to the terms proposed by A, might pro-
vide terms in the final message unrelated to those accepted
by A, or simply offer unacceptable terms such as an exces-
sive price. Even in simpler cases, e.g. when identifying those
paths as successful which terminate with a succeed message,
one may need to specify relatively complex rules that involve
entire sets of paths like the following:

if (
c1→ m1(((

¬c2∧c3→ m3
¬c4∧c5→ m1)

∗ ¬c2∧c3→ m3
c4→)|

(
c2→ m2 →))m5

c6→ m7) then Outcome = S
else Outcome = F

Instances i queried for are lists of attribute-value pairs i =
{V1 = g1, . . . , Vn = gn,Outcome = g} for variables Vi oc-
curring in the messages and constraints of protocol model G
with ground values gi from their respective domains in previ-
ous interactions, extended by the outcome value g ∈ {S, F}
for the queried instance. Querying for i basically amounts to
asking “if V1, . . . , Vn have values g1, . . . , gn, will the outcome
of the interaction be g?”

In our example conversation model, an instance query
about target agent b concerning a successful outcome in a
negotiation after asking for a a car with high safety assess-
ment and low price is:

i = {B = b, safety(T) = high, price(T) = low,Outcome = S}
where we use functions like safety(T), and price(T) to return
the respective values of the “terms” variable T . It should be
noted that such queries neither need to contain all variables
on the paths involved, nor that those paths provided in S
need to terminate in leaves. Using CM instead of a simple
database of past interaction data provides this flexibility.

3.2 Reputation and reliability
The basic reputation measure used by evaluating agents

a in our system is defined as follows:

R(CM , i) =

{
1 if prediction(CM , i) = i.Outcome
−1 else

where prediction(CM , i) returns the classification value (S/F)
from the conversation model CM given i. For this, the con-
versation model CM is used to classify the expected result
of the interaction in i and if the predicted class matches
the outcomes queried for by i, the prediction 1 (=correct)
is returned. Note that, while we have assumed a binary
good/bad classification in our formalisation, using a larger
number of distinctive labels is straightforward, and even a
numerical assessment would be possible using alternative
data mining methods (such as a Bayes’ Net). Note also
that this simple measure already allows a to specify what it
views precisely as “trustworthy”, and that the same interac-
tion data store can be queried by different evaluating agents
easily without a shared notion of reputation. Moreover, G
may contain a number of different (independent) protocols,
and if different variables or constraints occur across several
of these, all past interaction experience will be taken into

account when building CM and can be queried simultane-
ously.

It is straightforward to generalise this measure to return
values for a set of target agents T simply by extending the
above function canonically to return a vector of values, tak-
ing into account appropriate substitutions:

R(CM , V, i, T) = 〈R(CM , iV/b1), . . . , R(CM , iV/bn)〉
where T = {b1, b2, . . . , bn} are the possible target agents and
iV/bj is the extension of the instance query i by the assign-
ment V = bj and V is the variable in G that refers to the
role for which we want to evaluate the reputation of agent bj .
In our example above, if i = {maint(T) = low , safety(T) =
med , price(T) = low ,Outcome = S} and T = {s1, s2, s3},
we would obtain R(CM , V, i, T) = 〈−1,−1, 1〉 as a predic-
tion vector for the three agents in the seller’s (B’s) role. Such
a query can be easily used to pick appropriate interaction
partners from a set of agents.

To assess the reliability of a prediction provided by the
conversation model, we also need to take into account how
many past experiences match the query and what proportion
of them has been correctly or incorrectly classified according
to a rule in the conversation model. Here, it is important to
restrict the set of correct/incorrect classifications to those
queried by the evaluating agent. For example, assume the
queried instance is

i = {B = b, safety(T) = high, price(T) = low ,Outcome = S},
and the result of the prediction is S. The result of the rep-
utation query would be R(CM , i) = 1, and a possible rule
in the tree used for this prediction may have been “if B = b
and safety(T) = high) then Outcome = S”. However, the
instances that match the antecedent are a superset of those
considered by the query, so that the number of correctly
classified instances for this rule is an upper bound for those
matching the query. To account for this, let CM (i) the set
of all rules in CM that match at least query i (i.e. they may
contain more, but no less attribute-value pairs), and define
the reliability of a reputation assessment as

r(CM , i) =

{ ∑
ρ∈CM(i) cci(ρ)

∑
ρ∈CM(i) ci(ρ)

if
∑
ρ∈CM (i) ci(ρ) 6= 0

0 else

where ci(ρ) are the instances classified by rule ρ, and cci(ρ)
returns the number of correctly classified instances by the
same rule. In figure 2 these numbers are shown adjacent
to the leaves of the tree. This effectively evaluates the con-
fidence of CM in its prediction by calculating the ratio of
correctly classified samples that match the query compared
to all matching samples in the modelling agent’s data set.

3.3 Individual and collective reputation
Next, we can easily combine reputation and reliability to

obtain the reputation by personal experience and by group
experience measures used in reputation systems like [8]

PE(CM , i) = R(CM , i) · r(CM , i)

as the product of reputation and reliability obtained for a
simple query. If the instance i does not include an instanti-
ation of the target agent, we can extend this, as before, to
sets T = {b1, . . . , bn} of target agents:

PE(CM , i, V, T) = 〈R(CM ,iV/b1) · r(CM , iV/b1), . . . ,

R(CM , iV/bn) · r(CM , iV/bn)〉

310

Considering |M| modelling agents m1,m2, . . . ,m|M|, each
of whom has a respective CM j at her disposal built using
the classification requirements provided by the evaluating
agent, reputation by group experience is defined as1:

GE(M, i) =

∑
1≤j≤|M| PE(CM j , i)∑
1≤j≤|M| r(CM j , i)

Here the modelling agents are used as witnesses who each
provide a personal experience for the target query, and the
evaluating agent normalises their individual reports by their
respective reliabilities. Again, this can be extended to return
a vector of values if the target agent is not specified in i:

GE(M, i, V, T)[k] =

∑
1≤j≤|M| PE(CM j , i)[k]
∑

1≤j≤|M| r(CM j , i)

where 1 ≤ k ≤ |T |.
With these, we can now define our main measure of social

reputation as follows:

SR(M, i) = ξ · PE(CM a, i) + (1− ξ) ·GE(M, i)

where ξ can be used to weight the impact of personal vs.
group experience in the overall judgement. As above, in its
vector form covering a set of target agents T , social reputa-
tion is defined as

SR(M, i, V, T)[j] =ξ · PE(CM a, i, V, T)[j]+

(1− ξ) ·GE(M, i, V, T)[j]

for 1 ≤ j ≤ |T |. Note that ξ is effectively the only parameter
introduced in our system that may be specific to a particular
implementation. All other elements of the measures intro-
duced above are generic. It should be remarked that as some
popular rival approaches [5, 8], we do not include measures
in the calculation of SR that take into account how much
the witnesses are trusted (in terms of past interactions with
them, not assessments of third parties), or the opinion to-
ward a “group” the target agent belongs to. These could be
easily defined in our framework, as discussed in section 5.
As we show below, we can achieve good predictability with-
out them, by focussing more on the structure and semantics
of interactions in analysing past interactions.

4. EVALUATION
To illustrate the usefulness of our approach, we conducted

a number of experiments in the simulated car selling domain
introduced in section 2. Our scenario contains six preference
profiles Pi for customer agents regarding T . These are used
to define what cars are considered acceptable by the cus-
tomers, and are specified as disjunctions of combinations of
product properties, e.g.

P1(T) = (persons = more ∧ lug boot = big ∧ price =
low ∧ maint = low) ∨ (persons = more ∧ lug boot =
big ∧price = med ∧maint = med)∨ (doors = 5-more∧
persons = more ∧ price = low ∧ maint = low) ∨
(doors = 5-more ∧ persons = more ∧ price = med ∧
maint = med)

1As in the definitions of other measures below, we set this
quantity to 0 when the denominator is 0 and omit this case
for brevity.

We implement fifty customer agents C1 to C50 with associ-
ated profiles Ci ← Pi mod 6, so that agents C1 and C7 use
P1, C2 and C8 use P2, and so on.

Similarly, we specify three seller agent preference profiles
Qj , again specified in terms of T . These describe what types
of cars a seller can offer. Additionally, every disjunction is
labelled with tb or ub to indicate in which cases the seller
will behave in a trustworthy or untrustworthy way when it
negotiates those products. Again, we only show one of these
profiles for illustration:

Q1(T) = (safety = med ∧ price = low ∧maint = low)→ tb

∨ (safety = high ∧ price = low ∧maint = low)→ tb

∨ (safety = high ∧ price = med ∧maint = med)→ ub

This profile specifies that the seller will respond positively
to a request for terms (safety = med∧price = low∧maint =
low), and that she will then also comply with all subsequent
steps until the sale is completed. In those cases labelled
ub, the seller will initially agree to the terms, but will then
choose a random “failure” path in her subsequent behaviour.
Our system implements 10 sellers S1 to S10, with associated
profiles Sj ← Qj mod 3.

4.1 Model construction and reputation mea-
surement

To convert raw sequences of message exchanges to training
data samples, we make the following design choices: As far
as variables occurring in constraints are concerned, we uni-
formly record all attributes contained in“terms”descriptions
T , including a “?” (unknown) value for those not mentioned
in a given execution trace. This is feasible in the given proto-
col model as the amount of unspecified data is manageable.
Our strategy to deal with loops is to only record the last
value of every variable occurring in multiple iterations over
the alternative-request sub-sequence for negotiation, as
we are primarily interested in the final offer accepted or re-
jected by the customer.

The strategy that customer agents follow using our repu-
tation system is explained below:

1. Each customer from M∈ {C1, . . . , C50} computes

SR(M, i, B, {S1, . . . , S10})
with ξ = 1/50 (i.e. equal weight is given to personal ex-
perience as to each of the 49 witnesses) and for a query
i complying with one of their acceptable preferences in
Pi. Each Ci thereby uses her own conversation model,
built using only own the agent’s own interaction expe-
rience.

2. Each customer chooses the seller Sj with the high-
est positive reputation value and interacts with that
agent in the current negotiation. If the prediction of
the model does not match the observed interaction ex-
perience, the agent re-builds her model from scratch.

3. If there is no such agent, the terms i are updated ac-
cording to the customer’s preferences, and we repeat
from 1 (the disjunctive clauses in the Pi profiles are in-
complete and can be easily randomly extended to ob-
tain a specific requested car). If no seller with positive
reputation can be identified after up to 100 attempts,
the customer will interact with a random seller.

311

It should be observed that we deliberately test our system in
a very “heavy” form of its usage, repeating the data mining
step over all past interaction data, posing up to 100 queries
until a positive prediction is returned, and using each cus-
tomer agent as an independent modelling agent and wit-
ness for every other agent. This approach is chosen to il-
lustrate that even this resource-intensive way of employing
our method results in reasonable computation times, as will
be shown below. This configuration also allows us to show
the workings of our method in the “optimal” case, i.e. when
investing a maximum effort of computation.

We compare the prediction accuracy of our system against
a number of alternative reputation strategies, measured as
the percentage of successful interactions over time:

Random. The seller is chosen randomly – this provides a
baseline for the minimum performance that could be
achieved without any use of reputation. An optimal
strategy is not included, as 100% success constitutes
the upper bound of what can be achieved in this sce-
nario (we ensure that there are always sellers in the
system who can provide the requested items in a trust-
worthy way).

Quantitative. The seller is chosen using a distance function
based on the number of past successes and failures with
them in the customer’s personal experience. The func-
tion used is D(s, f) = 1− (1 + s

2f+1
)−1, where s is the

number of successes and f the number of failures with
a particular seller, and the seller to interact with is
chosen with probability corresponding to D(s, f) [9].

Personal experience only. Our reputation system is used as
described above but with ξ = 1, i.e. the customer only
takes her own interaction experiences into account.
This method is chosen for comparison to assess the rel-
ative importance of witness information as compared
to local interaction experience.

Restricted qualitative. Instead of structural and semantic in-
formation we use only A, B, and the Outcome label (S
or F) in combination with the data mining technique.
This serves to illustrate the performance of using the
same data mining technique without any in-depth in-
formation about the content of interactions.

4.2 Static seller behaviour
As figure 3 shows, the results show that after 100 nego-

tiations (2 negotiations per customer) all strategies exhibit
similar performance. After 1000 negotiations (20 negotia-
tions per customer) our reputation system greatly outper-
forms all other strategies, with the social reputation strat-
egy converging much faster to optimal performance than the
strategy based on personal experience only. This difference
is understandable, as the conversation models combined in
the social reputation strategy are based on a much broader
variety of data earlier on in the process. However, later
convergence of the “personal experience only” strategy also
shows that it performs equally well in the long term, pro-
vided sufficient data becomes available. The plot also shows
that a data mining approach without an analysis of the de-
tailed structure of interactions does not perform any better
than the purely quantitative approach, thus proving that the
advantage of our method is indeed brought about by the in-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 250 500 750 1000 2500 5000 7500 10000 25000

Su
cc
es
se
s

Negotiations
Random Quantitative Social reputation
Personal experience Restricted Q.

Figure 3: Average number of successful negotia-
tions over number of total negotiations across all
customers (100 experiments); error bars show stan-
dard deviation

1

10

100

1.000

50 100 250 500 750 1000 2500 5000 7500 10000 25000

Se
co
nd

s (
lo
g
sc
al
e)

Negotiations

Random

Quantitative

Social reputation

Personal experience

Restricted Q.

Figure 4: Time per negotiation, log scale (aver-
aged over 100 experiments); the standard deviation
across experiments is negligible

clusion of qualitative interaction properties rather than by
the effectiveness of the data mining algorithm itself.

The downside of our method is of course increased run-
time, at least when, as above, conversation models are re-
built every time a customer obtains a wrong prediction,
which happens very often, while also the datasets over which
the models are built increase over time. Figure 4 shows the
time taken on average per negotiation, which reaches around
150 seconds after 25000 negotiations for the personal and
group experience methods. While this is clearly a short-
coming of our method, it is highly customisable in that the
maximum amount of data processed or the frequency with
which models are re-built can be adapted as suits the sys-
tem designer (albeit at the cost of lower accuracy). Also,
the runtime per negotiation is still much lower than the
over 2000 seconds required by the restricted qualitative ap-
proach, which has to rebuild the model very often due to its
failures. This also shows that a data mining-based analysis
which doesn’t take the semantic and structural dimension
of communication into account actually combines the worst
of both the quantitative (low performance, hence constant
need to re-build model) and qualitative (high computational
effort to rebuild model) worlds. It would only work well if a
given seller behaved well or badly in every interaction.

312

4.3 Dynamic seller behaviour
The ability to respond to dynamic changes in others’ be-

haviours is an important performance characteristic of rep-
utation systems. In our second experiment, we introduce
seller agents who suddenly switch their behaviour (from
trustworthy to untrustworthy and vice versa) as specified
in their original profiles (each rule resulting in tb will be
modified to ub and vice versa). We compare the success
rate of the following strategies for responding to dynamic
behaviour change against the extreme cases (“no change” in
seller behaviour to respond to, and “no strategy” to respond
to changes in seller behaviour, i.e. fixed social reputation):

1. Incongruence detection. This method is based on eras-
ing all previously collected data samples if a new pre-
diction result is incorrect and there is past experience
for same instance which provided the correct predic-
tion. The idea behind this is that this should not hap-
pen unless evidence shows that the behaviour of the
target agent(s) has changed drastically. The method
requires that past queries are remembered, and may
also lead to removal of many past data samples.

2. Timestamp weighting. The second strategy is based
on weighting past samples according to their recency
during model construction. A weight function W :
N2 → [0, 1] ⊂ R is employed which uses the current
time stamp t and the time t′ an instance was observed
as a weight W (t, t′) for an interaction observed in the
past. We use the same weight function as [8], i.e.
W (t, t′) = t′/t to give more weight to samples closer
to t.

3. Weighted resampling. Similar to the previous method,
this strategy applies a re-sampling step after fixing the
weights, i.e. it produces a random subsample of the
dataset using sampling with replacement to produce a
constant-sized dataset, where the selection probability
is proportional to the sample weight [3].

4. Fixed window. This strategy simply retains a win-
dow with the last 1000 samples for model construc-
tion, omitting all previous samples. Another strategy
has been added for a window with 500 samples instead
of 1000.

The results for the different strategies are shown in figure
5. The plot shows that the incongruence detection strategy
achieves the fastest recovery from the intermittent drop in
success rate after the seller’s behaviour change and manages
to return to near-optimal performance very soon. As incon-
gruence recovery strongly relies on an understanding of the
structure of qualitative queries, this result illustrates that
our reputation system not only manages to exhibit respon-
siveness (which can aid agents much in adapting to shifting
behaviour of malicious agents who try to “massage” them
into thinking they are trustworthy) with relatively simple
dynamic re-evaluation strategies, but also that the qualita-
tive approach we take is essential to enable such strategies.

5. RELATED WORK
Apart from systems that rely on a purely centralised repu-

tation mechanism such as [1, 2, 13], popular and comparable
recent distributed approaches include TRAVOS [11], Refer-
ral System [12] and FIRE [5]. All of them use two main

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Su
cc
es
se
s

Negotiations

B.No change
W. No strategy
1. Incongruence detection
2. Timestamp weighting
3. Weighted resampling
4. Fixed window (1000)
5. Fixed windows (500)

Figure 5: Success probability against number of ne-
gotiations, with dynamic seller behaviour change in
round 1000 (average over 100 experiments).

information sources to compute reputation values, the per-
sonal experience, and witness’ experience. FIRE [5] also uses
additional dimensions, i.e. role-based rules and third-party
references provided by the target agents. We argue that the
major limitation of these approaches is that their definitions
of reputation do not depend on the semantics of the domain
and the structure of interactions. As a consequence, reputa-
tion values are only relevant when all evaluating agents are
interested in the same aspect or type of interaction, and the
modelling agent(s) calculate reputation based on precisely
this information. To use the example of [6], if agents buy
something on eBay, trusting a seller agent implies that she
will send the right product to the right place at the right
time. While some buyers will accept a small delay, they are
not able to query the reputation system for such specific de-
tails. However, when all providers offer the same product
with the same characteristics, as in the trading system used
to assess FIRE, these approaches work well.

A notable exception to the lack of semantics in reputation
approaches is the REGRET model proposed by Sabater and
Sierra [8]. REGRET uses ontologies to detail the type of
trust required by the evaluating agent, which can be used to
query witnesses. REGRET’s contribution is that, since the
meaning of trust can be different for each agent, the evaluat-
ing agent must be able to ask to what extent witness agents
trust the target agent concerning specific aspects of the in-
teractions. Following our eBay example, this means that an
agent can query the seller’s reputation with regard to getting
a low price, quick delivery, etc. Based on these values, the
evaluating agent can define its own concept of global trust,
e.g. giving less weight to price than to delivery. The main im-
provement of our approach over REGRET is that reputation
is defined as a model of behaviour with arbitrarily complex
properties, modelled on the basis of the interaction proce-
dures used by the agents in a system. This allows agents
to make much more informed decisions based on more fine-
grained and flexible queries, makes a priori agreement on a
set of specific ontological dimensions of trust across the sys-
tem unnecessary, and also implies more concise reputation
models that are not merely constantly growing databases
of past interactions, but store regularities in observed be-
haviour in succinct data structures.

A limitation that we share with other approaches is that
witnesses are assumed to be trustworthy. Although dealing

313

with untrustworthy witnesses is beyond the scope of this pa-
per, our method provides improved capabilities which could
be used to address this issue: When complete reputation
models are exchanged between modelling and evaluating
agent, the evaluating agent can assess the long-term reliabil-
ity of a model by evaluating its reliability over its own past
interaction experiences prior to using a prediction provided
by this model to make concrete interaction decisions. Con-
trary to non-qualitative methods, this can be done without
requiring access to the original interaction data the model
was built with. Another possible strategy which illustrates
the generality of our approach would be to model interac-
tions with witnesses themselves as protocols, and build a
trust model for them in much the same way as this is done
for target agents.

The obvious weakness of our contribution are its complex-
ity and requirement for additional knowledge. The definition
of protocols, application of data mining algorithms, manip-
ulation of conversation models, etc are much more elabo-
rate and less efficient than the application of polynomial-
time mathematical operations used in quantitative reputa-
tion systems. Possible measures to reduce the number of
conversation models created are: (i) the use of data mining
techniques which incorporate new experiences without re-
building the entire model (incremental learning algorithms)
[7], and (ii) not creating a new conversation model if this
model is not expected to be better than the previous one.
With this respect, one way of limiting the amount of com-
putation performed is to rebuilds a conversation model only
if a new experience is incorrectly classified by the old con-
versation model, or if the evaluating agent changes the set
of classification rules which determine the classes of the in-
stances before obtaining the conversation model.

6. CONCLUSION
In this paper, we have proposed a novel qualitative ap-

proach to reputation systems based on mining “deep mod-
els” of protocol-based agent interactions. Contrary to most
existing methods, the reputation measures we define do not
solely rely on the assessment of the predicted outcome of an
interaction, but take the complex, knowledge- and content-
rich structure and semantics of multiagent protocols and
agent communication languages into account. On the side
of the reputation-evaluating agent, this allows us to intro-
duce more complex, fine-grained, and contextualised queries
that can be posed to a reputation-modelling (collection of)
witness(es), which results in higher prediction accuracy than
quantitative methods as the queries are tailored to the needs
of the agent. As a side-effect, our system also allows more
intelligent and rationally reasoning agents to exploit the
expressiveness our framework affords: As our case study
shows, if agents have preferences and objectives specified in
a language that can be related to the semantics of a proto-
col language, the reputation queries can be seamlessly con-
structed on the basis of their internal beliefs and mental
states. On the side of the witness, our method leads to more
concise, generalised models of target agents’ behaviours, re-
ducing the need to store huge amounts of past interaction
data in what would otherwise be a “flat” database of past
interactions, allows for disclosure of the model instead of
transmission of primary interaction experience (which may
also be subject to confidentiality restrictions), and enables
different levels of privacy toward a reputation-querying agent

without the need to modify the algorithms used to measure
reputation. Our empirical results show that our method is
capable of exploiting the additional structure and seman-
tics we provide it with, both in terms of achieving higher
prediction accuracy (sooner), and in terms of responding to
unexpected changes in target agents’ behaviours.

In the future, we would like to explore more elaborate
data mining techniques, in particular to learn logical theories
of the constraint definitions other agents apply from past
interaction data, to evaluate our system in larger scenarios
with a broader variety of interaction protocols and behaviour
types, and to explore issues of trust in witnesses in order to
be able to accommodate scenarios where witnesses are not
necessarily trustworthy, or might even collude with target
agents 2.

7. REFERENCES
[1] Amazon website. http://www.amazon.com.

[2] eBay website. http://www.ebay.com.

[3] R. R. Bouckaert, E. Frank, M. Hall, R. Kirkby,
P. Reutemann, A. Seewald, and D. Scuse. Weka
manual (3.7.1), June 2009.

[4] A. Frank and A. Asuncion. UCI machine learning
repository, car evaluation data set, 2010.

[5] T. Huynh, N. R. Jennings, and N. Shadbolt. An
integrated trust and reputation model for open
multi-agent systems. Journal of Autonomous Agents
and Multi-Agent Systems, 13(2):119–154, 2006.

[6] G. Lu, J. Lu, S. Yao, and J. Yip. A review on
computational trust models for multi-agent systems.
In International Conference on Internet Computing,
pp. 325–331. CSREA Press, 2007.

[7] T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[8] J. Sabater and C. Sierra. Regret: reputation in
gregarious societies. Procs AAMAS’01, pp. 194–195,
2001.

[9] E. Serrano, A. Quirin, J. A. Bot́ıa, and O. Cordón.
Debugging complex software systems by means of
pathfinder networks. Information Science,
180(5):561–583, 2010.

[10] E. Serrano, M. Rovatsos, and J. Botia. Mining
qualitative context models from multiagent
interactions (extended abstract). Procs AAMAS’11,
pp. 1215–1216, 2011.

[11] W. T. L. Teacy, J. Patel, N. R. Jennings, and
M. Luck. Coping with inaccurate reputation sources:
experimental analysis of a probabilistic trust model.
Procs AAMAS’05, pp. 997–1004, 2005.

[12] B. Yu and M. P. Singh. An evidential model of
distributed reputation management. Procs AAMAS
’02, pp. 294–301, 2002.

[13] G. Zacharia and P. Maes. Trust management through
reputation mechanisms. Applied Artificial Intelligence,
14(9):881–907, 2000.

2Acknowledgments: This research work is supported by
the Spanish Ministry of Science and Innovation under
the grant AP2007-04080 and in the scope of the Re-
search Projects TSI-020302-2010-129, TIN2011-28335-C02-
02 and through the Fundación Séneca within the Program
04552/GERM/06.

314

PRep: A Probabilistic Reputation Model for Biased
Societies

Yasaman Haghpanah
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

yasamanhj@umbc.edu

Marie desJardins
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

mariedj@umbc.edu

ABSTRACT
Several reputation models have been introduced to deal withthe
problem of biased reputation providers. Most of these models dis-
count or discard biased information received from the reputation
providers, and most of them are not appropriate when a large pop-
ulation of information providers are biased or dishonest. In this
paper, we present a probabilistic approach for reputation modeling,
the Probabilistic Reputation model (PRep). PRep models a repu-
tation provider’s behavior, and uses this model to re-interpret the
reported information, thus making use of the entire reputation re-
ports effectively, even if they are biased. The re-interpreted data
is combined with the agent’s direct experiences to determine an
overall level of trust in the third-party agent. We show thatPRep
significantly outperforms two state-of-the-art trust and reputation
models—HAPTIC and TRAVOS—and improves the overall pay-
off in a game-theoretic environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: multiagent systems

General Terms
Human Factors, Design, Experimentation

Keywords
Reputation, Trust, Bayesian learning, Behavioral modeling

1. INTRODUCTION
Researchers have used reputation to model the trustworthiness

of individuals in online markets, such as eBay, Amazon, and Ya-
hoo [2, 4, 7]. eBay’s tremendous success as an online auction
site stems largely from its powerful yet simple reputation system,
Feedback Forum [7]. The importance of reputation systems in
Internet-mediated service provision has been widely recognized
by researchers in various disciplines, such as multi-agentsystems,
economics, and information systems [4].

In the literature, reputation has been referred mostly to the ag-
gregation of people’s opinion about one person. In this paper, we
use reputation as the perception of one person (or agent) about an-
other person’s behavior, intention, or reliability of service. This

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

perception depends directly on the reputation reporter’s character-
istics, such as their level of uncertainty, whether they arebiased or
realistic, and/or cultural biases they may have. Differentreputation
characteristics can be dominant in specific domains. For example,
the buyers’ behavior in eBay can be modeled as biased towardsgiv-
ing positive or negative reviews. In reality, eBay’s feedback forum
has been observed to be surprisingly positive: among all ratings
provided in eBay’s feedback forum, 99% are positive [2, 7].

Avoiding unfair ratings while obtaining unbiased and honest re-
views and ratings has been shown to be problematic and extremely
hard to achieve [2]. Researchers in this area have explored different
solutions to this problem. Some have tried to solve it by identify-
ing unbiased reviews and using models that discount or discard the
biased information [10, 12, 13]. Another proposed approachis to
define a measure of review helpfulness, and identify the helpful re-
views among a set of candidate reviews [3]. These approacheshelp
to reduce the effect of biased and non-realistic reviews, and there-
fore highlight unbiased information that can be used for decision
making. However, these proposed models are also throwing away
data by filtering, discounting, and discarding, despite thefact that
reviews are costly and in general not easily obtainable. Addition-
ally, some products have few reviews, providing too little data to
identify the fair reviews and discount the rest [3].

We propose the Probabilistic Reputation (PRep) model, a novel
solution grounded in probabilistic modeling that learns the review-
ers’ behavior using Bayesian learning and then adjusts their reviews
or ratings, as opposed to finding the unbiased reviews and discard-
ing the rest. In the PRep framework, an agent first gathers informa-
tion about a target agent through both direct interactions with that
target and a reviewer’s report about the target. Then, it learns the
reporting agent’s behavior by comparing these two sources (i.e., re-
ports and direct experiences). After the learning phase is complete,
the PRep agent can interpret other reports about other targets com-
ing from the same report provider. As a result of this interpretation,
it uses the entire report effectively, even if the report provider is
biased (i.e., even if its reports are based on faulty perceptions or on
dishonest reporting).

The key benefits of PRep are:
• The PRep reputation mechanism uses biased information as

well as unbiased information; it therefore benefits from all
available data.

• PRep agents obtain a tailored view of the reviewer (or re-
porter) according to their own behavior and preferences, re-
sulting in customized aggregation of reviews.

• PRep is still effective in cases with very few observations or
reviews. Most current models are unable to find usable feed-
back or generate a meaningful reputation level when only a
few ratings are available [3].

315

In this paper, we describe our approach and its application in a
game-theoretic environment. Our experimental results show that
PRep is able to learn the reporting behavior of a report provider,
and consequently to interpret other reports of that provider, result-
ing in better decision making and higher payoffs in its future inter-
actions. Also, our results show that PRep identifies other agents’
trustworthiness faster and more accurately than two other state-of-
the-art trust and reputation models (TRAVOS and HAPTIC), even
when reported information is biased.

2. RELATED WORK
Reputation has been widely studied [2, 4, 7, 8]. Several reputa-

tion models and mechanisms have been proposed in the literature
to deal with the problem of biased and unfair ratings.

The BRS [13] and TRAVOS [10] approaches construct Bayesian
models, using the number of satisfactory and unsatisfactory inter-
actions with the sellers as ratings, and then use outlier detection or
relevance analysis to filter out unreliable ratings. A drawback of
these approaches is that a significant amount of informationmay
be considered unreliable, and therefore discarded or discounted.
BLADE [6] uses a Bayesian model reputation framework. In con-
trast to BRS and TRAVOS, it does not discard all unreliable ratings;
rather, it learns an evaluation function for advisors who provide
ratings close to their direct experience. Therefore, BLADEonly
performs well if the advisors are extremely honest or extremely
dishonest. For example, BLADE discounts the ratings even ifthe
advisor provides 70% honest reports. In the real world, advisors are
not purely good or bad and could have various levels of honesty.

Vogiatzis et al. [11] proposed a probabilistic trust and reputa-
tion model that focuses on modeling service providers whosebe-
havior is not static with time. Their model does not work wellin
the presence of biased advisors. Additionally, Vogiatzis’s model
and TRAVOS both assume that there has been a history of interac-
tions between the agent (i.e, the reputation requester) anda service
provider. Noorian et al. [5] categorize an advisor’s “unfairness” be-
havior into two groups: intentional and unintentional. Their model,
Prob-Cog, uses a two-layer filtering approach to detect and disqual-
ify unfair advisors. Prob-Cog mainly targets and filters outadvisors
who are intentionally biased. Their model does not perform well
when there is a large population of intentionally unfair advisors.

Zhang and Cohen [15] proposed a personalized approach to han-
dle unfair ratings. They use private and public reputation informa-
tion to evaluate the trustworthiness of advisors. They estimate the
credibility of advisors using a time window to calculate therecency
of ratings, and then estimate the trustworthiness of advisors based
on the ratings. Their model does not interpret unfair ratings. As
a result, when the proportion of unfair ratings increases, the trust-
worthiness of advisors decreases; this results in the system relying
heavily on private reputation (i.e., agent’s direct experiences). Yu
and Singh [14] measure how much the advisor’s rating deviates
from the consumer’s experience. Their model identifies accurate
advisors, and discards deceptive advisors.

Another area of research is focused on sentiment analysis and
review helpfulness. For example, Kim et. al. [3] propose a method
for automatically determining the quality of reviews. Theyuse re-
gression to rank different sets of reviews on Amazon.com, based
on their helpfulness. They do not customize the reviews based on
a user’s experiences or preferences. Also, since many products re-
ceive very few reviews, their approach is not helpful for such cases.

In contrast to these mentioned models, PRep uses and customizes
reviews (or reports) even when they are biased. Without prior inter-
actions with a service provider, a PRep agent can form a view about
the service provider by requesting and interpreting the opinion of an

Figure 1: Basic scenario. Requester stands for Reputation Re-
quester, Reporter stands for Reputation Reporter, and Targets
are agents that Requester would like to know about.

advisor, if it has previously observed the advisor’s behavior. This
allows PRep agents to form a view about service providers that
have very few reviews and ratings or for whom the majority of the
reviews is biased. Other reputation models do not work effectively
in such cases.

3. THE PREP MODEL
In this section, we explain our reputation mechanism, PRep,

which is based on probabilistic modeling and Bayesian learning.
PRep has two main steps: learning the reporter’s behavior (Section
3.3) and interpreting the later reports coming from that reporter for
use in decision making (Section 3.4).

Figure 1 explains our model using a two-step scenario involving
a reputationRequester, a reputation (review or opinion)Reporter
(advisor), and severalTargets (service providers). In this scenario,
Requester is new to a society of agents, but Reporter has beenin
this society for some time and has had direct interactions with sev-
eral agents (Target1, Target2, Target3, etc.). Requester first starts to
interact with Target1 directly, then asks Reporter for someinforma-
tion about Target1. By comparing its own direct experience to the
reported experience of Target1, Requester learns Reporter’s report-
ing behavior. At this point, Requester can interpret acquired reports
from Reporter about other agents (e.g., Target2) and can usethis in-
formation to interact more effectively with those agents. Note that
Target1 does not know that Requester is new and has requestedrep-
utation information from Reporter. This assumption prevents Tar-
get1 from deliberately misleading the Reporter in order to mislead
the Requester. Also, Reporter does not know whether Requester
has already interacted with Target1. The latter assumptionprevents
Reporter from deliberately misleading Requester about itsreport-
ing behavior.

Trust and reputation have generally been modeled using two sources:
direct and reported experiences. PRep interprets reportedexpe-
riences in its reputation model and uses a direct-experience trust
model to evaluate the trustworthiness of agents. In this paper, we
use HAPTIC [9] as the trust model. However, PRep is general and
can be combined with other existing direct-experience trust models.

3.1 Direct-Experience Trust Model
Harsanyi Agents Pursuing Trust in Integrity and Competence

(HAPTIC), a trust-based decision framework, is among the few ex-
isting models with a strong theoretical basis: HAPTIC is grounded
in game theory and probabilistic modeling. It has been shownthat
HAPTIC agents are able to learn other agents’ behaviors reliably
using direct experiences. One shortcoming of HAPTIC is thatit
does not support reported experiences.

316

The HAPTIC model allows an agent to predict a partner’s ac-
tions and use these predictions to decide whether or not to trust that
partner. The key insight in HAPTIC is that it separately models
trust using two components ofcompetence andintegrity. Compe-
tence is modeled as the probability that a given agent will beable
to execute an action in a particular situation. Integrity isan agent’s
attitude towards honoring its commitments (or equivalently as the
agent’s belief in a discount factor), and is affected by the perceived
probability of future interactions. This distinction is useful when
an agent defects. It is important for the other agent to understand
whether the defection was due to the incompetence of an honest
agent, or was the result of cheating by a competent agent withlow
integrity. HAPTIC identifies a discrete set of player types,denoted
by Θ, and maps each agent’s competence and integrityθ to a value
from this set. A HAPTIC agent observes the behavior of other
agents and estimates their competence and integrity, then uses this
data for decision making in future interactions with each agent.

HAPTIC has been applied to a modified two-player Iterated Pris-
oner’s Dilemma (IPD), in which the payoff matrix in each round is
scaled using a random multiplier. As a result, the payoffs differ
from one round to the next. HAPTIC assumes that agents know the
current round’s multiplier before selecting their actions. With vari-
able payoffs, a failure due to low competence can be distinguished
from a failure that results from low integrity. An honest butin-
competent agent defects randomly, irrespective of the payoff. By
contrast, a cheating agent shows a pattern in its defectionsthat is
correlated with the expected payoffs. A HAPTIC agent computes
expected payoffs (as defined in the classic Prisoner’s Dilemma pay-
off matrix) and decides rationally whether to cooperate or defect.
Equation 1 definesδ, a threshold for cooperation and defection. If
the agent’s integrity is greater thanδ, it will cooperate; otherwise, it
will defect. δ can be computed for each agent and each game using
the current round’s payoff multiplierm, the average payoffM, and
the estimates of the payoffs of the four possible outcomes (P̂ , Ŝ,
R̂, andT̂).1

δ =
1

M(P̂−R̂)

m(R̂−T̂)
+ 1

. (1)

A learning HAPTIC player considers the outcome of each round
as either a Success (expected action) or a Failure (unexpected ac-
tion), based on its hypothesis about that agent’s type. Iterative
games between two agents allow HAPTIC players to reduce the set
of probable types being considered. The HAPTIC learning method
uses observations of agent behavior to estimate the competence and
integrity for each agent.

3.2 Types of Reporters
One of the dominant recognized reviewer behaviors (including

eBay’s Feedback Forum) is being positively or negatively biased.
In the real world, some reviewers are realistic (and honest), truth-
fully providing the requested information, reviews, or rates. Others
tend to hide people’s defects because they are afraid of retaliation
[7], they are hopeful of getting a good rate in return [1], or they gain
personal or economic rewards or incentives by doing so. Still oth-
ers may change the results with pessimism, because they are pes-
simistic people by nature, or because they want to ruin a competi-
tor’s reputation and discredit them. Note that reporting negatively
about a service can be completely realistic and not pessimistic, if
the service was actually bad.

To address the consequences of these behaviors in the real world,
we model the behavior of reporters in PRep as being potentially
biased. We define the reporters’ behavior using three types:realis-
tic, optimistic, andpessimistic, similar to Noorian et al.’s approach
1R, T, S, and P are the standard PD payoffs from the payoff matrix.

Figure 2: Report generation from a game between Reporter
and Target.

[5]. A realistic Reporter always reports truthful information, corre-
sponding directly to the experiences that it has had in the past with
other agents. A pessimistic Reporter underestimates otheragents’
behavior, and an optimistic Reporter overestimates other agents’
behavior. The level of optimism (or pessimism) is modeled byan
ordered pair,ω = (ωopt, ωpess), which may be based on the Re-
porter’s innate characteristic or could depend on Reporter’s incen-
tives for honesty/dishonesty. Specifically, with probability ωopt,
Reporter will change some of the Defect actions of the targetinto
Cooperates in its reports. Similarly,ωpess defines the probability of
changing Cooperate actions into Defects. For optimistic reporters,
ωopt represents the degree of optimism (probability of aD → C
“flip”), and ωpess is zero. Likewise, for pessimistic reporters,ωpess

is the degree of pessimism, andωopt is zero.
Figure 2 shows how a report is generated in an IPD environment,

and how it will be changed by different reporters. We denote the
actual result of the series of games between Reporter and Target as
R. R is a sequence of Cooperate and Defect actions by Target in
the series of games played with Reporter. The interactions and re-
porting process are as follows. Target makes its decisions based on
its competence and integrity,θ, and the payoff multiplierm of each
game, as modeled in HAPTIC. When Reporter wants to submitR
to Requester, it will first changeR to R′ based on its type,ω, and
then deliverR′ to Requester. For example, ifω is 30% optimistic,
then Reporter will change each Defect (inR) to a Cooperate (in
R′) with probability 0.3 (Figure 2).

In the real world, a Reporter could have various perceptions
of interacting with different targets, based on its relationship with
those targets, e.g., as a collaborator or competitor. Here,however,
we assume that Reporter has the same perception of plays withdif-
ferent Targets, so its reporting behavior will be the same for various
Targets. Since HAPTIC assumes that agents know the current mul-
tiplier of the round, we maintain this assumption here: all agents
know the multipliers of the games. We intend to relax both of these
assumptions in our future work.

3.3 Learn Reporter’s Type
We now explain how Requester learns Reporter’s type using Bayesian

model averaging by comparing direct and reported experiences.
Consider our basic scenario, shown in Figure 1, in which Requester
and Reporter have played separately with Target1. Suppose that
Requester asks Reporter for some information about Target1. We
denote the actual results of the play between Reporter and Target1
by R, and between Requester and Target1 byD. Reporter changes
the true results,R, based on its type,ω, to R′ for reporting to Re-
quester.

We define a set of discrete reporter types,Ω.2 Each typeωi ∈ Ω

2Using a discrete set of possible agent types is simpler and less

317

is a pair of values (ωopt, ωpess). Realistic agents are modeled by
ω = (0, 0). The probability of a type hypothesisωi is denoted by
P (ωi). Requester has also learned a probability distribution over
the possible player types for Target1, which are denoted byθj . The
probability of each player type is denoted byP (θj).

To find the probability of each type of Reporter, given the results
R′ andD, i.e., P (ωi|R′, D) for each Reporter type,ωi, we use
Bayesian model averaging over all possible Target1 types,θj :

P (ωi|R′, D) =
∑

θj∈Θ

P (ωi|R′, D, θj) × P (θj |R′, D). (2)

The second term,P (θj |R′, D), is the probability of Target1’s type
being θj , given R′ and D. In this case,D, the direct experi-
ence, is more reliable thanR′, the reported experience. There-
fore, PRep conditionsθj only onD, and this term is simplified as
P (θj |D), which is Requester’s probability distribution of Target1’s
type, learned using the HAPTIC model.

The first term,P (ωi|R′, D, θj), is the probability of a Reporter’s
type, given Target1’s typeθj , R′, andD. Sinceωi is condition-
ally independent of the results of Requester and Target1’s play (D)
givenθj andR′, this term can be simplified toP (ωi|R′, θj). Using
Bayes’s rule, we can rewrite this term as:

P (ωi|R′, θj) =
P (R′, θj |ωi) × P (ωi)

P (R′, θj)
. (3)

We assume a uniform prior on the Reporter’s type, soP (ωi) is
just the reciprocal of the number of defined types for Reporter
(P (ωi) = 1

|Ω|). Also, P (R′, θj) is a normalizing factor, so we

only need to computeP (R′, θj |ωi). Using the definition of condi-
tional probability, this term can be rewritten as:

P (R′, θj |ωi) = P (R′|θj , ωi) × P (θj |ωi). (4)

Sinceθj andωi are independent, the second term in Equation 4
is P (θj), a prior uniform distribution over the player types. The
expected value ofP (R′|θj , ωi) is defined by a weighted sum over
all possible values ofR:

E(P (R′|θj , ωi)) =
∑

R

P (R′|R, θj , ωi) × P (R|θj , ωi). (5)

Since computing this full expectation is computationally very ex-
pensive, one can instead approximateP (R′|θj , ωi) using the max-
imum likelihood value forR. Denoting the most likelyR asR∗,
this maximum likelihood can be written and expanded as:

P (R′|R∗, θj , ωi) = P (R′
C , R′

D|R∗, θj , ωi), (6)

whereR′
C are all the cooperates andR′

D are all the defects in the
report. Since each round played is assumed to be independentof
the others, the probabilities of the observed defects and cooperates
in the report are independent of each other, yielding:

P (R′
C , R′

D |R∗, θj , ωi) = P (R′
C |R∗, θj , ωi) × P (R′

D |R∗, θj , ωi).
(7)

Each term in Equation 7 represents a series of i.i.d. (independent
and identically distributed) observations from a Bernoulli distribu-
tion, so a binomial distribution can be used to compute the overall
probability of each reporter type. The first binomial is the prob-
ability of observing a certain number of optimistic flips (i.e., the
case where the intentionR∗ of Target1 is Defect and the report of
that round,R′, is Cooperate). The second binomial likelihood is
the probability of seeing the observed number of pessimistic flips
in the report. (when the intentionR∗ is Cooperate, but is reported

computationally expensive than modeling agent types with acon-
tinuous variable. We experimented with a continuous version, and
the results are very close to what we obtain with discrete sets.

as a Defect inR′). The expected success rate for the first binomial
is the number ofD → C flips over total number of Cooperates in
the results,R′

C , that would be expected from a reporter with type
ωi. Similarly, the expected success rate for the second binomial is
the number ofC → D flips overR′

D . Note that a success in this
context is a “flip”: that is, when Reporter changes a Cooperate to a
Defect, or vice versa. We multiply these two binomial likelihoods
to computeP (R′|ωi, θj) in Equation 7. By averaging over all pos-
sible Target1 types, Requester can calculate the probability of each
type of Reporter (Equation 2).

In more complicated environments, the Requester may have mul-
tiple reports from the same Reporter. In this case, we first learn the
Reporter’s behavior in each set of reports, and then use a weighted
averaging function over all possible Reporter types, i.e.,for N re-
ports. In fact, to estimate the credibility of the learnedω in each
transaction, we use the length of each report, i.e., the number of
rounds for which two agents interacted with each other in each run:

P (ωi|R′
1, D1, ..,R′

N , DN) =

∑N
j=1 P (ωi|R′

j , Dj) × length(R′
j)∑N

k=1 length(R′
k)

,

(8)
wherelength(R′

j) is the number of interactions reported inRj .
Note that as the number of rounds increases, the statistics become
more accurate, leading to better results (see Section 4).

3.4 Report Interpretation
In the previous subsection, Requester learned Reporter’s type. In

this section, the maximum likelihood of the possible Reporter types
(i.e.,P (ωi|R′, D)) will be used to interpret the reported results for
new Targets. We illustrate how agents can use this interpretation to
learn the player types (competence and integrity) of other targets
with whom they have not previously interacted.

After learning Reporter’s type, Requester asks Reporter for in-
formation about Target2, and uses its learned knowledge of Re-
porter’s type to interpret the reported results (which are denoted by
R′

2). Without loss of generality, we explain how to interpret the
reports when Reporter’s type is optimistic. Recall thatωopt rep-
resents the probability of optimistic flips in the report andωpess

represents the probability of pessimistic flips in the report. Using
Equation 9, an “interpret” function estimates the total number of
Cooperates (countR2C in the actual resultsR2) usingcountR′

2C
,

as the total number of reported Cooperates in the sequenceR′
2,

length(R2) as the number of rounds in the play, andωopt. The
difference betweencountR2C andcountR′

2C
is the number of Co-

operates that should be changed back to Defects to produce more
accurate results, and saving the result asR∗

2.

countR′
2C

= countR2C
+ ωi_opt × (length(R2) − countR2C

). (9)

Requester now plays back the new results,R∗
2—generating an

action as it would do if it were actually playing with Target2—and
uses HAPTIC to updateP (θj) for each possible Target2 player
type,θj = (C, I). This distribution will continue to be updated in
the online learning process between Requester and Target2,when
they start their direct interactions. This knowledge will increase
Requester’s overall and mean payoff.

4. EXPERIMENTS
In this section, we present our experimental results. We show

the performance of the learning and report interpretation compo-
nents of PRep. We also compare the overall performance of PRep,
HAPTIC, and TRAVOS in terms of learning accuracy and payoffs.

318

Figure 3: Step1 and Step2 of basic scenario. Req is Requester;
Rep is Reporter; T1 & T2 are Targets.

As an overview, in the first two experiments, Exp1 and Exp2,
we evaluate PRep’s learning and interpretation components, re-
spectively. In the third experiment, Exp3, we compare PRep with
HAPTIC, and verify the results with a t-test. Finally, in Exp4, a
TRAVOS Requester competes with a PRep Requester in finding
Target1’s behavior. We compare their mean error in finding Tar-
get1’s behavior and the mean and cumulative game payoffs.

4.1 Simulation Parameters
Distribution of Reporter Types: In these experiments, the re-

porter type is chosen randomly using either a uniform distribution
or a capped Gaussian distribution. These functions randomly gen-
erate numbers in the range (-0.7, 0.7), based on the type of distri-
bution. A negative number represents a pessimistic reporter; a pos-
itive number is an optimistic reporter; and zero is realistic. We de-
fine the Gaussian distribution function with zero mean and a spec-
ified variance. Various demographics of realistic, pessimistic, and
optimistic agents will be achieved by changing the varianceof the
Gaussian function.

PRep represents the set of possible reporters using a discrete set
of types (ωopt, ωpess). Fifteen reporter types are considered by
PRep: (0.1, 0), (0.2, 0)..(0.7,0) as optimistic reporter types; (0,
0.1), (0, 0.2),..(0,0.7) as pessimistic reporter types; and (0, 0) as
a realistic reporter type. The uncertainty associated withthe re-
porter’s type is described by a multinomial probability distribution
over these possible types. Learning ofω occurs by updating this
probability distribution based on the observed behavior ofthat re-
porter after each reporting interaction.

Agent Strategies:Requester and Reporter are HAPTIC agents
that have competence and integrity.3 Targets are selected from clas-
sic strategies from the IPD literature in our experiments: ALLC,
ALLD, TFT, and TFTT. An ALLC Target always cooperates in its
play with any opponent. An ALLD Target always defects. A TFT
(Tit-for-Tat) initially cooperates and then copies its counterpart’s
action from the previous round. A TFTT (Tit-for-Two-Tat) agent is
forgiving and defects only if the opponent agent has defected twice
in a row. We also use two variable-payoff strategies from Smith
and desJardins [9]: DHP (Defect on High Payoff) and DMP (De-
fect on Medium Payoff). A DHP Target defects only on high-payoff
games, and a DMP defects on medium and high payoffs, and coop-
erates on low payoffs.4Among these strategies, TFT and TFTT are
the only ones who behave in reaction to their opponent’s actions.
The rest select their actions based on their type and regardless of
their opponent’s move.

We also introduce a noise factor for each of these strategic types,
corresponding to HAPTIC’s notion of competence. This factor,
which is the probability of the actual action to be equal to the in-
tended action, is selected from this set: {0.7, 0.8, 0.9, 1}.

3As in Smith and desJardins, competence of agents are selected
from {0.7, 0.8, 0.9, 1}; and integrity is a number from 0 to 1.
4Multipliers of the rounds are selected from {0.4,1,4}. A DHP
defects on rounds with m=4 and DMP defects on m=1 and 0.4 [9].

4.2 Exp1: PRep Learning
In our first experiment, we show the performance of PRep’s learn-

ing component for different reporter types. We compare the given
Reporter type distribution with the learned distribution and measure
the accuracy of the learned Reporter types.

Design:We evaluate PRep in two steps, shown in Figure 3 (which
follows our basic scenario presented in Figure 1). In the first step,
PRep learnsω; in the second step, it uses the learnedω to inter-
pret the reports in its successive plays. In step one, Requester and
Reporter each play20 rounds with Target1. Then, Requester asks
Reporter about its experience with Target1. Reporter converts the
actual results,R, to R′ based on its typeω, and passes the report,
R′, to Requester. Requester then learns the Reporter’s type,ω,
givenR′ andR (using the approach described in Section 3.3). In
step two, Reporter plays20 rounds with Target2 (results =R2).
Then, Requester asks Reporter about Target2. Reporter converts
the actual resultsR2 to R′

2 based on its typeω, and passes the re-
sults to Requester. Requester interpretsR′

2 based on the learnedω,
and generatesR∗

2.5 Requester plays backR∗
2 and learns Target2’s

competence and integrity, denoted by(C, I). Finally, Requester
plays for20 rounds with Target2, starting with its learned values
for Target2’s(C, I).

In Exp1, 100 Reporter types,ω, are selected randomly from a
uniform or Gaussian distribution. Requester and Reporter player
types (Competence, and Integrity) values are (1, 0.9). Target1 and
Target2 types are selected randomly from a set of 16 strategic types:
namely, the cross products of 4 player types (ALLC, ALLD, DHP,
and DMP) and 4 competence values (0.7, 0.8, 0.9, 1).

As a performance metric, we use the mean error, which is the
difference between the identified Reporter type,ω, and the correct
type. All results are averaged over 100 runs.6

Results:Figure 4(a) shows the distribution of true reporter types
and most likely learned types in 100 runs of the experiment over
100 reporter types, when the true reporter types are selected using a
uniform distribution. PRep is able to identify the uniform distribu-
tion, since the values are almost equally spread over the optimistic
and pessimistic ranges, except for the realistic type (which will be
explained next). The mean error for this experiment is 0.14.Part of
this error arises from using discrete types in the learning process:
the discrete steps are 0.1, so inherently an error up to 0.05 will be
introduced during learning (0.025 on average).

Another source of error is the population of learned realistic re-
porters (ω = 0), which is much higher (about 28) than the true num-
ber of realistic reporters value (100/15 or around 7). The explana-
tion for this disparity is that optimistic reporters cannotbe identi-
fied when they are reporting about ALLC players. An ALLC player
always cooperates, so an optimistic reporter makes no changes in
the report, and PRep detects such reporters as realistic. This prob-
lem can be solved when a PRep agent has multiple encounters with
the same reporter (see Section 4.5). The same is true for pessimistic
reporters when reporting about ALLD players. The population of
ALLC players is 25, and roughly half those will face an optimistic
reporter, which is 12 in the population. Similarly, another12 false
positives are generated from the ALLD players. Therefore, the pop-
ulation of realistic reporters will be estimated as 24 more than the
true number. Since these misidentified realistic Reportershave a
true value between 0.1 and 0.7, the average error for each of these

5R∗
2 is Requester’s estimation of what actually happened between

Reporter and Target2, asR2 is not available to Requester.
6Note that a “run” is different than a “round.” A “round” is a single
play between two agents in PD game, with single Cooperate or
Defect as outcome. A “run” is a combination of several “rounds”
in games between the agents in a scenario.

319

(a) Original distribution: uniform

(b) Original distribution: Gaussian with variance 0.3

(c) Original distribution: Gaussian with variance 0.1

Figure 4: Exp1; The probability associated with Reporter’s
true reporting type.

24 Reporters will be 0.4. This will cause an additional 0.096(i.e.,
0.4×24/100) error, making the estimated overall error to be 0.121
(0.025 + 0.096), which is very close to the actual error.

Figures 4(b) and 4(c) show the distribution of true agent types
and most likely learned types over 100 reporter types,ω, selected
from a Gaussian distribution, with variances of 0.3 (15% realistic)
and 0.1 (41% realistic reporters), respectively. PRep is able to iden-
tify different distributions of reporters and the learned population is
close to the original population for both large and small variances
in the Gaussian function. The mean error for variance 0.3 is 0.11
and for variance 0.1 is 0.077. As the number of realistic reporters
increases in the population, the mean error decreases; thisoccurs
in part partially because fewer ALLC and ALLD targets will face
optimistic or pessimistic reporters, respectively.

4.3 Exp2: PRep Interpretation
In the second experiment, our goal is to show the importance

of correct interpretations when a reporter is biased. We design an
experiment with fixed values (as a snapshot of Exp1), averageit
over 100 runs, and focus on finding the correct Reporter’s type,
ω and the Target’s type, (C, I), after report interpretation and the
resulting cumulative payoff.

Design: We follow the scenario shown in Figure 3. In the first
step, Requester and Reporter play30 rounds with Target1. In the
second step, Requester and Reporter play20 rounds with Target2.

In this experiment, we use HAPTIC as a baseline. Also, to show
the negative effect of not re-interpreting reports, we define another
baseline, PRep-NoInterp. This baseline uses PRep model with-
out the interpretation component. A third baseline, PRep-Perfect,
shows the upper limit benefit of reported experiences when the re-
porter is realistic and there are no flips in the report.

In Exp2, Reporter’s true type is optimistic 0.4. Requester and

Reporter player types values are fixed at (1, 0.9). Target1’s(C, I)
is: (1, 0.6), and Target2’s true value is (0.7, 0.6).

Our performance metrics are the accuracy of the learned Re-
porter’sω and Target2’s player types (by looking at the probability
assigned to the true player types, i.e., (C, I)) and the cumulative
payoff. The results are averaged over 100 runs.

Results: Figure 5(a) shows the results of learning Reporter’sω
in Exp2, averaged over 100 runs, whereω is optimistic 0.4. This
graph shows that Player1 was able to identify Reporter’s type as
having an optimistic behavior. The probability of the levels of op-
timism is spread over different values; the maximum likelihood of
these values, is optimistic 0.4, with probability 0.22. This result
illustrates the correctness of PRep’s learning component.

Figure 5(b) displays the results of learning Target2’s (C, I). The
possible hypotheses for Player4 are shown by small cross signs; the
correct hypothesis is (0.7, 0.6), which is the true value of Target2
type. The circles’ sizes represent the learned probabilityof each
hypothesis for Target2. The top left graph shows the resultsfor
HAPTIC. In this case, Requester uses only direct experiences. Af-
ter 20 rounds of play, the hypothesis probabilities are spread among
four values: (0.7, 0.9), (0.7, 0.6), (0.7, 0.35), and (0.7, 0.1), which
means that Requester is getting close but has not yet correctly iden-
tified Target2’s true type. The PRep-NoInterp graph shows that us-
ing the non-interpreted reports still yields a moderate probability
of finding the correct hypothesis. The results for PRep are shown
in the bottom left graph, where the highest probability is assigned
to (0.7, 0.6). This is the correct hypothesis; therefore, Requester
can achieve higher payoffs with this learned model than using di-
rect experience alone. If Reporter was a realistic reporterinstead of
being 40% optimistic in Exp2, Requester would have been ableto
identify Target2’s actual (C, I) with a higher probability,as shown
in PRep-Perfect graph in Figure 5(b).

Another interesting view of the learning process is how the learned
probabilities changes over a series of rounds for Target2’strue type.
As seen in Figure 5(c), PRep starts high (near 0.56) from the be-
ginning, while HAPTIC’s probability of the true type remains at a
lower level and needs several more rounds to increase. The main
reason for this behavior is that PRep has learned Target2’s type us-
ing reported experiences that it has received from Reporter.

The corresponding payoffs resulting from the four approaches
are shown in Figure 5(d). As expected, PRep-Perfect has the high-
est payoff; PRep (that interprets biased reports) ranks second and
yields payoffs close to PRep-Perfect. HAPTIC places third;PRep-
NoInterp is in the fourth place and behaves very similarly toHAP-
TIC. Since the reporter in this experiment alters Defects inthe re-
sults with a 40% probability, using reports without interpretations
will result in a performance close to HAPTIC, which is hindered
by its belief in the incorrect reports.

4.4 Exp3: HAPTIC Vs. PRep
To verify the effectiveness of PRep over different player and re-

porter types, we performed Exp3, repeating a game for 100 times.
In each run, we use the scenario in Figure 3. Requester’s typeis
fixed at (1, 0.9), and the reporters’ types are selected basedon a
Gaussian distribution with 0.3 variance (15% realistic reporters)
centered on zero. The Target1 and Target2 types are selectedran-
domly among 16 strategic types: the cross product of four strate-
gic types (ALLC, ALLD, DHP, and DMP) with 4 competence val-
ues (0.7, 0.8, 0.9, 1). The mean payoffs for HAPTIC, PRep, and
PRep-Perfect in this experiment are 1.89, 2.17, and 2.18, respec-
tively. PRep (with biased reporters) achieves 14.8% improvement
over HAPTIC, where the upper limit is 15.3% achieved by PRep-
Perfect. A t-test confirms that the mean per-round payoffs ofHAP-

320

(a) Reporter’s type probabilities for correct hypothesis
of ω=(0.4,0)

(b) Target2’s type (C, I) probabilities for correct hy-
pothesis of (0.7,0.6)

(c) Target2’s probability growth over rounds

(d) Cumulative payoffs

Figure 5: Exp2; A 40% optimistic Reporter and Target2 type
actual values (C= 0.7, I = 0.6).

Figure 6: Scenario for TRAVOS and PRep. Req is Requester;
R1, R2,..R10 are Reporters; and T is the Target.

TIC and PRep are different; with 99.9% confidence, the difference
is between 0.274 and 0.276.

4.5 Exp4: TRAVOS Vs. PRep
In Exp4, we compare the performance of TRAVOS [10] and

PRep in a noisy environment with biased and unbiased reporters.
We measure the accuracy of the learned Target types, and the re-
sulting mean and cumulative payoffs for both a PRep Requester
and a TRAVOS Requester.

TRAVOS: This model uses probabilistic modeling based on a
beta distribution. TRAVOS outperforms many other trust andrep-
utation models, including probabilistic models such as BRS[13].
TRAVOS uses the number of satisfactory and unsatisfactory inter-
actions with the sellers as ratings, and uses a weight function to
combine these ratings. Agents calculate rating weights by compar-
ing the relevance of each rating to their own opinions.

TRAVOS models the trustworthiness of each agent by a fulfill-
ment factor, which is equivalent to “competence” in PRep. How-
ever, TRAVOS does not model the integrity of an agent. In order to
compare PRep and TRAVOS, we settle this difference by providing
the integrity of an agent as an input to TRAVOS, whereas PRep is
searching in a two-dimensional space for competence and integrity.
Note that this gives an advantage to TRAVOS.

Design:To be able to compare PRep and TRAVOS in both mod-
eling and assumptions, Exp4 uses another IPD-based test frame-
work. TRAVOS assumes previous transactions between Requester
and Target, so we design this experiment with this assumption.
Also, we have several Reporters (each with different behavior) in
this experiment reporting about one Target. Therefore, theRe-
quester interprets different reporters’ reports about oneTarget.

The scenario for this experiment is shown in Figure 6. Requester
plays with Target for 10 rounds. Ten Reporters play 10 roundswith
Target. Each Reporter changes the outcome of its play based on its
type and then reports the changed results to Requester, who updates
its belief about that specific Reporter. We repeat the same process
100 times; in each run, a Reporter’s type,ω, is learned. In PRep,
this value will be averaged over the so far learnedω (as seen in
Equation 8) and later will be used in interpreting reports.

In this experiment, Requesters use either TRAVOS or PRep for
modeling their trust and reputation; target types are selected ran-
domly from the cross product of six strategic types (ALLC, ALLD,
DHP, DMP, TFT and TFTT) with 4 competence values (0.7, 0.8,
0.9, 1). Requester and Reporter’s competences and integrities are
fixed at (0.8, 0.9). The population of Reporters consists of realistic
and biased reporters (pessimistic/optimistic up to 0.7 andrealistic),
selected from a Gaussian distribution with 0.1 variance (41% real-
istic reporters) centered on zero.

We compare the accuracy of Target player types (competence in
this experiment) learned by TRAVOS and PRep. As a performance
metric, we use the mean error, which is the difference between the
identified type and the correct type. Also, we compare PRep and
TRAVOS in terms of the mean and cumulative payoff. All results
are averaged over 100 runs.

Results: Despite the fact that we have provided TRAVOS with
the correct integrity, as we can see in Figure 7(a), PRep outperforms
TRAVOS in identifying the Target’s type (competence). Thiserror
for TRAVOS has converged to 0.078 and for PRep to 0.043 (a 45%
improvement over TRAVOS). The reason is that TRAVOS heavily
discounts the biased reports, while PRep interprets and uses that
data to learn more about the behavior of the Target. As a result
of correctly identifying the behavior of the Reporter, the cumula-
tive payoff is increased from 2085 to 2264 (Figure 7(b)) and the
average payoff per round is increased from 2.09 to 2.26 (a 9% im-

321

(a) (b) (c)
Figure 7: Exp4; TRAVOS vs. PRep; (a) Mean error in identifying true Target’s competence, (b) Cumulative, and (c) Mean payoffs
for Requester in its play with Target.

provement), as shown in Figure 7(c). The results passed the t-test,
which verifies the mean values of TRAVOS and PRep are different;
with 99.9% confidence, the mean payoff difference is between0.16
and 0.17.

We repeated this experiment with various number of rounds of
direct experiences (i.e., “D” in Figure 6). The results showthat
TRAVOS is performing as well as PRep when the number of direct
experiences is high. Figure 8 shows that the mean error of both
models converges to the same value if we increase the number of
direct interactions up to 30. This means that TRAVOS is heavily
relying on direct experiences, and PRep is performing better when
there are only a few direct interactions available. Additionally, it
shows that mean error decreases for both TRAVOS and PRep when
the number of realistic reporters increases in the population.

Figure 8: Exp4; Performance of TRAVOS vs. PRep using a
variable number of direct experiences.

5. CONCLUSIONS AND FUTURE WORK
We presented PRep, a reputation mechanism that is capable of

re-interpreting and adjusting reported experiences by learning the
reporters’ behavior. PRep works well in regular and noisy envi-
ronments, even with the presence of a large population of biased
reporters, and when there are only a few direct interactionsavail-
able. Our results show that a PRep agent identifies agents’ reporting
behavior correctly; therefore, it recognizes other agents’ trustwor-
thiness more rapidly and accurately than a HAPTIC or TRAVOS
agent, resulting in better decision making. For example, with 10
direct interactions, PRep’s mean error for predicting an agent’s be-
havior is 45% lower than that of TRAVOS, due to PRep’s ability
to correctly interpret the reports. As a result, the averagepayoff
improves by 9%.

An interesting direction for future work would be to furthereval-
uate this model in a risky and non-deterministic environment, such
as a marketplace application. Also, we plan to explore the use of
context-dependent Reporter types that can cause agents to behave
differently in various situations (e.g., when reporting toa competi-
tor versus a collaborator). We will also investigate multidimen-
sional trust models that can be applied when a Reporter can have
varying degrees of trust for different aspects of a Target’sbehavior
(e.g., quality and price in a supply chain management context).

6. REFERENCES
[1] M. Chen and J. Singh. Computing and using reputations for

internet ratings. InProceedings of the 3rd ACM Conference
on Electronic Commerce, pages 154–162, 2001.

[2] A. Josang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision.Decision
Support Systems, 43(2):618–644, 2007.

[3] S. Kim, P. Pantel, T. Chklovski, and M. Pennacchiotti.
Automatically assessing review helpfulness. InEMNLP-06,
pages 423–430, 2006.

[4] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions of
reputation in multi-agent systems: A review. InAAMAS-02,
pages 280–287, Bologna, Italy, July 2002.

[5] Z. Noorian, S. Marsh, and M. Fleming. Multi-layer cognitive
filtering by behavioral modeling. InAAMAS 2011, pages
2–6, Taipei, Taiwan, 2011.

[6] K. Regan, P. Poupart, and R. Cohen. Bayesian reputation
modeling in e-marketplaces sensitive to subjectivity,
deception and change. InAAAI-06, volume 21, page 1206.
AAAI Press, 2006.

[7] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman.
Reputation systems.Communications of the ACM,
43(12):45–48, 2000.

[8] J. Sabater and C. Sierra. Review on computational trust and
reputation models.JAIR, 24(1):33–60, 2005.

[9] M. Smith and M. desJardins. Learning to trust in the
competence and commitment of agents.Journal of AAMAS,
18(1):36–82, February 2009.

[10] W. Teacy, J. Patel, N. Jennings, and M. Luck. Coping with
inaccurate reputation sources: Experimental analysis of a
probabilistic trust model. InAAMAS-05, pages 25–29, 2005.

[11] G. Vogiatzis, I. MacGillivray, and M. Chli. A probabilistic
model for trust and reputation. InAAMAS-10, pages
225–232, 2010.

[12] Y. Wang, C. Hang, and M. Singh. A probabilistic approach
for maintaining trust based on evidence.JAIR, 40:221–267,
2011.

[13] A. Whitby, A. Jøsang, and J. Indulska. Filtering out unfair
ratings in Bayesian reputation systems. InProceedings of the
7th Int. Workshop on Trust in Agent Societies, 2004.

[14] B. Yu and M. Singh. Detecting deception in reputation
management. InAAMAS-03, pages 73–80, 2003.

[15] J. Zhang and R. Cohen. Evaluating the trustworthiness of
advice about seller agents in e-marketplaces: A personalized
approach.Electronic Commerce Research and Applications,
7(3):330–340, 2008.

322

A Decision-Theoretic Characterization of Organizational
Influences

Jason Sleight and Edmund H. Durfee
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109

{jsleight,durfee}@umich.edu

ABSTRACT
Despite a large body of research on integrating organizational
concepts into cooperative multiagent systems, a formal under-
standing of how organizations can influence agents’ decisions
remains elusive. This paper works toward such an under-
standing by beginning with a model of agent decision making
based on decision-theoretic principles, and then examining
the possible routes that organizational influences can take
to affect that model. We show that alternative avenues
of applying influences correspond to different prior notions
of organizational control, and empirically demonstrate the
impact that each can have on the quality and overhead of
coordinated behavior. To do so, we must define the agents’
baseline behavior (without a designed organization), and we
present a methodology for initializing agents’ models to com-
prise what amounts to an “uninformed” organization. Finally,
we show how the specification of organizational influences
in terms of components of a decision-theoretic agent creates
opportunities for agents to compare actual events with pre-
dictions implied in the models, such that agents can reason
about whether to change organizations. We demonstrate
that this capability to question and change organizations can
be valuable if used judiciously.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Coherence & co-ordination, multiagent systems

General Terms
Design, performance

Keywords
Organization, organizationally adept agents

1. INTRODUCTION
Organizational structuring is a widely adopted and of-

ten powerful tool for coordinating large groups of people to
achieve common goals effectively and efficiently, by giving
each person guidance in how to make local decisions that
are useful to the collective endeavor. Multiagent systems

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

research has investigated how organizational concepts and
strategies can be modeled and utilized by computational
agents, showing that organizations can increase the expected
performance of large-scale, cooperative multiagent systems
[12, 6]. Research also suggests that organizational control
becomes increasingly effective as the number of agents in-
creases, the time horizon increases, the system complexity
increases, the system resources decrease, and/or the perfor-
mance goals increase [4]. That these issues arise in realistic
application domains has driven research into how to encode
pertinent organizational control and how to augment agent
architectures to follow such control.

A point of departure in this paper is that we attack the
question of what an organization is or could be, computa-
tionally, from the opposite direction. We begin with a model
of agent decision making based on decision-theoretic princi-
ples, captured as decentralized partially observable Markov
decision processes, Dec-POMDPs. Within this formal, well-
defined decision framework, we then explore how various
types of organizational control and influences can be cap-
tured in the different components of the framework, such as
transition and reward functions. Hence, one contribution of
this paper is a systematic and comprehensive enumeration
of where organizational control can be applied, and how it
can be formally manifested in decision-theoretic agents. We
empirically evaluate how the embodiment of organizational
influence in different Dec-POMDP framework components
individually and collectively impacts the quality of agents’
behavior and the costs of agents’ reasoning.

Measuring performance improvements resulting from de-
signing and following a good organization requires a baseline
of performance without any organization. Our more prin-
cipled formulation reveals, however, that defining such a
baseline is problematic. A second contribution of this paper,
therefore, is a methodology for forming baseline organizations
for experimental comparisons.

Our third main contribution in this paper is to demonstrate
how an explicit representation of organizational control in
terms of components of a decision-theoretic framework cap-
tures statistical predictions about runtime behavior, which
agents can use to decide how and when to change (or aban-
don) their organization. We build off of the abstract concept
of an organizationally adept agent (OAA) [3] to formulate
a more precise notion of an OAA that can compare actual
experiences in its environment with the organization’s predic-
tions, and can (with other OAAs) adopt a better alternative
organizational design. Our preliminary experiments show
that this capability to question an organization’s suitability

323

rather than to follow it blindly can improve system-wide
performance, but that responsiveness needs to be tempered
by the costs of reorganization.

The remainder of this paper is structured as follows. In
Section 2, we describe the decision-theoretic framework that
our agents use and that, for the purposes of this paper, the
organizational structure must work within. Then we turn to
our first contribution, in Section 3, where we describe how
organizational influence is manifested in each of the com-
ponents and how the different manifestations capture prior
organizational strategies in the literature. In Section 4 we
make our second contribution by analyzing the space of base-
line organizations to consider and justifying our choices for
our experiments. Section 5 presents our empirical evaluation
of the impact of different forms of organizational influence
on the quality and costs of coordination. We then turn to
a description of how a rudimentary form of organizational
adeptness has been captured in our agents and present pre-
liminary experiments illustrating the promise and potential
costs of agents that can change organizations (Section 6). We
conclude in Section 7 with a summary of the work presented
here and of our ongoing efforts.

2. PROBLEM REPRESENTATION
We adopt a standard Dec-POMDP decision model [2],
M = 〈N , S, α,A,R, P,Ω, O, T 〉, where: N is the set of n
cooperative agents; S is the (finite) set of global states; α
is a probability distribution over initial global states; A is
the (finite) set of possible joint actions; R is the joint reward
function; P is the joint transition function; Ω is the (finite)
set of possible joint observations; O is the joint observation
function; and T is the finite time horizon. Given a full
specification of the Dec-POMDP, an optimal joint policy, π∗,
can be formulated in principle. In practice, however, finding
such a policy for anything but very simple problems (with
few agents and small state and action spaces) is intractable
[2], and even if found, executing such a policy is problematic
because it generally assumes that all agents have the same
beliefs about the global state.

For these reasons, multiagent approaches to solving such
problems often assume that each agent possesses a local
view of the joint problem. As is customary in that work,
we assume that state is factored: every state is represented
using the same set of τ state features, such that ∀s ∈ S, s =
〈f1 ∈ F1, · · · , fτ ∈ Fτ 〉, where Fj is the finite set of possible
values for state feature j. Each agent i has a local state
representation Si consisting of a subset of the τ features.
Agent i has a local decision model defined for this state
space: Mi = 〈Si, αi, Ai, Ri, Pi,Ωi, Oi, Ti〉, where local re-
wards, transitions, actions, etc. are defined over the states
in Si. We further adopt the common assumption of local full
observability (each agent i can exactly observe the values
of all of its local state’s features). Given these assumptions,
the local decision model Mi of an agent i represents a local
MDP, such that an agent can compute its (optimal) local
policy πi with respect toMi. The joint policy is then simply
defined as π = 〈π1, π2, ..., πn〉.

To illustrate a problem of this type, we use a simplified
firefighting scenario, where firefighting agents and fires to
be fought exist in a grid world (Figure 1). The global state
consists of the locations of the agents and the locations
and intensities of the fires. Figure 1 shows an initial global
state, where the locations of agents A1 and A2 are shown,

Figure 1: Example initial state of a 10×5 firefighting
grid world domain. Ai indicates the position of agent
i, and Fj indicates that there is a fire in that cell with
intensity j.

along with positions of each fire Fx, where x is the current
intensity of the fire in that position. Each agent has 6 actions:
a NOOP action that makes no change to the world state; 4
possible movement actions (N, S, E, W) that move the agent
one cell in the specified direction (and equates to a NOOP if
there is no cell in that direction); and a fight-fire (FF) action
that decrements by 1 the intensity of the fire in the agent’s
current location, if any and otherwise behaves like a NOOP.
Joint actions are defined as the aggregation of the agents’
local actions. Movement actions are independent (agents
can occupy the same location), but FF actions are not: the
intensity of a fire only decreases by 1 even if multiple agents
simultaneously fight it. The joint reward for the agents in
states prior to reaching T is the negative sum of the fires’
intensities in that state. When the time horizon is reached,
the problem episode ends, and the joint reward is 10 times the
negative sum of the remaining fires’ intensities, encouraging
the agents to put all the fires out before the deadline.

An example of how agents might have local models of this
joint model is the following. An agent’s local state consists
of its location and the locations and intensities of the fires.
That is, it does not include the position of other agents.
Hence, its local action space only includes its 6 actions, and
its local transition model will only model how its local actions
affect its local state. Its local reward function is the same
as the global reward function; note that in this case the
sum of the agents’ local rewards will overestimate the true
(negative) reward. Its local finite time horizon is identical
to the global finite time horizon, and its local initial state
distribution is calculated by directly mapping the initial
distribution of global states into the local state space. Given
such a local model, each agent will formulate a local policy
that would fight the fires optimally if the agent were alone in
the world. Note that, in general, the joint policy formed by
the combination of these optimal local policies will not itself
be optimal. For example, in Figure 1, both agents will be
drawn to the high intensity fire first and redundantly fight it
rather than dividing up to fight the two fires concurrently.

3. ORGANIZATIONAL INFLUENCE
As just illustrated, optimizing policies for local models

of joint problems does not necessarily lead to optimal joint
policies. Yet, as has been already discussed, centrally solv-
ing for an optimal joint policy is computationally infeasible
and can lead to policies that rely on agents knowing the
global state. The organizational approach that we examine
here, therefore, focuses on modifying agents’ local models
such that the local policies that agents individually construct

324

will, in combination, result in better joint policies. We note
that runtime communication to increase global awareness
of agents’ states and plans can also help improve coordi-
nation (e.g., help prevent firefighting agents from behaving
redundantly), and could gainfully augment an organizational
approach. However, in the remainder of this paper we as-
sume no communication between agents in order to avoid
confounding factors in our presentation and in our analysis
of organizational influence’s performance.

3.1 Organizational Design Space
We assert that the components of the Dec-POMDP model

provide a way to systematically enumerate the dimensions
of the organizational design space, at least for designs in-
tended for decision-theoretic agents. Formally, let an or-
ganizational design be defined as Θ = 〈θ1, · · · , θn〉 where
θi = 〈Sθi , αθi , Aθi , Rθi , Pθi , Tθi〉 is the local organizational
model for agent i.1 θi specifies the local state space, initial
state distribution, action space, reward function, transition
function, and finite time horizon (FTH) for agent i, when
the agent is following organization Θ. We now step through
each of the components and discuss how each could be used
to introduce some commonly cited organizational influences.

Rewards: The idea of modifying local models to improve
coordination is not new. In particular, a growing body
of literature on reward shaping specifically looks at how
agents’ reward functions can be manipulated to bias agents
into taking actions that benefit the collective [15, 10]. For
example, reward shaping can lead an agent to establish
conditions that have no (unshaped) local reward, but that
enable other agents to then take actions that lead to high
joint reward. In a similar spirit, Agogino and Tumer [1]
have explored the process of designing agents’ individual
objective functions such that maximizing local rewards leads
to maximizing a global objective function in expectation.
Hence, one obvious dimension in the organizational design
space is the space of alternative combinations of reward
functions to assign to agents.

Transitions: It turns out, however, that changing each
agent’s local rewards alone might be insufficient to induce
some forms of cooperative behavior. For example, consider
the situation where one agent can establish a condition that
enables another to take actions that ultimately lead to high
reward. An organizational reward function can bias the first
agent into establishing the condition; however, the second
agent might not take useful precursor actions because its
local model indicates that the condition is unlikely to be
established by default. To induce the second agent into com-
plementary behavior, the organizational designer needs to
convey the expectation that, because of how the first agent’s
reward is shaped, the second agent should expect the condi-
tion to be (or become) established with high probability. The
organization could give the second agent a modified transi-
tion function indicating that, given organizational influences
elsewhere, the condition of interest is now more likely to
be established. Note that the revised transition function
summarizes the expectations without needing to be specific
about the details; the second agent need not reason about
how the first will establish the condition, or even which agent
is establishing the condition.

1As mentioned, for simplicity we assume local state is fully
observable. What follows can be extended to local partial
observability with the usual impacts on complexity.

Hence, besides reward functions, transition function modi-
fication is another dimension of organizational design. While
the example above points out how these can be correlated,
even if agents’ reward functions are left unchanged they could
still benefit from improved transition functions, for example,
by reflecting the tendencies that agents inherently have in
affecting the states that others might face.

Actions: Without specialized optimizations during policy
creation, organizational shaping of reward and/or transition
components will not reduce the size of the agents’ local policy
spaces, but only their decisions about which of those policies
are optimal. Redesigning some of the other components of
an agent’s decision model, however, can achieve another ob-
jective often attributed to organizational influence, which is
to simplify an agent’s reasoning. For example, the organiza-
tional designer might associate different roles with different
agents and thus induce agents to specialize in the possible
actions they will exercise. The designer can give agent i
a reduced action specification Aθi ⊆ Ai that constrains its
choices in some (or all) states. For example, in Figure 1,
agent A1 might be prohibited from moving outside of an
organizationally-dictated area of responsibility. Chosen well,
such restrictions not only help agents pursue complementary
policies, but simplify planning for each. Like reward shaping,
encoding organizational influence as constraints on behavior
is a familiar approach in the literature [6, 11].

States: In a factored state representation, the organiza-
tional designer could determine that there are features that
an agent can sense that are unnecessary to represent given
the organization. In our running firefighting example, for
instance, the organizational designer might decide that some
(distant) fires need not be modeled by an agent at all (be-
cause they are the responsibility of other agents), thereby
simplifying its local decision problem. Further, the organi-
zational designer might purposely augment an agent’s local
state representation with new features, where the designer
has decided that those features are crucial to distinguishing
between states that otherwise would look locally identical.
Such augmentations must be done with caution, however,
and if the designer includes such augmentations, it must
also delineate the communication protocols and policies that
would ensure an agent possesses up-to-date values for those
features despite not being able to directly observe them. For
instance, in our running example, to improve coordination
the designer might insist that each firefighter tell the others
which fire it is now working towards extinguishing. Establish-
ing these types of commitments and conventions has proven
useful [8], but this paper will only consider organizations
that remove state features.

Initial State and FTH: Finally, an organization can
also influence an agent’s behavior through αθi and Tθi . In
the firefighting scenario, an organization could, for example,
initially position the firefighters at particular locations and
reflect the influence on initial state correspondingly. Similarly,
by shaping the rewards, transitions, and actions of the various
agents, the organizational designer might determine that the
improved parallelism from coordination means that agents
can safely reason over shorter time horizons. Alternatively,
the designer might improve coordination by increasing Tθi
for the agents, effectively asking them to be less myopic.

3.2 Related Work
In the preceding, we have stepped through the compo-

325

nents of a local decision model for a decision-theoretic agent,
and described how an organizational designer could adjust
a component to influence an agent’s decisions. By adjust-
ing the agents’ components appropriately, an organizational
designer can influence agents to make more complementary,
globally-useful decisions, and in some cases also simplify the
agents’ local reasoning processes. As noted above, adjusting
components like reward functions and action spaces have
correspondences with familiar notions in the organizational
structuring literature. However, prior work on implementing
organizational influences within agents largely takes a top-
down approach: given influences that a researcher’s intuitions
determine are pertinent, an agent architecture (such as a BDI
architecture [3]) is extended to incorporate those influences.
In contrast, the dimensions for organizational influence in
this paper emerge from the bottom up, directly from the
components of the principled decision-theoretic framework.

Much of the literature in multiagent organization design
and specification concentrates on formulating organizational
modeling languages (OMLs), such as MOISE+ [13] and
OMNI [14], among a variety of others. Though the specifics
of these OMLs vary, they generally emphasize specifying
an agent organization at an abstract level in terms of roles,
role relationships/interactions, norms, etc. They also tend
to be agnostic about how an agent would map the abstract
specification into its internal reasoning processes. Hence,
our work here complements that work, helping to bridge the
gap between modeling and implementation by identifying
opportunities and limitations in what OMLs can express that
can be meaningfully mapped into influences over decision-
theoretic agents.

4. BASELINE ORGANIZATION
In our preceding characterization of how an organizational

designer influences an agent, the basic idea is that the de-
sign θi = 〈Sθi , αθi , Aθi , Rθi , Pθi , Tθi〉 supplants the agent’s
“local” model Mi = 〈Si, αi, Ai, Ri, Pi, Ti〉. But where does
an agent’s (original) local model come from? Clearly, the
performance improvements that an organizational design will
make depends on how (dis)organized the agents are when
following their initial local models. This means that we
could show arbitrarily good performance improvements by
initializing agents with arbitrarily bad local models.

This is a fundamental and under-addressed quandary in the
artificial agent organizations research field. The combination
of initial local models of agents essentially do comprise an
organizational design. When assembling an agent system,
agents might be selected based on the inherent alignment
between their local models and the (organizational) biases of
whomever is assembling the system. The actions agents are
capable of, the states they can represent, their predispositions
about what states are rewarding, etc. can all factor into
decisions about which agents are included in the system.

Our evaluation of the improvement achievable by following
a designed organization thus depends on defining a base-
line organization. To develop as even-handed a baseline as
possible, we advocate initializing local decision models by
performing an uninformed mapping of the joint Dec-POMDP
models into localized versions. In this way, the local models
are perforce aligned with the global model, but they are
not crafted to differentiate the roles and behaviors of the
agents. Essentially, the philosophy is to endow each agent
with a local model that directly makes the individual agent

responsible for solving the global problem, to the extent its
awareness and capabilities allow.

Specifically, our methodology for initializing agents’ local
models to provide an experimental baseline is as follows.
First, we assume that the subset of state features directly
observable to the agent defines its local state representation.
Second, the action space of an agent is simply its component
of the joint action space. Third, the local reward function
is the same as the global reward function, except that any
components involving features outside of the agent’s local
state representation are dropped, since the agent does not
have values for those features. Fourth, the local transition
model corresponds to the joint transition entries where the
existence of other agents is moot. Finally, the initial local
state distribution maps the global distribution into the local
state space, and the local finite time horizon is identical to
the global value. In the firefighting domain, the baseline
organization is the local model as we described it in the last
paragraph of Section 2.

While this method for creating a baseline model is still
dependent on somewhat arbitrary decisions (e.g., which fea-
tures are included in an agent’s local state), the idea is
that aspects that influence how an agent formulates a policy
(what is rewarding, what might happen in the world, etc.)
are aligned with the “true” global model but contain as little
information as possible about what an agent might expect
others to do in the world. We assume that it is up to an
organizational designer to provide such information.

Despite our adoption of this uninformed-but-aligned base-
line, we have recognized that other factors also influence the
difference that organizational design can make. A simple
example we’ve encountered is how the initial configuration
of state can greatly affect whether the baseline organization
is effective. In the firefighting domain, if we assume that the
fires pop up across the space with uniform probability, then
where should we assume firefighters begin? If we assume
that they are uniformly distributed in the environment, then
their local models (where they prefer fighting nearby fires)
inherently lead to a good allocation of tasks (fires) to agents.
If we assume that they all start in the same location, on the
other hand, then the local models inherently lead to agents
moving around en masse and yields no parallelism benefits.2

Even randomly placing firefighters is not an answer, because
distributing fires and agents in the same uniformly random
way introduces its own bias. In our experiments described in
Section 5.2, we present results from the two extreme environ-
ments: the agents beginning uniformly distributed; and the
agents beginning clustered in the center of the grid world,
which represents the best and worst case in expectation for
the baseline organization respectively.

5. EVALUATION
We now turn to evaluating our claimed benefits of charac-

terizing the organizational design space in terms of adjusting
the components of an agent’s decision-theoretic model. In
this section, we use our simplified firefighting problem do-
main to investigate the effects of modifying each component
individually, and in combination, as a step toward building
an automated design algorithm.

2Note that if multiple firefighters on the same fire had a
super-additive effect, instead of the sub-additive effect in our
domain, then initially spreading out could be disadvanta-
geous, while moving around in a pack might be beneficial.

326

The experiments that follow use the problem formulation
already described (Section 2), in terms of state features,
agents’ actions, their transitions, and joint reward function.
To test the degree to which an organizational design provides
long-term benefit to a multiagent system, we run a fixed orga-
nizational design over a large number of randomly-generated
problem instances, where each instance is an episode that
begins with a randomized configuration of fires and ends
when the time horizon is reached. By the luck of the draw,
some problem instances might be well suited to one orga-
nization over another. We focus on aggregate performance
over many episodes not only to smooth out the randomness
of the instances but moreover to identify an organization’s
effectiveness over the long term, due to the assumption that
organizational design has a high cost that is amortized over
time. The measures of performance of interest are the ex-
pected joint reward and the planning overhead of the agents
in each episode. A well-designed organization is one that
improves joint reward while also simplifying each agent’s
local planning problem.

5.1 Comparison to Optimal
To be able to compute an upper-bound on performance

(an optimal joint policy) against which to compare, we begin
with problems in a simple 10×5 grid world with 2 coop-
erative agents and 2 fires, as illustrated in Figure 1. The
distribution of fires’ locations is uniformly random over the
entire grid, and the fires’ intensities are uniformly random
over {1, 2, 3}; however, the agents always begin in the same
locations (those in Figure 1). To speed up the tests without
pruning any viable solutions, the finite time horizon is the
maximal time either agent would require to put out both
fires alone (varies per episode). To get a sense of the impact
of different organizational designs, we tested three designs in
addition to the baseline organization. One, called fullOver-
lapOrg, assigns both agents to be responsible for all fires in
the entire grid. However, unlike the baseline organization
where agents have no model of each other, fullOverlapOrg
provides agents with improved transition models that reflect
the possible activities of the other agent. Specifically, our
organizational designer heuristically assumes that an agent
will first fight the fire closest in its region, then the closest
fire from there, and so on, until the time horizon. So, the
organization adjusts the other agent’s transition function to
anticipate that some fires (on the other side of the grid) will
have decreasing intensities even without fighting them itself,
helping it refrain from rushing to distant high-intensity fires
that will be addressed by someone else.

A second organizational design, called partitionOrg, parti-
tions the locations, assigning responsibility for fires in the
western 5×5 subgrid to A1, and the eastern subgrid to A2,
removing actions from the agents’ action spaces that would
move them out of their regions. More generally, partitionOrg
represents an assignment of each task to exactly one agent.

The third organization is called smallOverlapOrg, in which
the 4 middle columns of the grid are in both agents’ regions
of responsibility. Like in partitionOrg, agents’ action spaces
are pruned so an agent doesn’t consider moving out of its
region, while like fullOverlapOrg, an agent has an adjusted
transition function to reflect that fires in its local state space
have a chance of going out without it fighting them.

To create the local policies, each agent uses its organiza-
tional model to create the reachable state space from the

given initial state forward. It then uses CPLEX [7] to cal-
culate the optimal local policy for the reachable state space
using the linear program as formulated by Kallenberg [9].

Before describing our results, we have to address one more
issue. Agents build policies that only consider states they
could conceivably reach within the time horizon. Because
an agent using the baseline organization models the world
as if it is alone, its reachable state space does not include
states where some fires’ intensities decrease without it fight-
ing them. Thus, when executing its policy it could reach
an unexpected state. Rather than explode the state space
by including low-probability transitions covering every possi-
bility, in our experiments we simply assume that when an
agent “falls off” its policy (reaches an unplanned state), it
constructs a new policy going forward from its (unexpected)
current state, and that this planning is instantaneous with
respect to events in the world. (The world “waits” for the
agent to replan.) While future work should treat this more
realistically, for the purposes of our experiments this assump-
tion favors less informed organizations (that fall off policy
more frequently) more than informed ones, so the benefits
of organizational design will be, if anything, understated.
Finally, note that agents given improved transitions might
still sometimes fall off policy, because the heuristics used in
the transition functions are imperfect.

Our experiments are summarized in Table 1. We generated
1,500 episodes with random initial states and solved each
using the 3 organizational designs (partitionOrg, smallOverla-
pOrg, and fullOverlapOrg), as well as the uninformed baseline
organization. We also generated the optimal joint policy for
each episode to compute the optimal attainable reward if the
agents could afford the time to generate it and could also
sense each others’ positions. These results show that even
simple organizational designs can improve rewards consid-
erably compared to the baseline, but that overly restrictive
organizations (partitionOrg) can degrade performance be-
cause the same agent too often must fight both fires. As
one would expect, more restrictive organizations increasingly
simplify agents’ local decision problems. Moreover, note that
all of the organizations decrease local computation over the
baseline, because in the baseline both agents solve larger
problems (putting out all the fires by themselves) than when
they are informed (through the transition function) that they
will have help.

Note that the fullOverlapOrg has greater global aware-
ness than the other organizations; however, this increased
awareness incurs greater computational costs. Because per-
formance is basically inversely correlated with computation,
we created a unified performance metric by adopting the
standard methodology of having the agents sit idle at the
start of execution while they create their policies. To do
this, we convert the actual CPU time for policy creation into
simulation time steps, and then force the agents to sit idle for
that many time steps at the beginning of the episode (essen-
tially performing NOOPs). Figure 2 presents the adjusted
expected reward after accounting for computational costs as
a function of the CPU time per simulation time step. These
results confirm our intuitions that when computation is ex-
pensive (low c) paritionOrg is best due to its highly simplified
decision process. Then as computation becomes cheaper (c
increases), the more flexible organizations become superior,
and finally when computation is very cheap, computing the
optimal joint policy becomes best.

327

Reward Plan Time Replans
Baseline -15.97 86 1.32
ParitionOrg -16.15 12 0.26
SmallOverlapOrg -14.74 27 0.16
FullOverlapOrg -14.70 70 0.14
Joint -14.37 24558 0.00

Table 1: Mean experimental results for Section 5.1
for expected reward, CPU time to create initial pol-
icy (ms), and average number of times the replan-
ning mechanism was invoked per agent per episode.

Figure 2: Adjusted rewards for Section 5.1 after ac-
counting for computation time as a function of the
CPU time per simulation time step.

5.2 Design Components
We now turn to isolating the impact of different dimensions

of organizational design, corresponding to different compo-
nents of the agents’ decision models. For these experiments,
we use larger environments with 10 cooperative agents and
10 fires on a 25×10 grid. Fires are still distributed uniformly
randomly over the entire grid, with intensities drawn uni-
formly from {1, 2, 3}. As discussed at the end of Section 4,
the initial locations of the agents can favor, or disfavor, some
organizational designs. Thus, in these experiments, we con-
sider two extreme cases of initial locations for the agents:
where they are evenly spread around the environment; and
where they are clustered at the center of the grid.

To understand the impact of designing along different di-
mensions, we implemented largely the same organizational
structure using the different components. The structure in-
herits from the smallOverlapOrg in Section 5.1, narrowing
agents’ ranges of policies to consider while still providing
them with some flexibility to load balance by having overlap-
ping regions of responsibility. Specifically, the 25×10 grid is
divided into 10 distinct 5×5 subgrids, one for each agent, to
act as the agent’s primary area of responsibility (PAR). In
each (non-wall) direction, the subgrid is expanded by 3 cells to
introduce overlap; conceptually, this is an agent’s secondary
area of responsibility (SAR). We implemented 5 organizations
capturing this fundamental structure: actionOrg removes
actions that take an agent out of its combined PAR and
SAR; stateOrg removes features for states outside of the
combined PAR and SAR; rewardOrg penalizes the agent
with increasing severity for leaving its PAR (Manhattan
distance from PAR squared); transitionOrg models how

fires in the PAR and SAR might go out due to someone
else’s actions using the same heuristics as in Section 5.1 (and
like stateOrg ignores more distant fires to curb state-space
explosion resulting from the richer transition model); and
fullOrg uses all of the dimensional levers just described.

We generated 100 random episodes (initial fire configu-
rations), for each of the spread and clustered variations of
agents’ initial locations. For each episode, we ran each of
the 5 organizations above, as well as the baseline organiza-
tion. The problems were too large to compute optimal joint
policies. Table 2 presents the results for these experiments.

These results illustrate many of the intuitions from Sec-
tion 3.1. As others have discovered, reward shaping can be a
powerful tool for increasing the expected joint reward; how-
ever, it does not generally reduce the agents’ computational
efforts. Shaping the transition functions can also yield a
large increase in the expected reward; however, it substan-
tially increases the agents’ computational costs. Notice that
organizations with improved transition functions replan dur-
ing execution much less, indicating that if recovering from
falling off policy incurs non-negligible cost, then transition
shaping could be of critical importance. We also observe that
constraining the agents’ action or state spaces can greatly
simplify the agents’ decision problems and can also increase
the expected joint reward. Finally, with fullOrg, we observe
that the organizational influences in the components are not
completely redundant, as it is largely possible to obtain the
additive benefits found in each of the other organizations.
The drop in expected reward as compared to transitionOrg is
due to the shaped reward functions urging agents to quickly
go their respective PARs rather than stop and fight fires along
the way. However, also note that the computation time is
drastically reduced, suggesting that the tradeoff would be
beneficial unless computation is exceptionally cheap.

Finally, the reader may have noted that our experiments
did not evaluate the impact of restructuring the other two
components: the initial state distribution αθi ; and the time
horizon Tθi . One could envision organizations that modify Ti
to give agents specific roles for planning horizons, where some
agents focus on the near-term and others on the long-term,
though the organization would probably also focus an agent’s
action space Aθi on actions of a matched granularity. If αi
summarizes the exogenously-determined initial state, the de-
signer can only map this into the agent’s adjusted state space
Sθi , as was implicitly done for the organizational variations
above. However, as seen in the relative performance between
the spread and clustered environments, if the organization
can impose initial states on agents (spreading them out in
anticipation of arising fire configurations), then this provides
an additional lever for influencing collective performance.

6. ORGANIZATIONAL ADEPTNESS
As demonstrated in Section 5.1, an organizational designer

confronts tradeoffs in deciding how tightly to influence the
agents. If not tightly enough, agents might duplicate effort
or work at cross purposes while, if too tightly, agents might
load balance poorly or have tasks fall between the cracks.
We assume the organizational designer can use a model of
the expected problem distribution to form an organization
that, in expectation, will work best. However, if its model
is (or over time becomes) erroneous, the agents must decide
how to refine, revise, or even abandon that organizational
structure.

328

Large Problems (Spread) Large Problems (Clustered)
Reward Plan Time Replans Reward Plan Time Replans

Baseline -107.40 1646 7.89 -436.7 10912 0.00
RewardOrg -91.45 1817 7.49 -242.0 11051 9.38
TransitionOrg -85.14 14606 0.86 -222.5 10859 0.55
ActionOrg -94.14 551 7.70 -264.5 621 8.56
StateOrg -94.14 1237 2.60 -254.4 1588 1.50
FullOrg -87.51 5476 0.88 -250.4 2652 1.02

Table 2: Mean experimental results for Section 5.2 for expected reward, CPU time to create initial policy
(ms), and average number of times the replanning mechanism was invoked per agent per episode.

Following Corkill et al. [3], we refer to agents with this
capability as organizationally adept agents (OAAs). As advo-
cated elsewhere [5], agents need operational control capabili-
ties to elaborate and refine organizational control guidelines.
For example, agents with overlapping areas of responsibility
can use operational control to resolve who is responsible for
which tasks in the current situation. But operational control
can be expensive (in computation, communication, delay,
etc.), so organizations that more narrowly define the roles
of each agent, and thus require less operational control, can
be preferable. However, if the designer’s assumptions about
the problems that will be encountered are wrong, a narrower
organization might leave too little latitude for operational
refinement to meet coordination needs. An OAA should be
able to compare the problems actually encountered to the
organizational designer’s expectations, and decide whether a
change or abandonment of organization is warranted, thus
allowing for narrower organizations to be utilized.

Our decision-theoretic formulation of organizational design
provides a framework for agents to make such comparisons
and decisions, and thus for a more formal characterization of
what it means for an agent to be organizationally adept. For
example, an OAA i can compare its organizational initial
state distribution αθi with the initial states it has actually
witnessed over a series of episodes to detect mismatches.
Similarly, i can recognize that, for example, the probabilities
that fires will be be put out by others according to Pθi are
not supported by statistics over observed transitions, or that
states whose rewards have been shaped by the organization
are seldom reachable.

When the expectations implied in the organizational struc-
ture stem from high-level assumptions the designer has about
the problem domain, such as that fires will appear uniformly
randomly through the entire region, the designer can an-
notate an organization with the assumptions on which its
selection is conditioned. Our current decision-theoretic OAA
architecture captures such annotations in terms of variables
to monitor and expectations over their values. More formally,
optionally along with its organizational specification θi, agent
i can receive a set of monitor-variable and value-expectation
pairs ψi = 〈(ψi1 , vi1)...(ψim , vim)〉. (If none are provided,
the OAA can still use the expectation implicit in θi.) Es-
sentially, the annotated formulation indicates that, to the
extent that the monitor-variables take on values consistent
with expectations, the organization should be followed.

As a preliminary illustration of these OAA concepts, we use
our 10-agent problem domain from Section 5.2 and consider
two different models of how fires arise: having an increas-
ingly higher probability of arising toward the east end of
the grid; and having an increasingly higher probability of

arising toward the west end. Note that the desired organi-
zational behavior is significantly different between the two
environments; in the eastEnvironment we would want to
designate more agents to the eastern region (and vice versa
for the westEnvironment). We designed a specialized orga-
nization for each case, which are analogous to fullOrg from
Section 5.2 except that the PARs are non-uniformly sized to
compensate for the biased fire distributions. For example,
in the westOrg, 3 agents are responsible for the western 4
columns (4×3, 4×4, and 4×3 PARs). Working eastward,
the PARs get progressively larger, starting with two 4×5
PARs (stacked vertically), then two 5×5 PARs, then two 6×5
PARs. Finally, a lone agent is responsible for the eastern
edge with a 5×10 PAR. The eastOrg is a symmetric copy
of the westOrg. Associated with each organization is a set
of monitor variables informing each agent that the organi-
zational designer expected one fire, on average, to be in its
PAR (for that organization).

We provided the agents with both of these annotated orga-
nizations, in addition to fullOrg, which is weakly applicable
both environments. The agents all initially adopt (based
on the designer’s directives) fullOrg to reflect the designer’s
uncertainty about the environment. As episodes are experi-
enced, the agents track their monitor variables. They then
jointly aggregate this observational evidence, e, and perform
Bayesian inference to calculate the likelihood that each of
the environments is the actual environment being observed,
which are used to estimate the expected reward of following
each available organization. The agents then collectively and
greedily adopt the organization with the highest anticipated
expected reward. Formally, they adopt Θ∗:

Θ∗ = arg max
Θ

E[R|Θ, e]− c(Θc,Θ)

E[R|Θ, e] =
∑

j

Pr(Mj |e)E[R|Θ,Mj]

where c(Θc,Θ) is the cost of switching from the current orga-
nization Θc to Θ. We assume there is no cost for remaining
in the same organization, ∀i c(Θi,Θi) = 0. Pr(Mj |e) is the
likelihood of environmental model Mj being the actual model
given e, which the agents calculate via Bayesian inference.
E[R|Θ,Mj] is the expected reward of following organization
Θ in Mj , which we assume is provided by the organizational
designer in the annotations. For our experiments, we esti-
mated E[R|Θ,Mj] by a priori simulating Θ on a training
set of episodes created from Mj .

Our experiments present the agents with episode batches
where the true environment model is selected uniformly ran-
domly from the two environments every 20 episodes (all
organizations face the same episodes in the same order).

329

Figure 3: Expected reward as a function of the ob-
servational evidence decay rate.

Only at the end of each episode are the agents allowed to
collectively adopt whichever organization they deem best.
Since the true environment is dynamic, we allow the orga-
nizational designer to set a decay rate in the annotations,
which the agents use to decay the importance of past moni-
tor variable observations. We performed experiments with
several organizations: statically using the east/west/fullOrg
for every episode; and several parameter settings of the OAA
process described above. OAAx refers to the OAA process
above where the organizational switching cost is x.

Our results are summarized in Figure 3, which confirms sev-
eral intuitions. Firstly, statically following either specialized
organization performs poorly since they suffer when being
used in the environment they were not intended for; however,
statically following fullOrg makes a noticeable improvement
by being weakly suited to both environments. Secondly, by
allowing the agents to react to the shifting environment, the
OAA capability (in general) can yield a large performance
gain. Finally, if the organizational switching cost is low,
the agents should maintain sufficient observational evidence
history in order to prevent the agents from switching organi-
zations due to a transient episode, such as when an episode
from the eastEnvironment happens to “look” like an episode
from the westEnvironment due to unlikely fire locations.

7. CONCLUSIONS
In this paper we have presented a decision-theoretic frame-

work that provides a systematic method for enumerating the
possible ways in which an organization can influence agents’
decision-making processes. We have intuitively described and
empirically demonstrated how influencing the various Dec-
POMDP components can both increase the agents’ expected
joint reward as well as simplify their local decision problems
as compared to a baseline local model. Finally, in Section 6
we have shown how our organizational framework provides a
more formal characterization of what organizational adept-
ness can mean compared to prior work and have provided
preliminary empirical evidence of the benefits of OAA. In
the future, we plan to expand the functionality of OAA;
for example, rather than greedily reacting to current model
likelihoods, the agents could make predictions about the
ways the environment is changing and preemptively switch
organizations. Additionally, we plan to investigate the effects

of an agent reasoning unilaterally about its observational evi-
dence and individually changing its organization (as opposed
to a central decision process), as well as the possibility of
gradually blending organizations together when switching
as opposed to the all-or-nothing switching described in this
paper. Finally, using the insights gained from Section 5, we
plan to develop an automated organizational designer that
can create organizations within our structured framework.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful

comments, and our collaborators at the University of Mas-
sachusetts for their consistently helpful feedback. This work
was supported by NSF grant IIS-0964512.

9. REFERENCES
[1] A. K. Agogino and K. Tumer. Multi-agent reward

analysis for learning in noisy domains. In AAMAS,
pages 81–88, 2005.

[2] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of Markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

[3] D. Corkill, E. Durfee, V. Lesser, H. Zafar, and
C. Zhang. Organizationally Adept Agents. In
COINS2011 Workshop at AAMAS, 2011.

[4] D. D. Corkill and S. E. Lander. Diversity in Agent
Organizations. Object Magazine, 8(4):41–47, 1998.

[5] E. H. Durfee and Y. p. So. The effects of runtime
coordination strategies within static organizations. In
IJCAI, pages 612–619, 1997.

[6] M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin.
An organizational ontology for enterprise modeling. In
Simulating organizations, pages 131–152. MIT Press,
Cambridge, MA, USA, 1998.

[7] IBM. IBM ILOG CPLEX, 2011. See http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/.

[8] N. R. Jennings. Commitments and conventions: The
foundation of coordination in multi-agent systems. The
Knowledge Engineering Review, 8(03):223–250, 1993.

[9] L. C. M. Kallenberg. Linear Programming and Finite
Markovian Control. Mathematical Centre Tracts, 1983.

[10] A. Y. Ng, D. Harada, and S. Russell. Policy invariance
under reward transformations: Theory and application
to reward shaping. In ICML, pages 278–287, 1999.

[11] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: off-line design. Artificial
Intelligence, 73(1-2):231 – 252, 1995.

[12] Y. p. So and E. H. Durfee. Designing organizations for
computational agents. In Simulating Organizations,
pages 47–64. MIT Press, Cambridge, MA, USA, 1998.

[13] M. B. van Riemsdijk, K. V. Hindriks, C. M. Jonker,
and M. Sierhuis. Formalizing organizational constraints:
A semantic approach. In AMMAS, pages 823–830, 2010.

[14] J. Vázquez-Salceda, V. Dignum, and F. Dignum.
Organizing multiagent systems. Autonomous Agents
and Multi-Agent Systems, 11:307–360, November 2005.

[15] D. Wolpert and K. Tumer. Optimal payoff functions for
members of collectives. Advances in Complex Systems,
4(2/3):265–279, 2001.

330

Reasoning under Compliance Assumptions in Normative
Multiagent Systems

Max Knobbout
Utrecht University

Dept. of Computer Science
The Netherlands

M.Knobbout@students.uu.nl

Mehdi Dastani
Utrecht University

Dept. of Computer Science
The Netherlands

M.M.Dastani@uu.nl

ABSTRACT
The use of norms in multiagent systems has proven to be a
successful approach in order to coordinate and regulate the
behaviour of participating agents. In such normative sys-
tems it is generally assumed that agents can obey or disobey
norms. In this paper, we develop a logical framework for nor-
mative systems that allows reasoning about agents’ abilities
under a multitude of norm compliance assumptions. In par-
ticular, we investigate different types of norm compliance
and propose an extension of Alternating Temporal Logic
(ATL) to reason about the abilities of (coalitions of) agents
under different types of norm compliance assumptions. For
this extension we show that the problem of model-checking
remains close to the domain of standard ATL. Finally, we
show that some norms can limit an agent’s autonomy in the
sense that an agent cannot control the violation of these
norms. We present and discuss various classes of the so-
called self-supporting norms, i.e., norms for which individual
agents have control over their violations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent system

General Terms
Theory, Design, Verification

Keywords
Normative Systems, Organizations, Verification, Logic

1. INTRODUCTION
The use of norms and social laws in multiagent systems

has proven to be a successful approach in order to ensure the
overall objectives of such systems. Early examples of such an
approach can be found in Shoham and Tennenholtz [7] and
Moses and Tennenholtz [6]. In these works, social laws are
used to constrain the behaviour of the agents by forbidding
certain actions in specific situations. This line of research
was later extended by several authors in a multitude of ways.
For example, in [8] the basic idea is extended to the more

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

expressive modelling domain of alternating temporal logic
(ATL) with the idea that the application of a social law in
a multiagent system is successful if, by implementing it, the
overall objective of the system is satisfied. Later these ideas
were extended with the notion of preference to reason about
norm compliance in normative systems. Example of such
extensions are [9], where each agent was attributed a single
goal, and [2], where agents were given a priority list of goals.
The main topic of these papers was to investigate whether
certain sets of norms can be considered ‘stable’ under con-
sideration of the agents’ preferences. Another extension of
these ideas was introduced in [4], where norms are consid-
ered from a mechanism design perspective. In this frame-
work, norms are related to game theoretic solution concepts
such that one can specify and verify whether a set of norms
in a multiagent system implements some social/overall ob-
jectives in specific equilibria.

In this paper, we introduce an extension of ATL to rea-
son about properties of normative multiagent systems under
various norm compliance assumptions. In our setting, norms
are assumed to be directed to coalitions of agents, e.g., a
norm states that a set of agents should not take certain ac-
tions in specific states. Moreover, we assume that agents can
disobey norms in the sense that they can take actions that
are disallowed by the norms. We then define various types
of norm compliance behaviors such as “a coalition of agents
obey/disobey norms that are directed to precisely this coali-
tion” or “a coalition of agents obey/disobey norms that are
directed to this coalition and all its subcoalitions”. Our pro-
posed extension of ATL can be used to specify and verify
whether some overall objective of multi-agent systems can
be satisfied under the assumption that a coalition of agents
behave according to a specific norm compliance type while
the agents outside the coalition behave according to another
norm compliance type. The proposed extension can be used
by the designers of normative systems to analyze norms that
are directed to coalitions of agents and to investigate their
impacts on the overall system behaviour under the assump-
tion of specific norm compliance types. This extension can
also be used by individual agents who need to reason and
decide if they can achieve their own objectives by behaving
according to a specific norm compliance type in a normative
system when the system is populated by other agents that
behave according to another specific norm compliance type.

In our framework, we introduce abstract normative con-
straints as a basic extension of the social law paradigm. We
consider norms as similar to social laws in the sense that

331

they denote the disallowed actions of the agents. However,
norms are considered as different from social laws in the
sense that the agents are allowed to violate them. More-
over, and in contrast to social laws, norms are directed to
coalitions of agents and not only to individual agents. Thus,
we do not assume that “implementing” a system of norms
enforces every agent to be perfectly norm obedient. To some
extent, our research is related to [1] in which the need for
robust normative systems is discussed. They introduce an
extension of CTL (Computation Tree Logic) in which state-
ments such as “if coalition C is norm compliant, then this is
sufficient to guarantee ϕ” can be expressed. In their work
a robust normative system is defined as a multiagent sys-
tem which remains ‘effective’ (specified by some criterium)
even if certain agents behave in a non-compliant manner.
In our framework, a more expressive language is proposed
to also reason about system properties under various norm
compliance assumptions. An important difference with this
paper is that we depart from the domain of ‘agent-labelled
Kripke Structures’ to the more expressive and natural do-
main of Concurrent Game Structures. Using our proposed
logic, we can then construct such statements as “does there
exist a norm compliant strategy for a given agent to guaran-
tee ϕ under the assumption that the other agents are non-
compliant?”. We believe that this extra layer of expressivity
is indeed important for agents in order to decide whether to
comply with the given norms or participate in the multia-
gent system. Our framework can also be useful from the per-
spective of a designer when trying to design systems which
formally abide certain properties under certain norm com-
pliance assumptions.

In section 2 we will give a quick recap on the syntax and
semantics of standard ATL. In section 3 we introduce the
notion of abstract normative constraints and in section 4
we provide the syntax and semantics of our proposed ATL
extension with an elaborate example. In section 5 we dis-
cuss the model checking complexity of the proposed ATL
extension. Finally, in section 6 we present the notion of
self-supporting norm sets.

2. CONCURRENT GAME STRUCTURES
In this section, we first briefly recall on the definition

of Concurrent Game Structures, the underlying model we
use for multiagent systems. A Concurrent Game Structure,
or CGS, can be seen as a multiagent extension of a sim-
ple transition system. It consists of states of the world,
and a complete labelling of joint-actions over the transitions
connecting these states. More formally, a CGS is a tuple
S = ⟨k,Q,Π, π,Ac, δ⟩ such that:

● A natural numbers k ≥ 1 of players. In our model, each
player corresponds to a number. We sometimes use Σ
to talk about the set {1, ..., k}.● A finite set Q of states.● A finite set Π of atomic propositions.● A mapping π which maps each state q ∈ Q to a subset
of propositions which are true at q. Thus for each q ∈ Q
we have π(q) ⊆ Π.● A mapping Ac which maps each player a ∈ Σ and each
state q ∈ Q to a non-empty subset of the natural num-
bers denoting the moves for player a in state q. Thus
for each a ∈ Σ and each q ∈ Q it holds that Ac(a, q) ∈

P(N). In our model, each action corresponds to a nat-
ural number. For each state q ∈ Q, a move vector is
a tuple ⟨α1, ..., αk⟩ such that αi ∈ Ac(i, q). The set of
all move vectors for a state q ∈ Q, denoted by D(q), is
given by Ac(1, q) × ... ×Ac(k, q).● A mapping δ which maps each state q ∈ Q and each
move vector ⟨α1, ..., αk⟩ ∈ D(q) to another state that
results from state q if each player adopted the move
denoted in the move vector. Thus for each q ∈ Q and
each ⟨α1, ..., αk⟩ ∈D(q) we have δ(q, ⟨α1, ..., αk⟩) ∈ Q.

Note that this model is synchronous, meaning that at any
moment in time each agent needs to decide on an action
synchronously. Moreover, it is also deterministic; the same
action in the same state will always yield the same resulting
state.

Alternating-time temporal logic, as discussed in [3], is in-
terpreted over a concurrent game structure S that has the
same propositions and players. Evaluating a propositional
formula at a given state amounts to verifying whether the
formula is satisfied given the labelling of that state. To
evaluate a formula of the form ⟪A⟫ψ at a state q of S, we
can consider a game between a protagonist and an antag-
onist which results in a computation. At every round the
protagonist chooses for each player in A a move, and then
the antagonist proceeds by choosing for every player Σ/A
a move, after which the position is updated from q to q′.
This process is repeated indefinitely, which results in a com-
putation λ. The protagonist wins the game if the resulting
computation satisfies the subformula ψ, which is a temporal
formula of the form ◯ϕ, ◻ϕ or ϕ1Uϕ2 (where ϕ,ϕ1,ϕ2 are
again ATL formula’s), otherwise the antagonist wins. Then
the formula ⟪A⟫ψ is satisfied at q if the protagonist has a
winning strategy for this game.

More formally, ATL is characterized by the following gram-
mar, where p ∈ Π and A ⊆ Σ: ϕ ∶∶= p∣¬ϕ∣ϕ∧ϕ∣⟪A⟫◯ϕ∣⟪A⟫◻
ϕ ∣ ⟪A⟫ϕUϕ. In order to define the semantics, we first have
to define the notion of strategy. A strategy for a player
a ∈ Σ is a mapping sa which maps a finite (non-empty) se-
quence of states to an action belonging to the last state of
this sequence. Thus for each sequence q0, ..., qk ∈ Q+ we have
sa(q0, ..., qk) ∈ Ac(a, qk). Given a set of players A ⊆ Σ and a
state q ∈ Q, let SA = {sa ∣ a ∈ A} be the set of strategies A
adopt and let out(q, SA) be the set of computations starting
from state q which the players in A can enforce by follow-
ing their respective strategies (that is, independent of what
the players Σ/A play). A computation λ = q0, q1, q2, ... is in
out(q0, SA) if it holds that for all positions i ≥ 0 there is a
move vector ⟨α1, ..., αk⟩ ∈ D(λ[i]) (where λ[i] denotes the
state at position i) such that δ(λ[i], ⟨α1, ..., αk⟩) = λ[i + 1]
and for all a ∈ A it is the case that sa(λ[0, i]) = αa.

Given a game structure S = ⟨k,Q,Π, π,Ac, δ⟩ and a state
q ∈ Q, we define the semantics inductively as follows:

● S, q ⊧ p for any proposition p ∈ Π iff p ∈ π(q).
● S, q ⊧ ¬ϕ iff S, q /⊧ ϕ.

● S, q ⊧ ϕ1 ∧ϕ2 iff S, q ⊧ ϕ1 and S, q ⊧ ϕ2.

● S, q ⊧ ⟪A⟫◯ϕ iff there exists a strategy set SA for A
such that for every computation λ ∈ out(q, SA) it holds
that S,λ[1] ⊧ ϕ.

332

● S, q ⊧ ⟪A⟫ ◻ ϕ iff there exists a strategy set SA for A
such that for every computation λ ∈ out(q, SA) and all
positions i ≥ 0 it holds that S,λ[i] ⊧ ϕ.

● S, q ⊧ ⟪A⟫ϕ1Uϕ2 iff there exists a strategy set SA for
A such that for every computation λ ∈ out(q, SA) there
exists a position i ≥ 0 such that for all positions 0 ≤ j <
i it holds that S,λ[j] ⊧ ϕ1 and S,λ[i] ⊧ ϕ2.

A formula of the form ⟪A⟫ψ should intuitively be read as
“Coalition A has a strategy in order to enforce ψ”, where ψ
can be a temporal formula of the form ◯ϕ, to be read as “in
the next state ϕ”, ◻ϕ, to be read as “always in the future ϕ”
and ϕ1Uϕ2, to be read as “ϕ1 untill ϕ2 starts to hold”.

3. ABSTRACT NORMATIVE CONSTRAINTS
Before we discuss the notions of compliance and non-

compliance in normative systems, it is important to clarify
what we understand under a normative multiagent system.
For our purposes, much in line with previous research seen in
e.g. [2], a normative system is simply a set of constraints on
the behaviour of the agents. However, since we have entered
the domain of concurrent game structures, we extend this
notion to not only account for behaviour of agents, but also
behaviour of coalitions. Moreover, we also allow the agents
to violate these constraints; they are not hard-constraints
on the behaviour of the agents. More precisely, given a
game structure S = ⟨k,Q,Π, π,Ac, δ⟩, an abstract normative
constraint ⟨A,γ⟩ is a tuple consisting of a subset of player
A ⊆ Σ and a mapping γ which maps a player a ∈ A and
state q ∈ Q to a set of actions for each player that can be
taken in that state. Thus given a state q ∈ Q and a set of
player A ⊆ Σ, for all a ∈ A we have that γ(a, q) ⊆ Ac(a, q).
The set γ(a, q) denotes all the actions that are normatively
demotivated in state q for agent a. Given a set of abstract
normative constraints Γ, we define ΓA = {⟨X,γ⟩ ∈ Γ ∣X = A}
and Γ−A = {⟨X,γ⟩ ∈ Γ ∣X ⊆ A}. In words, ΓA is the set of
abstract normative constraints only applicable to exactly A
and Γ−A the set of abstract normative constraints only appli-
cable to A or any sub-coalition of A. Given a computation
λ = q0, q1, q2, ... and a set of abstract normative constraints
Γ, we say that ⟨A,γ⟩ ∈ Γ is enabled for A at position i+1 ≥ 0
if ∀a ∈ A it holds that γ(a, λ[i]) /= ∅ and taken at position
i + 1 ≥ 0 if there is a move vector ⟨α1, ..., αk⟩ ∈ D(λ[i]) such
that δ(λ[i], ⟨α1, ..., αk⟩) = λ[i + 1] and ∀a ∈ A it holds that
αa ∈ γ(a, λ[i]). Notice that by this interpretation, an ab-
stract normative constraint can still be taken even though
the actual action an agent performed along a computation
differs from the one prescribed by γ.

Given a set of agents A, we can give different interpreta-
tions towards obedience with respect to Γ. Below we define
7 different norm compliance types: 3 types of obediences, 3
types of disobediences, and 1 type of neglectfulness. How-
ever, we stress that this primarily is a choice; certainly more
types of obediences can be considered and constructed based
on the logical framework we provide.

1. Coalitional obedience A computation λ is coali-
tional obedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, c-ob⟩-
obedient, if at any point in the computation for every⟨A′, γ⟩ ∈ Γ−A it is the case that if ⟨A′, γ⟩ is enabled in
λ, then ⟨A′, γ⟩ is not taken.

2. Total/Selective individual obedience A computa-
tion λ is total individual obedient with respect to a set
of agents A and an abstract normative constraint set Γ,
or ⟨Γ,A, t-ob⟩-obedient, if at any point in the computa-
tion for all a ∈ A it holds that for every ⟨{a}, γ⟩ ∈ Γ{a}
it is the case that if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩
is not taken. A computation λ is selective individu-
ally obedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, s-ob⟩-
obedient, if at any point in the computation there exists
an a ∈ A such that it holds that for every ⟨{a}, γ⟩ ∈ Γ{a}
it is the case that if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩
is not taken.

3. Neglectful obedience A computation λ with respect
to a set of agents A and an abstract normative con-
straint set Γ is always neglectful obedient, or ⟨Γ,A,⊺⟩-
obedient. In other words, every computation is by def-
inition neglectful obedient.

4. Selective/Total individual disobedience A com-
putation λ is selective individual disobedient with re-
spect to a set of agents A and an abstract normative
constraint set Γ, or ⟨Γ,A, s-dob⟩-obedient, if at any
point in the computation there exists an a ∈ A such
that it holds that there exists ⟨{a}, γ⟩ ∈ Γ{a} such that
if ⟨{a}, γ⟩ is enabled, then ⟨{a}, γ⟩ is taken. A com-
putation λ is total individual disobedient with respect
to a set of agents A and an abstract normative con-
straint set Γ, or ⟨Γ,A, t-dob⟩-obedient, if at any point
in the computation for all a ∈ A it holds that there
exists ⟨{a}, γ⟩ ∈ Γ{a} such that if ⟨{a}, γ⟩ is enabled,
then ⟨{a}, γ⟩ is taken.

5. Coalitional disobedience A computation λ is coali-
tional disobedient with respect to a set of agents A and
an abstract normative constraint set Γ, or ⟨Γ,A, c-dob⟩-
obedient, if at any point in the computation for every⟨A′, γ⟩ ∈ Γ−A it is the case that if ⟨A′, γ⟩ is enabled in
λ, then ⟨A′, γ⟩ is taken.

From these definitions, we see that the following holds
for obediences: Given that a computation is ⟨Γ,A, c-ob⟩-
obedient, it is also ⟨Γ,A, t-ob⟩-obedient. Given that it is⟨Γ,A, t-ob⟩-obedient, it is also ⟨Γ,A, s-ob⟩-obedient and given
that it is ⟨Γ,A, s-ob⟩-obedient, it is also ⟨Γ,A,⊺⟩-obedient.
For the disobediences a similar result holds: ⟨Γ,A, c-dob⟩-
obedience implies ⟨Γ,A, t-dob⟩-obedience, ⟨Γ,A, t-dob⟩-
obedience implies ⟨Γ,A, s-dob⟩-obedience and ⟨Γ,A, s-dob⟩-
obedience implies ⟨Γ,A,⊺⟩-obedience. An easy way of verify-
ing this is by considering that each step in these implications
allows for more possible state-transitions to take place in a
computation.

4. an-ATL SEMANTICS
In this section we will give the semantics of our new logic

an-ATL; ATL extended in order to reason under the pres-
ence of these abstract norms. We will first define the notion
of obedience to the level of strategies. We define the set Ω as
the set of obedience types denoted by a single literal, thus we
have that Ω = {c-ob, t-ob, s-ob,⊺, s-dob, t-dob}. Given a game
structure S = ⟨k,Q,Π, π,Ac, δ⟩, an abstract normative con-
straint set Γ, a state q and an obedience type ω ∈ Ω, we say
that the strategy set SA for players A is ⟨Γ,A,ω⟩-obedient
if it holds that for every computation λ ∈ out(q, SA), λ is⟨Γ,A,ω⟩-obedient. In our semantics, an obedience assump-

333

tion is of the form ⟨ω,ω′⟩, where ω,ω′ ∈ Ω. The satisfaction
relation S,Γ, q ⊧ φ in our new semantics replaces the follow-
ing cases in ATL semantics:

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫◯ϕ iff there exists a ⟨Γ,A,ω⟩-obedient
strategy set SA for A such that for every ⟨Γ,Σ/A,ω′⟩-
obedient computation λ ∈ out(q, SA) it holds that
S,Γ, λ[1] ⊧ ϕ.

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫◻ϕ iff there exists a ⟨Γ,A,ω⟩-obedient
strategy set SA for A such that for every ⟨Γ,Σ/A,ω′⟩-
obedient computation λ ∈ out(q, SA) and all positions
i ≥ 0 it holds that S,Γ, λ[i] ⊧ ϕ.

● S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ1Uϕ2 iff there exists a ⟨Γ,A,ω⟩-
obedient strategy set SA for A such that for every⟨Γ,Σ/A,ω′⟩-obedient computation λ ∈ out(q, SA) there
exists a position i ≥ 0 such that for all positions 0 ≤ j <
i it holds that S,Γ, λ[j] ⊧ ϕ1 and S,Γ, λ[i] ⊧ ϕ2.

The formula ⟪A⟨ω,ω′⟩⟫ϕ should intuitively be read as “coali-
tion A has an ω-obedient strategy in order to enforce ϕ if
the remaining agents Σ/A played in accordance with an ω′-
obedient computation”. Moreover, we write JA⟨ω,ω′⟩K◯ϕ for¬⟪A⟨ω,ω′⟩⟫◯¬ϕ and JA⟨ω,ω′⟩K◻ϕ for ¬⟪A⟨ω,ω′⟩⟫◇¬ϕ (where◇ϕ ≡ ⊺Uϕ; similar abbreviations can be defined for the dual
of the U operator). The formula JA⟨ω,ω′⟩Kϕ should be read
as “coalition A does not have a ω-obedient strategy in or-
der to avoid ϕ if the remaining agents played in accordance
with an ω′-obedient computation”. Slightly similar to the
result found in ATL, we have the following validity (notice
the reversal of the obedience assumption tuple):

⊧ ⟪A⟨ω,ω′⟩⟫ϕ→ J(Σ/A)⟨ω′,ω⟩Kϕ
Moreover, the following validities hold, where β can either
be replaced with “ob” or “dob”:

1. ⊧ ⟪A⟨c-β,ω⟩⟫ϕ→ ⟪A⟨t-β,ω⟩⟫ϕ
2. ⊧ ⟪A⟨t-β,ω⟩⟫ϕ→ ⟪A⟨s-β,ω⟩⟫ϕ
3. ⊧ ⟪A⟨s-β,ω⟩⟫ϕ→ ⟪A⟨⊺,ω⟩⟫ϕ

Intuitively, what these formula’s state is that a coalition,
when having an obedient strategy to guarantee ϕ (under a
certain assumption that the remaining agents play in accor-
dance with an ω′-obedient computation), they also have a
“less restrictive” obedient strategy (here, with “less restric-
tive” we mean that they are allowed to violate more norma-
tive constraints) to guarantee the same (and vice versa for
disobedient strategies). This is as expected, since we have a
richer pool of strategies to choose from when we have less re-
striction to cope with. Conversely, when reasoning about the
other players, the implication works the other way around.
In this case, we have the following validities (where again β
can either be replaced with “ob” or “dob”):

1. ⊧ ⟪A⟨ω,⊺⟩⟫ϕ→ ⟪A⟨ω,s-β⟩⟫ϕ
2. ⊧ ⟪A⟨ω,s-β⟩⟫ϕ→ ⟪A⟨ω,t-β⟩⟫ϕ
3. ⊧ ⟪A⟨ω,t-β⟩⟫ϕ→ ⟪A⟨ω,c-β⟩⟫ϕ

This intuitively means that a coalition, when having a cer-
tain strategy to guarantee ϕ under a certain assumption
that the other agents play in accordance with a certain obe-
dient computation, they also have a strategy to guarantee
the same under a“more restrictive”obedience assumption of
the computation they move along to (where “more restric-
tive” means that there are less normative constraints which

q1

q3

q0

q2

q4⟨w, go⟩

⟨go,w⟩

⟨go, go⟩

⟨go,w⟩

⟨w, go⟩

⟨w,w⟩

⟨∗,∗⟩

⟨∗,∗⟩

Figure 1: CGS train example.

can be violated). This is again as expected, since we have to
take into account less computations; namely we do not have
to consider the computations where a normative constraint
was enabled and taken which was previously not considered.

4.1 Example
In this example we consider a scenario where there are

two trains, each controlled by one agent, at the opposite
ends of a tunnel. The tunnel only has room for one train,
and the agents initially have 2 actions available: ‘wait’ and
‘go’. If the agents decide to go simultaneously, the trains will
crash, if they wait simultaneously nothing will happen and
if one goes and the other waits, they can both successfully
make it to the end of the tunnel without crashing. The
CGS belonging to this scenario is shown in Figure 1. Let
us denote the first agent as a1 and the second agent as a2.
Moreover, we assume we have only two atomic propositions,
‘crash’ and ‘no crash’, the former which is only true in q4
and the latter only in q3. Right of the bat, we can conclude
that the following holds for every possible Γ:

M,Γ, q0 /⊧ ⟪a1⟨⊺,⊺⟩⟫◇ no crash

and

M,Γ, q0 /⊧ ⟪a2⟨⊺,⊺⟩⟫◇ no crash

In words, no agent individually has the ability to eventually
bring about the fact that the trains make it through the tun-
nel without crashing. Moreover, the agents are collectively
able to make the trains crash, displayed by the following
formula (again for every possible Γ):

M,Γ, q0 ⊧ ⟪{a1, a2}⟨⊺,⊺⟩⟫◇ crash

We will now construct a normative constraint set Γ in such
a way that it brings about the following:

1. It is normatively demotivated for both agents that they
enter the tunnel simultaneously.

2. It is normatively demotivated for the second agent,
a2, that he waits when the other train has not gone
through the tunnel yet.

As it will turn out, the second normative constraint is suffi-
cient for agent 1 to conclude that he has the ability to bring
about the fact they will eventually reach the end of the tun-
nel safely under certain obedience assumptions of the other
agent. However, from the perspective of agent 2, this con-
straint is still not sufficient: even if he adopts an obedient
strategy, it is still not guaranteed that the trains will not

334

crash.

We can formalize the above mentioned constraints as ab-
stract normative constraints as follows. We construct Γ ={⟨{a1, a2}, γ⟩, ⟨{a2}, γ′⟩}, such that:

● γ(a1, q0) = {go}, γ(a2, q0) = {go}; and● γ′(a2, q0) = {w}
In this example, we are first going to reason about the abili-
ties of agent one, a1. The following an-ATL formula is valid:

M,Γ, q0 ⊧ ⟪a1⟨⊺,t-ob⟩⟫◇ no crash

In words, our first agent now has a strategy to eventually
bring about the fact that the train makes it through the
tunnel without crashing under the assumption that a2 plays
according to an obedient computation (in this case, he only
has to take into account the normative constraint associated
with γ′). To see this, observe that we do not consider any
computations with transitions from q0 to q0 any more (and
from q0 to q2, but this is beyond the point), thus disallowing
the scenario where both agents wait for each other. The
strategy for agent 1 is then to first wait (since he knows that
agent 2 will not wait), and then go. Interestingly enough,
agent 1 also has a strategy to eventually safely reach the
end of the tunnel under the assumption that the other agent
plays in accordance with disobedient computation:

M,Γ, q0 ⊧ ⟪a1⟨⊺,t-dob⟩⟫◇ no crash

To easily see this, observe that we do not consider any com-
putations with transitions from q0 to q4 (and from q0 to
q1, but again is beyond the point), thus the strategy where
agent 1 immediately picks ‘go’ will ensure that both agents
will eventually make it to the end of the tunnel safely.

Let us now reason about the abilities of agent a2. We can
see that a2, as opposed to a1, can not obediently bring about
that both agents will reach the end of the tunnel safely:

M,Γ, q0 /⊧ ⟪a2⟨t-ob,⊺⟩⟫◇ no crash

To see this, selecting the action ‘go’ in q0 will not guarantee
that we will not end up in q4. However, interestingly enough,
agent 2 does have the ability to disobediently bring about
the fact that the ability of agent 1 to reach the end of the
tunnel safely (under assumption that agent 2 plays in such
a way that his normative constraints are not violated) is not
lost:

M,Γ, q0 ⊧ ⟪a2⟨t-dob,⊺⟩⟫◯⟪a1⟨⊺,t-ob⟩⟫◇ no crash

To see this, observe that the action ‘wait’ for agent 2 in q0
will result in either q0 or q2, both in which the ability of agent
1 to safely reach the end of the tunnel, under assumption
that agent 2 obeys his normative constraints, is retained.
However, in case agent 2 plays an obedient strategy, this is
not guaranteed, as seen by the following validity:

M,Γ, q0 /⊧ ⟪a2⟨t-ob,⊺⟩⟫◯⟪a1⟨⊺,t-ob⟩⟫◇ no crash

The reason for this is that agent 2 can not guarantee with an
obedient strategy (action ‘go’ in q0) that he will not end up
in q4. We could say that agent 2 is faced with a dilemma: he
can play obedient, possibly wasting the ability of the other
agent to reach the end of the tunnel safely if the other player
assumed obedience over the normative constraints of agent

2, or play disobedient, preserving the former mentioned abil-
ity but possibly ending up in the same state again.

Let us finally reason about the abilities of the coalition
of agents a1 and a2. We already saw that the coalition
of agents have the ability to bring about the crashing of
the trains. However, even if the individual agents play a
totally individual obedient strategy (or a selective individual
obedient strategy for that matter), the agents can still select
a strategy that can make the trains crash, illustrated by the
following validities:

M,Γ, q0 ⊧ ⟪{a1, a2}⟨t-ob,⊺⟩⟫◇ crash

and

M,Γ, q0 ⊧ ⟪{a1, a2}⟨s-ob,⊺⟩⟫◇ crash

The reason for this is because these obedience assumptions
apply only to the agents on an individual level, and thus
we only have to take into account the abstract normative
constraint associated with a2. On the coalitional level, the
agents indeed do not have an coalitional obedient strategy
to bring about the fact that eventually a crash will occur:

M,Γ, q0 /⊧ ⟪{a1, a2}⟨c-ob,⊺⟩⟫◇ crash

Moreover, to illustrate how strong some obedience assump-
tions can be, the following formula holds for every possible
ϕ:

M,Γ, q0 /⊧ ⟪{a1, a2}⟨c-dob,⊺⟩⟫ϕ
The reason for this is because there does not exist a joint
strategy that violates both abstract normative constraints
simultaneously. This illustrates an important distinction
with ATL, since ATL assumes that there is always a strategy
available for any (sub)coalition of agents at any moment in
time. This also inherently means that checking the validity
of an an-ATL formula of the form ⟪A⟨ω,ω′⟩⟫ϕ in a model M
cannot be reduced to checking a formula of the form ⟪A⟫ϕ
in a transformed model M ′ with removed edges, the reason
simply being that M ′ might not be an actual valid concur-
rent game structure any more.

5. MODEL CHECKING
The problem of determining whether a formula in an-

ATL is satisfied at a certain state reduces to the application
of model checking to the concurrent game structure. The
model checking problem for transition systems is discussed
in [5], and in [3] model checking for ATL is discussed.

We define the extended game structure

SF = ⟨k,QF ,ΠF , πF ,AcF , δF ⟩
as follows:

● QF = {⟨�, q⟩ ∣ q ∈ Q}∪{⟨q′, q⟩ ∣ q′, q ∈ Q and q is a successor of q′ in Q}.
● ΠF = Π ∪ (Γ × {enabled, taken}).
● For all ⟨�, q⟩ ∈ QF we have πF (⟨�, q⟩) = π(q).

For all ⟨q′, q⟩ ∈ QF we have πF (⟨q′, q⟩) = π(q)∪{⟨⟨A,γ⟩, enabled⟩ ∣∀a ∈ A ∶ γ(a, q′) /= ∅}∪{⟨⟨A,γ⟩, taken⟩ ∣ exists ⟨α1, ..., αk⟩ ∈ D(q′) such that∀a ∈ A ∶ αa ∈ γ(a, q′) and δ(q′, ⟨α1, ..., αk⟩) = q}

335

● For all a ∈ Σ and all ⟨�, q⟩, ⟨q′, q⟩ ∈ QF we have
AcF (a, ⟨�, q⟩) = AcF (a, ⟨q′, q⟩) = Ac(a, q).

● For all ⟨�, q⟩, ⟨q′, q⟩ ∈ QF and all ⟨α1, ..., αk⟩ ∈D(q) we
have δF (⟨�, q⟩, ⟨α1, ..., αk⟩) = δF (⟨q′, q⟩, ⟨α1, ..., αk⟩) =⟨q, δ(q, ⟨α1, ..., αk⟩)⟩.

Let fΓ
A be a function that maps, given a coalition A and

abstract normative constraint set Γ, each obedience assump-
tion in Ω to a propositional formula with variables
Γ × {enabled, taken}. Thus we have fΓ

A ∶ Ω ↦ Lprop(Γ ×{enabled, taken}). We define the function as follows (no-
tice that we have written ⟨ϕ, e⟩ and ⟨ϕ, t⟩ as shorthand for⟨ϕ, enabled⟩ and ⟨ϕ, taken⟩ respectively):

1.

fΓ
A(c-ob) = ⋀⟨A,γ⟩∈Γ−

A

(⟨⟨A,γ⟩, e⟩→ ¬⟨⟨A,γ⟩, t⟩)
2.

fΓ
A(t-ob) = ⋀

a∈A, ⋀⟨{a},γ⟩∈Γ{a}
(⟨⟨{a}, γ⟩, e⟩→ ¬⟨⟨{a}, γ⟩, t⟩)

3.

fΓ
A(s-ob) = ⋁

a∈A, ⋀⟨{a},γ⟩∈Γ{a}
(⟨⟨{a}, γ⟩, e⟩→ ¬⟨⟨{a}, γ⟩, t⟩)

4.

fΓ
A(⊺) = ⊺

5.

fΓ
A(s-dob) = ⋁

a∈A, ⋁⟨{a},γ⟩∈Γ{a}
(⟨⟨{a}, γ⟩, e⟩→ ⟨⟨{a}, γ⟩, t⟩)

6.

fΓ
A(t-dob) = ⋀

a∈A, ⋁⟨{a},γ⟩∈Γ{a}
(⟨⟨{a}, γ⟩, e⟩→ ⟨⟨{a}, γ⟩, t⟩)

7.

fΓ
A(c-dob) = ⋀⟨A,γ⟩∈Γ−

A

(⟨⟨A,γ⟩, e⟩→ ⟨⟨A,γ⟩, t⟩)
We then claim that evaluating a formula of the form S,Γ, q ⊧⟪A⟨ω,ω′⟩⟫ϕ amounts to model checking an ATL* formula in
the extended game structure.

Proposition 1. S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ holds if and only if:

SF , ⟨�, q⟩ ⊧ ⟪A⟫(◻fΓ
A(ω) ∧ (◻fΓ(Σ/Γ)(ω′)→ ϕ))

Although this is an ATL* formula, the model checking com-
plexity can still be done in efficient time (polynomial in the
number of transitions, the size of the abstract normative
constraint set and the length of the an-ATL formula). The
exact details of this result are not relevant for this paper, but
we can give a basic intuition behind this finding. Consider a
game structure S with m transitions and an abstract norma-
tive constraint set Γ of size g. We start out by constructing
SF = ⟨k,QF ,ΠF , πF ,AcF , δF ⟩ from S. Notice that if S has
m transitions, SF has O(m) states and O(m) transitions.
Now, the interesting cases arise when we want to check a
sub-formula of the form ⟪A⟨ω,ω′⟩⟫ ◻ ϕ or ⟪A⟨ω,ω′⟩⟫ϕ1Uϕ2.
The idea now is that, when looking for states satisfying these
conditions, we can just encode the winning and losing con-
ditions in the game structure itself. We do this by adding

q0

q1 q2

⟨1,1⟩,⟨1,2⟩,⟨2,2⟩ ⟨2,1⟩

⟨∗,∗⟩ ⟨∗,∗⟩

Figure 2: CGS with 2 agents.

two states to the game structure SF , an “always winning”
and an “ always losing” state. The “always winning” state
qW makes the goal formula true forever, the “always losing”
state qL makes the goal formula false forever regardless of
the goal formula ◻ϕ or ϕ1Uϕ2. Notice that the states qW

and qL do not follow the usual definitions of a Concurrent
Game Structures; for example the formula ◻� is still true
at qW even though there would not exist a valuation for qW

that makes this possible. However for the sake of model-
checking this does not matter. Now consider we are model
checking a formula ⟪A⟨ω,ω′⟩⟫ψ (where ψ = ◻θ or ψ = θ1Uθ2).
We proceed as follows: for each state q ∈ QF , if it holds
that q ⊧ ¬fΓ

A(ω), then redirect all incoming transitions to
state qL, if it holds that q ⊧ ¬fΓ(Σ/A)(ω′)∧ fΓ

A(ω), then redi-
rect all incoming transitions to qW . This routine can be
done in efficient time, and ensures that if A can only select⟨Γ,A,ω⟩-obedient transitions to make the goal formula true
(else it would end up in qL) and ensures that if Σ/A selects
a non ⟨Γ,Σ/A,ω′⟩-obedient transition the goal formula is by
default satisfied. Now we can just proceed with “normal”
model checking, which as shown in [3], can be done in time
proportional to the number of transitions in the concurrent
game structure, which is O(m).
6. SELF-SUPPORTING SETS

When we introduced the notion of abstract normative con-
straints, we saw that that it is still possible that an abstract
normative constraint of the form ⟨A,γ⟩ is taken at a cer-
tain state in the model, even though the agents in A might
not have selected the exact actions prescribed by γ. Thus,
even though it seems they were selecting an action in or-
der to avoid a violation, they still ended up in a situation
where this is not the case. In these special circumstances
it is the case that the agents do not have the power to
autonomously avoid a violation. Autonomy is a key facet
within the (multi)agent paradigm and can play a major role
for the agents to decide whether they want to participate in
the multiagent system or comply with the given norms, so
we devote this last section to identify and classify the cir-
cumstances in which a normative constraint set limits the
autonomy of (coalitions of) agents.

Let us first consider the concurrent game structure shown
in Figure 2. Moreover, let us consider the normative con-
straint set Γ = {⟨{a1}, γ⟩}, where γ(a1, q0) = {1}, we see that
agent 2, while being in state q0, has the ability to enforce
agent 1 into a violation. Namely, we see that agent 2 can
select action 2, which causes agent 1 to end up in q1 regard-
less of the action he chooses. Since there exists an action
for agent 1 that disallows going from state q0 to q1 (namely
action 1), even by selecting action 2 the agent can not avoid
violating the constraint. This brings us to the notion of

336

self-supporting constraint sets. Intuitively, self-supporting
means that if a normative constraint is targeted towards
coalition A, the agents in this coalition have (in some way)
“control”over whether or not they will violate this particular
constraint. However, as we will see in this section, multiple
gradations of “control” can be given. We start out with a
weak form of self-supporting, called weakly self-supporting.

Definition 1 (Weakly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is weakly self-supporting with
respect to S if and only if it holds that for every coalition
A ⊆ Σ and at any state q ∈ Q there is no strategy avail-
able to A in order to force the remaining players Σ/A into
a non-⟨Γ,Σ/A, c-ob⟩-obedient computation.

We see that in our previous example this was not the
case since agent 2 could force agent 1 into a violation by
selecting action 2. The following proposition shows how we
can identify weakly self-supporting constraint sets using our
new an-ATL logic.

Proposition 2 (Weakly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, Γ is weakly self-supporting with respect to S if
and only if for all A ⊆ Σ it holds that:

S,Γ ⊧ JA⟨⊺,c-ob⟩K◯⊺
Let us give an intuition about why this proposition holds.

Observe that, for a given A, the formula JA⟨⊺,c-ob⟩K◯⊺ is
equal to ¬⟪A⟨⊺,c-ob⟩⟫◯�. Now let us suppose that⟪A⟨⊺,c-ob⟩⟫◯� holds at state q. This means that there exists
a strategy for A, let us call this SA, such that if coalition
Σ/A behaved according to a ⟨Γ,Σ/A, c-ob⟩-obedient compu-
tation, ◯� would be true. However, the latter can never be
true for any computation, thus we must conclude that ev-
ery computation in out(q, SA) is not ⟨Γ,Σ/A, c-ob⟩-obedient,
which implies that Γ is not weakly self-supporting with re-
spect to S. A similar reasoning can be applied for the other
way around.

Suppose for now we have a weakly self-supporting con-
straint set Γ with respect to S. Now, even though there ex-
ists no coalition that can enforce the other players into a non
collective obedient computation, it does not mean that every
coalition has a collective obedient strategy available to them.
Consider the CGS shown in Figure 3, with again the nor-
mative constraint set Γ = {⟨{a1}, γ⟩}, where γ(a1, q0) = {1}.
We see that Γ is weakly self-supporting with respect to S,
since it is not possible for agent 2 to force agent 1 into a non-⟨Γ,{a1}, c-ob⟩-obedient computation. However, it is not the
case that agent 1 has a collective obedient strategy available
to him as both action 2 and 3 might bring him into state
q1. This brings up a more stronger notion of self-supporting
constraint sets, namely those in which each coalition always
has a collective obedient strategy available to them. If this
is the case, we say that a normative constraint set is strongly
self-supporting with respect to a concurrent game structure.

Definition 2 (Strongly Self-supporting). Given a
concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is strongly self-supporting with
respect to S if and only if it holds that for every coalition
A ⊆ Σ there is at any state q ∈ Q a collective obedient strat-
egy available to them.

q0

q1 q2

⟨1,∗⟩,⟨2,1⟩,⟨3,2⟩ ⟨2,2⟩,⟨3,1⟩

⟨∗,∗⟩ ⟨∗,∗⟩

Figure 3: CGS with 2 agents.

q0

q1 q2 q3

⟨1,∗⟩,⟨2,2⟩ ⟨2,1⟩ ⟨3,∗⟩

⟨∗,∗⟩ ⟨∗,∗⟩ ⟨∗,∗⟩

Figure 4: Another CGS with 2 agents.

Just like in the case of weakly self-supporting constraint
sets, we can identify when a normative constraint set is
strongly self-supporting with respect to a concurrent game
structure with the use of our an-ATL logic.

Proposition 3 (Strongly Self-supporting). Given
a concurrent game structure S and abstract normative con-
straint set Γ, we say that Γ is strongly self-supporting with
respect to S if and only if for all A ⊆ Σ it holds that:

S,Γ ⊧ ⟪A⟨c-ob,⊺⟩⟫◯⊺
We now claim that if a normative constraint set is strongly

self-supporting, it is also weakly self-supporting. This is
not hard to verify because, as we have already seen in Sec-
tion 4, we have the result that S,Γ, q ⊧ ⟪A⟨ω,ω′⟩⟫ϕ implies
S,Γ, q ⊧ J(Σ/A)⟨ω′,ω⟩Kϕ, and thus that for all A ⊆ Σ, S,Γ ⊧⟪A⟨c-ob,⊺⟩⟫◯⊺ implies for all A ⊆ Σ, S,Γ ⊧ JA⟨⊺,c-ob⟩K◯⊺
(but not the other way around).

Again suppose we have a strongly self-supporting con-
straint set Γ with respect to S. An example can be seen
in Figure 4 with again the normative constraint set Γ ={⟨{a1}, γ⟩}, where γ(a1, q0) = {1}. Although there is a col-
lective obedient strategy available for agent 1 in q0, namely
selecting at this state action 3, there is still an action avail-
able to him which is not in the constraint set but can causes
him to violate a normative constraint, i.e., if agent 1 se-
lects action 2 in q0, there is still a possibility that agent
2 selects action 2. This gives rise to yet another notion of
self-supporting constraint sets, namely that of unconditional
self-supporting normative constraint sets. Intuitively, if this
is the case it means that only the (joint) actions normatively
demotivated by the constraint set Γ will result in a viola-
tion. Thus, “unconditional” does not mean that the status
of whether or not a constraint set is self-supporting does not
rely on the game structure itself, it merely means that if it
is established that a constraint set is unconditionally self-
supporting, it is sufficient to only look at the constraint set
in order to select a collective obedient strategy. To make

337

this more formal, let us introduce the notion of an A-move.
An A-move is a function cAq that maps each player a ∈ A to

an action for that player, thus we have cAq (a) ∈ Ac(a, q). We

write C(A, q) for the set of all A-moves cAq for coalition A
at state q. Now we define CΓ(A, q) as the set of all A-moves
such that it holds that:

CΓ(A, q) = {cAq ∈ C(A, q) ∣ ∀⟨γ,A′⟩ ∈ Γ−A ∶ allows(⟨γ,A′⟩, cAq)}
where: allows(⟨γ,A′⟩, cAq) =

(∀a ∈ A′ ∶ γ(a, q) /= ∅)⇒ ⋁
a∈A′ c

A
q (a) /∈ γ(a, q)

In words, the set CΓ(A, q) contain all A-moves for coalition
A which are not normatively demotivated by a constraint in
Γ−A. We can now give the formal definition of unconditional
self-supporting constraint sets.

Definition 3 (Unconditional Self-supporting). .
Given a concurrent game structure S = ⟨k,Q,Π, π,Ac, δ⟩, we
say that an abstract normative constraint set Γ is uncondi-
tional self-supporting with respect to S if and only if for all
A ⊆ Σ it holds that for all states q ∈ Q it is the case that
CΓ(A, q) is non-empty and for every A-move cAq ∈ CΓ(A, q),
it holds that by playing it, all of the normative constraints⟨A′, γ⟩ ∈ Γ−A will be either not enabled or not taken.

Note that an unconditional self-supporting normative con-
straint set is (by definition) also strongly self-supporting
since we demanded CΓ(A, q) to be non-empty. Now given
a concurrent game structure S = ⟨k,Q,Π, π,Ac, δ⟩ and an
abstract normative constraint set Γ, we can define outq as
a function from a set of A-moves to the set of all possible
states the agents can arrive in by playing such an A-move.

outq(C(A, q)) = {δ(q, dq) ∈ Q ∣ dq ∈ g(cAq) and cAq ∈ C(A, q)}
where

g(cAq) = {⟨α1, ..., αk⟩ ∈D(q) ∣ ∀a ∈ A ∶ cAq (a) = αa}
Using this definition, the following proposition now states
how we can verify when an abstract normative constraint
set is unconditional self-supporting with respect to a game
structure.

Proposition 4 (Unconditional Self-supporting).
A normative constraint set Γ with respect to a concurrent
game structure S = ⟨k,Q,Π, π,Ac, δ⟩ is unconditional self-
supporting iff ∀q ∈ Q and ∀A ⊆ Σ ∶ outq(CΓ(A, q)) /= ∅ and
outq(CΓ(A, q)) ∩ outq(C(A, q)/CΓ(A, q)) = ∅.

To see why this proposition holds, note that it states that
the states reachable from an A-move in CΓ(A, q) (all the
A-moves which are not normatively demotivated by the con-
straints in Γ−A) and the states reachable from C(A, q)/CΓ(A, q)
(all the A-moves which are normatively demotivated by the
constraints in Γ−A) must be disjoint. If this is not the case,
then there exists an A−move in CΓ(A, q) which by playing
it would result in one of the constraints in Γ−A to be enabled
and taken, thus not unconditionally self-supporting. A sim-
ilar reasoning can be applied for the other way around.

What we have seen in this section is that it is possible
to characterize and identify multiple levels of “control” the
agents have over the ability to adhere to the normative con-
straints. As we already argued, identifying when a norma-
tive constraint set is not (weakly/strongly/unconditional)

self-supporting with respect to a concurrent game structure
may play a crucial role for the agents in order to decide
whether to participate in the system, since they restrict the
autonomy of the agents in some way.

7. DISCUSSION AND FUTURE RESEARCH
In this paper we have developed a model of normative sys-

tems that allows reasoning about agents’ (normative) abili-
ties under a multitude of compliance assumptions. This can
be both crucial in the design and validation of these systems.
To do this, we introduced the notion of abstract normative
constraints and we developed an extension of Alternating
Temporal Logic, an-ATL, to allow reasoning about the abil-
ities of (coalitions of) agents under different compliance as-
sumptions. Moreover, we showed that model-checking an-
ATL formula’s remains close to the complexity of model-
checking standard ATL. In the last part of the paper, we
discussed the notion of self-supporting constraint sets and
explained its relation to autonomy of agents. In particular,
we explained that if a constraint set is self-supporting, the
agents have (in some way) control over whether they can
avoid a violation.

There are multiple ways to extend this line of research.
Firstly, it would be very interesting to consider more com-
pliance assumptions. As can be seen in Section 5, given
a normative constraint set Γ, our logic allows us to create
arbitrary complex obedience assumptions in the languageLprop(Γ × {enabled, taken}). Moreover, it would be inter-
esting to incorporate goals and preferences of agents and
see how they relate to the obedience behaviour of the other
agents. Finally, the question what “good coalitions” for
agents are in order to not violate any of the norms must
be answered. Perhaps this question can be related to the
topic of coalitional game theory.

8. REFERENCES
[1] T. Ågotnes, W. van der Hoek, and M. Woolridge.

Robust normative systems and a logic of norm
compliance. Logic journal of the IGPL, 18:4–30, 2010.

[2] T. Ågotnes, M. Wooldridge, and W. van der Hoek.
Normative system games. In AAMAS’07, pages
876–883, 2007.

[3] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49(5):672–713, 2002.

[4] N. Bulling and M. Dastani. Verifying normative
behaviour via normative mechanism design. In
IJCAI’11, pages 103–108, 2011.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, 1999. ISBN
0-262-03270-8.

[6] Y. Moses and M. Tennenholtz. Artificial social systems.
Computers and AI, 14(6):533 – 562, 1995.

[7] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In
AAAI’92, pages 276–281, 1992.

[8] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: effectiveness, feasibility,
and synthesis. Synthese, 156(1):1–19, 2007.

[9] M. Woolridge and W. van der Hoek. On obligations
and normative ability. Journal of Applied Logic,
3:396–420, 2005.

338

Session 5B
Teamwork II

Leading Ad Hoc Agents in Joint Action Settings with
Multiple Teammates∗

Noa Agmon and Peter Stone
Department of Computer Science
The University of Texas at Austin

{agmon,pstone}@cs.utexas.edu

ABSTRACT
The growing use of autonomous agents in practice may re-
quire agents to cooperate as a team in situations where they
have limited prior knowledge about one another, cannot
communicate directly, or do not share the same world mod-
els. These situations raise the need to design ad hoc team
members, i.e., agents that will be able to cooperate without
coordination in order to reach an optimal team behavior.
This paper considers the problem of leading N -agent teams
by an agent toward their optimal joint utility, where the
agents compute their next actions based only on their most
recent observations of their teammates’ actions. We show
that compared to previous results in two-agent teams, in
larger teams the agent might not be able to lead the team
to the action with maximal joint utility, thus its optimal
strategy is to lead the team to the best possible reachable
cycle of joint actions. We describe a graphical model of
the problem and a polynomial time algorithm for solving it.
We then consider other variations of the problem, including
leading teams of agents where they base their actions on
longer history of past observations, leading a team by more
than one ad hoc agent, and leading a teammate while the
ad hoc agent is uncertain of its behavior.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Agent Cooperation::Teamwork, coalition formation, coor-
dination ; Economic paradigms::Game theory (cooperative
and non-cooperative)

1. INTRODUCTION
Teams of agents have been studied for more than two

decades, where the general assumption is that the agents
coordinate their actions to increase the team’s performance.

∗This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in
part by NSF (IIS-0917122), ONR (N00014-09-1-0658), and the
FHWA (DTFH61-07-H-00030).

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The growing popularity of agents in domains such as e-
commerce, has raised the need for cooperation between agents
that are not necessarily programmed similarly, and might
not have the same communication protocols or world mod-
els. Nevertheless, these agents might be required to perform
as a coordinated team. When designing such systems, one
cannot assume the team members engage in a known team
strategy, but each agent must adjust to the current circum-
stances while adopting a strategy that aims to optimize the
team’s utility. Such systems are called Ad-Hoc Teams.

In many cases, such as robotic teamwork, it might be im-
possible to change the design of agents in a team. This work
attempts to provide theoretical results (model and solution,
and bound on existence of a solution) for the possible influ-
ence of a new added agent (one or more) on the team perfor-
mance. Consider the case where several robots are deployed
on Mars; you designed them (thus know their behavior), but
once they are there - you cannot re-code them. Suppose that
as time passes, you have more knowledge about the world.
Will it be worthwhile to send a new robot to change the
team behavior to a new, improved, one? If so - how should
it do so? These questions motivate our research, and this
paper makes progress towards answering them.

Specifically, we consider the problem of leading a team to
the optimal joint action. In this problem, the team members
do not communicate explicitly, but are assumed to choose
their actions based on their observations of their teammates’
previous actions (one or more), i.e., the agents behave as best
response agents.1 The problem is represented as a simulta-
neous repeated game. The ultimate goal is to have all team
members act in a way that will maximize the joint utility of
the team. Assume we design a team member that joins the
team, the ad hoc team member. Our goal is, therefore, to
determine the optimal strategy for the ad hoc team member
such that it will lead the team to their optimal joint action
while minimizing the system’s cost while doing so.

This problem was introduced by Stone et al. [11] for sys-
tems of two agents: one ad hoc agent, and one best response
agent. They describe an algorithm for determining the op-
timal strategy for the ad hoc agent that leads, in minimal
cost, the best response agent to perform the action yielding
optimal joint utility. In this paper we consider the more
general problem of leading N -agent teams, N ≥ 2, toward
their optimal joint utility. In such systems, the possible

1We consider best response agents for simplicity, however
our results can equally be applied to the more general case
of agents that base their decisions on a fixed history window
of the ad hoc agents’ past actions, rather than on their own
previous actions.

341

influence of one agent on the team is relatively limited com-
pared to the two-agent teams. As a result, we show that in
N -agent teams, the optimal joint utility might not be reach-
able, regardless of the actions of our agent. In such cases,
our agent’s optimal strategy is to lead the team to the best
possible reachable joint utility, with minimal cost.

In order to find the optimal strategy for the ad hoc team
player, we describe a graphical model of the possible joint set
of actions integrating the possible transitions between the
system’s states (agents’ joint action), and the resulting costs
of those transitions. Using this model, we first determine the
set of joint actions resulting in maximal joint utility, and
find the lowest cost path from the initial joint action of the
agents to this optimal set of joint actions. We then consider
other variations of the problem, and evaluate them using the
suggested graphical model. These variations include leading
best-response agents with memory size greater than one,
leading a team by a team of coordinated ad hoc agents,
and leading a two-agent team by an ad hoc agent where
uncertainty exists on the behavior of its teammate.

2. PROBLEM DESCRIPTION
We consider the problem of leading a team of best re-

sponse players by one ad hoc team member towards the
optimal joint utility of the team. In this section we describe
the general problem, as well as notations that will be used
throughout the paper.

The problem of finding a policy for leading team mem-
bers to the optimal joint utility was introduced in [11] for
a team of two agents, A and B, where agent A is the ad
hoc agent and agent B is the best response agent. Agent
A was designed to lead agent B to perform an action that
will result in the optimal joint utility, denoted by m∗. This
is done without using explicit communication or prior coor-
dination, where agent B chooses an action that maximizes
the joint utility based on its observation of agent A’s previ-
ous action (but with both players having knowledge of the
game). This is designed as a simultaneous repeated game,
i.e., the players choose their actions simultaneously, where
current actions influence the future decisions of the players.

The assumption is that agent B’s behavior is known to
agent A, but is fixed and unchangeable. This represents
one of the simplest cases of ad hoc teamwork, where there
is no uncertainty about behaviors. Nevertheless, it poses
some interesting challenges, as shown previously in [11], and
reinforced in this paper. Relaxation of this assumption is
discussed in Section 6.

Agent A has x possible actions {a0, . . . , ax−1}, and agent
B has y possible actions {b0, . . . , by−1}. The team’s utility
is represented by an x × y payoff matrix M , where an entry
M(i, j) ∈ M is the joint utility when A performs action ai

and B performs bj . The cost of a joint action (ai, bj), 0 ≤
i ≤ x − 1, 0 ≤ j ≤ y − 1, denoted by C(ai, bj), is defined as
m∗ −M(i, j), i.e., the distance from the optimal joint utility.
The system is initialized in the joint action (a0, b0).

It can be assumed, without loss of generality, that m∗

is the joint utility obtained when A performs action ax−1

and B performs by−1. Therefore m∗ is necessarily reach-
able from (a0, b0) in at most two stages: A picks ax−1 and
B will adjust in the next stage and choose action by−1,
thus a possible sequence to the optimal joint action m∗ is
⟨(a0, b0), (ax−1, b0), (ax−1, by−1)⟩, after which A and B will
continue performing actions ax−1 and by−1 (respectively).
However, this might not be the only possible sequence, and

moreover - there could be a sequence of joint actions leading
to m∗ that has lower cost. The question answered by Stone
et al. [11] was, therefore, how to reach m∗ with minimal cost.
They describe a dynamic programming algorithm for find-
ing the optimal solution in polynomial time. Their solution
is based on the knowledge of the longest possible optimal
sequence, bounding the depth of the recursive algorithm.

In this paper we consider the more general case of leading
N -agent teams, N ≥ 2, by one ad hoc team player. We do so
by first examining the problem of leading three-agent teams,
and then describe the generalization to N agent teams.

The three-agent team consists of agent A - the ad hoc team
member, and the best response agents B and C. The set of
actions available for the agents is {a0, . . . , ax−1}, {b0, . . . , by−1}
and {c0, . . . , cz−1} for agents A, B, and C, respectively.
The payoff matrix of the team is a 3-D matrix M , that
can be conveniently written as x matrices of size y × z,
M0, . . . , Mx−1 (see Figure 1), where entry (bi, cj) in matrix
Mk, denoted by Mk(i, j), (0 ≤ k ≤ x − 1, 0 ≤ i ≤ y − 1,
0 ≤ j ≤ z − 1), is the payoff of the system when agent
A performs action ak, B performs bi and C performs cj .
Denote the maximal joint payoff in the system by m∗, and
assume, without loss of generality, that the agents initially
perform actions (a0, b0, c0). Similarly to the two-agent case,
the agents do not coordinate explicitly, but agents B and
C are assumed to choose their next move according to their
current observation of their teammates’ actions. Therefore
the next action of agent B (denoted by BRB) is based on
its current observation of the actions of agents A and C,
and similarly the next action of C (denoted by BRC) is
based on the actions of A and B. Formally, BRB(ai, ck) =
argmax0≤j≤y−1{Mi(j, k)} (similarly for BRC). Therefore if
the current actions of the agents are (ai, bj , ck), then the
next joint action would be (ai′ , BRB(ai, ck), BRC(ai, bj))
for 0 ≤ i, i′ ≤ x − 1, 0 ≤ j ≤ y − 1 and 0 ≤ k ≤ z − 1.

5

a 0 a 1c 0 c 1

b 0

b 1 1b

0b

1c0c

204

68

41

2

Figure 1: An exam-

ple for unreachable m∗ =

(a1, b1, c1)

Compared to the two-agent
team, in a three-agent team the
control of agent A on the world
is relatively limited. Specifi-
cally, there are cases in which
m∗ remains unreachable, re-
gardless of the actions of agent
A. An example for such a case
is given in Figure 1. In this ex-

ample, x = y = z = 2. According to these payoff matrices,
BRB(ai, c0) = b0 BRC(ai, b0) = c0, i ∈ {0, 1}, thus agents
B and C will continue to choose actions (b0, c0) in both ma-
trices, and A will not be able to lead them to joint utility of
m∗ = M1(1, 1) = 20. Therefore the goal of agent A is to lead
the team to the best possible reachable joint action or cycle of
joint actions. In this example, A will choose action a1, lead-
ing to the maximal possible payoff of 8, and all agent will
continue choosing the same action yielding maximal possible
joint utility.

Definition A Steady Cycle is a sequence of t joint actions
s0, s1, . . . , st−1 such that if sl = (ai, bj , ck), then sl+1 =
(ai′ , BRB(ai, ck), BRC(ai, bj)), (0 ≤ l ≤ t − 1, 0 ≤ i; i′ ≤
x − 1, 0 ≤ j ≤ y − 1, 0 ≤ k ≤ z − 1), and st = s0, i.e.,
the sequence is cyclic. The Optimal Steady Cycle, denoted
by OSC, is a steady cycle with minimal average cost, i.e,
1/t × ∑t

i=1 C(si) is minimal.

Note that if m∗ is reachable, the optimal steady cycle con-
sists of only the joint action yielding payoff m∗.

342

3. LEADING A TEAM BY A SINGLE AGENT
In this section we examine the problem of leading a team

by a single agent, initially concentrating on three-agent teams.
We describe a graphical model for representing the system,
and a polynomial time algorithm for determining the opti-
mal possible set of joint actions and how to reach it with
minimal cost to the team. We later (Subsection 3.4) gener-
alize the representation and solution to an N−agent teams.

3.1 Problem Definition
The three-player team consists of three agents: agent A,

our designed ad-hoc team player, and agents B and C, which
are the original team players.
We define the 3-Player Lead to Best Response Problem
(3LBR) as follows.
Given a three-agent team, A, B, C, where agent A is an ad-
hoc team player and agents B and C are best response play-
ers, and a 3-D payoff matrix representing the team payoff for
every joint action of the agents, determine the set of actions
of agent A that will lead the team to the optimal steady
cycle reachable from (a0, b0, c0) in minimal cost.

3.2 Graphical Representation
In this section we describe a graphical model of the state

space, used to find an optimal solution to the 3LBR problem.
We create a graph G = (V, E), where V includes of all pos-
sible joint actions, i.e., each vertex vijk ∈ V corresponds to
a set of joint actions (ai, bj , ck) (0 ≤ i ≤ x−1, 0 ≤ j ≤ y−1,
0 ≤ i ≤ z − 1). The directed edges in E are defined as fol-
lows: an edge e = (vijk, vi′j′k′) ∈ E ∀i′, 0 ≤ i′ ≤ x − 1, if
j′ = BRB(ai, ck) and k′ = BRC(ai, bj). In words, an edge
is added where it is possible to move from one set of joint
actions to the other—either by A repeating the same action
(ai = ai′) or by it switching to another action ai ̸= ai′ . The
cost of an edge e = (vijk, vi′j′k′) is set to m∗ − Mi′(b′

j , c
′
k).

The total number of vertices in G is xyz, and the number
of edges is x × |V | = x2yz.

Figure 2 illustrates two sets of payoff matrices and their
corresponding graphical representations. On the right, m∗

is reachable, hence the optimal steady cycle is of size t =
1 and includes only v111. The optimal path to the op-
timal steady cycle is the shortest path (corresponding to
the path with lowest cost) between v000 to v111, which is
v000, v101, v111, meaning that the minimal cost sequence is
⟨(a0, b0, c0), (a1, b0, c1), (a1, b1, c1)⟩ with a total minimal cost
of 21 (there is a “startup cost” of 15 for the first play, that is
added to all paths from vertex 000, as indicated by the in-
coming edge to that vertex). The dashed lines represent the
transitions which are determined by A’s choices if it changes
its action, leading to a change in Mi. The solid lines repre-
sent the outcome if A did not change its action.

3.3 Algorithm for Solving the 3LBR Problem
The solution to the 3LBR problem, described in Algorithm

1, is divided into two stages:

1. Find the optimal reachable steady cycle.

2. Find the sequence of actions for agent A that leads the
team to the optimal steady cycle with minimal cost.

In order to find the optimal reachable steady cycle, we first
remove all vertices that do not belong to the connected com-
ponent that includes v000. This can be done by a simple BFS
tour starting at v000 (linear in the graph size). Finding the

15

a 0 a 1c 0 c 1

b 0

b 1 1b

0b

1c0c

19

14
16

14

12

16

0

16

1818
19

15

12

15

6

41

2

20

8

4

5

000 001

010 011

100 101

110 111

15

a 0 a 1c 0 c 1

b 0

b 1 1b

0b

1c0c

20

148

4

5 10

2

000 001

010 011

100 101

110 111

10

4

15

10

15

6

6

0

0

6
10

10

12
12

18

10

Figure 2: An example for the graphical representation of the

state transition. On the left - the representation of the the payoff

matrix from Figure 1 where m∗ is unreachable, and on the right a

case in which m∗ is reachable.

optimal steady cycle corresponds to finding the Minimum
Cycle Mean (introduced by [8]), that can be computed using
dynamic programming in time O(|V | × |E|) = O(x3y2z2).

Finding the sequence of actions taken by agent A that
will lead the team to the optimal steady cycle with minimal
cost is equivalent to finding the shortest path from v000 to
any vertex in the cycle yielding the minimum cycle mean of
G. Recall that the number of vertices in the cycle yielding
the minimum cycle mean of G is denoted by t. Therefore
finding the shortest path from v000 to one of the vertices
of that cycle can be done by Dijkstra’s algorithm, resulting
in time complexity of O(t|E| log |V |) = O(tx2yz log(xyz)).
The total time complexity of the algorithm is, therefore,
O(tx2yz log(xyz) + x3y2z2).

Comparing the time complexity of our algorithm to the al-
gorithm presented by Stone et al. [11] for two-player games,
we note that finding the optimal sequence of joint actions
for a two-player game is a special case of the three-player
game in which z = 1, and the optimal reachable steady cy-
cle is known to be v110. Thus the time complexity of finding
the optimal sequence using our algorithm is O(x2y log(xy)),
compared to O(x2y) of the algorithm described in Stone et
al. [11]. However, as they have shown, there is no point
in returning to a set of joint actions in this scenario, thus
while constructing the graph, edges closing a cycle will not
be added, yielding a directed acyclic graph (DAG). In DAGs,
the shortest path can be found in O(|E| + |V |) (using topo-
logical ordering), therefore the time complexity is similar to
the one described in [11], i.e., O(x2y).

Algorithm 1 Algorithm Lead3Team(M)

1: Create graph G = (V, E) as follows
2: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do
3: Add vi,j,k to V
4: end for
5: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do
6: for 0 ≤ i′ ≤ x− 1 do
7: Add e = (vi,j,k, vi′,BRB(i,k),BRC (i,j)) to E

8: Set w(e) = m∗ −M(i′, BRB(i, k), BRC(i, j))
9: end for
10: end for
11: Compute G′ ⊆ G by a BFS tour on G starting from v0,0,0

12: Compute the optimal steady cycle OSC ⊆ G′ = {v0, . . . , vk−1}
(Minimum Cycle Mean)

13: P ← argmin0≤i<k {Shortest path from v0,0,0 to vi ∈ OSC}

3.4 Leading N-agent teams
Generalizing 3LBR, we define the N-Player Lead to Best

Response Problem (NLBR) as follows.
Let {a0, . . . , aN−1} be a team of N agents, where agent a0

343

is an ad-hoc team player. The set of actions for each team
member ai (0 ≤ i ≤ N − 1) is {ai

0, a
i
1, . . . , a

i
ri

}, and we are
given an N -D payoff matrix M representing the team payoff
for every combination of actions of the agents. Determine
the set of actions of agent a0 that will lead the team to
the optimal steady cycle reachable from (a0

0, a
1
0, . . . , a

N−1
0)

in minimal cost.
In order to generalize the solution to the 3LBR problem

to the NLBR problem, it is necessary to define its graphi-
cal representation. Once the graphical model is set, finding
the optimal solution to the problem becomes similar to the
three-agent case, i.e., we find the optimal steady cycle, then
we find the shortest path to that cycle. The main difference
from the three-agent case lies, therefore, in the creation of
the graph, which in turn affects the time complexity.

The graph G = (V, E) is built similarly to the 3-player
game, where vi0i1...iN−1 ∈ V for each set of joint actions

(a0
i0 , a1

i1 , . . . , aN−1
iN−1

) corresponding to an entry in the payoff

matrix Mi0 , and e = (vi0i1...iN−1 , vi′
0i′

1...i′
N−1

) ∈ E if ∀1 ≤
j ≤ N −1, aj

i′
j

= BRj(a
0
ii

, . . . , aj−1
ij−1

, aj+1
ij+1

, . . . , aN−1
iN−1

), ∀0 ≤
i′ ≤ r0 − 1 .

The number of vertices in G is
∏N−1

i=0 ri, and the num-

ber of edges is r0

∏N−1
i=0 ri, leading to a time complexity of

O(tr2
0

∏N−1
i=1 ri log(

∏N−1
i=0 ri) + r0

∏N−1
i=0 r2

i) for solving the
NLBR problem (t is the length of the optimal steady cycle).

4. LEADING A TEAM WITH MEMORY> 1

Until this point, we have assumed that the teammates op-
timize their choices based on their most recent observation
(best response). We now consider the case in which team
members have memory greater than one, i.e., each agent
computes its best response to the maximum likelihood dis-
tribution corresponding to the last mem joint actions it ob-
served. We describe the analysis for three-agent teams; the
solution for the general N -agent team follows directly.

Denote the number of times agent A, B and C performed
action ai, bj and ck during the previous set of mem joint
actions by Na

i , Nb
j and Nc

k , correspondingly. Formally, for a
three-agent team, the best response of agents B and C are
defined (BRB and BRC , correspondingly) as follows:

BRB = argmax{0≤l≤y−1}{∑x−1
i=0

Na
i

mem

∑z−1
k=0

Nc
k

mem
Mi(l, k)}

(BRC is defined similarly). Let BRB(s1, . . . , smem)
(BRC(s1, . . . , smem)) be the best response of agent B (C)
based on the last mem observed joint actions s1, . . . , smem.

The graph representation G = (v, e) in case mem > 1 is
as follows. A vertex v ∈ V represents a global state which
includes a sequence of mem consecutively executed joint ac-
tions, {s0, . . . , smem}. An edge e = (v, u) ∈ E exists from
a vertex v = {s0, . . . , smem} to vertex u = {s′

0, . . . , s
′
mem}

if ∀0 ≤ l ≤ mem − 2; ∀0 ≤ i ≤ x − 1, s′
l = sl+1, s′

mem =
{ai, BRB(s0, . . . , smem), BRC(s0, . . . , smem)}.

As shown by Stone et al. [11], even if m∗ was played
once, it does not necessarily mean that the system will stay
there. Specifically, it could be the case that the team was
lead to m∗, however the next best response of some agent
(one or more) would be to switch actions. This was denoted
as unstable states. Assume the joint action yielding m∗ is
(a∗, b∗, c∗). As a result, we define the terminal vertex of
the system to be ⟨(a∗, b∗, c∗), . . . , (a∗, b∗, c∗)⟩ (mem times).
Clearly, this vertex is stable.

4.1 On the time complexity of handling high
memory

Finding the optimal steady cycle and the optimal path
to that cycle in case the team members have memory size
greater than one can be computed similarly to the solution to
the 3LBR and the NLBR problems (Algorithm Lead3Team).
In order to determine the time complexity of reaching an
optimal solution, it is necessary to calculate the size of the
graph representation, i.e., |V | and |E|. The number of com-
binations of mem sets of joint actions is |V |mem. However,
not all combinations of sets of joint actions are feasible (the
system cannot reach every vertex from every vertex, but only
x vertices from each vertex), hence the upper bound on the
number of vertices is xyz×xmem−1, i.e., xmemyz (exponen-
tial in mem). The number of edges from each vertex remains
x, hence the total number of edges is xmem+1yz.

This provides an upper bound on the time complexity of
reaching a solution with mem ≥ 2. However, we would like
to examine whether this bound is tight or not, i.e., can
we guarantee that the time complexity will practically be
lower than that? We do so by pursuing two different di-
rections. First, we check whether there is a connection be-
tween the relevant graph size (connected component that
includes the initial vertex) with teammates having mem-
ory of size mem − 1 and the relevant graph size when their
memory is mem. For example, if the connected component
only got smaller as memory increased, then we could bound
the graph size by the size of the connected component when
mem=1. Second, we check whether we can efficiently bound
the possible length of the optimal path from the initial joint
action to the optimal (cycle of) joint action(s). If so, that
would allow us to restrict the construction of our state space
to states within that maximal length from the initial state.
Unfortunately, the investigations in both directions are not
promising. We show that there is no connection between
the size of the relevant connected component as the mem-
ory size grows (it could increase or decrease). We also show
that even in the simplest case of N = 2 and mem = 2 de-
termining the maximal size of an optimal path from v0,0 to
m∗ is NP-Hard.

4.1.1 Graph size as memory size changes
We investigated the influence of the number of vertices in

the connected component in case mem = 1 to the number
of components when mem = 2 in order to determine a tight
bound on the number of vertices we need to explore as the
memory grows. Unfortunately, we have shown that there is
no relation between the number of vertices in the connected
components between different memory sizes. In this section,
we describe two opposite cases: one in which the connected
component grows, and one in which it becomes smaller.

We show, by the following example, that the connected
component originating at v = (0, 0, 0) with mem = 1 can
grow as mem grows to include vertices corresponding to joint
actions that were unreachable with smaller memory size.
Moreover, Figure 3 shows a case in which with mem = 1
m∗ is unreachable, yet with mem = 2 it becomes reachable.
On the other hand, as shown in Figure 4, the number of
reachable joint actions may decrease, possibly causing m∗

to become unreachable.
These two examples demonstrate that a tight bound on

the number of vertices that need to be explored as memory
grows does not exist, i.e., it is not sufficient to explore only

344

1

100

110101

001

c 0 c 1

b 0

b 11b

0b

1c0c 1a0a

010

000

20

8 18

3

10 4

6

001,101

011,101

011,001101,011

101,001 101,101

101,111

101,011
011,011 011,111

111,001

111,101

000,101

111,111

001,001000,001

000

Figure 3: An example for a case where m∗ was unreachable for

mem = 1 (left), and became reachable with mem = 2 (right).

the main connected component of mem = 1, but it is neces-
sary to explore the entire main connected component in the
current memory model.

100,111

1 0c c 1 2c

1b

b 0

b 2

011,000

100,000 100,100

111,000111,100
000,100

100,011000,111

011,100000,011

0a c 0 1c c 2

b 1

0b

2b

81110

11 126

12 132

000

14133

12 7 13

91211

000,000

122111

022011

a

Figure 4: An example for a case where m∗ was reachable for

mem = 1 (left), and became unreachable with mem = 2 (right).

4.1.2 NP-Hardness of maximal optimal length deter-
mination

In order to evaluate whether the graph size can be re-
duced to guarantee a more realistic upper bound on the
time complexity that is not exponential in the graph size,
we examined the possibility of limiting the construction of
the graph based on the maximal possible length of an opti-
mal path from the initial vertex to the optimal steady cycle.
In [11] it was shown that in two agent teams, consisting of
one ad hoc team member (agent A) and one best-response
team member (agent B), if mem = 1 then the maximal size
of an optimal path is at most min{x, y}. However, we prove
here that even in this simple case where m∗ is known to
be reachable (i.e., the optimal steady cycle is known in ad-
vance), determining the maximal size of an optimal path is
NP-Hard when agent B has mem ≥ 2 (note that this was
assumed in [11], yet was not proven there).2

Denote the maximal length of an optimal path starting
at (a0, b0) to m∗ by S∗ (note that since it is the two agent
game, such a path always exists).

Theorem 1. In the two-agent case, finding S∗ when mem ≥
2 is NP-Hard.

Proof. The problem is proven to be NP-hard by a reduc-
tion from the Hamiltonian Path problem:Given an n-node
unweighted, undirected graph G, an initial node and a desti-
nation node, is there a simple path from initial to destination
of length n? That is, can we visit each node exactly once?
This decision problem is known to be NP-Complete [4].

2We thank ML for his help in formalizing the proof

We will show that if it were possible to find S∗ for a given
matrix M with agent B’s mem > 1 in polynomial time,
then it would also be possible to find a Hamiltonian path in
polynomial time. To do so, we assume that we are given a
graph G = (V, E) such that |V | = n. We construct a matrix
M in a particular way such that if there is a path through
the matrix of cost no more than a target value of n∗(n4−1),
then there is a Hamiltonian Path in graph G. Note that, as
required, the construction of the matrix can be done in time
polynomial in all the relevant variables.

Let agent B’s mem = n. We construct the joint payoff
matrix M as follows.

• Agent A has (n − 1) ∗ n +2 actions. The first action is
“start”, and agent B’s memory is initialized to n copies
of that action. Each of the next (n − 1) ∗ n actions
represents a combination (i, t) of a vertex vi ∈ V (G)
and a time step t ≥ 2. M ’s payoffs will be constructed
so that if the sequence satisfying the maximum cost
requirement in M (if any) includes action (i, t), then
the corresponding Hamiltonian path passes through vi

on time step t. Finally, there is a “done” action to be
taken at the end of the path.

• Agent B has n2 + n + 1 actions. The first n2 actions
are similar to agent A’s: one for each combination
of vj ∈ V (G) and t ≥ 1. If the satisfying sequence
through M includes agent B taking action (j, t), then
the Hamiltonian path visits vj at time t. The next
n actions are designed as “trap” actions which agent
B will be induced to play if agent A ever plays two
actions corresponding to the same node in the graph:
actions (i, s) and (i, t). There is one trap action for
each vertex, called action j. Finally, the last action
is the “done” action to be played at the end of the
sequence.

• M ’s payoffs are constructed as follows, with the actions
named as indicated in the bullets above. The initial
vertex in the Hamiltonian path (the one visited on time
step 1) is called “initial.”

a) M [(i, t + 1), (j, t)] = 1 if (vi, vj) ∈ E(G)
b) M [(i, t + 1), (j, t)] = −n5 if (vi, vj) /∈ E(G)
c) M [(i, t), (i, t)] = tn
d) M [(i, t), (j, s)] = −n5 if t ≥ s
e) M [(i, t), (j, s)] = 0 if t < s
f) M [(i, t), i] = tn− 1

3n
g) M [(i, t), j] = 0
h) M [(i, t), done] = 0
i) M [start, (initial, 1)] = 1
j) M [start, initial] = 1

2
k) M [start, done] = −n4

l) M [start, j] = 0 ∀ action j /∈{initial,done}
k) M [done, (j, n)] = 1
l) M [done, (j, t)] = −n5 if t < n
m) M [done, done] = n4

Following a path through the matrix that corresponds to a
Hamiltonian path (if one existed) would give payoffs of 1 at
every step until reaching m∗ (n4) and staying there forever.
Thus the cost of the n-step path would be n ∗ (n4 − 1).

As there is no positive payoff in the matrix greater than
n2, any path longer than n steps must have cost of at least
(n + 1)(n4 − n2) = n5 + n4 − n3 − n2 > n5 − n = n ∗ (n4 −
1). In other words, if there is a path through the matrix
corresponding to a Hamiltonian path in the graph, then any
longer path through M must have higher cost.

Furthermore, the matrix is carefully constructed such that
any diversion from the path corresponding to a Hamiltonian

345

path either will get a payoff of −n5 on at least one step
(which by itself makes the target cost impossible to reach),
will prevent us from getting one of the 1’s, or else will make
it so that the path to (done,done) will require more than n
total steps. In particular, if agent A ever takes two actions
that lead agent B to select a trap action, then agent B will
not take a different action until the n+1st step after the first
action that led to the trap, causing the path to (done,done)
to be at least n+2 steps long. Therefore, if we could find the
optimal sequence through any matrix in polynomial time,
then we could use this ability to also solve the Hamiltonian
path problem, concluding our proof.

5. LEADING A TEAM BY A TEAM
Until now, we have considered the case of one ad-hoc agent

leading a team of best response agents towards the optimal
set of joint actions. However, it could be possible to deploy a
team of coordinated ad-hoc agents to lead the best response
agents. The two interesting questions that arise here are:
(a.) What is the time complexity of determining the opti-
mal path? (b.) What is the influence of the addition of a
new team member to the group with respect to the optimal
steady cycle and the cost of the path towards it?

Also in this case we adopt the graphical model in order to
find the optimal steady cycle, and the shortest path towards
it. Let {a0, . . . , aN−1} be a team of N agents, where agents
a0, . . . ak−1 are the ad-hoc team players, and ak, . . . , aN−1

are the best response team members. Each agent ai has a
set of possible actions {ai

0, . . . , a
i
ri

}. Therefore the number
of possible joint actions (hence the number of vertices in
the representing graph), similar to the N−agent teams dis-

cussed in Section 3.4, is
∏N−1

i=0 ri. The difference between the
N−agent teams led by one agent and the N−agent teams
led by k agents lies in the edges in the graph. Formally,
the graph G = (V, E) representing the system is built as
follows. A vertex vi0i1...iN−1 ∈ V exists for each joint action

(a0
i0 , . . . , aN−1

iN−1
) . An edge e = (vi0...iN−1 , vi′

0...i′
N−1

) ∈ E if

∀k ≤ j ≤ N −1, aj

i′
j

= BRj(a
0
ii

, . . . , aj−1
ij−1

, aj+1
ij+1

, . . . , aN−1
iN−1

),

∀0 ≤ i′l ≤ rl−1; 0 ≤ l ≤ k − 1. Therefore the number of
outgoing edges from each vertex is

∏k−1
i=0 ri, since each ad

hoc team member’s choice of action influences the possible
outcome, hence |E| =

∏k−1
i=0 r2

i

∏N−1
j=k rj . An example for a

graphical representation of leading a team by more than one
agent is shown in Figure 5.

Finding the optimal steady cycle is done on this graph as
described previously. The time complexity of determining
the optimal steady cycle is O(|E|×|V |) = O(

∏k−1
i=0 r3

i

∏N−1
j=k r2

i).
Assuming the number of joint actions in the steady cycle is
t ≥ 1, finding the optimal path from the initial vertex to
the optimal steady cycle is done in time O(t|E| log(|V |)) =

O(t
∏k−1

i=0 r2
i

∏N−1
j=k ri log(

∏N−1
i=0 ri))

Clearly, as more agents are involved in leading the team,
their influence on the outcome (the optimal reachable steady
cycle) is higher relative to the case of a single leading agent.
For example, in Figure 1, if agents B and C were leading the
team, then m∗ becomes reachable. However, in the general
case, having more than one leader still might not have the
power to lead the system towards m∗. Consider, as an exam-
ple, the case in which k = 2 and N = 4, i.e., two agents lead
the other two agents towards the optimal steady cycle. The
payoff matrix can be considered as r0 × r1 matrices of size
r2 × r3. If each of these matrices is, for example, a replica

1101

1a 0
1a 1

1aa1
0a0

0 a0
1a0

10
0a

a0
3 3

1a
2
1a

a1
2

3
0a a1

3

a1
2

2
1aa1

2

2
1a

3
1aa0

33
0a a1

3

a1
2

2
1a

3 10

783

112

2

5

20

14

4

12

111

3

0000 0001 0100 0101

0111011000110010

1000 1001

1010 1011 1110 1111

1100

1

Figure 5: An example for the graphical representation where there

is more than one ad hoc agent. The team has 4 agents: 2 ad hoc

(a0 and a1) and 2 best response (a2 and a3), each having 2 actions.

of the matrix described in Figure 1, then agents a0 and a1

will never be able to lead the team to m∗ (unless starting
at m∗), as regardless of their actions, a2 and a3 will never
jointly choose actions a2

1 and a3
1 (respectively).

This example leads to the following corollary:

Corollary 2. In a team of N agents, for every N ≥ 3,
where at least two team members are best response agents,
m∗ may remain unreachable.

6. LEADING WITH UNCERTAINTY
It is possible, perhaps likely, that our designed agent will

be uncertain about the behaviors of its teammates. We con-
sider in this section a two-agent team, agents A and B, where
agent A is an ad hoc agent, and agent B can be either an
ad hoc agent or a best response agent. Clearly, if B is an ad
hoc agent and the agents are fully coordinated, then their
choice of actions is well defined—both will choose together
the joint action with utility m∗. Similarly, in larger teams
where there is more than one ad hoc agent and they are co-
ordinated, then the solution is similar to the one described in
Section 5. However, uncertainty may arise when, for exam-
ple, communication fails, and agent A has to decide which
action to take in order to lead the team to m∗ (recall that in
the two-agent team case, m∗ is always reachable). In cases
where there exists a probability distribution over the possi-
ble identities of the teammate, the ad hoc agent can choose
actions that result in a minimal cost path towards m∗, and
also possibly choose actions that will reveal the true identity
of the teammate (if necessary).

If B is a best response agent, then like in previous sections
(and in [11]) it assumes that A will continue performing its
previous action, and given that action it will choose an ac-
tion maximizing the joint utility. If B is an ad hoc agent, we
assume that it will act in one of two ways: it will either be-
lieve that A is an ad hoc player, thus will choose action by−1

(assuming A will choose ax−1, reaching m∗ immediately), or
it will assume that A is a best response player, and choose
its actions appropriately. Modeling the identity of the other
agent can be done recursively infinitely (what A believes B
will do, that believes what A will do, and so on), however
we are motivated by RMM [5] in modeling only a recursion
of depth two (note that although RMM does recommend
a recursive depth 2, it is usually shown to be beneficial to

346

model a bounded depth, and we leave the general discussion
of depth in this setting to future work). Therefore we model
three possible cases: (i) B is a best response agent, denoted
by br ; (ii) B is an ad hoc agent, believing that A is an
ad hoc agent, denoted by ah/ah; (iii) B is an ad hoc agent
believing that A is a best response agent, denoted by ah/br.

In order to determine the best action for our agent A, we
build a graph for each identity of the teammate. Note that
since the vertices of the graphs are identical, we can use one
graph with three different types of edges: Ei for br agent,
Eii for ah/ah agent and Eiii for the ah/br agent.

Generally, when uncertainty arises with respect to the en-
vironment (in our case the identity of the teammate), it is
common to gain more information about the environment
while exploring it. In our case, we need agent A to both
gain information about B, and to allow agent B to reeval-
uate its belief about A. Specifically, if agent B is ah/br, we
want it to realize that A is not a best response agent, thus
allowing the team to reach m∗ more efficiently. This hap-
pens if A diverts from the expected best response behavior.
Note that if agent B is an ah/ah agent, it will choose to per-
form action by−1 even after realizing that A did not perform
ax−1, since diverting from that action will necessarily cause
the path to m∗ to be longer (even in the case where A is best
response, its next action would be ax−1, leading to m∗).

As a first step we construct Ei, Eii and Eiii. Ei is con-
structed as in Section 3. Eii and Eiii can theoretically be
complete graphs, however given the beliefs of B, most of
the edges will not exist. Since B believes A to be an ad
hoc agent, it will choose action by−1, thus Eii includes x
edges from v00 to vi(y−1), ∀0 ≤ i ≤ x − 1, and x − 1 more
edges from vi(y−1) to m∗. Eiii is constructed as follows.
The only outgoing edge out of v00 is to some vij such that
ai = BRA(b0), and bj ∈ SPB(v00, m

∗), where SPB denotes
the shortest path from v00 to m∗, calculated by B (according
to the weights and path that are calculated similarly to the
description in Section 3). In addition, there are x − 1 edges
from v00 to vkj , 0 ≤ k ≤ x−1. From now on, for each vertex
v, if there is no incoming edge from some vertex u such that
v is the best response of u with respect to A’s behavior as
a best response agent, then we add an edge (v, m∗), other-
wise the only edges added are from v to vij , 0 ≤ i ≤ x − 1,
bj ∈ SPB(v00, m

∗) (we omit the formal algorithm due to
space constraints). Choosing the shortest path from v00 to
m∗ will determine whether it is more efficient to choose an
edge that in the short term might not be beneficial, but will
reveal enough information to the teammate that will force
it to realize it is teamed with an ad hoc agent, making it
choose a shorter path towards m∗.

Given the constructed edges, one can compute the shortest
path along each set of edges, starting from v00 towards m∗.
Each of these path has a total cost, and given a probability
distribution over the possible identities of the teammates,
the first action is chosen such that the expected cost is min-
imized. If ax−1 is chosen, then the path towards m∗ is easily
determined (regardless of the true identity of B). If it was
not chosen, then A follows the path it chose, while making
adjustments throughout the execution. Namely, if it chose
an action that will teach B that it’s an ad hoc agent, yet B
acts as a best response (rather than ad hoc), it will find the
shortest path towards m∗ according to Ei (as it is clear that
B is best response). Otherwise, it will follow the shortest
path by Eiii towards m∗.

22

4

a4

3a

a2

a1

0a

3bb21bb0

5

10 15 0 0 0

017160

0 0 18 19 15

0 0 0 20 21

0 0 0 0

b

Figure 6:
Example for

the advantage

of relying on

expected cost.

Clearly, if A assumes some identity of
B and it is not mistaken, then this yields
the best possible path towards m∗. Con-
sider the example in Figure 6. If A pre-
pares for ah/ah and is teamed with an
ah/ah, the cost of path towards m∗ is
0. If it expects B to be ah/br and B
is indeed ah/br, the cost of the path is
6. Finally, if it expects B to be br and is
indeed teamed with a br agent, then the
cost is 12. Being wrong in the identity
of the teammate is costly. Note that no
matter if A expects a weak opponent and
is teamed with a strong one or the oppo-

site - the consequences (in terms of path cost) are high. In
this example (considering a uniform probability distribution
between the identities) assuming a br teammate has minimal
expected cost of path towards m∗: assuming an ah/ah team-
mate has expected cost of 14.6, assuming an ah/br team-
mate has expected cost of 18.6 and br has expected cost of
14. Therefore, according to the algorithm, B should be as-
sumed to be a br agent. This choice of action yields a worst
case cost of mistaken identity of 17 (if B is actually ah/ah).
On the other hand, if we would not have consulted the algo-
rithm and chosen to believe that B is ah/ah, the worst cost
of mistaken identity would be 22, and similarly ah/br yields
worst cost of 28 upon mistaken identity. Note that generally
even if the maximal cost of mistaken identity is not higher
in the unchosen belief, still the expected cost is lower, thus
in the average case, by using this algorithm, A minimizes its
cost.

When leading a team with more than one agent where one
of them might be an ad hoc agent, the identity of the team-
mate can be crucial, and determines whether m∗ is reachable
or not. This case is broad and complicated and is thus left
out of the scope of this paper.

7. RELATED WORK
Stone et al. [10] introduced a formalism for Ad-Hoc team-

work, which deals with teamwork behavior without prior
coordination. They raised a challenge “To create an au-
tonomous agent that is able to efficiently and robustly collab-
orate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team mem-
bers”. This paper answers one aspect of the challenge raised
there, namely leading teams of agents, with no a-priori coor-
dination and explicit communication to the optimal possible
joint-utility, in a simultaneous-action setting.

Bowling and McCracken [1] suggested two techniques for
incorporating a single agent into an unknown team of exist-
ing agents: adaptive and predictive. In their work, they are
concerned with the task allocation of the agent (which role
should it choose, and what is its teams’ believed behavior),
where their agent might adapt its behavior to what it ob-
serves by the team. Jones et al. [7] examined the problem
of team formation and coordination without prior knowl-
edge in the domain of treasure hunt. They considered a
team composed of heterogenous robots, each with different
capabilities required for various aspects of searching an un-
known environment and extracting a hidden treasure. Their
architecture was based on role selection using auctions. In
contrast to these approaches, in our work we examine how
our agent can influence the behavior of the team by leading

347

the team to an optimal behavior.
Stone and Kraus [12] considered the problem of ad hoc

teamwork by two agents, agent A (also known as the teacher),
and agent B in the k-armed bandit problem. The question
they asked was: Assuming that agent B observes the actions
of agent A and its consequences, what actions should agent
A choose to do (which bandit to pull) in order to maximize
the team’s utility. It was shown that in some cases, agent A
should act as a teacher to agent B by pulling a bandit that
will not yield optimal immediate payoff, but will result in
teaching agent B the optimal bandit it should pull. In our
work we also control the actions of agent A, but the payoff
is determined by the joint actions of the team players, not
by individual actions of each teammate.

Han et al. [6] examined a closely related problem of con-
trolling the collective behavior of self-organized multi-agent
system by one agent. They consider self organized teams
of physically interacting agents, concentrating on flocking of
birds, where their goal is to design an agent, denoted as a
shill agent, that will be able to gradually change the head-
ing of the entire team to a desired heading. They evaluate
the system in terms of physical capabilities of the shill agent
and the team (velocity, initial heading) and provide theoret-
ical and simulation results showing that it is possible, under
some conditions, for one agent to change the heading of the
entire team. Different from out approach, they do not con-
sider game theoretic evaluation of the individual actions and
their impact on the team behavior.

Young [13] introduced the notion of adaptive games, where
N agents base their current decisions on a finite (small)
horizon of observations in repeated games, and search for
agents’ actions yielding a stochastically stable equilibrium
using shortest paths on graphs. In our work, we do not
assume the agents play repeatedly (allowing to adjust to a
strategy), but we aim to guarantee that our agent leads the
team to the optimal possible joint action(s) while minimiz-
ing the cost paid by the team along the way.

Numerous research studies exist in the area of normal form
games, where the agents’ payoffs are described in a matrix
(similar to our case) and depend on the chosen joint ac-
tions. In the normal form games framework, a related topic
is the problem of learning the best strategy for a player
in repeated games. Powers and Shoham [9] considered the
problem of normal form games against an adaptive opponent
with bounded memory. Chakraborty and Stone [2] examine
optimal strategies against a memory bounded learning op-
ponent. Cho and Kreps [3] introduced signaling games, a
sequential Bayesian game in which a player chooses its ac-
tions based on messages transferred from a second player
with unknown type. Our work is inherently different from
these approaches, since in our case the agents are collab-
orating as a team, hence they aim to maximize the joint
payoff and not the individual payoff, which raises different
questions and challenges as for the optimality of the joint
action and the way to reach this optimal joint action.

8. CONCLUSIONS AND FUTURE WORK
In this paper we examine the problem of leading a team of

N ≥ 2 agents by one or more ad hoc team members to the
team’s joint actions yielding optimal payoff. We show that
it may not be possible to lead the team to the optimal joint
action, and offer a graphical representation of the system’s
state and a polynomial time algorithm that determines the
optimal reachable set of joint actions, and finds the path with

minimal system cost to that set. We examine the case in
which the team members base their next action on more than
one previous joint action, describe an algorithm—using the
same graphical representation—that calculates the optimal
strategy for the ad hoc team member in time exponential
in the teammates’ memory size, and show that it is not
likely that there exists an algorithm that solves the problem
in better time complexity. We further use the graphical
representation to consider the case in which the ad hoc agent
is teamed with more than one ad hoc agent in coordination,
and also the case in which it might be teamed with one agent
with uncertain nature—ad hoc or best response.

There are various directions to be addressed as future
work. First, the question of uncertainty can be examined
not only in the identity of the agent, but also in many other
aspects, such as the knowledge of the payoff matrix, namely,
the ad hoc agent might not have full knowledge of the payoff
matrix, but some incomplete knowledge or a probability dis-
tribution over possible values. Similar uncertainty may exist
in the knowledge of the best response agents on the payoff
matrix, which might result in nondeterministic choice of ac-
tions. Uncertainty may exist also in the type of teammates,
acting not necessarily as best response agents, but adapting
other (known or unknown) behaviors.

9. REFERENCES
[1] M. Bowling and P. McCracken. Coordination and

adaptation in impromptu teams. In Proc. of AAAI’05,
pages 53–58, 2005.

[2] D. Chakraborty and P. Stone. Online multiagent learning
against memory bounded adversaries. In Machine Learning
and Knowledge Discovery in Databases, volume 5212 of
Lecture Notes in Artificial Intelligence, pages 211–26,
September 2008.

[3] I. Cho and D. M. Kreps. Signaling games and stable
equilibria. The Quarterly Journal of Economics,
102(2):179–221, 1987.

[4] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1990.

[5] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A
decision-theoretic approach to coordinating multiagent
interactions. In IJCAI, pages 62–68, 1991.

[6] J. Han, M. Li, and L. Guo. Soft control on collective
behavior of a group of autonomous agents by a shill agent.
Systems Science and Complexity, 19(1), 2006.

[7] E. Jones, B. Browning, M. Dias, B. Argall, M. Veloso, and
A. Stentz. Dynamically formed heterogeneous robot teams
performing tightly-coordinated tasks. In Proc. of ICRA’06,
pages 570 – 575, 2006.

[8] R. Karp. A characterization of the minimum cycle mean in
a digraph. Discrete Mathematics, 23, 1978.

[9] R. Powers and Y. Shoham. Learning against opponents
with bounded memory. In Proc. of IJCAI’05, pages
817–822, 2005.

[10] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad
hoc autonomous agent teams: Collaboration without
pre-coordination. In Proc. of AAAI’10, 2010.

[11] P. Stone, G. A. Kaminka, and J. S. Rosenschein. Leading a
best-response teammate in an ad hoc team. In
Agent-Mediated Electronic Commerce: Designing Trading
Strategies and Mechanisms for Electronic Markets
(AMEC), 2010.

[12] P. Stone and S. Kraus. To teach or not to teach? decision
making under uncertainty in ad hoc teams. In Proc. of
AAMAS’10, 2010.

[13] P. Young. The evolution of conventions. Econometrica,
61(1):57–84, 1993.

348

Comparative Evaluation of MAL Algorithms
in a Diverse Set of Ad Hoc Team Problems

Stefano V. Albrecht
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.v.albrecht@sms.ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.ramamoorthy@ed.ac.uk

ABSTRACT
This paper is concerned with evaluating different multiagent
learning (MAL) algorithms in problems where individual
agents may be heterogenous, in the sense of utilizing dif-
ferent learning strategies, without the opportunity for prior
agreements or information regarding coordination. Such a
situation arises in ad hoc team problems, a model of many
practical multiagent systems applications. Prior work in mul-
tiagent learning has often been focussed on homogeneous
groups of agents, meaning that all agents were identical and
a priori aware of this fact. Also, those algorithms that are
specifically designed for ad hoc team problems are typically
evaluated in teams of agents with fixed behaviours, as op-
posed to agents which are adapting their behaviours. In this
work, we empirically evaluate five MAL algorithms, represent-
ing major approaches to multiagent learning but originally
developed with the homogeneous setting in mind, to under-
stand their behaviour in a set of ad hoc team problems. All
teams consist of agents which are continuously adapting their
behaviours. The algorithms are evaluated with respect to a
comprehensive characterisation of repeated matrix games,
using performance criteria that include considerations such
as attainment of equilibrium, social welfare and fairness. Our
main conclusion is that there is no clear winner. However, the
comparative evaluation also highlights the relative strengths
of different algorithms with respect to the type of performance
criteria, e.g., social welfare vs. attainment of equilibrium.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]

General Terms
Algorithms, Experimentation

Keywords
Multiagent Learning, Agent Coordination, Ad Hoc Teams

1. INTRODUCTION
Game theory provides a mathematically well defined frame-
work for the analysis of multiagent interactive decision mak-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing problems. A game consists of a number of players, a set of
actions for each player, and a payoff function for each player.
A large portion of the theory is developed under the assump-
tion that each player knows the structure of the game, i.e. the
action sets and payoff functions of all players. This is known
as a complete information game. A more complicated set-
ting arises if the players have only partial information about
the structure of the game, e.g. no player knows the payoff
function of any other player. This is called an incomplete
information game. While this type of game has been stud-
ied for over half a century (notably by Harsanyi [9–12]), the
problem of incomplete information in multiagent learning
(MAL) has received relatively lesser attention. In a version of
this setting, called the ad hoc team problem [29], one seeks
to design an autonomous agent which is able to collaborate
efficiently with a previously unknown group of agents, in the
absence of any prior coordination between the agent and its
counterparts chosen in an ad hoc way.

This problem is motivated by numerous practical and im-
portant applications. As we increasingly employ autonomous
agents in a growing number of areas, ranging from teams of
robots in automated factories to internet trading agents, it
is likely that these agents will have to collaborate with each
other in nontrivial ways. As teams are augmented and con-
tinually modified over a long lifetime of operation, we would
like agents to be able to learn how to collaborate efficiently
with other agents, despite not knowing – a priori – who they
are. An example of such interaction is given by Stone and
Kraus in [31]. Another example comes from the domain of
human-robot interaction in which a robot has to collaborate
with a human, especially when the robot is not given any
specific information about the characteristics of the human
participant it must collaborate with.

The literature on the ad hoc team problem includes a num-
ber of proposals for models of interaction and learning. One
approach is to try to learn to categorise other agents accord-
ing to their behaviour or to use a set of role templates to
constrain the interactions, e.g. [2, 7]. While these are use-
ful ideas, it is worth noting that many realistic interactive
decision making problems involve one further feature not
captured in these models – multiple agents that are simulta-
neously trying to learn and adapt their behaviour. In such
a setting, the environment is inherently nonstationary [37]
and the interactive behaviour needs more careful treatment.
Motivated by this general issue, this paper reports on an
empirical study into the behaviour of multiagent learning al-
gorithms in ad hoc teams.

There are two open issues with current MAL algorithms

349

in the literature. First, we note that most MAL algorithms
(e.g. [1,3,5,6,8,14,17,23,32]) were primarily evaluated in ho-
mogeneous groups of agents, meaning that all agents in the
group were identical, and all agents were a priori aware of this
fact. Second, virtually all MAL algorithms which were specif-
ically designed for ad hoc team problems (e.g. [2,7,30,31,36])
were primarily evaluated in teams of agents with fixed be-
haviours. In this work, we evaluate five MAL algorithms of
the first sort in a series of ad hoc team problems. In addi-
tion, every team consists of agents which are continuously
adapting their behaviours. The algorithms are evaluated in a
comprehensive set of repeated games, ranging from games in
which the players agree on what is most preferred, to games
in which the players disagree on what is most preferred. Our
performance criteria include the convergence rate, the final
expected payoff, social welfare and fairness, and the rates of
several solution types.

Our intention was to identify those approaches covered by
our selection of algorithms which may be better suited for
ad hoc team problems. However, as we will show, our results
indicate that there is no clear favourite among the algorithms.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the experimental setup, including algorithms,
games, and performance criteria. Section 3 presents and anal-
yses the results of our experiments. Section 4 discusses related
work and Section 5 concludes our work.

2. EXPERIMENTAL SETUP

2.1 Algorithms
Our selection of algorithms is motivated by the range of
approaches it covers. We tested two algorithms that model
their opponents and three that do not model their opponents:

• Joint Action Learning (JAL) [5, 32]

• Conditional Joint Action Learning (CJAL) [1]

• Win or Learn Fast with PHC (WOLF-PHC) [3]

• Modified Regret-Matching1 (RegMat) [14]

• Nash Q-Learning (NashQ) [17]

JAL tries to model its opponents by learning their marginal
action probabilities. It uses these probabilities to compute
the expected payoffs of all of its actions. CJAL extends JAL
in that it learns the action probabilities of its opponents con-
ditioned on its own actions. WOLF-PHC uses a hill climbing
method in the space of mixed strategies to find an optimal
strategy. RegMat minimises the regret it feels for not having
played any other actions. Finally, NashQ tries to learn the
payoff distributions of all agents and plays a Nash equilib-
rium strategy in each state, regardless of the actual behaviour
of its opponents.

1We use the Hannan-consistent version of RegMat. This
means that for each action âi, the Hannan regret Rt(âi) =
1
t

∑t
τ=1 ui(âi, a

τ
−i) − 1

t

∑t
τ=1 ui(a

τ) will be ≤ 0 as t → ∞,
where aτ denotes the joint action played at time τ (see [14]).

Algorithm 1 Modified evaluation procedure

Initialise: Empty vector Mi for each agent i ∈ N
loop

Randomly generate a strictly ordinal 2× 2× 2 game Γ
Randomly generate a team B from N with |B| = 2
for all i ∈ N do

Play Γ with agents {i} ∪B, where agent i is player 1
Compute metrics for agent i and store them in Mi

end for
end loop
Return averaged metrics avg(Mi) for each i ∈ N

2.2 Games
The algorithms are evaluated in a range of repeated games.
A repeated game Γ is a tuple (N, (Ai)i∈N , (ui)i∈N), where
N = {1, ..., n} is the set of players (or agents), Ai is the
set of actions available to player i, and ui : A → R is the
payoff function of player i, where A = A1 × ... × An. In
each repetition of the game, each player i ∈ N simultane-
ously chooses an action ai ∈ Ai and receives the payoff
ui(a1, ..., an). Each player i chooses its actions based on a
strategy πi : Ai → [0, 1], which is a probability distribution
over the set Ai. A strategy πi is called a pure strategy if
πi(ai) = 1 for some ai ∈ Ai. A strategy is called a mixed
strategy if it is not a pure strategy. Given a strategy profile
π = (π1, ..., πn), the expected payoff to player i is defined as
Ui(π) =

∑
a1,...,an

π1(a1) ∗ ... ∗ πn(an) ∗ ui(a1, ..., an).

Our experiments are divided into three parts. The first two
parts evaluate the algorithms in the set of all structurally
distinct strictly ordinal 2× 2 no-conflict and conflict games,
respectively (based on [25]). A m1 × ...×mn game is one in
which there are n players, each of which with mi actions. In
an ordinal game, each player ranks each of the k =

∏
imi

possible outcomes from 1 (least preferred) to k (most pre-
ferred). An ordinal game is called strictly ordinal if no two
outcomes have the same rank. An ordinal game is called
a no-conflict game if all players have the same set of most
preferred outcomes, otherwise it is called a conflict game. Fi-
nally, a set of games is said to be structurally distinct of no
game in the set can be reproduced by any transformation of
any other game in the set. Possible transformations include
interchanging the rows, columns, players, and any combina-
tion of these in the payoff matrix of the game.

We divided the games into no-conflict and conflict games
because these define two distinct levels of difficulty. In a
no-conflict game, it is relatively easy to arrive at a solution
that is best for all players since all players have the same
most preferred outcomes. However, in a conflict game, there
is no such outcome. Therefore, the agents will have to arrange
some form of a compromise. This requires reliable coordi-
nation mechanisms, especially in the context of ad hoc teams.

The third part of our experiments uses a modified version
of the evaluation procedure proposed by Stone et al. [29]. The
procedure tests the algorithms in a number of randomly gen-
erated strictly ordinal 2×2×2 games. Each team may contain
multiple agents of the same type. Every game is repeated
for each algorithm under the same conditions. Algorithm 1
shows the pseudo-code of the procedure.

2.3 Performance criteria
This section provides definitions of the performance criteria

350

used in our experiments. The definitions are based on the no-
tion of plays of repeated games. A play PΓ of a repeated game
Γ is a tuple ((πt)t=1,...,tf , (a

t)t=1,...,tf , (r
t)t=1,...,tf), where

t ∈ {1, ..., tf} denotes the time, tf denotes the final time of
the play, πt = (πt1, ..., π

t
n) denotes the strategy profile at time

t, at = (at1, ..., a
t
n) denotes the joint action at time t, and

rt = (rt1, ..., r
t
n) denotes the joint payoff at time t.

2.3.1 Convergence rate
The convergence rate of an agent is defined as the percent-
age of plays in which the agent converged. Let PΓ be a play
of some repeated game Γ. We say that agent i converged in
PΓ if its strategies πti stay within a tolerance bound of ±5%
in the final 20% of the play. Formally, agent i converged in
play PΓ if for all t ∈ {ts, ..., tf} and j ∈ {1, ...,mi}, where
ts = 0.8 tf , we have |πtsi (j)− πti(j)| ≤ 0.05.

A high convergence rate is not necessarily better than a
low convergence rate. However, we argue that it may be use-
ful if an agent has a high convergence rate as this means
that the other agents will have to adapt to one less opponent
(that is, once the agent has converged).

2.3.2 Final expected payoff
The final expected payoff of an agent is an approximation of
the agent’s expected payoff after having learned for tf repe-
titions. The approximation is based on the final 20% of the
play. Let PΓ be a play of some repeated game Γ. The final
expected payoff of agent i in play PΓ is formally defined as

r̄i = 1
tf−ts+1

∑tf
t=ts

rti , where ts = 0.8 tf . This is an impor-

tant metric because it is a major indicator of the algorithm’s
individual performance.

2.3.3 Social welfare and fairness
Let PΓ be a play of some repeated game Γ. We define the
social welfare and fairness of play PΓ, respectively, as the
sum and product of the final expected payoffs r̄i of all agents
i ∈ N . Formally, this corresponds to

∑n
i=1 r̄i for the social

welfare, and
∏n
i=1 r̄i for the social fairness. These metrics are

useful for the assessment of an algorithm’s team performance.

2.3.4 Rate of different solution types
We measure the rates of four different solution types. The
definitions in the following sections rely on the notion of the
averaged final profile. Let PΓ be a play for some repeated
game Γ. The averaged final profile (or AFP) of PΓ is the
average of all strategy profiles in the final 20% of the play.
Formally, we denote the AFP by π̄ = (π̄1, ..., π̄n), where

π̄i = 1
tf−ts+1

∑tf
t=ts

πti and ts = 0.8 tf . We use the final 20%

of the play to approximate mixed strategies for agents that
play pure strategies only (such as JAL and CJAL).

Nash equilibrium rate.
The Nash equilibrium (NE) rate is defined as the percentage
of plays in which the AFP constitutes a Nash equilibrium.
A strategy profile π = (π1, ..., πn) is a Nash equilibrium if
Ui(π1, ..., πi, ..., πn) ≥ Ui(π1, ..., π̂i, ..., πn) for all players i
and all strategies π̂i. Given a play PΓ of a repeated game Γ,
we determine if the play resulted in a Nash equilibrium by
solving the following linear programme for each player i ∈ N :

Maximise: Ui(π̄1, ..., πi, ..., π̄n)
Subject to: ∀j ∈ Ai : πi(j) ≥ 0∑

j∈Ai πi(j) = 1

We denote the optimised profile for player i by πi. If, for
any i ∈ N , the expected payoff under the optimised profile,
Ui(π

i), exceeds the expected payoff under the AFP, Ui(π̄),
by more than 5%, then we conclude that the play PΓ did not
result in a Nash equilibrium. Formally, we define PΓ to re-

sult in a Nash equilibrium if ∀i ∈ N : Ui(π
i)

Ui(π̄)
≤ 1.05.

Pareto optimality rate.
The Pareto optimality (PO) rate is defined as the percent-
age of plays in which the AFP is Pareto-optimal. A strategy
profile π is Pareto-optimal if there is no other profile π̂ such
that ∀i ∈ N : Ui(π̂) ≥ Ui(π) and ∃i ∈ N : Ui(π̂) > Ui(π).
Similar to [1], we determine if a profile is Pareto-optimal by
measuring its orthogonal distance to the Pareto front.

Consider a repeated game Γ. The space of possible ex-
pected (joint) payoffs of Γ is a convex polytope in Rn that
has one dimension for each player i ∈ N . It is defined as the
convex hull of all joint payoffs (u1(a), ..., un(a)) for all joint
actions a ∈ A1 × ...×An. Each point in this payoff polytope
corresponds to a tuple of expected payoffs (U1(π), ..., Un(π))
for some profile π = (π1, ..., πn). The Pareto front of a payoff
polytope Φ is defined as the set of Pareto-optimal faces of Φ.
A face φ of Φ is Pareto-optimal if the corresponding strategy
profiles of all points on φ are Pareto-optimal. Now, given a
play PΓ of Γ, we say that it results in a Pareto-optimal solu-
tion if the minimal orthogonal distance of its AFP, π̄, when
projected onto the payoff polytope Φ of Γ, to the Pareto front
of Γ is not greater than 0.1. Tests indicate that this value
works well for ordinal games.

Figure 1 shows the payoff polytope of a 2×2 game. The pay-
off table of the game is given in the figure. Player 1 chooses
the row and player 2 chooses the column. The elements of
the table contain the payoffs to player 1 and 2, respectively.

0 1 2 3 4 5
0

1

2

3

4

5

Payoff to player 1

Pa
yo

ff
to

 p
la

ye
r 2

1, 1 4, 1
1, 4 3, 3

Figure 1: Example of a Pareto front.

The asterisks in the plot mark the four payoff pairs. The
edges correspond to the faces of the polytope. Together, they
define the convex hull of all payoff pairs. The solid edges show
the Pareto-optimal faces of the polytope. Together, they de-
fine the Pareto front of the payoff polytope. This means that
every strategy profile whose expected payoff is on2 the Pareto
front constitutes a Pareto-optimal profile.

2Or, as in our case, close to the Pareto front.

351

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 1 3.9866 7.9720 15.9063 1 0.9920 0.9920 0.9920

CJAL 1 3.9831 7.9663 15.8874 1 0.9897 0.9897 0.9897
WOLF-PHC 0.9996 3.9449 7.8908 15.6426 1 0.9638 0.9638 0.9638

RegMat 0.9990 3.9107 7.8170 15.3906 0.9954 0.9457 0.9457 0.9457
NashQ 0.9987 3.9840 7.9733 15.9144 0.9954 0.9939 0.9939 0.9939

Table 1: Results for no-conflict games.

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 0.8901 3.0140 6.0592 8.9997 0.8982 0.7781 0.7021 0.6164

CJAL 0.9456 3.0326 6.0978 9.0900 0.8470 0.8050 0.7184 0.6250
WOLF-PHC 0.9430 3.0392 6.0620 9.0517 0.9047 0.7636 0.6992 0.6142

RegMat 0.8673 3.0313 6.0368 8.9610 0.8946 0.7662 0.7000 0.6109
NashQ 0.9990 3.0446 6.0667 9.0755 0.8722 0.7767 0.6946 0.6097

Table 2: Results for conflict games.

Welfare/Fairness optimality rate.
The welfare optimality (WO) and fairness optimality (FO)
rates are defined as the percentage of plays in which the AFP
is welfare-optimal and fairness-optimal, respectively. Given
a play PΓ of a repeated game Γ, we say that it results in
a welfare-optimal (fairness-optimal) solution if the welfare
(fairness) of its AFP is not more than 5% lower than the max-
imum welfare (fairness) of Γ. The maximum welfare (fairness)
of a game is the highest possible welfare (fairness) achiev-
able by any strategy profile.

Given a game Γ, we compute its maximum welfare by solv-
ing the following non-linear optimisation problem:

Maximise:
∑
i∈N Ui(π)

Subject to: ∀i ∈ N ∀j ∈ Ai : πi(j) ≥ 0
∀i ∈ N :

∑
j∈Ai πi(j) = 1

Similarly, we compute its maximum fairness by solving the
following non-linear optimisation problem:

Maximise:
∏
i∈N Ui(π)

Subject to: ∀i ∈ N ∀j ∈ Ai : πi(j) ≥ 0
∀i ∈ N :

∑
j∈Ai πi(j) = 1

We denote the optimised profile of the first problem by
πw and the one of the second problem by πf . Then, for a
given play PΓ, we say that it resulted in a welfare-optimal

solution if W (πw)
W (π̄)

≤ 1.05, where W (π) =
∑
i∈N Ui(π). Simi-

larly, we say that it resulted in a fairness-optimal solution if
F (πw)
F (π̄)

≤ 1.05, where F (π) =
∏
i∈N Ui(π).

2.4 Parameter settings and selection strategies
With the exception of RegMat, all algorithms are based on
Q-learning [33]. This means that they use a table Q to store
estimated values for each joint action a ∈ A. The values are
updated using a formula of the form Q(a)← (1−α)Q(a)+α r,
where r is the payoff to the algorithm, and α is the learn-
ing rate. We use a constant learning rate of α = 0.1 for
all algorithms throughout all experiments. This violates the
standard conditions for stochastic approximation [18], but
enables the algorithms to learn continuously.

Furthermore, all algorithms except RegMat use a selection
strategy to choose their actions. We use an ε-greedy strategy
for all algorithms. Therein, the algorithm chooses a random
action with probability ε, and the greedy action (i.e. the ac-
tion that is currently believed to have the highest expected

payoff) with probability 1− ε. We use a constant exploration
rate of ε = 0.05 for all algorithms. RegMat chooses its ac-
tions similar to ε-greedy. Here, the parameters δ and γ do
the job (see [14]). We set these to δ = 0.1 and γ = 0.2 for all
experiments.

Finally, for WOLF-PHC, we need to specify two additional
learning rates δw and δl with δl > δw (see [3]). The algorithm
uses the learning rate δw if it believes itself to be “winning”,
and it uses the rate δl if it believes itself to be “losing”. We
use a setting of δw = 1

1000+t
and δl = 2δw, where t denotes

the time (or current repetition) of the game.

We tested these settings in a series of experiments and
found them to be working well. Nonetheless, the settings are
likely to be sub-optimal. This, however, is irrelevant for our
purposes since we are not considering the rate at which the
algorithms learn about the action values or explore the envi-
ronment. This can be neglected insofar as that an optimised
parameter setting, when considered in the long-run, will not
lead to fundamental improvements (such as an enhanced ca-
pability to learn Nash equilibria). Instead, we chose to use
identical or similar parameter settings for all algorithms in
order to simplify the analysis of the results.

3. EXPERIMENTAL RESULTS
This section presents and analyses the results of our exper-
iments. It is important to note that the performance of an
algorithm may depend on the player position it takes on. To
account for this, we repeated each play once for every per-
mutation of the agent order. We call this process a sweep.

In the following, whenever we refer to statistical signifi-
cance, this is based on a paired t-test with a significance level
of 5%. We use the notation “Alg1 / Alg2” if the performances
of the algorithms Alg1 and Alg2 are statistically equivalent
(i.e. the difference is statistically insignificant). All reported
results are averaged over all plays, games, and teams.

3.1 No-conflict games
The first part of our experiments evaluated the algorithms
in the set of all structurally distinct strictly ordinal 2 × 2
no-conflict games (21 games in total). We evaluated all com-
binations of the algorithms in each of the games. In total,
we evaluated each pair of algorithms in 25 sweeps (50 plays),
where each play consisted of 100,000 repetitions.

Table 1 shows the performance metrics for every algorithm.
The maximum payoff any player can achieve in any game is

352

Agent Conv. Fexp. Welfare Fairness NE PO WO FO
JAL 0.854 5.7964 17.2174 193.1478 0.804 0.712 0.466 0.396

CJAL 0.922 5.7856 17.3521 196.1594 0.760 0.742 0.486 0.418
WOLF-PHC 0.918 5.7400 17.1956 193.0255 0.824 0.676 0.442 0.388

RegMat 0.852 5.7290 17.2315 193.9011 0.844 0.708 0.438 0.392
NashQ 0.980 5.7562 17.2452 193.6470 0.790 0.734 0.452 0.388

Table 3: Results for random games.

4, and the maximum social welfare and fairness, respectively,
are 8 and 16. All algorithms performed quite well. We note
that NashQ, both in homogeneous and heterogeneous teams,
performed extremely well. A closer look at the strategy tra-
jectories reveals that NashQ persuades the other agent to
play a NE strategy by playing a NE strategy itself, regardless
of whether it could achieve a higher payoff by using another
strategy. However, NashQ requires more information than
any of the other algorithms.

Next, we note that those algorithms that model their op-
ponents (i.e. JAL and CJAL) perform generally better than
those that do not (i.e. WOLF-PHC and RegMat, leaving
NashQ aside). Both JAL and CJAL have better results than
WOLF-PHC and RegMat throughout all constellations of
agents. Note also that JAL and CJAL have almost identical
performances (all significance tests were negative). The re-
sults indicate that opponent modelling techniques may be
better suited for ad hoc team scenarios because they learn
the strategies of the other agents irrespective of the algo-
rithms on which they are based. This is in line with Barrett
et al. [2] and Wu et al. [36], whose algorithms are also based
on opponent modelling techniques.

3.2 Conflict games
The second part of our experiments evaluated the algorithms
in the set of all structurally distinct strictly ordinal 2 × 2
conflict games (57 games in total). As before, we evaluated
each combination of the algorithms in each of the games, us-
ing 25 sweeps and 100,000 repetitions per play. The results
are shown in Table 2. The maximum payoff any player can
achieve in any of these games is 4. However, the maximum
welfare and fairness vary among the games and can be as
high as 7 and 12, respectively.

First, we note that NashQ achieved the highest conver-
gence rate, followed by CJAL / WOLF-PHC, then JAL, and
then RegMat. The high convergence rate of NashQ is ex-
plained by the fact that it plays a NE strategy in each state,
regardless of whether another strategy would provide higher
payoffs. Therefore, as soon as NashQ has learned the payoff
structure of the game, it will always play the same strategy.
The low convergence rate of RegMat can be explained by the
fact that it constantly tries to maintain (or restore) the Han-
nan consistency, forcing it to frequently change its strategy.

The final expected payoffs and the average welfare and
fairness of all algorithms are very similar. Indeed, all of these
are statistically equivalent. This is an interesting result since
it does not correspond to the solution rates of the algorithms.
Here, one can see that WOLF-PHC / JAL / RegMat have
the highest NE rates, followed by NashQ and CJAL. On the
other hand, CJAL has the highest PO rate, followed by all
other algorithms with statistically equivalent PO rates. The
same applies to the WO and FO rates, where CJAL again
achieved the highest rate, while the other algorithms achieved
equivalent rates. Furthermore, note that NashQ has the sec-

ond lowest NE rate although it plays a NE strategy in every
state. Other than in the previous section, playing a NE strat-
egy in every state does not necessarily seem to persuade the
other agent to play a NE strategy as well.

The results seem to indicate that CJAL may be better
suited for ad hoc team problems than the other algorithms.
It achieved the highest PO, WO, and FO rates, and these
are significantly higher than those of the other algorithms.
Moreover, it has the highest average welfare and fairness (yet
these are statistically equivalent to the other algorithms).
Note also that, apart from NashQ, it achieved the highest
convergence rate. A high convergence rate is useful since it
allows the other agents to adapt to a stationary opponent
(that is, once it has converged). This is especially useful in
ad hoc team scenarios because the agents may not always
be able to resort to coordination strategies. However, note
that CJAL has the lowest NE rate of all algorithms. Thus,
whether CJAL is better suited for ad hoc team problems will
ultimately depend on the solution concept that is considered
most appropriate for this domain.

3.3 Random games
In the third part of our experiments we investigated how well
the algorithms scale to ad hoc teams with more than two
agents. We used a modified version of the evaluation proce-
dure proposed by Stone et al. (see Section 2.2). Specifically,
we tested each of the algorithms in 500 randomly generated
strictly ordinal 2× 2× 2 games.

Table 3 shows the performance metrics for every algorithm.
The maximum payoff any player can achieve in any game is 8,
while the maximum welfare and fairness may vary among the
games. If the game happens to be a no-conflict game, then
these values amount to 24 and 512, respectively. However, if
the game is a conflict game, then the maximum welfare and
fairness may assume any value as high as 23 and 448, respec-
tively. Of all games generated in our experiments, 2% were
no-conflict games and 98% were conflict games.

First, we note that NashQ has the highest convergence
rate. This is because once the algorithm has learned the game
structure, it will always play the same NE strategy. The sec-
ond and third highest convergence rates were achieved by
CJAL / WOLF-PHC and JAL / RegMat, respectively. It is
interesting to see that CJAL / WOLF-PHC and JAL / Reg-
Mat have similar convergence rates, since, in both groups
respectively, the first algorithm plays pure strategies while
the second algorithm plays mixed strategies. One would ex-
pect the former to have a significantly lower convergence
rate than the latter because those algorithms that play pure
strategies need to change their strategies periodically in or-
der to approximate mixed strategies.

The final expected payoffs (FEPs) of all algorithms are
statistically equivalent. Note that NashQ achieved the third
highest FEP. This is interesting because NashQ plays a NE

353

strategy regardless of whether or not another strategy pro-
vides higher payoffs. Moreover, it is remarkable that JAL,
CJAL, WOLF-PHC, and RegMat have equivalent FEPs de-
spite the fact that the former two play pure strategies while
the latter two play mixed strategies. This could indicate that
the impact on the average payoffs due to the constellation of
agents in a team may not be as strong as one might other-
wise expect.

The average welfare and fairness confirm our observations
of Section 3.2. CJAL achieved a higher welfare and fairness
than any other algorithm. The welfare and fairness of the
other algorithms are statistically equivalent. This corresponds
to the WO and FO rates of the algorithms, where CJAL
achieved significantly higher rates than all other algorithms.
In fact, in almost half of all plays, CJAL managed to arrive at
a welfare-optimal solution, of which a majority was fairness-
optimal as well. As noted earlier, this may be a valuable
property for ad hoc team problems. An ad hoc agent that is
able to collaborate with an unknown group of agents such
that the overall performance of the entire group is optimised
(in terms of welfare and fairness) may be better than an agent
that attempts to optimise its own payoff only. However, we
note again that this essentially depends on the priorities of
both the ad hoc agent and the entire group.

Finally, consider the different solution rates. The highest
NE rate was achieved by RegMat, followed by WOLF-PHC,
JAL / NashQ, and then CJAL. Note that the NE rate of
CJAL is relatively low when compared to the other agents.
However, this is opposed by the PO rates. Here, CJAL /
NashQ achieved the highest rate, followed by JAL / RegMat
and WOLF-PHC. It is interesting that CJAL and NashQ
achieved equivalent PO rates, despite the fact that CJAL
was specifically designed to learn PO solutions [3], whereas
NashQ was specifically designed to learn NE solutions [17].
Note also that the PO rate of WOLF-PHC is quite low, es-
pecially in comparison to its relatively high NE rate.

3.4 Overall results
Figure 2 shows the results averaged over all three parts. Note
that we cannot take the average of the payoffs since we con-
sider ordinal games. However, for the final expected payoffs,
we first normalised the values by dividing through the respec-
tive maximum, after which we took the average of all results.
Thus, the final expected payoffs in Figure 2 are to be read
as percentages where 0% means that the algorithm always
achieved its least preferred outcome, and 100% means that
it always achieved its most preferred outcome.

The results show that there is, in fact, no algorithm which
achieved an overall better performance in the experiments,
that is, no algorithm is generally better. The following sum-
mary underlines this:

• JAL has the second lowest convergence rate with about
91.47%. This comes from the fact that it changes its
strategy periodically in order to approximate a mixed
strategy. Furthermore, it has the third highest payoff
rate with 82.49%. This rate is statistically equivalent to
the highest rates. The NE rate of JAL is the third high-
est with about 90%. Finally, it has the third highest
PO rate (82.74%), the second highest WO rate (72%),
and the second highest FO rate (66.81%).

Conv. Fexp. NE PO WO FO
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr
ob

ab
ilit

y

Overall results

JAL
CJAL
WOLF−PHC
RegMat
NashQ

Figure 2: Overall results.

• CJAL has the second highest convergence rate with
about 95.59%. This is since it attempts to learn Pareto-
optimal solutions, which, in our case, are often pure
profiles. Moreover, of all algorithms used in our experi-
ments, it has the highest PO rate (84.56%), WO rate
(73.14%), and FO rate (67.76%), which consequently
leads to the highest payoff rate with about 82.57%.
However, this is opposed by the fact that it achieved
the lowest NE rate with 86.9%.

• WOLF-PHC has the third highest convergence rate
with about 95.35%. This is statistically equivalent to
CJAL. Furthermore, it has the second lowest payoff rate
with 82.12%. On the other hand, with about 90.96%
it has the second highest NE rate. This rate is statisti-
cally equivalent to the highest NE rate. Finally, it has
the second lowest PO rate (80.12%), WO rate (70.17%),
and FO rate (65.53%).

• RegMat achieved the lowest convergence rate with
90.61%. As pointed out earlier, it frequently changes
its strategy in order to maintain the Hannan consis-
tency. Moreover, with about 81.72%, it also has the
lowest payoff rate. This is a consequence of its frequent
changes. Interestingly, these efforts lead to the highest
NE rate of all algorithms with about 91.14%. However,
they also lead to the lowest PO rate (80.66%), WO rate
(69.46%), and FO rate (64.95%).

• NashQ, with about 99.26%, managed to converge in
most of the games. As was explained earlier, this is since
it will always play the same strategy after it learned
the payoff structure of the game. It is worth noting
that it has the second highest payoff rate with about
82.56%, which is almost identical to the highest rate.
This is interesting since NashQ chooses its strategies ir-
respective of the strategies of the other agents. On the
other hand, it is surprising that it has the second lowest
NE rate (88.59%), despite the fact that it plays a NE
strategy in each state. It is equally surprising that it
achieved the second highest PO rate (83.49%) and the
third highest WO rate (71.35%) and FO rate (66.39%),
despite the fact that it was not optimised for these so-
lution types.

354

We conclude that the assessment of an algorithm ulti-
mately depends on the solution concept that is considered
most appropriate for the problem at hand. In other words,
its performance depends on the priorities of the entire team.
For example, in the predator domain investigated by Barrett
et al. [2], it would be most desirable to arrive at a welfare-
optimal solution if we define the welfare of the predator group
to be the inverse of the average steps needed to capture the
prey. Moreover, if we think of the agents as real robots (e.g.
as in [31]), then we might want to arrive at a fairness-optimal
solution in order to ensure that all robots have identical or
similar energy consumptions. On the other hand, in a multia-
gent marketing application in which the other agents cannot
be trusted (as they may want to deceive us in order to in-
crease their payoffs), we would want to arrive at a Nash
equilibrium (or minimax profile in 2-player zero-sum games)
such that we can guarantee a minimum average payoff.

Although this conclusion may seem unsurprising at first
glance, the implications should be of interest to researchers
developing multiagent learning algorithms. The typical focus
in this area has been on the concept of Nash equilibria (or,
equivalently, minimax profiles in 2-player zero-sum games).
For a selection, see [3–6,15–17,21–24,32]. Some authors focus
on the concept of Pareto optimality as an alternative [1,20,27],
others focus on correlated equilibria [8, 13,14], and some do
not make any specific commitments regarding the nature of
the solution [2,30,31,36]. However, as can be seen from our re-
sults, it is important to consider a wider spectrum of solution
concepts in order to fully assess the performance of an algo-
rithm. Indeed, this bears an interesting resemblance to the
No Free Lunch theorems of Wolpert and Macready [34,35].
Therein, roughly speaking, it is argued that the performance
of any two algorithms is identical when averaged over all pos-
sible problems. That is, whenever an algorithm is superior to
another algorithm on a certain set of problems, this is paid
for by inferiority on a different set of problems. Our results
show a tradeoff relation of this kind. For instance, CJAL has
the highest PO rate and the lowest NE rate whereas Reg-
Mat has the lowest PO rate and the highest NE rate. Other
algorithms range somewhere in the middle, without best or
worst performances. This seems to indicate that superiority
in one solution type is compensated for by a converse rela-
tion somewhere else.

4. RELATED WORK
Harsanyi pioneered the study of incomplete information
games. In his 1967 paper [10], he describes the Bayesian
game, a game in which players have beliefs about missing
information. He develops the concept of the Bayesian Nash
equilibrium [11] in which each player plays a best response
against the other players, based on the personal beliefs of the
player. Jordan [19] showed that, for any repeated game, if
the players play a Bayesian Nash equilibrium in each repeti-
tion, and if the personal beliefs of the players satisfy certain
conditions, then this will converge to a true Nash equilibrium.

The problem of incomplete information in multiagent learn-
ing, in the form of the ad hoc team problem, was addressed
by Stone et al. [29]. They propose a procedure to evaluate
two ad hoc agents for a given set of potential team members
and tasks. We used a modified version of this procedure for
our own experiments (see Section 2.2).

In earlier work, Stone and Kraus [31] define optimal strate-

gies for an ad hoc agent collaborating with a fixed-behaviour
teammate in an environment modelled as a k-armed ban-
dit. Stone et al. [30] present an algorithm that would lead a
fixed greedy agent towards an optimal joint action in a sim-
ple repeated game in which both agents have identical payoff
functions.

More recently, Genter et al. [7] introduced a framework
for a role-based approach to the ad hoc team problem. Using
a set of predefined roles (i.e. behaviours), the ad hoc agent
tries to assume a role such that the marginal utility of the
team is maximised. The agent was shown to be effective in
several instances of the Pac-Man domain. However, we note
that the framework is based on a number of key assumptions.
It assumes that all teammates follow one of a finite set of
a priori predefined roles, that the ad hoc agent knows what
roles its teammates follow, and that the ad hoc agent knows
the internal payoff distributions of its teammates.

These assumptions are relaxed in a recent empirical study
by Barrett et al. [2]. They used an ad hoc agent that tries
to identify its teammates by observing their behaviour and
comparing it with a database of known behaviours. In addi-
tion, it learns a new model for the observed behaviour using
a tree classifier. The agent combines both the database and
the learned model in a Bayesian fashion to anticipate the be-
haviour of its teammates. Experiments showed that the ad
hoc agent performed quite well, and in general better than
those agents that just mimic their teammates.

Wu et al. [36] proposed an interesting algorithm called On-
line Planning for Ad Hoc Agent Teams (OPAT). For each
encountered state, the algorithm estimates the values of all
joint actions using Monte-Carlo Tree Search. These values
are used to generate a stage game (i.e. a repeated game with
one repetition), based on which the algorithm decides which
action to take. The decision process considers the past m
plays of the current stage game to approximate the strate-
gies of the other agents. OPAT was shown to be effective in
a series of multiagent domains.

5. CONCLUSION
In this work, we compared the performance of five multia-
gent learning algorithms in a set of ad hoc team problems.
The algorithms were evaluated in a comprehensive range of
repeated games, and the teams consisted of agents which
were themselves learning. Our intention was to characterise
the performance of salient types of multiagent learning al-
gorithms in ad hoc team problems. Our experiments show
that there is no clear favourite among the algorithms. In par-
ticular, we conclude that the performance of an algorithm
ultimately depends on the solution concept that is consid-
ered most appropriate for the problem at hand.

The experiments in this paper were based on 2-player and
3-player matrix games, in order to make comparative state-
ments in a well defined and comprehensive set of game types.
It would be of interest to extend this analysis to the case of
multi-player games (i.e. n-player games with n > 3), and to
games with multiple states (i.e. stochastic games [28]). We
expect that such extensions would bring many known diffi-
culties regarding interactive decision making [37] to the fore
and perhaps differentiate the multiagent learning algorithms
further. We anticipate that going down this path may also
clarify when one may need to draw on more elaborate mod-
els than stochastic games, e.g., as in [26].

355

6. REFERENCES
[1] D. Banerjee and S. Sen. Reaching pareto-optimality in

prisoner’s dilemma using conditional joint action learning.
Autonomous Agents and Multi-Agent Systems, 15(1):91–108,
2007.

[2] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of
ad hoc teamwork in the pursuit domain. In Proceedings of
the 10th International Conference on Autonomous Agents
and Multiagent Systems, May 2011.

[3] M. Bowling and M. Veloso. Multiagent learning using a
variable learning rate. Artificial Intelligence, 136(2):215–250,
2002.

[4] G. Brown. Iterative solution of games by fictitious play. In
T. Koopmans, editor, Activity Analysis of Production and
Allocation. Wiley, 1951.

[5] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings
of the National Conference on Artificial Intelligence, pages
746–752, 1998.

[6] V. Conitzer and T. Sandholm. Awesome: A general
multiagent learning algorithm that converges in self-play and
learns a best response against stationary opponents. In
Proceedings of the 20th International Conference on
Machine Learning, volume 20, pages 83–90, 2003.

[7] K. Genter, N. Agmon, and P. Stone. Role-based ad hoc
teamwork. In Proceedings of the Plan, Activity, and Intent
Recognition Workshop at the 25th Conference on Artificial
Intelligence, August 2011.

[8] A. Greenwald and K. Hall. Correlated q-learning. In
Proceedings of the 20th International Conference on
Machine Learning, pages 242–249, 2003.

[9] J. Harsanyi. Bargaining in ignorance of the opponents’ utility
function. Journal of Conflict Resolution, 6(1):29–38, 1962.

[10] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part i. the basic model. Management
Science, 14(3):159–182, 1967.

[11] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part ii. bayesian equilibrium points.
Management Science, 14(5):320–334, 1968.

[12] J. Harsanyi. Games with incomplete information played by
“bayesian” players, i-iii. part iii. the basic probability
distribution of the game. Management Science,
14(7):486–502, 1968.

[13] S. Hart and A. Mas-Colell. A simple adaptive procedure
leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

[14] S. Hart and A. Mas-Colell. A reinforcement procedure
leading to correlated equilibrium. Economic Essays: A
Festschrift for Werner Hildenbrand, pages 181–200, 2001.

[15] J. Hu and M. Wellman. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of
the Fifteenth International Conference on Machine
Learning, volume 242, page 250, 1998.

[16] J. Hu and M. Wellman. Experimental results on q-learning
for general-sum stochastic games. In Proceedings of the 17th
International Conference on Machine Learning, page 414.
Morgan Kaufmann Publishers Inc., 2000.

[17] J. Hu and M. Wellman. Nash q-learning for general-sum
stochastic games. The Journal of Machine Learning
Research, 4:1039–1069, 2003.

[18] T. Jaakkola, M. Jordan, and S. Singh. On the convergence of
stochastic iterative dynamic programming algorithms.
Neural Computation, 6(6):1185–1201, 1994.

[19] J. Jordan. Bayesian learning in normal form games. Games
and Economic Behavior, 3(1):60–81, 1991.

[20] S. Kimbrough and M. Lu. Simple reinforcement learning
agents: Pareto beats nash in an algorithmic game theory
study. Information Systems and E-Business Management,
3(1):1–19, 2005.

[21] C. Lemke and J. Howson. Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied
Mathematics, 12(2):413–423, 1964.

[22] M. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the 11th
International Conference on Machine Learning, volume 157,
page 163, 1994.

[23] M. Littman. Friend-or-foe q-learning in general-sum games.
In Proceedings of the 18th International Conference on
Machine Learning, ICML ’01, pages 322–328. Morgan
Kaufmann Publishers Inc., 2001.

[24] M. Littman and C. Szepesvári. A generalized
reinforcement-learning model: Convergence and applications.
In In Proceedings of the 13th International Conference on
Machine Learning, pages 310–318. Morgan Kaufmann, 1996.

[25] A. Rapoport and M. Guyer. A taxonomy of 2× 2 games.
General Systems: Yearbook of the Society for General
Systems Research, 11:203–214, 1966.

[26] T. Schelling. The Strategy of Conflict. Harvard University
Press, 1980.

[27] S. Sen, S. Airiau, and R. Mukherjee. Towards a
pareto-optimal solution in general-sum games. In
Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 153–160.
ACM, 2003.

[28] L. Shapley. Stochastic games. Proceedings of the National
Academy of Sciences of the United States of America,
39(10):1095, 1953.

[29] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc
autonomous agent teams: Collaboration without
pre-coordination. In Proceedings of the 24th Conference on
Artificial Intelligence, July 2010.

[30] P. Stone, G. Kaminka, and J. Rosenschein. Leading a
best-response teammate in an ad hoc team. In
Agent-Mediated Electronic Commerce: Designing Trading
Strategies and Mechanisms for Electronic Markets, pages
132–146, November 2010.

[31] P. Stone and S. Kraus. To teach or not to teach? decision
making under uncertainty in ad hoc teams. In Proceedings of
the 9th International Conference on Autonomous Agents
and Multiagent Systems, May 2010.

[32] W. Uther and M. Veloso. Adversarial reinforcement learning.
Technical report, Computer Science Department, Carnegie
Mellon University, 1997.

[33] C. Watkins and P. Dayan. Q-learning. Machine learning,
8(3):279–292, 1992.

[34] D. Wolpert and W. Macready. No free lunch theorems for
search. Technical Report SFI-TR-95-02-010, Santa Fe
Institute, 1995.

[35] D. Wolpert and W. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997.

[36] F. Wu, S. Zilberstein, and X. Chen. Online planning for ad
hoc autonomous agent teams. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
2011.

[37] H. Young. Strategic learning and its limits. Oxford
University Press, 2004.

356

An Analysis Framework for Ad Hoc Teamwork Tasks

Samuel Barrett and Peter Stone
Dept. of Computer Science

The University of Texas at Austin
Austin, TX 78712 USA

{sbarrett, pstone}@cs.utexas.edu

ABSTRACT

In multiagent team settings, the agents are often given a protocol for

coordinating their actions. When such a protocol is not available,

agents must engage in ad hoc teamwork to effectively cooperate

with one another. A fully general ad hoc team agent needs to be

capable of collaborating with a wide range of potential teammates

on a varying set of joint tasks. This paper presents a framework for

analyzing ad hoc team problems that sheds light on the current state

of research and suggests avenues for future research. In addition,

this paper shows how previous theoretical results can aid ad hoc

agents in a set of testbed domains.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligience]: Distributed Artificial Intelligence—

Multiagent Systems

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Multiagent Systems, Teamwork

1. INTRODUCTION
As the number of autonomous agents in society grows, so does

the need for them to interact with other agents effectively. Both

robots and software agents are becoming more common, and they

are becoming more durable and robust, remaining deployed for in-

creasing durations. Most existing methods for handling the inter-

actions of agents require prior coordination, in the form of proto-

cols for either coordination or communication. However, as agents

stay deployed for longer, new agents are likely to be introduced

that may not share these protocols. Furthermore, a multitude of

different agents are under development in different businesses and

research laboratories. Unfortunately, it is unlikely that these agents

will all share a common world view or communication protocol.

Therefore, it is desirable for agents to be capable of adapting to

new teammates and learning to cooperate with previously unseen

agents as part of an ad hoc team.

For example, consider a disaster rescue scenario where many dif-

ferent robots developed by many different people converge on the

location of a disaster to attempt to locate and rescue victims. It is

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

desirable for the robots to cooperate as a team, but in such a sce-

nario, there is no time to program the robots to cooperate on site.

If the robots were not explicitly designed to cooperate with one an-

other, they will not work together and may even hinder each other.

On the other hand, if some of these robots are programmed to rea-

son about ad hoc teamwork, they may be able to quickly adapt their

behaviors to cooperate with the other robots to rescue victims.

In a recent AAAI challenge paper, Stone et al. [15] introduced

the concept of an ad hoc team setting, specifying it as a problem

in which team coordination strategies cannot be specified a priori.

They further presented a framework for evaluating the performance

of an ad hoc team agent with respect to a domain and a set of pos-

sible teammates. The authors argued that the ad hoc teamwork

challenge is inherently an empirical problem, but noted that little

empirical research has been done in this area so far. On the other

hand, some recent papers provide interesting theoretical results for

some specific, isolated ad hoc team scenarios [16, 17].

This paper introduces a framework for understanding the rela-

tionships among existing lines of research, specifying several di-

mensions that are especially relevant when reasoning about the dif-

ficulty of different ad hoc team problems. Furthermore, this pa-

per investigates several empirical scenarios and shows how existing

theoretical solutions can be applied to these problems.

The remainder of the paper is organized as follows. Section 2

gives a more complete definition of ad hoc teamwork and speci-

fies the empirical evaluation framework used in this work, and then

Section 3 introduces a classification framework for ad hoc team

problems along three important dimensions. Section 4 studies four

different variations of an experimental domain, each representing

a different point within the classification framework, and identi-

fies their different solutions. Next, Section 5 explores other ad hoc

teamwork domains, classifies them with respect to these dimen-

sions, and suggests avenues for future research. Section 6 situates

our research in literature, and Section 7 concludes.

2. AD HOC TEAMS
In an ad hoc team, agents need to cooperate with previously un-

seen teammates. Rather than developing protocols for coordinating

an entire team, ad hoc team research focuses on developing agents

that cooperate with teammates in the absence of such explicit proto-

cols. Therefore, we consider a single agent cooperating with team-

mates that may or may not adapt to its behavior. We assume that

we can only develop algorithms for the ad hoc team agent, without

having any direct control over the other teammates.

For this work, we adopt essentially the same evaluation frame-

work proposed by Stone et al. [15]. This framework is specified

in Algorithm 1. According to this framework, the performance of

the ad hoc team agent a depends on the distribution of problem do-

mains D and the distribution of possible teammates A that it will

357

cooperate with. For the team B cooperating to execute the task

d, s(B, d) is a scalar score representing their effectiveness, where

higher scores indicate better performance. The algorithm takes a

sampling approach to average the agent’s performance across a

range of possible tasks and teammates to capture the idea that a

good ad hoc team player ought to be robust to a wide variety of

teamwork scenarios. We use smin as a minimum acceptable re-

ward for the team to be evaluated, because the ad hoc team agent

may be unable to accomplish a task if its teammates are too inef-

fective, regardless of its own abilities. It is mainly used to reduce

the number of samples required to evaluate the ad hoc agents and

reduces the noise in the comparisons. Metrics other than the sum

of the rewards can be used depending on the domain, such as the

worst-case performance.

Algorithm 1 Ad hoc agent evaluation

Evaluate(a, A, D):

• Initialize performance (reward) counter r = 0.
• Repeat:

– Sample a task d from D.

– Randomly draw a subset of agents B, from A such that

E[s(B, d)] ≥ smin.

– Randomly select one agent b ∈ B to remove from the

team to create the team B−.

– Increment r by s({a} ∪ B−, d)

• If Evaluate(a0, A, D) > Evaluate(a1, A, D) and the differ-

ence is significant,then we conclude that a0 is a better ad hoc

team player than a1 in domain D over the set of possible

teammates A.

3. DIMENSIONSOFADHOCTEAMPROB-

LEMS
Section 2 specified the framework for evaluating ad hoc team

agents, but this evaluation depends on the specific domain and team-

mates that the ad hoc agent may encounter. In this section, we iden-

tify three dimensions of ad hoc teamwork settings that we believe

can be used to better understand these domains and teammates.

There are many possible ways that ad hoc team domains can vary,

such as the size of the task’s state space and the stochasticity of the

domain. But we find that for differentiating among the algorithms

in the existing literature, the following three are most informative.

1. Team Knowledge: Does the ad hoc agent know what its

teammates’ actions will be for a given state, before interact-

ing with them?

2. Environment Knowledge: Does the ad hoc agent know the

transition and reward distribution given a joint action and

state before interacting with the environment?

3. Reactivity of teammates: Howmuch does the ad hoc agent’s

actions affect those of its teammates?

These dimensions affect the difficulty of planning in the domain in

addition to how much an ad hoc agent needs to explore the environ-

ment and its teammates. When an ad hoc agent has good knowl-

edge, it can plan without considering exploration, but when it has

incomplete knowledge, it must reason about the cost and benefits of

exploration. The exploration-exploitation problem has been studied

previously, but adding in the need to explore the teammates’ behav-

iors and the ability to affect them considerably alters this tradeoff.

Sections 3.1–3.3 provide further details about each of these dimen-

sions, how we measure them, and why they are important for ad

hoc teamwork.

To better illustrate the dimensions, we introduce a simple domain

to evaluate across each of the dimensions. We describe the domain

here and revisit it in the discussion of each dimension.

MatchActions: This domain is a typical coordination game with

two agents, each of which has two actions. If they select the same

action, both receive a reward of ri, where ri is randomly selected

from {0.5, 0.75, 1.0} for i ∈ 1, 2, but fixed for the episode. On

the other hand, if both agents select different actions, they receive

a reward of 0. In addition, both agents can observe their team-

mates’ previous actions. The ad hoc agent knows that its teammate

is following one of two behaviors:

• FirstAction: the teammate always chooses the first action

• BestResponse: the teammate chooses the same action as the

ad hoc agent did previously

Therefore, the state can be represented as the previous action taken

by the ad hoc agent, called s0 if the ad hoc agent chose the first

action, and s1 otherwise.

3.1 Team Knowledge
The ad hoc agent’s knowledge about its teammates’ behaviors

gives insight into the difficulty of planning in the domain. The

agent’s knowledge can range from knowing the complete behaviors

of its teammates to knowing nothing about them. Settings with par-

tial information are especially relevant, because in many real world

problems, the exact behavior of a teammate may not be known, but

some reasonable guidelines of their behaviors exist. For example,

when playing soccer, one can usually assume that a teammate will

not intentionally pass to the other team or shoot at the wrong goal.

If the behaviors are completely known, the agent can reason fully

about the team’s actions, while if the behaviors are unknown, the

agent must learn about them and adapt to find a good behavior.

To estimate the ad hoc agent’s knowledge about its teammates’

behaviors, we compare the actions the ad hoc agent expects them to

take and the ground truth of what actions they take. Specifically, we

compare the expected distribution of teammate actions to the true

distribution that the teammates follow. To compute the difference

between the distributions, we use the Jensen-Shannon divergence

measure, which was chosen because it is a smoothed, symmetric

variant of the popular Kullback-Leibler divergence measure. When

the ad hoc agent has no information about a teammate’s action, we

assume that it uses the uniform distribution to represent its actions.

Therefore, we define the knowledge measure as

K(T, P) =

1 if JS(T, P) = 0

1 − JS(T, P)

JS(T, U)
if JS(T, P) < JS(T, U)

− JS(P, U)

JS(U, Point)
otherwise

(1)

where T is the true distribution, P is the predicted distribution, U
is the uniform distribution, Point is a distribution with all weight

on one point (e.g. [1, 0, 0, . . .]), and JS is the Jensen-Shannon di-

vergence measure. By this definition, K(T, T) = 1, so the knowl-

edge is complete if the ad hoc agent knows the true distribution.

K(T, U) = 0, representing when the ad hoc agent has no knowl-

edge and relies on the uniform distribution. Finally, if the pre-

dicted distribution is less accurate than the uniform distribution,

then K(T, P) is negative, with a minimum value of -1. This mea-

sure captures the range [0,1] smoothly, but can still be used for

the range [-1,0] 1. However, we generally expect the prediction to

1One slight anomaly of this measure is that when T is the uniform
distribution (e.g. [.5,.5]), K is either 1 when P is exactly correct at
[.5 .5] or negative. For all other values of T, K smoothly spans the
range [-1,1].

358

be a higher entropy distribution than the true distribution as the ad

hoc agent ought to correctly model its uncertainty in its teammates’

behaviors rather than being confident and wrong, which keeps the

measure in the range [0,1].

We define the ad hoc agent’s knowledge about its teammates’

behaviors as

TeamK =

n∑

s=1

k∑

t=1

K(TrueActiont(s),ExpActiont(s))

nk
where 1 ≤ s ≤ n is the state, 1 ≤ t ≤ k specifies a teammate,

TrueActiont(s) is the ground truth action distribution for teammate

t for state s, and ExpActiont(s) is the action distribution that the

ad hoc agent expects teammate t to select for state s.
We assume that ExpActiont(s) is the uniform distribution if the

agent has no information about teammate t’s actions in state s.
Thus, if the ad hoc agent has better information about its team-

mates’ behaviors, the distance between the distributions will be

smaller and TeamK will be higher.

Let us now calculate the TeamK for the MatchActions domain.

The ad hoc agent has uniform beliefs over its teammate following

either the FirstAction or BestResponse behaviors. However, the

teammate is actually following the BestResponse behavior. With

these beliefs, in s0, the ad hoc agent expects that its teammate will

always chose a0, so ExpActions0
= [1, 0]. In s1, the ad hoc agent

thinks that the teammate will choose a0 with probability 0.5 and a1

with probability 0.5, while it actually chooses a1 with probability

1. Thus,

TeamK =
K([1, 0], [1, 0]) + K([0, 1], [1

2
, 1

2
])

2
=

0 + 1

2
= 0.5

This indicates that the ad hoc agent is fairly knowledgeable about

its teammate’s actions.

3.2 Environmental Knowledge
Another informative dimension is how much knowledge the ad

hoc agent has about the effects of a joint action given a state, for

example the transition and reward functions. If the ad hoc agent has

complete knowledge about the environment, it can plan about what

actions it should select more simply than if it must also consider

unknown effects of actions. However, if it has incomplete knowl-

edge, it must explore its actions and face the standard problem of

balancing exploring the environment versus exploiting its current

knowledge.

Similarly to teammate knowledge, we formally define the ad hoc

agent’s knowledge about the environment’s transitions as

TransK =
1

nm

n∑

s=1

m∑

j=1

K(TrueTrans(s, j),ExpTrans(s, j))

where 1 ≤ s ≤ n is the state, 1 ≤ j ≤ m is a joint action, K is

taken from Equation (1), TrueTrans(s, j) is the ground truth transi-
tion distribution from state s given joint action j, and ExpTrans is

the ad hoc agent’s expected transition distribution. If the agent has

no information about the transitions, we assume that ExpTrans(s, j)
is the uniform distribution. Intuitively, if the ad hoc agent knows

more about the transition function, then the distance between True-

Trans and ExpTrans will be smaller and as a result TransK will be

higher. We define the agent’s knowledge about the environmental

rewards similarly, and let EnvK = (TransK,RewardK).
Revisiting the MatchActions domain, the ad hoc agent knows the

true transition function, as it only depends on the ad hoc agent’s

previous action, so TransK = 1. However, it only knows that the

payoff for each action is uniformly drawn from {0.5, 0.75, 1.0}

and the reward is 0 if the agents’ actions do not match. There are 8

possible cases to count over, coming from 2 states and 2 actions for

each of the agents, but the cases fall into 2 sets based on whether

the actions match. In addition, it does not matter which value each

matched action actually takes, so we can simplify the calculation.

Note that there are four reward values possible: {0, 0.5, 0.75, 1.0}.

This leads to

RewardK =
4 ∗ 1 + 4 ∗ K([0, 1, 0, 0], [0, 1

3
, 1

3
, 1

3
])

8
= 0.582

Thus, EnvK = (1, 0.582) As the agent observes these payoffs,

it can refine its knowledge, but we are evaluating these properties

prior to the ad hoc agent interacting with its environment.

3.3 Teammate Reactivity
The optimal behavior for the ad hoc agent also depends on how

much its teammates react to its actions. If its teammates’ actions

do not depend on the ad hoc agent at all, the ad hoc agent can sim-

ply choose its actions to maximize the team reward, as if it were

a single agent problem. Considering the actions of its teammates

separately from that of the environment may still help computa-

tion by factoring the domain. However, if the teammates’ actions

depend strongly on the ad hoc agent’s actions, the ad hoc agent’s

reasoning should consider what its teammates’ reactions will be.

If the ad hoc agent is modeling its teammates and its teammates

are modeling the ad hoc agent, the problem can become recursive,

as is directly addressed by Vidal and Durfee’s Recursive Modeling

Method [21].

A formal measure of the teammate reactivity needs to capture

how different the teammates’ actions will be when the ad hoc agent

chooses different actions. We measure the distance between the

resulting distributions of the teammate joint actions, using the pair-

wise Jensen-Shannon divergence measures. However, it is desir-

able for the distance to be 1 when the distributions have no overlap,

so we use a normalizing constant of log 2. Thus, we define the

reactivity of a domain in state s as

Reactivity(s) =
1

(m − 1)2 log 2

m∑

a=1

m∑

a′=1

JS(T (s, a), T (s, a′))

where JS is the Jensen-Shannon divergence measure, 1 ≤ a, a′ ≤
m is the actions available to the ad hoc agent, and T (s, a) is the

distribution of the teammates’ joint actions given the state s and

the ad hoc agent’s action, a. We use m − 1 in the denomina-

tor because we exclude the case where a = a′; in the numer-

ator, the JS measure will be 0 in this case. For the overall re-

activity of the domain, we average over the states, resulting in

Reactivity = 1
n

∑n
s=1 Reactivity(s). It is possible to consider how

an action affects the teammates’ actions further in the future, but

we restrict our focus to one step reactivity for this paper. Note that

all of the sums in this formulation can be converted to integrals for

continuous states or actions. This formulation is similar to the em-

powerment measure used by Jung et al. [13], but we consider the

ad hoc agent’s ability to change the actions of its teammates rather

than the environment state.

Let us once again explore this dimension in the context of the

MatchActions domain. Although the ad hoc agent is unsure of

its teammate’s behavior, the teammate is truly playing the BestRe-

sponse behavior. Thus, its actions are entirely dependent on the

ad hoc agent’s actions, so Reactivity = 1. If instead the teammate

played BestResponse with probability 9
10

and FirstAction with prob-

ability 1
10
, then we would get

Reactivity(s) =
JS([1, 0], [1

10
, 9

10
]) + JS([1

10
, 9

10
], [1, 0])

2 log 2
= 0.758

Therefore, we can conclude that the agent would still be very reac-

tive, though not as reactive as the BestResponse agent.

359

4. ADHOCTEAMWORK INTHEPURSUIT

DOMAIN
Section 2 specified the framework for evaluating ad hoc team

agents, but this evaluation depends on the specific domain and team-

mates that the ad hoc agent may encounter. Therefore, in this sec-

tion, we study several concrete versions of a domain that require the

cooperation of a team. Then, we explore how ad hoc agents should

handle these various domains, and explain how these domains are

characterized by the dimensions presented in Section 3.

4.1 The Pursuit Domain
The pursuit domain has become a popular setting for multiagent

research [18]. It lends itself well to ad hoc team problems as it re-

quires multiple agents to cooperate to capture the prey. The general

idea of the pursuit problem is that a number of predators attempt to

chase and finally “capture” a prey, but there are several variations

of the pursuit, depending on the number of predators, the definition

of “capture,” and the mechanics of the world. Here we specify a

number of variations of the pursuit domain that are interesting for

investigating ad hoc teamwork.

4-Predator Known Behaviors Pursuit (4PKB): In this fairly

common formulation of the pursuit problem, there are four preda-

tors trying to capture a single prey, while moving around a toroidal

grid, where moving off one side brings the agent back on the other

side. Therefore, all four predators are required to capture the prey

by surrounding it, as illustrated in Figure 1. In this formulation,

all agents can fully observe the positions of the other agents and

the prey moves randomly. One of the predators is an ad hoc agent

and, at each time step, it must choose a direction to move to coop-

erate with its teammates. The other three predators follow a fixed

behavior that is known to the ad hoc agent.

(a) Random start (b) Capture position (c) Another capture

Figure 1: Start and capture positions in the 4PKB and 4PUB do-

mains. The green rectangle is the prey, the red ovals are predators,

and the red oval with the star is the ad hoc predator (the one under

our control that is being evaluated).

Before continuing with describing the other domain variants, we

introduce a number of high level behaviors that the predators may

use to capture the prey. Specifically, we consider the following four

individual predator behaviors described in Barrett et al.’s work [1]:

1. Greedy (GR)- Move towards the nearest unoccupied cell neigh-

boring the prey with minimal obstacle avoidance

2. Greedy Probabilistic (GP) - Same as the GR behavior except

that the predator has a chance of taking a longer path to its

desired cell

3. Teammate-aware (TA) - Assign cells neighboring the prey

to the teammates, minimizing the movement required by the

farthest predator; move towards the assigned cell

4. Probabilistic Destinations (PD) - Spread out from other preda-

tors into a circle that tightens around the prey over time

4-Predator Unknown Behaviors Pursuit (4PUB): This version

is identical to 4PKB, except that the ad hoc agent is not given full

information about its teammates’ behaviors. Instead, the agent is

given a set of known behaviors that its teammates are possibly play-

ing. In this case, the ad hoc agent must observe its teammates and

try to determine their behaviors based on their actions. For exam-

ple, the ad hoc agent may be initially given a uniform distribution

over the GR, GP, TA, and PD behaviors. By observing its team-

mates’ actions, the ad hoc agent may be able to determine that all

of its teammates are following the TA behavior.

2-Predator Simultaneous Pursuit (2PS): In this formulation of

the pursuit problem, two predators move on a toroidal grid and

attempt to capture the prey by simultaneously occupying any two

cells neighboring the prey, as shown in Figure 2. Instead of choos-

ing an action at every time step of an episode, the agents choose a

high level behavior to play for the duration of an episode. This high

level behavior defines their actions at each time step. In between

episodes, the agents can choose a new behavior to play, based on

their previous experience. Once again, one of the predators is con-

trolled by the ad hoc agent, and its teammate chooses the behavior

by best response, using a memory bound of k. For example, at

the beginning of each episode, each predator could choose to play

the GR, GP, TA, or PD behavior. If k = 1 and the ad hoc agent

chose the GR behavior last step, its teammate would choose to play

the GR behavior this step because it knows that this will result in

the shortest time to capture the prey if the ad hoc agent continues

playing the GR behavior.

(a) Capture position (b) Another capture

Figure 2: Capture positions in the 2PS domain

2-Predator Teaching Pursuit (2PT): In this version, two preda-

tors are trying to capture the prey by choosing a high level behav-

ior to follow, similar to the 2PS domain. However, each predator

must capture the prey independently, and the predators alternate

episodes. Therefore, instead of cooperating during an episode, the

predators cooperate between episodes. Each predator observes

what high level behavior the other chose as well as how long it

takes to capture the prey using that behavior. In addition, the preda-

tors are still a team and share rewards. In this domain, capture is

defined as the predator occupying the same cell as the prey. For

example, if the ad hoc agent chooses to play the GR behavior, its

teammate observes that it chose the GR behavior as well as the

length of the episode. The teammate can then use this information

when it is selecting a behavior to play for the next episode.

In addition, the ad hoc team agent has full knowledge about

the performance of the behaviors, while its teammate starts with

no knowledge and acts greedily with respect to the behaviors’ ob-

served sample means. If the ad hoc agent was not on a team, it

could perform optimally by choosing the behavior with the best ex-

pected reward, but its teammate can observe its actions and learn

from them. The ad hoc agent knows that its teammate is greedy with

respect to the observed means of the different behaviors. However,

the teammate has noisy actuation, so it is unable to perform de-

terministic behaviors, unlike the ad hoc agent. Unfortunately, the

behavior with the best expected time to capture the prey is deter-

ministic. Therefore, there is a cost to teaching as the ad hoc team

agent must forego playing the best behavior to increase its team-

mates knowledge.

4.2 Prior Ad Hoc Teamwork Results
In Section 4.1, several variations of the pursuit domain were pre-

sented, some of which have been studied in prior research. Both the

4PKB and 4PUB domains were investigated by Barrett et al. [1]. In

360

their work, Barrett et al. assume that three of the predators use one

of the specified behaviors (the same one in most cases) and the

fourth predator is the ad hoc team agent. Their ad hoc team agent

plans efficiently using Monte Carlo Tree Search (MCTS), select-

ing actions that are expected to capture the prey quickly given its

models of its teammates. In the 4PKB domain, the ad hoc agent

knows the true behavior of its teammates, but in the 4PUB domain,

it is only given a set of possible behaviors of its teammates. There-

fore, the ad hoc agent agents tracks the probabilities that its team-

mates are using the known behaviors, updating their probabilities

using Bayes’ rule and the probability of each behavior taking the

observed actions. At each time step, the agent plans using MCTS

and samples from the possible teammate models with respect to

their relative probabilities. This approach results in an effective ad

hoc team agent.

In Barrett et al.’s work, the ad hoc agent has complete informa-

tion about the environment (EnvK = (1, 1)), but its knowledge

about its teammates is varied in different tests. In the 4PKB set-

ting, the ad hoc agent knows the true behavior of its teammates,

so TeamK = 1. In the 4PUB setting, it only knows that its team-

mates are drawn from a set of knownmodels; resulting in TeamK =
0.720 for a 5x5 world, while on a 20x20 world TeamK = 0.807.
Finally, there are tests where the set of representative behaviors are

known to the agent, but the teammates’ behaviors are not drawn

from this set. Instead, these agents are sampled from a set of preda-

tor behaviors written by students for a class assignment. In this

case, TeamK = 0.155 on a 5x5 world and TeamK = 0.237 on a

20x20 world.

In this work, the reactivity of the teammates depends on the be-

havior that the teammates run as well as the size of the world. For

the GP teammates on a 5x5 grid, the reactivity is only 0.0635, while

if the teammates play the TA behavior, the reactivity is 0.501. Sim-

ilarly, on a 20x20 grid, the reactivity of GP teammates is 0.00105

and for TA teammates it is 0.0809.

In the pursuit domain, the challenge arises from a combination

of the reactivity of the teammates and the agent’s imperfect knowl-

edge about its teammates. In this research, only a single episode

was considered, so there was no long term learning; the agents had

to learn during the episode.

While Barrett et al. investigated the 4PKB and 4PUB domains,

the pursuit domain allows for many small variations that have a

large impact on where it falls along the dimensions laid out in

Section 3. Sections 4.3–4.4 explore the 2PS and 2PT variants, all

within the context of our framework from Section 3.

4.3 Repeated Interactions with a Best Response
Agent

Whereas both the 4PKB and 4PUB domains assume that the ad

hoc agent interacts with its teammates for only one episode, many

teamwork settings allow for multiple interactions among the same

teammates. In this case, long-term learning (across episodes) is

both possible and very useful. In order to model such settings, in

this section we investigate the 2PS domain.

In the 2PS domain, the ad hoc agent has perfect information

about its teammate, so TeamK = 1. Also, the ad hoc agent com-

pletely knows the environment’s transitions and rewards, so EnvK =
(1, 1). The reactivity of the domain is high, since the teammate’s

actions depend highly on the ad hoc agent’s actions. However, the

reactivity depends on the specific behaviors that are available to the

agents as well as the memory size of the teammate, k. The avail-
able information about the teammate reduces the difficulty of this

problem compared to the earlier pursuit problem, but the reactiv-

ity of this problem is much higher. Therefore, the problem is still

difficult, but many of the issues that must be faced are different.

Analysis of 2PS reveals that it can be modeled as a repeated

normal-form game in which the agents share the payoffs. In this

setting, there is a matrix of shared payoffs and two agents; one

chooses a row and one that chooses a column, where the rows and

columns correspond to different behaviors that can be chosen. One

of the agents is a k-memory bounded, best response agent, mean-

ing that it chooses the action that has the best expected payoff given

the other agent’s last k actions. The other agent is the ad hoc team

agent, and its goal is to cooperate with the best response agent to

achieve the highest payoff.

There is a cell in the payoff matrix with the highest reward that is

best for both agents. However, if the ad hoc agent jumps immedi-

ately to the corresponding behavior, it may incur a high loss before

the best response agent moves to the best action, where the loss

is defined as the difference between the maximum possible reward

and the received reward. Therefore, it may be desirable for the ad

hoc agent to take a longer path through the payoffs, minimizing the

losses.

Stone et al. [16] investigated the class of ad hoc teamwork prob-

lems that can be modeled by this normal-form game formulation.

Their work provides several theoretical results as well as an effi-

cient algorithm for finding the optimal action sequence when k =
1. Furthermore, they give an algorithm for dealing with larger

memory bounds, k > 1, but this algorithm is exponential in the

memory size. Also, they consider the case where the teammate

is non-deterministic and differs from the k memory bounded best

response by ǫ.
In this paper, the predators select from the TA, PD, and GR be-

haviors. If they play on a 5x5 grid and each agent has a 0.1 chance

of taking a random action, the resulting payoff matrix is given in

Table 1. These payoffs were calculated by running 1,000 episodes

with the agents following the specified behaviors, where the team

receives an action penalty of -1 for each step until the prey is cap-

tured.

TA PD GR

TA -4.583 -5.123 -5.152

PD -5.123 -4.946 -4.615

GR -5.152 -4.615 -4.379

Table 1: Payoff matrix from the pursuit domain

Assume that the agents start with both agents playing the TA

behavior (a Nash equilibrium) and k = 1. The best payoff is when
both agents play the GR policy, so the ad hoc team agent wants to

find the lowest cost path to that policy combination. This occurs if

the ad hoc agent chooses the PD policy and then the GR policy from

then on. The best response teammate will play the TA policy for the

first two steps (because it is the best response to TA) then change

to the GR policy, which is the best response to PD. The loss of this

path is −4.379 − −5.123 = 0.744 while changing directly has a

cost of −4.379 − −5.152 = 0.773. Therefore, it is advantageous
for the ad hoc agent to take a longer path to its desired policy. The

efficient algorithm laid out by Stone et al. finds this solution.

In this domain, both agents know the transitions and rewards,

so EnvK = (1, 1). Also, the ad hoc agent knows that its team-

mate uses the best response policy, resulting in TeamK = 1. The
reactivity is 0.198, as the ad hoc agent’s actions do influence its

teammate’s actions.

The version of the pursuit domain considered in this section il-

lustrated how prior theoretical results can be applied directly in an

experimental setting. In the next section, we see the same for a

different theoretical approach to ad hoc teamwork.

361

4.4 Teaching a Novice Agent
To this point, we have assumed that the teammate has complete

knowledge about the performance of the behaviors, but in some

settings this is not the case. To explore such settings, we investigate

the 2PT domain, in which the teammate starts with no knowledge

about each behavior and must explore the behaviors to estimate

their performance.

However, we assume that the ad hoc team agent has full knowl-

edge about the behaviors and its teammate. Also, instead of having

the two predators cooperate directly, we consider the case where

they take turns trying to capture the prey, but both observe the re-

sults of the other’s actions. Unfortunately, due to a defect, the team-

mate is not able to execute all of the behaviors that are available to

the ad hoc agent, including the behavior with the best expected

time to capture the prey. Therefore, there is a cost to the ad hoc

team agent foregoing this best behavior in favor of another that will

teach its teammate. The agents are still trying to maximize their

shared rewards, but they take turns choosing behaviors to capture

the prey. The ad hoc agent has complete information about the ef-

fectiveness of the behaviors, so it should help guide its naive team-

mate towards behaviors that are more effective. We consider the

case where the teammate chooses behaviors greedily with respect

to the sample means it has seen.

In this domain, the ad hoc team agent is the teacher, and it has

perfect knowledge about its teammate, i.e. TeamK = 1. Also,

its information about the environment is perfect in both the transi-

tion and reward distributions, i.e. EnvK = (1, 1). Note that the

other agent only has limited information about the environment.

However, the reactivity of the domain depends on the number of

episodes as well as the payoff distributions of the shared behaviors,

but not the behavior that only the teacher can play. Similar to the

scenario in Section 4.3, the challenge arises from the ad hoc agent

needing to plan about the reactivity of its teammate. In addition,

it must also consider how much information its teammate has, and

how this affects the teammate’s actions.

Therefore, the ad hoc team agent should reason about when it

is useful to sacrifice choosing the behavior with the highest reward

to teach its teammate about which behaviors it should be choosing.

Close examination of this problem reveals that it can be modeled by

a multi-armed bandit (MAB), such as that proposed by Stone and

Kraus [17], where the different behaviors correspond to different

arms of the bandit. In this setting, choosing a high level behavior

to play for an episode corresponds to pulling the arm on the multi-

armed bandit, and the length of the episode corresponds to the pay-

off of the arm. Stone and Kraus prove several interesting theoretical

results about this formulation of ad hoc teamwork in a multi-arm

bandit domain regardless of the payoff distributions of the arms,

proving some theorems about when the ad hoc agent should and

should not teach. Furthermore, they give efficient algorithms for

handling cases where the payoff distributions are constrained.

From this research, we know that the ad hoc agent should con-

sider playing behaviors other than the best one, which the teammate

cannot play. In other words, it is advantageous for the ad hoc agent

to teach its teammate despite the cost of teaching. Also, the ad hoc

agent should never play the worst of the behaviors, even when the

teammate’s estimates of that behavior’s quality is too high. Further-

more, with discrete distributions for the payoffs, Stone et al. give a

polynomial time algorithm for calculating the optimal behavior for

the ad hoc agent.

Consider the case in which the agents play on a 5x5 grid and

must choose from three policies: the greedy, probabilistic destina-

tions, and greedy probabilistic predators from Section 4.1. In this

case, the teammate has non-deterministic actions and therefore can-

not follow the purely greedy policy. These different policies give

average capture times of 4.204, 4.272, and 4.911 respectively for a

single predator capturing the prey, where a smaller time is better.

The reactivity of this problem is 0.0342 if we consider histories of

actions of length 100, and 0.128 for histories of length 10. Overall,

a state is more reactive when the teacher can change the relative

values of the arms’ sample means, which happens when there are a

small number of pulls that are far from the true arm means. When

there are many pulls or the sample means closely match the true

means, the reactivity is very low.

From Stone et al.’s work, we know that the ad hoc agent should

consider sacrificing its reward from following the greedy policy to

play other behaviors and teach its teammate. Also, we know that

it should never play the greedy probabilistic behavior, even if its

teammate thinks that this behavior is best.

5. CLASSIFYING EXISTING AD HOC RE-

SEARCH DOMAINS
Section 4 introduces several ad hoc team problems and explains

how they are described by the dimensions proposed in Section 3.

We summarize those results here, and continue on to explore other

domains used in previous ad hoc research. We then use these results

to suggest new avenues for research into ad hoc teamwork.

5.1 Characteristics of the Pursuit Domain
A summary of the characteristics of variations of the pursuit do-

main is given in Table 2. Note that the reactivity of 2PS relies on the

memory bound k of the agent (0.198 if k = 1), and in 2PT, it relies
on the length of pull histories considered (0.0342 if the history size

is 100 and 0.128 for length 10). For 4PKB and 4PUB, the values

are affected by the size of the domain and the specific behaviors

used by the teammates. Specifically, the reactivity is 0.00105 when

for GP teammates on a 20x20 world, and 0.501 for TA teammates

on a 5x5 world. The TeamK varies from 0.155 when cooperating

with the teammates created by students on a 5x5 world to 0.807 for

teammates drawn from {GR,GP,TA,PD} on a 20x20 world. From

this table it becomes clear that research into ad hoc teamwork has

focused mainly on the reactivity of the problems, with some ap-

proaches handling some uncertainty about the teammate behaviors.

However, no ad hoc teamwork research thus far has handled any

domains in which the environment is unknown. In addition, de-

viating slightly from the assumptions of either the 2PS or 2PT do-

mains can render the theoretical results incorrect. Therefore, it is an

important future direction to create general methods for handling

problems with perfect knowledge about the teammates and envi-

ronment, with varying reactivities. We hypothesize that the MCTS

agent from Barrett et al. [1] should perform well in these domains,

but this exploration remains open.

Domain TeamK EnvK Reactivity

4PKB 1 (1,1) 0.00105–0.501

4PUB 0.155–0.807 (1,1) 0.00105–0.501

2PS 1 (1,1) 0.198

2PT 1 (1,1) 0.0342–0.118

Table 2: A summary of pursuit problems

5.2 Characteristics of Other Domains
Besides pursuit, there have been several other domains used in

ad hoc teamwork research, though not always under the name of

ad hoc teamwork. Although it is difficult to exactly calculate some

of the dimensions without exact specifications of the domains, we

estimate the values in Table 3.

362

Han et al. [9] explore using an agent to affect the collective be-

havior of a multi-agent system. Specifically, their work focused on

adding a “shill” agent that was externally controlled, corresponding

to the ad hoc team agent in our terminology. They then investigated

using this agent to affect the behavior of groups of agents such as

flocks of birds, directing the movement of the flock in a desired

direction. They use a modified Boid model, in which each agent

chooses its current heading by moving in the average direction of

their neighbors located within a neighborhood of radius r. Table 3
summarizes how the domain is characterized along the dimensions.

In this case, the shill agent knows its teammates’ behavior and the

environment, and the reactivity of its teammates depends on the

number of agents and the size of the neighborhood. For these cal-

culations, we discretize the actions into 10 degree bins. With 5

agents, the reactivity ranges from 0.880 when r = 5 to 0.0106

when r = 1, while with 100 agents, it ranges from 0.531 to 0.0732

for the same r values. This shows that while the reactivity can be

large, in many settings the teammates are not strongly affected by

the ad hoc agent’s actions in the short term. However, Han et al.’s

work shows that the long term effects of the ad hoc agent’s actions

are very influential, as the effects ripple out to the other agents.

Domain TeamK EnvK Reactivity

Flocking control 1 (1,1) 0.0732–0.880

Cooperating with
0 (1,1) 0

UTM-1 teammates

Cooperating with
0 (1,1) >0

UTM-2 teammates

Simulated pickup soccer >0 (>0,1) >0

Table 3: Estimates of other ad hoc team problems

More recently, Wu et al. [22] investigated ad hoc teamwork with

few assumptions about the behaviors of the teammates. Their ad

hoc agent plans using MCTS and uses biased adaptive play to pre-

dict the actions of teammates. Biased adaptive play can be used

to estimate the policies of teammates from their previous actions.

They test their agent on three domains: cooperative box pushing,

meeting in a 3x3 grid, and multi-channel broadcast. They consider

the case where the ad hoc agent knows the environment, but not

its teammates. These teammates are referred to as unknown team-

mates (UTM), and two types of teammates are used in each domain:

UTM-1 agents that follow a fixed set of actions and UTM-2 agents

that try to play the optimal behavior but have partial observations.

Along the dimensions, only the reactivity of the teammates vary

between these three domains. However, the specifications of the

UTM-2 agents is only that they act rationally with respect to partial

observations of the system state, so it is not possible to calculate the

exact values of the reactivity; it is only known that their reactivity

is greater than 0. If the UTM-2 agents perform close to the rational

behavior given full observations, it is expected that their reactivity

is very high in these domains.

In the domain of simulated robot soccer, Bowling and

McCracken [3] measure the performance of a few ad hoc agents,

where each ad hoc agent is given a playbook that differs from that

of its teammates. In this domain, the teammates implicitly assign

the ad hoc agent a role, and then react to it as they would any team-

mate. This means that they react to the ad hoc agent’s actions, i.e.

the reactivity is greater than 0, but the extent of this reactivity is

depends on their standard soccer behavior. In addition, the ad hoc

agent knows a set of possible plays that may overlap with the plays

that its teammates choose. It is expected that its knowledge of its

teammates is fairly high, as effective soccer plays are similar, com-

pared to random movement of the teammates, therefore TeamK is

greater than 0. Although the ad hoc agent does not know ahead

of time the noise caused by the simulation of the game or by the

noise caused by the other team, it has reasonable expectations of

the dynamics of the world, so TransK is greater than 0. In addition,

it knows that scoring goals gives a positive reward, and giving up

goals gives a negative reward, so RewardK is 1.

5.3 Characteristics of Future Research
Looking at how the existing research fits into the proposed di-

mensions gives us insight on directions for future investigation.

Most research on ad hoc teams has focused on how teammates react

to the ad hoc agent, as shown by the high levels of reactivity in ex-

isting domains. Little research has approached the problem of hav-

ing low knowledge of the teammates, where the ad hoc agent must

learn about its teammates to plan effectively. Wu et al.’s work [22]

assumes that the ad hoc agent knows nothing about its teammates,

but they focus on smaller domains. Barrett et al. [1] consider the

idea that the ad hoc agent may start with some knowledge about

its possible teammate, but must still learn about them by interact-

ing with them. More research needs to be performed to investigate

cases where the ad hoc agent knows little about its teammates. In

many cases, agents can make some reasonable assumptions about

the behavior of their teammates. Therefore, it is desirable to focus

on ad hoc agents that cooperate with teammates starting with low,

but nonzero information about their behaviors. In this case, the ad

hoc agent must learn more about its teammates by interacting with

them.

In addition most ad hoc teamwork research assumes that the ad

hoc agent completely knows the transition dynamics of the environ-

ment as well as the short term rewards of actions. In other words,

research into ad hoc teamwork has mainly focused on the difficul-

ties of planning effectively with teammates, where the agent does

not need to learn about the environment. On the other hand, many

real world applications of ad hoc teamwork requires the agent to

learn about its environment and adapt accordingly. In the case of

search and rescue, robots must cooperate with previously unseen

teammates, but they must also adjust to a noisy, changing environ-

ment. To perform effectively while exploring new environments,

such as those encountered in exoplanet exploration, robots must

learn about how their actions interact with the world and handle

changes to their abilities caused by wear and tear. Therefore, future

research in ad hoc teamwork should incorporate domains in which

the dynamics begin unknown. This will create ad hoc agents that

can trade off between exploring the environment, exploring interac-

tions with their teammates, and exploiting their current knowledge.

We believe that research in these areas is necessary to create robust,

effective ad hoc agents.

6. RELATEDWORK AND DISCUSSION
Aside from the ad hoc teamwork domains described in Section 5,

some other research into ad hoc teams exists, such as Jones et

al.’s [12] research into pickup teams working in the treasure hunt

domain. This work assumes that the agents share a communication

protocol that they use to bid on different roles. In addition, Knud-

son and Tumer [14] investigated ad hoc teams in a different frame-

work. However, they assume that all agents in the domain adapt

and that each agent is given a difference objective, which clearly

specifies how an agent’s actions affect its team’s performance. Ear-

lier research includes Brafman and Tennenholz’s research [4] on

agents performing a repeated joint task, where one agent attempts

to teach a novice agent. A large body of research on coordinat-

ing multi-agent teams exists, specifying standardized protocols for

communication and shared algorithms for coordination. These ap-

proaches include SharedPlans [8], STEAM [19], and GPGP [7].

363

Our work does not require any shared protocols, and does not as-

sume that the teammates are adapting to the ad hoc team agent.

Modeling teammates is similar to the problem of opponent mod-

eling, but it is generally safe to make stronger assumptions about

teammates’ behaviors. Therefore, the ad hoc agent does not need to

consider the worst case scenario for every action; its teammates are

trying to reach the same goal. The Workshop on Plan, Activity, and

Intent Recognition (PAIR) and theWorkshop on Applied Adversar-

ial Reasoning and Risk Modeling (AARM) both have several pa-

pers relevant to applied opponent modeling, and there are also more

theoretical approaches such as the AWESOME algorithm [6]. An

interesting avenue for future work is to classify the much broader

existing literature on opponent modeling along the same dimen-

sions presented in this paper. These dimensions may aid in identi-

fying approaches from opponent modeling literature that are likely

to apply in corresponding ad hoc teamwork domains.

Isaacs performed seminal research on pursuit and evasion [10],

and the problem was further explored by Benda et al. [2]. The pur-

suit domain has been well studied in multiagent research [18]. Most

previous research focused on developing coordinating the preda-

tors before deploying them, rather than learning to adapt to unseen

teammates. For example, MAPS [20] considers partially observ-

able environments with the prey following sophisticated strategies,

but requires a shared coordination algorithm. Other approaches fo-

cus on partial observability in continuous pursuit problems [11].

On the other hand, Chakraborty and Sen [5] investigate a pursuit

scenario in which experienced agents attempt to teach novice preda-

tors, but require the agents to share a known training protocol.

However, none of these methods are directly applicable to ad hoc

teamwork.

7. CONCLUSION
This paper presents a set of dimensions for describing ad hoc

team problems, and explains how these dimensions define the re-

lationship among existing ad hoc team research studies. We show

that reasoning about these dimensions aids in applying existing the-

oretical results to new problems.

The introduction of the dimensions describing the difficulties of

ad hoc team problems raises several interesting avenues for future

research. For example, by examining existing research in this light,

it becomes clear that research thus far on ad hoc teams assumes that

the adhoc agent knows the environment. Future work is needed on

domains where the environment is unknown and the ad hoc agent

must reason about the tradeoffs of exploration. Furthermore, do-

mains where the ad hoc agent has less information about its team-

mates ought to be investigated. All of the results in this paper are in

the context of the pursuit domain, broadly defined. Investigations

of other domains, and whether existing algorithms apply in these

domains is an important avenue for future research. From a high-

level perspective, this research contributes towards understanding

and solving the long-term challenge of creating robust, general ad

hoc team agents.

Acknowledgments

This work has taken place in the Learning Agents Research Group (LARG) at The

University of Texas at Austin. LARG research is supported in part by grants from NSF

(IIS-0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).

Samuel Barrett is supported by an NDSEG fellowship.

8. REFERENCES
[1] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad

hoc teamwork in the pursuit domain. In AAMAS ’11, May

2011.

[2] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal

cooperation of knowledge sources - An empirical

investigation. Technical Report BCS–G2010–28, Boeing

Advanced Technology Center, Boeing Computing Services,

July 1986.

[3] M. Bowling and P. McCracken. Coordination and adaptation

in impromptu teams. In AAAI, pages 53–58, 2005.

[4] R. I. Brafman and M. Tennenholtz. On partially controlled

multi-agent systems. JAIR, 4:477–507, 1996.

[5] D. Chakraborty and S. Sen. Teaching new teammates. In

AAMAS ’06, pages 691–693, 2006.

[6] V. Conitzer and T. Sandholm. AWESOME: A general

multiagent learning algorithm that converges in self-play and

learns a best response against stationary opponents. Mach.

Learn., 67, May 2007.

[7] K. S. Decker and V. R. Lesser. Designing a family of

coordination algorithms. In ICMAS ’95, pages 73–80, June

1995.

[8] B. Grosz and S. Kraus. Collaborative plans for complex

group actions. Artificial Intelligence, 86:269–368, 1996.

[9] J. Han, M. Li, and L. Guo. Soft control on collective

behavior of a group of autonomous agents by a shill agent.

Journal of Systems Science and Complexity, 19:54–62, 2006.

[10] R. Isaacs. Differential Games: A Mathematical Theory with

Applications to Warfare and Pursuit, Control and

Optimization. Dover Publications, 1965.

[11] Y. Ishiwaka, T. Sato, and Y. Kakazu. An approach to the

pursuit problem on a heterogeneous multiagent system using

reinforcement learning. Robotics and Autonomous Systems,

43(4):245 – 256, 2003.

[12] E. Jones, B. Browning, M. B. Dias, B. Argall, M. M. Veloso,

and A. T. Stentz. Dynamically formed heterogeneous robot

teams performing tightly-coordinated tasks. In ICRA, pages

570 – 575, May 2006.

[13] T. Jung, D. Polani, and P. Stone. Empowerment for

continuous agent-environment systems. Technical Report

AI-10-03, The University of Texas at Austin Computer

Science Department, 2010.

[14] M. Knudson and K. Tumer. Robot coordination with ad-hoc

team formation. In AAMAS ’10, pages 1441–1442, 2010.

[15] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein.

Ad hoc autonomous agent teams: Collaboration without

pre-coordination. In AAAI ’10, July 2010.

[16] P. Stone, G. A. Kaminka, and J. S. Rosenschein. Leading a

best-response teammate in an ad hoc team. In AMEC.

November 2010.

[17] P. Stone and S. Kraus. To teach or not to teach? Decision

making under uncertainty in ad hoc teams. In AAMAS ’10,

May 2010.

[18] P. Stone and M. Veloso. Multiagent systems: A survey from

a machine learning perspective. Autonomous Robots,

8(3):345–383, July 2000.

[19] M. Tambe. Towards flexible teamwork. JAIR, 7:81–124,

1997.

[20] C. Undeger and F. Polat. Multi-agent real-time pursuit.

AAMAS ’10, 21:69–107, July 2010.

[21] J. M. Vidal and E. H. Durfee. Recursive agent modeling

using limited rationality. In ICMAS, 1995.

[22] F. Wu, S. Zilberstein, and X. Chen. Online planning for ad

hoc autonomous agent teams. In IJCAI, 2011.

364

Modeling and Learning Synergy
for Team Formation with Heterogeneous Agents

Somchaya Liemhetcharat
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

som@ri.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA
veloso@cs.cmu.edu

ABSTRACT
The performance of a team at a task depends critically on
the composition of its members. There is a notion of syn-
ergy in human teams that represents how well teams work
together, and we are interested in modeling synergy in multi-
agent teams. We focus on the problem of team formation,
i.e., selecting a subset of a group of agents in order to per-
form a task, where each agent has its own capabilities, and
the performance of a team of agents depends on the indi-
vidual agent capabilities as well as the synergistic effects
among the agents. We formally define synergy and how
it can be computed using a synergy graph, where the dis-
tance between two agents in the graph correlates with how
well they work together. We contribute a learning algorithm
that learns a synergy graph from observations of the perfor-
mance of subsets of the agents, and show that our learning
algorithm is capable of learning good synergy graphs with-
out prior knowledge of the interactions of the agents or their
capabilities. We also contribute an algorithm to solve the
team formation problem using the learned synergy graph,
and experimentally show that the team formed by our algo-
rithm outperforms a competing algorithm.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Capability, synergy, team formation, heterogeneous

1. INTRODUCTION
It is clear that the performance of a team, in terms of

the outcome of the task, depends on the team composition.
The term synergy is commonly used in human teams, and
describes how well the team works together. We extend
this notion of synergy from human teams to multi-agent
teams, and seek to model and quantify it for effective team
formation at a task.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Research in agent capabilities, which we describe in de-
tail in the related work section, typically focus on single-
agent capabilities, and not the interactions between multiple
agents. Similarly, research in coalition formation typically
does not seek to model how the value of a coalition is com-
puted. In this paper, we introduce a model that captures
synergy from the interactions among large groups of agents.

Concretely, we abstract the problem as finding the best
subset of agents to complete a task, where each agent has
its own set of capabilities. The performance of a team of
agents at the task depends both on the capabilities of the
agents, and the synergy among the members of the team.
This model of performance among the agents is initially un-
known, but observations of the performance of groups of
agents can be made. From these observations, a model of
synergy within the agents is learned, and the optimal subset
of the agents is then selected for the task.

Formally, we define a synergy graph that models single-
agent capabilities and the interactions among the agents.
We then define pairwise synergy, i.e., how well a pair of
agents will perform together, and define synergy in groups
of agents. We then contribute an algorithm to find the op-
timal team to perform the task from a synergy graph, and
an algorithm that learns a synergy graph from observations
of interactions among small groups of agents. In our ex-
periments, we show that the learned synergy graph matches
closely to the hidden model that generated the observations,
and the team formed by searching this learned synergy graph
performs very well. In addition, we use a probabilistic robot
capability model introduced in [8], and show that the syn-
ergy graph learned from observations of this probabilistic
model leads to the formation of a team that outperforms
the team selected by the ASyMTRe algorithm [8].

The format of our paper is as follows: in Sec. 2, we dis-
cuss related work and the differences with our work. In
Sec. 3, we formally define the problem, and contribute our
synergy graph model and the algorithm for team formation.
In Sec. 4, we contribute an algorithm that learns a synergy
graph based on observations of the performance of agents at
the task. In Sec. 5, we describe our experiments and results,
and we summarize our contributions in Sec. 6.

2. RELATED WORK
In heterogeneous teams, agents and robots have different

capabilities. There has been a large amount of research in
the task-allocation and role assignment domains [3], but the
capabilities are typically binary, i.e., whether a robot is ca-
pable of performing a sub-task is usually due to its physical
characteristics such as the presence of an arm. There has

365

also been some research in modeling capabilities as values,
where higher values indicate better task performance [5],
and with a Normal distribution to represent the uncertainty
in the agents’ performance [4]. However, while modeling ca-
pabilities of single agents and robots has been extensively
studied, there has been limited work in modeling the ca-
pabilities of teams of agents, other than a sum of their in-
dividual capabilities, or a binary to represent whether the
team can perform a sub-task. Pairwise capabilities between
agents has been studied [7], and the coupling of robot ca-
pabilities to perform complex tasks using schemas with the
ASyMTre algorithm [8], which we elaborate further below.

In the ASyMTRe algorithm, robot capabilities are mod-
eled with schemas, that define inputs and outputs of infor-
mation types (e.g., the global position of the robot) [8]. Each
robot has a set of schemas with probabilities of success. The
task is defined as a set of desired outputs, and a multi-robot
team is formed to complete the task by creating a joint plan
of the robots’ schemas. Teams are ranked by a utility func-
tion that balances the probability of success and the cost
of execution. ASyMTRe is an anytime algorithm that re-
quires prior knowledge of the agent’s capabilities and prob-
abilities of success in order to rank potential teams, while
our approach does not need such a priori information. Our
approach models and learns the interactions between large
groups of agents to form an effective team, and we compare
the performance of our algorithm against ASyMTRe.

Coalition formation is a related field, where every pos-
sible subset of agents is given a value, and the goal is to
partition the agents so as to maximize the sum of values.
However, most of the research in the field has focused on
how to achieve the best partitioning [9]. There has been
some recent work in modeling how the value of a coalition
is affected by externalities [1], but not how the value of a
coalition is derived based on the composition of its members.
Service and Adams recently applied coalition formation to
solve task allocation, where the goal is to maximize the util-
ity gained from completing tasks, and taking into account
the resources/services that the agents can provide [10]. How-
ever, they use a market-based approach to solve the task
allocation and do not model the synergistic effects across
agents that have the same service. Our approach models
varying quality in the capabilities of agents and how inter-
actions in a team can amplify the results.

In the social network domain, there has been much re-
search in selecting teams based on the interactions of agents
in the social network graph. Lappas, Liu and Terzi stud-
ied how to find a team of experts that accomplish a goal
while minimizing the communication cost in a social net-
work graph [6]. Similarly, Dorn and Dustdar studied how to
compose near-optimal expert teams by trading-off between
coverage and communication cost [2]. We extend the use
of a social network graph to model synergy between teams
of agents, where the distance in the graph correlates with
how well agents work together, and not the communication
cost between the agents, and thus, the task performance is
directly affected by the structure of the graph. Further, we
contribute an algorithm to learn the structure of the graph
from observations.

3. MODELING SYNERGY FOR TEAM
FORMATION

Let A be a set of agents, and the task be T . Let the

task T be divided into M independent sub-tasks, and let
F : 2A → X, where X is a M -dimensional random variable
with unknown distribution. The function F represents the
“world”, so F is unknown but samples of F (A) can be re-
trieved for agent teams A ⊆ A, where the size of a team can
vary from 1 to |A|. A sample of F (A) corresponds to the
values attained by A at the M sub-tasks.

Let V : RM → R be a value function that computes the
overall value at the task T based on the values of the M
sub-tasks. Examples of V are: Vsum(X) =

∑M
m=1X(m),

Vmax(X) = maxMm=1X(m), and Vtask(X) = Vsum(X) iff
X(m) > τ ∀ m ∈ [1, M], and 0 otherwise, where X(m) is
themth component ofX. Vsum and Vmax are the summation
and maximum functions, while Vtask is a composite function
that returns 0 if the performance of any sub-task is below a
threshold τ , and is the summation otherwise.

The goal is to find a team of agents A∗ ⊆ A such that
∀ A ⊆ A, V (F (A∗)) ≥ V (F (A)), i.e., A∗ receives the
highest value at the task T .

3.1 Modeling Task-Based Relationships
In order to solve this problem of forming the optimal team

to complete the task T , we create a model of F based on
samples of F (A). We assume that there is some task-based
relationship between the agents that we can model. Re-
search in the social network field use social graphs and com-
munication costs to form effective teams [6, 2]; we model
task-based relationships with a task-based network between
the agents. As such, we form a task-based graph, where
vertices are agents, and the edges represent the task-based
relationship between the agents.

One method to model this relationship is with a fully-
connected graph, where the weights of the edges represent
how well agents work together (smaller numbers mean agents
work better together, i.e., with lower cost). For example,
Fig. 1 shows a 3-agent graph, where a1 and a2 work well
together compared to other pairs.

a1 a2

a3

0.7

0.2

0.9

Figure 1: A fully-connected task-based graph where
the task-based relationship between agents are rep-
resented by edge weights.

However, a fully-connected graph does not capture tran-
sitivity in the task-based relationship. For example, transi-
tivity would mean that if a1 works very well with a2, and
a2 works very well with a3, then a1 should work well with
a3. To capture transitivity in the task-based relationship,
we can use a connected graph (instead of a fully-connected
one), where the minimum distance between agents in the
graph is inversely correlated with their task-based relation-
ship. Fig. 2 shows a modification from Fig. 1 where the edge
{a1, a3} has been removed, as an example that still preserves
the distance between the agents.

In order to model the inverse correlation between the dis-
tance of agents and their task-based relationship, we intro-
duce a weight function w : R+ → R+, where w(d(a1, a2))
returns the task-based value of agents a1 and a2 based on

366

a1 a2 a3
0.70.2

Figure 2: A connected task-based graph where the
task-based relationship between agents is a function
of the shortest distance between them.

the minimum distance between them in the graph (using the
function d). Further, w(d) is always positive and monoton-
ically decreases as d increases. Intuitive examples of w are
w(d) = 1

d
, and w(d) = exp(− d ln 2

h
), which is an exponential

decay function with half-life h.
As a simplifying assumption, we assume the edges in the

task-based graph are unweighted (all edges have weight 1),
and the weight function is still capable of fully capturing the
task-based relationship.

3.2 Quantifying Performance at the Task
We want to model F based on samples of F (A), and so

far we have introduced a graphical model to capture the
task-based relationships between agents. However, there is
an innate capability of agents that is still unmodeled. For
example, even if a1 works equally well with a2 and with
a3, the value F ({a1, a2}) may be consistently higher than
F ({a1, a3}), if a2 is “better” at the task than a3.

As such, the graph structure alone is insufficient to com-
pletely model F . We thus add a value to each vertex. Al-
though F returns an unknown distribution, we assume that
it can be represented by M Normal distributions, where
each Normal distribution models the agent’s performance
at a sub-task. Fig. 3 shows a 6-agent graph, where M = 1.
We use Normal distributions because the single peak cor-
responds to the agent’s average performance, and the sym-
metric spread corresponds to the agent’s variability.

Now, we formally define a synergy graph:

Definition 1. A synergy graph S is a tuple {GS , NS},
such that GS = (VS , ES) is a connected graph, and NS is
set of Normal distributions, where:

• va ∈ VS is a vertex in GS and represents an agent
a ∈ A,

• ES are unweighted edges in GS , and

• Na = (Na,1, . . . , Na,M) ∈ NS is a list of M Normal
distributions, where Na,m ∼ N (µa,m, σ

2
a,m) is the ca-

pability of agent a at sub-task m ∈ [1,M].

Using a synergy graph, we can compute the performance
of a pair of agents:

Definition 2. The pairwise synergy S2(a, a′) between 2
agents a, a′ ∈ A in a synergy graph S is a list of M Nor-
mal distributions, given by w(d(va, va′)) · (Na +Na′), where
each component of Na and Na′ is summed independently,
d(va, va′) is the shortest distance between the va, va′ in GS ,
and w(d) is a positive weight function that monotonically
decreases as d increases.

Using this definition of synergy between a pair of agents,
we define synergy within a group of agents, i.e., their task
performance, below:

Definition 3. The synergy S(A) of a set of agentsA ⊆ A
in a synergy graph S is the average of the pairwise synergy

of its components, i.e., 1

(|A|2)
·
∑

{a,a′}∈A
S2(a, a′)

a1

a4

a2 a3

a6

N (5, 1)

N (20, 7)

N (5, 2)

N (8, 1)

N (23, 4)

a5
N (10, 3)

Figure 3: A synergy graph with 6 agents. Each ver-
tex represents an agent, and the distance between
vertices in the graph indicate how well agents work
together. Agents have lists of Normal distributions
that correspond to their capabilities at the M sub-
tasks. In this example, M = 1.

Thus, S(A) returns
{
N (µA,1, σ

2
A,1), . . . ,N (µA,M , σ

2
A,M)

}
,

a list of M Normal distributions, indicating the task perfor-
mance of the team A ⊆ A. From Defs. 2 and 3:

µA,m =
1(|A|
2

)
∑

{a,a′}∈A
wa,a′ · (µa,m + µa′,m) (1)

σ2
A,m =

1
(|A|

2

)2
∑

{a,a′}∈A
w2
a,a′ · (σ2

a,m + σ2
a′,m) (2)

where wa,a′ = w(d(va, va′)) and Na,m ∼ N (µa,m, σ
2
a,m) are

the agent capabilities at sub-task m ∈ [1,M], assumed to be
independent.

While the definition of synergy involves the summation
of individual capabilities, it is weighted by the distance of
agents in the synergy graph, and as such, the addition or
removal of specific agents can have a large impact on the
total score of a team. For example, from Fig. 3, suppose
that w(d) = 1

d
. Then, the team {a1, a2} has a mean score of

10, but the addition of a3 lowers the mean to 8. Conversely,
the team {a1, a2, a4} increases the mean to 20, even though
the individual capability of a4 is lower than a3.

We defer the learning of synergy graphs from samples of
F to a later section, and first describe how to find the best
team A∗ ⊆ A given a synergy graph S.

3.3 Composing an Effective Team
In this section, we introduce an algorithm to approximate

the optimal team composition for the task, in terms of the
task performance, given a synergy graph. The goal is to
find the optimal team A∗ ⊆ A from a synergy graph S. We
assume that the size of the optimal team (i.e., n∗ = |A∗|)
is known. This is a reasonable assumption, since the size of
teams are typically limited by external factors, e.g., a cost
budget, size restrictions. For example, the size of teams
in sports is fixed, and also in tasks that require handing
of a fixed number of devices, such as the operators of an
ambulance. In addition, if n∗ is unknown, then our approach
can be run iteratively for increasing n, and then return the
optimal team found across all n.
S calculates the list of M Normal distributions of the

team’s performance. In order to rank teams, each Normal
distribution needs to be converted into a single number. To
do so, we use the evaluation function introduced by us in [7],
that balances the mean and variance of a Normal distribu-

367

Algorithm 1 Approximating the optimal team of size n

ApproxOptimalTeam(S, n, ρ)

1: A← GenerateRandomTeam(A, n)
2: {NA,1, . . . , NA,M} ← S(A)
3: v ← V (Evaluate(NA,1, ρ), . . . , Evaluate(NA,M , ρ))
4: for k = 1 to kmax do
5: A′ ← RandomTeamNeighbor(A)
6: {NA′,1, . . . , NA′,M} ← S(A′)
7: v′ ← V (Evaluate(NA′,1, ρ), . . . , Evaluate(NA′,M , ρ))
8: if P(v, v′, Temp(k, kmax)) > random() then
9: A← A′

10: v ← v′

11: return A

tion using a risk factor ρ ∈ (0, 1), such that when ρ > 1
2
,

distributions with higher variances attain higher values. As
such, Evaluate(NA,m, ρ) = µA,m + σA,m · Φ−1(ρ), where
Φ−1 is the inverse standard Normal cumulative distribution
function. Thus, the M Normal distributions are converted
into M real numbers, and the value function V : RM → R
is computes the final task value.

Algo. 1 finds an approximation of the optimal team of
a given size n. A random team is first generated, where
n agents are randomly chosen. Next, simulated annealing
is performed to optimize the team configuration, where a
neighbor of the current team is created by replacing one
agent with another agent not currently in the team. Lines
4-10 of Algo. 1 implements simulated annealing, where Temp

is a temperature schedule, P(v, v′, t) returns a value between
0 and 1 given values v, v′ and a temperature t.

Our team formation algorithm runs in O(|A|) time if n∗

is known. Otherwise, Algo. 1 is run for increasing n for
a total runtime of O(|A|2). A brute-force algorithm would

take O(
(|A|
n∗
)
) if n∗ is known, and O(2|A|) otherwise.

4. LEARNING SYNERGY GRAPHS
The previous section formalizes synergy and defines a syn-

ergy graph, which captures how members of a heterogeneous
team interact. In addition, an algorithm to find the opti-
mal team for a task was presented. However, in order to
quantify synergy within a team, we first need to learn a
synergy graph. In this section, we contribute an algorithm
that learns a synergy graph from observations of task per-
formance of groups of agents.

The value function F : 2A → X is unknown, but sam-
ples of F (A) can be obtained for A ⊆ A. F can be likened
to a black-box system, or the real world where the teams,
i.e., A ⊆ A, perform the task and the value of their perfor-
mance at each of the M sub-tasks is observed.

Definition 4. An observation oA is a list of M values
corresponding to an observed overall performance of mem-
bers A ⊆ A at the M sub-tasks, i.e., oA = F (A) for one
sample of F . An observation group OA =

⋃
oA is the set

of all observations of A at the task.

Each observation group OA contains all the observations
of a unique group A. We assume thatA, the set of all agents,
is known a priori. Otherwise, A =

⋃
OA

A. From these
observation groups OA, we define the observation set:

Definition 5. An observation set O is the set of all ob-
servation groups, i.e., O =

⋃ {OA}.

F

a1, a2 → (3, 2, 3)

a1, a2 → (4, 3, 4)

a1, a2, a3 → (5, 1, 1)
a1, a2, a3 → (5, 2, 3)

Observation set O

Sinitial Slearned

sample

learn capabilities

random graph structure

learn structure and capabilities

hidden

O{a1,a2}

O{a1,a2,a3}

a1, a2 → (5, 2, 3)

Figure 4: The process of learning from observations.
Each observation is a list of M numbers, correspond-
ing to each sub-task. The individual capabilities of
agents in the synergy graphs are not shown.

Algorithm 2 Create a Synergy Graph from observations

CreateSynergyGraph(O,A)

1: G← GenerateRandomGraph(A)
2: N ← EstimateCapability(O,G)
3: Sinitial ← {G,N}
4: Slearned ← Sinitial
5: l← CalculateLogLikelihood(O,S)
6: for k = 1 to kmax do
7: G′ ← RandomNeighbor(G)
8: N ′ ← EstimateCapability(O,G′)
9: S′ ← {G′, N ′}

10: l′ ← CalculateLogLikelihood(O,S′)
11: if P(l, l′, Temp(k, kmax)) > random() then
12: Slearned ← S′

13: l← l′

14: return Slearned

Fig. 4 illustrates the process of learning a synergy graph.
The function F is sampled to obtain observations, which
form the observation set O. An initial synergy graph Sinitial
is created from a random graph structure and learned capa-
bilities from the observation set. Subsequently an iterative
algorithm is used to learn the synergy graph structure that
best fits the observation set.

Algo. 2 explains this learning process in detail. First, Gen-
erateRandomGraph creates a random graph G from agents
A, such that G is a connected graph, i.e., all vertices are con-
nected through chains of edges. Next, EstimateCapability
estimates the individual agent capabilities N , using the ob-
servation set O and graph G. The initial synergy graph
S is then created from G and N , and the log-likelihood of
the observations given S is calculated using CalculateL-

ogLikelihood. Simulated annealing is then performed to
converge on a synergy graph, where P(l, l′, t) returns a value
between 0 and 1 given values log-likelihoods l, l′ and a tem-
perature t. The log-likelihood of the observation set given a
synergy graph is used as the maximizing criterion for simu-
lated annealing, as the goal is to find a synergy graph that
best matches the observations, i.e., is most likely to have
produced the observations given its graph structure and in-
dividual capabilities. RandomNeighbor(G) is a function that
takes an existing graph G, and either adds a new random

368

edge between two vertices, or removes an existing edge sub-
ject to the constraint that G remains a connected graph.

Algo. 3 estimates the individual agent capabilities, using
the observation set O and graph G. Matrices M and b are
created such that Mx = b, e.g., Mµ xµ = bµ, where
xµ = [µa1 , . . . , µa|A|]

T . Each row inM and b corresponds
to an observation group OA in O, using Eqns. 1 and 2. Each
column inM corresponds to an agent in A. A least squares
solver is run to find x, which corresponds to the means and
variances of the agent’s capabilities at the mth sub-task.

For example, suppose thatM = 1 andO{a1,a2} = {3, 4, 5},
i.e., the team {a1, a2} was sampled 3 times using F and re-
ceived value 3 for the first sample, 4 for the second, and
5 for the third. This observation group would form a row
[α, α, 0, . . .] in Mµ, and a row [α2, α2, 0, . . .] in Mσ2 , where
α = w(d(va1 , va2)). bµ and bσ2 would then have a row with
values 4 (the mean of the 3 observations) and 1 (the vari-
ance) respectively. Thus, each observation group creates a
row in the M and b matrices, and a least-squares solver is
used to solve for the means and variances of each agent.
CalculateLogLikelihood computed the log-likelihood of

the observations, given a synergy graph S. In order to
do so, for each observation group OA in O, the synergy
N (µA,m, σ

2
A,m) of the group A ⊆ A at the mth sub-task

is calculated using S. The log-likelihood of each observed
value in the observation OA is then computed, and summed
across all the observations and sub-tasks.

Overall, learning a synergy graph (Algo. 2) takes O(r3)
time, where r is the number of observation groups, due to
the least-squares solver in Algo. 3.

Algorithm 3 Estimate the individual agent capabilities

EstimateCapability(O,G)

1: Let A =
{
a1, . . . , a|A|

}
.

2: Let G = (VG, EG), and VG =
{
vaj : aj ∈ A

}
.

3: Let O = {OA1 , . . . , OAr}, where Ai ⊆ A.
4: Mµ ← 0r×|A|
5: Mσ2 ← 0r×|A|
6: bµ ← 0r×1

7: bσ2 ← 0r×1

8: for m = 1, . . . ,M do
9: for all OAi ∈ O do

10: for all aj ∈ Ai do

11: Mµ(i, j)← 1

(|Ai|2)

∑

{aj ,a}∈Ai
w(d(vaj , va))

12: Mσ2(i, j)← 1

(|Ai|2)
2

∑

{aj ,a}∈Ai
w(d(vaj , va))2

13: // o(m) is the mth component of observation o

14: bµ(i)← 1
|OAi |

∑

o∈OAi

o(m)

15: bσ2(i)← 1
|OAi |−1

∑

o∈OAi

(o(m)− bµ(i))2

16: means← LeastSquares(Mµ, bµ)
17: variances← LeastSquares(Mσ2 , bσ2)
18: for all aj ∈ A do
19: Naj ,m ∼ N (means(j), variances(j))
20: N ← {}
21: for all aj ∈ A do
22: N ← N ∪

{
(Naj ,1, . . . , Naj ,M)

}

23: return N

5. EXPERIMENTS AND RESULTS
In order to test the efficacy of our synergy graph model,

the learning algorithm to create synergy graphs from ob-
servations, and the performance of teams formed from the
learned models, we split our experiments into two phases.

In the first phase, the hidden function F is set to be a
synergy graph model, and our experiments are designed to
show that the learned synergy graph matches the hidden
synergy graph (in F) well. Further, we show that the teams
formed from the learned synergy graph performs effectively
compared to both the team formed from the hidden synergy
graph, as well as the optimal team found by brute force.

In the second phase of our experiments, we compare our
algorithms to the ASyMTRe algorithm [8]. The hidden func-
tion F follows the probabilistic model of robot capabilities
in [8], i.e., F does not return a Normal distribution, and
we learn a synergy graph model from observations of teams’
performances. We then show that the team found from our
learned synergy graph outperforms that of ASyMTRe.

5.1 F as a Synergy Graph
In order to create random synergy graphs for the func-

tion F , we first defined |A|, the number of agents, and
pedge ∈ (0, 1), the probability of an edge. We created
a graph G = (VG, EG) such that for each possible edge
e = {v1, v2}, e was added into EG if pedge was greater
than a random number uniformly generated in [0, 1]. Then,
we checked that all agents in the graph were connected, oth-
erwise the graph was discarded and re-generated. In our ex-
periments below, we iterated between values of pedge from
0.1, 0.2, . . . , 0.9 and collated the results across all pedge.

Then, the simulator generated the agents’ capabilities. In
our first set of experiments, M , the number of sub-tasks,
was set to 1. We generated Na ∼ N (µa, σ

2
a) ∈ NS such

that µa ∈ [−γ, γ] and σ2
a ∈ [0, γ], where γ is a multiply-

ing factor, which we describe below. To generate the ca-
pabilities in the second set of experiments where M > 1,
the M sub-tasks were first split among the agents, such

that d |A|
M
e agents were capable of performing each sub-task.

Then, when generating the Normal distributions, if an agent
a was capable of performing sub-task m ∈ [1,M], then
Na,m ∼ N (µa,m, σ

2
a,m), and Na,m ∈ Na ∈ NS such that

µa,m ∈ (γ
2
, 3γ

2
), and σ2

a,m ∈ (0, γ). Otherwise, the distri-
bution Na,m ∼ N (0, ε) for some small ε.

We created 2 weight functions w, wfrac(d) = 1
d

and

wdecay = exp(− d ln 2
h

), where d is the distance between 2
agents in the graph, and h is the half-life of the exponen-
tial decay function. The two weight functions were selected
to demonstrate that the algorithms’ performance is similar
regardless of the weight function, and because both wfrac
and wdecay were intuitive and easy to understand. For the
experiments in this paper, we set h = 3, since |A| was set to
be at most 10, so the weight between agents would have a
similar range for both functions.
γ, the multiplying factor, affects how the performance of

the agents are affected by the weight functions. For example,
a weight of 1

2
reduces a capability of 4 to 2 (a difference of 2

units), but reduces 40 to 20 (a much larger difference of 20),
which could have effects on the learning algorithm. Thus,
we varied γ in our learning experiments to study the effect
of the range of utilities on the performance of our algorithm.

369

Figure 5: The error in the learned graph with vary-
ing number of agents and both weight functions.

5.1.1 Learning Synergy Graphs from Observations
In Sec. 4, we described the algorithm used to learn a syn-

ergy graph from observations. We first generated a synergy
graph Strue using the method described above, and then
generated a training observation set Otrain, with sets of 2
and 3 agents, i.e., ∀ OA ∈ Otrain, 2 ≤ |A| ≤ 3. We gen-
erated 100 data points from each pair/triple, and modeled
a synergy graph Slearned from the data.

Then, to test how well our algorithm learns the synergy
graph, we generated a test observation set Otest using combi-
nations of 4 or greater agents, i.e., ∀ OA ∈ Otest, |A| ≥ 4,
that had 1000 observations in total. We then measured the
difference in log-likelihoods between the hidden and learned
synergy graphs, i.e., LL(Otest|Strue) − LL(Otest|Slearned),
where LL(O|S) = CalculateLogLikelihood(O,S). A low
log-likelihood difference indicates that the synergy graph is
as likely as the true graph to have produced the observa-
tions. We compared this difference in log-likelihood versus
the initial graph used in the learning algorithm, Sinitial, that
had random edges but learned agent capabilities, to observe
if the graph structure has an effect on the log-likelihoods.

We first ran experiments where there was a single task
(M = 1) and agents had heterogeneous levels of performance
with regards to the task. Fig. 5 shows the log-likelihood dif-
ferences of the learned synergy graphs with the 2 weight
functions compared to the hidden synergy graph, and vary-
ing the number of agents from 6 to 10. Varying the number
of agents does not affect the log-likelihood error much — the
weight function and the multiplier γ have greater effects.

Figs. 6 and 7 shows the log-likelihood difference of the
learned synergy graphs and the initial synergy graphs when
|A| = 10. The learned synergy graphs are much closer to
the true synergy graphs, i.e., the difference in log-likelihood
is close to 0 and orders of magnitude lower than the initial
synergy graphs. The error in log-likelihood increases as γ,
the multiplying factor, increases, especially for Sinitial, and
shows that γ affects the difficulty of the learning problem
(seen from the errors of Sinitial), but our learning algorithm
is capable of significantly reducing this error in Slearned.
Furthermore, the observation set used for learning only in-
cluded pairs and triples of agents, but the learned graph had
a low log-likelihood difference when testing against data of
teams comprising 4 or more agents, which shows that the
structure of the learned graph and the individual agent ca-
pabilities match the hidden synergy graph well.

The next set of experiments were run where the task was
composed of M > 1 sub-tasks, and each sub-task had a
number of agents that were capable of performing it. We

Figure 6: The error in the learned synergy graph
of 10 agents with heterogeneous task performance,
using the weight function wdecay(d) = exp(− d ln 2

3
),

compared with the initial graph used by the learning
algorithm, with random structure but learned agent
capabilities.

Figure 7: The errors in synergy graphs of 10 agents
with heterogeneous task performance, using the
weight function wfrac(d) = 1

d
.

used wdecay as the weight function, set |A| = 10, and varied
M from 2 to 5. Fig. 8 shows the log-likelihood differences
between the Slearned and the Strue, as compared to Sinitial
and Strue. The error in the learned graphs are half or less
than that of the initial graphs, which demonstrates the ef-
ficacy of our learning algorithm, using only data of 2 and 3
agents and being tested on larger groups of agents. However,
while the error in log-likelihood of Slearned remains mostly
flat compared to γ, the error increases as M increases, which
shows that an increase in the number of sub-tasks has a large
impact in the quality of the learned synergy graph. The ad-
vantage of wdecay over wfrac should be general, because the
decay function decreases less abruptly as distance increases.

5.1.2 Measuring Team Performance
The goal is to find the optimal team to perform the task,

and we use ApproxOptimalTeam (Algo. 1) on the learned
synergy graphs Slearned. The performance of this set of
agents is then computed with F in the hidden synergy graph
Strue, and compared against the best and worst possible
combinations of agents. For example, if the set of agents A′

is selected from Slearned, then the value of A′ is computed
on Strue.

We did two sets of experiments: when M = 1 and when
M > 1. In the first set, we varied |A|, the number of agents
in the synergy graph, from 6 to 10, and the algorithm picked
the best 5 agents. In the second set, we fixed |A| to 10 and
varied M , the number of sub-tasks, from 2 to 5. In both
cases, γ = 1, and ρ = 0.75. Tables. 1 and 2 show the score of
the picked agents on a scale of 0 to 100 (where 0 denotes the
worst possible combination, and 100 is the optimal team),
and the performance of the selected team on the hidden

370

Figure 8: The error in the initial and learned syn-
ergy graphs of 6 agents where some sub-tasks could
only be completed by some agents, using the weight
function wdecay.

Learned Graph Hidden Graph
6 agents 99.90± 0.73 100.00± 0
7 agents 99.89± 0.45 100.00± 0.05
8 agents 99.94± 0.32 100.00± 0
9 agents 99.96± 0.28 100.00± 0
10 agents 99.95± 0.36 99.99± 0.12

Table 1: Score (%) of agents with 1 sub-task.

Learned Graph Hidden Graph
2 sub-tasks 99.64± 0.77 99.96± 0.40
3 sub-tasks 99.57± 3.43 99.97± 0.47
4 sub-tasks 98.79± 9.95 99.97± 0.38
5 sub-tasks 89.65± 30.26 99.97± 0.25

Table 2: Score (%) of agents: 10 agents with varying
number of sub-tasks.

graph Strue. The worst and optimal teams were discovered
by iterating through all possible combinations of agents and
computing their value. It is remarkable that our algorithm
finds a team that obtains a score of at least 89.65%, and
has a similar score when the algorithm is run on the hidden
graph, and thus shows that the learned synergy graphs are
in fact very close to hidden synergy graphs that were used to
generate the observation sets, and that ApproxOptimalTeam
can be used to find effective teams.

5.2 F as a Probabilistic Function
In this section, F was no longer a hidden synergy graph

model. Instead, we used the robot capability model of Parker
and Tang [8], where every robot has a subset of actions that
it can perform, each with a probability of success. These ac-
tions are then chained across robots to produce the desired
output, again with some probability of success. Fig. 9 shows
the capabilities of 3 agents and how the actions are chained
together to produce the desired outcome. Since each agent
has a subset of the actions, different subsets of agents will
have different results. In our experiments, we varied the
number of agents from 4 to 10 and randomly picked their
capabilities in each trial — each agent had a 0.7 chance of
being able to perform each action, and the probability of
success of the action was uniformly sampled from [0.1, 0.9].
F , the function of the performance of a team of agents,

was calculated based on the cost of executing the actions and
the reward achieved by generating the output. The cost of
attempting actions 1, 2 and 3 were 30, 10 and 15 respec-

Action 1

Action 2

Action 3

Desired Output

0.8

0.9

a1

a2

a3

0.3

0.7

0.6

0.9

...
Figure 9: The model of robot capabilities introduced
by Parker and Tang [8]. The numbers indicate prob-
abilities of success, and the dashed lines out of ac-
tions 2 and 3 indicate that both are required to trig-
ger the desired output.

Synergy

ASyMTRe

F
exposed

F
hidden

learn select
team

select team

F

F

value

value

Figure 10: The experimental process to compare our
synergy algorithm against the ASyMTRe algorithm.

tively, and the cost of attempting to generate the output
from action 1 was 10 and 15 from the combination of ac-
tion 2 and 3. When the output was achieved successfully,
a reward of 100 was given. The values of costs and reward
were arbitrarily chosen, but further experiments with differ-
ent values yielded similar results, so we present these results
in this paper. In each trial, every agent would attempt to ex-
ecute its actions, and if they were successful, the output was
also attempted to be generated. Thus, F had a probability
density function (pdf) that depended on the agent capabili-
ties — this pdf was not Normally distributed in general. We
were interested to find out how accurately we could learn a
synergy graph to model F even in such a situation.

Fig. 10 shows the experimental process. The hidden func-
tion F was used to generate observations of subsets of 2
and 3 agents, and then a synergy graph model is learned
(Algo. 2). A team is then selected using the learned synergy
graph (Algo. 1), and the value of the team is computed us-
ing F . To attain results for ASyMTRe [8], the probabilities
of success and costs of actions in F were exposed, and the
heuristic to rank teams in [8] was used. The ASyMTRe al-
gorithm is an anytime algorithm, but for our experiments,
we ran it to completion so that the optimal team with re-
spect to the authors’ heuristic was chosen. The values of the
selected teams were then compared to the maximum and
minimum team values, which were attained by performing a
brute-force search of all possible combinations of agents in
F , and thus scaling the results of the synergy and ASyMTRe
algorithms to be between 0 and 1.

The ranking heuristic in the ASyMTRe algorithm has a
factor p ∈ [0, 1] that balances between the probability
of success of performing an action versus the cost of the
action. For our experiments, we varied p from 0 to 1 at 0.1
intervals, and collated the results. Similarly, the synergy
algorithm uses the risk factor ρ ∈ (0, 1); we varied ρ from 0.1

371

of agents Synergy ASyMTRe
4 95± 17 64± 34
5 95± 14 64± 33
6 96± 10 63± 31
7 97± 8 60± 29
8 93± 7 59± 27
9 97± 7 59± 25
10 96± 8 63± 27

Table 3: Score (%) of teams composed by our syn-
ergy algorithm versus the ASyMTRe algorithm.

to 0.9 at 0.1 intervals and collated the results. The results
were collated across p and ρ since the values were consistent
and had little effect on the performance of the algorithms in
general. We varied |A|, the number of agents, from 4 to 10,
and picked teams of sizes 2 to |A| − 1. For a given size of
|A|, we performed 30 trials for each team size.

Table 3 shows the scores of the two algorithms. Across
all number of agents, our synergy algorithm outperforms
the ASyMTRe algorithm in terms of the performance of the
team selected, even though the function F is hidden to the
synergy algorithm but exposed for the ASyMTRe algorithm.
The ASyMTRe algorithm finds teams that score around 60%
of the optimal while the synergy algorithm forms teams that
score above 90%. This significant difference is due to a num-
ber of reasons: firstly, the ASyMTRe algorithm was designed
to also plan the agents’ actions, i.e., which actions each agent
should perform in order to complete the task. Secondly,
the ASyMTRe typically plans for a set number of outputs
(e.g., find a team to produce 2 outputs), but in our exper-
iments the heuristic was used to find a team that produces
as much output as possible. We compared our synergy al-
gorithm to ASyMTRe as it is a well-known algorithm for
multi-robot team formation and coordination that exploits
heterogeneity in the agents to maximize task performance.

6. CONCLUSIONS
We are interested in team formation, where heterogeneous

agents of varying capabilities are put together to complete
a task. The interactions between these agents are initially
unknown, and the goal is to select a subset of these agents
such that the task performance is maximized.

We formally defined a synergy graph, where an agent’s
capability is represented by a list of Normal distributions,
and the task-based relationship between agents are modeled
by the distance between them in a graph. We then formally
defined how pairwise synergy can be computed using a syn-
ergy graph, and extended the definition of synergy to include
groups of any number of agents. We then presented an al-
gorithm to approximate the optimal team given a synergy
graph. Next, we contributed an algorithm that learns a syn-
ergy graph from observations of the performance of groups
of agents, without any prior information about the agents’
capabilities or the interactions among them. While we used
simulated annealing in our team formation and learning al-
gorithms, we believe that other approximation techniques
would have similar performance.

In our experiments, we used 2 weight functions to weight
the synergy of agents based on their distance in the graph.
Using only observations of pairs and triples of agents, we
showed that our learning algorithm is capable of learning
the structure of task-based interactions and the capabilities

of the agents as compared to the initial synergy graph where
the observations were generated from, using both weight
functions. This is a significant contribution as it shows that
our learning algorithm does not need to observe all combi-
nations of agent interactions in order to learn the synergy
model, and is robust to different weight functions. Further-
more, we used a probabilistic model of agent capabilities
to determine task performance, and compared our synergy
algorithm with the ASyMTRe algorithm, and showed that
even though the hidden model was not Normally distributed,
and our algorithm does not have a priori knowledge of the
agents’ capabilities and probabilities of success of their ac-
tions while ASyMTRe has full knowledge, we are able to
form teams that perform much better.

Acknowledgments
This work was partially supported by the Air Force Re-
search Laboratory under grant no. FA87501020165, and the
Agency for Science, Technology, and Research (A*STAR),
Singapore. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of any sponsoring institution, the U.S. government or
any other entity.

7. REFERENCES
[1] B. Banerjee and L. Kraemer. Coalition structure

generation in multi-agent systems with mixed
externalities. In Proc. 10th Int. Conf. Autonomous
Agents and Multiagent Systems, pages 175–182, 2010.

[2] C. Dorn and S. Dustdar. Composing near-optimal
expert teams: A trade-off between skills and
connectivity. In Proc. Int. Conf. Cooperative
Information Systems, pages 472–489, 2010.

[3] B. P. Gerkey and M. J. Mataric. A formal analysis and
taxonomy of task allocation in multi-robot systems.
Int. J. Robotics Research, 23(9):939–954, 2004.

[4] C. Guttmann. Making allocations collectively:
Iterative group decision making under uncertainty. In
Proc. 6th German Conf. Multiagent System
Technologies, pages 73–85, 2008.

[5] L. He and T. R. Ioerger. A quantitative model of
capabilities in multi-agent systems. In Proc. Int. Conf.
Artificial Intelligence, pages 730–736, 2003.

[6] T. Lappas, K. Liu, and E. Terzi. Finding a Team of
Experts in Social Networks. In Proc. Int. Conf.
Knowledge Discovery and Data Mining, pages
467–476, 2009.

[7] S. Liemhetcharat and M. Veloso. Mutual state
capability-based role assignment model (extended
abstract). In Proc. 9th Int. Conf. Autonomous Agents
and Multiagent Systems, pages 1509–1510, 2010.

[8] L. Parker and F. Tang. Building multirobot coalitions
through automated task solution synthesis. Proc.
IEEE, 94(7):1289–1305, 2006.

[9] T. Sandholm, K. Larson, M. Andersson, O. Shehory,
and F. Tohme. Coalition structure generation with
worst case guarantees. Artificial Intelligence,
111:209–238, 1999.

[10] T. Service and J. Adams. Coalition formation for task
allocation: theory and algorithms. Autonomous Agents
and Multi-Agent Systems, 22:225–248, 2011.

372

Session 1C
Learning I

V-MAX: Tempered Optimism for Better
PAC Reinforcement Learning

Karun Rao
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands
karunrao97@gmail.com

Shimon Whiteson
Informatics Institute

University of Amsterdam
Amsterdam, The Netherlands

s.a.whiteson@uva.nl

ABSTRACT
Recent advances in reinforcement learning have yielded sev-
eral PAC-MDP algorithms that, using the principle of opti-
mism in the face of uncertainty, are guaranteed to act near-
optimally with high probability on all but a polynomial num-
ber of samples. Unfortunately, many of these algorithms,
such as R-MAX, perform poorly in practice because their
initial exploration in each state, before the associated model
parameters have been learned with confidence, is random.
Others, such as Model-Based Interval Estimation (MBIE)
have weaker sample complexity bounds and require careful
parameter tuning. This paper proposes a new PAC-MDP
algorithm called V-MAX designed to address these prob-
lems. By restricting its optimism to future visits, V-MAX
can exploit its experience early in learning and thus obtain
more cumulative reward than R-MAX. Furthermore, doing
so does not compromise the quality of exploration, as we
prove bounds on the sample complexity of V-MAX that are
identical to those of R-MAX. Finally, we present empiri-
cal results in two domains demonstrating that V-MAX can
substantially outperform R-MAX and match or outperform
MBIE while being easier to tune, as its performance is in-
variant to conservative choices of its primary parameter.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms

Keywords
Reinforcement learning, Sample complexity

1. INTRODUCTION
In reinforcement learning (RL) [17], an agent must learn

an optimal policy for maximising its expected long-term re-
ward in an initially unknown Markov decision process (MDP)
[1]. Since a wide range of realistic problems, from game play-
ing to robot control, can be naturally formulated as MDPs,
effective reinforcement-learning algorithms are critical to the
development of intelligent agents.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

A central challenge in RL is how best to balance explo-
ration, in which the agent tries various actions to learn about
their effects, and exploitation, in which it uses what it has
already learned to select actions that maximise expected re-
turn. Traditional RL algorithms such as Q-Learning [21]
rely on ad-hoc exploration mechanisms that ensure each
state-action pair is experienced infinitely often. As a result,
the convergence of such algorithms to the optimal policy is
guaranteed only in the limit.

Fortunately, methods have recently been developed that
explore more efficiently and thus obtain guarantees based
on the probably approximately correct (PAC) [20] framework.
Instead of converging to the optimal policy, PAC-MDP algo-
rithms are guaranteed to act near-optimally with high prob-
ability on all but a polynomial number of samples.

R-MAX [2], the most well known PAC-MDP method, for-
malises the principle of optimism in the face of uncertainty.
If n, the number of times a state-action pair has been visited,
is less than a threshold m, it is assumed to have maximal
value. Planning on the resulting model yields a policy that
either leads the agent to unfamiliar state-action pairs or ex-
ploits familiar ones of high value.

Despite its PAC guarantees, R-MAX often performs poorly
in practice because its initial exploration is random: until
a state-action pair has been visited m times, the agent’s
experience with it is ignored. Model-Based Interval Estima-
tion (MBIE) [16] avoids this problem by computing confi-
dence intervals that quantify the agent’s optimism. While
MBIE has been shown to outperform R-MAX empirically,
the bounds on its sample complexity are not as strong [16].

This paper describes V-MAX, a novel PAC-MDP method
designed to overcome the weaknesses of both R-MAX and
MBIE. Like R-MAX, V-MAX is optimistic about state-action
pairs experienced fewer than m times. However, like MBIE,
its optimism is tempered by experience. Rather than assum-
ing such state-action pairs have maximal value, it assumes
only that the remaining m− n visits will yield maximal re-
turn. Thus, its estimate of the state-action pair’s value is
a weighted average of the expected return based on the n
visits and that of the m− n optimistic future visits.

In this way, V-MAX can exploit its experience early in
learning and thus obtain more cumulative reward than R-
MAX. Furthermore, this additional exploitation does not
make exploration less efficient. On the contrary, we prove
bounds on the sample complexity of V-MAX that are iden-
tical to those of R-MAX. This result shows for the first time
that it is possible to employ tempered optimism like that of
MBIE but without compromising the resulting PAC bounds.

375

This paper also presents empirical results comparing the
performance of V-MAX to MBIE, R-MAX, and MoR-MAX,
another PAC-MDP method, on two tasks: a standard bench-
mark task from the PAC-MDP literature and a new task
containing multiple local optima that is designed to be chal-
lenging for PAC-MDP methods. The results on both tasks
demonstrate that V-MAX can substantially outperform both
R-MAX and MoR-MAX. They also demonstrate that V-
MAX, unlike MBIE, performs well in the presence of multi-
ple local optima. Even when such local optima are absent,
V-MAX matches the performance of MBIE and in both cases
proves substantially easier to tune, as its performance is in-
variant for conservative choices of m.

The rest of this paper is organized as follows. Section 2
provides background on RL, PAC, and PAC-MDP methods.
Section 3 presents V-MAX and a proof of its sample com-
plexity. Section 4 describes our experimental results while
Section 5 concludes and suggests directions for future work.

2. BACKGROUND
A Markov decision process can be described as a five-

tuple (S, A, R, T, γ), where S is the state space, A is the
action space, R(s, a) is the reward function describing the
expected reward given state s and action a, T (s, a, s′) is the
transition function describing the probability of arriving in
state s′ given s and a, and 0 ≤ γ < 1 is the discount factor
used when summing an infinite sequence of rewards. An
agent’s policy π : S → A specifies what action to take in
each state. An optimal policy π∗ maximises the expected γ-
discounted long-term cumulative reward, also known as the
expected discounted return [17].

If both the reward and transition functions are known,
then an agent can compute π∗ using a planning method
such as value iteration (VI) [1]. VI computes the optimal
action-value function Q∗ by iteratively solving the Bellman
optimality equation (1), until for each state-action pair (s, a),
subsequent computations of Q∗(s, a) yield a difference less
than some tolerance ǫ. Given Q∗, an optimal policy can be
easily derived: π∗(s) = argmaxa∈A Q∗(s, a).

Q∗(s, a)← R(s, a) + γ
∑

s′∈S

T (s, a, s′) max
a′∈A

Q∗(s′, a′) (1)

If the reward and/or transition functions are unknown,
then the agent can learn Q∗ from experience. Model-based
RL methods do so indirectly by learning R̂ and T̂ , maximum
likelihood estimates of the reward and transition functions,
and planning on the resulting MDP: (S, A, R̂, T̂ , γ).

Learning R̂ and T̂ is complicated by the need to explore
the environment to collect samples. If the agent explores
too little, it may not learn the dynamics of the MDP ac-
curately. If it explores too much, it may not accumulate
enough reward. While it is possible in principle to compute
a Bayes-optimal exploration strategy, doing so is typically
intractable [3]. As a result, ad-hoc strategies such as ǫ-
greedy exploration are often used in practice. The probably
approximately correct (PAC) learning framework offers a
middle ground: tractable algorithms that, while not Bayes-
optimal, have upper bounds on their sample complexity :

Definition 1. For any fixed ǫ > 0, the sample complexity
of exploration of an algorithm A is the number of timesteps
t such that the policy at time t, At, satisfies V At(st) <
V ∗(st)− ǫ [8].

A PAC-MDP method is one that is guaranteed to have,
with high probability, a polynomial sample complexity:

Definition 2. An algorithm A is PAC-MDP (Probably
Approximately Correct in Markov Decision Processes) if,
for any ǫ > 0 and 0 < δ < 1, the sample complexity of
A is less than some polynomial in the relevant quantities
(|S|, |A|, Rmax, 1/ǫ, 1/δ, 1/(1 − γ)) for any MDP M , with
probability at least 1 − δ, where Rmax is an upper bound
on the reward function of M [13].1

R-MAX [2], described in Algorithm 1, is the simplest and
most well known PAC-MDP algorithm. In addition to S,
A, γ, and Rmax, it takes as input two parameters: m, the
number of times each state-action pair must be experienced
before R̂ and T̂ are considered near-accurate, and ǫ1, the
accuracy required from VI during the planning step.

Algorithm 1: R-MAX

Input: S, A, γ, m, ǫ1, Rmax

1 S̄ ← S ∪ {z}, where z is an arbitrary fictitious state

2 foreach (s, a) ∈ S̄ × A do
3 n(s, a)← 0
4 r(s, a)← 0

5 Q̃(s, a)← Rmax/(1− γ)

6 R̃(s, a)← Rmax

7 foreach s′ ∈ S do
8 n(s, a, s′)← 0

9 T̃ (s, a, s′)← 0
10 end
11 n(s, a, z)← 0

12 T̃ (s, a, z)← 1
13 end
14 for t = 1, 2, 3, . . . do
15 Observe current state s

16 Execute action a := argmaxa′∈A Q̃(s, a′)
17 Observe immediate reward r and next state s′

18 if n(s, a) < m then
19 n(s, a)← n(s, a) + 1
20 r(s, a)← r(s, a) + r
21 n(s, a, s′)← n(s, a, s′) + 1
22 if n(s, a) = m then

23 R̃(s, a)← r(s, a)/m

24 foreach s′′ ∈ S̄ do T̃ (s, a, s′′)← n(s, a, s′′)/m

25 Q̃← Solve (S̄, A, R̃, T̃ , γ, ǫ1) using VI
26 end
27 end
28 end

R-MAX adds a fictitious maximally rewarding state z to
the MDP and initially assumes that all state-action pairs
(s, a) (including all (z, a)) yield the maximum reward Rmax

and transition with probability 1 to z.2 We use R̃ and T̃ to
denote these initially optimistic reward and transition func-
tions. In addition, Q̃, the optimistic value function, is initial-
ized to the maximum possible value, i.e., Q̃(s, a) = Vmax =
Rmax/(1 − γ) for all s and a. Once some (s, a) has been

experienced m times, R̃(s, a) and T̃ (s, a) are set to R̂(s, a)

and T̂ (s, a), respectively, and the Q̃-values are updated with
VI. Thus, R-MAX automatically explores state-action pairs
that it is uncertain about and exploits otherwise. Once some
(s, a) has been experienced m times, R-MAX assumes the

1This definition is slightly modified in that it allows the
bounds to also depend on Rmax since, unlike [13], we do not
assume that Rmax = 1. In addition, we do not consider the
space and computational complexity.
2We use z for ease of comparison to V-MAX, but R-MAX
can also be implemented by initialising all state-action pairs
to have self-transitions with probability 1.

376

reward and transition functions for (s, a) are near-accurate
and stops learning them. The tightest known upper bounds
on R-MAX’s sample complexity, due to [13], are:3

O

(
|S||A|R3

max

ǫ3(1− γ)6

(
|S|+ ln

|S||A|
δ

)
ln

1

δ
ln

Rmax

ǫ(1− γ)

)
.

Modified R-MAX (MoR-MAX) [19] is similar to R-MAX
except that, once a state-action pair (s, a) has been expe-
rienced m times, it restarts the sample collection for (s, a).
For every m such samples that MoR-MAX collects, it cre-
ates a trial model consisting of the reward and transition
functions based on the m most recent samples of (s, a). It

then uses VI to compute Q̃′ based on the trial model and,
if Q̃′(s, a) ≤ Q̃(s, a), then it replaces the reward and transi-
tion functions for (s, a) with those of the trial model. In this
way, MoR-MAX continues learning throughout the agent’s
lifetime, unlike R-MAX. Note that each time MoR-MAX
replaces the reward and transition functions using m new
samples, the previous m samples are discarded. With prob-
ability 1− δ, the sample complexity of MoR-MAX is:

O

(
|S||A|R2

max

ǫ2(1− γ)6
ln
|S||A|Rmax

δǫ(1− γ)
ln2 Rmax

ǫ(1− γ)

)
.

Ignoring log factors, the sample complexity bounds for MoR-
MAX are better than R-MAX in terms of |S|, Rmax, and 1/ǫ,
and the same in terms of |A| and 1/(1− γ).

Model-based Interval Estimation (MBIE) [16] improves on
the empirical performance of R-MAX by computing confi-
dence intervals on the reward and transition functions.4 Like
R-MAX, MBIE initialises all Q̃-values to Vmax. Thereafter,
at each timestep, it computes the Q̃-values using VI with
the following equation in place of the Bellman optimality
equation:

Q̃(s, a)← R̂(s, a)+γ
∑

s′∈S

T̂ (s, a, s′) max
a′∈A

Q̃(s′, a′)+
β√

n(s, a)
,

where β is an input parameter controlling the balance be-
tween exploration and exploitation. Thus, MBIE provides
an exploration bonus that drives the agent towards state-
action pairs that have been visited fewer times. With prob-
ability 1− δ, the sample complexity of MBIE is:

O

(
|S||A|R3

max

ǫ3(1− γ)6

(
|S|+ ln

|S||A|Rmax

δǫ(1− γ)

)
ln

1

δ
ln

Rmax

ǫ(1− γ)

)
.

The bounds for MBIE are similar to those of R-MAX, except
in log factors, where they are worse in terms of Rmax, 1/ǫ,
and 1/(1 − γ).

3. METHOD
A critical weakness of R-MAX is that it performs poorly

early in learning: since state-action pairs are indistinguish-
able until they have been experienced m times, R-MAX can
only explore randomly during this phase. In essence, this
poor performance is due to excessive optimism. To illus-
trate this point, consider the following example: an MDP

3There are minor differences in the bounds we state, since
[13] assume that Rmax = 1. Also, their bounds include the
use of an admissible heuristic for initialising Q-values.
4We describe a variant of MBIE that Strehl and Littman call
MBIE with exploration bonus. We consider only this variant
because it is simpler and refer to it as MBIE for conciseness.

with a single state s and two actions a1 and a2, which
always yield rewards of 0 and Rmax, respectively. Sup-
pose that at some timestep t, both (s, a1) and (s, a2) have
been experienced n times each, where n < m.5 Since R-
MAX is still uncertain about both state-action pairs, it as-
sumes that R̃t(s, a1) = R̃t(s, a2) = Rmax and thus chooses
an action randomly. However, given that the n experi-
ences of (s, a1) produced a reward of 0, R-MAX is clearly
overly optimistic about R(s, a1). Even if a1 always gener-

ates a reward of Rmax in the future, R̂(s, a1) will be at most
(0 ∗n+(m−n) ∗Rmax)/m = (m−n)Rmax/m by the end of

learning, while R̂(s, a2) can obviously be as high as Rmax.
The key idea behind V-MAX, our novel PAC-MDP al-

gorithm, is to exploit this insight to temper the excessive
optimism of R-MAX. Rather than assuming all state-action
pairs visited fewer than m times have maximal value, V-
MAX assumes only that the remaining m−n visits will yield
maximal return. Hence, V-MAX remains optimistic but can
more quickly exploit what it learns. In our example, V-MAX
would only need to choose a1 once to know it is sub-optimal,
thereby improving performance early in learning. In the re-
mainder of this section, we formalise the V-MAX algorithm
and prove bounds on its sample complexity.

3.1 The V-MAX Algorithm
V-MAX initialises Q̃, R̃, and T̃ exactly as R-MAX does.

Unlike R-MAX, however, V-MAX updates R̃ and T̃ at each
timestep, using the following equations:

R̃(s, a) =
n(s, a)R̂(s, a) + (m− n(s, a))Rmax

m
(2)

T̃ (s, a, s′) =

n(s, a)T̂ (s, a, s′)

m
if s′ 6= z

m− n(s, a)

m
if s′ = z.

(3)

Thus, both the reward and transition function updates mix
the observed rewards and transitions with the optimistic as-
sumption that future samples will involve transitions to the
maximally rewarding state z. V-MAX also updates Q̃ at
each timestep, using VI on the MDP (S ∪ {z}, A, R̃, T̃ , γ),

and then simply follows a greedy policy with respect to Q̃.
A simpler alternative implementation can be derived that

uses the empirical reward and transition functions R̂ and T̂
to compute Q̃ directly, thus eliminating the need to compute
R̃ and T̃ and explicitly represent z. Substituting Equations
2 and 3 into the Bellman optimality equation (and omitting
(s, a) in the notation for brevity), yields:

Q̃ =
nR̂ + (m− n)Rmax

m
+ γ
(m− n

m
max
a′∈A

Q̃(z, a′)

+
∑

s′∈S

nT̂ (s′)

m
max
a′∈A

Q̃(s′, a′)
)

=
n

m

(
R̂ + γ

∑

s′∈S

T̂ (s′) max
a′∈A

Q̃(s′, a′)
)

+
(m− n

m

)(
Rmax + γ max

a′∈A
Q̃(z, a′)

)

=
n

m

(
R̂ + γ

∑

s′∈S

T̂ (s′) max
a′∈A

Q̃(s′, a′)
)

+
(
1− n

m

)
Vmax.

5We assume the agent does not know that the MDP is de-
terministic, and thus m > 1.

377

The resulting implementation of V-MAX, described in Al-
gorithm 2, initialises Q̃(s, a) to Vmax for all (s, a) ∈ S ×
A. At each timestep, it updates Q̃ using VI on the MDP
(S, A, R̂, T̂ , γ) but with the following equation in place of the
Bellman optimality equation:

Q̃(s, a) =
n(s, a)

m

(
R̂(s, a) + γ

∑

s′∈S

T̂ (s, a, s′) max
a′∈A

Q̃(s′, a′)

)

+

(
1− n(s, a)

m

)
Vmax.

(4)
Finally, the agent follows a greedy policy with respect to

Q̃. The name V-MAX is inspired by this implementation, as
it computes an optimistic value function directly from Vmax.

Algorithm 2: V-MAX

Input: S, A, γ, m, ǫ1, Rmax

1 Vmax ← Rmax/(1 − γ)
2 foreach (s, a) ∈ S × A do
3 n(s, a)← 0
4 r(s, a)← 0
5 foreach s′ ∈ S do n(s, a, s′)← 0

6 Q̃(s, a)← Vmax

7 end
8 for t = 1, 2, 3, . . . do
9 Observe current state s

10 Execute action a := argmaxa′∈A Q̃(s, a′)
11 Observe immediate reward r and next state s′

12 if n(s, a) < m then
13 n(s, a)← n(s, a) + 1
14 r(s, a)← r(s, a) + r
15 n(s, a, s′)← n(s, a, s′) + 1

16 R̂(s, a)← r(s, a)/n(s, a)

17 foreach s′ ∈ S do T̂ (s, a, s′)← n(s, a, s′)/n(s, a)
18 repeat
19 ∆← 0
20 foreach (s, a) ∈ S ×A do
21 if n(s, a) > 0 then

22 q ← Q̃(s, a)

23 Q← R̂(s, a) +

γ
∑

s′∈S T̂ (s, a, s′)maxa′∈A Q̃(s′, a′)
24 Q̃(s, a)←

(n(s, a)/m)Q + (1− n(s, a)/m)Vmax

25 ∆← max(∆, |q − Q̃(s, a)|)
26 end
27 end
28 until ∆ ≤ ǫ1
29 end
30 end

3.2 Sample Complexity of V-MAX
Section 4 will demonstrate that V-MAX can substantially

outperform performance R-MAX. Here, we show that these
empirical advantages do not come at the expense of its the-
oretical properties, by proving upper bounds on its sample
complexity identical to those of R-MAX. As the example in
Section 3 illustrates, V-MAX can explore less than R-MAX.
Thus, the bounds we prove here are critical for ensuring that
V-MAX’s tempered optimism does not increase the chance
of converging to a suboptimal model.

We begin with supporting lemmas showing that the value
function used by V-MAX decreases monotonically and is
always at most Vmax. We then prove the main result in
Theorem 1, using techniques similar to [13] and [16].

In the following, let the value iteration step (vstep) i be
the ith value iteration update (Lines 23-24 of Algorithm 2)

since t = 1. Let n[i], Q̃[i], R̂[i], and T̂[i] denote the values of

n, Q̃, R̂, and T̂ , respectively, at vstep i. Finally, let (s[i], a[i])

be the state-action pair whose Q̃-value is updated at vstep
i. As with other PAC-MDP algorithms, we assume that all
rewards are non-negative, and are upper bounded by Rmax.

Lemma 1. For all (s, a) ∈ S × A, and for all policies π
and timesteps t:

Q̃π
t (s, a) ≤ Vmax.

Proof. Using weak induction on the vsteps i, we prove
that for all (s, a) ∈ S × A and for all policies π, Q̃π

[i](s, a) ≤
Vmax. The base case, that Q̃π

[0](s, a) = Vmax for all (s, a) ∈
S ×A, holds because all Q̃-values are initialised to Vmax. In
the inductive step, we assume that, for all (s, a) ∈ S × A,

Q̃π
[k](s, a) ≤ Vmax and must prove that Q̃π

[k+1](s, a) ≤ Vmax.
Note that (s[k+1], a[k+1]) is the only state-action pair whose

value is updated at vstep k+1, so Q̃π
[k+1](s

′, a′) = Q̃π
[k](s

′, a′)

for all other (s′, a′) 6= (s[k+1], a[k+1]). Thus, by the induc-

tive hypothesis, Q̃π
[k+1](s

′, a′) ≤ Vmax. Consequently, we
only need to prove that:

Q̃π
[k+1](s[k+1], a[k+1]) ≤ Vmax

This can be derived from Equation 4 as follows (omitting
(s[k+1], a[k+1]) in the notation for brevity).

Q̃π
[k+1] =

n[k+1]

m

(
R̂[k+1] + γ

∑

s′∈S

T̂[k+1](s
′)Q̃π

[k](s
′, π(s′))

)

+

(
1− n[k+1]

m

)
Vmax

≤ n[k+1]

m

(
Rmax + γ

∑

s′∈S

T̂[k+1](s
′)Vmax

)

+

(
1− n[k+1]

m

)
Vmax

≤ n[k+1]

m
Vmax +

(
1− n[k+1]

m

)
Vmax

≤ Vmax

Lemma 2. For all (s, a) ∈ S × A, and for all policies π
and timesteps t > 0:

Q̃π
t (s, a) ≤ Q̃π

t−1(s, a).

Proof. Using strong induction on the vsteps i, we prove
that, for all (s, a) ∈ S × A, Q̃π

[i](s, a) ≤ Q̃π
[i−1](s, a), i.e.,

Q̃π(s, a) never increases as the number of value iteration

updates increases. For the base case, Q̃π
[0](s, a) = Vmax for

all (s, a) ∈ S × A since all Q̃-values are initialised to Vmax.

Also, from Lemma 1, Q̃π
[1](s, a) ≤ Vmax. Thus Q̃π

[1](s, a) ≤
Q̃π

[0](s, a). For the inductive step, we assume that, for all

(s, a) ∈ S×A, and for all j such that 0 < j ≤ k, Q̃π
[j](s, a) ≤

Q̃π
[j−1](s, a). We need to prove that Q̃π

[k+1](s, a) ≤ Q̃π
[k](s, a).

Note that (s[k+1], a[k+1]) is the only state-action pair whose

value is updated at vstep k+1, so Q̃π
[k+1](s

′, a′) = Q̃π
[k](s

′, a′)

for all other (s′, a′) 6= (s[k+1], a[k+1]). Now, let τ be the vstep

prior to k + 1 at which Q̃(s[k+1], a[k+1]) was last updated.6

6If Q̃(s[k+1], a[k+1]) was never updated, then

Q̃π
[k+1](s[k+1], a[k+1]) = Q̃π

[k](s[k+1], a[k+1]).

378

Since τ ≤ k, and Q̃π(s[k+1], a[k+1]) is unchanged between
vsteps τ and k + 1, we need only prove that:

Q̃π
[k+1](s[k+1], a[k+1]) ≤ Q̃π

[τ](s[k+1], a[k+1]).

Let cn be the number of times n(s[k+1], a[k+1]) is updated

between vsteps τ and k + 1.7 For the cn updates, let cR

be the total (undiscounted) reward accumulated and cT (s′)
be the number of times that s′ is the next state observed.
Again omitting (s[k+1], a[k+1]), we can write:

n[k+1] = n[τ] + cn (5)

R̂[k+1] =
n[τ]R̂[τ] + cR

n[τ] + cn
(6)

T̂[k+1](s
′) =

n[τ]T̂[τ](s
′) + cT (s′)

n[τ] + cn
for all s′ ∈ S. (7)

Letting Ṽ π
[i](s

′) denote Q̃π
[i](s

′, π(s′)), we use Equations 5–
7 to reduce Equation 4:

Q̃π
[k+1] =

(
1− n[k+1]

m

)
Vmax +

n[k+1]

m

(
R̂[k+1]

+ γ
∑

s′∈S

T̂[k+1](s
′)Ṽ π

[k](s
′)

)

=

(
1− n[τ] + cn

m

)
Vmax +

n[τ] + cn

m

(
n[τ]R̂[τ] + cR

n[τ] + cn

+ γ
∑

s′∈S

n[τ]T̂[τ](s
′) + cT (s′)

n[τ] + cn
Ṽ π

[k](s
′)

)

=

(
1− n[τ]

m
− cn

m

)
Vmax +

1

m

(
n[τ]R̂[τ] + cR

+ γ
∑

s′∈S

(
n[τ]T̂[τ](s

′) + cT (s′)
)
Ṽ π

[k](s
′)

)

=
n[τ]

m

(
R̂[τ] + γ

∑

s′∈S

T̂[τ](s
′)Ṽ π

[k](s
′)

)
+

(
1− n[τ]

m

)
Vmax

+
1

m

(
cR − cnVmax + γ

∑

s′∈S

cT (s′)Ṽ π
[k](s

′)

)
.

We know that cR ≤ cnRmax and
∑

s′∈S cT (s′) = cn. Also,
since τ − 1 < k, the inductive hypothesis implies that for all
s′ ∈ S, Ṽ π

[k](s
′) ≤ Ṽ π

[τ−1](s
′). Lastly, Lemma 1 implies that

Ṽ π
[k](s

′) ≤ Vmax for all s′ ∈ S. We use these facts to further

reduce Q̃π
[k+1]:

≤ n[τ]

m

(
R̂[τ] + γ

∑

s′∈S

T̂[τ](s
′)Ṽ π

[τ−1](s
′)

)
+

(
1− n[τ]

m

)
Vmax

+
1

m

(
cnRmax − cnVmax + γ

∑

s′∈S

cT (s′)Vmax

)

≤ Q̃π
[τ] +

1

m

(
cnRmax − cnVmax + γ

∑

s′∈S

cT (s′)Vmax

)

≤ Q̃π
[τ]

7While cn ∈ {0, 1} for V-MAX, it could be larger if full VI
was not performed at each timestep.

Theorem 1. Suppose that 0 < ǫ < Vmax and 0 < δ < 1
are two real numbers and M = (S, A,R, T, γ) is any MDP.

There exist m = O
(

(|S|+ln(|S||A|/δ))R2
max

ǫ2(1−γ)4

)
and ǫ1 = O(ǫ)

such that if V-MAX is executed on M with inputs m and ǫ1,
then the following holds. Let At denote V-MAX’s policy at
time t, and let st denote the state at time t. With probability
at least 1− δ, V At

M (st) ≥ V ∗
M (st)− ǫ is true for all but

O

(
|S||A|R3

max

ǫ3(1− γ)6

(
|S|+ ln

|S||A|
δ

)
ln

1

δ
ln

Rmax

ǫ(1− γ)

)

timesteps t.

Proof. Let m = O
(

(|S|+ln(|S||A|/δ))R2
max

ǫ21(1−γ)4

)
and let Kt be

the set of state-action pairs experienced at least m times
by timestep t. Let H = ⌈ 1

1−γ
ln Rmax

ǫ1(1−γ)
⌉ and EM be the

event that a state-action pair not in Kt is encountered in a
trial generated by starting from st and following At for H
timesteps in M . We consider two mutually exclusive cases.

In the first case, Pr(EM) ≥ ǫ1/Vmax. We treat H timesteps
in M as one toss of a weighted coin, and EM as the event
that it shows heads. If we see m|S||A| heads, then all
(s, a) ∈ S×A are in K. As a result of the Chernoff-Hoeffding
bound, with probability 1−δ, after j tosses, m|S||A| or more

heads are seen, for some j = O(m|S||A|Vmax

ǫ1
ln 1

δ
). Since each

toss is equivalent to H timesteps in M , with probability 1−δ,

all state-action pairs are in K after O(m|S||A|HRmax

ǫ1(1−γ)
ln 1

δ
)

timesteps. Also, Pr(EM) = 0 once all state-action pairs are
in K. Thus, given m and H , Pr(EM) < ǫ1/Vmax after

O

(
|S||A|R3

max

ǫ31(1− γ)6

(
|S|+ ln

|S||A|
δ

)
ln

1

δ
ln

Rmax

ǫ1(1− γ)

)

timesteps.
In the second case, Pr(EM) < ǫ1/Vmax. Recall that for

some policy At on the MDP M , V At
M denotes the true value

function. Let V (s, T) denote the T -step value of s. Given
H and Lemma 2 of [9]:

V At
M (st) ≥ V At

M (st, H).

Let z be a fictitious state, and let S̄ = S ∪ {z}. Let M̄ =
(S̄, A, R̄, T̄ , γ) be an MDP, where for all (s, a, s′) ∈ S×A×S,
R̄(s, a) = R(s, a), T̄ (s, a, s′) = T (s, a, s′), and T̄ (s, a, z) = 0.
R̄(z, .) and T̄ (z, ., .) are set arbitrarily. Since st 6= z and the
reward and transition functions in M and M̄ are equal on
S × A× S, V At

M (st, H) = V At

M̄
(st, H). Thus:

V At
M (st) ≥ V At

M̄
(st, H).

Let MK = (S̄, A, RK , TK , γ) be an MDP with RK = R̄

and TK(.) = T̄ (.) for state-action pairs in Kt, while RK = R̃t

and TK(.) = T̃t(.) for state-action pairs not in Kt, where R̃t

and T̃t are defined with Equations 2 and 3. Let EM̄ be the
event that a state-action pair not in Kt is encountered in a
trial generated by starting from st and following At for H
timesteps in M̄ . Lemma 8 of [15] implies that V At

M̄
(st, H) ≥

V At
MK

(st, H)−VmaxPr(EM̄). However, since M and M̄ differ

only on z, which is never encountered, Pr(EM̄) = Pr(EM) <
ǫ1/Vmax. It follows that:

V At
M (st) ≥ V At

MK
(st, H)− ǫ1.

From Lemma 2 of [9], V At
MK

(st, H) ≥ V At
MK

(st)− ǫ1. Thus:

V At
M (st) ≥ V At

MK
(st)− 2ǫ1.

379

Let M̂K = (S̄, A, R̂K , T̂K , γ) be an MDP with R̂K = R̂t

and T̂K(.) = T̂t(.) for state-action pairs in Kt, while R̂K =

R̃t and T̂K(.) = T̃t(.) for state-action pairs not in Kt. Note

that M̂K and MK have equal reward and transition func-
tions for all state-action pairs not in Kt. Thus, given m,
Lemma 15 of [13] implies8 that with probability at least
1 − δ, V At

MK
(s) ≥ V At

M̂K
(s) − ǫ1 for all s ∈ S. Consequently,

with probability at least 1− δ:

V At
M (st) ≥ V At

M̂K
(st)− 3ǫ1.

Now, let M̂t = (S, A, R̂t, T̂t, γ) be the MDP that is learned
by V-MAX using maximum likelihood estimation. We know
that R̂t = R̃K and T̂t(.) = T̃K(.) for state-action pairs not
in Kt. For these pairs, the derivation in Section 3.1 implies
that computing Q̃-values using Equation 4 for VI in M̂t is
equivalent to computing Q-values using the Bellman opti-
mality equation for VI in M̂K . Furthermore, for state-action
pairs in Kt, Equation 4 reduces to the Bellman optimality
equation. Thus, for all s ∈ S, V At

M̂K
(s) = Ṽ At

M̂t
(s). Hence,

with probability at least 1− δ:

V At
M (st) ≥ Ṽ At

M̂t
(st)− 3ǫ1.

Since At is greedy with respect to Q̃M̂t
, for all s ∈ S, and

all policies π, Ṽ At

M̂t
(s) ≥ Ṽ π

M̂t
(s). Let π∗ denote the optimal

policy for M . Thus, with probability at least 1− δ:

V At
M (st) ≥ Ṽ π∗

M̂t
(st)− 3ǫ1.

Let M̂x = (S, A, R̂x, T̂x, γ) be an MDP where R̂x and

T̂x are maximum likelihood estimates of R and T at some
timestep x ≥ t, such that all (s, a) ∈ S × A are in Kx.
Then, Lemma 2 implies that for all s ∈ S and all policies
π, Ṽ π

M̂t
(s) ≥ Ṽ π

M̂x
(s). Equation 4 reduces to the Bellman

optimality equation for all (s, a) ∈ Kx, implying that for

all s ∈ S, and for all policies π, Ṽ π
M̂x

(s) = V π
M̂x

(s). Conse-

quently, with probability at least 1− δ:

V At
M (st) ≥ V ∗

M̂x
(st)− 3ǫ1.

Given our choice of m, an application of Lemma 15 of
[13] yields that with probability at least 1 − δ, V ∗

M̂x
(s) ≥

V ∗
M (s) − ǫ1, for all s ∈ S. Thus, with probability at least

1− δ:
V At

M (st) ≥ V ∗
M (st)− 4ǫ1.

Setting ǫ1 = ǫ/4 yields the desired result.

4. EXPERIMENTS
We evaluate the empirical performance of V-MAX on two

tasks. As comparisons, we use R-MAX and MoR-MAX,
because of their close relationship to V-MAX, and MBIE,
because of its strong empirical track record: no other PAC-
MDP method has been shown to substantially outperform
it. On the contrary, it has greatly outperformed E3 [9], R-
MAX, and Delayed Q-Learning [13] and matched the per-
formance of Optimistic Initial Model (OIM) [18].9

Since our goal is to show that V-MAX advances the PAC-
MDP state of the art, we restrict our analysis to PAC-MDP

8While lemma 15 of [13] is stated for R-MAX, the same
result holds for V-MAX, from an application of Lemmas 13
and 14 of [13] in lemma 2 of [16].
9OIM also has substantially weaker sample complexity
bounds than R-MAX, V-MAX, and MBIE.

algorithms. Comparisons to efficient-exploration algorithms
developed under other frameworks, such as regret [5] and
knows what it knows (KWIK) [11], are left to future work.

Following [14] and [16], we use cumulative (undiscounted)
reward as our evaluation metric. Even though maximising
the cumulative reward is not the goal of PAC-MDP methods,
it is a suitable metric for our experiments because it shows
that V-MAX can accrue more reward while matching the
sample complexity of R-MAX.

For each algorithm, performance is affected by the value
of its critical parameters: ǫ1 and m for R-MAX, MoR-MAX,
and V-MAX and ǫ1 and C (where β = CVmax) for MBIE.
For all algorithms, we set ǫ1 to 0.01, at which VI finds the
optimal policy. For each MDP, we first measure the aver-
age cumulative reward after 25,000 timesteps over 100 runs
on each MDP across a large range of values for m and C.
Using the results, we select a smaller range of parameter val-
ues likely to perform well. For our final results, we measure
the average cumulative reward over 1000 runs across this
selected range. For more timesteps, our results are qualita-
tively similar. For significantly fewer timesteps, none of the
algorithms learn the optimal policy, thus biasing the results.

For each algorithm, if two or more actions have the same
value, the agent takes the action that has been tried fewer
times. Remaining ties are broken by choosing actions in as-
cending order, e.g., action 0 is chosen before action 1. This
action-selection method is a simple way to ensure all algo-
rithms try lower-valued actions before discovering the opti-
mal action in the highest-valued state, without giving any
algorithm an advantage.

Figure 1: SixArms and Anchor MDPs. Each vertex de-

notes a state and each edge a state transition. A tuple

(a, p, r) indicates that action a causes the given transi-

tion with probability p and reward r and causes a self-

transition with probability 1− p and reward 0.

4.1 SixArms
The SixArms MDP in Figure 1 (top) was used to show

that MBIE can outperform R-MAX, which in turn outper-
forms both E3 and ǫ-greedy exploration [14, 16]. Thus, it is
an important benchmark test for V-MAX. The agent starts
in state 0 and chooses between 6 actions, each of which may

380

Figure 2: Average cumulative reward (left) and average reward per timestep (right) on SixArms.

0 400 800 1200 1600 2000
0

2

4

6

8

10

12

m

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

 (
 ×

 1
07)

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

12

C

MBIE

V−MAX

R−MAX

MoR−MAX

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Timesteps (× 103)

A
ve

ra
ge

 r
ew

ar
d

pe
r

tim
es

te
p MBIE

R−MAX

MoR−MAX

V−MAX

lead to states 1-6. Once there, the agent can remain and
receive a reward at each timestep or return to state 0. The
optimal policy is to try to reach state 6 and then repeatedly
choose action 5. Since the probability of reaching state 6 is
small, the agent typically must try each action several times
to discover the optimal policy. The discount factor is 0.95.

Figure 2 (left) shows the average cumulative reward over
a range of parameter values for each algorithm (C for MBIE,
and m for the other algorithms). V-MAX vastly outperforms
R-MAX and MoR-MAX and matches the performance of
MBIE. In addition, Figure 2 (right), which shows the average
reward per timestep for each algorithm at optimal parameter
values, demonstrates that V-MAX is the only algorithm able
to consistently achieve the maximum reward per timestep.
MBIE obtains similar cumulative reward by gaining higher
rewards in the initial phases of the experiment.

Note that MoR-MAX, which has the strongest sample
complexity bounds, has the worst empirical performance.
To see why, consider state 0. A problematic scenario for
R-MAX, MoR-MAX, and V-MAX is where the agent never
transitions from state 0 to any of the states 2 and above.
Then, it will forever assume that, in state 0, all actions
other than 0 cause a self-transition. However, to avoid this
scenario, R-MAX and V-MAX need only ensure with high
probability that this does not happen in the first m samples
for each state-action pair. By contrast, MoR-MAX repeat-
edly collects batches of m samples per state-action pair and
discards them when new samples lead to a lower value for
that pair. Consequently, MoR-MAX must ensure with high
probability that this scenario does not occur on any batch
of m samples. In general, this requires higher values of m,
yielding too much initial exploration.

Overall, results on SixArms show that V-MAX can match
the empirical performance of MBIE while maintaining the
stronger theoretical guarantees of R-MAX. Furthermore, Fig-
ure 2 (left) shows that, as long as m is set conservatively, V-
MAX’s performance is invariant to it, essentially eliminating
the need for parameter tuning. In contrast, MBIE requires
careful tuning of C to match V-MAX’s performance.

4.2 Anchor
In SixArms, MBIE accrues more reward early in learning

by more often choosing relatively good, but suboptimal, ac-
tions in states 1-5. However, in this MDP, exploiting such
local optima has little cost, since the agent can at any time
deterministically return to state 0. Therefore, we hypothe-
size that MBIE will perform poorly in MDPs where choos-
ing locally optimal actions significantly impedes the agent’s
progress towards better state-action pairs.

To test this hypothesis, we use the Anchor MDP shown
in Figure 1 (bottom). The agent starts in state 0 and can
choose, in states 0-2, to remain and receive a sub-optimal
reward or try to reach state 3, where maximal reward is
available. Since the agent initially chooses actions in as-
cending order, it must try each action in each states 0-2 at
least once before discovering that action 3 in state 3 yields
reward Rmax = 100. The discount factor is 0.99.

The optimal policy is to choose action 3 in each state.
However, in each state 0-2, action 3 is the only one that
produces no reward. Furthermore, all actions in these states
usually produce self-transitions, with only action 3 tran-
sitioning to state 3 with low probability. Consequently,
to determine the optimal policy efficiently, an agent must
avoid being distracted by the sub-optimal rewards offered
by actions 0-2 and continue to attempt action 3. Unlike in
SixArms, the agent cannot deterministically escape the local
optima (in states 0-2), making efficient exploration crucial.

Figure 3 (left) shows the average cumulative reward for
each algorithm on Anchor. As in SixArms, V-MAX sub-
stantially outperforms both R-MAX and MoR-MAX. How-
ever, it also substantially outperforms MBIE, supporting the
hypothesis that MBIE is vulnerable to distraction by local
optima. In addition, as in SixArms, the performance of
V-MAX is invariant for large choices of m, whereas MBIE
again requires careful tuning of C.

In Figure 3 (left), the performance of both R-MAX and
MoR-MAX oscillates as m changes. We suspect this is a
result of R-MAX and MoR-MAX periodically cycling be-
tween the states 0 to 2 during exploration. Since m affects
how many timesteps they spend in each of these states, per-
formance can increase for values of m in which time expires
just before the agent cycles to the low reward states 0 and/or
1. However, since increasing m increases exploration, the
performance of R-MAX and MoR-MAX decreases overall,
despite the oscillations, as m is increased beyond 100.

Figure 3 (right) shows the average reward per timestep
in Anchor. Only V-MAX consistently accrues maximal re-
ward per timestep. Although MBIE gets close, it takes sig-
nificantly longer than V-MAX to do so. In addition, both
R-MAX and MoR-MAX remain in states 1 and 2 for a long
time, constantly receiving the sub-optimal rewards of 40 and
60, respectively. Though the effect is less extreme for MBIE,
its performance also dips in the same places.

Overall, the SixArms and Anchor experiments demon-
strate that 1) V-MAX can greatly outperform both R-MAX
and MoR-MAX, 2) V-MAX can match MBIE and, on prob-
lems with multiple local optima, substantially outperform
it, and 3) V-MAX, whose performance is invariant for large

381

Figure 3: Average cumulative reward (left) and average reward per timestep (right) on Anchor.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

m

A
ve

ra
ge

 c
um

ul
at

iv
e

re
w

ar
d

 (
 ×

 1
06)

0 0.03 0.06 0.09 0.12 0.15

0

0.5

1

1.5

2

2.5

C

MBIE

V−MAX

MoR−MAX

R−MAX

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Timesteps (× 103)

A
ve

ra
ge

 r
ew

ar
d

pe
r

tim
es

te
p

V−MAX

MBIE

R−MAX

MoR−MAX

m, essentially obviates the need for parameter tuning while
MBIE’s performance is sensitive to the choice of C.

5. FUTURE WORK AND CONCLUSIONS
The development of V-MAX creates several opportunities

for future work. We hope to extend our theoretical results
by proving that, for the same m, V-MAX strictly dominates
R-MAX on all MDPs in that it never makes an exploratory
mistake that R-MAX does not make, given the same R̂ and
T̂ . In addition to sample complexity, per-timestep computa-
tional complexity may also be important in large MDPs. In
such cases, techniques for reducing the computational cost
of PAC-MDP algorithms [4, 12] may benefit V-MAX as well.
Also, extensions to R-MAX that exploit problem structure,
such as Fitted R-MAX [6], R-MAXQ [7] and RAM-Rmax
[10], could be adapted to use V-MAX instead. Lastly, since
we suspect that the core idea of tempered optimism is ac-
tually orthogonal to the quality of the bounds, it could be
used to derive other PAC-MDP methods, e.g., MoV-MAX,
with strong empirical performance and even tighter bounds.

Overall, the theoretical and empirical results presented in
this paper demonstrate that V-MAX is a significant step for-
ward for PAC RL, since it can outperform state-of-the-art
PAC-MDP algorithms while maintaining attractive theoret-
ical guarantees. In addition, these guarantees show for the
first time that tempered optimism is possible without com-
promising sample complexity bounds. Finally, our experi-
ments suggest that V-MAX requires little or no parameter
tuning. Consequently, we hope that it will help make PAC-
MDP algorithms more accessible for general usage.

6. ACKNOWLEDGMENTS
Thanks Lihong Li, Alexander Strehl, Michael Littman,

and Harm van Seijen for their helpful comments.

7. REFERENCES

[1] R. E. Bellman. Dynamic Programming. Princeton
University Press, Princeton, NJ, 1957.

[2] R. I. Brafman and M. Tennenholtz. R-MAX – a
general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, 3:213–231, 2002.

[3] M. O. Duff. Optimal Learning: Computational
Procedures for Bayes-adaptive Markov Decision
Processes. PhD thesis, U. of Mass.-Amherst, 2002.

[4] M. Grzés and J. Hoey. Efficient planning in R-MAX.
In Proc. of AAMAS, 2011.

[5] T. Jaksch, R. Ortner, and P. Auer. Near-optimal
regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11:1563–1600, 2010.

[6] N. K. Jong and P. Stone. Model-based exploration in
continuous state spaces. In The Symposium on
Abstraction, Reformulation, and Approximation, 2007.

[7] N. K. Jong and P. Stone. Hierarchical model-based
reinforcement learning: Rmax + MAXQ. In Proc. of
ICML, 2008.

[8] S. M. Kakade. On the Sample Complexity of
Reinforcement Learning. PhD thesis, University
College London, 2003.

[9] M. J. Kearns and S. P. Singh. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232, 2002.

[10] B. R. Leffler, M. L. Littman, and T. Edmunds.
Efficient reinforcement learning with relocatable
action models. In Proc. of AAAI, pages 572–577, 2007.

[11] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl.
Know what it knows: A framework for self-aware
learning. Machine Learning, 82(3):399–443, 2011.

[12] A. L. Strehl, L. Li, and M. L. Littman. Incremental
model-based learners with formal learning-time
guarantees. In Proc. of UAI, pages 485–493, 2006.

[13] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement
learning in finite MDPs: PAC analysis. Journal of
Machine Learning Research, 10:2413–2444, 2009.

[14] A. L. Strehl and M. L. Littman. An empirical
evaluation of interval estimation for Markov decision
processes. In Proc. of ICTAI, pages 129–135, 2004.

[15] A. L. Strehl and M. L. Littman. A theoretical analysis
of model-based interval estimation. In Proc. of ICML,
pages 857–864, 2005.

[16] A. L. Strehl and M. L. Littman. An analysis of
model-based interval estimation for Markov decision
processes. Journal of Computer and System Sciences,
74(8):1309–1331, 2008.

[17] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. The MIT Press,
Cambridge, MA, 1998.

[18] I. Szita and A. Lörincz. The many faces of optimism:
A unifying approach. In Proc. of ICML, 2008.

[19] I. Szita and C. Szepesvári. Model-based reinforcement
learning with nearly tight exploration complexity
bounds. In Proc. of ICML, pages 1031–1038, 2010.

[20] L. G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142, 1984.

[21] C. J. Watkins and P. Dayan. Q-learning. Machine
Learning, 8(3):279–292, 1992.

382

Reinforcement Learning Transfer via Sparse Coding

Haitham B. Ammar
Maastricht University, The Netherlands

haitham.bouammar@maastrichtuniversity.nl

Karl Tuyls
Maastricht University, The Netherlands
k.tuyls@maastrichtuniversity.nl

Matthew E. Taylor
Lafayette College, USA

taylorm@lafayette.edu

Kurt Driessens
Maastricht University, The Netherlands

kurt.driessens@maastrichtuniversity.nl
Gerhard Weiss

Maastricht University, The Netherlands
gerhard.weiss@maastrichtuniversity.nl

ABSTRACT
Although reinforcement learning (RL) has been successfully de-
ployed in a variety of tasks, learning speed remains a fundamental
problem for applying RL in complex environments. Transfer learn-
ing aims to ameliorate this shortcoming by speeding up learning
through the adaptation of previously learned behaviors in similar
tasks. Transfer techniques often use an inter-task mapping, which
determines how a pair of tasks are related. Instead of relying on a
hand-coded inter-task mapping, this paper proposes a novel trans-
fer learning method capable of autonomously creating an inter-task
mapping by using a novel combination of sparse coding, sparse
projection learning and sparse Gaussian processes. We also pro-
pose two new transfer algorithms (TrLSPI and TrFQI) based on
least squares policy iteration and fitted-Q-iteration. Experiments
not only show successful transfer of information between similar
tasks, inverted pendulum to cart pole, but also between two very
different domains: mountain car to cart pole. This paper empiri-
cally shows that the learned inter-task mapping can be successfully
used to (1) improve the performance of a learned policy on a fixed
number of environmental samples, (2) reduce the learning times
needed by the algorithms to converge to a policy on a fixed number
of samples, and (3) converge faster to a near-optimal policy given
a large number of samples.

Categories and Subject Descriptors
I.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Transfer Learning, Reinforcement Learning, Sparse Coding, Inter-
task mapping, Sparse Gaussian Processes, Optimization

1. INTRODUCTION

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Transfer learning is the field that studies how to effectively lever-
age knowledge learned from one or more source tasks when learn-
ing one or more target tasks. Although TL has been widely studied
within the supervised learning framework (e.g., [9, 10]), TL in RL
domains only recently started to gain interest and is very much in
flux [12, 18, 21].

Reinforcement learning (RL) is a popular framework that allows
agents to solve sequential decision making problems with minimal
feedback. Unfortunately, RL agents may learn slowly in large or
complex environments due to the computational effort needed to
converge to an acceptable performing policy. TL is one technique
that copes with this difficulty by providing a good starting policy
or prior for the RL agent.

Typically, the source and target task are different but related. In
RL settings, the source and target tasks have different representa-
tions of state and action spaces, requiring a mapping between the
tasks. An inter-task mapping matches each state/action pair of the
source task to its correspondance in the target task. Two issues
stand out in current TL for RL research. First, although there have
been a number of successes in using an inter-task mapping for TL,
the mappings are typically hand-coded and may require substan-
tial human knowledge [19]. Two fundamental open questions are,
first, to what extent it is possible to learn the mapping automatically
and, second, how should an inter-task mapping be best leveraged to
produce successful transfer?

We tackle these problems and make a number of contributions.
The primary contribution is a novel method to automatically learn
an inter-task mapping between two tasks based on sparse coding,
sparse projection learning, and sparse Gaussian processes. More
specifically, we define an inter-task mapping to be a function that
relates state-action successor state triplets from the source task to
the target task. This inter-task mapping is more than a one-to-one
mapping between the state and/or action spaces of the MDPs, as
it also includes non-linear terms that are automatically discovered
by global approximators, which ultimately enhance the efficacy of
transfer. This inter-task learning framework can be split into three
essential parts. The first is a dimensional mapping of both the
source and target task state-action spaces of the MDPs. The sec-
ond is the automatic discovery of a high dimensional informative
space of the source task. This is achieved through sparse coding, as
described in Section 4.1.2, ensuring that transfer is conducted in a
high representational space of the source task. In order to use a sim-
ilarity measure among different patterns, the data should be present
in the same space, which is why the target task triplets need to

383

be projected to the high representational space of the source (done
via sparse projection learning, described in Section 4.2). The third
and final step is to approximate the inter-task mapping via a non-
parametric regression technique, explained in Section 4.3.

Another contribution is to introduce two new algorithms for trans-
fer between tasks of continuous state spaces: Transfer Least Squares
Policy Iteration (TrLSPI) and Transfer Fitted-Q-Iteration (TrFQI).
Experiments illustrate the feasibility and suitability of the presented
approach, and furthermore show that this introduced method can
successfully transfer between two different RL benchmarks: trans-
fer is successful between the inverted pendulum and the cart pole,
as well as between the mountain car and the cart pole.

2. RELATED WORK
This section presents a selection of related work, focused on

transfer learning for reinforcement learning tasks.
TL in RL has been of growing interest to the agents community,

due in part to its many empirical successes at significantly improv-
ing the speed and/or quality of learning [18]. However, the majority
of existing work assumes that 1) the source task and target task are
similar enough that no mapping is needed, or 2) an inter-task map-
ping is provided to the agent.

For example, many authors have considered transfer between
two agents which are similar enough that learned knowledge in the
source task can be directly used in the target task. For instance,
the source and target task could have different reward functions
(e.g., compositional learning [13]) or have different transition func-
tions (e.g., changing the length of a pole over time in the cart pole
task [12]). More difficult are cases in which the source task and
target task agents have different state descriptions or actions. Some
researchers have attempted to allow transfer between such agents
without using an inter-task mapping. For example, a shared agent
space [3] may allow transfer between such pairs of agents, but re-
quires the agents to share the same set of actions, and requires an
agent-centric mapping. Other approaches assume that an inter-task
mapping is provided, such as Torrey et al. [21] who transfer advice
between agents and Taylor et al. [19] who transfer Q-value func-
tions by leveraging an existing inter-task mapping.

The primary contrast between these methods and the current
work is that we are interested in learning a mapping between states
and actions in pairs of tasks, rather than assuming that it is pro-
vided, or rendered unnecessary because of similarities between source
task and target task agents, a requirement for fully autonomous
transfer.

There has been some recent work on learning such mappings.
For example, semantic knowledge about state features between two
tasks may be used [4, 8], background knowledge about the range
or type of state variables can be used [16, 20], or transition mod-
els for each possible mapping could be generated and tested [17].
However, there are currently no general methods to learn an inter-
task mapping without requiring 1) background knowledge that is
not typically present in RL settings, or 2) an expensive analysis of
an exponential number (in the size of the action and state variable
sets) of inter-task mappings. This paper overcomes these problems
by automatically discovering high-level features and using them to
transfer knowledge between agents without suffering from an ex-
ponential explosion. Others have focused on transferring samples
between tasks. For instance, Lazaric et al. [6] transfers samples
in batch reinforcement learning using a compliance measure. The
main difference to this work is that we neither assume any similari-
ties between the transition probabilities, nor restrict the framework
to similar state and/or action feature representations.

In contrast to all existing methods (to the best of our knowl-
edge), this paper allows for differences between all variables de-
scribing Markov decision processes for the source and target tasks
and learns an inter-task mapping, rather than a mapping based on
state features. Furthermore, the framework introduced in this pa-
per can use state-dependent action mappings, allowing additional
flexibility.

3. PRELIMINARIES
This section briefly covers reinforcement learning and sparse

coding, introducing the necessary notation for the rest of the paper.
Section 4 will draw the connection between the two and introduce
the main contribution of the paper.

3.1 Reinforcement Learning (RL)
In an RL problem, an agent must decide how to sequentially se-

lect actions to maximize its expected return [1, 15]. Such problems
are typically formalized as Markov decision processes (MDPs),
defined by 〈S,A, P,R, γ〉. S is the (potentially infinite) set of
states, A is the set possible actions that the agent may execute,
P : S × A × S → [0, 1] is a state transition probability function,
describing the task dynamics, R : S × A × S → R is the reward
function measuring the performance of the agent, and γ ∈ [0, 1) is
the discount factor. A policy π : S × A → [0, 1] is defined as a
probability distribution over state action pairs, where π(s, a) rep-
resent the probability of selecting action a in state s. The goal of
an RL agent is to improve its policy, potentially reaching the opti-
mal policy π? which maximizes cumulative future rewards. It can
be attained by taking greedy actions according to the optimal Q-
functionQ?(s, a) = maxπ E[

∑∞
t=0 γ

tR(st, at)|s = s0, a = a0].
In tasks with continuous state and/or action spaces, Q and π can-
not be represented in a table format, typically requiring sampling
and function approximation techniques. This paper uses two such
techniques, Least Squares Policy Iteration (LSPI) and Fitted-Q-
Iteration (FQI), discussed later.

3.2 Sparse Coding
Sparse coding (SC) [7] is an unsupervised feature extraction tech-

nique that finds a high-level representation for a set of unlabeled
input data by discovering a succinct, over-complete basis for the
provided data set.

Given a set of m k-dimensional vectors, ζ, SC aims to find a
set of n basis vectors, b, and activations, a, with n > k such that
ζ(i) ≈ ∑n

j=1 a
(i)
j bj , where i and j represent the number of input

data patterns and number of bases, respectively. SC begins by as-
suming a Gaussian and a sparse prior on the reconstruction error
(ζ(i) −∑n

j=1 a
(i)
j bj) and on the activations, solving the following

optimization problem:

min
{bj},{a(i)j }

m∑

i=1

1

2σ2
||ζ(i) −

n∑

j=1

bja(i)j ||22 + β

m∑

i=1

n∑

j=1

||a(i)j ||1

(1)

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , n}
The problem presented in Equation 1 is considered to be a “hard”

optimization problem as it is not jointly convex (in the activations
and bases). However, fast and efficient optimization algorithms
exist [7] and were used, as described in Section 4.1.

384

4. LEARNING AN INTER-TASK MAPPING
In this section, we cast the problem of learning the inter-task

mapping, χ, as a supervised learning problem. We define χ to be
a mapping of state-action-state triplets from the source task to the
target task. Learning such a mapping requires related triplets from
both tasks as data points for training. Unfortunately, obtaining such
corresponding triplets is itself a hard problem — it is not trivial for
a user to describe which triplets in the source task correspond to
which triplets in the target task.

To automatically construct these data points, we propose a novel
framework utilizing sparse coding together with an L1 projection
scheme.

We approach the problem by automatically transforming the source
task space (i.e., state-action-state space) into a higher representa-
tional space through SC, followed by a projection of the target task
triplets onto the attained bases. We then use a simple Euclidean
distance measure1 to gauge similarity (Section 4.1). At this stage,
the data set is ready to be provided to the learning algorithm so that
it may construct the inter-task mapping.

The following sections further clarify each of the above steps and
explain the technicalities involved.

4.1 Sparse Coding Transfer for RL
As described in Section 3.2, SC is an efficient way to discover

high-level features in an unlabeled data set. First, SC learns how
best to match the dimensions of the two different MDPs. Second,
SC discovers higher-level features for the low dimensional task’s
state-action-state space.

4.1.1 Mapping the Source and Target Dimensions
To generate triplet matchings through SC, the first step is to

match the dimensions of the state-action-state spaces of the source
and target MDPs, which are likely to be different. In principle,
after this step any existing TL in RL technique can be used. How-
ever, this paper goes further and proposes a new transfer frame-
work based on the discovered bases and activations, described in
Section 5.

This “dimensional mapping” process is summarized in Algo-
rithm 1. In short, it sparse codes random triplets 〈s0, a0, s

′
0〉 from

the task with the lowest dimensionality, constrained to learn a num-
ber of bases (d1) equal to the higher dimension of the unmodified
task (regardless of which is the source and target task). We use
existing algorithms [7] to solve the Equation from step 2 of Algo-
rithm 1.

4.1.2 High Information Representation
After mapping the source and target dimensions as described in

the previous section, SC is again used to discover a succinct higher
feature bases of the activations than the unified dimensional spaces
that were discovered in Section 4.1.1. If successful this step will
discover new features in the source task that could better repre-
sent relations with the target task than the bases discovered in Sec-
tion 4.1.1. Algorithm 2, similar in spirit to Algorithm 1, describes
this process.

Algorithm 2 sparse codes the activations, which represent the
original source task triplets of the MDPs, to a higher representa-
tional space, dn.2 This stage should guarantee that we project the
1A simple Euclidian distance might not be optimal, but optimiz-
ing this measure is planned as future research. Experiments show
that more than reasonable results can be attained using this simple
approximation.
2In our experiments we have set dn to be 100, a relatively high
number.

Algorithm 1 Sparse Coding TL for RL

Require: Triplets {〈s0, a0, s
′
0〉}mi=1 and {〈s1, a1, s

′
1〉}fj=1 from

both MDPs
1: Determine d0 and d1, the dimensions of the state-action-state

spaces for both MDPs, where d0 ≤ d1
2: Sparse code the lower dimensional triplets by solving:

min
{bj},{a(i)j }

m∑

i=1

1

2σ2
||〈s0, a0, s

′
0〉(i) −

d1∑

j=1

bja(i)j ||22

+β

m∑

i=1

d1∑

j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , d1}
3: Solve the above equation by using an existing algorithm [7]
4: Return the Activation matrix (A ∈ Rm×d1) and the Bases (B ∈

Rd1×d0)

Algorithm 2 Succinct High Information Representation of MDPs
Require: Activations A from Algorithm 1, Target number of new

high dimensional bases dn
1: Represent the activations in the dn bases by solving the follow-

ing problem (again using the algorithm in [7]):
2:

min
{zj},{c(i)j }

m∑

i=1

1

2σ2
||〈a1:d1〉(i) −

dn∑

j=1

zjc(i)j ||22

+β

m∑

i=1

dn∑

j=1

||c(i)j ||1

s.t. ||zj ||22 ≤ o, ∀j = {1, 2, . . . , dn}

3: return Return new activations C ∈ Rm×dn and bases Z ∈
Rdn×d1

triplets of the source task MDP into a high feature space where a
similarity measure can be used to find a relation between the source
and target task triplets. Note that there are no restrictions on the
number of bases: unneeded bases will end up with an activation of
zero.

Algorithm 2 discovers new features in the source or target state-
action-state spaces. As TL typically transfers from a low dimen-
sional source task to a high dimensional target task, SC determines
new bases that are of a higher dimensionality than the original rep-
resentation used for states and actions in the source task. These
newly discovered bases can describe features not anticipated in the
original design of the MDP’s representation. These new features
can highlight similarities between the source and target task thus
helping and guiding the transfer learning scheme. The re-encoded
triplets—described as a linear combinations of the bases and acti-
vations (i.e., AB)—do not yet relate to the triplets of the other task.
The target task triplets still need to be projected towards these new
sparse coded source task bases features. This is done as described
in Section 4.2.

4.2 L1 Sparse Projection Learning
Once the above stages have finished, the source task triplets are

described via the activations C (generated in Algorithm 2). How-
ever, target task triplets still have no relationship to the learned acti-
vations. Since we are seeking a similarity correspondence between

385

the source and target task triplets, the target task triplets should
be represented in the same high informational space of the source
task. Therefore, the next step is to learn how to project the target
task triplets onto the Z basis representation. The overall scheme is
described in Algorithm 3, where the activations are learned by solv-
ing the L1 regularized least squares optimization problem in step 2.
This optimization problem guarantees that the activations are as
sparse as possible and is solved using the interior point method [2].
The next step will be to order the data points from both the source
and the target tasks, which are then used to approximate the inter-
task mapping.3

4.3 Approximating an Inter-Task Mapping
To finalize the problem of approximatingχ, corresponding triplets

from the source and target task should be provided to a regressor.
We approach this problem by using a similarity measure in the high
feature space, Z, to identify similar triplets from the two tasks. This
similarity measure identifies triplets from the source task that are
most similar to those of the target task, and then map them together
as being inputs and outputs for the regression algorithm, respec-
tively, as shown on line 2 of Algorithm 4. Since the similarity
measure is used in the sparse coded spaces, the distance is calcu-
lated using the attained activation (C and Φ) rather than the triplets
themselves. Therefore, the scheme has to trace the data back to the
original dimensions of the state-action pairs of the MDPs.

5. TRANSFER SCHEME
This section describes the novel transfer scheme.

5.1 Implementation Details
Here we introduce implementation details and background used

in Section 5.2. Due to space constraints, we briefly describe Least
Squares Policy Iteration (LSPI), Fitted-Q-Iteration (FQI) and Gaus-
sian Processes (GPs).

5.1.1 Least Squares Policy Iteration
LSPI [5] is an approximate RL algorithm using the actor/critic

framework. LSPI is composed of two parts: the policy is evaluated
with Least Squares Temporal Difference Q-learning (LSTDQ) and
then it is improved. LSTDQ is used to update the weights that
parameterize the policy to minimize an error criterion. Once this
step has finished, LSPI uses the weights to improve the policy by
taking greedy actions with respect to the new Q-function.

5.1.2 Fitted-Q-Iteration
FQI [1] is another approximate RL technique that works by ap-

proximating the Q-function as a linear combination of weights and
state-action basis functions. FQI operates within two spaces: 1) the
parameter space and 2) the Q-function space. During each iteration
of the algorithm, the Q-function is updated via the Bellman opera-
tor in its corresponding space. Then the function is projected back
to the parameter space. These steps are repeated to find high quality
policies in practice, although convergence to an optimal Q-function
is not guaranteed.

5.1.3 Gaussian Processes
GPs are supervised learning techniques used to discover a rela-

tion between a given set of input vectors, x, and output pairs, y. A
full mathematical treatment can be found elsewhere [11, 14]. Un-
like many regression techniques, which perform inference in the
3We use the s and t indices to describe the source task (typically of
lower dimensions) and the target task.

Algorithm 3 Mapping Target Task Triplets
Require: Sparse Coded Bases Z generated by Algorithm 2, Target

MDP triplets {〈st, at, s
′
t〉}fi=1

1: for i = 1→ f do
2: Represent the target data patterns in the sparse coded bases,

Z, by solving:

φ̂(i)(〈st, at, s
′
t〉) = arg min

φ(i)
||〈st, at, s

′
t〉(i) −

dn∑

j=1

φ
(i)
j zj ||22

+β||φ(i)||1
3: return Activations Φ

Algorithm 4 Similarity Measure & Inter-Task mapping approxi-
mation
Require: Sparse Coded Basis Z, Sparse Coded Activations of the

source task C ∈ Rm×dn , Projected Target Task activations
Φ ∈ Rm×dn

1: for all φ do
2: Calculate the closest activation in C minimizing the Eu-

clidean/similarity distance measure.
3: Create a data set D from minimum-distance triplets
4: Approximate the Inter-task mapping, χ, fromD with an appro-

priate learning algorithm
5: return The approximated Inter-task mapping, χ

weight space, GPs perform inference directly in the function space.
Learning in a GP setting involves maximizing the marginal likeli-
hood to find the hyper-parameters best describing the data. Maxi-
mizing the likelihood may be computationally complex. Therefore,
we use a fast learning technique, Sparse Pseudo-input Gaussian
Processes (SPGP) [14], to quickly model the complex inter-task
mapping.

5.1.4 Sparse Pseudo-Inputs Gaussian Processes
SPGPs aim to reduce the complexity of learning and prediction

in GPs by parametrizing the regression model with M � N (N
is the number of input points) pseudo-input points, while still pre-
serving the full Bayesian framework. The covariance of the GP
model is parametrized by the location of the M � N pseudo-
inputs and training aims at finding the parameters and the loca-
tions of the pseudo-points that best describe the data. Existing re-
sults [14] show a complexity reduction in the training cost (i.e., the
cost of finding the parameters of the covariances) and in the predic-
tion cost (i.e., prediction on a new set of inputs) compared to GP
regression. The results further demonstrate that the SPGP frame-
work can match normal GPs approximation power with small M
(i.e., few pseudo-inputs).

5.2 Transfer Details
This section proposes two novel transfer algorithms for pairs of

tasks with continuous state spaces and discrete action spaces, ti-
tled Transfer Least Squares Policy Iteration (TrLSPI) and Transfer
Fitted-Q-Iteration (TrFQI), which makes use of a learned source
task policy.

Transfer Least Squares Policy Iteration.
TrLSPI is described in Algorithm 5 and can be applied to any TL

in RL problem having continuous states and discrete action spaces.
It is also sample efficient as it preserves the advantages of the nor-
mal LSPI algorithm. TrLSPI can be split into two sections. The
first (lines 1–4 of Algorithm 5) determine χ (see Section 4), using

386

Algorithm 5 TrLSPI

Require: Source MDP triplets {〈ss, as, s
′
s〉}mi=1, Target MDP

triplets {〈st, at, s
′
t〉}fj=1, Number for re-samples ns, close to

optimal policy for the source system π?s , State action basis
functions for the target task ψ1, . . . , ψk

1: Map the Dimensions using Algorithm 1
2: Discover High Informational Representation using Algo-

rithm 2
3: Sparse Project the target task triplets using Algorithm 3
4: Use a similarity measure to attain the data set and approximate
χ using Algorithm 4

5: Randomly sample ns source task triplets 〈ss, as, s
′
s〉nsi=1 greed-

ily in the optimal policy π?s , set of state-dependent basis func-
tion ψ1, . . . , ψk : St ×At → R

6: for i = 1→ ns do
7: Find the corresponding target task triplets as

〈s(i)t , a
(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: Use the black box generative model of the environment to pro-
duce the rewards on the transferred triplets

9: Use LSTDQ to evaluate transformed triplets
10: Improve policy until convergence using LSPI
11: return Learned policy π?t

source and target task triplets.4 The second section (lines 5–9) pro-
vides triplets (using π?s) as a start for the evaluation phase of the
LSPI algorithm (LSTDQ), allowing it to improve the target task
policy. If the tasks are similar, and if the inter-task mapping is
“good enough,” then those triplets will 1) bias the target task con-
troller towards choosing good actions and 2) restrict its area of ex-
ploration, both of which help to reduce learning times and increase
performance.

Algorithm 5 leverages source task triplets to attain a good start-
ing behavior for the target task. The performance of the policy nec-
essarily depends on the state space region where those triplets were
provided. In other words, it is not possible to achieve near-optimal
performance with a small number of triplets that are in regions far
from the goal state.5 Therefore, to learn a near-optimal policy, it
must collect triplets from the target with the current policy, or a
large number of source task triplets should be provided. A full
model of the system is not required but the algorithm does require
a black box generative model for sampling.

Transfer Fitted-Q-Iteration.
The second novel algorithm, Transfer Fitted-Q Iteration (TrFQI),

is also capable of transferring between MDPs with continuous state
space and countable actions and preserves the advantages of the
standard FQI algorithm. The key idea is to provide a good start-
ing sample distribution on which the FQI algorithm can learn. This
distribution is provided to the target task agent via χ, which in turn
maps the source task triplets (sampled according to π?s) into the tar-
get task. Algorithm 6 presents the pseudocode and can also be split
into two parts. First, lines 1-8 use the inter-task mapping to project
the source task triplets to the target task (same steps followed in the
first part of TrLSPI). Second, lines 9-10 provide those triplets to the
FQI Algorithm to learn a policy.6

4The source task policy may be optimal or near-optimal, depending
on the RL algorithm used in the source task.
5This is a problem that is inherit to LSPI and not a property of the
TrLSPI algorithm.
6It is also worth noting that the generalization of this algorithm de-
pends on the type of function approximators used to approximate

Algorithm 6 TrFQI

Require: Source MDP triplets {〈ss, as, s
′
s〉}mi=1, Target MDP

triplets {〈st, at, s
′
t}fj=1, Number for re-samples ns, close to

optimal policy for the source system π?s , State action basis
functions for the target task ψ1, . . . , ψk

1: Map the Dimensions using Algorithm 1
2: Discover High Informational Representation using Algo-

rithm 2
3: Sparse Project the target task triplets using Algorithm 3
4: Use a similarity measure to attain the data set and approximate
χ using Algorithm 4

5: Randomly Sample ns Source task triplets 〈ss, as, s
′
s〉nsi=1

greedily in the optimal policy π?s , set of state-dependent basis
function ψ1, . . . , ψk : St ×At → R

6: for i = 1→ ns do
7: Find the corresponding target task triplets as

〈s(i)t , a
(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: Use the black box generative model of the environment to pro-
duce the rewards on the transferred triplets

9: Apply FQI
10: return Learned policy π?t

6. EXPERIMENTS & RESULTS
We have conducted two experiments to evaluate the framework.

The first was the transfer from the Inverted Pendulum (IP), Fig-
ure 1(a), to the Cart Pole (CP), Figure 1(b). The second experiment
transfers between Mountain Car (MC), Figure 1(c) and CP. This
section describes the experiments conducted.

(a) Inverted
Pendulum

(b) Cart Pole

(c) Mountain Car

Figure 1: Experimental domains

the Q-function. This is a property of FQI and not of TrFQI. There-
fore, if the algorithm has to attain near-optimal behavior, either a
large amount of triplets should be provided, or it must again have
access to a black box generative model of the MDP for re-sampling.

387

6.1 Inverted Pendulum to Cart Pole Transfer
The source task was the inverted pendulum problem. The state

variables describing the systems are the angle and angular velocity
{θ, θ̇}. The control objective of the IP is to balance the pendulum
in an upright position with an angle, θ = 0 and angular velocity
θ̇ = 0. The allowed torques are +50, 0 and −50 Nm. The reward
function is cos(θ) which yields its maximum value of +1 at the
up-right position.

In cart pole, the goal is to swing up the pole and keep it balanced
in the upright position (i.e., θ = θ̇ = 0). The allowed actions are
(+1) for full throttle right and (-1) for full throttle left. The reward
function of the system consisted of two parts: (1) cos(θ), which
yields its maximum value of +1 at the upright position of the pole,
and (2) −1 if the cart hits the boundaries of the track. The angle
and position were restricted to be within |θ| < π

9
and |x| < 3.

In order to transfer between IP and CP, we first learn an opti-
mal policy in the source task, π?IP , with LSPI. π?IP was then used
to randomly sample different numbers of initial states of task, to
be used by χ. We started with 5000 and 2500 randomly sampled
states (using a random policy) for the IP and the CP, respectively.
These triplets were used by the algorithm described in Section 4 to
learn the inter-task mapping χ7. After χ had been learned, different
numbers of samples were collected from the source task using π?IP .
Specifically, we have sampled 500, 1000, . . . 20000 states as input
to the TrLSPI and the TrFQI algorithms to measure performance
and convergence times.

6.1.1 TrLSPI Results
Our results show both an increase in the performance on a fixed

number of samples and a decrease in the convergence times in both
a predefined number of samples and to attain an optimal policy. We
measured the performance as the number of steps during an episode
to control the pole in an upright position on a given fixed amount
of samples. Figure 2 summarizes the results attained on a different
number of transferred samples and compares them with those at-
tained through normal LSPI learning scheme. It shows an increase
in the number of control steps (i.e., steps the pole was in an up-right
position) in the case of the transferred samples compared to a ran-
dom sampling scheme. It can be seen that when using 2000 samples
(i.e., a small number of samples) our transfer scheme was able to
attain an average of 520 control steps while random initialization
reached only 400. This performance increases with the number of
samples to reach 1200 steps at 10000 transferred samples.

Another measure was the time required to learn a near-optimal
target task policy using only a fixed number of samples. There was
a decrease in the convergence times, represented by the number
of iterations in LSPI, when provided a fixed amount of transferred
samples. LSPI was able to converge faster once provided the trans-
ferred samples compared to a random sample data set. For exam-
ple, it took LSPI 5 iteration to converge provided 5000 transferred
samples but 7 iterations in the random case. Further, the algorithm
converged within 12 iteration provided 20000 transferred samples
while it took it about 19 for the random case. Finally, LSPI was
able to converge to an acceptable policy (i.e., an 800 control steps)
within 22.5 minutes after being provided a random data set, com-
pared to 16 minutes with the transferred data set8. Calculating χ
took an additional 3.7 minutes.

7We believe but have not confirmed that the samples to learn χ
should be provided using random policies in both the source and
the target task as we need to cover most large areas of the state-
action spaces in both tasks.
8Our experiments were performed on a 2.8 Ghz Intel Core i7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Samples

C
o
n
tr

o
l
S

te
p
s

Transfer vs No Transfer

Transferred

Random

Figure 2: Cart Pole results from LSPI and TrLSPI after learn-
ing on Inverted Pendulum: the performance is measured after
collecting 500 different initial states in the target tasks.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 3: Cart Pole results with FQI and TrFQI after learn-
ing on Inverted Pendulum: the performance is measured after
collecting 500 different initial states in the target tasks.

6.1.2 TrFQI Results
We performed similar experiments using the other proposed al-

gorithm TrFQI. Similar results were observed as could be seen from
Figure 5. The transferred samples produce more control steps on
the target task compared to learning on random samples. As an
illustration, the algorithm was able to achieve 800 control steps
when using 5000 transferred states but it needed about 10000 ran-
dom samples to attain the same performance. We also report a de-
crease in the number of training iterations in the TrFQI compared
to FQI at a fixed number of samples and to attain an optimal policy.
We have observed good performance at 50 iteration of training on
transferred samples compared to 70 iterations for the random case.
Moreover, TrFQI was able to reach a suboptimal acceptable policy
with about 85 iteration once using transferred samples compared to
a 150 iterations for the random case.

6.2 Mountain Car to Cart Pole Transfer
The source task was the MC problem, a benchmark RL task.

The car has to drive up the hill (Figure 1(c)). The difficulty is that
gravity is stronger than the car’s motor—even at maximum throttle

388

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 4: Cart Pole results using LSIP and TrLSPI after learn-
ing on Mountain Car: the performance is measured after col-
lecting 500 different initial states in the target tasks.

the car can not directly reach the top of the hill. The dynamics
of the car are described via two continuous state variables (x, ẋ)
representing the position and velocity of the center of gravity of the
car, respectively. The input action takes on three distinct values:
maximum throttle forward (+1), zero throttle (0), and maximum
throttle reverse (-1). The car is rewarded by +1 once it reaches the
top of the hill, −1 if it hits the wall, and zero elsewhere.

The target task is the Cart Pole problem, as described in the pre-
vious experiment.

SARSA(λ) [15] is used to learn π?MC in the source task. The
policy was then used to randomly sample different numbers of
source task states, to be used by χ. We started with 5000 and
2500 randomly sampled states for the Mountain Car and the Cart
Pole, respectively. These samples were used by the algorithm de-
scribed in Section 4 to learn the inter-task mapping χ. After χ has
been learned, different numbers of samples were collected from the
source task using π?MC . Specifically, we have sampled 500, 1000,
. . . 20000 states as input to the TrLSPI and the TrFQI algorithms
to measure performance and convergence times.

6.2.1 TrLSPI Results
Figure 4 clearly shows an increase in the number of control steps

in the case of the transferred samples compared to a random sam-
pling scheme. When using 2000 samples, our transfer scheme was
able to attain an average of 600 control steps. Achieving a similar
performance required roughly 4000 random samples. This perfor-
mance increases with the number of samples to finally reach about
1300 control step on 20000 samples for both cases. We also re-
port a decrease in the convergence times, represented by the num-
ber of iterations in LSPI, provided a fixed amount of transferred
samples. LSPI was able to converge faster once provided the trans-
ferred samples compared to a random sample data set. For exam-
ple, it took LSPI 7 iteration to converge provided 5000 transferred
samples but 12 iterations in the random case. Further the algorithm
converged within 14 iterations provided 20000 transferred samples
while it took it about 19 for the random case. Finally, LSPI was
able to converge to an acceptable policy within a 22.5 minutes after
being provided a random data set, compared to 17 minutes with the
transferred data set. Calculating χ took an addition 3.7 minutes.

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Initial Samples

C
o

n
tr

o
l
S

te
p

s

Transfer vs No Transfer

Transferred

Random

Figure 5: Transfer Results on the Cart Pole task using TrFQI
after learning on Mountain Car: the performance is measured
after collecting 500 different initial states in the target tasks.

6.2.2 TrFQI Results
The analogous experiments using TrFQI produced similar re-

sults, as shown in Figure 5. Transferred samples where able to
produce a higher number of control steps in the target task when
compared to learning on random samples in the target tasks. As an
illustration, the algorithm was able to attain a performance of 800
control steps when using 5000 transferred states, but needed 9000
random samples to attain the same threshold. Using transferred and
random samples both allow FQI to converge to roughly the same
performance (1200) when provided a large number of samples. We
also report a decrease in the number of training iterations at a fixed
number of samples and to attain an optimal policy. We have ob-
served good performance at 50 iteration of training on transferred
samples compared to 80 iterations for random samples. Moreover,
TrFQI was able to reach a suboptimal policy with about 91 iteration
once using transferred samples compared to a 150 iterations for the
random case.

7. ANALYSIS & DISCUSSION
It is clear from the results presented that the learner’s perfor-

mance increased using our proposed framework, relative to a ran-
dom selection scheme. Policy performance improved, as measured
by the number of control steps achieved by the agent on the target
task. The number of learning iterations required also decreased, as
measured by the number of iterations required by the algorithm to
converge to a policy on a fixed number of transferred samples. This
leads us to conclude that TrFQI and TrLSPI both:

1. provided a better distribution of samples compared to ran-
dom policy in the target task,

2. required fewer iterations to converge to a fixed policy when
provided a fixed number of transferred samples, and

3. reached a near-optimal performance policy faster than when
using random selection scheme.

Furthermore, these results show that the proposed framework

4. successfully learned an inter-task mapping between two sets
of different RL tasks.

389

We speculate that the framework is applicable to any model-free
TL in RL problem with continuous state spaces and discrete action
spaces, covering many real world RL problems. The framework
has the advantage of automatically finding the inter-task functional
mapping using SC and any “good” regression technique. One po-
tential weakness is that our framework should work correctly when
the two tasks at hand are semantically similar, as the rewards of the
two systems were not taken into account in the explained scheme.
For instance, consider the transfer example between the cart pole
and “cart fall” tasks. The control goals of these two tasks are op-
posite whereby in the cart pole the pole has to be balanced in the
upright position while in the cart fall the pole has to be dropped
as fast as possible. In other words, the agents have the same tran-
sitions in the two tasks but have to reach two opposite goal. Our
mapping scheme of Section 4, once applied, will produce a one-
to-one mapping from the source to the target task relating the same
transitions from both of the tasks together. Clearly the optimal poli-
cies of the two tasks are opposite. In this case the target task would
be provided with a poor bias, potentially hurting the learner (i.e.,
producing negative transfer). We think that our approach will be
able to avoid this scheme once the rewards are added to the similar-
ity measure generating the training set to approximate the inter-task
mapping χ, but such investigation is left to future work.

8. CONCLUSIONS & FUTURE WORK
This paper has presented a novel technique for transfer learning

in reinforcement learning tasks. Our framework may be applied
to pairs of reinforcement learning problems with continuous state
spaces and discrete action spaces. The main contributions of this
paper are (1) the novel method of automatically attaining the inter-
task mapping, χ and (2) the new TrLSPI and TrFQI algorithms for
tasks with continuous state spaces and discrete actions. We ap-
proached the problem by framing the approximation of the inter-
task mapping as a supervised learning problem that was solved us-
ing sparse pseudo input Gaussian processes. Sparse coding, ac-
companied with a similarity measure, was used to determine the
data set required by the regressor for approximating χ. Our results
demonstrate successful transfer between two similar tasks, inverted
pendulum to cart pole, and two very different tasks, mountain car
to cart pole task. Success was measured both in an increase in
learning performance as well as a reduction in convergence time.
We speculate that the process usefully restricts exploration in the
target task and that the transferred state quality resulting from our
scheme.

There are many exciting directions for future work. First, we
intend to compare different distance metrics and demonstrate their
effects on the overall performance of the algorithm. Second, the
distance measure will be improved by incorporating the rewards in
the framework, helping to avoid the problem of negative transfer.

9. REFERENCES
[1] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst.

Reinforcement Learning and Dynamic Programming Using
Function Approximators. CRC Press, Boca Raton, Florida,
2010.

[2] S. jean Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.
An interior-point method for large-scale l1-regularized
logistic regression. Journal of Machine Learning Research,
2007, 2007.

[3] G. Konidaris and A. Barto. Autonomous shaping: knowledge
transfer in reinforcement learning. In In Proceedings of the

23rd Internation Conference on Machine Learning, pages
489–496, 2006.

[4] G. Kuhlmann and P. Stone. Graph-based domain mapping
for transfer learning in general games. In Proceedings of The
Eighteenth European Conference on Machine Learning,
September 2007.

[5] M. G. Lagoudakis and R. Parr. Least-squares policy iteration.
J. Mach. Learn. Res., 4:1107–1149, December 2003.

[6] A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samples
in batch reinforcement learning. In Proceedings of the 25th
international conference on Machine learning, ICML ’08,
pages 544–551, New York, NY, USA, 2008. ACM.

[7] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse
coding algorithms. In In NIPS, pages 801–808. NIPS, 2007.

[8] Y. Liu and P. Stone. Value-function-based transfer for
reinforcement learning using structure mapping. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence, pages 415–20, July 2006.

[9] S. J. Pan and Q. Yang. A survey on transfer learning.
[10] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng.

Self-taught learning: Transfer learning from unlabeled data.
In ICML ’07: Proceedings of the 24th international
conference on Machine learning, 2007.

[11] C. E. Rasmussen. In Gaussian processes for machine
learning. MIT Press, 2006.

[12] O. G. Selfridge, R. S. Sutton, and A. G. Barto. Training and
tracking in robotics. In IJCAI, pages 670–672, 1985.

[13] S. Singh. Transfer of learning by composing solutions of
elemental sequential tasks. In Machine Learning, pages
323–339, 1992.

[14] E. Snelson and Z. Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In Advances In Neural Information
Processing Systems, pages 1257–1264. MIT press, 2006.

[15] R. S. Sutton and A. G. Barto. Reinforcement learning: An
introduction, 1998.

[16] E. Talvitie and S. Singh. An experts algorithm for transfer
learning. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007.

[17] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous
transfer for reinforcement learning. In Proceedings of the
Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 283–290,
May 2008.

[18] M. E. Taylor and P. Stone. Transfer learning for
reinforcement learning domains: A survey. J. Mach. Learn.
Res., 10:1633–1685, December 2009.

[19] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via
inter-task mappings for temporal difference learning. Journal
of Machine Learning Research, 8(1):2125–2167, 2007.

[20] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement learning.
In Proceedings of the Sixth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 156–163, May 2007.

[21] L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice
to transfer knowledge acquired in one reinforcement learning
task to another. In In Proceedings of the Sixteenth European
Conference on Machine Learning, pages 412–424, 2005.

390

Learning in a Small World

Arun Tejasvi Chaganty
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
arunc@cse.iitm.ac.in

Prateek Gaur
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
prtkgaur@cse.iitm.ac.in

Balaraman Ravindran
Deptt. of Computer Science

and Engineering,
IIT Madras

Chennai, India - 600036
ravi@cse.iitm.ac.in

ABSTRACT
Understanding how we are able to perform a diverse set of
complex tasks is a central question for the Artificial Intel-
ligence community. A popular approach is to use temporal
abstraction as a framework to capture the notion of sub-
tasks. However, this transfers the problem to finding the
right subtasks, which is still an open problem. Existing ap-
proaches for subtask generation require too much knowledge
of the environment, and the abstractions they create can
overwhelm the agent. We propose a simple algorithm in-
spired by small world networks to learn subtasks while solv-
ing a task that requires virtually no information of the envi-
ronment. Additionally, we show that the subtasks we learn
can be easily composed by the agent to solve any other task;
more formally, we prove that any task can be solved using
only a logarithmic combination of these subtasks and prim-
itive actions. Experimental results show that the subtasks
we generate outperform other popular subtask generation
schemes on standard domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods and Search

General Terms
Algorithms, Theory, Experimentation

Keywords
reinforcement learning, options framework, social network
analysis, small world phenomenon

1. INTRODUCTION
Reinforcement learning (RL) is a widely studied learning

framework for autonomous agents, particularly because of
it’s extreme generality; it addresses the problem of learn-
ing optimal agent behaviour in an unknown stochastic en-
vironment. In this setting, an agent explores a state space,
receiving rewards for actions it takes; the objective of the
agent is to maximise it’s rewards accumulated over time.
However, when scaling up to larger domains, these agents

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

require prohibitively large amounts of experience in order to
learn a good policy. By allowing the agent to exploit the
structure of environment or task, we can reduce the experi-
ence required.

Structure can be imposed on a learning task through ei-
ther spatial or temporal abstractions. With the former, the
state-space is minimised using information about the sym-
metries present in the domain. Spatial abstractions have
been surveyed in [6]. In the latter case, high-level actions
are introduced which capture sequences of primitive actions.
In this light, temporal abstractions capture the notion of
a “subtask”. The most common approach for temporal ab-
stractions is the options framework proposed by Sutton, Pre-
cup and Singh [12], and we build our work on this framework
also. Work by Ravindran and Barto on relativised options
[11] show how temporal abstractions can be combined with
spatial abstractions. Both spatial and temporal abstractions
play an important role in transfer learning, where we wish
to extend optimal behaviour learnt in one task to another
task; a survey of such techniques can be found in [14].

While options provide a broad framework for temporal
abstraction, there is still no consensus on how to choose sub-
tasks. The prevalent view is that subtasks should represent
skills, i.e. partially defined action policies that constitute
a part of many reinforcement learning problems [15]. For
this reason, much of the existing work centres around iden-
tifying ‘bottlenecks’, regions that the agent tends to visit
frequently [9], either empirically as in [9], or, more recently,
using graph theoretic methods like betweenness centrality
[2] or graph partitions [10]. The intuition is that options
that navigate an agent to such states helps the agent move
between strongly connected components, thus leading to ef-
ficient exploration.

These option generation schemes suffer from two serious
drawbacks; (i) they either require complete knowledge of the
MDP or follow a sample-heavy approach of constructing a
local model from trajectories, and (ii) there are, in general,
several options to bottlenecks that can be initiated by the
agent. This leads leading to a blowup in the decision space,
often causing the agent to take more time to learn the task
as it filters through the unnecessary options.

If one considered these options as additional edges to the
bottleneck states, in the sense that a single decision is suf-
ficient to transit the agent from a state, to the bottleneck,
the resultant state-interaction graph would now be “more”
connected. To highlight the importance of the connectivity
of the state-interaction graph, consider the Markov chain in-
duced by a policy for an Markov decision process. It is well

391

known that the convergence rate of a Markov chain (mixing
time), is directly related to its conductance [4], and thus its
algebraic connectivity.

Recognising the importance of connectivity, we apply con-
cepts from Kleinberg’s work on small world networks, to the
context of problem solving with autonomous agents. These
graphs have been shown to have exceptionally high alge-
braic connectivity, and thus fast Markov chain mixing times
[13]. In a small-world network, each node has one non-
neighbouring edge, which connected to another node with
a probability inversely proportional to the distance between
them. With this simple construction, Kleinberg showed that
an agent can discover a short path to any destination using
only local information like the coordinates of it’s immediate
neighbours [5]. In contrast, other graph models with a small
diameter only state the existence of a short path, but do not
guarantee that an agent would be able to find such a path.

In our context, we construct subtasks distributed accord-
ing to the small world distribution as follows; create an op-
tion that will take the agent from a state s to another state
s′ with a probability inversely proportional to the distance
between s and s′. We prove that this set of subtasks enables
the agent to easily solve any task by using only a logarithmic
number of options to reach a state of maximal value (Sec-
tion 3). As this scheme adds at most one additional option
per state, we do not explode the decision space for the agent.

Furthermore, in Section 4, we devise an algorithm that
learns small world options from the optimal policies learnt
over a few tasks in the domain. Thus not only are small
world options effective to use, they are also simple to learn,
and do not require any global analysis of the MDP. Ex-
periments on several standard domains show that small-
world options outperform bottleneck-based methods, and
that small world options require significantly fewer learning
epochs to be effective.

The remainder of the paper is organised as follows. We
present an overview of reinforcement learning, and the op-
tions framework in Section 2. We then define a small world
option, and prove that given such options, an agent will re-
quire to use only a logarithmic number of them to perform
a task in Section 3. From a more practical perspective, we
present an algorithm to extract these options from optimal
policies learnt on several tasks in the domain in Section 4.
We present our experimental results in Section 5. Finally, we
conclude in Section 6, where we present future directions for
our work. Appendix A contains an extension of Kleinberg’s
proof for the distributed search property of small-world net-
works which is used in Section 3.

2. BACKGROUND
In reinforcement learning, the standard representation of

an environment and task instance is a Markov decision pro-
cess (MDP). An MDP can be represented as the tuple,
〈S,A, P,R, γ〉, where S and A are finite sets of states and
actions, P : S × A × S → [0, 1] describes the dynamics
of the world through state-action transition probabilites,
R : S × A → R describes the task at hand by ascribing
rewards for state transitions, and γ ∈ [0, 1] is a discount
factor that weighs the value of future rewards.

In this setting, an agent in a state s ∈ S chooses an action
a ∈ A, and moves to a state s′ with probability P (s, a, s′),
receiving a reward R(s, s′). The objective of the agent is to
find a policy π : S ×A→ [0, 1], i.e. a decision procedure for

selecting actions, that maximises the reward it accumulates
in the long run, R =

∑
i γ

iri. R is also called the return.
We define the value function V : S → R to be the expected

return from s, and Q : S×A→ R to be the expected return
from s, after taking the action a. The optimal value function
must satisfy the Bellman optimality equation,

V (s) = max
a

R (s, a) + γ
∑

s′∈S
P
(
s, a, s′

)
V
(
s′
)

Q (s, a) = R (s, a) + γ
∑

s′∈S
P
(
s, a, s′

)
max
a′

Q
(
s′, a′

)
.

Given an optimal Q, an agent can construct an optimal
policy, π(s, a∗) = 1 when a∗ = argmaxaQ(s, a), and 0 oth-
erwise. In principle, if the agent knew the MDP, it could
construct the optimal value function, and from it an opti-
mal policy. However, in the usual setting, the agent is only
aware of the state-action space, S and A, and must learn
Q through exploration. The Q-learning algorithm learns Q
with a simple update for every step the agent takes,

Q (s, a) = Q (s, a) + α

[
r + γmax

a′
Q
(
s′, a′

)
−Q (s, a)

]
,

where α ∈ [0, 1] is a parameter that controls the learning
rate. It has been shown that the Q-learning algorithm con-
verges to the optimal value function in the limit with fairly
permissive assumptions.

The options framework provides a temporal abstraction
through subtasks. An option 〈I, π, β〉 is described by an
initiation set I ⊂ S, a policy π, and a terminating condition
β. An agent can exercise an option in any state s ∈ I,
following which, it will follow the policy π described by the
option, until the terminating condition β(s) is satisfied. The
terminating condition β can be stochastic.

Several learning algorithms have been proposed for agents
using options [12, 1]. One simple such method that we will
use is MacroQ, a generalisation of the Q-learning algorithm
described above. The MacroQ algorithm updates the value
function only after completion of the option. If the option o
was initiated in the state s, and continues for k steps before
terminating in s′, the corresponding Q function update will
be,

Q (s, o) = Q (s, o) + α

[
r + γk max

o′∈A∪O
Q
(
s′, o′

)
−Q (s, o)

]
.

Different tasks in the same domain can be described by
different R. Let R be sampled from the family R. Our
objective then is to find a set of options O that reduces the
expected learning time over R.

Example 1. To make the discussion more tangible, let us
look at an example, the Taxi domain, shown in Figure 1.
The agent is a taxi navigating in this road-map. It must
pick up a passenger at one of the 4 pads, R, G, B or Y.
Subsequently, it must carry the passenger to a destination,
which is also one of the above four pads. The states of
the taxi would then be a tuple containing the location of
the passenger (in one of the four pads, or within the taxi),
the destination of the passenger, and location of the taxi in
the map. The actions the taxi can perform are moving up,
down, left or right in the map, as well as pick up or drop
a passenger at a pad. Typical options for such a domain
would be an option that can be started anywhere, and has
a policy that takes the taxi to the one of the pads in the

392

R

Y B

G

Figure 1: The Taxi Domain

shortest possible manner. Such an option is generic, and
does not depend on where the passenger or destination are.
The RL agent must then learn to choose the right option
when picking up the passenger.

3. SMALL WORLD OPTIONS
In Kleinberg’s small-world network model, each node u

is given one ‘long-range’ edge to a node v, which was cho-
sen with a probability Pr(u, v) ∝ ‖u− v‖−r, where ‖u− v‖
denotes the least distance between nodes u and v in the
graph. Similarly for each state s, we add a single ‘path op-
tion’ to another state s′, where s′ is chosen with probability
Pr(s, s

′) ∝ ‖s − s′‖−r. A path option op(s, s
′) is an option

with I = {s}, β = {s′}, and an optimal policy to reach s′

for π. Intuitively, it is an option that takes the agent from s
to s′. In practice, we may generate path options for only a
subset of |S|. Note that while this results in O(|S|) options,
only one additional option is available in any state, and thus
the decision-space for the agent is not significantly larger.

On an r-dimensional lattice, Kr, the distance from any
node u to a target node t is bounded by ‖u− t‖, a quantity
which is locally computable. When given long-range edges
distributed according to Pr, Kleinberg showed that a greedy
distributed algorithm GA that chooses a neighbour v closest
to t will reach t with an expected time O(log(|V |)2). This
follows as a trivial corollary of the following theorem,

Theorem 1. Let f : V → R be a function embedded on
the graph G(V,E), such that, κ1‖u − v‖ − c1 ≤ ‖f(u) −
f(v)‖ ≤ κ2‖u−v‖−c2, where 0 ≤ κ1 ≤ κ2, and 0 ≤ c2 ≤ c1

2
.

Let Mf be the global maxima of f . Let GAε be an ε-greedy
algorithm with respect to f , i.e. an algorithm which chooses
with probability 1 − ε to transit to the neighbouring state
closest to Mf , i.e. N(u) = argminv ‖f(v)− f(Mf)‖.

If G(V,E) is r-dimensional lattice, and contains a long
distance edge distributed Pr, then GAε takes O((log |V |)2)
steps to reach Mf .

Proof. The key insight of the proof is that with edges
distributed according to Pr, there will be, with high proba-
bility, a edge within the neighbourhood of a node to an ex-
ponentially smaller neighbourhood of the target. Thus, the
agent will only require to hop through log |V | ‘neighbour-
hoods’. By bounding the time spent in each neighbourhood
to log |V |, we arrive at the result. We refer the reader to
Appendix A for the complete proof.

Figure 2: The State Space Graph for Taxi

It is easy to construct a graph GM out of the state-space
described by an MDP. The states S become the nodes of the
graph, and actions A become the edges, with the transition
probabilities as weights. Options can be viewed as paths
along the graph. As an example, the Taxi domain defined
earlier translates to the graph shown in Figure 2.

Consider an MDP MKr with states connected in a r-
dimensional lattice, and noisy navigational actions between
states. We claim that by using robust path options dis-
tributed according to Pr, an ε-greedy agent can reach a state
of maximal value using O(log(|S|)2) options, using the value
function V as a local property of the state.

Definition 1. A robust path option o(u, v), where u, v ∈ S
is an option that takes the agent from u to v ‘robustly’, in
the sense that in each epoch, the agent moves closer to v
with a probability 1 − ε > 1

2
. 1. Note that this ε includes

any environmental effects as well.

The following lemma relates V to the graph distance from
the target state, thus allowing us to apply Theorem 1.

Lemma 1. Let o(u, v) be the preferred option in state u,
and let ‖u− v‖V = | log V(v)− log V(u)|. Then,

k1‖u− v‖ − c1 ≤ ‖u− v‖V ≤ k2‖u− v‖,
where k1 = log 1

γ
, k2 = log 1

(1−ε)γ , and c1 = log 1
1−γ .

Proof. From the Bellman optimality condition, we get
the value of o(u, v) to be,

Q (u, o (u, v)) = El

[
γl V (v) +

l∑

i=1

γi−1ri

]
,

where l is the length of the option, and ri is the reward
obtained in the i-th step of following the option.

If o(u,v) is the preferred option in state u, then V(u) =
Q(u, o(u, v)). Using the property that 0 ≤ ri ≤ 1,

El[γ
l V(v)] ≤ V(u) ≤ El[γ

l V(v) +

l∑

i=1

γi−1]

El[γ
l] V(v) ≤ V(u) ≤ El[γ

l] V(v) +
1

1− γ . (1)

1This condition is equivalent to saying that the option takes
the agent from u to v in finite time, and hence is not partic-
ularly strong.

393

El is an expectation over the length of the option. Using
the property that o(u, v) is robust, we move closer to v with
probability ε̄ = 1− ε; this is exactly the setting of the well-
studied gambler’s ruin problem, where the gambler begins
with a budget of ‖u− v‖, and wins with a probability of ε.
Using a standard result from Feller[3], with m = ‖u − v‖,
we have,

El
[
xl
]

=

∞∑

l=0

P (L = l)xl =
1

λm1 (x) + λm2 (x)
,

where λ1(x) =
1+
√

1−4εε̄x2

2ε̄x
, and λ2(x) =

1−
√

1−4ε̄εx2

2ε̄x
. When

x ≤ 1,

1

(λ1(x) + λ2(x))m
≤ El[xl] ≤

∞∑

l=m

P (L = l)xl

1

(2
2ε̄x

)m
≤ El[xl] ≤

∞∑

l=m

P (L = l)xm

(ε̄x)m ≤ El[xl] ≤ xm.

Substituting x = γ and m = ‖u − v‖ into Equation (1),
we get,

El[γ
l] V(v) ≤ V(u) ≤ El[γ

l] V(v) +
1

1− γ
(ε̄γ)‖u−v‖V(v) ≤ V(u) ≤ γ‖u−v‖V(v) +

1

1− γ
‖u− v‖ log

1

γ
− log

1

1− γ ≤ ‖u− v‖V ≤ ‖u− v‖ log
1

ε̄γ
.

Thus, an ε-greedy agent acting with respect to its value
function can reach the maxima of the value function us-
ing just O((log |S|)2) decisions. Though this result strictly
applies only to the lattice setting, we observe that many
MDPs are composed of lattice-like regions of local connec-
tivity connected via bottleneck states. The presence of such
bottleneck states would only increase the expected time by
a constant factor.

4. OPTIONS FROM EXPERIENCE
In Section 3, we remarked that we needed O(|S|) options.

In order to be practical, we require an algorithm to effi-
ciently generate these options within a budget of training
epochs. The proof of Theorem 1 provides us with a crucial
insight – our options only need bring the agent into an expo-
nentially smaller neighbourhood of the maximal value state.
This suggests that cheaply generated options may still be
acceptable.

The algorithm (Algorithm 1) we propose takes a given
MDP M , and trains an agent to learn T different tasks (i.e.
different R) on it, evenly dividing the epoch budget amongst
them. With each learned task, we certainly will have a good
policy for path options from any state to the state of max-
imal value, Mv. However, we observe that will also have
a good policy for path options from u to v is the path is
‘along the gradient’ of Q, i.e. when V (u) < V (v) < V (Mv).
Observing that V (s) ≈ argmaxv Q(s, π(s)), we detail the
algorithm to construct many options options from a single
Q-value function in Algorithm 2.

Algorithm 1 Small World Options from Experience

Require: M , R, r, n, epochs, T
1: O ← ∅
2: for i = 0→ T do
3: R ∼ R
4: Q← Solve M with R using epochs

T
epochs

5: O′ ← QOptions(Q, r, n
T

)
6: O ← O ∪O′
7: end for
8: return A random subset of n options from O

Algorithm 2 QOptions: Options from a Q-Value Func-
tion
Require: Q, r, n
1: O ← ∅
2: π ← greedy policy from Q
3: for all s in S do
4: Choose an s′ according to Pr
5: if Q(s′, π(s′)) > Q(s, π(s)) then
6: O ← O ∪ 〈{s}, π, {s′} ∪ {t | Q(s′, π(s′)) <

Q(t, π(t))}〉
7: end if
8: end for s in S
9: return A random subset of n options from O

We note here except for sampling s′ from Pr, we do not
require any knowledge of the MDP, nor do we need to con-
struct a local model of the same. In fact, s′ can be sampled
approximately using the expected path length instead of the
graph distance in Pr. As the expected path length E[l] is
only a constant factor greater than l (l

ε̄
), Lemma 1 continues

to hold.

5. EXPERIMENTAL RESULTS
We trained MacroQ learning agents on several standard

domains, and measured the cumulative return obtained us-
ing the following option generation schemes:

• None: No options were used.

• Random: Options were generated by randomly con-
necting two nodes in the domain (this is equivalent to
P0).

• Betweenness: As a representative of bottleneck-based
schemes, options were generated to take any node to
a local maxima of betweenness centrality, as described
in [2].

• Small World: Options were generated randomly con-
necting two nodes of the domain using an inverse square
law, as described in Section 3.

Each experiment, unless mentioned otherwise, was run for
10 randomly generated tasks in the domain; each task ran
for 40, 000 epochs, and was averaged over an ensemble of 20
agents.

5.1 Optimal Options
The agents were run on the following three domains using

the algorithm sketched in Section 3:

394

Arbt. Navi Rooms Taxi
None -31.82 -1.27 -16.90

Random -31.23 -10.76 -18.83
Betw. -18.28 -8.94 80.48
Sm-W -14.24 [r = 4] 8.54[r = 2] 0.66 [r = 0.75]

Table 1: Cumulative Return

• Arbitrary Navigation: The agent must reach an
arbitrary goal state in an obstacle-free x×y grid-world.

• Rooms: The agent must navigate a floor plan with 4
rooms to reach an arbitrary goal state.

• Taxi: This is the domain described in Example 1.

Optimal policies were given to the options generated ac-
cording to the schemes described above.

The results of these experiments are summarised in Ta-
ble Table 1. Small world options perform significantly bet-
ter than the other schemes in navigation-oriented tasks like
Rooms or Arbitrary Navigation. In the Taxi domain, op-
tions generated by the betweenness scheme outperform the
small world options. This is expected because the goal states
in this domain lie at betweenness maxima.

S

G

Figure 3: Rooms: Options learnt

Some of the small world options preferred in Rooms do-
main are shown in Figure 3. The graph shows several exam-
ples of options that compose together to arrive near the goal
state. We have also plotted the learning behaviour in Fig-
ure 4. The option scheme “Betweenness + SW” combines
options to betweenness maxima with small world options.
Expectedly, it significantly outperforms all other schemes.
The options to betweenness maxima help take the agent be-
tween strongly connected regions, while the small world op-
tions help the agent navigate within the strongly connected
region.

5.2 Sensitivity of r
Figure 5 plots r versus the cumulative return on the Rooms

domain. We do not yet have a clear understanding of how
the exponent r should be chosen. The performance of the
agent without options after 20, 000 epochs is also plotted for
reference. There is a range of r (≈ 0.75 to 1.5) with good

Figure 4: Rooms: Cumulative Return with 200 op-
tions

Figure 5: Rooms: r vs Cumulative Return

performance, after which the performance steadily drops.
This behaviour is easily explained; as the exponent goes up,
the small world options generated are very short, and do not
help the agent get nearer to the maximal value state. The
optimal range of r is slightly counter-intuitive because the
Rooms domain is a two dimensional lattice with some edges
removed. As a consequence of the reduced connectivity, and
perhaps due to stochastic factors, longer range options are
preferred.

5.3 Options Learnt on a Budget
In Section 4, we describe an algorithm to construct small

world options efficiently when given a limited number of
learning epochs. We compared the performance of these op-
tions with betweenness options learnt similarly, and have
plotted our results in Figure 6. Despite using many more
options, the small world options thus created significantly
outperform betweenness options learnt with the same bud-
get, and are even comparable to the optimal betweenness
options.

6. CONCLUSIONS AND FUTURE WORK
We have devised a new scheme to generate options based

on small world network model. The options generated sat-

395

Figure 6: Rooms: Options Learnt on a Budget

isfy an intuitive criteria, that the subtasks learnt should be
easily composed to solve any other task. The options greatly
improve the connectivity properties of the domain, without
leading to a state space blow up.

Experiments run on standard domains show significantly
faster learning rates using small world options. At the same
time, we have shown that learning small world options can
be cheaper than learning bottleneck options, using a natural
algorithm that extracts options from a handful of tasks it has
solved. Another advantage of the scheme is that is does not
require a model of the MDP.

As future work, we would like to characterise what the
exponent r should be in a general domain. There are some
technicalities to be worked out in extending our results to the
continuous domain; however, as most real-life applications
are continuous in nature, this is an important further direc-
tion we are looking at. Given the ease with which options
can be discovered, it would be interesting to experiment with
a dynamic scheme that adds options on the fly, while solving
tasks. [7] extend Kleinberg’s results to arbitrary graphs by
using rank instead of lattice distance. It would be interest-
ing to extend this approach to the reinforcement learning
setting. The logarithmic bounds on the number of decisions
presented may have some interesting consequences on theo-
retical guarantees of sample complexity as well.

7. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent Advances in

Hierarchical Reinforcement Learning Markov and
Semi-Markov Decision Processes. pages 1–28, 2003.

[2] O. Şimşek and A. G. Barto. Skill characterization
based on betweenness. In NIPS, pages 1–8, 2008.

[3] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley, 1968.

[4] M. Jerrum and A. Sinclair. Conductance and the
rapid mixing property for markov chains: the
approximation of permanent resolved. In Proceedings
of the twentieth annual ACM symposium on Theory of
computing, STOC ’88, pages 235–244, New York, NY,
USA, 1988. ACM.

[5] J. Kleinberg. The Small-World Phenomenon : An
Algorithmic Perspective. ACM Theory of Computing,
32:163–170, 2000.

[6] L. Li, T. J. Walsh, and M. L. Littman. Towards a
Unified Theory of State Abstraction for MDPs. In In
Proceedings of the Ninth International Symposium on
Artificial Intelligence and Mathematics, pages
531–539, 2006.

[7] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan,
and A. Tomkins. Geographic routing in social
networks. PNAS, pages 1–6, 2005.

[8] C. Martel and V. Nguyen. Analyzing Kleinberg’s (and
other) Small-world Models. In PODC, volume 2, 2004.

[9] A. McGovern and A. G. Barto. Automatic Discovery
of Subgoals in Reinforcement Learning using Diverse
Density. In ICML, pages 1–8, 2001.

[10] I. Menache, S. Mannor, and N. Shimkin. Q-Cut -
Dynamic Discovery of Sub-Goals in Reinforcement
Learning. In ECML, 2002.

[11] B. Ravindran and A. G. Barto. Relativized Options :
Choosing the Right Transformation. In International
Conference on Machine Learning, 2003.

[12] R. S. Sutton, D. Precup, and S. Singh. Between MDPs
and Semi-MDPs : Learning , Planning , and
Representing Knowledge at Multiple Temporal Scales
at Multiple Temporal Scales. Artificial Intelligence,
112:181–211, 1999.

[13] A. Tahbaz-Salehi and A. Jadbabaie. Small world
phenomenon, rapidly mixing markov chains, and
average consensus algorithms. In Decision and
Control, 2007 46th IEEE Conference on, pages 276
–281, 2007.

[14] M. E. Taylor and P. Stone. Transfer Learning for
Reinforcement Learning Domains: A Survey. Journal
of Machine Learning Research, 10:1633–1685, 2009.

[15] S. Thrun and A. Schwartz. Finding Structure in
Reinforcement Learning. In Advances in Neural
Information Processing Systems 7, pages 385–392,
1995.

396

APPENDIX
A. SMALL WORLDS

In this section we will tackle the proof of the main theorem
in Section 3,

Theorem 2. Let f : V → R be a function embedded on
the graph G(V,E), such that, κ1‖u − v‖ − c1 ≤ ‖f(u) −
f(v)‖ ≤ κ2‖u−v‖−c2, where 0 ≤ κ1 ≤ κ2, and 0 ≤ c2 ≤ c1

2
.

Let Mf be the global maxima of f . Let GAε be an ε-greedy
algorithm with respect to f , i.e. an algorithm which chooses
with probability 1 − ε to transit to the neighbouring state
closest to Mf , i.e. N(u) = argminv ‖f(v)− f(Mf)‖.

If G(V,E) is r-dimensional lattice, and contains a long
distance edge distributed according to Pr : p(u, v) ∝ ‖u −
v‖−r, then GAε takes O((log |V |)2) steps to reach Mf .

Proof. This result is a simple extension of Kleinberg’s
result in [5], and follows the proof presented there, albeit
with the somewhat cleaner notation and formalism of [8].
We begin by defining the necessary formalism to present the
proof.

Definition 2. Let us define Bl(u) to be the set of nodes
contained within a“ball”of radius l centered at u, i.e. Bl(u) =
{v | ‖u − v‖ < l}, and bl(u) to be the set of nodes on its
surface, i.e. bl(u) = {v | ‖u− v‖ = l}.

Given a function f : V → R embedded on G(V,E), we
analogously define Bf

l(u) = {v | |f(u) − f(v)| < l}. For
notational convenience, we take Bf

l to be Bf
l(Mf).

The inverse normalised coefficient for p(u, v) is,

cu =
∑

v 6=u
‖u− v‖−r

=

r(n−1)∑

j=1

bj (u) j−r.

It can easily be shown that the bl(u) = Θ(lk−1). Thus, cu
reduces to a harmonic sum, and is hence equal to Θ(logn).
Thus, p(u, v) = ‖u− v‖−rΘ(logn)−1.

We are now ready to prove that GAε takes O((log |V |)2)
decisions. The essence of the proof is summarised in Fig-
ure 7. Let a node u be in phase j when u ∈ Bf

2j+1 \Bf
2j .

The probability that phase j will end this step is equal to
the probability that N(u) ∈ Bf

2j .

The size of Bf
2j is at least |B 2j+c2

κ2

| = Θ(2j+c2
κ2

). The

distance between u and a node in Bf
2j is at most 2j+1+c1

κ1
+

2j+c2
κ2

< 2(2j+1+c2
κ2

). The probability of a link between these

two nodes is at least (2j+2+2c1
κ1

)−rΘ(logn)−1. Thus,

P
(
u,Bf

2j

)
≥ (1− ε)

Θ (logn)

(
2j + c2
κ2

)r
×
(

2j+2 + 2c1
κ1

)−r

≥ (1− ε)
Θ (logn)

×
(
κ1

4κ2

)r
×
(

1 + c2
2j

1 + c1
2×2j

)r

≥ (1− ε)
Θ (logn)

×
(
κ1

4κ2

)r
×
(

1 + c2
1 + c1

2

)r
.

G

Θ((21)2) nodes

Θ((22)2) nodes

Θ((23)2) nodes

Θ((2j)r) nodes

Pr ≈ (2j)r×(2j+2)−r

Θ(log n)

Figure 7: Exponential Neighbourhoods

Let number of decisions required to leave phase j be Xj .
Then,

E [Xj] ≤
∞∑

i=0

(
1− P

(
u,Bf

2j

))i

≤ 1

P (u,Bf
2j)

≤ Θ (logn)
1

(1− ε)

(
4κ2

κ1

)r (1 + c1
2

1 + c2

)r

≤ Θ (logn) .

Thus, it takes at most O(logn) decisions to leave phase j.
By construction, there are at most logn phases, and thus at
most O((logn)2) decisions.

397

398

Just Add Pepper: Extending Learning Algorithms for
Repeated Matrix Games to Repeated Markov Games

Jacob W. Crandall
Computing and Information Science Program
Masdar Institute of Science and Technology

Abu Dhabi, United Arab Emirates
jcrandall@masdar.ac.ae

ABSTRACT
Learning in multi-agent settings has recently garnered much
interest, the result of which has been the development of
somewhat effective multi-agent learning (MAL) algorithms
for repeated normal-form games. However, general-purpose
MAL algorithms for richer environments, such as general-
sum repeated stochastic (Markov) games (RSGs), are less
advanced. Indeed, previously created MAL algorithms for
RSGs are typically successful only when the behavior of as-
sociates meets specific game theoretic assumptions and when
the game is of a particular class (such as zero-sum games). In
this paper, we present a new algorithm, called Pepper, that
can be used to extend MAL algorithms designed for repeated
normal-form games to RSGs. We demonstrate that Pepper
creates a family of new algorithms, each of whose asymptotic
performance in RSGs is reminiscent of its asymptotic per-
formance in related repeated normal-form games. We also
show that some algorithms formed with Pepper outperform
existing algorithms in an interesting RSG.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Algorithms

Keywords
Multi-agent learning, stochastic games, game theory

1. INTRODUCTION
Much research in multi-agent learning (MAL) continues

to focus on learning in repeated normal-form (or matrix)
games. This research has resulted in many matrix learning
algorithms (MLAs – algorithms for learning repeated matrix
games), some of which are able to learn effectively in general-
sum matrix games. For example, M-Qubed has been shown
to perform robustly in several empirical studies involving
many different MLAs in many repeated matrix games [4, 10].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Exp3 [2], GIGA-WoLF [6], and UCB [1] have also performed
well in certain games in these studies.

However, many situations in which MAL is necessary are
better modeled as repeated stochastic games (RSGs) than
repeated matrix games. In RSGs, rewards are received in-
crementally. This requires a learning agent to solve two
problems simultaneously. First, it must determine its de-
layed rewards, or the rewards it will receive in future states
of the world. These delayed rewards are contingent on the
strategies of the agent and its associates in future states.
Second, the agent (and its associates) must learn an effective
strategy in each state. But learning such strategies requires
accurate estimates of delayed rewards.

Whereas these chicken and egg problems can be solved si-
multaneously in single-agent domains via standard reinforce-
ment learning, they are not so easily solved in multi-agent
settings since an agent cannot easily predict or control its
associates’ current and future strategies. As a result, many
MAL algorithms have been investigated for RSGs. These
algorithms typically assume that associates will conform to
a particular game-theoretic behavior, and that the corre-
sponding game theoretic solution concept will define an ef-
fective strategy for the agent. While sometimes effective,
such algorithms often do not perform well when these as-
sumptions fail. For example, algorithms that seek to learn
a Nash equilibrium (NE) sometimes perform well in com-
petitive stochastic games in which the NE corresponds to
the minimax strategy (e.g., [17]), but often fail in repeated
general-sum stochastic games when there is not a unique
NE [5] (see also the folk theorem [12]). Additionally, many
algorithms require perfect knowledge of associates’ payoffs,
which are often unavailable.

In this paper, we introduce a new algorithm, called Pep-
per, for learning in RSGs for situations in which the ac-
tions of associates are observable, but where the payoffs of
associates and (initially) the state transitions of the game
are unknown. This new algorithm uses a separate instance
of a MLA to learn a strategy in each unique state of the
game using payoffs (future rewards) computed by Pepper.
To demonstrate the effectiveness of Pepper, we use it to de-
rive four new algorithms for RSGs. We then evaluate these
algorithms in an interesting RSG played against a variety of
learning algorithms and hand-coded (static) strategies.

2. BACKGROUND AND AN EXAMPLE
We begin by defining important terms and notation. We

then review the performance of existing algorithms in an
example RSG.

399

B

A
B A B

A B

(1, 7) (2, 2) (5, 5)

2

1

3

4

A

Figure 1: The SGPD game.

2.1 Definitions and Notation
We consider repeated stochastic games (RSGs) played by

players1 (or agents) i and −i. An RSG consists of a set of
stage games S, also known as world states. In each stage
s ∈ S, both players choose an action from a finite set. Let
A(s) = Ai(s) × A−i(s) be the set of joint actions available
in s, where Ai(s) and A−i(s) are the action sets of players
i and −i, respectively. Each episode of the game begins in
some beginning stage sb ∈ B ⊆ S and terminates when
some goal stage sg ∈ G ⊆ S is reached. Once a goal stage is
encountered, a new episode begins in some stage sb ∈ B.

When joint action a = (ai, a−i) is played in stage s,
player i receives a finite reward ri(s,a). Here, ai ∈ Ai(s)
and a−i ∈ A−i(s) are the actions of players i and −i, re-
spectively. Once the joint action a is played in s, the world
transitions to some new stage game s′ according to the prob-
abilistic stage transition model PM (s, s′,a).

We assume that the transition model PM is unknown to
the players initially. However, we assume that the players
can learn the transition model from experience by observing
joint actions and stage transitions. Additionally, we assume
that players can observe their own immediate rewards, but
not those of associates. We also assume that player i’s maxi-
mum possible reward Rmaxi for an episode is known a priori.
This assumption can be replaced by a process through which
Rmaxi is learned, but this is not essential to our discussion.

2.2 Motivating Example
Figure 1 depicts a stochastic game prisoner’s dilemma

(SGPD) [13]. In this game, two players, labeled A and B,
begin each episode in opposite corners of the world. The
goal of the game is to enter one of the gates (labeled 1, 2,
3, and 4 in the figure) in as few moves as possible. If both
agents try to enter gate 1 at the same time, then gates 1 and
2 close and the agents must enter gate 3. If only one agent
enters gate 1, gates 1–3 close and the other agent must enter
gate 4. If either agent enters gate 2, then gate 1 closes. If
both agents try to enter gate 2 they are both allowed pas-
sage. An episode ends once both agents have entered a gate.

The set of stages of the SGPD is defined by the positions
of the players and the status of the four gates. Each config-
uration of these elements is a unique stage game in which
both players’ can choose to move up, down, or toward the

1For ease of exposition, we assume the game has two players;
Pepper can easily be extended to (n > 2)-player games.

Table 1: High-level payoff matrix of the SGPD.
Defect Cooperate
(Gate 1) (Gates 2–4)

Defect (Gate 1) 2, 2 7, 1
Cooperate (Gates 2–4) 1, 7 5, 5

Table 2: Performance in the SGPD. Bold indicates
nearly ideal performance. Algorithms marked VI
use model-based, rather than model free, methods.

Algorithm
Associate

Self
Play

De-
fector

Coop-
erator

Ran-
dom

TFT

Q-learning 2.2 1.3 7.0 4.3 3.4
WoLF-PHC 1.9 1.2 6.9 4.1 2.1
Minimax-VI 2.0 1.9 7.0 4.4 2.0
Friend-VI 1.9 -0.9 3.0 1.0 2.0
Nash-VI* 2 2 7 4.5 2
uCE-VI* 5 1 5 3 5
FolkEgal*† 5 2 5 3.75 5

** Requires knowledge of associate’s payoffs; performance estimated

† Requires knowledge of stage transition probabilities PM (s, s′, a)

gates (right for player A, and left for player B). Moves into
a wall (boundary, black space, or closed gate) result in no
movement. Each player receives 10 points for entering any
gate, and is penalized 1 point for each move it takes.

A player that tries to enter gate 1 is said to have defected.
Otherwise, the player is said to have cooperated. Thus, the
high-level game is the prisoner’s dilemma (PD) matrix game
shown in Table 1; each cell lists the sum of rewards received
in an episode by the row and column players, respectively.

Table 2 shows the average asymptotic per episode pay-
offs of existing algorithms in the SGPD in self play and
when associating with four static associates. Defector always
defects, Cooperator always cooperates, Random chooses a
gate randomly, and TFT chooses a gate according to the
tit-for-tat strategy. Bold values indicate (nearly) ideal per-
formance. The payoffs of Q-learning [24], WoLF-PHC [7],
Minimax-VI [19], and Friend-VI [20] are based on 200,000-
episode games run using the parameter settings given in Ta-
ble 5. The payoffs of Nash-VI [16], utilitarian correlated
reinforcement learning (uCE-VI) [14], and FolkEgal [9] were
deduced from the descriptions of the algorithms.

Table 2 shows that none of the algorithms performs ide-
ally against this limited set of algorithms. Only uCE and
FolkEgal cooperate in self play, which results in an expected
per-episode payoff of 5. However, uCE and FolkEgal do not
behave ideally against Cooperator or Random. Additionally,
they must know their associate’s payoffs.

We seek to identify MAL algorithms that learn effectively
against many kinds of associates in the SGPD and other
general-sum RSGs when associate’s payoffs are unknown.
Since several matrix learning algorithms (MLAs) have, to
various degrees, achieved these objectives in matrix games
(such as Table 1), we explore the extension of these algo-
rithms to RSGs using Pepper.

3. PEPPER
Pepper (potential exploration with pseudo stationary re-

starts) is defined by three design choices. First, Pepper uti-
lizes the R-max [8] algorithmic framework, which incorpo-
rates the optimism-in-uncertainty principle. Second, Pep-

400

per defines a new mechanism for estimating future rewards,
which are used to estimate a payoff matrix for each stage of
the RSG. This mechanism is also designed to adhere to the
optimism-in-uncertainty principle, while eventually reflect-
ing the agent’s actual rewards in an episode. Third, Pepper
uses a separate instance of an MLA in each stage of the
game to learn the agent’s strategy in that stage. The MLA
employed in stage s ∈ S learns the agent’s policy in s as
it would learn a policy in a repeated matrix game, only it
learns from a payoff matrix defined by Pepper.

3.1 Algorithmic Framework
To determine how to act in stage s, player i must deter-

mine how its actions will affect it rewards in the remainder
of the episode (i.e., its future rewards). To do this, Pepper
computes the payoff matrix Ri(s), which estimates player i’s
future rewards for each joint action a ∈ A(s). Let Ri(s,a)
denote the expected future rewards obtained once the joint
action a is played in stage s. Also, let sk ∈ S be the kth

stage visited in an episode in which T stages are visited.
Then, Ri(s,a) is given by

Ri(sk,a) =

TX
τ=k

rti(sτ ,aτ), (1)

where aτ is the joint action taken in stage sτ . Bellman [3]
showed that Ri(sk,a) can be equivalently expressed as

Ri(sk,a) = ri(sj ,a) +
X
s′∈S

PM (sk, s
′,a) Vi(s

′), (2)

where Vi(s
′) is the expected future rewards for being in stage

s′. Thus, given ri(s,a), PM (s, s′,a), and Vi(s
′), Ri(s,a), for

each s ∈ S, can be computed using value iteration.
When ri(s,a), PM (s, s′,a) and Vi(s

′) are unknown, an
agent must learn them via exploration. In constant-sum
RSGs, the R-max algorithm [8] does this using the optimism-
in-uncertainty principle. R-max initially assumes that each
joint action from each stage results in maximal reward. It
removes this assumption once the joint action has been at-
tempted K (predetermined) times. This draws the agent
toward stages that have not been adequately explored.

Algorithm 1 embodies principles of the R-max algorithm
for RSGs minus rules specifying how πi(s) or Vi(s) are com-
puted. This algorithmic framework can be used to imple-
ment many MAL algorithms, including R-max and the algo-
rithms listed in Table 3, each of which computes πi(s) and
Vi(s) differently. The algorithms in Table 3 each assume
that all players will collectively conform to some game the-
oretic behavior, such as minimax (Minimax-Q), NE (Nash-
Q), correlated equilibria (CE-Q), or the Nash bargaining
solution (NBS-Q) [21]. When appropriate assumptions are
met, Ri(s,a) will converge to its “true” value, as it does in
single-agent reinforcement learning. However, when these
assumptions are not met as is often the case, these algo-
rithms often achieve low payoffs.

As an alternative, Pepper proposes a method for creating
a new family of algorithms for RSGs. This method also
utilizes Algorithm 1, but it proposes a new mechanism for
how πi(s) and Vi(s) should be computed.

3.2 Computing a Strategy (πi(s))
There exist MLAs that define strategy selection rules that

are successful in many repeated matrix games played with

Algorithm 1 Algorithmic framework

Input:
Let S′ = {s0, S} be a set of stage games, where s0 ∈ G
Let Rmaxi be player i’s maximum reward for an episode

Initialize:
∀s ∈ S′,a ∈ A(s), ri(s,a) = 0, PM (s, s0,a) = 1, κ(s,a)← 0
∀s ∈ S′, Vi(s) = Rmaxi and πi(s) = random
t← 1

repeat
∀s ∈ S,a ∈ A(s), update Ri(s,a) by value iteration; Eq. (2)
∀s ∈ S, update πi(s) and Vi(s)
Observe starting state s ∈ B
repeat

Select action ai according to πi(s) and execute
Observe at = (ai, a−i), s′, and ri
κ(s,a)← κ(s,a) + 1
if κ(s,a) ≥ K then

Update ri(s,a) according to observations
Update Vi(s)
Update PM (s, ·,a) according to observed frequencies
Update Ri(s,a) according to Eq. (2)
Update πi(s)

end if
s← s′

until s ∈ G
until Game Over

Table 3: Algorithms generalized by Algorithm 1.
Algorithm Computing π(s) Computing Vi(s

′)

Minimax-Q maximin strat. of Ri(s) maximin value of Ri(s)

Nash-Q A NE of Ri(s) value of a NE of R(s)

Friend-Q arg maxa∈A(s) Ri(s, a) maxa∈A(s) Ri(s, a)

CE-Q A CE of Ri(s) value of a CE of R(s)

NBS-Q NBS of R(s) NBS value of R(s)

many different associates. Pepper seeks to leverage these
learning rules by extending MLAs to RSGs. In particular,
Pepper uses an MLA to learn a strategy πi(s) in each stage
s ∈ S. The MLA used in stage s seeks to learn a strategy
that, given the strategy played by its associate in s, maxi-
mizes the payoffs defined by the payoff matrix Ri(s).

Given that the MLA in each stage s seeks to maximize
the agent’s payoffs as defined by Ri(s), the ability of the
MLA employed in stage s ∈ S to learn a successful strategy
is contingent on accurate estimates of Ri(s). Accurately
modeling Ri(s) depends, in turn, on effective estimates of
future reward, which are encoded by Vi(s

′).

3.3 Determining Future Rewards (Vi(s))
We advocate that estimates of Vi(s) should satisfy two

objectives, or properties:

Realism Property: Vi(s) must eventually reflect the ac-
tual payoffs received by the agent in an episode after stage
s is reached. That is, limt→∞ V

t
i (s) = V̄i(s), where V ti (s)

is the estimate of the expected rewards received in episode
t after stage s is reached, and V̄i(s) is the actual expected
sum of rewards received in an episode after s is reached.

Optimism Property: Vi(s) should overestimate, rather
than underestimate, the agent’s future reward while learn-
ing. That is, for all t, V ti (s) ≥ V̄i(s).

The realism property ensures that the MLA employed in
stage s eventually learns from true expected payoffs, while
the optimism property, similar to an admissible heuristic in

401

search, helps the agent to avoid learning strategies that lead
to premature convergence to local (but not global) maxima.

Pepper seeks to satisfy these two properties by combining
off-policy and on-policy methods for estimating Vi(s). Off-
policy methods estimate Vi(s) using some ideal (often de-
rived from Ri(s)) that the agent hopes to eventually reach.
This ideal is specific to the MLA that is used. For exam-
ple, each algorithm in Table 3 employs a different off-policy
method for estimating Vi(s). Let V off

i (s) denote the estimate
of Vi(s) computed from the designated off-policy method.

Alternately, on-policy methods estimate Vi(s) from the
actual distribution over joint actions induced by the players’
joint strategy. Let V on

i (s) denote this estimate. Formally,

V on
i (s) =

X
a=(ai,a−i)∈A(s)

πi(s, ai) π−i(s, a−i) Ri(s,a), (3)

where πi(s, ai) and π−i(s, a−i) are the probabilities that
players i and −i play actions ai and a−i, respectively, in
stage s. However, since player i does not know π−i(s) and
since its own strategy varies over time, V on

i (s) can be de-
fined in terms of the observed distribution of joint actions.
Let κ(s,a) be the number of times that joint action a has
been played in stage s, and let κt(s) be the number of times
that stage s has been visited. Then,

V on
i (s) =

X
a∈A(s)

κ(s,a)

κ(s)
Ri(s,a). (4)

In practice, κ(s,a)
κ(s)

can be replaced with a probability that

places higher weight on more recent observations.
V on
i (s), as computed in Eq. (4), satisfies the realism prop-

erty when Ri(s,a) approaches true expected payoffs for each
joint action a ∈ A(s). Given that Ri(s) converges with high
probability when each joint action in each stage is played
sufficiently [8], Vi(s) will converge to the average rewards
received from stage s, since joint actions not played suffi-
ciently will not substantially impact it.

However, V on
i (s) may not satisfy the optimism property.

Rather, an agent hoping to compute Vi(s) to satisfy the
optimism property could estimate Vi(s) as the maximum
of V on

i (s) and V off
i (s), particularly since both V on

i (s) and
V off
i (s) are based on initially optimistic assessments of Ri(s).

We denote V̂i(s) as this optimistic assessment, given by

V̂i(s) = max
“
V off
i (s), V on

i (s)
”
. (5)

Thus, V̂i(s) has the best chance of satisfying the optimism
property, and V on

i (s) satisfies the realism property. Pepper
seeks to obtain the best of both worlds by computing Vi(s)

as a convex combination of V̂i(s) and V on
i (s). That is,

Vi(s) = λi(s) V̂i(s) + (1− λi(s)) V on
i (s) (6)

where λi(s) ∈ [0, 1] is set to one initially, but approaches zero
as the agent obtains more experience in stage s. However, it
is not clear how quickly λi(s) should be decreased. If λi(s)
decreases too quickly, then Eq. (6) is unlikely to satisfy the
optimism property. On the other hand, if λi(s) decreases
too slowly, then the algorithm will learn too slowly.

In attempt to avoid either extreme, Pepper regulates λi(s)
using a concept that we refer to as pseudo-stationarity. We
say that payoff matrix Ri(s) is pseudo-stationary if each
entry of Ri(s) has stopped decreasing.

Pseudo-Stationary: Let RTi (s,a) be the lowest estimate
of Ri(s,a) observed up to time T , and let Rti(s,a) be the
estimate of Ri(s,a) at time t. Ri(s) is pseudo-stationary
after time T if ∀t ≥ T,a ∈ A(s), Rti(s,a) ≥ RTi (s,a) + δ,
where δ > 0 is some small positive constant.

Since Ri(s,a) is initially set to Rmaxi , it will likely decrease
in early episodes. Thus, Ri(s) will not likely be pseudo-
stationary in early episodes of the game, but will eventually
become pseudo-stationary given episodes of finite length.

Pepper uses the concept of non-pseudo-stationary re-starts
to regulate λi(s). That is, when Ri(s) is observed to not be
pseudo-stationary, λi(s) is reset to one. This restarts the

transition from V̂i(s) to V on
i (s) defined by Eq. (6). Let κ′(s)

be the number of visits to stage s since Ri(s) was last ob-
served to not be pseudo-stationary. Then, λi(s) is given by:

λi(s) = max

„
0,

C − κ′(s)
C

«
, (7)

where C is some positive integer. λi(s) decreases more
slowly for higher values of C than for lower values of C
in the absence of non-pseudo-stationary restarts.

Since the number of restarts in each stage is finite given
bounded rewards, Vi(s) as defined by Eqs. (6) and (7) will
converge to actual rewards if each (s,a)-pair is visited suf-
ficiently. Since Algorithm 1 ensures with high probability
that all (s,a)-pairs will be explored sufficiently given that
the optimism property is met [8], Vi(s) will converge to ac-
tual rewards in stages encountered in the learned solution
when the optimism property is met.

4. ALGORITHMS FORMED BY PEPPER
We now describe four new algorithms for RSGs formed by

extending four different MLAs with Pepper. Algorithm 1
paired with Eq. (6) requires that we must only define how
πi(s) and V off

i (s) are computed. We refer the reader to the
literature for specifications of how πi(s) is computed by each
MLA, as Pepper uses these rules as they have been defined.
We now specify how each algorithm computes V off

i (s).

4.1 M-Qubed with Pepper
M-Qubed [10] is a reinforcement learning algorithm that

balances cautious, optimistic, and best-response attitudes.
It encodes the previous ω joint actions taken by the agents
as state (called recurrent state). It then learns a Q-value for
each recurrent state-action pair, each of which is initialized
to its highest possible value given its discount factor γ. M-
Qubed typically selects actions based on its Q-values in the
current (recurrent) state, but triggers to its maximin strat-
egy when its total loss exceeds a pre-determine threshold.

M-Qubed learns to play the Nash bargaining solution in
self play in many repeated matrix games. It also avoids
being exploited, meaning that its long-term payoffs meet or
exceed its maximin value regardless of the behavior of its
associates. In the PD matrix game, it learns to cooperate
in self play and to defect against associates that defect.

M-Qubed’s mechanics define a relaxation search for a strat-
egy that sustains a future discounted reward r

1−γ that meets
or exceed its highest current Q-value over all of its recurrent
states (denoted Q∗(s)). Thus, basing V off

i (s) on Q∗(s) is a
natural choice. Formally, let Ω(s) be the set of M-Qubed’s
recurrent states in stage s, and let Ω′(s) ⊆ Ω(s) be the set
of recurrent states visited in the last τ visits to s. Also, let

402

Q(σ, ai) be the Q-value for taking action ai in σ ∈ Ω. Then,

V off
i (s) = (1− γ) ·

„
max

σ∈Ω′(s),ai∈Ai(s)
Q(σ, ai)

«
(8)

In RSGs, M-Qubed’s recurrent state σ ∈ Ω(s) in stage s is
determined by the previous ω joint actions taken in s.

4.2 Salt and Pepper
The satisficing learning technique (Salt) is a simple MLA

proposed by Karandikar et al. [18]. We use the version of the
algorithm defined and analyzed by Stimpson and Goodrich
[22]. Salt converges with high probability in self play to
pareto efficient solutions. In the repeated PD matrix game,
it learns with high probability to cooperate in self play and
to defect against agents that always defect [22].

Salt and Pepper encodes an aspiration level αi(s) in each
stage s ∈ S, which is initialized to maxaRi(s,a). αi(s)
is then incremented toward Ri(s,a) when a is played in s.
When αti ≥ Ri(s,a), Salt and Pepper repeats its action the
next time s is visited. Otherwise, it randomly selects a new
action. Salt and Pepper sets V off

i (s) to αti, which typically
provides an optimistic estimate of Vi(s) in early episodes.

4.3 Fictitious Play with Pepper
Fictitious play (FP) [11] is one of the oldest MLAs. It

forms a simple model of its opponent by observing the em-
pirical distribution of its opponent’s actions. In each time
step, it selects the action that maximizes its expected pay-
off given this opponent model and its payoff matrix. For-
mally, let γ(a−i) be the percentage of time that its opponent
(player −i) has played action a−i in the past. Then, FP’s
utility for playing action ai is:

ui(ai) =
X

a−i∈A−i(s)
γ(a−i) Ri(s, (ai, a−i)). (9)

We implemented weighted FP, in which the assessment γ(a−i)
gives more weight to recent observations,

FP converges to a NE in self play in matrix games that
are iterative dominance solvable. In the PD matrix game,
it learns to defect against all associates regardless of their
propensity to cooperate or retaliate.

FP with Pepper sets V off
i (s) to its max utility. Formally,

V off
i (s) = max

ai∈Ai(s)
ui(ai). (10)

This valuation is not optimistic when Ri(s) has converged
to actual payoffs. However, since Ri(s) is initialized opti-
mistically, it is optimistic initially.

4.4 GIGA-WoLF with Pepper
GIGA-WoLF [6] is a gradient ascent MLA that uses mul-

tiple learning rates to achieve no regret. Unlike the other
three learning algorithms, GIGA-WoLF selects a strategy
from the mixed strategy space. In the PD matrix game,
GIGA-WoLF quickly learns to defect against all associates.

GIGA-WoLF with Pepper sets V off
i (s) to its weighted av-

erage reward (given by Ri(s)); newer samples receive more
weight. Thus, like FP with Pepper, this valuation is opti-
mistic initially, and falls to true values as Ri(s) converges.

5. RESULTS
In this section, we evaluate the behavior and performance

of M-Qubed with Pepper, Salt and Pepper, FP with Pepper,

0 2 4 6 8 10 12 14 16

x 10
4

−1

0

1

2

3

4

5

6

Episode

A
ve

ra
ge

 P
ay

of
f

Self Play in the SGPD

M−Qubed w/ Pepper
Salt and Pepper
FP w/ Pepper
GIGA−WoLF w/ Pepper

Figure 2: Average payoffs in self play over 20 trials.

and GIGA-WoLF with Pepper in the SGPD. First, we ana-
lyze their behavior in self play and against WoLF-PHC [7],
an MAL algorithm that typically learns to defect in this
game. We then provide a more in-depth analysis of the ro-
bustness of these algorithms when associating with many
different kinds of associates in the SGPD, including associ-
ation among the various Pepper algorithms, other existing
learning algorithms, and hand-coded (static) strategies. We
do so by conducting a round-robin tournament and an evolu-
tionary tournament, each involving the same 12 algorithms.
Parameter values for all algorithms are provided in Table 5.

5.1 Pepper in the SGPD
Figure 2 shows the average performance over time of M-

Qubed with Pepper, Salt and Pepper, FP with Pepper, and
GIGA-WoLF with Pepper in the SGPD in self play. The
figure shows that both M-Qubed with Pepper and Salt and
Pepper learn to cooperate in self play. This results in an
average asymptotic payoff of 5 points per episode. However,
while both of these algorithms learn to cooperate in self
play, Salt and Pepper converges much faster than M-Qubed
with Pepper. These results are consistent with the behavior
of these algorithm in the PD matrix game, in which both
Salt and M-Qubed learn to cooperate in self play, with Salt
converging faster than M-Qubed.

Alternately, Figure 2 shows that both FP with Pepper
and GIGA-WoLF with Pepper quickly learn to defect in self
play in the SGPD. This results in an asymptotic payoff of
2 points per episode. This is substantially less than if both
agents had learned to cooperate, but it is consistent with
how GIGA-WoLF and FP perform in the PD matrix game.

Against WoLF-PHC in the SGPD, the average asymptotic
payoff of each algorithm is near 2 points per episode (Fig-
ure 3). All four algorithms learn to defect against WoLF-
PHC, though Salt and Pepper’s average payoffs are slightly
lower than that of mutual defection. This degraded per-
formance is due to occasional exploration by WoLF-PHC,
which causes Salt and Pepper to become dissatisfied in some
stages. This requires it to re-learn how to defect, which typ-
ically takes several episodes. Again, M-Qubed with Pepper
learns much slower than the other algorithms.

Despite M-Qubed with Pepper’s slow learning rate, we
are not aware of another learning algorithm from the liter-
ature that, without knowing its associate’s payoffs, learns
to both cooperate in self play and to always defect against
WoLF-PHC in the SGPD. This demonstrates the effective-
ness of Pepper for creating algorithms that outperform ex-
isting MAL algorithms in RSGs.

403

0 2 4 6 8 10 12 14 16

x 10
4

−1

0

1

2

3

4

5

6

Episode

A
ve

ra
ge

 P
ay

of
f

Vs. WoLF−PHC in the SGPD

M−Qubed w/ Pepper
Salt and Pepper
FP w/ Pepper
GIGA−WoLF w/ Pepper

Figure 3: Average payoffs against WoLF-PHC over
20 trials.

Pepper On Policy Off Policy
0

1

2

3

4

5

6

7

V(s)

A
ve

ra
ge

 P
ay

of
f

Self Play

Pepper On Policy Off Policy
0

0.5

1.0

1.5

2.0

2.5

V(s)

A
ve

ra
ge

 P
ay

of
f

Vs. WoLF−PHC

Figure 4: Average asymptotic payoffs of M-Qubed
with Pepper given different estimates of Vi(s) in self
play and against WoLF-PHC.

The success of M-Qubed with Pepper can be traced in
large part to how Pepper estimates Vi(s). Figure 4 shows the
average payoffs of M-Qubed in self play and against WoLF-
PHC given different methods for estimating Vi(s). When
Vi(s) is set equal to V on

i (s) (On Policy), M-Qubed still learns
to cooperate in self play, but it gets exploited by WoLF-
PHC. When Vi(s) is set equal to V off

i (s) (Off Policy), its
payoffs in self play and against WoLF-PHC are substantially
lower than when Vi(s) is set by Pepper. In fact, in one trial
(not reflected in Figure 4) in self play, using the off-policy
valuation caused both agents to converge to a strategy in
which neither agent entered a gate within 200 moves.

To better understand the Vi(s) as it is computed by Pep-
per, consider Figure 5. This figure shows values of V off

i (s),
V on
i (s), and Vi(s) over time in the stage game in which each

agent is immediately next to an open gate 1. Figures 5(a)–
5(d) correspond to valuations made by each of the Pepper
algorithms in self play, while Figures 5(e) and 5(f) show valu-
ations of M-Qubed with Pepper and Salt and Pepper against
WoLF-PHC. We note that, from this particular stage, mu-
tual defection gives each agent a future reward of 4, and
mutual cooperation gives each agent a future reward of 7.

We make several observations about Figure 5. First, all
valuations eventually converge to the true value of the stage
in question in each scenario. Second, V off

i (s) is often greater
than V on

i (s) in each scenario. Thus, Vi(s) tends to mirror
V off
i (s) except in the case of M-Qubed with Pepper (Fig-

ures 5(a) and 5(e)), particularly against GIGA-WoLF. In
this latter scenario, Vi(s) eventually mirrors V on

i (s), which
allows it to defect against WoLF-PHC. Third, Vi(s) typi-
cally, but not always, conforms with the optimism property;
Vi(s) is usually greater than or equal to the eventual value of
the stage. This causes the algorithms to effectively explore
using the optimism-in-uncertainty principle.

0 10,000 20,000 30,000 40,000
4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(a) M-Qubed in self play

0 2000 4000 6000 8000
4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(b) Salt in self play

0 1000 2000 3000 4000
3

4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(c) FP in self play

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

Episodes

P
ay

of
f

On Policy V(s)
Off Policy V(s)
V(s)

(d) GIGA-WoLF in self play

0 20,000 40,000 60,000 80,000 100,000 120,000
2

3

4

5

6

7

8

9

Episode
P

ay
of

f

On Policy
Off Policy
V(s)

(e) M-Qubed vs. WoLF-PHC

0 2000 4000 6000 8000 10000
3

4

5

6

7

8

9

Episode

P
ay

of
f

On Policy
Off Policy
V(s)

(f) Salt vs. WoLF-PHC

Figure 5: V on
i (s), V off

i (s), and Vi(s) in the SGPD for
the stage where both agents are in front of gate 1.

5.2 Tournaments in the SGPD
We conducted a round-robin tournament involving 12 al-

gorithms: the four Pepper algorithms, four other MAL al-
gorithms (Q-learning [24], WoLF-PHC, Friend-VI [20], and
Minimax-VI [20]), and four static strategies (Tit-for-Tat,
Always Defect, Always Cooperate, and Random). In this
tournament, each algorithm was paired with itself and the
other algorithms in a 200,000-episode SGPD. Since we are
primarily concerned with asymptotic performance in this pa-
per, the performance of the algorithms was taken only in the
last 10,000 episodes. Alternate evaluation windows (such as
the average of all episodes) could yield different results.

The results of the round-robin tournament are shown Ta-
ble 4. M-Qubed with Pepper had the highest average per-
formance, followed by Always Defect, Tit-for-Tat, and Salt
and Pepper. FP with Pepper and GIGA-WoLF with Pepper
placed fifth and sixth, respectively.

In addition to learning to cooperate in self play, M-Qubed
with Pepper learns mutual cooperation with Salt and Pep-
per. On the other hand, it learns to always defect against
each of the other algorithms except Tit-for-Tat. This allows
it to avoid being exploited by algorithms that are apt to de-
fect, and to exploit algorithms that will cooperate (Always
Cooperate, Friend-VI, and, to a lesser degree, Random).

However, M-Qubed with Pepper does not learn to always
cooperate with Tit-for-Tat, nor do any of the other learn-
ing algorithms. While an ideal algorithm cooperates with
Tit-for-Tat, the version of Tit-for-tat we implemented for
the SGPD responds to the global behavior of its associate,

404

Table 4: Average asymptotic payoffs in the SGPD for each pairing. All results are an average of 20 trials.

Algorithm

Associate

M-Qubed
w/ Pepper

Always
Defect

TFT
Salt
and
Pepper

FP w/
Pepper

GIGA-
WoLF w/
Pepper

Q-
learn-
ing

Mini-
max-
VI

Rand-
om

WoLF-
PHC

Always
Coop-
erate

Friend-
VI

Ave.

1. M-Qubed
5.00 2.00 3.86 5.00 1.99 2.07 2.01 2.01 4.48 2.08 7.00 6.97 3.70

w/ Pepper
2. Always

2.00 2.00 2.00 2.00 2.00 2.08 5.03 2.08 4.51 5.05 7.00 6.38 3.51
Defect

3. TFT 3.89 2.00 5.00 3.62 4.00 2.06 3.62 2.07 3.75 2.27 5.00 4.42 3.47
4. Salt and

4.89 2.00 2.69 5.00 2.00 1.63 1.63 1.62 2.81 1.64 7.00 6.96 3.32
Pepper

5. FP w/
2.02 2.00 3.00 2.00 2.00 2.08 2.11 2.08 4.50 2.08 7.00 6.39 3.11

Pepper
6. GIGA-WoLF

1.93 1.91 1.99 2.86 1.91 1.99 2.00 1.99 4.44 2.00 6.97 5.55 2.96
w/ Pepper

7. Q-learning 1.98 1.31 3.37 2.71 1.87 1.95 2.15 1.95 4.32 3.12 6.96 3.80 2.96

8. Minimax-VI 1.97 1.91 2.00 2.89 1.91 2.00 2.00 1.99 4.45 2.00 6.97 4.78 2.91

9. Random 1.52 1.50 3.75 3.49 1.50 1.54 1.71 1.55 3.75 2.40 6.00 5.07 2.81

10. WoLF-PHC 1.90 1.21 2.14 2.71 1.89 1.95 1.64 1.94 4.06 1.95 6.94 1.94 2.52
11. Always

1.00 1.00 5.00 1.00 1.00 0.99 1.00 1.00 3.00 1.02 5.00 3.76 2.06
Cooperate

12. Friend-VI -0.85 -0.94 1.99 -0.89 -0.87 -0.63 -1.20 -0.96 1.01 1.96 2.98 1.93 0.29

whereas Pepper and the other learning algorithms in our
study learn locally. This prohibits these algorithms from
observing global effects not connected in the Markov chain.

Like M-Qubed with Pepper, Salt and Pepper learns to de-
fect against Friend-VI, Always Cooperate, Always Defect,
and FP with Pepper. However, as against WoLF-PHC (Fig-
ure 3), Salt and Pepper is sometimes exploited by GIGA-
WoLF with Pepper and Minimax-VI. Likewise, it does not
always defect against Random. Meanwhile, both GIGA-
WoLF with Pepper and FP with Pepper learn to defect
against all associates, with some slight variations caused
by GIGA-WoLF’s exploration strategy. These results are
consistent with the behavior of these algorithms in the PD
matrix game, which demonstrates Pepper’s ability to extend
algorithms designed for repeated matrix games to RSGs.

We also conducted an evolutionary tournament in the
SGPD. In this tournament, an arbitrarily large population
of agents, each using one of the 12 algorithms, was evolved
over a series of generations according to the algorithms’ per-
formance in the SGPD against the agents in the population.
Initially, each algorithm was equally represented in the pop-
ulation. In each subsequent generation, the population was
altered using the replicator dynamic [23].

Figure 6 shows the proportion of the population using each
algorithm over time. After about 10 generations, Tit-for-
Tat and M-Qubed with Pepper dominated the population,
with Salt and Pepper also holding a small but substantial
share. However, once these three algorithms dominated the
population, M-Qubed with Pepper quickly took over.

6. CONCLUSIONS AND DISCUSSION
In this paper, we presented a new algorithm, called Pep-

per, which is designed to extend learning algorithms de-
signed for repeated matrix games to algorithms capable of
playing effectively in repeated stochastic games (RSGs). To
demonstrate the usefulness of Pepper, we extended four ma-
trix learning algorithms from the literature to algorithms for
RSGs using Pepper. We then evaluated their performance in
a stochastic game prisoner’s dilemma (SGPD). Our results

0 10 20 30 40 50 60 70

0

20

40

60

80

100

Generations

%
 P

op
ul

at
io

n
S

ha
re

M−Qubed
w/ Pepper

Salt and
Pepper

Tit−for−Tat

Figure 6: Results of the evolutionary tournament.

show that the behavior of these algorithms in the SGPD is
reminiscent of their behavior in the corresponding prisoner’s
dilemma matrix game.

As in many other MAL algorithms for RSGs, one draw-
back of Pepper is that all learning is local (within a stage).
Thus, it does not account for some effects that are only vis-
ible globally. In this paper, this was demonstrated by the
fact that none of the learning algorithms we considered were
able to learn to consistently cooperate with Tit-for-Tat.

Our results also found that combining the M-Qubed al-
gorithm with Pepper produces an algorithm that learns in
the SGPD to cooperate in self play, while learning to defect
against associates that are not apt to cooperate. We are not
aware of another algorithm in the literature that is able to
achieve this without knowing its associate’s payoffs as well
as the state transitions of the game. As a result, M-Qubed
with Pepper outperformed the other algorithms in both a
round-robin and evolutionary tournament.

Despite its robust behavior in the SGPD, M-Qubed with
Pepper learns very slowly. While its learning rate can be
increased to some degree by simply adjusting M-Qubed’s
learning rate α, perhaps a more effective solution would be
to deduce when a conflict between agents is possible [15] or
to use different kinds of matrix learning algorithms (MLAs)

405

in each stage of the game. The selection of the MLA used
in each stage could be based on that stage’s payoff ma-
trix. Faster matrix learning algorithms could be used in
stages that do not appear to require sophisticated reason-
ing, whereas slower matrix learning algorithms (such as M-
Qubed) could be used in stages that appear to require more
sophistication. Pepper makes this possible.

7. ACKNOWLEDGMENTS
The author would like to thank Michael A. Goodrich of

Brigham Young University for his helpful feedback.

8. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multi-armed bandit problem. Machine
Learning, 47 (2–3):235–256, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: the adversarial
multi-armed bandit problem. In Proc. of the 36th
Symp. on the Foundations of CS, pages 322–331.
IEEE Computer Society Press, 1995.

[3] R. E. Bellman. Dynamic Programming. Princeton
University Press, NJ, 1957.

[4] B. Bouzy and M. Metivier. Multi-agent learning
experiments in repeated matrix games. In Proc. of the
27 th Intl. Conf. on Machine Learning, 2010.

[5] M. Bowling. Convergence problems of general-sum
multiagent reinforcement learning. In Proc. of the 17 th

Intl. Conf. on Machine Learning, pages 89–94, 2000.

[6] M. Bowling. Convergence and no-regret in multiagent
learning. In Advances in Neural Information
Processing Systems 17, pages 209–216, 2005.

[7] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[8] R. I. Brafman and M. Tennenholtz. R-max – a general
polynomial time algorithm for near-optimal
reinforcement learning. The Journal of Machine
Learning Research, 3:213–231, March 2003.

[9] E. M. De Cote and M. L. Littman. A polynomial-time
Nash equilibrium algorithm for repeated stochastic
games. In Proc. of the 24 th Conf. on Uncertainty in
Artificial Intelligence, 2008.

[10] J. W. Crandall and M. A. Goodrich. Learning to
compete, compromise, and cooperate in repeated
general-sum games. Machine Learning, 82(3):281–314,
2011.

[11] D. Fudenberg and D. K. Levine. The Theory of
Learning in Games. The MIT Press, 1998.

[12] Herbert Gintis. Game Theory Evolving: A
Problem-Centered Introduction to Modeling Strategic
Behavior. Princeton University Press, 2000.

[13] M. A. Goodrich, J. W. Crandall, and J. R. Stimpson.
Neglect tolerant teaming: Issues and dilemmas. In
AAAI Spring Symp. on Human Interaction with
Autonomous Systems in Complex Environments, 2003.

[14] A. Greenwald and K. Hall. Correlated Q-learning. In
Proc, of the 20 th Intl. Conf. on Machine Learning,
pages 242–249, 2003.

[15] Y. M. De Hauwere, P. Vranx, and A. Nowe. Future
sparse interactions: A MARL approach. In Proc. of

the 9 th European Workshop on Reinforcement
Learning, 2011.

[16] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proc. of the 15 th Intl. Conf. on Machine Learning,
pages 242–250, 1998.

[17] M. Johanson, N. Bard, M. Lanctot, R. Gibson, and
M. Bowling. Efficient Nash equilibrium approximation
through Monte Carlo counterfactual regret
minimization. In Proc. of the 11 th Intl. Conf. on
Autonomous Agents and Multiagent Systems, 2012.

[18] Rajeeva Karandikar, Dilip Mookherjee, Debraj Ray,
and Fernando Vega-Redondo. Evolving aspirations
and cooperation. Journal of Economic Theory,
80:292–331, 1998.

[19] M. L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proc. of the
11 th Intl. Conf. on Machine Learning, pages 157–163,
1994.

[20] M. L. Littman. Friend-or-foe: Q-learning in
general-sum games. In Proc. of the 18 th Intl. Conf. on
Machine Learning, pages 322–328, 2001.

[21] H. Qiao, J. Rozenblit, F. Szidarovszky, and L. Yang.
Multi-agent learning model with bargaining. In The
2006 Winter Simulation Conf., pages 934–940, 2006.

[22] J. R. Stimpson and M. A. Goodrich. Learning to
cooperate in a social dilemma: A satisficing approach
to bargaining. In Proc. of the 20 th Intl. Conf. on
Machine Learning, pages 728–735, 2003.

[23] P. D. Taylor and L. Jonker. Evolutionarily stable
strategies and game dynamics. Mathematical
Biosciences, 40:145–156, 1978.

[24] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1992.

9. APPENDIX

Table 5: Parameter settings and algorithm specifi-
cations.

Pepper K = 20 (for FP) and K = 5 (for Salt,
M-Qubed, and GIGA-WoLF); C = 1000

M-Qubed γ = 0.95, η(t) = 0.04·1000
1000+maxs κt(s)

, ω = 1,

ξ ∈ [0.1, 0.15], α = 0.1, τ = 10, 000, and
Ltol
i = 500 · |Ai(s)| · |Ai(s)| · |A−i(s)| ξ,

Salt λ = 0.99

Fictitious Play γt+1
i (a) = αγti (a) + (1− α)I(a, a−i),

where I(·) is the indicator function and

α = min
“
0.99,

κi(s)−1
κi(s)

”
GIGA-WoLF η = 0.01; explores with probability 0.01;

uses Ri(s) to estimate the reward gradient
Minimax-VI Uses Algorithm 1 with K = 20;

explores with probability 0.01
Friend-VI Uses Algorithm 1 with K = 20;

explores with probability 0.01

WoLF-PHC α = 1
100+κi(s,a)/10000

, δ = δw = 1
20000+t

,

δl = 4δw, ∀s, a, Q0(s, a) = rand
“
0,
rmax
i
1−γ

”
,

explores with probability 0.01,
initial policy is a random mixed strategy

Q-learning α = 1
10+κi(s,a)/10000

, γ = 1,

explores w/ prob. max(0.01, 0.2− κi(s)
100,000

)

406

Strong Mitigation: Nesting Search for Good Policies
Within Search for Good Reward

Jeshua Bratman
Computer Science & Eng.

University of Michigan
jeshua@umich.edu

Satinder Singh
Computer Science & Eng.

University of Michigan
baveja@umich.edu

Richard Lewis
Department of Psychology

University of Michigan
rickl@umich.edu

Jonathan Sorg
Facebook

jdsorg@umich.edu

ABSTRACT
Recent work has defined an optimal reward problem (ORP)
in which an agent designer, with an objective reward func-
tion that evaluates an agent’s behavior, has a choice of what
reward function to build into a learning or planning agent to
guide its behavior. Existing results on ORP show weak miti-
gation of limited computational resources, i.e., the existence
of reward functions so that agents when guided by them do
better than when guided by the objective reward function.
These existing results ignore the cost of finding such good
reward functions. We define a nested optimal reward and
control architecture that achieves strong mitigation of lim-
ited computational resources. We show empirically that the
designer is better off using the new architecture that spends
some of its limited resources learning a good reward function
instead of using all of its resources to optimize its behavior
with respect to the objective reward function.

Categories and Subject Descriptors
H.4 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Reinforcement Learning, Planning

1. INTRODUCTION
Reinforcement learning (RL) and decision-theoretic plan-

ning approaches for solving sequential decision making prob-
lems typically start with an agent’s reward function and
focus on designing learning/planning architectures for the
agent that allow it to efficiently optimize some cumulative
measure of the given reward. Recently Singh et al. [1] have
argued that for many applications a more accurate and po-
tentially useful way to describe the applied RL setting is as
an agent designer who has an objective reward function that

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

prescribes preferences over agent behavior, so that when
building an agent, the designer is free to choose any reward
function as parameters for the agent. In this view the de-
signer’s objective reward function (as preferences) evaluates
agent behavior while the agent’s reward function (as param-
eters) guides the agent’s behavior via its planning/learn-
ing algorithm. The conventional RL approach confounds
these two roles of rewards, evaluation and guidance, by us-
ing the objective reward for both. This raises the question of
what benefits, if any, might there be to breaking the conven-
tional equality between preferences and parameters? Singh
et al. formalize this question via a new optimal reward prob-
lem (ORP) that defines the optimal reward function as one
that—if used to guide agent behavior—ends up maximizing
the utility as evaluated by the agent designer’s objective re-
ward function. By solving the ORP for classes of agents and
environments, Sorg et al. [2] developed a key insight: good
reward functions mitigate agent boundedness, i.e., choos-
ing a reward function to guide the agent different from the
evaluatory objective reward function can improve agent per-
formance by mitigating inevitable agent limitations (e.g.,
bounds on architecture or on computational resources).

In this paper we draw a distinction between two ways in
which solving the optimal reward problem might be bene-
ficial to the agent designer. Weak mitigation is about the
existence of good reward functions — ones that improve
agent performance compared to using objective reward—
however they are found. Past work on solving the ORP has
largely focused on demonstrating and understanding weak
mitigation. Strong mitigation takes into account the cost of
finding good reward functions. Intuitively, strong mitigation
is demonstrated when it benefits the agent designer to spend
a portion of limited computational resources on a search for
good reward functions, rather than spending all on a search
for policies that optimize objective reward. Achieving strong
mitigation is much more practically consequential than weak
mitigation1 and is the focus of this paper.

The contributions of this paper are threefold. 1) We for-
malize a new distinction between weak mitigation and strong
mitigation of agent limitations. 2) We define a family of ab-
stract architectures we call Nested Optimal Reward and
Control or NORC that follows transparently from our def-

1Achieving weak mitigation may also have practical benefits
if the cost of the reward function search is amortized through
extended use of the discovered reward function

407

inition of strong mitigation. 3) We provide concrete ex-
amples of NORC architectures and demonstrate empirically
that they achieve strong mitigation in some simple domains
crafted to illustrate the connection between forms of good re-
ward and the types of agent limitations, as well as on Othello
to show scaling and applicability of the NORC architecture.

Other Approaches to Designing Reward Functions.
Inverse-RL [3] and preference elicitation [4] consider the
problem of determining a reward function, in the former
by observing behavior of a human and in the latter from
answers to queries asked of a human. Both are different
from ORP which assumes that the human’s objective re-
ward function is known to begin with. Reward shaping [5],
the idea of designing reward functions that accelerate learn-
ing, was shown to be a special case of ORP [6] (they also
showed the generality of ORP helps). In summary, while
these and other approaches to designing rewards exist, prior
work focuses on designing rewards from an understanding
of the environment and designer’s goals without taking into
account limitations of the agent (see Definition 1 below).

A key distinctive feature of the ORP is that the agent’s
limitations are integral to defining rewards. This is a poten-
tial strength because it can lead to greater benefit from a
good choice of rewards, but it is also a potential weakness be-
cause it makes the problem of finding good rewards harder.
Previous work on ORP has demonstrated the strength by
showing weak mitigation. In this paper we demonstrate that
the weakness can be overcome by showing strong mitigation.

2. FROM WEAK TO STRONG MITIGATION

ORP and weak mitigation. The following notation al-
lows us to define the ORP and weak mitigation. At time
step t, the agent (A) gets an observation ot from the envi-
ronment (M) and takes an action ut which causes a stochas-
tic transition in the state of the environment. The agent’s
history at time k is hk = o1u1 . . . ok−1uk−1ok. Reward func-
tions are mappings from agent histories to scalar rewards,
and are used both to evaluate and guide behavior. Given a
history h (of length |h|), the designer’s or objective utility

is UO(h)
def
= 1
|h|
∑|h|
t=1 R

O(ht) while the agent’s or guidance

utility is UA(h)
def
= 1
|h|
∑|h|
t=1 R(ht), where RO is the objec-

tive reward function and R is the agent’s reward function.
The designer’s objective is to build an agent whose behavior
maximizes expected objective utility. The agent’s objective
is to behave so as to maximize expected guidance utility.
Agent A, when guided by reward function R is denoted AR,
and when interacting with the environment produces his-
tory h ∼ 〈AR,M〉, where 〈AR,M〉 is the distribution over
histories. The expected objective utility obtained by the de-

signer from the agent is UO(A,M)(R)
def
= Eh∼〈AR,M〉[UO(h)].

The conventional RL agent is ARO and achieves expected
objective utility UO(A,M)(R

O). Separating the agent’s reward
function from the designer’s objective reward function leads
to the following definition.

Definition 1. (ORP [1])
Given environment M, agent A, and a set of reward func-
tions R, choose an optimal reward function

R∗
def
= arg max

R∈R
UO(A,M)(R)

def
= arg max

R∈R
Eh∼〈AR,M〉[UO(h)].

Note that the set of optimal reward functions is a function
of the tripletA,M, RO. In other words the limitations of the
agent with respect to its environment play a role in defining
the optimal reward; this is the formal departure from other
(non-ORP) work on designing reward functions.

A number of results are available on ORP including: 1) If
RO ∈ R, then ∀(A,M), UO(A,M)(R

∗) ≥ UO(A,M)(R
O), i.e., us-

ing the optimal reward function to guide agent behavior can-
not be detrimental to the designer’s goals [1], 2) If RO ∈ R
and agent A is unlimited in capability with respect to en-
vironment M, then UO(A,M)(R

∗) = UO(A,M)(R
O), i.e., solving

the ORP only helps limited agents [2], 3) a number of empir-
ical and theoretical investigations that match agent limita-
tions (e.g., depth-limits on planning) with classes of mitigat-
ing reward functions (e.g., exploration based rewards) point
to possible prescriptions for good reward function choice [2],
and 4) a gradient based algorithm PGRD for learning re-
ward functions online for some planning agents [6]. These
results demonstrate what we define as weak mitigation.

Definition 2. (Weak Mitigation)
If UO(A,M)(R

∗) > UO(A,M)(R
O), then we say R∗ weakly miti-

gates A’s limitations in environment M for objective reward
function RO.

Crucially, weak mitigation demands only the existence of
a good reward function for the A,M, RO of interest. It
demands nothing of how easy or hard it is to find good
reward functions for it ignores that cost completely. We
consider this cost next.

NORC and Strong Mitigation. Solving the ORP in-
volves computation that may be better spent in the agent
elsewhere (e.g., in doing deeper planning). Accounting for
this cost of finding good rewards is this paper’s main contri-
bution, and is effectively a commitment to a new RL agent
architecture in which there is both a conventional search for
good value-functions/control-policies as well as a search for
good reward functions. Because the goodness of a policy is
only defined with respect to a reward function the search
for good policies has to be nested inside the search for good
reward functions. This leads to a two-level nested optimal
reward and control (NORC) architecture that is depicted in
the right panel of Figure 1. It splits the computational re-
sources available to the designer between a critic-agent (de-
noted C) that learns/plans good reward-function-policies to
guide the actor-agent A, and the conventional actor-agent
that learns/plans good control-policies in the actor environ-
ment to achieve high reward from the critic-agent.

The departure in NORC is best understood by comparing
it to the other two architectures in Figure 1. The conven-
tional RL architecture (left panel) is an artificial agent that
simply receives the objective reward from the environment
and engages in a search for the best policy with respect to
it. For the weak mitigation architecture (middle panel), the
designer precomputes a good reward function outside the
architecture and builds it into a critic inside the actor-agent
(in effect“misleading”the artificial agent concerning the true
nature of the objective reward in order to help overcome its
limitations). Finally the new NORC agent (right panel),
like the conventional agent, simply receives the objective re-
ward from the environment, and then internally partitions
the computation between search for a better reward function
(the responsibility of the critic-agent) and the search for a
good policy (the responsibility of the actor-agent).

408

Figure 1: (Left) The conventional RL architecture’s agent environment diagram. (Middle) The weak mitiga-
tion architecture (from Singh et al. [1]). (Right) The new strong mitigation NORC architecture introduced
in this paper. See Section 2 for details.

Intuitively stated, strong mitigation holds when it is bet-
ter for the resource-bound designer to use a NORC agent
rather than a conventional agent, i.e., when learning rewards
in addition to learning behavior is a good decomposition of
limited resources within an agent. In other words, strong
mitigation suggests that reward functions are another im-
portant locus of learning or adaptivity within a bounded
agent. To formalize this consider a parameterized family
of conventional agents, A(Θ), where Θ is some set of pa-
rameters that impact resource consumption (e.g., one fam-
ily of agents used in the experiments reported here are fi-
nite depth planning agents with depth as resource parame-
ter; larger depth requires more CPU resource per decision).
Given a critic-agent C (we present concrete instances in the
next Section), we get a family of NORC agents {CA(Θ)}.
Let Res(A(θ ∈ Θ)) be the resource consumption of con-
ventional agent A(θ), and Res(CA(θ ∈ Θ)) be the resource
consumption of NORC agent CA(θ). The expected objec-
tive utility obtained by the designer with resource bound τ
via the NORC architecture is

UOM(CA(Θ); τ) = arg max
θ∈Θ s.t. Res(CA(θ))≤τ

Eh∼〈CA(θ),M〉[UO(h)],

(1)
and similarly, the expected objective utility obtained via the
conventional architecture is

UOM(A(Θ); τ) = arg max
θ∈Θ s.t. Res(A(θ))≤τ

Eh∼〈A(θ),M〉[UO(h)].

(2)

Definition 3. (Strong Mitigation)
If UOM(CA(Θ); τ) > UOM(A(Θ); τ), then we say that the critic-
agent C strongly mitigates the limitations of the family of
agents A(Θ) in environment M with objective reward func-
tion RO for a resource bound τ .

We emphasize that weak mitigation (cf. Definition 2) has
expected objective utility as a function of reward functions,
because that is what the designer chooses in the weak mit-
igation setting, while strong mitigation (cf. Definition 3)
has expected utility as a function of agent architectures (via
Equations 1 and 2) because that is what the designer chooses
in the strong mitigation setting.

3. CRITIC-AGENTS FOR NORC
Here we turn to providing concrete NORC agents by de-

veloping critic-agents; for actor-agents we simply use exist-
ing families of popular resource parameterized learning and
planning algorithms. The critic-agent’s environment is com-
posed of the actor’s environment and the actor-agent and

Algorithm 1 General NORC Psuedocode

for (t = 1 ,2 , . . .)
Observe ot from the environment

C observes ut−1 , Rt−1 , sat−1 , ot , RO(·t)
C chooses reward−funct ion−ac t i on Rt ∈ R

Set A ’ s reward func t i on to Rt
A observes ut−1 , ot
A chooses ac t i on ut

Take ac t i on ut in the environment

thus the state of the critic’s environment is (s, sa) where s
is the environment’s state and sa is the actor-agent’s state
(this is the state of the actor-agent program). The critic-
agent’s observation consists of both the environment obser-
vation o, and the actor-agent’s state sa. The critic-agent’s
action-space is the set of reward functions R. Recall that
the critic-agent is guided by RO in the NORC architecture
while the actor-agent is guided by whatever reward function
is provided to it by the critic-agent’s action choice

The NORC architecture involves two interacting explo-
ration/exploitation problems. The first (and inner) is the
conventional one faced by the RL actor-agent. The sec-
ond (and outer) is the new one faced by the critic-agent
of whether to stay with the policy for selecting reward func-
tions for the actor-agent that is best based on current knowl-
edge (exploit), or whether to choose reward functions for the
actor-agent to improve current knowledge to allow greater
objective reward in the future (explore). Unsurprisingly
then, the critic-agent is also usefully thought of as an RL
agent, only with reward functions (∈ R) as actions and the
joint actor-agent and actor environment as critic environ-
ment. This makes it possible to leverage the considerable
existing body of algorithms and analysis available for design-
ing RL agents. We consider two different classes of explo-
ration/exploitation problem formulations, the simpler ban-
dits and the more complex MDPs/POMDPs, as the basis
for critic-agent algorithms.

3.1 Bandit-based Critic-Agents
First we consider critic-agents that treat their exploration-

exploitation problem as a multi-arm bandit problem, i.e.,
they ignore critic-observations and treat each reward-function-
action (R ∈ R) as an arm and the objective reward as the
reward function. Pulling an arm, i.e., selecting a reward-
function-action, yields an objective reward through the re-
sulting action choice made by the actor-agent in the envi-
ronment. In a standard bandit formulation, when an arm

409

is pulled the reward obtained is an unbiased estimate of the
expected utility of that arm, and the choice of arm has no im-
pact on the rewards sampled from other arms in the future.
The critic-agent’s bandit problem violates these assump-
tions and thus faces the following challenges: (1) choices
of reward-function-action can affect the achievable objective
utility for other reward-function-actions by transitioning the
critic environment’s state (2) samples of immediate objec-
tive reward obtained on selecting a reward-function-action
are biased estimators for objective-utility for that reward-
function-action, and (3) the bias in the objective reward
samples can change over time due to dynamics of the actor-
agent. We consider two broad classes of bandit critic-agents,
corresponding to finite and infinite sets of reward functions.

Finite set of reward functions. When the set of re-
ward functions |R| is finite (and for practical purposes small)
there exist bandit (or experts) algorithms capable of deal-
ing with the exploration-exploitation challenges of the critic-
agent via one essential trick, namely that of holding the
arm (reward-function-action) fixed for a period of time to
alleviate bias and non-stationarity. Of course, how long to
hold a reward-function-action fixed is unknown for it de-
pends on the details of the actor-agent and the actor en-
vironment. There are several algorithms in the literature
that adopt different schemes for incrementally searching for
the right length while exploring and exploiting. The algo-
rithm AtEase (alternating trusted exploration and suspi-
cious exploration)[7] assumes finite but unknown ε-mixing-
times, i.e, assumes that if any reward-function-action were
held fixed for some unknown, but finite, amount of time the
actual average objective reward obtained will be ε-close to
the expected objective-utility of that reward-function-action
choice. A second algorithm, EEE [8], makes no such mixing-
time assumptions, and as a result offers weaker guarantees.
We focus only on AtEase here.

We do not present the AtEase algorithm in detail here
(see [7])), but we sketch a result for an AtEase-critic-based
NORC architecture (denoted AtEase-CA(θ)) that follows
directly from Theorem 1 in Talvitie & Singh [7].

Theorem 1. For environment M and critic-agent reward-
function-actions R, let A(θ) be such that NORC architecture
AtEase-CA(θ) satisfies any applicable resource-bounds and
for which the finite ε-mixing-time assumption holds for every
AR∈R(θ). Then, with high probability (1 − δ) for a number

of actions t polynomial in: ε-mixing-time of AR∗(θ) acting
in M, 1/ε, 1/δ and other parameters related to the size of
M, a history h ∼ 〈AtEase-CA(θ),M〉 of length t, will have
objective-utility UO(h) that is ε-close to UO〈A(θ),M〉(R

∗).

In words, if the finite-mixing-time assumption holds, the
NORC architecture with an AtEase-critic-agent will, with
high probability, and after a number of steps polynomial
in the parameters defined above, achieve nearly the same
objective-utility as agentAR∗(θ) (the weak-mitigation result
with apriori-provided optimal reward function R∗). This
also means, of course, that the NORC agent will compare

favorably with the conventional architecture’s agent ARO (θ)

(since the conventional agent performs no better thanAR∗(θ)).
Infinite set of reward functions. When the space of

reward-function-actions is infinite, the above bandits algo-
rithms do not apply. However, it turns out that PGRD [6]
(policy gradient for reward design), a recently introduced

algorithm for finding good rewards by approximately solv-
ing the ORP in differentiably parameterized infinite reward
spaces, can be interpreted as a critic-agent algorithm in the
NORC architecture. It requires computing the gradient of
the objective utility with respect to the reward-function-
action parameters. This is only feasible if the actor-agent’s
procedural mapping from actor-histories to behavior poli-
cies (which in turn determine the objective utility) is differ-
entiable. When this condition is satisfied PGRD can treat
the actor-agent as a policy parameterized by the reward-
function-action parameters and ascend the objective-utility
gradient using a policy gradient algorithm. Sorg et al. devel-
oped approximate gradient computations for depth-limited
planning and UCT[6]; we will use resulting PGRD-critic-
agent algorithms for these two families of actor-agents in
our experiments.

3.2 MDP-based Critic-Agents
The more general case concerns a critic-agent that learns

a policy mapping critic-histories to reward-function-actions
(∈ R). The strongest results in the RL literature for learn-
ing policies are in the context of MDPs. When is the critic-
agent’s exploration-exploitation problem an MDP? The state
of the critic environment is given by (s, sa), and since the
state of the actor-agent is always observable, when the ac-
tor environment is fully observable, that is ot = st, the
critic environment is also fully observable (and therefore
the critic-agent’s problem is an MDP with reward func-
tion RO). However, if the actor-agent’s dynamics are non-
stationary, then the critic’s problem will be a non-stationary
MDP. For depth-limited planning and UCT with fixed and
given models, the actor-agent’s dynamics are stationary. In
such settings, any algorithm for solving MDPs can be used
as a critic-agent algorithm. In particular, simple RL algo-
rithms such as ε-greedy Q-learning become applicable (and
for finite-state critic environment and a finite set of reward-
function-actions, are guaranteed to converge to the optimal
reward-function-action policy). In cases where either the ac-
tor environment is not fully observable or the actor-agent’s
dynamics are non-stationary, more sophisticated RL algo-
rithms can be used, but we do not explore those here.

4. EXPERIMENTS
The following set of experiments together are intended to

show the robustness of the strong mitigation phenomenon
across different families of actor-agents (depth-limited plan-
ning, the recent TDPlanning algorithm [9], and state-of-
the-art UCT), across different kinds of actor-agent limita-
tions (limited-depth, incorrect modeling assumptions, lim-
ited sampling and search control) as well as across different
spaces of reward functions (those based on domain indepen-
dent features such as inverse-recency and inverse-frequency,
as well as those based on domain-dependent sub-goal fea-
tures).

Common Structure in Experiments. For each ex-
periment we will describe 1) the environment and objec-
tive reward function, 2) the family of resource-parameterized
planning algorithms used both as conventional agents and as
actor-agents for NORC, 3) the critic-agent algorithms used,
and 4) the space of reward functions that determine the ac-
tions available to the critic-agents. In all experiments, the
resource bounds we consider are limits on the CPU-time per
decision and we compare the conventional agent with mul-

410

(a) Small
Foraging

Y

R G

B

(d) Taxi (b) Foraging (c) Darkroom Foraging

Figure 2: Illustration of environments. Thick black
lines are impassable walls. In the foraging domains
(a,b,d), small circles represent inexhaustible food,
the large circle is one possible location for the con-
sumable food, ‘P’ are pits, and ‘D’ are dark rooms.

tiple NORC agents for various limits on time per decision.
Intuitively, in each experiment we expect a threshold on time
per decision below which the NORC agent will outperform
the conventional agent, demonstrating strong mitigation.

4.1 Learning in Bandit-Based Critic-Agents
Our first set of results are for critic-agents using the bandit

algorithms described above (for finite sets of reward func-
tions) and PGRD (for continuous reward functions).

4.1.1 Bounded planning depth
Here we contrast weak and strong mitigation for a fam-

ily of actor-agents directly parameterized by planning depth
(which indirectly parameterizes time per decision).

Environment and objective reward: An agent nav-
igates a 5 × 3 grid (shown in figure 2a) choosing among
actions: North, South, East, West, and Eat. Movements
fail with probability 0.1 resulting in a random movement
in any other direction. At the end of each corridor is an
inexhaustible food source which when eaten gives objective
reward +0.01. A second, consumable, food is at the end of
one of the three corridors which when eaten provides +1 and
is then replaced by another at the end of a different corridor.
Family of actor-agents: Agents employing full width, lim-
ited depth planning, with parameters Θ = {d} for planning
depths d ∈ {3, . . . , 11} (which determine CPU-time per de-
cision).
Critic-agents: Algorithms described in section 3: AtEase,
and PGRD2. We also included other bandit algorithms for
comparison: EEE [8], Exp3 [10], and ε-greedy.
Reward functions: The reward functions were linear com-
binations of three domain-independent features: (1) inverse-
recency (used e.g., by [2]) given by φinv-rec(h) = 1−1/c(o|h|)
where c(o|h|) is the number of steps since observing the cur-
rent observation o|h| (recall this domain is fully observable
so this is the same as the number of steps since visiting
the current state s|h|). A reward function with a posi-
tive coefficient on this feature encourages the actor-agent
to visit less-recently-visited states, resulting in persistent
exploration. (2) inverse-frequency given by φinv-freq(h) =
1/n(o|h|−1, u|h|−1) where n(o|h|, u|h|) is the total number
of times the agent has taken action u|h| after observing
o|h|. A positive coefficient on this feature encourages the

2AtEase used ε = ∞ (so it is not suspicious when exploit-
ing) and l = 90, PGRD used discount γ = 0.99, temperature
100, and learning rate α = 5−5 (see references for details).

0.5 1.0 1.5 2.0
Number of Steps ×104

0

100

200

300

400

500

C
um

ul
at

iv
e

O
bj

-R
ew

ar
d

NORC-AtEase

NORC-EEE

NORC-EpsilonGreedy

NORC-Exp3

Conventional

OptimalReward

NORC-PGRD

Weak Mitigation

0.15 0.20 0.25 0.30
milliseconds per decision

0.00

0.02

0.04

0.06

0.08

O
bj

ec
tiv

e
U

til
ity

d3 d4 d5

d6
d7

d8

d9 d10 d11

d3 d4 d5 d6 d7 d8 d9

d10

d11Strong Mitigation

NORC-PGRD
NORC-AtEase
Conventional

Unbounded

NORC Dominates Conventional Dominates

Figure 3: Experiments on small foraging domain;
(top) compares single conventional agent — a depth
5 planner — with corresponding NORC agents. All
NORC agents outperform the conventional agent
showing weak mitigation, but not strong mitigation.
(bottom) shows both objective utility and computa-
tional resources required for a family of actor-agents
and corresponding NORC agents. For a resource
bound less than that indicated by the vertical line,
NORC agents outperform conventional agents, thus
showing strong mitigation.

actor-agent to visit less-frequently-visited transitions. (3)
distance-to-goal heuristics, specifically we used Manhattan
distance to the consumable food (φdist(h)). The reward
function space is composed of linear functions:

R(h) =RO(h) + θ1φinv-rec(h) + θ2φinv-freq(h) + θ3φdist(h)

The bandit algorithms used a coarse discretization of the pa-
rameter space with (θ1, θ2, θ3) ∈ {−1,−0.1, 0, 0.1, 1}3 yield-
ing a total of |R| = 53 reward functions, while PGRD opti-
mized over the continuous space (θ1, θ2, θ3) ∈ R3.
Results Figure 3 (top) shows performance as a function
of number of steps for an actor-agent with planning depth
5. Unsurprisingly Agent AR∗ (denoted OptimalReward) did
the best since it was given the optimal reward function for
guidance from the start. In particular it did far better than
the conventional agent that used the objective reward; this
is a weak mitigation result because it ignores bounds on
CPU-time. Interestingly, all NORC agents obtained greater
cumulative objective reward than the conventional agent.
This sets up the possibility of strong mitigation which we
explore in Figure 3 (bottom) that shows objective-utility
(over 20,000 steps) plotted against CPU-time per decision
(τ) for three agents. For τ less than about 0.22ms the agent
designer is better off choosing an agent with smaller plan-

411

ning depth using the NORC architecture than choosing a
conventional agent with larger planning depth. This is the
key strong mitigation result. As the resource bound gets
looser (τ > 0.22ms), choosing the conventional agent be-
comes better (in fact, at depth 11, the conventional agent
acts optimally).

4.1.2 Bounded sample-based planning
This experiment shows strong mitigation for a second fam-

ily of actor-agents using the popular and efficient Monte
Carlo tree-search algorithm UCT [11].
Environment and objective reward Similar to Experi-
ment 1, but larger, and with the addition of pits that trans-
port the agent to a random location in the top row (see
Figure 2b), eating the inexhaustible food yields objective
reward +0.001.
Family of actor-agents: UCT with parameters Θ = {(d, t)}
for planning depths d ∈ {5, 15, 35} and trajectory counts
t ∈ {50, 100, 500, 1000}; together these parameters deter-
mine CPU time per decision over 20,000 steps. UCT builds
a search tree by simulating (from the current state) t trajec-
tories of depth d where decisions in the trajectory generation
are treated as a bandit problem solved with the UCB1 al-
gorithm. We performed two experiments, one in which the
actor-agent was given a perfect environment model and a
second in which the actor-agent learned a model using the
empirical probabilities observed in the data. To provide ex-
ploration, the model-learning actor-agents had a 0.1 proba-
bility of taking a random action.
Critic-agents: AtEase, and PGRD with the same param-
eters as in the previous experiment.
Reward functions: The form of the reward function was
similar to the previous experiment, but the Manhattan dis-
tance heuristic feature was replaced by a model error fea-
ture φmodel-error measuring inaccuracy of the agent’s model
for each transition (as described by Sorg et al. [2]). Reward
functions with positive coefficients on the model-error fea-
ture encourage an agent to explore less-well-modeled transi-
tions. AtEase used the same discretization of the parameter
space as before.
Results: Results are in Figure 4a and 4d. When the model
was given, for CPU-time per decision τ less than about 8ms,
choosing a NORC agent is better than a conventional agent.
Again, showing strong mitigation, in this case for UCT-
based actor-agents. When the model was learned, for the
range of t, d parameters explored, the NORC agents domi-
nate conventional agents in part because the reward func-
tions provided by the critic-agent improved model-learning
speed through rewarding persistent exploration (this is ev-
ident in that for the largest CPU-time per decision, the
NORC agents achieved objective-utility much closer to their
given-model counterparts than did the conventional-agent).

4.1.3 Incorrect model representation
In this experiment we show strong mitigation for UCT-

based actor-agents with an incorrect modeling assumption
in the model (both learned and given).
Environment and objective reward Like previous ex-
periment except the environment is partially observable: be-
tween each corridor is a 2-square dark room through which
the agent can move as normal, but cannot distinguish its
location. See Figure 2c.
Actor-agents, critic-agents, rewards Like previous ex-

periment; both the given and learned models made the first-
order Markov assumption which is incorrect due to the dark-
room. Also, notice negative coefficients on the model error
feature encourage agent to avoid the dark room transitions.
Results: Results are in Figure 4b and 4e. When the model
was given, the PGRD-NORC agents performed significantly
better than the conventional agent for τ < 2ms CPU-time
per decision. Evidence of strong mitigation again, in this
case with the additional limitation of incorrect modeling as-
sumptions in the face of partial-observability. For the sec-
ond experiment when the actor-agent learned a first-order
Markov model, the NORC agents dominated conventional
agents for all parameters tested (as in the learned model
instance of the previous Experiment for similar reasons).

4.2 Learning in MDP-based Critic-Agents
Here we depart from previous experiments with bandit-

based critic-agents to explore MDP-based critic-agents that
learn reward-function-action policies conditioned on abstrac-
tions of critic-histories.
Environment and objective reward: The taxi domain
(seen in Figure 2d) was introduced by Dietterich [12]. The
agent controls a taxi tasked with delivering a passenger from
one of four pickup locations (labeled R,Y,G,B; random on
each episode) to one of four (also random) destinations.
There are six actions: North, South, East, West, Pick Up
Passenger, and Drop Off Passenger. Objective reward gives
+1 if passenger is dropped off at the correct destination (in
which case the episode ends), -0.5 if dropped off incorrectly,
and -0.05 on other transitions. State is fully observable and
factored into three features s = (φtaxi, φpssngr, φdest).
Family of actor-agents: Planning agents using TDPlan-
ning [9] which is similar to UCT, but rather than building
a search tree, it learns a value function3 through t simulated
trajectories of maximum length d. Depths and transition
count parameters Θ were identical to the UCT experiments
above. We also performed the same experiment using UCT
actor-agents with similar results (not shown).
Critic-agents: ε-greedy Q-Learning4 (actor-agent had no
persistent state so critic environment state was actor envi-
ronment state), and AtEase with parameters before.
Reward functions: Each was a single reward feature mul-
tiplied by a scalar for the inverse-recency feature φinv-rec

and state features φtaxi and φpssngr. Let δ be the Kro-
necker delta function, then we have one reward functions
for each taxi location: δ(φtaxi, l)∀l ∈ {1, · · · , 25}, each pas-
senger location δ(φpssngr, p)∀p ∈ {1, 2, 3, 4, 5}, for a dis-
crete set of weights on the inverse-recency θφinv-rec∀θ ∈
{−1,−.1, 0, .1, 1}, and the objective reward function RO to-
taling 36 reward functions (actions for the critic-agent).
Results: Results are in Figure 4c and 4f. The critic-agent
using Q-Learning successfully learned a policy over reward
functions allowing the NORC-QL agent to perform much
better than the conventional agents for CPU-time limita-
tions τ less than about 4ms. However, NORC-AtEase
where the critic-agent learned an unconditional reward pol-
icy, did not perform well because no single reward function
in the set is particularly useful unless chosen as a function of
state. When the actor-agent learns a model, the NORC-QL

3In our TDPlanning algorithm, the value function was
learned with ε-greedy Q-Learning, ε = 0.1, learning rate
α = 0.4
4ε = 0.1 and learning rate of α = 0.9

412

10−1 100 101

milliseconds per decision (log scale)

0.0

0.5

1.0

1.5
O

bj
ec

tiv
e

U
til

ity
×10−2

NORC-PGRD
NORC-AtEase
Conventional

NORC Dominates

(a) Foraging, Given Model

10−1 100 101

milliseconds per decision (log scale)

0.0

0.5

1.0

1.5
×10−2

NORC-PGRD
NORC-AtEase
Conventional

NORC Dominates

(b) Darkroom, Incorrect Given Model

100 101

milliseconds per decision (log scale)

0.0

0.6

1.2
×10−1

NORC-AtEase
NORC-QL
Conventional

NORC Dominates

(c) Taxi, Given Model

10−1 100 101

milliseconds per decision (log scale)

0.0

1.5

3.0

4.5

6.0

O
bj

ec
tiv

e
U

til
ity

×10−3

NORC-PGRD
NORC-AtEase
Conventional

NORC Dominates

(d) Foraging, Learned Model

10−1 100 101

milliseconds per decision (log scale)

0.0

1.5

3.0

4.5

6.0×10−3

NORC-PGRD
NORC-AtEase
Conventional

NORC Dominates

(e) Darkroom, Incorrect Learned Model

100 101

milliseconds per decision (log scale)

−4

0

4

×10−2

NORC-AtEase
NORC-QL
Conventional

NORC Dominates

(f) Taxi, Learned Model

In the graphs above, the points for each agent read from left to right correspond to actor-agent parameters:
(depth, trajectories): (5,50),(5,100),(15,50),(15,100), (35,50),(5,500),(35,100),(5,1000),(15,500),(15,1000),(35,500),(35,1000)

Figure 4: (left column) strong mitigation with bounded sample-based planning actor-agents (UCT) and
critic-agents learned unconditional selection of reward functions; (center column) same as experiment in left
column, but actor-agents had incorrect modeling assumption; (rightmost) strong mitigation in Taxi where the
NORC-QL critic learned a policy over reward functions (NORC-AtEase did not, and as a result performed
poorly in this experiment). The line drawn for each agent shows the highest score achieved up to a given
resource level (this is a visual aid approximating the best performance per cpu time across parameters).

agent does not perform well, this may be because the non-
stationarity of the actor-agent misleads the QL critic-agent.

These results show strong mitigation when the critic-agent
learns a policy over reward-function-actions. In this exper-
iment, the critic-agent essentially chose subgoals that could
be achieved by an actor-agent using far less computational
resources than necessary to act well given only the objective
reward.

5. STRONG MITIGATION IN OTHELLO
Our final results show the practical import of NORC and

strong mitigation on the board game of Othello, a large do-
main with a long history in AI.
Environment and objective reward: We experiment us-
ing both a 6 × 6 board and the standard 8 × 8 board. The
8 × 8 game has roughly 1028 states and a large branching
factor determined by the number of legal moves at each step.
For our experiments, the agent played against a fixed oppo-
nent agent planning with conventional UCT (depth 20 and
trajectory count 100). The objective reward was +1 for a
win, 0.5 for a draw, and 0 for a loss. The agents were eval-
uated and learned while playing against an opponent rather
than learning with self play (a common paradigm in com-
puter game playing).
Family of actor-agents: UCT with parameters given by

5For each agent, reading points from left to right on the graph, the
parameter pairs are (depth, trajectories):(5,50), (10,50), (5,100),
(15,50), (20,50), (25,50), (10,100), (15,100), (20,100), (5,250),
(25,100), (10,250), (15,250), (5,500),(20,250), (25,250), (10,500),
(15,500), (20,500), (25,500)

the 20 combinations of depths {5, 10, 15, 20, 25} and trajec-
tory limits {50, 100, 250, 500}. We did not provide the agent
with an opponent model, instead UCT generated a mini-
max planning tree by choosing actions for both black and
white players as described by Gelly and Silver [13] for their
master level computer GO player.
Critic-agent: PGRD-UCT with learning rate 10−7 and
temperature parameter 100.
Reward functions: We used the weighted piece counter
(wpc) [14] feature representation where φwpc(o) consists of
64 features, one for each location on the board, with value
+1 if that location contains a black piece 0 if empty and
−1 if white. Reward functions were linear combinations of
these features evaluated on the state reached after taking an
action: R(h) = R(o, a, o′) = θTφwpc(o

′).
Results: Each NORC and conventional agent was evalu-
ated over 12 trials of 30, 000 games; for half of these trials
our agent plays white and for the other half black. Re-
sults are shown in Figure 5. It is immediately clear that
the NORC agents required much more computation than
the corresponding conventional agents (with same (d, t) pa-
rameters). For example, with depth 25 and trajectory count
500 the NORC agent required nearly twice the time per deci-
sion as the corresponding conventional agent. Nevertheless,
we see strong mitigation: the reward functions learned by
the critic-agent allow the UCT actor-agent to achieve higher
quality planning with less computation, so given equivalent
CPU time, a designer is better off choosing a NORC agent.
Learned reward functions can improve UCT in a variety of
ways such as providing better terminal evaluation and by im-
proving search control via encouraging exploration of more

413

6×6 Othello:

0.01 0.02 0.03 0.06
seconds per decision (log scale)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
O

bj
ec

tiv
e

U
til

ity (25, 500)

(10, 500)

(20, 100)

(5, 500)

(5, 500)

(20, 100)

(25, 500)

(10, 500)

Tie Game

Conventional
NORC-PGRD

8×8 Othello:

0.02 0.05 0.1 0.15
seconds per decision (log scale)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
bj

ec
tiv

e
U

til
ity

(25, 500)

(10, 500)

(20, 100)

(5, 500)

(5, 500)

(20, 100)

(25, 500)

(10, 500)

Tie Game

Conventional
NORC-PGRD

Figure 5: Othello results. NORC agents re-
quired significantly more computation than the cor-
responding conventional agents, but allowed the
bounded UCT planning actor-agents to choose bet-
ter actions even with less computational time (fewer
and shallower sample trajectories). Several param-
eter pairs (depth, trajectories) are labeled5.

fruitful trajectories in planning (as discussed by Sorg et. al.
[6]). Furthermore, in these experiments the NORC agents
are more robust across the space of parameters.

6. CONCLUSION
The previously defined optimal reward problem (ORP)

takes the agent’s limitations expressed in its environment
into account when designing rewards; this was in contrast
to other approaches for designing rewards. Building on ORP
this paper distinguishes between weak mitigation, the sub-
ject of previous ORP work, and the more practical strong
mitigation developed here. We showed how strong mitiga-
tion implies a nested optimal reward and control (NORC)
architecture and developed concrete NORC instantiations
that allowed us to demonstrate over a variety of actor-agent
planning algorithms that it can be better to nest the search
for good policies inside a search for good reward functions.
Our strong mitigation results on Othello demonstrate the
scalability of the NORC architecture. Finally, our results
with NORC suggest it might be beneficial to treat reward
functions as a locus of learning and adaptivity within an
autonomous agent – just as it might be beneficial to learn
value functions or policy functions.

Acknowledgments.
This work was supported by NSF grants IIS-0905146 and

IIS-1148668. Any opinions, findings, conclusions, or recom-
mendations expressed here are those of the authors and do
not necessarily reflect the views of the sponsors.

7. REFERENCES
[1] Satinder Singh, Richard L. Lewis, Andrew G. Barto,

and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective.
IEEE Transactions on Autonomous Mental
Development, 2010.

[2] Jonathan Sorg, Satinder Singh, and Richard Lewis.
Internal rewards mitigate agent boundedness. In
Proceedings of the International Conference on
Machine Learning, 2010.

[3] Andrew Y. Ng and Stuart J. Russell. Algorithms for
inverse reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 2000.

[4] Urszula Chajewska, Daphne Koller, and Ronald Parr.
Making rational decisions using adaptive utility
elicitation. In In Proceedings of the National
Conference on Artificial Intelligence, 2000.

[5] Andrew Y. Ng, Daishi Harada, and Stuart Russell.
Policy invariance under reward transformations:
Theory and application to reward shaping. In
Proceedings of the International Conference on
Machine Learning, 1999.

[6] Jonathan Sorg, Satinder Singh, and Richard Lewis.
Optimal rewards versus leaf-evaluation heuristics in
planning agents. In Proceedings of the Twenty-Fifth
Conference on Artificial Intelligence. 2011.

[7] Erik Talvitie and Satinder Singh. An experts
algorithm for transfer learning. In Proceeding of the
International Joint Conference on Artificial
Intelligence, 2007.

[8] Daniela Pucci De Farias and Nimrod Megiddo.
Combining expert advice in reactive environments.
Journal of the ACM, 2006.

[9] David Silver, Richard S. Sutton, and Martin Müller.
Sample-based learning and search with permanent and
transient memories. In Proceedings of the 25th
International Conference on Machine Learning, 2008.

[10] Peter Auer, Yoav Freund, and Robert E. Schapire.
Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Proceedings of the
Symposium on Foundations of Computer Science,
1995.

[11] Levente Kocsis and Csaba Szepesvári. Bandit based
monte-carlo planning. In Proceedings of the European
Conference on Machine Learning, 2006.

[12] Thomas G. Dietterich. Hierarchical reinforcement
learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence
Research, 2000.

[13] Sylvain Gelly and David Silver. Achieving master level
play in 9 x 9 computer go. In Proceedings of the
Conference on Artificial Intelligence, 2008.

[14] P. Hingston and M. Masek. Experiments with Monte
Carlo Othello. In Proceedings of the IEEE Congress on
Evolutionary Computation, 2007.

414

Session 2C
Learning II

Decentralized Bayesian Reinforcement Learning for Online
Agent Collaboration

W. T. L. Teacy1, G. Chalkiadakis2

A. Farinelli3
1University of Southampton, UK
{wtlt,acr,nrj}@ecs.soton.ac.uk

2Technical University of Crete, Greece
gehalk@intelligence.tuc.gr

A. Rogers1, N. R. Jennings1

S. McClean4, G. Parr4

3University of Verona, Italy
alessandro.farinelli@univr.it

4University of Ulster, UK
{si.mcclean,gp.parr}@ulster.ac.uk

ABSTRACT
Solving complex but structured problems in a decentralized manner
via multiagent collaboration has received much attention in recent
years. This is natural, as on one hand, multiagent systems usu-
ally possess a structure that determines the allowable interactions
among the agents; and on the other hand, the single most pressing
need in a cooperative multiagent system is to coordinate the local
policies of autonomous agents with restricted capabilities to serve
a system-wide goal. The presence of uncertainty makes this even
more challenging, as the agents face the additional need to learn
the unknown environment parameters while forming (and follow-
ing) local policies in an online fashion. In this paper, we provide
the first Bayesian reinforcement learning (BRL) approach for dis-
tributed coordination and learning in a cooperative multiagent sys-
tem by devising two solutions to this type of problem. More specif-
ically, we show how the Value of Perfect Information (VPI) can be
used to perform efficient decentralised exploration in both model-
based and model-free BRL, and in the latter case, provide a closed
form solution for VPI, correcting a decade old result by Dearden,
Friedman and Russell. To evaluate these solutions, we present ex-
perimental results comparing their relative merits, and demonstrate
empirically that both solutions outperform an existing multiagent
learning method, representative of the state-of-the-art.

Categories and Subject Descriptors
I.2.6 [Learning]; I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

General Terms
Algorithms

Keywords
multiagent learning, Bayesian techniques, uncertainty

1. INTRODUCTION
In cooperative multiagent systems, the grand challenge is to ensure
that a common, system-wide goal is achieved by coordinating the
actions of individual agents. Often, however, this is difficult be-
cause each agent (1) only has a limited world view, and (2) has no
direct control over the actions of its peers. Agents are therefore
restricted to forming local policies subject to local information. In

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

such cases, the goal is to coordinate the agents’ local polices to
form a joint optimal one—a problem that is, in general, computa-
tionally infeasible [2]. However, multiagent systems usually pos-
sess some form of structure, which can often be exploited to per-
form efficient coordination. For example, in Distributed Constraint
Optimisation Problems (DCOPs), an agent’s actions are only de-
pendent on a subset of its peers—a fact that can be used to construct
efficient coordination algorithms for the agents as a whole [9].

Indeed, solving such complex but structured problems is chal-
lenging, particularly in the context of reinforcement learning (RL)
[18], in which agents must explore their environment to learn how
best to act. However, existing collaborative reinforcement learn-
ing techniques [11, 13] are “point-based”, i.e. they do not optimize
decisions w.r.t. all possible world models. For this reason, they
provide a suboptimal solution to the exploration-exploitation prob-
lem [18], in which agents must decide when to explore actions of
uncertain value, which may yet prove to be optimal.

This is particularly important for problems involving real hard-
ware, e.g. Unmanned Aerial Vehicles (UAVs), for two reasons: (1)
repeated trials may be expensive and time consuming, and so con-
trol software must learn effectively from few interactions with the
environment; and (2) exploratory actions may result in damage or
injury, and so one must account for respective risks and value.

Here, we address this by making the following three key con-
tributions to the state-of-the-art: (1) in order to provide a near op-
timal solution to the exploration-exploitation trade-off, we present
the first model-free and model-based algorithms for decentralised
Bayesian Reinforcement Learning (BRL) in a cooperative multi-
agent system; (2) by empirical analysis, we show that both algo-
rithms outperform an existing state-of-the-art decentralised learn-
ing method, while at the same time provide different complemen-
tary trade-offs between computational complexity, and the amount
of exploration required to learn an effective coordination strategy;
(3) as part of our model-free method, we provide a closed-form so-
lution for the Value of Perfect Information (VPI), which we use to
perform efficient exploration. The latter corrects a key result by
Dearden, Friedman and Russell, central to their original contribu-
tion on Bayesian Q-learning [7].

In the rest of the paper, Sections 2 and 3 outline related work;
Section 4 presents our closed-form solution for VPI; Section 5 de-
scribes how this can be used for decentralised BRL; Section 6 eval-
uates these algorithms empirically; and Section 7 concludes.

2. DECENTRALIZED COORDINATION
A decentralized coordination problem is one in which a set of agents
must together choose how to act so that their joint utility is maxi-
mized. Here, we outline a solution to this class of problems, based
on the use of the max-sum algorithm. Specifically, given a factored
utility function F (a) =

P
i Fi(ai), the goal of decentralized co-

417

a1 a2 a3 a4 a5 a6

F1 F2 F3 F4 F5

(b)UAV Base
Station

Region of
Interest

UAV Possible
Direction

Target /
Vehicle

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5) (6)

(a)

Figure 1:

Fig. 1 (a) Six UAVs patrol a road for vehicles. Each has a base station where it can land during idle periods, and is responsible for patrolling its
adjacent regions, east and west along the road. When a vehicle is detected in a region (e.g. by ground based motion sensors), the pair of UAVs
bordering the region are alerted, and must both patrol the region simultaneously to observe the vehicle. (b) The corresponding factor graph with
factors represented by squares, and actions by circles.

ordination is to find the joint action vector, a, that maximizes the
global utility function:

arg max
a

X
i

Fi(ai) (1)

Here, each Fi(ai) represents a local utility function (a factor), and
ai ⊆ a are local action vectors.1 This is efficiently solved by
the max-sum algorithm; a technique of the Generalized Distribu-
tive Law (GDL) [1], widely used for computing factored functions
using local message passing [19].

In particular, the factored optimization problem described in Eq. 1
can be viewed as a DCOP and represented by a bipartite factor
graph [14]. For example, the scenario illustrated in Fig. 1(a) can be
represented by the bipartite factor graph in Fig. 1(b). Specifically,
this represents the factored reward functionF =

P5
i=1 Fi(ai, ai+1),

where each factor node, Fi, represents the local reward for observ-
ing a given region of road, the action nodes represent the decision
variables for each UAV, and edges connect factors to the actions
on which they depend. The max-sum algorithm operates on the
factor graph by iterative message passing between neighbouring
variable and factor nodes. When the graph is cycle-free, the mes-
sages are guaranteed to converge and the global optimal solution is
computed. While no such guarantees exist for cyclic graphs, exten-
sive empirical evidence demonstrates that good solutions can still
be reached [9].

Although the max-sum on its own can be applied in a variety of
settings, the coordination problem as defined above only deals with
cases in which agents must choose a single joint action to receive a
single immediate reward. However, in sequential decision making,
agents must also consider their action’s effect on the future world
state, which in turn influences their future rewards. In detail, con-
sider an agent’s decision-making problem in a stochastic environ-
ment modeled as a Markov Decision Process (MDP) 〈S,A,Pr, R〉,
with finite state and action sets S,A, transition dynamics Pr, and
reward functionR : S×A 7→ R, where Pr(s′|s, a) is the probabil-
ity of reaching state s′ after taking action a at s. Similarly, R(s, a)
denotes the expected reward which is obtained when action a is
performed at state s. The agent then needs to construct an opti-
mal policy, π : S 7→ A, derived by solving a system of Bellman
equations [18]:

Q(s, a) = R(s, a) + γ
X
s′∈S

Pr(s′|s, a)Q(s′, π(s)) (2)

Here, γ is a discount factor that places more weight on immedi-
ate rewards; the Q-value function, Q : S × A 7→ R, is equal to
the expected total sum of future discounted rewards given the cur-
rent state and action; and from this, the optimal policy is π(s) =
arg maxaQ(s, a). This standard formulation was originally ex-
tended to multiagent MDPs by defining A as the cartesian product
1We abuse notation here slightly by applying set operators to vec-
tors. The intended interpretation is that a vector’s elements form a
set, related to another vector’s elements.

of individual action spaces associated with each agent [3]. Thus,
a ∈ A is a joint action vector comprising individual agents’ ac-
tions. Note that actions are chosen in the context of a state, which
is represented here as a vector s ∈ S. That is, s comprises global
state variables shared by all agents, as in a direct extension of the
classic factored state representation [4], but may also contain state
variables specific to individual agents, such as a UAV’s battery life.

In principle, such multiagent MDPs may be solved like any other
MDP, except that by taking the cartesian product of individual ac-
tion spaces, the computational complexity is exponential in the
number of agents. Fortunately, in many coordination problems
(e.g. Fig. 1), the actions of each agent are only strongly depen-
dent on a subset of their peers. In such cases, good approxima-
tions to the optimal policy can often be found by representing the
problem as a factored MDP [10]. Specifically, these can be de-
fined by assuming a factored structure for the Q-value function,
Q(s,a) =

P
iQi(si,ai), where each factor, Qi, depends only

on a subset of states, si ⊆ s, and actions ai ⊆ a. Using this
assumption, algorithms for solving factored MDPs can make effi-
ciency savings similar to those made by max-sum. For example,
[10] presents a dynamic programming solver for factored MDPs,
which can converge in approximately logarithmic time, despite the
state-action space growing exponentially.

While, in general, assuming a factorisation of the Q-value func-
tion might result in suboptimal solutions, a trade-off between com-
plexity and optimality can be found by decomposing the problem
in different ways. For example, at one extreme, associating a fac-
tor with each agent favours computational efficiency by achieving
a large degree of factorisation. In contrast, we guarantee an optimal
solution when no factorisation is performed, but the complexity of
finding this solution is now exponential in the total number of state
and action variables.

Here, however, we adopt a more graded approach, by decompos-
ing coordination problems into regional subproblems. Specifically,
we associate each factor with a region, which can represent any
part of the overall decision problem that depends only on a subset
of agents. For example, in Fig. 1, each region represents part of the
road, in which observations are only made by neighbouring UAVs.
However, we could equally decrease the amount of decomposition
by aggregating adjacent regions. In principle, this would enable
better polices at the expense of more computation, because each
factor would now account for dependencies between the actions of
a larger number agents [10].

3. BAYESIAN RL
In standard Reinforcement Learning (RL), a single agent is faced
with a decision problem, typically modelled as an MDP with un-
known reward and transition dynamics. Due to this additional un-
certainty, the agent cannot simply solve the MDP to find the best
policy, but must instead learn it by exploring different states and ac-

418

tions. To achieve this, classical RL techniques require some form
of heuristic to encourage learning, by exploring actions with un-
known outcomes. Generally, however, these heuristics are based
on intuition alone, and so lack theoretical foundations based on any
notion of optimality.

In contrast, Bayesian RL (BRL) methods [5] formulate the prob-
lem as a belief-state MDP, in which an agent’s beliefs are explicitly
modelled as part of the state. In this way, an agent can infer the ex-
ploratory value of an action, by reasoning about how the informa-
tion obtained by performing an action may enable better future de-
cisions. The solution to the belief-state MDP provides the optimal
solution to the action selection problem, taking full account of the
informative value of exploratory actions. Therefore, BRL does not
require the use of an explicit exploration heuristic; instead, agents
need only act greedily w.r.t. the Bayesian Q-values to achieve op-
timal learning. No other method outperforms the Bayesian one in
expectation, when using the same prior information [15].

Unfortunately, solving the belief-state MDP is, in general, com-
putationally infeasible. Nevertheless, the Bayesian approach does
provide a theoretical framework from which we can construct and
evaluate practical near-optimal solutions. In particular, model-based
BRL approaches work by explicitly modelling the belief-state MDP;
while model-free approaches, such as Bayesian Q-learning, attempt
to learn action values directly, without solving an MDP. The follow-
ing subsections discuss each of these in detail.

3.1 Model-Based BRL
In general, model-based BRL methods work by maintaining a den-
sity P over all possible dynamicsD and reward functionsR, which
is updated with each observed tuple, 〈s, a, r, s′〉, where s′ is the
next state after action a is performed at s and reward r is received.
This density describes the agent’s belief state regarding the world,
and is used to choose appropriate actions, given the current state of
knowledge. Typically, updates are rendered tractable by assuming
a convenient conjugate prior [8], which allows the belief state to be
represented using a small set of hyperparameters, updated using a
set of simple closed form equations.

For example, [6] models rewards and states as multinomial ran-
dom variables, such that, for each s and a, a parameter set {θs′s,a|s′ ∈
S, θs′s,a = Pr(s′|s, a)} defines the distribution of s′ given s and a.
In the same way, a similar set, {θrs,a}, models the conditional dis-
tribution over possible rewards. However, since these parameters
are themselves unknown, each is assigned a conjugate prior, in this
case a Dirichlet, specified by hyperparameters {αs′s,a} and {αrs,a}.
For example, if we observe a specific tuple 〈s, a, r, s′〉, the corre-
sponding αs

′
s,a and αrs,a are both incremented by 1. In particular, if

all hyperparameters are initialised to 1, this results in uniform den-
sities, which become peaked around the true parameter values as
more evidence is observed. In this way, the Dirichlets capture both
the relative likelihood of possible multinomials, and the amount of
uncertainty given the evidence. Given this, [6] proposes a tractable
approximate solution to the belief-state MDP based on a myopic
estimation of the expected Value of Perfect Information (VPI), de-
fined by the expected gain in reward received, if the agent learns
the true value of choosing action a in state s:

Definition 1 (VPI) Let a1 be an agent’s current best action in state
s, with expected Q-value ms,a1 , and a2 its 2nd best action, with
expected Q-value ms,a2 . According to [7], the gain for learning
the true expected Q-value of an action, a, is then

Gains,a(µs,a) =

8<: ms,a2 − µs,a if a = a1 ∧ µs,a < ms,a2 ,
µs,a −ms,a1 if a 6= a1 ∧ µs,a > ms,a1 ,
0 otherwise.

where µs,a = Q(s, a) is the true Q-value for a in s. Based on this,
the value of perfect information (VPI) for selecting a in s is defined
as V PI(s, a) = E[Gains,a(µs,a)].

Intuitively, the gain reflects the effect on decision quality of learn-
ing the true Q(s, a). In the first two cases, what is learned results
in a change of decision: either because the estimated optimal ac-
tion is found to be worse than predicted, or because some other
action is found to be optimal. Otherwise, the information is ir-
relevant, since no change in decision is induced. Based on this,
[6] proposes that an agent should choose actions that maximise
E [Q(s, a)] + V PI(s, a). In this way, exploration is encouraged
by VPI when an agent is uncertain about its estimates, but the re-
sulting policy approaches the optimal w.r.t the true Q-value, as VPI
decreases in light of accumulated evidence.

3.2 Bayesian Q-Learning
The main problem with model-based BRL methods is that solving a
belief-state MDP is generally intractable, and even approximate so-
lutions can scale poorly in large problems. For example, in model-
based BRL, VPI cannot be calculated analytically, but instead must
be estimated by solving multiple MDPs sampled from an agent’s
belief state [6]. Fortunately, model-free techniques offer a simpler
alternative, in which an agent directly learns the value for choosing
an action in a given state, without explicitly solving an MDP. While
this requires an agent to explore more to learn the true value of its
actions (since the implications of observed evidence cannot be fully
determined without modelling the MDP), the computational com-
plexity of choosing an action is greatly reduced, which may be an
important advantage in some on-line decision making problems.

In particular, standard Q-learning works by directly maintaining
a point estimate of the Q-value, Q(s, a), for each state and action,
updated w.r.t. observed rewards. Unfortunately, it is not clear from
this single estimate how much an agent should explore actions that
are believed to be suboptimal, but may yet prove to be optimal.

In Bayesian Q-learning [7], this limitation is addressed by main-
taining a probability distribution over Q(s, a), which measures the
uncertainty in the current estimate that can be used to guide ex-
ploration. More specifically, for each state-action pair, the total
discounted reward is assumed to be normally distributed with un-
known mean, µs,a, and precision,2 τs,a = 1/σ2

s,a, where σ2
s,a is

the unknown variance of the distribution. Since Q(s, a) is defined
as the expected total discounted reward, we have Q(s, a) = µs,a.

Now, to model the uncertainty in their estimates, Dearden et al.
adopt the standard Bayesian approach of using conjugate param-
eter distributions for each pair of latent parameters, (µs,a, τs,a)
[7, 8]. In this case, the joint distribution of µs,a and τs,a for
each state-action pair is assumed to be a normal-gamma (NG) dis-
tribution, which is conjugate for normal densities with unknown
mean and precision. More formally, we say that (µs,a, τs,a) ∼
NG(ms,a, λs,a, αs,a, βs,a), where ρs,a = 〈ms,a, λs,a, αs,a, βs,a〉
are hyperparameters, updated according to the equations3 in Theo-
rem 1, which produce densities of the following form [8]:

p(µ, τ) ∝ τ 1
2 e−

1
2
λτ(µ−m)2τα−1e−βτ (3)

Note that, in [7], the last term is incorrectly stated as eβτ , and so
has the wrong sign within the exponent. Of course, we could al-
ways define a new hyperparameter β̂ = −β, and substitute this
2Here, the precision is used in place of the variance, because it
simplifies the later Bayesian Analysis [8].
3In Bayesian Q-Learning, these update equations cannot be used
directly because, although the latent distribution is over total dis-
counted rewards, only immediate rewards can be directly observed.
However, this technical detail [7] is not relevant to our discussion.

419

for β to correct the equation. However, in this case, the hyperpa-
rameter updates as stated in [7, 8] (Theorem 1) would also have to
change, so in this sense, [7] is inconsistent.4

Theorem 1 (Posterior Hyperparameters) Suppose that the prior
density for the unknown parameters of a normal distribution is
p(µ, τ) = NG(m,λ, α, β), and let D = {xk}nk=1 be a set of n
i.i.d. observations drawn from this distribution, with sample mean,
x̄ = 1

n

Pn
k=1 xk, and sum of squares, s2 =

Pn
k=1(xk − x̄)2. As

stated in [7, 8], the posterior is thus p(µ, τ) ∼ NG(m′, λ′, α′, β′),
with hyperparameters λ′ = λ + n, m′ = (λm + nx̄)/λ′, α′ =
α+ n/2 and β′ = β + s2/2 + nλ(x̄−m)2/(2λ′).

From these NG distributions, a good estimate of Q(s, a) can be
obtained from E[Q(s, a)] = E[µs,a] = ms,a. However, in ad-
dition to such estimates, the parameter distributions also provide
a representation of uncertainty. In particular, the marginal poste-
rior distribution of µs,a generally becomes more peaked around its
true value as more rewards are observed, and so the width of the
distribution gives an indication of uncertainty. This can be used to
guide principled exploration in Bayesian Reinforcement learning
in a number of ways, the most promising of which is VPI action
selection [7]. This works in the same way as described in Sec. 3
for model-based BRL, except that VPI can now be computed effi-
ciently using a closed-form equation, without the need to sample
and solve multiple MDPs. Unfortunately, the closed-form solution
provided in [7] is inconsistent with the definition of VPI, and thus
cannot be correct. In the next section, we highlight these inconsis-
tencies in detail, and provide the correct analytical solution.

4. ANALYTICAL VPI FOR Q-LEARNING
As part of the Bayesian Q-Learning approach discussed above, [7]
provides an (incorrect) analytical solution for the VPI, under the as-
sumption that each (µs,a, τs,a) has a normal-gamma density with
hyperparameters ms,a, λs,a, αs,a, βs,a. This result formed a crit-
ical part of the contribution of this paper, since without it, VPI
would have to be calculated using numerical integration techniques,
such as Monte Carlo sampling, thus introducing a significant com-
putational overhead. In this section, we address this problem by (1)
proving beyond doubt that the original equations are incorrect, and
(2) providing the correct solution, which we prove in the appendix.
With this in mind, we begin by restating the original result pre-
sented in [7], which we quote using the identity E[µs,a] = ms,a

for all s and a:

Proposition 1 (Dearden’s Solution) V PI(s, a) is equal to c +
(ms,a2 − ms,a1)Pr(µs,a1 < ms,a2) when a = a1, and c +
(ms,a −ms,a1) · Pr(µs,a > ms,a1) when a 6= a1, where

c =
Γ

`
αs,a + 1

2

´ p
βs,a`

αs,a − 1
2

´
Γ (αs,a) Γ

`
1
2

´ p
2λs,a

„
1 +

m2
s,a

2αs,a

«−αs,a+ 1
2

Here, the main problem is that c should not be constant w.r.t.ms,a1

and ms,a2 , but instead should depend on the difference between
these two values and ms,a. The following Lemma and Theorems
show why this leads to inconsistent results.

Lemma 1 (Asymptotic Behaviour) Whenαs,a > 1
2

, and |ms,a| →
∞, the term c from Proposition 1 goes to 0.

PROOF. If αs,a > 1/2 then 1/2 − αs,a < 0. Therefore, since
lim|ms,a|→∞ (1 +m2

s,a/2αs,a) =∞, lim|ms,a|→∞ c = 0.
4Theorem 1 is stated slightly differently in [7] and [8]. However,
both are equivalent, differing only by some trivial transformations.
Here, we follow the original reference [8] more closely.

Theorem 2 (Sensitivity to Value Changes) If d ∈ R, is added to
all µs,y and ms,y for each action y, then this will change V PI
according to Proposition 1. However, this is inconsistent with Def-
inition 1, in which VPI is defined to be invariant to such changes.

PROOF. By Definition 1, if we add a constant, d, to µs,a, ms,a1 ,
and ms,a2 , then Gains,a(µs,a) and hence V PI(s, a) remain un-
changed. However, in Proposition 1, the term c depends only on
ms,a, and so it is sensitive to the addition of d, to which Defini-
tion 1 is invariant. In fact, in the limit |d| → ∞ when αs,a > 1/2,
ms,a also approaches∞, and so from Lemma 1, c goes to zero.

Theorem 3 (Negative VPI) By Proposition 1, VPI can be nega-
tive. However, this is inconsistent with Definition 1, in which VPI
is strictly non-negative.

PROOF. Let f(x, y) = (E[x]− y)Pr(x > y). By Definition 1,
Gains,a(µs,a) ≥ 0, ∴ V PI(s, a) = E[Gains,a(µs,a)] > 0. In
contrast, if a 6= a1 ∧ ms,a < ms,a1 then f(µs,a,ms,a1) will
be negative for non-zero Pr(µs,a > ms,a1). However, if we add
d ∈ R, to µs,a, ms,a and ms,a1 , then f(µs,a,ms,a1) will remain
constant, while from Lemma 1, c → 0 when |d| → ∞. There-
fore, according to Proposition 1, V PI(s, a) will be negative for
sufficiently large d, which is thus inconsistent with Definition 1. A
similar argument can also be made when a = a1.

From Theorems 2 and 3 it is clear that Proposition 1 cannot be true.
As we shall show, however, the correct solution can be obtained by
replacing Dearden et al.’s constant c with a truncation bias func-
tion, which we now define:

Definition 2 (Truncation Bias Function) For hyperparameters ρ =
〈m,λ, α, β〉, we define the truncation bias function, Bρ : R → R,
as follows.

Bρ(x) =
Γ

`
α− 1

2

´√
β

“
1 + λ(x−m)2

2β

”−α+ 1
2

Γ(α)Γ(1/2)
√

2λ

Given this definition, the correct closed-form solution for VPI in
Bayesian Q-Learning is given by Theorem 4:

Theorem 4 (VPI Solution) According to an agent’s beliefs, let a1
be its current best action in state s, with expected reward ms,a1 ;
and a2 is its second best action, with expected reward ms,a2 . Sim-
ilarly, let a be an action whose reward in s is normally distributed,
with unknown parameters 〈µ, τ〉 ∼ NG(m,λ, α, β), and hyper-
parameters ρ = 〈m,λ, α, β〉. The VPI for choosing a in s is then
V PI(s, a) =

(ms,a2 −m) · Pr(µ|µ < ms,a2) + Bρ(ms,a2) for a = a1
(m−ms,a1) · Pr(µ|µ > ms,a1) + Bρ(ms,a1) otherwise.

As mentioned, this result is proved in the appendix, thus showing
that it can be used to calculate VPI in Bayesian Q-learning, without
the computational expense of numerical integration. In particular,
we now introduce a general approach for decentralised BRL, in-
cluding an efficient model-free algorithm based on this result.

5. DECENTRALIZED BAYESIAN RL
Sec. 2 described how certain multiagent MDPs can be decomposed
into a set of regional reward and transition functions, and showed
how this can be used to generate tractable solutions that approxi-
mate the optimal policy. However, this still assumes that the reward
and transition functions are known, which is not the case in RL
problems. As discussed in Sec. 3, the Bayesian RL approach deals
with such cases by constructing and solving a belief state MDP, and
so explicitly handles uncertainty over dynamics.

420

To put this in a multiagent MDP context, we define b as the
joint belief state of all the agents, corresponding to some proba-
bility distribution over all possible models. More formally, b has
the form b = 〈PM ; s〉, where PM is some density over possible
models (i.e., transition and reward dynamics); and s is the current
state of the system (a vector of state variables). Given experience
〈s;a; r; s′〉, where r is the observed global reward, b can be up-
dated to b′ = b(〈s;a; r; s′〉) = 〈P ′M ; s′〉 with updates given by
Bayes rule (and implemented using standard Bayesian methods):

P ′M (m) = zPr(s′; r|s;a;m)PM (m) (4)

where z is a normalising constant. Notice that the states and actions
in the formulation above are global states and joint agent actions.
However, by adopting a decomposition similar to that described in
Sec. 2, we can formulate the problem based on local beliefs, in
a way that facilitates tractable solutions. Specifically, we achieve
this by making the following three assumptions. First, we assume
that the global reward, r, can be factored into regional rewards, ri,
such that r =

P
i ri over all regions, i. Second, we assume that

the global belief state is decomposed into local beliefs states of the
form bi = 〈PMi ; si〉, for each region i. These are updated as be-
fore, except that only local states, actions and rewards are observed:

b′i = bi(〈si;ai; ri; s′i〉) = 〈P ′Mi ; s
′
i〉

Finally, based on these two assumptions, we assume that the Q-
value function can be factored as before, such that Q(a, b) =P
iQi(ai, bi). While the addition of the first two assumptions

may seem more restrictive than the factored MDP formulation in
Sec. 2, the alternative is to assume global visibility of the full global
state, joint actions and rewards. In fact, this is a more unrealis-
tic assumption in coordination problems involving large numbers
of distributed agents, so the assumptions above only make explicit
what is already true in realistic settings.

Moreover, as we now show, these assumptions enable tractable
coordinated reinforcement learning, in a way that explicitly ac-
counts for uncertainty in the agents local beliefs, and so provide a
near-optimal solution to the exploitation-exploration problem [18].
To achieve this, we propose a multiagent Bayesian RL method
based on VPI, which consists of the following two steps. First,
since (in general) no single agent has a complete view of the global
problem, there is no global belief state from which to calculate
VPI. Instead, within each region, the agents evaluate the informa-
tive value of performing a given local action w.r.t. the local belief
state. Second, the agents coordinate their actions via message pass-
ing, in order to maximise the sum of all the regional expected Q-
values and VPI. In this way, the agents not only coordinate their
actions in a way that exploits the sum of their existing knowledge,
but also explore joint actions that are informative for the regional
belief states.

In detail, suppose that, given i’s current belief state, the expected
value of joint regional action ai is given by Qi(ai, si). Letting a1

denote the regional action with highest expected q-value at si and
a2 the second-highest, the regional VPI is defined as the gain, de-
noted Gainai,si(Qi(ai, si)), from learning that the true Qi value
of taking ai at si is in fact q:

Gainai,si(q) =

8<: Qi(a
2, si)− q, if ai = a1 ∧ q < Qi(a

2, si)
q −Qi(a1, si), if ai 6= a1 ∧ q > Qi(a

1, si)
0, otherwise

The regional V PI(ai, si), defined as E[Gainai,si(Qi(ai, si))],
is thus a direct analog of the standard notion of VPI, and can be
added to the corresponding expected regional Q-value to boost the
desirability of local actions with uncertain value. Thus, the regional

value for taking the local joint action ai in si can be defined as
Qi(ai, si) + V PI(ai, si). To use this definition for coordinated
multiagent learning, we now propose two decentralised methods
for BRL: (1) model-based decentralised BRL, which uses a dis-
tributed sampling approach to approximate the solution to the belief
state MDP, and (2) decentralised Bayesian Q-learning, a model-free
approach, which side-steps the computational complexity of solv-
ing the belief-state MDP, by learning the regional Q-values directly.

5.1 Decentralised Model-based BRL
As in standard model-based BRL (Sec. 3), model-based decen-
tralised BRL works by sampling multiple MDPs, and using the
solution to the MDPs to approximate the expected Q-value func-
tion, and the associated VPI. Specifically, we propose a four-step
procedure:

1. For each region i, an agent representing i maintains a density,
PMi , over all possible local transition and reward dynamics, up-
dated using local observations only. For example, as used in our
experiments (Sec. 6) this may be achieved by (1) modelling local
state transition probabilities, Pr(s′i|si,ai), as a set of unknown
multinomial distributions with associated Dirichlet priors; and
(2) modelling local reward distributions, Pr(ri|si,ai), as un-
known Gaussians with associated normal-gamma priors.5

2. In each region, the representative agent samples a finite set of
z local (reward and transition) models from the corresponding
density, PMi ; that is, z samples for every i ∈ [1, Y] are speci-
fied (z ∗ Y in total). These are used to form a set of z distinct
factored MDPs, such that the kth factored MDP comprises the
kth local reward and transition functions sampled from each of
the Y regions. Each of these factored MDPs represents one pos-
sible instance of the joint decision problem, which are solved to
produce the set of local Qi(ai, si) values, for the correspond-
ing joint optimal policy. In this paper, we achieve this using
our own decentralised dynamic programming algorithm (not de-
scribed here) based on max-sum. However, this choice does not
significantly change the end result, and so may be replaced by
any suitable algorithm for factored MDPs (e.g. [10]).

3. For each region, we calculate the average Qi(ai, si) from the z
sampled MDPs, and use this to approximate Qi(ai, si). Simi-
larly, we compute Gainai,si(Qi(ai, si)) for each of the z MDPs
w.r.t. i, and approximate V PI(ai, si) by their average.

4. The local value of ai (for region i) is defined to be Qi(ai, si) +
V PI(ai, si); ai’s desirability is thus boosted by its expected
VPI. When the agents come to act, these are then evaluated w.r.t.
current state to form the factors of a factor graph that can be op-
erated on by the standard max-sum algorithm. The max-sum out-
put at each variable node (one per agent j) gives the action choice
for j. As a consequence, each agent’s decision is informed by the
entire global state through its affect on local rewards.

Although this procedure does not guarantee an optimal solution to
the generally intractable decision problem, it does provide a prac-
tical alternative that maintains several useful features of the theo-
retical optimum. In particular, the look-ahead performed by solv-
ing the factored MDPs takes into account the likely impact of each
agent’s current actions on the future rewards obtained by the system
as a whole. Moreover, by employing VPI, we explicitly account for
5This differs from [6], in which rewards are assumed to be multi-
nomial rather than normally distributed. However, both approaches
are valid, the first being appropriate when rewards are drawn from
a known finite set, while the latter allows for any real value.

421

the exploratory value of each joint action for obtaining relevant in-
formation about regional rewards. In this way, agents will only
explore joint actions that are likely to produce beneficial gains in
their future rewards. Equally important, however, is the scalability
of the procedure, which it achieves through the use of max-sum and
factored MDPs (Sec. 2).

5.2 Decentralised Model-Free BRL
Although the above procedure scales well to problems involving
large numbers of agents, sampling and solving multiple factored
MDPs may still present a significant overhead when computational
resources are at a premium, such as in sensor networks or UAVs
with embedded CPUs. As we have already seen however, this prob-
lem can be side-stepped using model-free methods that attempt to
learn the Q-value functions directly. With this in mind, we now
adapt Bayesian Q-learning for decentralised settings, by modifying
the model-based procedure above in the following way.

1. Rather than maintain a density over all possible transition and re-
ward dynamics, each PMi now becomes a normal-gamma (NG)
density, which directly models the distribution over all possible
regional Q-value functions. This density is maintained and up-
dated using the same procedures proposed in [7], except we now
maintain separate models for each regional Q-value, rather than
a single global one.

2. Rather than approximate the regional value functions by sam-
pling, E[Qi(ai, si)] is given directly by the mean of the cor-
responding NG distribution, and V PI(ai, si) can be calculated
analytically using our closed-form solution in Sec. 4. As before,
by summing these two values together for each region, we ob-
tain a factor graph that can be operated on directly by max-sum
to coordinate the agents’ actions w.r.t. the current global state.

This procedure is similar to the decentralised Q-learning algorithm
in [13], except that by adopting a Bayesian approach, we perform
more efficient exploration of the state-action space. This ability is
demonstrated empirically in the next section, using the algorithm
in [13] as a benchmark.

6. EMPIRICAL EVALUATION
We now evaluate our proposed decentralised BRL methods by sim-
ulating the scenario in Fig. 1. Here, two factors may influence per-
formance: (1) the priors required by each algorithm, and (2) the
complexity of the task being learnt.

To investigate the former, we ran multiple simulations using pri-
ors with varying hyperparameter values. In particular, as suggested
in Sec. 5.1, we used Dirichlet priors to model the regional state
transition probabilities used by our model-based algorithm, along
with normal-gamma priors for the regional rewards. Similarly, for
our decentralised Bayesian Q-learning algorithm, we used normal-
gamma priors to directly model the regional Q-value distributions,
thus avoiding the need for separate transition and reward models.

To investigate the latter, we simulated two variants of the Fig. 1
scenario. In the first variant, we simulated the scenario exactly as
described in Fig. 1, with 6 UAVs bordering on 5 regions with 1
target. Specifically, each UAV has a base station where it can land
during idle periods, and is responsible for patrolling regions adja-
cent to its base station, east and west along the road. When a ve-
hicle is detected in a region (e.g. by ground based motion sensors),
the pair of UAVs bordering the region are alerted, and, importantly,
must both patrol the region simultaneously to observe the vehicle.
Since UAVs 1 and 6 border only one region each, their actions are
limited to remaining idle and patrolling east or west respectively.
All other UAVs can patrol both east and west, or remain idle. A

region incurs a cost of -1 if one of its UAVs is active (regardless
of direction), -2 if both are active, and receives a reward of 30 af-
ter every 3 observations.6 Each region only communicates directly
with its immediate neighbouring regions, and is only aware of its
two bordering UAVs’ actions. The number of target observations
is visible to all regions, but its location is known only to its current
region, and those immediately east and west. In the second vari-
ant, the state-action space complexity is reduced by decreasing the
number of regions to 3, while at the same, the lookahead required
is increased, by changing the number of observations required to
receive a positive reward of 30 from 3 observations to 4.

The combined size of the local state and action spaces in the first
variant is thus 54 for regions a and b, and 108 elsewhere; com-
pared to 4860 for the global problem. This illustrates the reduc-
tive power of decomposition to simplify the combinatorial problem
faced by the agents, thus turning a potentially intractable problem
into a solvable one. Despite this simplification, we can still learn
an effective policy for the global problem, as we now demonstrate.

In each scenario variant, we benchmark against two other strate-
gies: (1) random, which selects actions with equal likelihood, and
thus represents a basic solution that any algorithm should outper-
form; and (2) Kok, the decentralized Q-learning policy proposed in
[13] (named after the lead author). The latter maintains separate es-
timates for each regional Q-value, and is the only other algorithm in
the literature that uses max-sum decentralised reinforcement learn-
ing. However, unlike our model-free method, this maintains point
estimates of the Q-values only, and uses ε-greedy exploration with
a fixed exploration probability of ε = 0.2 (see [13] for details).

Fig. 2 plots the mean cumulative rewards at each timestep of
these experiments, calculated using ≈ 100 independent runs per
control condition for statistical significance. As we discuss be-
low, the most interesting effect induced by the choice of prior can
be observed when the normal-gamma λ hyperparameter is varied,
while all other hyperparameters remain constant. For this reason,
we focus on λ in this discussion. In particular, Fig. 2(a) and (b),
show the results for our model-based algorithm (labelled MB) in
the 3 and 5 region problems respectively, when the λ hyperparam-
eter of the prior distribution over rewards was varied in the range
[10−2, 10−5]. In each case, a uniform Dirichlet prior was used for
the state transition probabilities, while the other hyperparameters
for the rewards where initialised to µ = 0, α = 1, β = 1. There
are two main results of these experiments.

First, for all hyperparameter values tested, our model-based ap-
proach outperforms both the random strategy, and the Kok algo-
rithm. This is because our model-based performs targeted explo-
ration early on, taking account of its initial uncertainty. In con-
trast, although Kok learns quickly to prefer idle states that cost
nothing (allowing it to dominate at the beginning) it takes signif-
icantly longer to learn that positive rewards can be achieved by co-
ordinated observations of the target. In fact, in the harder 5 region
problem (Fig. 2 b), Kok fails to learn how to observe the target
at all within 4000 timesteps, a result which is backed by experi-
ments in [13], which required >10,000 episodes to learn in a sim-
ilar setting. Thus, although our model-based approach incurs an
initial cost by performing early exploration, this enables the UAVs
to learn how to coordinate their observations in significantly fewer
timesteps than Kok.7

6Here, by requiring UAVs to perform multiple observations, we
are able to evaluate our algorithms’ ability to learn non-myopic
policies. The UAVs must learn to balance the immediate cost of
observing the target, against the expected gain in future reward.
7Although the learning time may seem large, the no. states & ac-
tions is equally large, and strategies start with uninformative priors.

422

0 1000 2000 3000 4000

−4000

−2000

0

2000

(b) Model−based BRL in 5 Regions

cu
m

ul
at

ive
 re

wa
rd

0 1000 2000 3000 4000

−2000
0

2000

4000
6000

8000
10000

12000
14000

(c) Bayesian Q−learning in 3 Regions

timesteps

Kok
random
BQ λ=0.002
BQ λ=0.0002
BQ λ=0.00002
BQ λ=0.000002

0 1000 2000 3000 4000

−4000

−2000

0

2000

(d) Bayesian Q−learning in 5 Regions

timesteps
cu

m
ul

at
ive

 re
wa

rd

0 1000 2000 3000 4000

−2000
0

2000

4000
6000

8000
10000

12000
14000

(a) Model−based BRL in 3 Regions

Kok
random
MB λ=0.01
MB λ=0.001
MB λ=0.0001
MB λ=0.00001

Figure 2: UAV Surveillance Scenario Results

Second, although our model-based algorithm performs well gen-
erally, changing the prior can have a significant effect on perfor-
mance, for example, when the λ hyperparameter of the reward’s
NG prior is varied in the 5-region problem (Fig. 2 b).8 In general,
this is to be expected, because strong prior information will always
bias inference in a certain way. Nevertheless, at first sight, the
results here are somewhat surprising, since in these experiments,
we use supposedly uninformative priors, which should be quickly
dominated by observed evidence. Closer inspection provides two
reasons for this result. First, since the state-action space is rela-
tively large, the prior’s effect can persist over parts of the MDP,
because of the time required to fully explore all state-action pairs.
Second, the range of rewards considered probable can significantly
effect the amount of exploration performed. In particular, although
changes in λ� 1 have little impact on posterior NG distributions,
a priori, each decrease in λ by a factor of 10 produces an equiva-
lent increase in the range of probable rewards. As a result, agents
become more optimistic about the value of potential rewards, and
so are incentivised to explore otherwise suboptimal policies, on the
chance that they may (even occasionally) return very high rewards.
While this dependence on priors may seem like a disadvantage, it
should be noted that non-Bayesian approaches usually rely on tun-
ing parameters with less obvious interpretations. In contrast, prior
distributions do have an intuitive interpretation, and in most do-
mains, the range of likely rewards is known a priori.

As shown in Fig. 2(c) and (d), our model-free approach achieves
similar results, except for a greater dependence on the correct choice
of lambda.9 This is because, without explicitly modelling the un-
derlying MDP, it cannot infer the full consequences of its obser-
vations, and so requires more exploration to rule out occasionally
high rewards from the full range of policies. As such, although
the model-based algorithm has a higher computational complexity

Typically, informative priors significantly reduce learning times.
8This and all other claims made here are verified by t-tests with a
confidence level of at least 95%.
9In the model-free experiments λ was scaled by 0.2 due to the
change from modelling immediate rewards to Q-values.

(see below), it can learn effectively from less evidence. This may
be particularly advantageous in robotics, where the cost of perform-
ing actions with real hardware may outweigh the additional com-
putational overhead. In this sense, even our model-free approach
significantly outperforms Kok, making it a useful compromise in
domains requiring both computational and learning efficiency.

In terms of time complexity, it is true that our methods take
longer to choose actions compared to the simpler Kok approach.
For example, using our implementation (which leaves significant
room for optimization), it took the model-based learner on aver-
age 11 ± 6 secs. to choose each action, compared to 0.2 ± 0.1
secs for the Bayesian Q-Learner, and 0.04± 0.02 secs. for the Kok
approach. However, notice that our approaches outperform other
methods in terms of the timesteps required to learn. This is im-
portant in many real-world domains that use real hardware (e.g.
UAVs), where repeated interactions with the environment may be
time consuming, costly, or potentially dangerous. In such domains,
it makes sense to deliberate over each action for longer to save time
and resources in the long run; as fewer, as opposed to more, inter-
actions for learning are strongly preferred. BRL is ideally suited
to this in general; and by exploiting regional decomposition, our
approach can address otherwise intractable coordination problems.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the first approach for performing coop-
erative multiagent BRL; and provide the correct closed form equa-
tions for VPI in Bayesian Q-Learning [7] — a crucial result with
implications beyond our decentralised setting. Key to our approach
is the use of factored MDPs, which significantly reduce complexity
in structured coordination problems. In this sense, our experiments
are somewhat preliminary, since factored MDPs can be applied to
problems larger than those attempted here [10]. Nevertheless, our
results still demonstrate the potential of BRL to outperform exist-
ing multiagent learning algorithms, and so, in future work, we plan
to evaluate our approach in larger problems, by taking advantage of
advances in related areas, such as Monte-Carlo Planning [17] and
ND-POMDPs [16].

423

8. REFERENCES
[1] S. M. Aji and R. J. McEliece. The generalized distributive law.

Information Theory, IEEE Transactions on, 46(2):325–343, 2000.
[2] D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of

decentralized control of markov decision processes. In Proc. of
UAI-2000, pages 32–37, 2000.

[3] C. Boutilier. Sequential optimality and coordination in multiagent
systems. In Proc. of IJCAI-99, pages 478–485, 1999.

[4] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of
Artificial Intelligence Research, 11:1–94, 1999.

[5] G. Chalkiadakis and C. Boutilier. Sequentially optimal repeated
coalition formation under uncertainty. Autonomous Agents and
Multi-Agent Systems, 24(3):441–484, 2012.

[6] R. Dearden, N. Friedman, and D. Andre. Model based bayesian
exploration. In Proc. of UAI’99, 1999.

[7] R. Dearden, N. Friedman, and S. Russell. Bayesian Q-Learning. In
Proc. of AAAI-98, 1998.

[8] M. DeGroot and M. Schervish. Probability & Statistics. Pearson
Education, 3rd edition, 2002.

[9] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised
coordination of low-power embedded devices using the max-sum
algorithm. In Proc. of AAMAS 2008, pages 639–646, 2008.

[10] C. Guestrin, D. Koller, and R. Parr. Max-norm projections for
factored mdps. In Proc. of AAAI-01, pages 673–680, 2001.

[11] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement
learning. In Proc. of ICML-02, pages 227–234, 2002.

[12] H. J. Kim. Moments of truncated student-t distribution. Journal of
the Korean Statistical Society, 37:81–87, 2008.

[13] J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement
learning by payoff propagation. Journal of Machine Learning
Research, 7:1789–1828, 2006.

[14] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and
the sum-product algorithm. IEEE Trans. on Information Theory,
42(2):498–519, 2001.

[15] J. Martin. Bayesian decision problems and Markov chains. Wiley,
1967.

[16] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked
distributed pomdps: A synthesis of distributed constraint
optimization and pomdps. In Proceedings of AAAI-05, pages
133–139. 2005.

[17] D. Silver and J. Veness. Monte-carlo planning in large pomdps. In
Neural Information Processing Systems 23, pages 2164–2172. 2010.

[18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[19] Y. Weiss and W. T. Freeman. On the optimality of solutions of the
max-product belief propagation algorithm in arbitrary graphs. IEEE
Trans. on Information Theory, 47(2):723–735, 2001.

Acknowledgments
This research was funded by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) as part of the SUAAVE and OR-
CHID projects (grant references EP/F06358X/1 and EP/I011587/1).
Georgios Chalkiadakis has been partially supported by the Euro-
pean Commission FP7-ICT Cognitive Systems, Interaction, and
Robotics under the contract #270180 (NOPTILUS).

APPENDIX
We now prove that Theorem 4 provides the correct solution for
VPI in Bayesian Q-Learning, which [7] states incorrectly. We start
with the case when a = a1, and for simplicity, drop the subscripts
for the hyperparameters of a, so that µ = µs,a and so on. Then
from Definition 1, we have V PI(s, a) = E[ms,a2 −µ] given µ <
ms,a2 , and 0 otherwise. However, since the truth of µ < ms,a2 is
unknown, we must marginalise to derive the correct expectation:

V PI(s, a) = (ms,a2 − E[µ|µ < ms,a2])Pr(µ < ms,a2)

Similarly, when a 6= a1, we find that

V PI(s, a) = (E[µ|µ > ms,a1]−ms,a1)Pr(µ > ms,a1)

Therefore, to prove Theorem 4, we need only show that

∀x ∈ R E[µ|µ < x]Pr(µ < x) = m · Pr(µ < x)− Bρ(x)

∧ E[µ|µ > x]Pr(µ > x) = m · Pr(µ > x) + Bρ(x)

To achieve this, we first state some prerequisite results, which are
then used to prove these equations in Lemma 5.

Lemma 2 Let X and Y be continuous random variables such that
the c.d.f. of X is F (x) and Y = σX + µ. By substitution [8],
Pr(Y < y) = F [(y − µ)/σ], where x = (y − µ)/σ, and so
Pr(Y > y) = 1− F [(y − µ)/σ].

Lemma 3 Suppose that X is t-distributed with v degrees of free-
dom, and Fv(·) its c.d.f. From [12], when X ∈ (a, b) is given, its
expected value is

E[X|a < X < b] =
Γ

`
v−1
2

´
vv/2

“
A
−(v−1)/2

(v) −B−(v−1)/2

(v)

”
2 [Fv(b)− Fv(a)] Γ(v/2)Γ(1/2)

for v > 1, where A(v) = v + a2 and B(v) = v + b2.

Corollary 1 By taking the limits a → −∞ and b → ∞ respec-
tively, when v > 1, it follows from Lemma 3 that

E[X|X < b] = −Γ
`
v−1
2

´
vv/2

`
v + b2

´−(v−1)/2

2Fv(b)Γ(v/2)Γ(1/2)

E[X|X > a] =
Γ

`
v−1
2

´
vv/2

`
v + a2

´−(v−1)/2

2 [1− Fv(a)] Γ(v/2)Γ(1/2)

Lemma 4 If 〈µ, τ〉 ∼ NG(m,λ, α, β) are the unknown param-
eters of a normal distribution, then Z = (µ − m)

p
λα/β is t-

distributed with 2α degrees of freedom [8], from Lemmas 2 & 3,
we thus have Pr(µ < y) = F2α

h
(y −m)

p
λα/β

i
.

Lemma 5 If 〈µ, τ〉 ∼ NG(m,λ, α, β) are the unknown parame-
ters of a normal p.d.f. and ρ = 〈m,λ, α, β〉, then

E[µ|µ < x]Pr(µ < x) = m · Pr(µ < x)− Bρ(x) (5)
E[µ|µ > x]Pr(µ > x) = m · Pr(µ > x) + Bρ(x) (6)

PROOF. If Z = (µ − m)
p
λα/β and y = (x − m)

p
λα/β

then Pr(µ < x) = Pr(Z < y), P r(µ > x) = Pr(Z > y), and

E[µ|µ < x] = m+
p
β/λα · E[Z|Z < y] (7)

E[µ|µ > x] = m+
p
β/λα · E[Z|Z > y] (8)

From Lemma 4, Z is t-distributed with v = 2α degrees of free-
dom, and so ∀y ∈ R, 0 < Pr(Z < y) = Fv(y) < 1. Thus, by
substitution into Corollary 1 we have

E[Z|Z < y] = −
Γ

`
α− 1

2

´
(2α)α

“
2α+ λα(x−m)2

β

”−α+ 1
2

2Pr(Z < y)Γ(α)Γ(1/2)

E[Z|Z < y] = −
Γ

`
α− 1

2

´√
α

“
1 + λ(x−m)2

2β

”−α+ 1
2

√
2Pr(Z < y)Γ(α)Γ(1/2)

E[Z|Z < y] = −
p
λα/β · Bρ(x)/Pr(Z < y) (9)

By following the same procedure for µ > x, we obtain

E[Z|Z > y] =
p
λα/β · Bρ(x)/Pr(Z > y) (10)

By substituting Eqs. 9 & 10 into Eqs. 7 & 8, we obtain

E[µ|µ < x] = m− Bρ(x)/Pr(µ < x) (11)
E[µ|µ > x] = m+ Bρ(x)/Pr(µ > x) (12)

From this, Eqs. 5 & 6 follow directly, thus proving the lemma, and
proving Theorem 4 as a consequence.

424

Shaping Fitness Functions for Coevolving Cooperative
Multiagent Systems

Mitchell Colby
Oregon State University

442 Rogers Hall
Corvallis, OR 97331

colbym@engr.orst.edu

Kagan Tumer
Oregon State University

204 Rogers Hall
Corvallis, OR 97331

kagan.tumer@oregonstate.edu

ABSTRACT
Coevolution is a natural approach to evolve teams of agents
which must cooperate to achieve some system objective.
However, in many coevolutionary approaches, credit assign-
ment is often subjective and context dependent, as the fit-
ness of an individual agent strongly depends on the actions
of the agents with which it collaborates. In order to allevi-
ate this problem, we introduce a cooperative coevolutionary
algorithm which biases the evolutionary search as well as
shapes agent fitness functions to reward behavior that bene-
fits the system. More specifically, we bias the search using a
hall of fame approximation of optimal collaborators, and we
shape the agent fitness using the difference evaluation func-
tion. Our results show that shaping agent fitness with the
difference evaluation improves system performance by up to
50%, and adding an additional fitness bias can improve per-
formance by up to 75%.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems

General Terms
Algorithms, Experimentation

Keywords
Co-evolution, Multiagent learning

1. INTRODUCTION
Coordinating multiple agents in order to achieve some sys-

tem objective is an important area of research, and is critical
in many domains including rover coordinaton, air traffic con-
trol, search and rescue, and unmanned aerial vehicle coordi-
nation[1, 2]. One approach to achieving coordination is the
use of Cooperative Coevolutionary Algorithms (CCEAs),
which involve evolving multiple populations simultaneously
and evaluating the fitness of individuals based on the indi-
vidual’s interactions with other agents in the system [10].
By evolving multiple populations at once, CCEAs project
the search space into multiple, smaller, search spaces. Coe-
volving agents have only a fraction of the total state space

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

available to them. Further, agents’ fitness assignments are
context dependent and are influenced by agents from other
populations. Thus, CCEAs have the tendency to create
agents which are capable of performing adequately with a
wide range of collaborators, rather than specializing to per-
form well with the best set of collaborators; in other words,
CCEAs often produce stable, rather than optimal solutions
[3, 4, 10]. In order to make CCEAs a viable option for coor-
dinating multiagent systems, it is critical that steps be taken
to achieve optimal coordination policies.

There have been multiple approaches to address the issues
of suboptimal stable policies. One approach involves shap-
ing local fitness functions to align with the system evaluation
function. Proper shaping of these fitness functions leads to
faster learning and more optimal policies [1, 8]. Another
approach is to bias searches based on the notion of optimal
teammates [10], which involves estimating agent utilities as
if they were paired with optimal collaborators. Although
these biased searches generally increase the effectiveness of
CCEAs, an issue with this approach is that in complex do-
mains, estimating system evaluations as if optimal collabo-
rators were present is exceedingly difficult. Other methods
involve altering the evolutionary mechanisms in CEAs in or-
der to optimize CEA performance, such as lenient learners
or hall of fame methods [11, 13].

In this work we address the suboptimal solutions created
by CCEAs by shaping fitness functions and approximat-
ing optimal collaborators. Two domains are used to test
whether these problems are addressed adequately. First, a
scatter domain, which involves agents moving in a two di-
mensional plane in order to become as “spread out” as pos-
sible. Secondly, a rover domain involving robots gathering
data from points of interest tested the algorithms on a more
real-world problem.

The contribution of this paper is a CCEA which:

• Shapes fitness functions using the Difference Utility

• Biases search with optimal collaborators using a hall
of fame approach, which is much less complex than ap-
proximating optimal collaborators in an ad-hoc man-
ner

In our experiments, this algorithm outperformed a CCEA
using the system evaluation to assign fitness by an average
of 48.7%. The remainder of this paper is organized as fol-
lows: section 2 describes related work and background infor-
mation. Section 3 describes the domains analyzed. Section
4 describes the algorithms used in this research. Section 5

425

gives the experimental results. Finally, Section 6 discusses
the results and potential areas for future research.

2. EVOLUTION AND COEVOLUTION
Evolutionary Algorithms (EAs) are a class of stochastic

search algorithms which often outperform classical optimiza-
tion techniques, particularly in complex domains where gra-
dient information is not available [6]. An evolutionary al-
gorithm typically contains three basic mechanisms: solution
generation, mutation, and selection. These mechanisms are
used on an initial set of candidate solutions, or a population
to generate new solutions and retain solutions that show im-
provement. Simple EAs are excellent tools, but need to be
modified to be applicable to large multiagent search prob-
lems. One such modification is coevolution, where multiple
populations evolve simultaneously in order to develop poli-
cies for interacting agents. The following sections introduce
coevolutionary algorithms, and approaches to optimize the
output of these algorithms.

Coevolutionary Algorithms (CEAs) are an extension of
evolutionary algorithms and are often well-suited for multi-
agent domains [5]. In a CEA, the fitness of an individual
is based on its interactions with other agents it collaborates
with. Thus, assessing the fitness of each agent is context-
sensitive and subjective [10]. In competitive coevolution,
individuals benefit when other agents fail. In cooperative
coevolution, individuals succeed or fail as a team. This pa-
per is focused on Cooperative Coevolutionary Algorithms
(CCEAs). One of the advantages to coevolution is that the
algorithm only needs to search subspaces of the state space,
rather than the entire state space. This reduced state space
often makes the learning process simpler for the cooperat-
ing agents. However, these simpler subspaces represent a
large loss in information; the consequence of this is that
the policies obtained by using these state projections are
strongly influenced by other populations. The result is that
agents evolve to partner well with a broad range of other
agents, rather than evolving to form optimal partnerships
[10]. Thus, in addition to trying to decrease the complex-
ity of the learning process, research in coevolution aims to
achieve optimal policies rather than stable ones.

Cooperative Coevolutionary Algorithms.
CCEAs are a natural approach in domains where agents

succeed or fail as a team [12]. In CCEAs, distinct popu-
lations evolve simultaneously, and agents from these pop-
ulations collaborate to reach good system solutions. One
issue with CCEAs is that they tend to favor stable solu-
tions, rather than optimal solutions [16]. This phenomena
occurs because the different evolving populations adapt to
each other, rather than adapting to form an optimal pol-
icy. Another issue that arises with CCEAs is the problem
of credit assignment. Since the agents succeed or fail as
a team, the fitness of each agent becomes subjective and
context-dependent (e.g. an agent might be a “good” agent,
but the agents it collaborates with are “bad,” and the ob-
jective isn’t reached. In this case, the “good” agent may
be perceived as “bad”) [16]. Generally speaking, research in
CCEAs involves either making a more computationally ef-
ficient algorithm or reaching better solutions (avoiding sub-
optimal equilibria) [1]. The following sections outline some
methods that have been developed to mitigate problems as-
sociated with CCEAs.

Biasing Coevolutionary Search
Panait et al.[10] biased the evolutionary search in order to
find optimal solutions, rather than becoming stuck in local
minima. In standard coevolution, a single agent is rated on
how well the team does as a whole; every agent in the team
gets equal credit. This results in an unfavorable signal-to-
noise ratio, as each agent is unaware of its individual contri-
bution to the team’s performance. In a Biased Cooperative
Coevolutionary Algorithm (BCCEA), the fitness of an indi-
vidual is based partly on its interactions with other agents
(as in usual CCEAs), and partly on an estimate of the best
possible fitness for that individual if it is partnered with op-
timal collaborators. By biasing the coevolutionary search
in this manner, the algorithm is better able to search for
optimal policies, rather than stable policies, because each
agent receives feedback related to its performance, rather
than solely the team’s performance. One issue with this
approach is that estimating how an agent would perform
with optimal collaborators is a nontrivial task, and becomes
increasingly difficult in complex domains.

Fitness Function Shaping
Hoen and De Jong shaped the utilities of the agents so as
to contribute to the system evaluation, such that an agent
maximizing its individual utility would act to increase the
system evaluation. By shaping agent fitnesses, the learning
process is sped up considerably [8]. This work is similar to
that of Agogino and Tumer, and Knudson and Tumer, who
utilized difference evaluations as fitness functions to evolve
coordination in multiagent systems [1, 9]. The Difference
Evaluation is defined as:

Di ≡ G(z)−G(z−i + ci) (1)

where G(z) is the total system evaluation, z−i are all the
states on which agent i has no effect, and ci is the counter-
factual term, which is a fixed vector to replace the effects
of agent i. Intuitively, the second term in Equation 1 eval-
uates the fitness of the system without the effects of agent
i, so the difference evaluation gives agent i’s contribution
to the system evaluation [1]. By shaping fitness functions
such that each agent’s fitness is related to the individual’s
contribution to team performance, the signal-to-noise ratio
is improved considerably.

Evolving Teams
Coevolution is frequently a good algorithm to use in mul-
tiagent systems with heterogeneous agents. Haynes et al.
used genetic algorithms to evolve teams of predators [7].
Rather than evolving single predators, one member of the
population consisted of four predators. In this manner, the
predators can evolve to cooperate. By evolving teams rather
than individual agents, communication is not required in the
domain; in place of communication, the team of predators
evolves to act as if they know the other agents’ future ac-
tions based on the state of the system [15] Though effective,
these approaches are designed for small teams, and become
slow to converge when scaled to large multiagent systems.

Hall of Fame
Rosin and Belew[13] introduced the concept of the Hall of
Fame for competitive coevolution, in which top individuals
are saved in order to test against in later generations. There

426

are two reasons why it is beneficial to save these top indi-
viduals. First, keeping top individuals contributes genetic
information to later generations, which is imperative when
conducting any evolutionary algorithm. Secondly, by keep-
ing top individuals, new individuals in later generations may
be tested against the hall of fame members. This concept
can be extended to CCEAs by keeping hall of fame teams,
rather than hall of fame individuals. In this manner, desir-
able genotypes won’t be lost if they perform poorly for a few
generations due to stochasticity.

Leniency
Panait et al.[11] introduced the concept of lenient learners
in coevolutionary algorithms, which are agents which forgive
possible mismatched teammate actions that result in poor
team performance. Using lenient learners in coevolution is
shown to provide learners with more accurate information
about their policies, which increases the likelihood of con-
verging to an optimal solution. Leniency is achieved by pair-
ing agents with multiple sets of collaborators, and taking the
highest team fitness achieved from all runs. This lowers the
likelihood that a learning agent will receive poor feedback
simply because it was paired with suboptimal teammates.

3. EVALUATION DOMAINS
In this section, we introduce the two problems analyzed in

this work, and provide a detailed explanation of the system
dynamics and evaluation functions used in each domain.

3.1 Scatter Domain
The scatter domain used in this paper is a variant of the

mixing problem [14]. In the scatter domain, a team of agents
on a two dimensional plane aim to move around and config-
ure themselves to be as “spread out” as possible (Figure 1).
The world is continuous, as are the actions of each agent.
Each agent calculates the distance between itself and the
closest teammate using the standard Euclidian distance. So,
if there are N agents, each agent calculates how far away the
closest agent is at any time t using:

δi(t) = min
j

{√
(xi,t − xj,t)2 + (yi,t − yj,t)2

∣∣∣∣i 6= j

}
(2)

where {xi,t, yi,t} is agent i’s x and y position in the world at
time t, and j is used to index all agents other than agent i.
The total state of the system z is the set of all agent positions

Figure 1: Scatter Domain Representation. Each
agent i calculates the distance from itself to the clos-
est agent as δi. The global utility is the average of
all of these distances. The goal in this domain is for
the agents to be as “spread out” as possible.

in the world. At each time step in an episode, an agent

takes two actions ∆x and ∆y, corresponding to its x and y
movements, respectively. The magnitude of these actions are
bounded by some upper limit ∆max, which requires that the
agents take multiple actions over multiple time steps in order
to traverse the domain. The system evaluation function for
the scatter domain with N agents is the average minimum
distance between agents, given by:

G
(
z(t)

)
=

∑N
i=1 δi(t)

N
(3)

Thus, maximizing the average minimum distance between
agents will result in maximizing the system evaluation.

3.2 Rover Domain

Figure 2: Rover Domain Representation. Each
rover senses the closest rover and POI from each
of its four sensing quadrants. The rovers must co-
ordinate in order to effectively observe the POIs.

In the rover problem, a collective of rovers on a two di-
mensional plane aim to observe points of interest (POIs)
scattered across the domain (Figure 2). Each POI has an
associated value, and each observation of a POI made by a
rover yields an observation value which is inversely propor-
tional to the distance that the rover is from the POI. The
distance metric used in this domain is the squared Euclidian
norm, bounded by a minimum observation value:

δ(x, y) = min
{
||x− y||2, δ2min

}
(4)

The objective of the rovers is to maximize the observation
values of the POIs over the course of an episode, and the
system evaluation is calculated as:

G =
∑

t

∑

j

Vj
miniδ(Lj , Li,t)

(5)

where Vj is the value associated with POI j, Lj is the lo-
cation of POI j, and Li,t is the location of the ith rover at
time t.

Although any rover may observe any POI, the system eval-
uation only takes into account the closest observation made
for each POI. In this instantiation of the rover domain, the
POI locations are static throughout each experiment. The
rovers have eight total sensors, two sensors per quadrant.
The rovers sense the closest POI and rover in each of the four
quadrants, and these eight readings compose the controller

427

inputs. The rovers must coordinate in order to achieve high
POI coverage. An increasing system evaluation corresponds
to better observation coverage of the POIs. As in the scat-
ter domain problem, at each time step the rovers take two
actions ∆x and ∆y, corresponding to their x and y move-
ments; the magnitude of these actions are bounded by some
value ∆max.

4. ALGORITHMS
In this section we provide detailed explanations of the four

algorithms investigated in this research, which are:

1. Standard CCEA using system evaluation

2. CCEA using the difference evaluation

3. CCEA using lenient learners and the difference evalu-
ation

4. CCEA using the hall of fame and the difference evalu-
ation

The standard CCEA using the system evaluation is a “stan-
dard” CCEA algorithm we use a baseline to assess perfor-
mance. The second and third algorithms are modifications
of existing algorithms which address the problems of subop-
timal convergence. The final algorithm is a modification of
the hall of fame algorithm combined with the difference eval-
uation, which also aims to address suboptimal convergence
and is the main contribution of this paper.

4.1 Standard CCEA
In the standard CCEA, N coevolving populations of neu-

ral networks are utilized to form teams comprised of M
agents. In the most general case, M is equal to N . One
member of each population is extracted, and these agents
are combined to form a team which operate in the problem
domain. Each population is initially comprised of k neural
networks, randomly initialized. At each generation, k suc-
cessor networks are generated in each population, which are
mutated versions of the parent networks. Then, 2k teams
of M agents are formed by taking agents from each popula-
tion and placing these agents into a team. The performance
of each of the teams is then evaluated in the domain, and
the fitness of every agent in the team is set according to the
team’s performance. Next, k networks from each population
are selected to proceed to the next generation, with the fit-
ness of a network influencing its selection probability. This
process is repeated for a set number of generations. The
standard CCEA is detailed in Algorithm 1.

In the standard CCEA, each member of a team receives
equal credit for that team’s performance. This form of credit
assignment results in agents’ fitness values to be heavily de-
pendent upon the performance of teammates, because each
member of the team receives equal credit for the team’s per-
formance. The standard CCEA is used as the baseline algo-
rithmm, and serves as a comparison for the other algorithms
considered.

4.2 CCEA with the Difference Evaluation
The CCEA with the difference evaluation is carried out in

a similar manner to the standard CCEA, except that when
a team of agents is evaluated, the fitness of each agent is cal-
culated with the difference evaluation, rather than the sys-
tem evaluation. Thus, the fitness of each agent of a team is

Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k do

randomly select one agent from each population
add agents to team Ti
simulate Ti in domain
assign fitness to each agent in Ti using G(z)

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 1: Standard CCEA (See Section 5 for param-
eters)

calculated as that agents’s contribution to the team’s perfor-
mance, rather than the system evaluation itself. The CCEA
with the difference evaluation is equivalent to the CCEA
detailed in Algorithm 1, except at the fitness assignment
stage, the fitness of each agent is calculated with the differ-
ence evaluation rather than the system evaluation.

Thus, the key difference between the CCEA using the dif-
ference evaluation and the standard CCEA is credit assign-
ment for the agents. By utilizing the difference evaluation to
assign fitness, the fitness of each agent becomes less depen-
dent upon the actions of its teammates. Below, we derive
the difference evaluation for the two domains used in this
work.

Scatter Domain.
Directly computing the different evaluation using Equa-

tion 1 corresponds to simply leaving out agent j from the
computation:

Dj(z, t) =

∑
i6=j δi(t)

N − 1
(6)

However, this evaluation always increases the system evalua-
tion, because of the nature of the system evaluation function.
As the goal in this domain is to maximize average distance
between agents, removing any agent will always have a posi-
tive effect on the system evaluation. As such agents will need
to distinguish between very small positive variations, mak-
ing the evaluation function in Equation 6 a poor choice for
agent fitness function. Instead, in this work, we introduce a
default agent effect. To compute agent j’s fitness then, we
replace agent j with this default agent, which yields:

Dj =

∑
i 6=j δi(t) + δdef (t)

N
(7)

where δdef (t) is a distance associated with the default agent.
This distance is set at the beginning of an experiment, and
remains constant for each individual calculation of the dif-
ference evaluation. This default agent distance corresponds
to the ci (counterfactual) term in Equation 1.

Rover Domain.
For the rover problem, the difference evaluation is calcu-

428

lated by directly applying Equation 1 to Equation 5:

Di(L) =
∑

t

∑

j

Ij,i,t(z)

[
Vj

δ(Lj , Li,t)
− Vj
δ(Lj , Lkj ,t)

]
(8)

where kj is the second closest rover to POI j, and Ij,i,t(z) is
an indicator function which returns 1.0 if and only if rover
i is the closest rover to POI j at time t. If rover i is not the
closest rover to any POI at time t, then its difference eval-
uation is zero, indicating that the rover is not contributing
to the system utility at time t.

4.3 CCEA with Lenient Learners and Differ-
ence Evaluation

The CCEA with lenient learners and the difference eval-
uation is carried out in a similar manner to the CCEA with
the difference evaluation, except that each agent is tested
with multiple sets of collaborators (i.e. the agent will be
placed in multiple teams), and the highest fitness achieved
is the fitness assigned to that agent. As the algorithm pro-
gresses, agents become less lenient learners; that is, they are
tested against fewer sets of collaborators. The CCEA with
lenient learners and the difference evaluation is detailed in
Algorithm 2.

Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k ·m do

randomly select one agent from each population
add agents to team Ti
simulate Ti in domain
assign fitness to each agent in Ti using D(z)

end
foreach Population do

foreach Member do
fitness ← maximum fitness attained

end

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 2: Lenient CCEA using Difference Evaluation
(See Section 5 for parameters)

It is important to note that in Algorithm 2, each member
of each population is selected exactly m times, and the value
of m is decreased as the algorithm progresses. This corre-
sponds to agents being lenient in the early stages of evolu-
tion, and becoming less and less lenient as evolutionary time
passes. By incorporating leniency and the difference evalua-
tion into the CCEA, the effects of an agent’s teammates on
the fitness of that agent are minimized.

4.4 CCEA with Hall of Fame and Difference
Evaluation

As noted in Section 2, CCEAs have been shown to provide
better solutions when the fitness of an individual is based

partly on how it performs with its team, and partly on how
it would perform if it were paired with optimal collaborators.
However, estimating the fitness of an agent paired with op-
timal collaborators is a difficult task, especially in complex
domains. Rather than estimating what optimal collabora-
tors would be for a particular agent, the hall of fame method
is altered to estimate the behavior of optimal collaborators.
The CCEA with the hall of fame and difference evaluation
is carried out in a similar manner to the CCEA with the dif-
ference evaluation, except that the fitness assignment is al-
tered. At the end of each generation, the team that achieves
the highest system evaluation is compared against the hall
of fame members. If that team achieved a higher system
evaluation than all of the hall of fame members, then that
team is added to the hall of fame. When assigning fitness
to each agent of a team, the difference evaluation of that
agent is calculated, as well as the difference utility of that
agent when it replaces an agent from the best hall of fame
team. The performance of the best hall of fame team is non-
decreasing with respect to evolutionary time, so this team
approaches the optimal team as the CCEA progresses. The
difference evaluation of an agent when compared with the
hall of fame team is calculated as:

DHOF,i = GHOF+i −GHOF (9)

where GHOF+i is the system evaluation of the best hall of
fame team when agent i replaces the corresponding member
of the hall of fame team, and GHOF is the system evaluation
of the best hall of fame team. So, in the CCEA with the hall
of fame and difference evaluation, the fitness of an agent is
calculated as:

F (i) = α ·Di + (1− α) ·DHOF,i (10)

where Di is the difference evaluation of agent i when col-
laborating with its team, DHOF,i is the agent’s difference
evaluation when paired with the best hall of fame team as
in Equation 9, and α ∈ [0, 1] is a weight corresponding to
the relative importance of the difference evaluation and the
difference evaluation with estimated optimal collaborators.
The CCEA with the hall of fame and difference evaluation
is detailed in Algorithm 3.

By assuming that the best hall of fame team is the set
of optimal collaborators for any agent, the complexities of
estimating what a set of optimal collaborators would be are
eliminated. The CCEA using the difference evaluation and
the hall of fame includes shaped fitness functions to tell
agents what their individual contributions to team perfor-
mance are, as well as biasing the fitness functions using the
concept of estimated optimal collaborators via the hall of
fame. This approach modifies the hall of fame algorithm in
two ways. First, the hall of fame is now comprised of teams,
rather than individuals. Secondly, the hall of fame is now
utilized in cooperative coevolution, rather than competitive
coevolution.

5. EXPERIMENTAL RESULTS
The algorithms outlined in section 4 were all tested in the

scatter domain and the rover domain, with team sizes vary-
ing from 10 to 100 agents. For experiments with 10 agent
teams, 10 coevolving populations of 200 members each were
used. For experiments with 100 agent teams, 100 coevolv-
ing populations of 25 members each were utilized. For the
standard CCEA, Equation 3 with a default agent distance

429

Initialize N populations of k neural networks
foreach Generation do

foreach Population do
produce k successor solutions
mutate successor solutions

end
for i = 1→ 2k ·m do

randomly select one agent from each population
add agents to team Ti
simulate Ti in domain
assign fitness to each agent with Eq. 10

end
foreach Team Ti do

if G(z|Ti) > G(z|HOFbest) then
add Ti to HOF

end

end
foreach Population do

select k networks using ε-greedy
end

end
Algorithm 3: CCEA using Difference Evaluation and Hall
of Fame (See Section 5 for parameters)

of 1.0 was used to assign fitness in the scatter domain and
Equation 5 was used in the rover domain. For the CCEA al-
gorithm with the difference evaluation, Equation 7 was used
to assign fitness for the scatter domain and Equation 8 for
the rover domain. For the CCEA with lenient learners and
the difference evaluation, the same fitness equations were
used as in the CCEA with the difference evaluation experi-
ments. The leniency value m was initially set to 10, and de-
creased by 1 every 200 generations, resulting in no leniency
after 2000 generations. The CCEA with the hall of fame and
difference evaluation had the same fitness assignments as in
the CCEA with the difference utility. When calculating the
fitness from equation 9, α was set to 0.5. For all experi-
ments, network mutation was carried out by adding values
drawn from a Gaussian distribution to network weights. In
the beginning of the evolution, one weight per network was
mutated with a standard deviation of 1.0. At the end of the
evolution, each network weight was mutated with a standard
deviation of 0.1. These mutation parameters were varied lin-
early throughout the evolutionary process. For each experi-
ment, 100 statistical runs were completed, with the standard
error in the mean (σ/

√
N) being reported. The experiment

details and results are given in the following sections.

5.1 Scatter Domain
First, we applied each of the four CCEA algorithms to

the scatter domain. For the 10 agent experiment, the world
was set to a 10 by 10 plane world and run for 10 time steps,
and ∆max was set to 1.0. For the 100 agent experiment,
the world was set to a 31.6 by 31.6 plane world and run
for 10 time steps, and ∆max was set to 3.16. These values
were chosen such that the plane area to number of agents
ratio was constant for each experiment, and the agents could
traverse the world in the same number of time steps. At
the beginning of each experiment, the agents all started at
the center of the plane worlds. Figure 3 shows the learning
curve for the 10 agent problem. Figure 4 shows the learning
curve for the 100 agent problem. Finally, Figure 5 shows the

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000

S
ys

te
m

 P
er

fo
rm

an
ce

Generation

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Figure 3: Performance of each algorithm in the scat-
ter domain, with 10 agents. The CCEA with the
difference evaluation and hall of fame biasing out-
performs all other methods tested.

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000

S
ys

te
m

 P
er

fo
rm

an
ce

Generation

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Figure 4: Performance of each algorithm in the scat-
ter domain, with 100 agents. The CCEA with the
difference evaluation and hall of fame biasing out-
performs all other methods tested.

scaling properties of each algorithm in the scatter domain.

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70 80 90 100

S
ys

te
m

 P
e

rf
o

rm
a

n
ce

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Number of Agents

Figure 5: Scaling Performance in Scatter Domain.
The CCEA with the difference evaluation and hall of
fame biasing outperforms all other methods tested,
and this difference in performance increases with
team size. The addition of leniency does not sig-
nificantly help when there are a small number of
agents, but as the team size goes up, leniency be-
comes increasingly useful.

430

All three algorithms using the different evaluation func-
tion outperformed the standard CCEA in this domain. This
is not surprising, because credit assignment in this algorithm
is highly subjective, and the fitness of each agent was greatly
influenced by its teammates. The CCEA with the difference
evaluation and the CCEA with leniency and the difference
utility performed almost identically in the 10 agent case, but
the addition of leniency provided improved performance in
the 100 agent case. This is an interesting result, and gives
insight to the properties of leniency. Leniency and the differ-
ence utility both perform similar functions. Leniency aims
to reduce the subjectiveness of credit assignments in CCEAs
by partnering agents with multiple sets of collaborators. By
testing an agent with multiple teams and taking the high-
est fitness achieved, the likelihood that an agent’s fitness
is too strongly biased by its teammates is minimized. The
difference utility also reduces the subjectiveness of credit as-
signment, by isolating an agent’s individual contribution to
its team’s performance. Thus, leniency and the difference
evaluation achieve a similar goal, although in different man-
ners. However, as the problem becomes more complex by
increasing the team size, coupling both approaches provided
benefits, as seen in Figure 5. As the team size is increased,
the performance of the CCEA with the difference evalua-
tion and lenient learners outperforms the CCEA with the
difference reward by larger and larger margins.

The CCEA with the hall of fame and difference evalua-
tion performed the best out of all of the algorithms tested.
The goal of introducing the hall of fame was to approximate
optimal collaborators, in order to bias the CCEA toward
optimal solutions. The scatter domain results show that
approximating optimal collaborators with the best known
team is an acceptable approach to bias the CCEA. The hall
of fame approach has the benefit that it is much simpler to
implement than an ad hoc estimate of optimal collaborators,
and is a more attractive alternative as the domain becomes
more complex, because such an ad hoc estimate becomes
increasingly difficult to develop as the domain complexifies.
As seen in Figure 5, this approach becomes better compared
to the other approaches as the number of agents increases.

5.2 Rover Domain
Finally, we applied each of the four CCEA algorithms to

the rover domain. At the beginning of each experiment, n
POIs were placed randomly in the domain, and their posi-
tions remained constant throughout each experiment, where
n is equivalent to the number of agents in the domain. The
minimum observation distance δmin was set to 0.1. The
simulations were carried out in a 10 by 10 world for 25 time
steps, and ∆max was set to 1.0. At the beginning of each
simulation, each rover started in the center of the world.
Each algorithm was tested over 50 statistical runs. Figure
6 shows the results for 10 agent teams, Figure 7 shows the
results for 100 agent teams, and Figure 8 shows the scaling
results for the rover domain.

As in the scatter domain experiments, all three algorithms
using the different evaluation function outperformed the stan-
dard CCEA in the rover domain. This can be attributed to
the fact that the system evaluation does not give an agent
good feedback on its individual contribution to the team’s
performance, and the agent thus has a difficult time learning
an optimal policy. In the scatter domain, the CCEA with
the difference evaluation and the CCEA with lenient learn-

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

S
ys

te
m

 P
er

fo
rm

an
ce

Generation

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Figure 6: Performance of each algorithm in the rover
domain, with 10 agents and 10 POIs. The CCEA
with the difference evaluation and hall of fame bias-
ing outperforms all other methods tested.

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000

S
ys

te
m

 P
er

fo
rm

an
ce

Generation

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Figure 7: Performance of each algorithm in the rover
domain, with 100 agents. The CCEA with the differ-
ence evaluation and hall of fame biasing outperforms
all other methods tested.

ers and the difference utility performed nearly identically
with 10 agent teams, but leniency became more important
as the team size went up. In the more complex rover do-
main, the CCEA with lenient learners and the difference
evaluation performed slightly better than the CCEA with
the difference reward, and this difference also increased with
the team size. This indicates that although leniency and the
difference utility have similar effects on the learning process,
leniency may become more beneficial in CCEAs as the do-
main becomes more complex or the number of cooperating
agents increases.

As in the scatter domain, the CCEA with the hall of fame
and difference evaluation performed the best out of all al-
gorithms tested. This further supports the conclusion that
biasing the CCEA with hall of fame teams approximating
optimal collaborators, as well as shaping the fitness func-
tions, helps guide the search towards better solutions. As
seen in Figure 8, the difference in performance between the
CCEA with the difference evaluation and hall of fame and
the CCEA with the global reward increases with team size,
indicating that for increasingly complex systems, this new
algorithm becomes more and more useful. In all the ex-
periments that were conducted, the CCEA with the hall
of fame and difference evaluation significantly outperformed

431

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90 100

S
ys

te
m

 P
er

fo
rm

an
ce

Number of Agents

CCEA with G
CCEA with D

Lenient CCEA with D
CCEA with D and HOF

Figure 8: Scaling Performance in Rover Domain.
The CCEA with the difference evaluation and hall
of fame biasing outperforms all other methods, and
the gap in performance increases with team size.

all other algorithms, and was able to easily estimate opti-
mal collaborators in order to bias the fitness. This fitness
biasing, in addition to shaping the fitness values with the
difference evaluation, contributed to significantly better per-
formance than any other algorithm tested.

6. DISCUSSION
This paper presented three CCEA algorithms where le-

niency and hall of fame methods were used in combination
with fitness shaping. Combining hall of fame and differ-
ence evaluation outperformed all other algorithms in two
different domains. It is known that shaping fitness functions
can greatly improve the efficacy of a CCEA [8], but this of-
ten isn’t enough to obtain optimal performance. Biasing a
CCEA with an estimate optimal collaborators results in a
more effective search for optimal policies, but this estimate
is problematic because it is an ad hoc, domain dependent
estimate [10]. Our algorithm circumvents the problem of es-
timating optimal collaborators, so the CCEA search is easily
biased in a domain independent fashion. Furthermore, the
algorithm shapes agent fitnesses in order to provide each
agent a measure of its individual contribution to the system
objective.

A particularly interesting result was that in the simpler
scatter domain, using the difference evaluation to shape the
fitness functions performed equivalently to a method which
used lenient learners and the difference utility for 10 agent
teams. Intuitively, the difference utility and lenient learn-
ers both aim to achieve the same goal, which is to isolate
an agent’s individual contribution to the system evaluation.
This is one key reason their performance was similar in the
simpler domains. However, with larger teams or a more
complicated domain, leniency in addition to the difference
evaluation performed better than the difference evaluation
alone. Our current research focuses in two directions: (i)
investigating the theoretical relationship between leniency
and difference evaluation functions, including determining
when adding leniency to fitness shaping is desirable; and
(ii) the impact of biasing the search while using difference
evaluation functions, including alternative biasing methods.

Acknowledgements
This work was partially supported by NSF Grant IIS-0910358,
and DoE NETL grant DE-FE0000857.

7. REFERENCES
[1] A. K. Agogino and K. Tumer. Efficient evaluation

functions for evolving coordination. Evolutionary
Computation, 16(2):257–288, 2008.

[2] A. K. Agogino and K. Tumer. A multiagent approach
to managing air traffic flow. Journal of Autonomous
Agents and Multi-Agent Systems, 24:1–25, 2012. DOI:
10.1007/s10458-010-9142-5.

[3] A. Bucci and J. B. Pollack. Thoughts on solution
concepts. In ”Proceedings of the Genetic and
Evolutionary Computation Conference –
GECCO-2007. ACM, 2007.

[4] S. G. Ficici. Monotonic solution concepts in
coevolution, 2005.

[5] S. G. Ficici, O. Melnik, and J. Pollack. A
game-theoretic and dynamical-systems analysis of
selection methods in coevolution, 2005.

[6] D. Fogel. An introduction to simulated evolutionary
optimization. Neural Networks, IEEE Transactions
on, 5(1):3 –14, jan 1994.

[7] T. D. Haynes, D. A. Schoenefeld, and R. L.
Wainwright. Type inheritance in strongly typed
genetic programming. In Advances in Genetic
Programming 2, chapter 18, pages 359–376. MIT
Press, 1996.

[8] P. J. Hoen and E. D. D. Jong. Evolutionary
multi-agent systems. In In Proceedings of the 8th
International Conference on Parallel Problem Solving
from Nature PPSN-04, pages 872–881, 2004.

[9] M. Knudson and K. Tumer. Coevolution of
heterogeneous multi-robot teams. In Proceedings of the
Genetic and Evolutionary Computation Conference,
Portland, OR, July 2010.

[10] L. Panait, S. Luke, and R. P. Wiegand. Biasing
coevolutionary search for optimal multiagent
behaviors. IEEE Transactions on Evolutionary
Computation, 10(6):629–645, 2006.

[11] L. Panait, K. Tuyls, and S. Luke. Theoretical
advantages of lenient learners: An evolutionary game
theoretic perspective. J. Mach. Learn. Res.,
9:423–457, June 2008.

[12] M. A. Potter and K. A. De Jong. Evolving Neural
Networks with Collaborative Species. Computer
Simulation Conference, 1995.

[13] C. Rosin and R. Belew. New methods for competitive
coevolution. Evolutionary Computation, 5:1–29, 1996.

[14] T. Soule and R. B. Heckendorn. A developmental
approach to evolving scalable hierarchies for
multi-agent swarms. In ”Proceedings of the 12th
Annual Conference on Genetic and Evolutionary
Compuation – GECCO-2010. ACM, 2010.

[15] P. Stone and M. Veloso. Multiagent systems: A survey
from a machine learning perspective. AUTONOMOUS
ROBOTS, 8:345–383, 1997.

[16] R. P. Wiegand, K. A. D. Jong, and W. C. Liles.
Modeling variation in cooperative coevolution using
evolutionary game theory, 2002.

432

Dynamic Potential-Based Reward Shaping

Sam Devlin
Department of Computer Science,

University of York, UK
devlin@cs.york.ac.uk

Daniel Kudenko
Department of Computer Science,

University of York, UK
kudenko@cs.york.ac.uk

ABSTRACT
Potential-based reward shaping can significantly improve
the time needed to learn an optimal policy and, in multi-
agent systems, the performance of the final joint-policy. It
has been proven to not alter the optimal policy of an agent
learning alone or the Nash equilibria of multiple agents learn-
ing together.

However, a limitation of existing proofs is the assumption
that the potential of a state does not change dynamically
during the learning. This assumption often is broken, espe-
cially if the reward-shaping function is generated automati-
cally.

In this paper we prove and demonstrate a method of ex-
tending potential-based reward shaping to allow dynamic
shaping and maintain the guarantees of policy invariance in
the single-agent case and consistent Nash equilibria in the
multi-agent case.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms
Theory, Experimentation

Keywords
Reinforcement Learning, Reward Shaping

1. INTRODUCTION
Reinforcement learning agents are typically implemented

with no prior knowledge and yet it has been repeatedly
shown that informing the agents of heuristic knowledge can
be beneficial [2, 7, 13, 14, 17, 19]. Such prior knowledge
can be encoded into the initial Q-values of an agent or the
reward function. If done so by a potential function, the two
can be equivalent [23].

Originally potential-based reward shaping was proven to
not change the optimal policy of a single agent provided a

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

static potential function based on states alone [15]. Contin-
uing interest in this method has expanded its capabilities to
providing similar guarantees when potentials are based on
states and actions [24] or the agent is not alone but acting
in a common environment with other shaped or unshaped
agents [8].

However, all existing proofs presume a static potential
function. A static potential function represents static knowl-
edge and, therefore, can not be updated online whilst an
agent is learning.

Despite these limitations in the theoretical results, em-
pirical work has demonstrated the usefulness of a dynamic
potential function [10, 11, 12, 13]. When applying potential-
based reward shaping, a common challenge is how to set the
potential function. The existing implementations using dy-
namic potential functions automate this process making the
method more accessible to all.

Some, but not all, pre-existing implementations enforce
that their potential function stabilises before the agent. This
feature is perhaps based on the intuitive argument that an
agent cannot converge until the reward function does so [12].
However, as we will show in this paper, agents can converge
despite additional dynamic rewards provided they are of a
given form.

Our contribution is to prove how a dynamic potential
function does not alter the optimal policy of a single-agent
problem domain or the Nash equilibria of a multi-agent sys-
tem (MAS). This proof justifies the existing uses of dynamic
potential functions and explains how, in the case where the
additional rewards are never guaranteed to converge [10],
the agent can still converge.

Furthermore, we will also prove that, by allowing the po-
tential of state to change over time, dynamic potential-based
reward shaping is not equivalent to Q-table initialisation.
Instead it is a unique tool, useful for developers wishing to
continually influence an agent’s exploration whilst guaran-
teed to not alter the goal(s) of an agent or group.

In the next section we will cover all relevant background
material. In Section 3 we present both of our proofs re-
garding the implications of a dynamic potential function on
existing results in potential-based reward shaping. Later, in
Section 4, we clarify our point by empirically demonstrat-
ing a dynamic potential function in both single-agent and
multi-agent problem domains. The paper then closes by
summarising the key results of the paper.

433

2. PRELIMINARIES
In this section we introduce all relevant existing work upon

which this work is based.

2.1 Reinforcement Learning
Reinforcement learning is a paradigm which allows agents

to learn by reward and punishment from interactions with
the environment [21]. The numeric feedback received from
the environment is used to improve the agent’s actions. The
majority of work in the area of reinforcement learning ap-
plies a Markov Decision Process (MDP) as a mathematical
model [16].

An MDP is a tuple 〈S,A, T,R〉, where S is the state space,
A is the action space, T (s, a, s′) = Pr(s′|s, a) is the prob-
ability that action a in state s will lead to state s′, and
R(s, a, s′) is the immediate reward r received when action
a taken in state s results in a transition to state s′. The
problem of solving an MDP is to find a policy (i.e., mapping
from states to actions) which maximises the accumulated
reward. When the environment dynamics (transition prob-
abilities and reward function) are available, this task can be
solved using policy iteration [3].

When the environment dynamics are not available, as
with most real problem domains, policy iteration cannot be
used. However, the concept of an iterative approach re-
mains the backbone of the majority of reinforcement learn-
ing algorithms. These algorithms apply so called temporal-
difference updates to propagate information about values
of states, V (s), or state-action pairs, Q(s, a) [20]. These
updates are based on the difference of the two temporally
different estimates of a particular state or state-action value.
The Q-learning algorithm is such a method [21]. After each
transition, (s, a) → (s′, r), in the environment, it updates
state-action values by the formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α is the rate of learning and γ is the discount factor.
It modifies the value of taking action a in state s, when
after executing this action the environment returned reward
r, and moved to a new state s′.

Provided each state-action pair is experienced an infinite
number of times, the rewards are bounded and the agent’s
exploration and learning rate reduce to zero the value table
of a Q-learning agent will converge to the optimal values Q∗

[22].

2.1.1 Multi-Agent Reinforcement Learning
Applications of reinforcement learning to MAS typically

take one of two approaches; multiple individual learners or
joint action learners [6]. The latter is a group of multi-
agent specific algorithms designed to consider the existence
of other agents. The former is the deployment of multiple
agents each using a single-agent reinforcement learning al-
gorithm.

Multiple individual learners assume any other agents to
be a part of the environment and so, as the others simul-
taneously learn, the environment appears to be dynamic as
the probability of transition when taking action a in state
s changes over time. To overcome the appearance of a
dynamic environment, joint action learners were developed
that extend their value function to consider for each state the
value of each possible combination of actions by all agents.

Learning by joint action, however, breaks a fundamental
concept of MAS in which each agent is self-motivated and so
may not consent to the broadcasting of their action choices.
Furthermore, the consideration of the joint action causes an
exponential increase in the number of values that must be
calculated with each additional agent added to the system.
For these reasons, this work will focus on multiple individual
learners and not joint action learners. However, these proofs
can be extended to cover joint action learners.

Unlike single-agent reinforcement learning where the goal
is to maximise the individual’s reward, when multiple self
motivated agents are deployed not all agents can always
receive their maximum reward. Instead some compromise
must be made, typically the system is designed aiming to
converge to a Nash equilibrium [18].

To model a MAS, the single-agent MDP becomes inade-
quate and instead the more general Stochastic Game (SG)
is required [5]. A SG of n agents is a tuple
〈S,A1, ..., An, T,R1, ..., Rn〉, where S is the state space, Ai
is the action space of agent i, T (s, ai...n, s

′) = Pr(s′|s, ai...n)
is the probability that joint action ai...n in state s will lead
to state s′, and Ri(s, ai, s

′) is the immediate reward received
by agent i when taking action ai in state s results in a tran-
sition to state s′ [9].

Typically, reinforcement learning agents, whether alone or
sharing an environment, are deployed with no prior knowl-
edge. The assumption is that the developer has no knowl-
edge of how the agent(s) should behave. However, more
often than not, this is not the case and the agent(s) can
benefit from the developer’s understanding of the problem
domain.

One common method of imparting knowledge to a rein-
forcement learning agent is reward shaping, a topic we will
discuss in more detail in the next subsection.

2.2 Reward Shaping
The idea of reward shaping is to provide an additional re-

ward representative of prior knowledge to reduce the number
of suboptimal actions made and so reduce the time needed
to learn [15, 17]. This concept can be represented by the
following formula for the Q-learning algorithm:

Q(s, a)← Q(s, a)+α[r+F (s, s′)+γmax
a′

Q(s′, a′)−Q(s, a)]

(2)
where F (s, s′) is the general form of any state-based shaping
reward.

Even though reward shaping has been powerful in many
experiments it quickly became apparent that, when used
improperly, it can change the optimal policy [17]. To deal
with such problems, potential-based reward shaping was
proposed [15] as the difference of some potential function
Φ defined over a source s and a destination state s′:

F (s, s′) = γΦ(s′)− Φ(s) (3)

where γ must be the same discount factor as used in the
agent’s update rule (see Equation 1).

Ng et al. [15] proved that potential-based reward shap-
ing, defined according to Equation 3, guarantees learning a
policy which is equivalent to the one learnt without reward
shaping in both infinite and finite horizon MDPs.

Wiewiora [23] later proved that an agent learning with
potential-based reward shaping and no knowledge-based Q-
table initialisation will behave identically to an agent with-

434

out reward shaping when the latter agent’s value function is
initialised with the same potential function.

These proofs, and all subsequent proofs regarding potential-
based reward shaping including those presented in this pa-
per, require actions to be selected by an advantage-based
policy [23]. Advantage-based policies select actions based on
their relative differences in value and not their exact value.
Common examples include greedy, ε-greedy and Boltzmann
soft-max.

2.2.1 Reward Shaping In Multi-Agent Systems
Incorporating heuristic knowledge has been shown to also

be beneficial in multi-agent reinforcement learning [2, 13, 14,
19]. However, some of these examples did not use potential-
based functions to shape the reward [14, 19] and could,
therefore, potentially suffer from introducing beneficial cyclic
policies that cause convergence to an unintended behaviour
as demonstrated previously in a single-agent problem do-
main [17].

The remaining applications that were potential-based [2,
13], demonstrated an increased probability of convergence to
a higher value Nash equilibrium. However, both of these ap-
plications were published with no consideration of whether
the proofs of guaranteed policy invariance hold in multi-
agent reinforcement learning.

Since this time, theoretical results [8] have shown that
whilst Wiewiora’s proof [23] of equivalence to Q-table ini-
tialisation holds also for multi-agent reinforcement learning
Ng’s proof [15] of policy invariance does not. Multi-agent
potential-based reward shaping can alter the final policy a
group of agents will learn but, instead, does not alter the
Nash equilibria of the system.

2.2.2 Dynamic Reward Shaping
Reward shaping is typically implemented bespoke for each

new environment using domain-specific heuristic knowledge
[2, 7, 17] but some attempts have been made to automate
[10, 11, 12, 13] the encoding of knowledge into a potential
function.

All of these existing methods alter the potential of states
online whilst the agent is learning. Neither the existing
single-agent [15] nor the multi-agent [8] proven theoretical
results considered such dynamic shaping.

However, the opinion has been published that the poten-
tial function must converge before the agent can [12]. In the
majority of implementations this approach has been applied
[11, 12, 13] but in other implementations stability is never
guaranteed [10]. In this case, despite common intuition, the
agent was still seen to converge to an optimal policy.

Therefore, contrary to existing opinion it must be possi-
ble for an agent’s policy to converge despite a continually
changing reward transformation. In the next section we will
prove how this is possible.

3. THEORY
In this section we will cover the implications of a dy-

namic potential function on the three most important exist-
ing proofs in potential-based reward shaping. Specifically,
in subsection 3.1 we address the theoretical guarantees of
policy invariance in single-agent problem domains [15] and
consistent Nash equilibria in multi-agent problem domains
[8]. Later, in subsection 3.2, we will address Wiewiora’s
proof of equivalence to Q-table initialisation [23].

3.1 Dynamic Potential-Based Reward Shaping
Can Maintain Existing Guarantees

To extend potential-based reward shaping to allow for a
dynamic potential function we extend Equation 3 to include
time as a parameter of the potential function Φ. Informally,
if the difference in potential is calculated from the potentials
of the states at the time they were visited the guarantees
of policy invariance or consistant Nash equilibria remain.
Formally:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t) (4)

where t is the time the agent arrived at previous state s
and t′ is the current time when arriving at the current state
s′ (i.e. t < t′).

To prove policy invariance in the single-agent case and
consistent Nash equilibria in the multi-agent case it suffices
to show that the return a shaped agent will receive for fol-
lowing a fixed sequence of states and actions is equal to the
return the non-shaped agent would receive when following
the same sequence minus the potential of the first state in
the sequence [1, 8].

Therefore, let us consider the return Ui for any arbitrary
agent i when experiencing sequence s̄ in a discounted frame-
work without shaping. Formally:

Ui(s̄) =

∞∑

j=0

γjrj,i (5)

where rj,i is the reward received at time j by agent i from
the environment.

Given this definition of return, the true Q-values can be
defined formally by:

Q∗i (s, a) =
∑

s̄

Pr(s̄|s, a)Ui(s̄) (6)

Now consider the same agent but with a reward function
modified by adding a dynamic potential-based reward func-
tion of the form given in Equation 4. The return of the
shaped agent Ui,Φ experiencing the same sequence s̄ is:

Ui,Φ(s̄) =

∞∑

j=0

γj(rj,i + F (sj , tj , sj+1, tj+1))

=

∞∑

j=0

γj(rj,i + γΦ(sj+1, tj+1)− Φ(sj , tj))

=

∞∑

j=0

γjrj,i +

∞∑

j=0

γj+1Φ(sj+1, tj+1)

−
∞∑

j=0

γjΦ(sj , tj)

= Ui(s̄) +

∞∑

j=1

γjΦ(sj , tj)

−
∞∑

j=1

γjΦ(sj , tj)− Φ(s0, t0)

= Ui(s̄)− Φ(s0, t0) (7)

Then by combining 6 and 7 we know the shaped Q-function
is:

435

Q∗i,Φ(s, a) =
∑

s̄

Pr(s̄|s, a)Ui,Φ(s̄)

=
∑

s̄

Pr(s̄|s, a)(Ui(s̄)− Φ(s, t))

=
∑

s̄

Pr(s̄|s, a)Ui(s̄)−
∑

s̄

Pr(s̄|s, a)Φ(s, t)

= Q∗i (s, a)− Φ(s, t) (8)

where t is the current time.
As the difference between the original Q-values and the

shaped Q-values is not dependent on the action taken, then
in any given state the best (or best response) action remains
constant regardless of shaping. Therefore, we can conclude
that the guarantees of policy invariance and consistent Nash
equilibria remain.

3.2 Dynamic Potential-Based Reward Shaping
Is Not Equivalent To Q-Table Initialisa-
tion

In both single-agent [23] and multi-agent [8] reinforcement
learning, potential-based reward shaping with a static po-
tential function is equivalent to initialising the agent’s Q-
table such that:

∀s, a|Q(s, a) = Φ(s) (9)

where Φ(·) is the same potential function as used by the
shaped agent.

However, with a dynamic potential function this result no
longer holds. The proofs require an agent with potential-
based reward shaping and an agent with the above Q-table
initialisation to have an identical probability distribution
over their next action provided the same history of states,
actions and rewards.

If the Q-table is initialised with the potential of states
prior to experiments (Φ(s, t0)), then any future changes in
potential are not accounted for in the initialised agent. There-
fore, after the agents experience a state where the shaped
agent’s potential function has changed they may make dif-
ferent subsequent action choices.

Formally this can be proved by considering agent L that
receives dynamic potential-based reward shaping and agent
L′ that does not but is initialised as in Equation 9. Agent
L will update its Q-values by the rule:

Q(s, a) ← Q(s, a) +

α (ri + F (s, t, s′, t′) + γmax
a′

Q(s′, a′)−Q(s, a))
︸ ︷︷ ︸

δQ(s,a)

(10)

where ∆Q(s, a) = αδQ(s, a) is the amount that the Q
value will be updated by.

The current Q-values of Agent L can be represented for-
mally as the initial value plus the change since:

Q(s, a) = Q0(s, a) + ∆Q(s, a) (11)

where Q0(s, a) is the initial Q-value of state-action pair
(s, a). Similarly, agent L′ updates its Q-values by the rule:

Q′(s, a)← Q′(s, a) + α (ri + γmax
a′

Q′(s′, a′)−Q′(s, a))
︸ ︷︷ ︸

δQ′(s,a)

(12)
And its current Q-values can be represented formally as:

Q′(s, a) = Q0(s, a) + Φ(s, t0) + ∆Q′(s, a) (13)

where Φ(s, t0) is the potential for state s before learning
begins.

For the two agents to act the same they must choose their
actions by relative difference in Q-values, not absolute mag-
nitude, and the relative ordering of actions must remain the
same for both agents. Formally:

∀s, a, a′|Q(s, a) > Q(s, a′)⇔ Q′(s, a) > Q′(s, a′) (14)

In the base case this remains true, as both ∆Q(s, a) and
∆Q′(s, a) equal zero before any actions are taken, but after
this the proof falters for dynamic potential functions.

Specifically, when the agents first transition to a state
where the potential has changed agent L will update Q(s, a)
by:

δQ(s, a) = ri + F (s, s′) + γmax
a′

Q(s′, a′)−Q(s, a)

= ri + γΦ(s′, t′)− Φ(s, t)

+γmax
a′

(Q0(s′, a′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a)

= ri + γΦ(s′, t′)− Φ(s, t0)

+γmax
a′

(Q0(s′, a′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a) (15)

and agent L′ will update Q′(s, a) by:

δQ′(s, a) = ri + γmax
a′

Q′(s′, a′)−Q′(s, a)

= ri + γmax
a′

(Q0(s′, a′) + Φ(s′, t0) + ∆Q′(s′a′))

−Q0(s, a)− Φ(s, t0)−∆Q′(s, a)

= ri + γmax
a′

(Q0(s′, a′) + Φ(s′, t0) + ∆Q(s′a′))

−Q0(s, a)− Φ(s, t0)−∆Q(s, a)

= ri + γΦ(s′, t0)− Φ(s, t0)

+γmax
a′

(Q0(s′, a′) + ∆Q(s′, a′))

−Q0(s, a)−∆Q(s, a)

= δQ(s, a)− γΦ(s′, t′) + γΦ(s′, t0) (16)

But the two are not equal as:

Φ(s′, t′) 6= Φ(s′, t0) (17)

Therefore, for this state-action pair:

Q′(s, a) = Q(s, a)+Φ(s, t0)−αγΦ(s′, t′)+αγΦ(s′, t0) (18)

but for all other actions in state s:

Q′(s, a) = Q(s, a) + Φ(s, t0) (19)

436

Once this occurs the differences in Q-values between agent
L and agent L′ for state s would no longer be constant across
all actions. If this difference is sufficient to change the order-
ing of actions (i.e. Equation 14 is broken), then the policy
of any rational agent will have different probability distri-
butions over subsequent action choices in state s.

In single-agent problem domains, provided the standard
necessary conditions are met, the difference in ordering will
only be temporary as agents initialised with a static-potential
function and/or those receiving dynamic potential-based re-
ward shaping will converge to the optimal policy. In these
cases the temporary difference will only affect the explo-
ration of the agents not their goal.

In multi-agent cases, as was shown previously [8], altered
exploration can alter final joint-policy and, therefore, the
different ordering may remain. However, as we have proven
in the previous sub-section, this is not indicative of a change
in the goals of the agents.

In both cases, we have shown how an agent initialised as
in Equation 9 can after the same experiences behave differ-
ently to an agent receiving dynamic potential-based reward
shaping. This occurs because the initial value given to a
state cannot capture subsequent changes in it’s potential.

Alternatively, the initialised agent could reset its Q-table
on each change in potential to reflect the changes in the
shaped agent. However, this approach would lose all his-
tory of updates due to experiences had and so again cause
differences in behaviour between the shaped agent and the
initialised agent.

Furthermore, this method and other similar methods of
attempting to integrate change in potential after the agent
has begun to learn are also no longer strictly Q-table initial-
isation.

Therefore, we conclude that there is not a method of
initialising an agent’s Q-table to guarantee equivalent be-
haviour to an agent receiving dynamic potential-based re-
ward shaping.

4. EMPIRICAL DEMONSTRATION
To clarify our contribution in the following subsections we

will demonstrate empirically for both a single-agent and a
multi-agent problem domain that their respective guarantees
remain despite a dynamic potential function. Specifically in
both environments we implement agents without shaping
or with a (uniform or negatively biased) random potential
function that never stabilises.

4.1 Single-Agent Example
To demonstrate policy invariance with and without dy-

namic potential-based reward shaping, an empirical study of
a discrete, deterministic grid world will be presented here.

Specifically we have one agent attempting to move from
grid location S to G in the maze illustrated in Figure 1. The
optimal policy/route through the maze takes 41 time steps
and should be learnt by the agent regardless of whether it
does or does not receive the reward shaping.

On each time step the agent receives −1 reward from the
environment. Upon reaching the goal the agent receives
+100 reward from the environment. If an episode reaches
1000 time steps without reaching the goal, the episode is
reset.

At each time step, if the agent is receiving uniform random
shaping, the state entered will be given a random potential

Figure 1: Map of Maze

between 0 and 50 and the agent will receive an additional
reward equal to the difference between this new potential1

and the potential of the previous state.
Likewise, if the agent is receiving negative bias random

shaping, the state entered will be given a random potential
between 0 and it’s current distance to the goal. This po-
tential function is dynamic, never stabilises and encourages
movement away from the agent’s goal.

The agent implemented uses Q-learning with ε-greedy ex-
ploration and a tabular representation of the environment.
Experimental parameters were set as α = 0.05,γ = 1.0 and ε
begins at 0.4 and reduces linearly over the first 500 episodes
to 0.

4.1.1 Results
All experiments were run for 1000 episodes and repeated

100 times. The results, illustrated in Figure 2, plot the mean
number of steps taken to complete that episode. All figures
include error bars illustrating the standard error from the
mean.

Figure 2: Single-Agent Maze Results

1If γ was less than 1 then this value would be discounted by
γ, as we will demonstrate in the multi-agent example.

437

As we expected, regardless of shaping, the agent learns the
optimal policy and can complete the maze within 41 time
steps. This is the first published example of a reinforcement
learning agent converging despite a reward shaping function
that is known not to converge. This example counters the
previously accepted intuition [12] and supports our claim
that the guarantee of policy invariance remains provided the
additional reward is of the form:

F (s, s′) = γΦ(s′, t′)− Φ(s, t)

In this example, the agents with dynamic potential-based
reward shaping take longer to learn the optimal policy. How-
ever, this is not characteristic of the method but of our spe-
cific potential functions. For this problem domain, a uni-
form random potential-function, has been shown to be the
worst possible case. This is because it represents no spe-
cific knowledge whilst the negative bias random potential
function encourages movement away from the goal which in
some parts of the maze is the correct behaviour.

It is common intuition that as reward shaping directs ex-
ploration it can be both beneficial and detrimental to an
agent’s learning performance. If a good heuristic is used,
common in previous published examples [7, 15, 24], the
agent will learn quicker but the lesser published alternative
is that a poor heuristic is used and the agent learns slower.2

However, the more important result of this example is
to demonstrate that despite even the most misleading and
never stable potential functions a single agent can still con-
verge to the optimal policy. In the next section we go on
to demonstrate a similar result but this time maintaining
the guarantee of consistent Nash equilibria despite a never
stable dynamic potential-function in a multi-agent problem
domain.

4.2 Multi-Agent Example
To demonstrate consistent Nash equilibria with and with-

out dynamic potential-based reward shaping, an empirical
study of Boutilier’s coordination game [4] will be presented
here.

The game, illustrated in Figure 3, has six stages and two
agents, each capable of two actions (a or b). The first agent’s
first action choice in each episode decides if the agents will
move to a state guaranteed to reward them minimally (s3) or
to a state where they must co-ordinate to receive the highest
reward (s2). However, in state s2 the agents are at risk of
receiving a large negative reward if they do not choose the
same action.

In Figure 3, each transition is labeled with one or more
action pairs such that the pair a, ∗ means this transition
occurs if agent 1 chooses action a and agent 2 chooses ei-
ther action. When multiple action pairs result in the same
transition the pairs are separated by a semicolon(;).

The game has multiple Nash equilibria; the joint policies
opting for the safety state s3 or the joint policies of moving to
state s2 and coordinating on both choosing a or b. Any joint
policy receiving the negative reward is not a Nash equilib-
rium, as the first agent can choose to change its first action
choice and so receive a higher reward by instead reaching

2For single-agent examples of dynamic potential-based re-
ward shaping providing beneficial gains in learning time we
refer the reader to any existing published implementation
[10, 11, 12, 13].

s1start

s2

s3

s4 +10

s5 −10

s6 +5

a,*

b,*

a,a;b,b

a,b;b,a

,

,

,

,

Figure 3: Boutilier’s Coordination Game

state s3.
As before we will compare the behaviour of agents with

and without random dynamic potential-based reward shap-
ing. Each agent will randomly assign its own potential to
a new state upon entering it and be rewarded that poten-
tial discounted by γ less the potential of the previous state
at the time it was entered. Therefore, each agent receives
its own dynamic reward shaping unique to its own potential
function. These experimental results are intended to show,
that regardless of dynamic potential-based reward shaping,
the shaped agents will only ever converge to one of the three
original joint policy Nash equilibria.

The uniform random function will again choose potentials
in the range 0 to 50. It is worthwhile to note here that, in
this problem domain, the additional rewards from shaping
will often be larger than those received from the environment
when following the optimal policy.

The negative bias random function will choose potentials
in the range 35 to 50 for state s5 (the suboptimal state) or
0 to 15 for all other states. This potential function is bias
towards the suboptimal policy, as any transition into state
s5 will be rewarded at least as high as the true reward for
following the optimal policy.

All agents, both with and without reward shaping, use Q-
learning with ε-greedy exploration and a tabular representa-
tion of the environment. Experimental parameters were set
as α = 0.5,γ = 0.99 and ε begins at 0.3 and decays by 0.99
each episode.

4.2.1 Results
All experiments were run for 500 episodes (15,000 action

choices) and repeated 100 times. The results, illustrated
in Figures 4, 5 and 6, plot the mean percentage of the last
100 episodes performing the optimal, safety and sub-optimal
joint policies for the non-shaped and shaped agents. All
figures include error bars illustrating the standard error from
the mean. For clarity, graphs are plotted only up to 250
episodes as by this time all experiments had converged to a
stable joint policy.

Figure 4 shows that the agents without reward shaping
rarely (less than ten percent of the time) learn to perform
the optimal policy. However, as illustrated by Figures 5
and 6, both sets of agents with dynamic reward shaping
learn the optimal policy more often.

438

Figure 4: Without Reward Shaping

Figure 5: With Uniform Random Dynamic Reward
Shaping

Figure 6: With Negative Bias Random Dynamic Re-
ward Shaping

Therefore, in this domain, unlike the single-agent exam-
ple, the dynamic reward shaping has been beneficial to final
performance. This has occured because the agents’ modified
exploration has led to convergence to a different Nash equi-
librium. However, please note, the agents never converge to

perform the suboptimal joint policy. Instead the agents will
only ever converge to the safety or optimal joint policies; the
Nash equilibria of the unshaped and shaped systems. Thus
demonstrating that even with dynamic reward transforma-
tions that never stabilise the Nash equilibria of the system
remain the same provided the transformations are potential
based.

5. CONCLUSION
In conclusion we have proven that a dynamic potential

function can be used to shape an agent without altering its
optimal policy provided the additional reward given is of the
form:

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t)

If multiple agents are acting in the same environment
then, instead, the result becomes that the Nash equilibria re-
main consistent regardless of how many agents are receiving
dynamic potential-based reward shaping.

Contrary to previous opinion, the dynamic potential func-
tion does not need to converge before the agent receiving
shaping can as we have both theoretically argued and em-
pirically demonstrated.

We have also proved that, although there is an equivalent
Q-table initialisation to static potential-based reward shap-
ing, it is not equivalent to dynamic potential-based reward
shaping. We claim that no prior-initialisation can capture
the behaviour of an agent acting due to a dynamic potential-
based reward shaping as the changes that may occur are not
necessarily known before learning begins.

Therefore, the use of dynamic potential-based reward shap-
ing to inform agents of knowledge that has changed whilst
they are learning is a feature unique to this method.

These results justify a number of pre-existing implementa-
tions of dynamic reward shaping [10, 11, 12, 13] and enable
ongoing research into automated processes of generating po-
tential functions.

6. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

significant feedback and subsequent input to this paper.

7. REFERENCES
[1] J. Asmuth, M. Littman, and R. Zinkov.

Potential-based shaping in model-based reinforcement
learning. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, pages 604–609,
2008.

[2] M. Babes, E. de Cote, and M. Littman. Social reward
shaping in the prisoner’s dilemma. In Proceedings of
The Seventh Annual International Conference on
Autonomous Agents and Multiagent Systems,
volume 3, pages 1389–1392, 2008.

[3] D. P. Bertsekas. Dynamic Programming and Optimal
Control (2 Vol Set). Athena Scientific, 3rd edition,
2007.

[4] C. Boutilier. Sequential optimality and coordination in
multiagent systems. In International Joint Conference
on Artificial Intelligence, volume 16, pages 478–485,
1999.

439

[5] L. Busoniu, R. Babuska, and B. De Schutter. A
Comprehensive Survey of MultiAgent Reinforcement
Learning. IEEE Transactions on Systems Man &
Cybernetics Part C Applications and Reviews,
38(2):156, 2008.

[6] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the National Conference on
Artificial Intelligence, pages 746–752, 1998.

[7] S. Devlin, M. Grześ, and D. Kudenko. An empirical
study of potential-based reward shaping and advice in
complex, multi-agent systems. Advances in Complex
Systems, 2011.

[8] S. Devlin and D. Kudenko. Theoretical considerations
of potential-based reward shaping for multi-agent
systems. In Proceedings of The Tenth Annual
International Conference on Autonomous Agents and
Multiagent Systems, 2011.

[9] J. Filar and K. Vrieze. Competitive Markov decision
processes. Springer Verlag, 1997.

[10] M. Grześ and D. Kudenko. Plan-based reward shaping
for reinforcement learning. In Proceedings of the 4th
IEEE International Conference on Intelligent Systems
(IS’08), pages 22–29. IEEE, 2008.

[11] M. Grześ and D. Kudenko. Online learning of shaping
rewards in reinforcement learning. Artificial Neural
Networks-ICANN 2010, pages 541–550, 2010.

[12] A. Laud. Theory and application of reward shaping in
reinforcement learning. PhD thesis, University of
Illinois at Urbana-Champaign, 2004.

[13] B. Marthi. Automatic shaping and decomposition of
reward functions. In Proceedings of the 24th
International Conference on Machine learning, page
608. ACM, 2007.

[14] M. Matarić. Reinforcement learning in the multi-robot
domain. Autonomous Robots, 4(1):73–83, 1997.

[15] A. Y. Ng, D. Harada, and S. J. Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the
16th International Conference on Machine Learning,
pages 278–287, 1999.

[16] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., New York, NY, USA, 1994.

[17] J. Randløv and P. Alstrom. Learning to drive a
bicycle using reinforcement learning and shaping. In
Proceedings of the 15th International Conference on
Machine Learning, pages 463–471, 1998.

[18] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Artificial Intelligence, 171(7):365–377, 2007.

[19] P. Stone and M. Veloso. Team-partitioned,
opaque-transition reinforcement learning. In
Proceedings of the third annual conference on
Autonomous Agents, pages 206–212. ACM, 1999.

[20] R. S. Sutton. Temporal credit assignment in
reinforcement learning. PhD thesis, Department of
Computer Science, University of Massachusetts,
Amherst, 1984.

[21] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[22] C. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3):279–292, 1992.

[23] E. Wiewiora. Potential-based shaping and Q-value
initialization are equivalent. Journal of Artificial
Intelligence Research, 19(1):205–208, 2003.

[24] E. Wiewiora, G. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents. In
Proceedings of the Twentieth International Conference
on Machine Learning, 2003.

440

Learning and Predicting Dynamic Networked Behavior
with Graphical Multiagent Models

Quang Duong† Michael P. Wellman† Satinder Singh† Michael Kearns∗

{qduong,wellman,baveja}@umich.edu mkearns@cis.penn.edu
†Computer Science and Engineering, University of Michigan

∗Computer and Information Science, University of Pennsylvania

ABSTRACT
Factored models of multiagent systems address the complex-
ity of joint behavior by exploiting locality in agent interac-
tions. History-dependent graphical multiagent models (hG-
MMs) further capture dynamics by conditioning behavior
on history. The challenges of modeling real human behav-
ior motivated us to extend the hGMM representation by
distinguishing two types of agent interactions. This dis-
tinction opens the opportunity for learning dependence net-
works that are different from given graphical structures rep-
resenting observed agent interactions. We propose a greedy
algorithm for learning hGMMs from time-series data, in-
ducing both graphical structure and parameters. Our em-
pirical study employs human-subject experiment data for a
dynamic consensus scenario, where agents on a network at-
tempt to reach a unanimous vote. We show that the learned
hGMMs directly expressing joint behavior outperform alter-
natives in predicting dynamic human voting behavior, and
end-game vote results. Analysis of learned graphical struc-
tures reveals patterns of action dependence not directly re-
flected in the original experiment networks.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Multiagent Systems

General Terms
Experimentation, Algorithms, Human Factors

Keywords
graphical models, dynamic behavior, structure learning

1. INTRODUCTION
Modeling dynamic behavior of multiple agents presents

inherent scaling problems due to the exponential size of any
enumerated representation of joint activity. Even if agents
make decisions independently, conditioning actions on each
other’s prior decisions or on commonly observed history in-
duces interdependencies over time. To address this complex-
ity problem, researchers have exploited the localized effects

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of agent decisions by employing graphical models of multia-
gent behavior. This approach has produced several (related)
graphical representations capturing various facets of multia-
gent interaction [9, 11, 6, 5, 3]. History-dependent graphical
multiagent models (hGMMs) [4] express multiagent behav-
ior on an undirected graph, and capture dynamic relations
by conditioning actions on history.

Prior work on hGMMs presumes a fixed graph structure
defined by the modeler [4]. However, it is not always appar-
ent how to choose the most salient inter-agent dependencies
for accurate and tractable modeling. We seek methods for
inducing hGMM structures from observational data about
dynamic multiagent scenarios. In the process, we also ex-
tend the flexibility of hGMMs by allowing distinct depen-
dence structures for within-time and across-time probabilis-
tic relationships.

We empirically evaluate our techniques with data from
laboratory experiments on dynamic consensus [8]. Human
subjects were arranged on a network, specifying for each
subject (also called agent) the set of others whose current
choices are observable. The network associated with each
experiment provides a basis for expecting that joint agent
behavior may exhibit some locality that we can exploit in a
graphical model for prediction.

We stress that the graph structure of the optimal pre-
dictive model need not mirror the experiment network of
the voting scenario, and moreover, the complex experiment
network instances we study render computation on the cor-
responding hGMMs intractable. Therefore, we attempt to
learn the graphical structure and parameters of an hGMM
that can effectively and compactly capture joint dynamic be-
havior. Using human subject data, we evaluate the learned
models’ predictions of voting behavior and compare their
performance with those of different baseline multiagent mod-
els. We generally find that models expressing joint behavior
outperform the alternatives, including models originally pro-
posed by authors of the dynamic consensus experiments, in
predicting voting dynamics. The joint behavior model pro-
vides comparable predictions on the rate of reaching consen-
sus, and superior predictions of which consensus is reached.
We further examine the learned hGMM graphical structures
in order to gain insights about the dependencies driving vot-
ing behavior, as well as the network structure’s effect on
collective action.

Sections 2 provides background information on hGMMs,
and introduces our extension to the modeling framework.
Section 3 describes the dynamic consensus experiments. We
present a variety of candidate model forms in Section 4. Sec-

441

!" !" !"

#$!" #" #%!"

Figure 1: An example hGMM over three time periods. Undirected edges capture correlation among agents
at a point in time. Directed edges (shown here only for agent 1) denote conditioning of an agent’s action on
others’ past actions.

tion 5 provides motivations and details of our greedy model
learning algorithm that simultaneously estimates a model’s
parameters and constructs its interaction graph. Our em-
pirical study in Section 6 compares different models across
three experiment settings, and examines the learned graph
structures against the original experiment networks.

2. HISTORY-DEPENDENT GMMS
We model behavior of n agents over a time interval di-

vided into discrete periods, [0, . . . , T]. At time period t,
agent i ∈ {1, . . . , n} chooses an action ati from its action do-
main, Ai, according to its strategy, σi. Agents can observe
others’ and their own past actions up to time t, as captured
in history Ht = {Ht

1, . . . , H
t
n}, where Ht

i denotes the se-
quence of actions agent i has taken by t. Limited memory
capacity or other computational constraints restrict an agent
to focus attention on a subset of history Ht

i considered in
its probabilistic choice of next action: ati ∼ σi(Ht

i).
A history-dependent graphical multiagent model (hGMM)

[4], hG = (V,E,A, π), is a graphical model with graph ele-
ments V , a set of vertices representing the n agents, and E,
edges capturing pairwise interactions between them. Com-
ponent A = (Ai, . . . , An) represents the action domains, and
π = (π1, . . . , πn) potential functions for each agent. The
graph defines a neighborhood for each agent i: Ni = {j |
(i, j) ∈ E}∪{i}, including i and its neighbors N−i = Ni\{i}.

The hGMM representation captures agent interactions in
dynamic scenarios by conditioning joint agent behavior on
an abstracted history of actions Ht. The history available
to agent i, Ht

Ni
, is the subset of Ht pertaining to agents

in Ni. Each agent i is associated with a potential function
πi(a

t
Ni
| Ht

Ni
):
∏
j∈Ni Aj → R+. The potential of a local

action configuration specifies its likelihood of being included
in the global outcome, conditional on history. Specifically,
the joint distribution of the system’s actions taken at time
t is the normalized product of neighbor potentials [2, 4, 7]:

Pr(at | Ht) =

∏
i πi(a

t
Ni
| Ht

Ni
)

Z
. (1)

The complexity of computing the normalization factor Z
in (1) is exponential in the number of agents, and thus pre-
cludes exact inference and learning in large models. We ap-
proximate Z using the belief propagation method [1], which
has shown good results with reasonable time in sparse cyclic
graphical structures.

We extend the original hGMM representation by distin-
guishing between within-time and across-time dependencies,

as depicted in Figure 1. Formally, we introduce a condition-
ing set Γi for each i, denoting the set of agents whose histo-
ries condition this agent’s potential function: πi(a

t
Ni
| Ht

Γi
).

The neighborhood Ni in this extension governs only the
within-time probabilistic dependencies of node i. With re-
spect to this extended model, the original hGMM [4] corre-
sponds to the special case where Γi = Ni. The joint distri-
bution of actions at time t can be rewritten as:

Pr(at | Ht) =

∏
i πi(a

t
Ni
| Ht

Γi
)

Z
. (2)

3. DYNAMIC CONSENSUS
We evaluate our modeling framework with human-subject

data from a dynamic consensus game [8]. Each agent in this
game chooses to vote either blue (0) or red (1), and can
change votes at any time. Agents are connected in a net-
work, such that agent i can observe the votes of those in
its observation neighborhood NO

i . The scenario terminates
when: (i) agents converge on action a ∈ {0, 1}, in which case
agent i receives reward ri(a) > 0, or (ii) they cannot agree
by the time limit T , in which case rewards are zero. Fig-
ure 2 illustrates the dynamic behavior of an example voting
experiment network.

Agents have varying preferences for the possible consen-
sus outcomes, reflected in their reward functions. As no-
body gets any reward without a unanimous vote, agents
have to balance effort to promote their own preferred out-
comes against the common goal to reach consensus. An-
other important feature of the dynamic consensus game is
that agent i observes the votes of only those in its obser-
vation neighborhood NO

i , and all it is shown of the graph
is the degree of each observation neighbor, and observation
edges among them. This raises the question of how agents
take into account their neighbors’ voting patterns and their
partial knowledge of the experiment network structure.

A series of human-subject experiments were conducted to
study how people behave in 81 different instances of the vot-
ing game [8]. The experimenters varied reward preference
assignments and experiment network structure in these ex-
periment instances, and thus were able to collect data about
these factors’ effects on the consensus voting results, and the
strategies employed. Figure 2 exhibits a run for the exper-
imental network labeled power22, discussed below. Study
goals included developing models to predict a given sce-
nario’s voting outcome, and if a consensus is reached, its
convergence time. This problem also served as the founda-

442

!"

Figure 2: Time snapshots of a lab experiment run where the densely connected minority group that preferred
red exerted strong influences on the blue-leaning majority. The minority group eventually succeeded in
converting all the initial (unfilled) blue votes to (filled) red votes.

tion for analysis of adaptive strategies and theoretical con-
straints on convergence [10].

4. MODELING DYNAMIC VOTING
We present four model forms designed to capture voting

behavior dynamics in the dynamic consensus experiments.
All are expressible as hGMMs. Only the first exploits the
flexibility of hGMMs to express dependence of actions within
a neighborhood given history (2), hence we refer to this as
the joint behavior consensus model (JCM).

The other three forms model agent behaviors individually:
for each agent we specify a probabilistic strategy σi(H

t) =
Pr(ati | Ht

Γi
). Such a formulation captures agent interac-

tions by the conditioning of individual behavior on observed
history. The agents’ actions are probabilistically dependent,
but conditionally independent given this common history,
yielding the joint distribution:

Pr(at | Ht) =
∏

i

σi(H
t). (3)

We refer to a dynamic multiagent model expressible by (3)
as an individual behavior hGMM (IBMM). Conditional in-
dependence given history is a compelling assumption for au-
tonomous agents. Indeed, independent choice may even be
considered definitional for autonomy. In practice, however,
it is often infeasible to specify the entire history for condi-
tioning due to finite memory and computational power, and
the assumption may not hold with respect to partial history.
History abstraction generally introduces correlations among
agents actions, even if they are independently generated on
full history [4]. Nevertheless, assuming conditional indepen-
dence between agents’ actions given history exponentially
reduces the model’s complexity, or more specifically, the rep-
resentational complexity of the joint probability distribution
over the system’s actions.

The first of three IBMMs we present is designed as an
independent behavior version of the JCM; thus, we call it
simply the individual behavior consensus model (ICM). The
remaining two models are based on proposals and observa-
tions from the original experimental analysis [8], and are
labeled proportional response model (PRM) and sticky pro-
portional response model (sPRM), respectively.

4.1 Joint Behavior Consensus Model
Based on observations from the original experiment anal-

ysis, we seek to formulate a potential function for JCM that
captures the impact of past collective choices of i’s neigh-
borhood, i’s own past voting patterns, and its relative pref-
erence for each action.

First, we consider how to summarize a history Ht
Γi

of
length h relevant to agent i. Let indicator I(ai, ak) = 1
if ai = ak and 0 otherwise. We define f(ai, H

t
Γi

) as the
frequency of action ai being chosen by other agents in i’s
conditioning set, which by definition contains nodes whose
past influence how i chooses its action in the present,

f(ai, H
t
Γi) =

∑
k∈Γi\{i}

∑t−1
τ=t−h I(ai, a

τ
k) + ε

h|Γi \ {i}|
. (4)

We add ε = 0.01 to the numerator to ensure that the fre-
quency term does not vanish when ai does not appear in
Ht

Γi
.

Second, we capture agent i’s own update history in an
inertia term,

I(ai, H
t
i) =

{
t−maxτ<t τ(1− I(aτi , ai)) if ai = at−1

i

[t−maxτ<t τ(1− I(aτi , ai))]
−1 otherwise

In other words, we model agent i’s voting inertia as propor-
tional to how long it has maintained its most recent action
at−1
i . We treat inertia as a factor tending to support the

candidate of retaining the same action. If the candidate ac-
tion ai is different from at−1

i , the term expresses the inverse
of this inertia factor.

Third, we define ri(aNi) as the product of ri(ai) and
a heuristic attenuation based on how many nodes in the
within-time neighborhood currently vote differently:

ri(aNi) = α
∑
k∈Ni (1−I(ai,ak))

ri(ai),

where α ∈ [0, 1]. In our study, we set α = 0.9. Observe that
ri(aNi) as defined is increasing in the number of i’s neighbors
voting ai, reflecting the positive influence of neighbor choices
on i.

The potential function for agent i combines these terms,

πi(aNi | Ht
Γi) = ri(aNi)f(ai, H

t
Γi)

γI(ai, H
t
i)
β , (5)

where γ, β ≥ 0 denote the weight or importance of the his-
torical frequency f(ai, H

t
Γi

) and the inertia I(ai, H
t
i) rela-

tive to the estimated reward ri(aNi). The normalized prod-
uct of these potentials specifies joint behavior as described
in (2). The model maintains two free parameters β and γ.

4.2 Individual Behavior Consensus Model
The ICM for dynamic consensus retains the main elements

of JCM (5), while imposing conditional independence among
agents’ actions given the common history. The result is a
within-time neighborhood Ni that contains only i itself for

443

each i. The probabilistic ICM behavior is then given by:

Pr(ai | Ht
Γi) =

1

Zi
ri(ai)f(ai, H

t
Γi)

γI(ai, H
t
i)
β .

The normalization ranges only over single-agent actions ai ∈
Ai, thus Zi is easy to compute for this model.

4.3 Proportional Response Model
We also consider for comparison the proportional response

model, PRM, suggested in the original dynamic consensus
study [8] as a reasonably accurate predictor of their exper-
iments’ final outcomes. PRM specifies that voter i chooses
action ai at time t with probability proportional to ri(ai)
and g(ai, a

t−1
Γi

), the number of i’s neighbors who chose ai in
the last time period,

Pr(ai | Ht
Γi) ∝ ri(ai)g(ai, a

t−1
Γi

).

4.4 Sticky Proportional Response Model
PRM does not capture the subjects’ tendency to start

with their preferred option, reconsidering their votes only af-
ter collecting additional information about their neighbors
over several time periods [8]. Therefore, we introduce the
sticky proportional response model, sPRM, which contains
a parameter ρ ∈ [−1, 1] reflecting an agent’s stubbornness
in maintaining its preferred option, regardless of observed
neighbors’ past choices. Intuitively, an agent’s inherent bias
toward its preferred option decays proportionally until there
is no bias:

Pr(ai | Ht
Γi) ∝ ri(ai)g(ai, a

t−1
Γi

)(1 +
Imax
ai ρ

t
),

where Imax
ai = 1 if ai = arg max ri(a) and Imax

ai = 0 other-
wise.

5. LEARNING

5.1 Parameter Learning
We first address the problem of learning the parameters of

an hGMM hG given the underlying graphical structure and
data in the form of a set of joint actions for m time steps,
X = (a0, . . . , am). For ease of exposition, let θ denote the
set of all the parameters that define the hGMM’s potential
functions. We seek to find θ maximizing the log likelihood
of X,

LhG(X; θ) =

m−h∑

k=0

ln(Pr hG(ak+h | (ak, . . . , ak+h−1)); θ)).

We use gradient ascent to update the parameters: θ ←
θ + λ∇θ, where the gradient is ∇θ = ∂LhG (X;θ)

∂θ
, and λ is

the learning rate, stopping when the gradient is below some
threshold. We employ this same technique to learn the pa-
rameters of all model forms, except for the PRM which con-
tains no parameters, in our study.

5.2 Structure Learning
Each of the consensus voting experiments involves 36 hu-

man subjects. The largest neighborhood size in these games
ranges from 16 to 20, rendering computing exact data likeli-
hood for a joint behavior model of this complexity (required
for parameter learning described above) infeasible. Prelimi-
nary trials with the belief propagation approximation algo-
rithm [1] on these models, where N = Γ = NO, indicated

that this computational saving would still be insufficient for
effective learning. Thus, we need to employ models with
simpler graphs in order to take advantage of hGMMs’ ex-
pressiveness in representing joint behavior. Toward this end,
we developed a structure learning algorithm that produces
graphs for hGMMs within specified complexity constraints.

Though dictated by computational necessity, automated
structure learning has additional advantages. First, there is
no inherent reason that the observation graph should con-
stitute the ideal structure for a predictive graphical model
for agent behavior. In other words, the most effective N is
not necessarily the same as NO. Since actual agent behav-
ior is naturally conditioned on its observable history, we do
assume that the conditioning set coincides with the observa-
tion neighborhood, Γ = NO. Nevertheless, once we abstract
the history representation it may well turn out that non-local
historical activity provides more useful predictive informa-
tion. If so, the structure of the learned graph that defines
each i’s within-time neighborhood may provide interesting
insights on the agents’ networked behavior.

Our structure learning algorithm addresses the problem
of learning Ni for every i, taking Γi = NO

i as fixed. Note
that the IBMMs described in Section 4 impose Ni = {i}
for each i, and thus do not need to learn the within-time
graphs. Starting from an empty graph, we greedily add
edges to improve the log-likelihood of the training data, sub-
ject to a constraint that the maximum node degree not ex-
ceed a specified bound dmax. Since the set of edges E is
the only structural model feature that changes during our
search, we use LE(X; θ) to abbreviate LhG(X; θ) as induced
by the hGMM hG = (V,E,A,Γ,π). We have found that
the optimal settings of our parameters θ = (β, γ) is insen-
sitive to within-time dependencies, hence we apply the pa-
rameter learning operation (Section 5.1) only once, at the
beginning of our search. The algorithm is defined formally
below.

1: E ← ∅
2: Use gradient descent to identify θ ≈ arg maxLE(X; θ).

3: Ẽ ← {(i, j) | i ∈ V, j ∈ V }
4: repeat
5: newedge ← false
6: (i∗, j∗)← arg max(i,j)∈Ẽ LE∪(i,j)(X; θ)

7: if LE∪(i∗,j∗)(X; θ) ≥ LE(X; θ) then
8: E ← E ∪ {(i∗, j∗)}
9: newedge ← true

10: end if
11: Ẽ ← Ẽ \ {(i∗, j∗)} \ {(i, j) | max(|Ni|, |Nj | = dmax}
12: until Ẽ = ∅ ∨ newedge = false

5.3 Evaluation
We evaluate the learned multiagent models by their abil-

ity to predict future outcomes, as represented by a test set
Y . Given two models M1 and M2, we compute their cor-
responding log-likelihood measures for the test data set Y :
LM1(Y) and LM2(Y). Note that since log-likelihood is neg-
ative, we instead examine the negative log-likelihood mea-
sures, which means that M1 is better than M2 predicting Y
if −LM1(Y) < −LM2(Y), and vice versa.

6. EMPIRICAL STUDY
We empirically evaluate the predictive power of JCMs in

comparison with ICMs, PRMs, and sPRMs, using the dy-

444

h=1 h=5

power22, delta=0.5
ne

ga
tiv

e
lo

g
lik

el
ih

oo
d

0
5

10
15

20
25

h=1 h=5

power22, delta=1.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
5

10
15

h=1 h=5

coER_2, delta=0.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
5

10
20

30

h=1 h=5

coER_2, delta=1.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
5

10
15

20
25

h=1 h=5

coPA_2, delta=0.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
5

10
20

JCM
ICM
PRM
sPRM

h=1 h=5

coPA_2, delta=1.5

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
5

10
15

20

JCM
ICM
PRM
sPRM

Figure 3: JCMs provide better predictions of the system’s dynamics than ICMs, PRMs, and sPRMs in twelve
settings: the three experiment networks power22 (left), coER 2 (middle), and coPA 2 (right), each for two
history lengths, using time discretization intervals δ = 0.5 (top) and δ = 1.5 (bottom). The prediction quality
differences between JCM and ICM are significant (p < 0.025) in all scenarios.

namic consensus experiment data [8]. We also examine the
graphs induced by structure learning, and relate them to
the corresponding observation networks by various statisti-
cal measures.

6.1 Experiment Settings
The human-subject experiments are divided into nine dif-

ferent sets, each associated with a network structure. These
structures differ qualitatively in various ways, characterized
by node degree distribution, ratio of inter-group and intra-
group edges, and the existence of a well-connected minority
[8]. In particular, networks whose edges are generated by
a random Erdos-Renyi (ER) process have a notably more
heavy-tailed degree distribution than those generated by
a preferential attachment (PA) process. For each exper-
imental trial, human subjects were randomly assigned to
nodes in the designated network structure, and preferences
based on one of three possible incentive schemes. Since sub-
jects in these experiments can change their votes at any
time, the resulting data is a stream of asynchronous vote ac-
tions. We discretize these streams for data analysis, record-
ing the subjects’ votes at the end of each time interval of
length δ seconds. Our experiments examine interval lengths
δ ∈ {0.5, 1.5}.

In our study, we learn predictive models for each experi-
ment network structure, pooling data across subject assign-
ments and incentive schemes. This approach is based on the
premise that network structure is the main factor govern-
ing the system’s collective behavior, in line with the original
study findings [8]. In each experiment set, we use eight of
the nine trials for training the predictive models for each
form. The within-time graphs are learned with node degree
constraint dmax = 10. We then evaluate the models based
on their predictions over a test set comprising the left-out

experimental trial. This process is repeated five times, with
a different randomly chosen trial reserved for testing. Each
data point in our reported empirical results averages over
these five repetitions.

Using the original experiment labels, we distinguish three
experiment networks according to their graph generator pro-
cesses and the existence of a minority group of well-connected
nodes that share the same vote preference (see Table 1).

Table 1: Voting Experiment Settings
Label Strong Minority Graph Generator Process

coER 2 No Erdos-Renyi
coPA 2 No Preferential attachment
power22 Yes Preferential attachment

6.2 Predictions

JCM ICM oJCM

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

0
1

2
3

4
5

6

JCM ICM oJCM experiment

blue red

co
ns

en
su

s
pr

ob
ab

ili
ty

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 5: oJCMs provide worse predictions than
JCMs and ICMs for both the system’s dynamics and
end-game results (power22, h = 1 and δ = 0.5).

445

JCM ICM PRM experiment

power22, delta=0.5
co

ns
en

su
s

pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

JCM ICM PRM experiment

power22, delta=1.5

co
ns

en
su

s
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

JCM ICM PRM experiment

coER_2, delta=0.5

co
ns

en
su

s
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

JCM ICM PRM experiment

coER_2, delta=1.5

co
ns

en
su

s
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

JCM ICM PRM experiment

blue
red

coPA_2, delta=0.5

co
ns

en
su

s
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

JCM ICM PRM experiment

coPA_2, delta=1.5

co
ns

en
su

s
pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: JCM predictions on the probability of reaching consensus are lower than predictions from ICMs and
PRMs, as well as experiment outcomes. However, the JCM is significantly more accurate than ICMs or PRMs
on predicting the ultimate consensus colors.

We first examine predictions of subjects’ votes in each
time period conditional on available history. A compari-
son of four models on twelve scenarios is presented in Fig-
ure 3. We measure predictive performance by negative log-
likelihood of the test data, according to the respective mod-
els. JCMs perform better than ICMs, PRMs, sPRMs, in
predicting dynamic behavior in the dynamic consensus ex-
periments for all three experiment settings, given data dis-
cretized at interval lengths of 0.5 and 1.5 (differences signifi-
cant at p < 0.025). Both the JCM and ICM representations,
which share similar fundamental elements, handily outper-
form PRM and its sticky version sPRM.

Contrary to the expectation that the less historical infor-
mation a model uses, the lower its prediction performance,
JCMs and ICMs that employ only the last h = 1 period
of historical data generate similar predictions to those with
h = 5. This phenomenon is likely a consequence of the
heuristic nature of the frequency function (4), and moreover
may indicate that some human subjects take into account
only a short history of their neighbors’ actions when choos-
ing their own actions. All models perform worse with the
larger time interval δ = 1.5, which is unsurprising in that
the coarser discretization entails aggregating data. More
salient is that the results are qualitatively identical for the
two δ settings, further illustrating the robustness of our find-
ings. These results in general demonstrate JCMs’ ability to
capture joint dynamic behavior, especially behavior inter-
dependencies induced by limited historical information, as
opposed to the IBMM alternatives.

We next evaluate the models’ ability to predict the end
state of a dynamic consensus experiment. As noted above,
the original aim of modeling in these domains was to predict
this final outcome. For a particular model M , we start a
simulation run with agents choosing their preferred colors,
and then proceed to draw samples from M for each time
period until a consensus is reached or the number of time
periods exceeds the time limit. We average over 100 run
instances for each environment setting and model. As we do

not observe any considerably qualitative differences in the
models’ end-game predictions for different history lengths
h, we choose to display only results for h = 1 henceforth.

The proportion of simulation instances reaching consen-
sus induced by ICMs and PRMs correlates with observed
experiment results, as shown in Figure 4.1 Simulated runs
drawn from JCMs converge to consensus at lower rates than
in ICMs, PRMs, and human-subject experiments in general.
However, their end-game predictions improve with greater
δ = 1.5, especially in the power22 setting where JCMs pre-
dict the experiment outcomes almost exactly. A closer look
at the end-game prediction results reveals a different picture
about the relative performances of the three models. In par-
ticular, the individual behavior models’ predictions on the
final consensus color are considerably out of line with the
actual experiments for both coER 2 and power22, rendering
them ineffective in predicting end-game color results. JCMs,
on the other hand, provide significantly more accurate pre-
dictions on the consensus color in the power22 setting. The
ratio between blue and red consensus instances by JCMs in
coPA 2 resembles that of the actual experiments more than
ICMs and PRMs. In the coER 2 setting all models’ predic-
tions on the favored consensus color (blue) miss the actual
experiments’ favored consensus color (red), though the ra-
tio of red-to-blue consensus predicted by JCM is less skewed
than that of ICMs and PRMs.

Last, we demonstrate the benefits of our extension to the
original hGMM representation by comparing the JCM rep-
resentation against oJCM, which retains the original hGMM
definition, assuming that the conditioning set is identical to
the learned within-time neighborhood: Γ = N. Figure 5
shows that oJCMs perform worse than both JCMs and ICMs
in predicting the system’s votes for each time period and
end-game results, for the power22 setting with h = 1 and

1End-game results from sPRMs are similar to those from
PRMs, and not shown here.

446

δ = 0.5.2 Moreover, we note that the resulting graphs by
oJCMs contain disconnected node subsets, which potentially
prevent vote decisions to propagate throughout the network,
causing failures in producing any consensus instances.

6.3 Graph Analysis

pr
op

or
tio

n
of

 a
ll

ed
ge

s

0.0

0.2

0.4

0.6

0.8

1.0

ob
se

rv
at

ion
 (p

ow
er

22
)

with
in−

tim
e

(p
ow

er
22

)

ob
se

rv
at

ion
 (c

oE
R_2

)

with
in−

tim
e

(c
oE

R_2
)

ob
se

rv
at

ion
 (c

oP
A_2

)

with
in−

tim
e

(c
oP

A_2
)

intra red intra blue inter

Figure 6: Distributions of edges from three different
categories, intra red, intra blue, and inter, in the
given observation and learned within-time graphs
for JCM (δ = 0.5).

In this section, we seek to characterize the learned edges
that define N in the JCM representation, and discover con-
nections between the learned graphs and the aforementioned
prediction results. First, we categorize edges by their end-
point nodes’ vote preferences: we refer to edges that connect
two red (blue) nodes as intra red (blue), and those between
red and blue nodes as inter edges. Figure 6 presents the
proportion of each edge type in both the given observation
graphs and the learned within-time graphs. While a ma-
jority of edges in the observation graphs are inter edges,
the within-time graphs that define N consist mostly of intra
edges. That is, there are more interdependencies in JCMs
among agents of the same preference than among conflicting
agents. The ability to discover these inter edges and incor-
porate the information they carry in its joint action distri-
bution may help the JCM representation to better capture
dynamic behavior and end-game results, as illustrated and
discussed in Section 6.2. For the power22 setting in particu-
lar, JCMs often assign a majority of edges as intra red, and
thus effectively identify the presence of a strongly connected
red minority who dictated end-game colors in the actual
experiments. This construction allows JCMs to predict end-
game consensus colors much more accurately than ICMs and
PRMs, which rely entirely on the observation graphs.

We further investigate whether these proportion measures
provide any predictions on the number of consensus instances
induced by JCMs. We pool data from the three experi-
ment settings—power22, coPA 2, and coER 2—and com-
pute a simple linear regression of the number of red (blue)
consensus instances with respect to the proportion of intra
red (blue) edges. The resulting regression coefficients are
statistically significant for both blue and red (p < 0.05).

2We also obtain similar results for oJCMs in other experi-
ment settings and environment parameters, which are not
shown here.

Figure 7 suggests that a weak positive correlation between
the within-time graphs’ intra edges and the number of con-
sensus instances. Intuitively, more interdependence between
same-preference nodes allows them to have more influence
on one another, helping to diffuse vote choices more rapidly
throughout the system.

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

proportion of intra blue edges

bl
ue

 c
on

se
ns

us
 in

st
an

ce
s

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

proportion of intra red edges

re
d

co
ns

en
su

s
in

st
an

ce
s

Figure 7: The number of consensus instances in blue
(left) and red (right), and proportion of JCM intra
edges of the corresponding colors.

We next examine JCM edges in terms of how far apart
are the nodes they connect in the observation graph. Let
φi,j ≥ 1 denote the length of shortest path from i to j in
the observation graph. Given a graph G on the same set of
nodes, we can calculate the proportion of edges in G that
connect nodes separated by a certain distance in the origi-
nal observation graph. Figure 8 presents the profile of such
distances for pairs of nodes in the learned JCMs. For com-
parison, the profiles labeled “fully connected” simply reflect
the distribution of node distances in the original observa-
tion graph: most of the nodes are one hop or less apart from
each other (φ ≤ 2), and the modal distance is φ = 2. A
large majority of edges in the learned within-time graphs
have φ = 2, that is, are close but not connected in the ob-
servation graphs.

pr
op

or
tio

n
of

 a
ll

ed
ge

s

0.0

0.2

0.4

0.6

0.8

1.0

fu
lly

−c
on

ne
cte

d
(p

ow
er

22
)

with
in−

tim
e

(p
ow

er
22

)

fu
lly

−c
on

ne
cte

d
(c

oE
R_2

)

with
in−

tim
e

(c
oE

R_2
)

fu
lly

−c
on

ne
cte

d
(c

oP
A_2

)

with
in−

tim
e

(c
oP

A_2
)

phi=1 phi=2 phi=3 phi=4

Figure 8: Distributions of edges in the within-time
graphs based on the distance between their end-
nodes φ in the observation graph (δ = 0.5).

Next we compare the assortativity [12] of the learned and
original graphs. A graph G’s assortativity coefficient in
[−1, 1] captures the tendency for nodes to attach to others
that are similar (positive values) or different (negative val-
ues) in connectivity. As illustrated in Figure 9, the large dif-
ference in assortativity for the power22 setting stresses the

447

JCM’s ability to discover interdependencies among agents’
actions that are not captured in the observation graph. In
particular, the resulting JCMs are able to capture action
correlations among nodes of similar degrees in the power22
setting, where the minority nodes are more densely con-
nected than the majority, confirming the findings by afore-
mentioned graph analyses on intra and inter edges. We also
investigate the sparsity of the learned graphs for different
values of δ. Our sparsity measure is the number of edges
in the learned within-time graph divided by the number of
edges in the corresponding observation graph. Figure 9 il-
lustrates that the within-time graphs become sparser as the
discretization interval shrinks from 1.5 to 0.5 in all experi-
ment settings. Intuitively, the finer grain the discretization
is, the fewer simultaneous vote changes there are in one time
period. As a result, there may be fewer interdependencies
among agents’ actions, which explains the aforementioned
relations between discretization interval and graph sparsity
across all experiment settings.

power22 coER_2 coPA_2

observation within−time

as
so

rt
at

iv
ity

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

power22 coER_2 coPA_2

delta=0.5 delta=1.5

w
ith

in
−

tim
e

ov
er

 o
bs

er
va

tio
n

ed
ge

s

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 9: (left) Assortativity of the observation
graphs and the learned within-time graphs (δ = 0.5).
(right) Sparsity of the within-time graphs.

7. CONCLUSIONS
Our main result is a demonstration of the feasibility of

learning probabilistic models of dynamic multiagent behav-
ior from real traces of agent activity on a network. To ac-
complish this we extend the original hGMM framework [4],
by distinguishing within-time dependencies from condition-
ing sets, and introducing a structure-learning algorithm to
induce these dependencies from time-series data. We eval-
uated our techniques by learning compact graphs captur-
ing the dynamics of human-subject voting behavior on a
network. Our investigation finds that the learned joint be-
havior model provides better predictions of dynamic behav-
ior than several individual behavior models, including the
proportional-response models suggested by the original ex-
perimental analysis. This provides evidence that express-
ing joint behavior is important for dynamic modeling, even
given partial history information for conditioning individual
behavior. Our graph analysis further reveals characteris-
tics of the learned within-time graphs that provide insights
about patterns of agent interdependence, and their relation
to structure of the agent interaction network.

We plan to improve the learning algorithm for individ-
ual behavior models, by replacing the maximum-degree con-
straint with a cross-validation condition that can better help
avoid over-fitting. Given the formalism’s generality, we con-

sider it promising to apply our modeling technique to simi-
lar problem domains, such as graph coloring, where agents
must coordinate their actions or make collective decisions
while only communicating with their neighbors, as well as
large network scenarios, such as social networks and Internet
protocols.

8. REFERENCES
[1] J. Y. Broadway, J. S. Yedidia, W. T. Freeman, and

Y. Weiss. Generalized belief propagation. In
Thirteenth Annual Conference on Advances in Neural
Information Processing Systems, pages 689–695,
Denver, 2000.

[2] C. Daskalakis and C. H. Papadimitriou. Computing
pure Nash equilibria in graphical games via Markov
random fields. In Seventh ACM conference on
Electronic Commerce, pages 91–99, Ann Arbor, MI,
2006.

[3] Q. Duong, M. P. Wellman, and S. Singh. Knowledge
combination in graphical multiagent models. In
Twenty-Fourth Conference on Uncertainty in Artificial
Intelligence, pages 153–160, Helsinki, 2008.

[4] Q. Duong, M. P. Wellman, S. Singh, and
Y. Vorobeychik. History-dependent graphical
multiagent models. In Ninth International Conference
on Autonomous Agents and Multiagent Systems, pages
1215–1222, Toronto, 2010.

[5] Y. Gal and A. Pfeffer. Networks of influence diagrams:
A formalism for representing agents’ beliefs and
decision-making processes. Journal of Artificial
Intelligence Research, 33:109–147, 2008.

[6] A. X. Jiang, K. Leyton-Brown, and N. A. R. Bhat.
Action-graph games. Games and Economic Behavior,
71:141–173, 2010.

[7] S. Kakade, M. Kearns, J. Langford, and L. Ortiz.
Correlated equilibria in graphical games. In Fourth
ACM Conference on Electronic Commerce, pages
42–47, San Jose, CA, 2003.

[8] M. Kearns, S. Judd, J. Tan, and J. Wortman.
Behavioral experiments on biased voting in networks.
Proceedings of the National Academy of Sciences,
106(5):1347–1352, 2009.

[9] M. Kearns, M. L. Littman, and S. Singh. Graphical
models for game theory. In Seventeenth Conference on
Uncertainty in Artificial Intelligence, pages 253–260,
Seattle, 2001.

[10] M. Kearns and J. Tan. Biased voting and the
Democratic primary problem. In Fourth International
Workshop on Internet and Network Economics, pages
639–652, Shanghai, 2008.

[11] D. Koller and B. Milch. Multi-agent influence
diagrams for representing and solving games. Games
and Economic Behavior, 45:181–221, 2003.

[12] M. E. J. Newman. Mixing patterns in networks.
Physical Review E, 67(2), 2003.

448

Session 3C
Human-agent Interaction

A Cultural Sensitive Agent for Human-Computer
Negotiation

Galit Haim
Bar Ilan University, Israel
haimga@cs.biu.ac.il

Ya’akov (Kobi) Gal
Ben-Gurion University of the

Negev, Israel
kobig@bgu.ac.il

Sarit Kraus
∗

Bar Ilan University, Israel
sarit@cs.biu.ac.il

Michele Gelfand
University of Maryland, USA

mgelfand@umd.edu

ABSTRACT
People’s cultural background has been shown to affect the
way they reach agreements in negotiation and how they ful-
fill these agreements. This paper presents a novel agent de-
sign for negotiating with people from different cultures. Our
setting involved an alternating-offer protocol that allowed
parties to choose the extent to which they kept each of their
agreements during the negotiation. A challenge to designing
agents for such setting is to predict how people reciprocate
their actions over time despite the scarcity of prior data of
their behavior across different cultures. Our methodology
addresses this challenge by combining a decision theoretic
model with classical machine learning techniques to predict
how people respond to offers, and the extent to which they
fulfill agreements. The agent was evaluated empirically by
playing with 157 people in three countries—Lebanon, the
U.S., and Israel—in which people are known to vary widely
in their negotiation behavior. The agent was able to out-
perform people in all countries under conditions that varied
how parties depended on each other at the onset of the ne-
gotiation. This is the first work to show that a computer
agent can learn to outperform people when negotiating in
three countries representing different cultures.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]

General Terms
Experimentation

Keywords
Human-robot/agent interaction, Negotiation

1. INTRODUCTION
The dissemination of technology across geographical and

ethnic borders is opening up opportunities for computer

∗also affiliated with the University of Maryland Institute for
Advanced Computer Studies.

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agents to negotiate with people of diverse cultures and back-
grounds. For example, electronic commerce (e.g., ebay),
crowd-sourcing (e.g., Amazon Turk) and deal-of-the-day ap-
plications (e.g., Groupon) already involve computer agents
that make decisions together with people from different coun-
tries. People’s cultural background has been shown to be a
key determinant of the way they make and keep their agree-
ments with others [7]. It is thus important for agent de-
signers to model how people from various cultures respond
to different kinds of decision-making behavior employed by
others. To succeed in such settings computer agents need to
adapt to the culture and particular behavior of the individ-
ual they interact with.

This paper presents a novel agent-design for settings in
which participants repeatedly negotiate over the exchange of
scarce resources, and agreements are not binding. Such set-
tings characterize the real-world applications shown above,
in that participants make commitments to purchasing items
or carrying out tasks, they can choose whether and how to
fulfill these commitments, and these decisions affect their fu-
ture interactions with the other participants. For example,
a seller that delivers an item very late to a buyer, or does
not deliver an item at all, may be negatively reciprocated
by the buyer in a future transaction.

Prior work has addressed some of the computational chal-
lenges arising in repeated negotiation between people and
computer agents [6, 11]. However, additional challenges
arise when designing agents that adapt to different cultures.
First, agents need to adopt a separate strategy in each cul-
ture, requiring large amounts of data to be collected of peo-
ple’s play in the different cultures. Second, people’s individ-
ual behavior within a culture displays wide variance, as peo-
ple’s strategies are inconsistent and prone to noise [7]. Thus,
a computer agent needs to adapt quickly to the individual
strategy of its negotiation partner over time. To address
the first challenge, we combined a decision-theoretic model
with classical machine learning techniques to model human
behavior in different cultures. The decision-theoretic model
used an influence diagram to efficiently represent and reason
about the negotiation process. The learning techniques were
based on features that represent players’ states in the nego-
tiation, as well as social factors that reflect their generosity
and reliability over time. To address the second challenge,
we collected data in three different countries in which peo-
ple are known to exhibit distinct cultural differences in their

451

negotiation behavior (Israel, Lebanon and the U.S). In or-
der to boost the amount of data available for learning, we
trained the model of people’s play with baseline computer
agents as well as other people.

Our proposed agent incorporated the learned models of
people’s play and solved the influence diagram to make deci-
sions in the game. We evaluated this agent when negotiating
with new people in each of the three countries. Our results
show that the agent was able to outperform people in all
three countries, and in conditions varying how participants
depended on each other’s resources during negotiation. The
agent learned to adapt to the behavior of its negotiation
partner over time in each of the cultures, and used a gen-
eral model of their behavior when little or no history of play
was available. These results demonstrate the need for agent-
designers to model the effects of culture on human behavior
when agents are deployed globally or in multi-cultural set-
tings. It is the first work to show that a computer agent
can learn to outperform people when negotiating in three
different cultures.

There is a body of work in the psychological and social
sciences that investigates cross-cultural behavior among hu-
man negotiators [2]. However, there are scant computa-
tional models of human negotiation behavior that reason
about cultural differences. Past work in AI has used machine
learning and opponent modeling approaches toward build-
ing computer agents that negotiate with people. [13].Jonker
et al. [10] designed an agent architecture that used conces-
sion strategies to avoid impasses in the negotiation. Byde
et al. [1] constructed agents that bargain with people in a
market setting by modeling the likelihood of acceptance of a
deal and allowing agents to renege on their offers. Oshrat et
al. [12] have used learning techniques to model the extent to
which people exhibit different social preferences when they
accept offers in one-shot and multiple interaction scenarios.
To date, all work on human-computer negotiation assumes
that agreements are binding and have relied on prior data
of people’s negotiation behavior. A notable exception is the
work by Gal et al. [5] that proposed an agent for negotiating
with people in the U.S. and Lebanon using the same proto-
col and setting as this work. However, this agent used hand-
designed rules of behavior and did not model its partner in
a formal way. This agent was able to outperform people in
the U.S. but not in Lebanon, whereas our learned agent was
able to outperform people in the U.S., Lebanon and Israel.
Thus, our work is novel in showing that combining decision
theory and machine learning is a better approach towards
building agents in the same settings they considered.

2. IMPLEMENTATION: COLORED TRAILS
Our empirical setting consisted of a game that interleaved

negotiation to reach agreements and decisions of whether
and how much to fulfil the agreement. The game was con-
figured using the Colored Trails (CT) game [4] and played
on a 7x5 board of colored squares. One square on the board
was designated as the goal square. Each player’s icon was
initially located in one of the non-goal positions, eight steps
away from the goal square. To move to an adjacent square, a
player needed to surrender a chip in the color of that square.

At the onset of the game, one of the players was given the
role of proposer, while the other was given the role of re-
sponder. The interaction proceeded in a recurring sequence
of phases, using an alternating offers protocol. In the “nego-

Figure 1: An example of a CT Board

tiation phase”, the player designated as the proposer could
make an offer to the other player, who was designated the
responder. In turn, the responder could accept or reject the
offer. If the offer was rejected, then players switched roles:
the responder became the proposer and the proposer became
the responder. After the counter offer was accepted or re-
jected by the responder, the game moved to the next phase.
In the “transfer phase” both players could choose chips to
transfer to each other. The transfer action was done simul-
taneously, such that neither player could see what the other
player transferred until the end of the phase. A player could
choose to transfer more chips than it agreed to, or any subset
of the chips it agreed to, including transferring no chips at
all. In the “movement phase” both players could move their
icons on the board one step towards the goal square, pro-
vided they had the necessary chip. Players alternated their
roles, such that the first proposer in the previous negotiation
phase was designated as a responder in the next negotiation
phase, and vice versa. These phases repeated until the game
ended, which occurred when one of the following conditions
held: (1) at least one of the participants reached the goal
square; or (2) at least one of the participants remained dor-
mant and did not move for three movement phases.

When the game ended, both participants were automat-
ically moved as close as possible to the goal square, and
their score was computed as follows: 100 bonus points for
getting to the goal square, 5 bonus points for any chip left
in a player’s possession; a 10 point penalty for each square
left in the path from a player’s final possession to the goal
square. These parameters were chosen so that getting to
the goal was by far the most important component, but if a
player could not get to the goal it was preferable to get as
close to the goal as possible. Note that players had full view
of the board and each others’ chips, and thus they had com-
plete knowledge of the game situation at all times during
the negotiation process.

An advantage of using CT is that it provides a realistic
analog to task settings, highlighting the interaction among
goals, tasks required to achieve these goals and resources
needed for completing tasks. In CT, chips correspond to
agent capabilities and skills required to fulfill tasks. Differ-
ent squares on the board represent different types of tasks.
A player’s possession of a chip of a certain color corresponds
to having the skill available for use at that time.

452

We used two different types of boards in the study to rep-
resent different dependency relationships between players.
In one of the boards, neither player could reach the goal
given its initial chip allocation, and there existed at least
one exchange such that both players could reach the goal.
We referred to players in this game as task co-dependent.
In the other board type, one of the players, referred to task
independent, possessed the chips it needed to reach the goal,
while the other player, referred to as task dependent, re-
quired chips from the task-independent player to get to the
goal. An example of the co-dependent board used in our
study is shown in Figure 1. In this game both the “me” icon
and “square” icon players were missing three chips to get to
the goal: The “me” player was missing three yellow chips
whereas the “square” player was missing three gray chips.
The relevant path from the point of view of the “me” player
is outlined.

3. A DYNAMIC MODEL OF INTERACTION
In this section we describe an agent-design termed the Per-

sonality Adaptive Learning (PAL) agent. Before describing
the decision theoretic model used by PAL, we make the fol-
lowing definitions. Let n denote an arbitrary negotiation
phase in the game. For any two participants i and j, let cni
denote the set of chips in possession of i at phase n in the
game. Let on = (oni , o

n
j) denote a proposal at round n in

which oni ⊆ cni is the set of chips that i sends to j, and onj is
the set of chips that j sends to i. Note that the proposal on

can be made by either player i or player j. Let an denote
the other player’s response to on whether to reject or accept
the proposal. Let tni ⊆ cni be the set of chips transferred by
i following the response, and let tnj ⊆ cnj be the set of chips
transferred by j. The protocol allows participants to trans-
fer chips regardless of whether or not an offer is accepted.

The current score for i at round n measures the score in
the game given its chips cni . This is defined as uni (ci).

1 Given
a proposal on at round n, the promised score to player i at
round n measures the score in the game that i would receive
in the case that j was fully reliable and sent onj promised
chips to player i. The reliability measure of player j at round
n, denoted rnj , reflects the extent to which j fulfilled its com-
mitment to send onj chips to i. It is defined as the ratio be-
tween the current score to i after j transferred chips and the
promised score to i. A reliability measure of 1 means that
player j transferred all of its promised chips to i; the extent
to which the reliability measure is lower than 1 represents
the degree to which the player did not fulfill its commitment
for a given agreement, as defined below.

rnj =
ui(c

n
i ∪ tni)

ui(cni ∪ onj)
(1)

Note that the reliability measure of j only depends on the
chips it sent to i, and does not depend on the chips sent by
i to j. The reliability of player i is defined symmetrically,
and omitted for brevity.

PAL uses an influence diagram [9] to efficiently represent
and reason about its decisions over time. An influence di-
agram is a directed acyclic graph containing three kinds of
nodes: chance nodes denoted by ellipses, decision nodes de-

1The score in the game also depends on players’ positions
on the board and the board layout, which we omit for ex-
pository convenience.

sn sn+1 sn+2

on
P on+1

P G

an
H an+1

H fP (sn+2, G)

tn
H tn

P tn+1
H tn+1

P

Figure 2: An Influence Diagram for two rounds of
interaction in the CT game.

noted by gray rectangles, and utility nodes denoted by di-
amonds. Each chance node has an associated conditional
probability distribution (CPD). A utility node has an asso-
ciated deterministic function from values of its parents to
the real numbers. The parents of a decision node represent
information that is known to the decision maker at the time
of making the decision, and are called informational parents.
Each decision and utility node is associated with a particu-
lar agent. An influence diagram representing two rounds of
interaction in the game is shown in Figure 2. Each decision
node is labeled with the corresponding decision for PAL in
the game and appears in gray background. The decision
nodes onP and tnP represent the proposal made by PAL and
the chips it decides to transfer at round n. Similarly, the
decision node on+1

P and tn+1
P represent the proposal made

by PAL and the chips that it decides to transfer at round
n+ 1.

The person’s decisions in the influence diagrams are mod-
eled as chance nodes. The nodes anH and an+1

H represent the
person’s response to the proposal made by PAL in rounds
n and n+ 1. The node tnH and tn+1

H represents the person’s
decision to transfer chips at round n+ 1.

The node sn represents the state of the game at round n.
This node is a parent of all decisions made by both partici-
pants in round n. This represents the fact that the state is
observed by the participants in the game when making their
decisions in each round. The state encapsulates the history
of the game into a tuple that contains relevant information
about the game, as well players’ reliability measures in the
game. The domain relevant information includes players’
positions on the board, their chips, and the number of dor-
mants rounds already played in the game. The reliability
measure for each player is rn, as computed in Equation 1.
The decisions at each round n depend only the state sn and
not on the history of past play. This violates the traditional
“no-forgetting” rule that requires each decision to depend on
all of the previous decisions, but is an acceptable assumption
in repeated negotiation settings [6].

After players make their decisions in round n, the state
sn+1 is updated for both players at each round to reflect the
evolution of the game. This is represented by the edges from
the decisions of both participants in the game at state sn to
node sn+1, shown in dashed outline. In this process, the
domain dependent information is updated to reflect players’
positions and chips in round n. Also the reliability of the

453

person in round n is aggregated using a weighted average:

rnH = (1− α) · rn−1
H + α · rnH (2)

where α is a decaying constant that weighs the past reli-
ability, and is tuned empirically, as we explain in the next
section. The state information sn+2 is updated to reflect the
decisions of participants in round sn+1 in a similar way.

In this section we will assume the existence of the prob-
ability distribution P (tnH | on, an, sn) modeling how people
transfer chips following proposal on and response an at state
sn, and the probability distribution P (an | on, sn) modeling
how people respond to a proposal on in game at round n (we
also assume the existence of the corresponding probability
distributions for modeling people’s play in round n+1). We
detail how we learn these models in the next Section.

A key challenge to designing strategies for PAL in the
game is how to assign credit to intermediate states in the
game. Due to the scarcity of human data, the prediction ac-
curacy of people’s behavior decreases for later stages of the
game, and constructing an influence diagram that spans the
entire game is not feasible. Thus, PAL uses a heuristic value
function to assign utilities to intermediate states. The value
function is an estimate of the score that PAL will receive at
the end of the game. This estimate is based on whether PAL
gets to the goal, its score as computed by the CT scoring
function described in Section 2, and game-relevant informa-
tion such as the dependency relationship between players at
the current state. Specifically, let sm denote an intermediate
state in the game. The node G equals true if PAL will reach
the goal in the future, given that its current state is sm. The
value function is denoted fP (sm, G) and equals PAL’s score
in the game given that its chip set is modified by a constant
factor as follows: If PAL can get to the goal independently
of the other participant, this constant is large. If PAL is
dependent on the other player to get to the goal, this con-
stant is smaller, and depends on the extent to which PAL
is dependent on the other. Solving the influence diagram
shown in Figure 2, sn+2 is chosen to be the final state and
the utility node fP (sn+2, G) represents the value function at
that state.

Lastly, as can be seen in the influence diagram, the PAL
agent is assumed to be the proposer in both rounds n and
n+ 1. This significantly facilitated inference in the decision
tree, because we did not need to learn a model of people’s
proposals. Given that there were 24 chips given to each
player (see Figure 1 for an example of a board game), con-
sidering every possible proposal is infeasible. This protocol
is correct for half of the game instances we collected in our
setting (when PAL makes a counter proposal and is chosen
to make the proposal in the next round). As we show in
the Empirical section, this assumption did not impede the
agent’s performance.

Solving the influence diagram provides a strategy for PAL
for any of its decisions given that final state is sm. To this
end, the influence diagram is converted to a decision tree
and solved using backward induction. The results of this
process are as follows. In the final state sm, PAL’s utility
is computed using the value function fP (G, sm) given the
probability distribution P (G | sm) (whether PAL reaches
the goal)

ESP (. | sm) = P (G | sm) ·fP (G, sm)+P (G | sm) ·fP (G, sm)
(3)

For any state n < m, we list the equations that corre-
spond to solving the influence diagram for each of PAL’s
decisions. Suppose that PAL’s decision is how many chips
to transfer at round n after proposal on and response an.
The expected score to PAL from transferring tnP chips is
denoted ESP (tnP | on, an, sn) and depends on its model
P (tnH | on, sn) of people’s reliability.

ESP (tnP | on, an, sn) =
∑

tn
H
⊆on

P (tnH | onP , sn)·

max
o
∗,n+1
P

ESP (o∗,n+1
P | sn+1)

(4)

where sn+1 is the updated state that realizes players’ chips
given that PAL transferred tnP chips and the human trans-
ferred tnH chips, and ESP (o∗,n+1

P | sn+1) is the score to PAL
from the best proposal to make in the next state sn+1.

Suppose that PAL’s decision is what proposal to make
at round n. The expected score to PAL from making a
proposal on depends on its model P (anH | on, sn) of how
people respond to proposals. The expected utility to PAL
from proposal on is denoted ESP (onP | sn) and computed as

ESP (onP | sn) =
∑

an
H
∈yes,no

P (anH | onP , sn)·

max
t
∗,n
P
⊆cn
P

ESP (t∗,nP | onP , anH , sn)
(5)

where anH is the response of the person in round n, cnP is
the set of chips in PAL’s possession, and t∗,nP is the set of
chips that PAL transfers that maximize its expected utility
ESP (t∗,nP | onP , anH , sn) defined in Equation 4.

Lastly, suppose that PAL’s decision is whether to accept
a proposal onH from the person at round n. The expected
score to PAL of its response anP to the proposal is denoted
ESP (anP | onP , sn) and is computed as

ESP (anP | sn) = maxt∗,n
P
⊆cn
P
ESP (t∗,nP | on, a∗,nP , sn) (6)

where t∗,nP is the set of chips that PAL transfers that max-
imize its expected utility ESP (t∗,nP | onP , anP , sn) defined in
Equation 4.

4. LEARNING PEOPLE’S BEHAVIOR
In this section we describe how we constructed probabilis-

tic models of people’s behavior from data collected in the
game. We defined a set of features representing aspects of
the game as well as players’ reliability measures. We trained
classifiers for predicting people’s behavior using the subset
of features that performed well on a held-out set of data
instances, and maximized the likelihood of the training set.
These classifiers were incorporated into the influence dia-
gram described in the last section and used by PAL to adapt
to people’s negotiation behavior in each country.

Past work on human-computer negotiation trained pre-
dictive models of human behavior based on their play with
other people [12, 6]. There were several challenges to using
this methodology in our work. First, it is logistically diffi-
cult to collect data in three countries representing different
cultures under identical laboratory conditions. In particu-
lar, access to subjects in Lebanon was extremely limited.
Second, the repeated nature of the game and the relatively
complex rules required a session of 70-80 minutes to collect a
single game instance. (We expand on the instructions given

454

to subjects in Section 5.) The combination of these two fac-
tors made it difficult to obtain sufficient data instances to
train classifiers from each country. Third, collectivist soci-
eties such as Lebanon are more homogeneous and display less
variance in the extent to which they fulfill commitments [8].
This made it difficult to predict how this population would
respond to a computer player whose strategies differed from
the general population.

To meet these challenges we used three sources of data to
train our classifiers. First, we used the 222 game instances
consisting of people playing the hand-designed agent used
by Gal et al. [5]. In addition, in the U.S. and in Israel, we
were also able to collect 112 game instances of people playing
other people. Lastly, in Lebanon, we collected 64 additional
games in which people played a variant of the agent used
by Gal et al. that was programmed to be significantly less
reliable when fulfilling its agreement. In this way, we were
able to collect data of people’s reactions to more diverse
negotiation behavior in the game.

We defined a general set of salient features that describe
people’s behavior and various aspects of the game. The
features are described below from the point of view of a
general player i at round n in state sn. We first describe
features based on the terms defined in Section 3. The cur-
rent score to i at state sn; the Previous Reliability of i at
round n−1, as measured by the reliability measure of Equa-
tion 1; the Aggregate Reliability at round n, as measured by
the weighted average reliability of Equation 2. We further
define the following additional features: the Offer Generos-
ity of player i, which measured the difference between the
number of chips offered by i and requested by i in a pro-
posal; the Role of player i, (whether proposer or responder);
the number of Dormant Rounds in which i did not move in
the game. (Similar features were defined from the point of
view of the other player j.)

We constructed the following probabilistic models of a
general player i using the data described above. The proba-
bility P (ani | on, sn) that i accepts a proposal onj made by the
other player j at state sn; the probability P (tni | on, an, sn)
that player i transfers chips tni after proposal on and re-
sponse an at state sn. (Note that the proposal on can be
made by either player i or j); the probability P (G | sn) that
i will get to the goal when it is in state sn.

We trained multi-layered neural network classifiers to im-
plement the various models described above using the WEKA
framework.2 We selected the features for each learning task
based on their performance (measured by mean-square clas-
sification error) on a held-out set of instances as well as
measuring the likelihood of the models on the training set.

The best performance for predicting people’s reliability
and proposal acceptance measures was obtained in Israel
and in Lebanon. To explain this, we observe that the relia-
bility of people in the data collected in Lebanon (0.67) was
significantly higher than the reliability of people in the U.S.
(0.289) and in Israel (0.46). This aligns with past studies
showing that people care more about honor in the Middle
East and are thus more reliable than in the U.S. [8].

5. EMPIRICAL METHODOLOGY
2http://www.cs.waikato.ac.nz/ml/weka/. The continu-
ous measure of people’s reliability was discretized to facili-
tate learning.

This Section describes the evaluation of PAL’s perfor-
mance when playing against new people in the game. To
make decisions, PAL used the influence diagram described
in Section 3, together with the machine learning models and
the training data described in Section 4. To evaluate PAL
we recruited 157 subjects from the three countries. These
included 48 students studying in the Beirut area, 46 students
from greater Boston area, and 63 students from universities
in Israel. Each participant played a single game with the
PAL agent, making a total of 157 games. At least 14 games
were played in each of the dependency relationships in each
country. Each participant was given an identical 30 minute
tutorial on CT, consisting of a written description of the
CT game, as well as an 8-minute movie that explained the
rules of the game using a board that was different than those
boards used in the actual study. Participants were seated in
front of terminals for the duration of the study, and could
not speak to each other or see their terminals. To standard-
ize conditions with the experiments for collecting the data
for learning, all participants played one game with the PAL
agent, and were told they would be playing with different
people.3

All results reported to be significant have been tested for
significance in the p < 0.05 range using statistical ANOVA
tests. We list the following three implementation details:
First, the decay parameter for weighting players’ reliabil-
ity measures in Equation 2 was set to 0.3. This weight was
tuned empirically by comparing the performance of the PAL
agent on the same held-out set of instances used to evalu-
ate the learning models in Section 4. Second, PAL chose
proposals within a 10-point interval of its maximal expected
score (defined in Equation 5) with uniform probability. This
“trembling-hand” randomization to PAL’s behavior, follows
results demonstrating the benefit of randomization and un-
predictability in human negotiation [3]. Third, to increase
its likeness to human play, PAL did not make offers that
were not present in its training set.

5.1 Comparison of Performance
Table 1 (on the following page) reports performance (in

average score per game) for each of the countries and for
each dependency condition. As shown by the Table, PAL
was able to outperform people in all dependency conditions
and in all countries: On average, PAL achieved 192.6 points
in the U.S. (right-hand column in boldface), compared to
75.77 points for people; 132.6 points in Lebanon, compared
to 94.86 points for people; and 152.75 points in Israel, com-
pared to 97.85 points for people. As shown in Figure 3, PAL
was also able to reach the goal significantly more often than
people in all dependency conditions and in all countries.

The best performance for PAL and the worst performance
for people occurred in the U.S: As Table 1 shows, PAL’s aver-
age performance in the U.S. (192.6 points) was significantly
higher than its performance in Lebanon (152.75 points) and
Israel (132.6 points points), while people’s average perfor-
mance in the U.S. (75.77 points) was significantly lower
than in Lebanon (94.86 points) and Israel (97.85 points).
As shown in Figure 3, these results are also supported when
analyzing the number of times PAL got to the goal: For
all dependency conditions, PAL was able to get to the goal
significantly more often in the U.S. than in Lebanon and

3All procedures involving people were authorized by the
ethics review board of the relevant institutions.

455

Co-Dependent
PAL People

Leb. 107 73
U.S. 188 47
Isr 123 78

Independent
PAL People
212.18 196.3
226.25 171.56
207.5 182.5

Dependent
PAL People
79.3 15.3

163.75 8.75
127.77 33.05

Average
PAL People
132.6 94.86
192.6 75.77
152.75 97.85

Table 1: Performance comparison for each condition and country

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-#." /012343" 567208"

9:/;02<=0>"?428"

@AB23";02<=0>"?428"

!#,$"

!#('"
!#)("

!#&," !#&(" !#'$"

!"
!#$"
!#%"
!#&"
!#'"
!#("
!#)"
!#*"
!#+"
!#,"
$"

-#." /012343" 567208"

9:/" @AB23"

Figure 3: Getting to the Goal (in percentage of
games)

Israel, and people were able to reach the goal significantly
less often in the U.S. than in Lebanon and Israel. The rest
of this Section explains how PAL was able to succeed in the
various conditions given this information.

5.2 Analysis of PAL Behavior
From observing PAL’s play in many games, we were able

to identify several rules of behavior used by PAL that were
consistent across the various dependency conditions. (1)
PAL based its initial reliability measure in the games in
the evaluation set (hence referred to as “evaluation games”)
on people’s behavior in the game instances in the data used
to train the models (hence referred to as “training games”).
When people’s reliability in the training games was consis-
tently very low or consistently very high, it commenced the
evaluation games with a low reliability measure in fulfilling
its agreements. In these clear-cut situations, it makes sense
for PAL to adopt a low reliability. When people’s reliability
measure in the training games was moderate, PAL adopted
a higher reliability measure. (2) PAL was significantly less
reliable when it became independent and did not depend on
the other participant to reach the goal (or if it was already
independent at the onset of the game). (3) PAL was signif-
icantly more reliable in games that lasted for many rounds.
This caused PAL to establish reciprocal relationships with
the other parties. (4) PAL was significantly less likely to ful-
fill agreements that allowed people to get to the goal. In the
following sections, we will use these rules to analyze PAL’s
performance in the various dependency relationships in each
country.

5.2.1 Task Co-Dependent Condition
As shown in Table 1, the highest performance of PAL in

the co-dependent condition (188 points, left-hand column
in boldface) occurred in the U.S. In addition, PAL got to
the goal significantly more often in the U.S. (92%) than in
Lebanon (35%) and in Israel (44%) in this condition. Table 2
reports the average reliability of participants in each of the
conditions. As shown in the Table, the reliability of PAL was
significantly lower in the U.S. (0.19) than in Israel (0.35) and
in Lebanon (0.50). Also shown in the Table is that people’s

Co-Dependent
PAL People

Leb. 0.8 0.7
U.S. 0.29 0.456
Isr 0.55 0.46

Independent
PAL People
0 0.64

0.07 0.1
0.55 0.46

Dependent
PAL People
0.89 0.69
0.375 0.312
0.90 0.46

Table 3: Learned and Adapted Reliability

reliability in the U.S. (0.52) was lower than their reliability
in Lebanon (0.63). To explain PAL’s success in the U.S.
in light of the low reliability measures exhibited by both
PAL and people, we need to analyze the evolution of PAL’s
behavior over time.

We begin by describing PAL’s reliability at the onset of
the game. Table 3 shows people’s average reliability in the
games in the training games in each country, and PAL’s
adopted reliability measure after the first agreement in the
games in the evaluation games. As shown by the Table,
people’s reliability in the training games in Lebanon (0.7)
were significantly higher than their reliability in the U.S.
(0.456) and in Israel (0.46). Therefore, by learned rule (1),
PAL’s initial reliability in Lebanon (0.8) was significantly
higher than in the U.S. (0.29) or in Israel (0.55).

To explain the difference between PAL’s initial reliability
in the U.S. and in Israel, we need to distinguish those pro-
posals that offered people to get to the goal, referred to as
“Task Independent (TI) proposals for people”. Not shown
in the table, is that over 77% of the first offers made in
games in the U.S. were task TI offers for people, compared
to 23% of first offers made in Lebanon, and 12% of first offers
made in Israel. By learned rule (3), PAL was significantly
less reliable when fulfilling TI proposals for people. This
is supported by Table 4, which presents the percentage of
TI proposals for people in the game (out of the entire set
of proposals made in the game) and the reliability of PAL
when fulfilling TI offers for people. As shown by the Table,
in the co-dependent condition in the U.S., the reliability of
PAL when fulfilling TI offers for people (0.05, in boldface)
was significantly lower than its reliability when fulfilling TI
offers in Lebanon (0.14) and in Israel (0.1).

Next, we analyze PAL’s behavior during the game in the
co-dependent condition. We refer to those proposals that
offered PAL to get to the goal as “Task Independent propos-
als for PAL”. Table 5 shows the percentage of TI proposals
for PAL in the game (out of the entire set of proposals made
in the game) and the reliability of people when fulfilling TI
offers for PAL. As shown in the Table the reliability of peo-
ple in the U.S. when fulfilling TI offers for PAL was 0.45 (in
boldface). But recall that Table 4 shows that the reliability
of PAL in the U.S. when fulfilling TI offers for people was
0.05. This means that in the U.S. PAL was much less likely
to fulfill its commitments than were people.

Further analysis revealed that the vast majority of pro-
posals in the U.S. (93%) occurred after PAL became inde-
pendent and did not need the other player to get to the goal

456

Co-Dependent
PAL People

Leb. 0.50 0.63
U.S. 0.19 0.52
Isr 0.35 0.45

Independent
PAL People
0.08 0.82
0.05 0.69
0.22 0.55

Dependent
PAL People
0.59 0.60
0.48 0.62
0.81 0.52

Average
PAL People
0.39 0.69
0.19 0.6
0.38 0.5

Table 2: Reliability Measures for Participants

Co-Dependent
TI ratio PAL’s

reliability
Leb. 1.05 0.14
U.S. 4.7 0.05
Isr. 3.07 0.1

Dependent
TI ratio PAL’s

reliability
1.53 0
4.5 0.02
4.5 0.015

Table 4: Analysis of TI offers for people

Co-Dependent
TI ratio People’s

reliability
Leb. 0.94 0.4
U.S. 1.64 0.45
Isr. 1.7 0.25

Dependent
TI ratio People’s

reliability
0.73 0.37
1.56 0.496
0.72 0.54

Table 5: Analysis of TI offers for PAL

(not shown in the table). This means that PAL was able
to reach the goal in early stages of the game in the U.S.
According to learned rule (2), PAL was not reliable when
it was independent. These findings explain how PAL was
able to succeed in the U.S. while adapting a generally low
reliability towards people. In contrast to the U.S., only 26%
of proposals in Lebanon were made after PAL became task
independent, which explains why PAL’s average reliability
measure in the co-dependent condition in Lebanon (0.39),
shown in Table 2 was higher than its reliability in the U.S.
(0.19).

To illustrate how PAL adapted its behavior in different
countries the co-dependent condition, we include two ex-
amples of the evaluation games in Israel and Lebanon. In
the Lebanon example, PAL began by accepting a 2-chip-
for-2-chip proposal and transferring both chips following the
agreement. The next agreement offered PAL the chips to get
to the goal. As shown in Table 3, from the training games
PAL learned that people in Lebanon were highly reliable.
Therefore, PAL did not send any chips to the person follow-
ing this agreement. In contrast, the person sent its promised
chips to PAL, allowing PAL to get to the goal. This game
was typical of Lebanon, in that games were relatively short,
and people were generally reliable.

In Israel, games were longer, and people were less reliable
in the training games than in Lebanon. Specifically, in our
example in Israel, PAL was fully reliable following the first
two agreements, while the person did not send any of its
promised chips. As a result, PAL did not send any chips for
the third and fourth agreements. In the fifth agreement (a
1-chip-for-1-chip proposal), PAL was fully reliable. Lastly,
for the sixth agreement (a 1-chip-per-3-chip proposal), which
allowed PAL to get to the goal, the human was fully reliable,
while PAL did not send any of its three promised chips. This
example demonstrates PAL’s ability to establish a reciprocal
relationship with its partner.

Lastly, we explain the difference in PAL’s performance
across countries. As shown in Table 5, the ratio of TI offers

for PAL in the U.S. (1.64, in boldface) was almost twice as
high as the ratio of TI offers for PAL in Lebanon (0.94).
Thus, there were significantly more proposals that allowed
PAL to reach the goal in the U.S. than in Lebanon. In
contrast, the ratio of TI offers for PAL in Israel (1.7) was as
high in the U.S. However, as the Table also shows, people’s
reliability following TI offers for PAL in Lebanon (0.4) and in
the U.S. (0.45) was significantly higher than their reliability
following TI offers for PAL in Israel (0.25). As a result, PAL
was more likely to reach the goal in the U.S.

5.2.2 Task Dependent Condition
As shown by Table 1, the best performance for PAL in

the task dependent condition was in the U.S. (163 points, in
boldface). Table 2 shows that the lowest reliability exhib-
ited by PAL (0.48, column “dependent”), was obtained in
the U.S. In addition, PAL’s reliability measure in the task
dependent condition in the U.S. (0.48) was lower than that
of its reliability measure in Lebanon (0.59) and Israel (0.81).
These results are similar to those reported for the task co-
dependent condition. However, participants’ roles were not
symmetric in the board games in the task dependent con-
ditions. Specifically, in the games in which PAL was task
dependent, people were task independent (and vice versa).
Thus there were different factors that contributed to PAL’s
success in the task dependent condition.

We first observe Table 3, which shows that in the task
independent condition, people’s reliability in the training
games in Israel (0.46) and in Lebanon (0.64) was higher than
their reliability in the U.S. (0.1). Therefore, by learned rule
(1), PAL commenced the evaluation games with a higher
reliability in the task dependent condition in Israel (0.9)
and in Lebanon (0.89) than in the U.S. (0.375).

As shown by Table 2, people’s average reliability in the
task independent condition in the evaluation games in the
U.S. (0.69) was significantly higher than their reliability in
the training games (0.1, previously shown in Table 3). As a
result, PAL increased its reliability in the evaluation games
in the U.S. from 0.375 (shown in Table 3, dependent column)
to 0.48 (shown in Table 2, dependent column). The differ-
ence between people’s reliability in the evaluation games in
Lebanon and the U.S. compared to their reliability in the
training games was not statistically significant. In addition,
the evaluation games in Lebanon (3 rounds) were shorter
than the evaluation games in Israel (6 rounds). Following
learned rule (3), PAL dropped its reliability in Lebanon from
0.89 (shown in Table 3) to 0.59 (Table 2), and to a lesser
extent in Israel from 0.9 to 0.81.

To illustrate PAL’s strategy in the task-dependent condi-
tion, we bring an example of its play in the U.S. As shown in
Table 3, from the training games PAL learned that people
in the U.S. were not reliable. Therefore PAL does not send
any of its chips after the first agreement (a 4-chip-per-3-chip
proposal). In contrast, the person sends two of its promised
3 chips to PAL. PAL responds to this by being fully reliable

457

and sending all of its promised chips in the second agree-
ment. However, the person did not send any of its promised
chips to PAL in this agreement. In the third agreement (a
2-chip-per-1-chip proposal), PAL sent only one of its two
promised chips to the person. The person sent PAL the
chip it needs to get to the goal. As the example shows, it
made sense for PAL to be partially reliable when the person
is task independent at the onset of the game.

To explain PAL’s success in the task dependent condition
across all countries, we use Table 5, which analyzes the TI
offers for PAL. As shown in the Table, the ratio of TI offers
in the U.S. (1.56, in boldface) was more than twice that
in Lebanon (0.73) and in Israel (0.72). This means there
were significantly more offers made in the U.S. that allowed
PAL to get to the goal. In addition, the reliability of people
following TI offers for PAL in the task dependent condition
in U.S. (0.496), shown in Table 5 was significantly higher
than the reliability of PAL following TI offers for people in
the task dependent condition in the U.S. (0.02), shown in
Table 4. This is because when people were task dependent,
PAL was task independent, and by learned rule (2), PAL
was not reliable when it was independent.

5.2.3 Task Independent Condition
Recall that players in the task independent condition al-

ready possessed the necessary chips to get to the goal, and
in addition could help their partners get to their own goal.
As we expected, Table 1 shows that both the scores for PAL
and people in this condition were higher than their scores in
the task dependent and task co-dependent conditions.

Similarly to the task co-dependent condition, Table 1 shows
that the highest performance by PAL and the worst perfor-
mance for people were obtained in the U.S. Table 2 shows
that the reliability of PAL in the task independent condition
was significantly lower for each country than its reliability
in the other conditions. This can be explained by rule (2),
in that PAL was far less likely to fulfill agreements when
it did not need its partner to get to the goal. Interestingly,
the Table also shows that the reliability of people in the task
independent condition was significantly higher than their re-
liability in the other conditions. To explain this discrepancy,
we observe that in the games in which people were task in-
dependent, PAL was task dependent. As shown by Table 2,
the reliability of PAL in the task dependent condition was
significantly higher in each country than its reliability in all
of the other conditions. We thus attribute people’s high
reliability measures when task independent to people’s reci-
procity to the high reliability exhibited by PAL.

6. CONCLUSIONS AND FUTURE WORK
This paper proposed a novel agent design for human-

computer negotiation in different cultures. It focused on
settings where participants engage in repeated rounds of ne-
gotiation and agreements are not binding. To succeed in
such settings agents need to reason about the effects of their
negotiation behavior over time, and to adapt to people’s
reaction to their behavior in different cultures. The pro-
posed agent design combined a decision theoretic approach
with classical machine learning techniques to model people’s
behavior. This agent was evaluated empirically by playing
with 157 people in three countries—Lebanon, the U.S., and
Israel. The results show that the agent was able to outper-
form people in all countries and when varying how parties

depended on each other in the negotiations. The agent based
its initial strategy on a general model of the population in
each culture, and adapted its behavior to its particular part-
ner over time. We are currently investigating the use of
Markov Chain Monte Carlo sampling techniques for more
efficient inference in the game.

7. ACKNOWLEDGMENTS
This work is supported in part by the following grants:

Marie Curie #268362, ERC grant #267523, ARO grants
W911NF0910206, W911NF1110344 and U.S. Army Research
Lab and Research Office grant MURI W911NF0810144. Thanks
to Louise Hindal for her help with data collection in the U.S.

8. REFERENCES
[1] A. Byde, M. Yearworth, K. Chen, C. Bartolini, and

N. Vulkan. Autona: A system for automated multiple
1-1 negotiation. In Proceedings of EC, 2003.

[2] C. De Dreu and P. Van Lange. The impact of social
value orientations on negotiator cognition and
behavior. Personality and Social Psychology Bulletin,
21:1178–1188, 1995.

[3] R. Fisher and W. Ury. Getting to yes. Penguin Books
New York, 1991.

[4] Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, and S. Shieber.
Agent decision-making in open mixed networks.
Artificial Intelligence, 174(18):1460–1480, 2010.

[5] Y. Gal, S. Kraus, M. J. Gelfand, H. Khashan, and
E. Salmon. Negotiating with people across cultures
using an adaptive agent. ACM Transactions on
Intelligent Systems and Technology, 3(1), 2012.

[6] Y. Gal and A. Pfeffer. Modeling reciprocity in human
bilateral negotiation. In AAAI’07, 2007.

[7] M. J. Gelfand and S. Christakopoulou. Culture and
negotiator cognition: Judgment accuracy and
negotiation processes in individualistic and
collectivistic cultures. Organizational Behavior and
Human Decision Processes, 79(3):248–269, 1999.

[8] M. J. Gelfand, G. Shteynberg, T. Lee, J. Lun,
S. Lyons, C. Bell, J. Chiao, C. Bruss, M. Al Dabbagh,
Z. Aycan, et al. The cultural contagion of conflict.
Philosophical Transactions of the Royal Society B:
Biological Sciences, 367(1589):692–703, 2012.

[9] R. A. Howard and J. E. Matheson. Influence diagrams.
In Readings on the Principles and Applications of
Decision Analysis, pages 721–762, 1984.

[10] C. Jonker, V. Robu, and J. Treur. An agent
architecture for multi-attribute negotiation using
incomplete preference information. Autonomous
Agents and Multi-Agent Systems, 15(2):221–252, 2007.

[11] S. Kraus, P. Hoz-Weiss, J. Wilkenfeld, D. Andersen,
and A. Pate. Resolving crises through automated
bilateral negotiations. Artificial Intelligence,
172(1):1–18, 2008.

[12] Y. Oshrat, R. Lin, and S. Kraus. Facing the challenge
of human-agent negotiations via effective general
opponent modeling. In AAMAS, pages 377–384, 2009.

[13] A. Rosenfeld and S. Kraus. Using aspiration
adaptation theory to improve learning. In AAMAS,
2011.

458

Giving Advice to People in Path Selection Problems

Amos Azaria1 Zinovi Rabinovich1 Sarit Kraus1 Claudia V. Goldman2 Omer Tsimhoni2

1Department of Computer Science Bar Ilan University Ramat Gan, Israel
2General Motors Advanced Technical Center Israel

{azariaa1,sarit}@cs.biu.ac.il, zr@zinovi.net, {claudia.goldman, omer.tsimhoni}@gm.com

ABSTRACT
We present a novel computational method for advice-
generation in path selection problems which are difficult for
people to solve. The advisor agent’s interests may conflict
with the interests of the people who receive the advice. Such
optimization settings arise in many human-computer appli-
cations in which agents and people are self-interested but
also share certain goals, such as automatic route-selection
systems that also reason about environmental costs. This
paper presents an agent that clusters people into one of
several types, based on how their path selection behavior
adheres to the paths presented to them by the agent who
does not necessarily suggest their most preferred paths. It
predicts the likelihood that people will deviate from these
suggested paths and uses a decision theoretic approach to
suggest paths to people which will maximize the agent’s ex-
pected benefit, given the people’s deviations. This technique
was evaluated empirically in an extensive study involving
hundreds of human subjects solving the path selection prob-
lem in mazes. Results showed that the agent was able to
outperform alternative methods that solely considered the
benefit to the agent or the person, or did not provide any
advice.

1. INTRODUCTION
Research in multi-agent systems primarily encompasses

systems composed of automated agents. Cooperative sys-
tems are usually described by a single utility function which
all agents attempt to maximize. Competitive systems, on
the other hand, may be designed and analyzed, for example,
as zero sum games where the gain of one agent is the loss
of another. In this paper, we focus on systems composed
of both automated agents and human users. Although in
general these interactive systems are cooperative, users and
machines may have different interests. Each party may want
to optimize different parameters, not necessarily at the ex-
pense of the other. In particular, we study automated agents
interested in persuading their users to perform actions that
increase the agent’s utility.

Machines can try to persuade their users to perform cer-
tain actions by implementing different methods. For ex-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ample, machines could provide higher rewards (e.g., score,
ranking stars, etc.) when users choose actions desirable by
the agents. Automated agents may disclose information not
available to their users in order to encourage them to take
certain actions. For example, Azaria et al. [3] have shown
that agents can provide correct, although partial, informa-
tion about a state of the world (unknown to the user, but
relevant to his decision) and thus persuade them to take
certain actions beneficial to the agent. We can also consider
agents providing advice (based on the agents’ advantageous
information or computational power) that may lead their
users to choose actions that are beneficial to the agents.

In this paper, we focus on the last method: we study how
to automatically generate advice that will encourage users
to choose actions preferred by the automated system.

We chose a domain, composed of human users and com-
puters which are self-interested but also have shared goals.
Consider a route selection domain where an automatic sys-
tem suggests commuting routes to a human driver. Both
participants in this setting share the goal of getting the
driver from home to work and back. However, each par-
ticipant also has its own incentives. The driver wishes to
choose the route that minimizes the commuting time, while
the computer may prefer taking a longer route that emits
fewer pollutants, or does not pass near schools and play-
grounds. The route selection domain is an example of a com-
putationally demanding domain where even having complete
knowledge is not enough for a user to solve such a problem
optimally. As we will show in our experiments, finding the
shortest path in large maps with many intersections may not
be a trivial problem to solve. In such cases, the computer’s
advice might be perceived as helpful and trustful as it comes
from powerful computational software.

However, the development of methods to identify agent
strategies for deciding which advice to give to people is chal-
lenging. First, it is known that people are not known to max-
imize their monetary value. When facing noisy data, people
often follow suboptimal decision strategies. This bounded
rational behavior [7] is attributed to: 1) sensitivity to the
context of the decision-making; 2) lack of knowledge of the
user’s own preferences; 3) the effects of complexity; 4) the
interplay between emotion and cognition and 5) the problem
of self-control. Furthermore, people discount the advice they
receive from experts[5] and it was shown that if the adviser
has a monetary stake in the advice being followed, people
will follow its advice even less [21]. Finally, the learned
model should be generalized to new environments as well as
different people. To face these challenges we will integrate

459

machine learning and psychological models for predicting
human response to advice.

Our study includes a 2-participant task setting for choos-
ing a path on a large colored grid that is analogous to the
route-selection problem. The person’s sole incentive is to
choose the shortest path, while the agent’s incentives also
include the number of color changes in the path. Choosing
a path on the grid corresponds, for example, to selecting a
route for commuting between home and work. The colors
on the grid represent constraints, such as environmental and
social considerations. Switching between colors on the path
represents the violation of one of these constraints. The per-
son’s preferences consider the length of the route only, while
the agent’s preferences take into account both the length of
the route as well as the number of constraint violations.

We developed the User Modeling for Path Advice (UMPA)
approach for the generation of advice, comprised of a train-
ing stage and three additional steps required to learn from
this data and to generate the agent’s advice. We first ran ex-
periments with human subjects to collect data on how users
react when provided with advice. The system proposes three
types of advice in different testing scenarios: advice that is
optimal to the user, advice that is optimal to the system
and advice that considers both the user’s and system’s pref-
erences. We found three types of user behaviors: those that
follow the system’s advice, no matter how bad this advice
is subjectively perceived to be; those that ignore the advice
and follow their chosen path; and those that modify the ad-
vised path. This last phenomenon is very interesting since
just the fact that advice is provided affects the user’s choices.
The user’s modifications may completely change the advice
or their own choice, but this change occurs only as a result
of having seen such a system proposal. In particular, we
noticed that users of the third type took cuts when solving
the route selection problem. Cuts are deviations from a sug-
gested path and are alternative segments for connecting two
local points from the original path. A cut may improve the
path from the user’s point of view by shortening it, but may
decrease the benefit to the agent.

Once we collected this data, the UMPA approach pro-
ceeded to 1) learn the percentage of types of users who will
follow, ignore or modify the given advice, 2) learn with what
probability each cut will be chosen for a given advised path
and 3) compute the advice with the lowest expected cost for
the agent given the users’ predicted types and behaviors.

We evaluated the UMPA approach in an extensive empir-
ical study comprising near 700 human subjects solving the
path selection problem in four different mazes. The results
showed that our UMPA agent outperformed alternative ap-
proaches for suggesting paths, based on either the user’s or
the system’s preferences. In addition, people were satisfied
with the advice provided by the UMPA agent.

2. RELATED WORK
Game theory researchers studied related research ques-

tions in the context of persuasion games. In these games, a
speaker attempts to persuade a listener to accept a certain
request [14, 28, 29]. Most of these works make the strong
assumption that people follow equilibrium strategies. How-
ever, agents that follow equilibrium strategies when inter-
acting with people are often not beneficial [19, 24, 3]. This
can be explained by the significant experimental and other
empirical evidence which indicates that people may be non-

Figure 1: Path selection problem visualized in a
small maze

strategic when interacting in persuasion games [13, 11, 4, 6,
8].

Route or path selection has become one of the most promi-
nent applications of computer assisted guidance (see a sur-
vey in [17]). In fact, route guidance systems using GPS have
become pervasive over the years, thanks to the significant re-
search effort in addressing both the cognitive limitations and
the range of individual preferences of human users (e.g. [12,
23]). Many of the challenges in the development of route
guidance systems stem from the high variance among indi-
viduals regarding their evaluation and acceptance of route
advice. This variance makes it important to tailor route ad-
vice and guidance to a specific user. To this end, a wide
range of machine learning techniques are used to capture
and utilize user routing preferences (e.g. [23]).

Instead of tailoring routes to users, we model user at-
titudes towards route advice such that the choices made
by the users, after being given advice, will be beneficial to
the agent. There has been some work on driver acceptance
of unreliable route guidance information [15]. Antos and
Pfeffer [2] designed a cooperative agent that uses graphi-
cal models to generate arguments between human decision-
makers and computer agents in incomplete information set-
tings. They use a qualitative approach that does not model
the extent to which people deviate from computer-generated
advice. Other works have demonstrated a human tendency
to accept advice given by an adversary in games [21]. Some
theoretical analysis suggests this behavior to be rational [26].
To some extent, these results were used in the framework of
large population traffic manipulation (either by explicitly
changing the network topology or by providing traffic infor-
mation, e.g. [20, 9]). However, to the best of our knowledge,
we are the first to study the combination of human choice
manipulation and the personal route selection problem in a
given network.

3. THE MODEL
To allow a formal discussion of the path selection problem,

we employ a maze model. We assume that a user has to solve
the shortest path problem within a rectangular maze either
by constructing a path or by considering a path suggestion.
More formally, we define a maze M as a grid of size n ×m
with one vertex marked as the source S and another vertex
as the target T . Each vertex v is associated with a label
c(v) that we will refer to as the color of v. We will denote
the white color or label number 0 as an obstacle. x(v) and
y(v) denote the horizontal and the vertical grid coordinates

460

of the vertex v, respectively. We assume that the user can
move along the grid edges in the four standard directions:
up, down, left or right. A sequence of vertexes that does not
include an obstacle and can be traversed by moving in the
four standard directions is a valid path. In the remainder of
the paper, to distinguish between vertexes of different paths,
we will denote them by the path’s name with a superscript:
e.g. vertexes of a path π will be denoted by π1, ..., πl. A
valid path will be called a full path if π1 = S and πl = T ,
i.e. it begins at the source node and ends at the target node,
thus solving the maze.

The path selection problem is modeled as the user’s task
to find the shortest full path through the maze. Formally,
we assume that the user’s cost of a path π is equal to its
length, i.e. Costu(π) = l(π). In contrast, the agent’s cost
depends on the length of the path and also on the number of
color switching done along the path. Formally, given a color
switching cost W , the agent’s cost Costa of a full path π is
given by: Costa(π) = l(π)+W ·∑1≤i<l 1{c(πi) 6= c(πi+1)}.
We use the term greedy path to refer to a full path that
minimizes Costa, and the term shortest path to refer to a full
path that minimizes Costu. Notice, that there are multiple
valid paths through a maze and it is possible that there are
many full paths as well.

In addition to the maze grid, its color labeling and the
source and target nodes, we also allow a secondary labeling
of a particular full path through the maze. This labeling
represents the path advised by the agent to the user. We
assume that the user is aware of this labeling prior to solving
the path selection problem. In fact, the advised path is part
of the input to the path selection problem. When a user is
given a maze (with or without an advised path), his goal
is to solve the maze by finding the shortest full path from
source S to target T . However, due to the complexity of the
maze, finding such shortest path may not be trivial or clear
from looking at the maze during the limited amount of time
given to the user. Therefore, the user may find it beneficial
to take some advice provided to him regarding which route
to choose.

The best-advised path problem is modeled as the agent’s
task to compute a full path that, once presented to a user,
will yield the agent the lowest expected cost.

Figure 1 visualizes the formal setting in a small maze.
In the figure, obstacles are represented by the color white,
while the start and the target nodes are black. In turn, the
dotted nodes represent the advised path, while the crossed
nodes represent a valid (partial) path selected by the user.

4. THE UMPA APPROACH
We assume the availability of training data for the predic-

tion stages (see experiments in Section 5). UMPA is given a
training set, Ψ, of tuples (M ′, π, µ, α) collected from exper-
iments where people were provided with advice and where:
M ′ is a maze; π is an advised path through the maze; α
is a binary variable indicating whether the user considers π
to be a good solution or not (α equals 1 or 0 respectively);
and µ is the solution selected by a human user, who was
presented with M ′ and π. In addition, we assume that Ψ
includes examples (M ′, µ) collected from games where the
agent was silent. Given a maze M (not in the maze set from
the training examples), we employ a three-stage process to
solve the best-advised path problem: (i) Cluster users into
one of three types, depending on the extent to which their

path selection behavior adheres to suggested paths that may
be more beneficial to the agent than to themselves. Then we
predict the likelihood that a user will belong to one of these
three clusters;(ii) predicting the likelihood that people devi-
ate from a suggested path; and (iii) generating the advised
path using a decision theoretic approach which utilizes the
prediction from the first two stages in order to compute the
expected cost of the agent from a given path. In the next
subsections we provide details of our implementation of each
one of these steps.

Predicting human response to an advised path is diffi-
cult due to the diversity in people’s behavior. We propose
to integrate psychological models into the machine learning
process. In particular, we have defined a Seemliness-value
feature that measures the path’s direction towards the target
node’s horizontal and vertical coordinates. This attribute
will be used in the learning of UMPA. The feature value
is based on the following principles known from behavioral
science:

• Loss aversion [30] (Prospect theory): people dislike los-
ing more than they like wining. Tversky and Kah-
neman found that losses are weighted roughly twice
as much as gains. Therefore, while each step in the
path toward the target contributes a single unit to the
Seemliness-value, each step away from the target re-
duces two units from the value.

• Future discount [25]: people care more about the
present than the future and therefore discount losses
or gains in the future. The farther the loss or the gain
is in the future, the more it is discounted. Future dis-
counting is commonly assumed to be exponential, with
some discount factor [10]. Therefore, while each step
in the path toward the target at the beginning of the
path adds one unit (and a step away from the target
in the beginning of the path reduces two units), the
contribution of any consecutive steps’ is multiplied by
a discount factor (which is exponential in the number
of steps from the beginning of the path).

The total path Seemliness-value is calculated as a discounted
sum of steps contribution along the path and is denoted s(φ).
For an intuitive example, the dotted path shown in Figure 1
has a relatively high Seemliness-value since its earlier steps
are in the target direction and steps in the opposite direc-
tion appear only later; however, in Figure 2 the dotted path
has a relatively low Seemliness-value since the steps at the
beginning of the path are in the opposite direction of the
target.

4.1 Modeling Diversity in People’s Reactions
Based on what was observed in the behavioral data col-

lection experiments (as explained in Section 5), UMPA clus-
ters users into three types: Advice followers, Advice ignorers
and Advice modifiers. Given a new maze, when considering
a path to be given as advice, UMPA would like to estimate
the probability of a user belonging to one of these clusters.
For this task, it first labels the examples of Ψ with one of
the three types and put the examples in Ψl.

The labels are determined as follows. Advice followers are
users who follow the advised path blindly without modifying
it, even when believing that it is not of good quality. That
is, the user of an example (M ′, π, µ, α) ∈ Ψ is labeled as

461

Figure 2: A second example of a path and a cut

an Advice follower if µ = π and α = 0. Users that took
the system’s advice as provided and also believed that the
advised path really did have good quality were included in
the Advice modifiers type set (these users may have chosen
the advice because it was of good quality and not because
they were told to choose it).

However, most users would at least attempt to improve
upon the advised path, or simply ignore it entirely. In order
to characterize these users, we will introduce the concept of
a cut and a modified solution.

Given two vertexes ,πi and πi
′
, of an advised path π, any

path τ between these two vertexes (that does not otherwise
intersect with π) is termed a cut. Although there may be
an exponential number of cuts, certain human cognitive ten-
dencies (see e.g. [12, 27]) allow us to bound the maximal cut
length. All users who deviated from the advised path solely
by taking cuts are termed Advice modifiers.

More formally, given a valid path π, we define a cut τ of
length l to be a valid path such that ∃i, τ1 = πi and ∃i′ >
i, τ l = πi

′
and ∀1 < i′′ < l, @j, πi

′′
= πj . The sequence of

πi, ..., πl will be called the original segment of cut τ and will
be denoted by o(τ). Figure 1 and Figure 2 show examples for
cuts marked by crossed nodes. We only consider cuts whose
lengths are smaller than some threshold and also not much
longer that their original segment. Formally, let L1 ∈ N and
L2 ∈ R+, l(τ) ≤ min{L1, L2 · l(o(τ))}.

Finally, we define the Advice ignorers as all users who are
neither Advice modifiers nor Advice followers. The relevant
examples of Ψ were labeled accordingly. It is important to
understand that being an advice follower does not depend on
the specific maze and advice. However, deciding whether to
ignore advice or use it as a baseline and modify it, depends
on the specific maze and advice.

Next we compute the likelihood of users being associated
with the different types as required in the first step of the
UMPA approach. Based on the literature on route selection
(see e.g. [18]), we presume that the proportion of Advice
modifiers for the given advice π is strongly characterized by
the overall Seemliness-value of π, denoted s(π). In order to
use the Seemliness-value of a path as an indicator for the
proportion of Advice modifiers in that path, we first nor-
malize the Seemliness-value by subtracting the average of
all Seemliness-values of all paths that appear in the data-set
and divide by their standard deviation. Once we have a stan-
dardized (scaleless) value, we assume that it predicts a stan-
dardized proportion of Advice modifiers in that path, there-
fore, this value must be unstandardized using the appropri-
ate units found in the data-set. Formally, given Ψl, UMPA

generates a set of tuples π′, s(π′), prop(π′) where prop(π′)
is the proportion of users in Ψl that received the advice π′

and are labeled as Advice modifiers. Denote the average
(standard deviation) of the s(π′)s by AvgSV (StdSV) and
the average (standard deviation) of prop(π′)s by AvgBU
(StdBU). Finally, we estimate the proportion of Advice

modifiers to be: pb(π) = s(π)−AvgSV
StdSV

· StdBU +AvgBU .
The Advice followers follow the advised path even if they

did not evaluate it as a good path, which allows us to assume
that the proportion of Advice followers is constant across
all advised paths. We extracted this proportion from Ψl,
and denote it by pf . The remaining proportion of users
1 − pf − pb(π) is assumed to be the Advice ignorers. This
latter set of users deviates from the advised path so much
that it is possible to assume that they would have selected
the same path with or without any advice given.

4.2 Predicting Advice Deviations
Given the possible advice π, UMPA estimates the prob-

ability of a user taking a specific cut τ at a given vertex
πi. We denote this probability as p(M,π, πi, τ) and use
p(τ) when the other parameters are clear from the context.
UMPA assumes that the function p(τ) is a linear combina-
tion of three cut features: cut benefit, cut orientation and
cut seemliness (see e.g. [18]).

The Cut Benefit measures the relative reduction in steps
between the cut and the original path segment. Formally,
l(o(τ))−l(τ)

l(τ)
. For example, the cut shown in Figure 1 (marked

with crossed nodes) has a positive benefit value since the
length of the original path segment (between the first and
last nodes of the cut) is greater than the length of the cut.
The cut shown in Figure 2 has a benefit of 0 since the cut
has the same length as the original path segment.

The Cut Orientation captures the tendency of human
users to continue with a straight line motion. Its value de-
pends on whether the cut or the original segment conformed
to this tendency. The reference motion is the edge between
the cut divergence node πi and its predecessor in the advised
path πi−1. If the cut deviates from the advice by remaining
in the same direction as the edge (πi−1, πi), we say that the
cut has positive +1 orientation. If the original path segment
(πi, πi+1) is similarly directed as (πi−1, πi), we say that the
cut has negative −1 orientation. Otherwise, the cut’s ori-
entation is 0 (neutral). For example, in Figure 1 the value
of the orientation of the cut marked by crossed nodes is 1,
since the cut continues straight while the advised path turns
left. The cut shown in Figure 2, however, has an orientation
of −1 since the original path continues straight and the cut
turns left.

The Cut Seemliness measures how seemly the cut is
in the user’s eyes. This value is calculated by subtract-
ing the Seemliness-value of the original segment from the
Seemliness-value of the cut. The seemliness of the cut shown
in Figure 2 is positive since the first steps of the cut are in
the same direction of the target, while the first steps in the
original segment are in the opposite direction of the target.

Given that there is a very large number of cuts, it is al-
most impossible to collect enough examples in Ψ to learn the
weights of p(τ)’s features directly. Therefore, this estimation
process was divided into two steps. First, UMPA estimates
the probability, r(M,π, πi, τ), that a cut τ will be taken by
a user at vertex πi, assuming that τ is the only possible
cut at πi. It was assumed that r is a linear combination

462

of the three cut features described above, similar to p(τ).
To compute the weights of r(τ)’s features, UMPA created a
training set of the form (M ′, π, πi, τ, prop(πi)), where τ is a
cut of π that starts at πi and is the cut that was taken at
πi by the highest number of users according to Ψ. prop(πi)
is the proportion of users that visited πi and deviated there
by taking any cut. Using these examples, the weights were
estimated using linear regression.

Next, r(τ) is used to compute p(τ) after normalization.
For any πi, it was assumed (based on the way that r(τ) was
learned) that the probability of the deviation at πi across all
cuts is equal to the highest r(τ) value of a cut, starting at
πi. This probability is distributed across all possible cuts,
starting at πi, proportional to their r(τ) value.

4.3 Estimating the Cost of an Advised Path
Given a maze M and the possible advice π, UMPA es-

timates the expected cost that an agent may incur when
presenting users with π. We denote this estimation by
ECost(π). This estimation is based on Ψl (the set of ex-
amples labeled with user types).

Notice that the contribution of the Advice followers is rel-
atively easy to calculate. These are users that, independent
of the maze or the particulates of the advised path π, al-
ways comply fully with π. Therefore, their contribution to
ECost(π) will always be Costa(π) multiplied by the ratio of
Advice followers.

The contribution of the Advice ignorers is calculated based
on the data of users who received no advice. Let Ω∅ =
{τ |(M,φ) ∈ Ψ}, i.e. the set of paths in Ψ selected by users
who did not receive any advice. We assume that the con-
tribution of Advice ignorers to ECost is the average agent
cost on the paths in Ω∅. Denote this value by ECosti.

Calculating the contribution of the Advice modifiers to the
agent’s expected cost is more complex and is described here-
under. Having the estimated probability for each cut p(τ),
an estimation for the agent’s cost associated with Advice
modifiers from advice π starting at πi is denoted as b(π, πi).
It can be calculated using the following recursive formulas:

b(π, πl(π)) = 1

b(π, πi) =
∑

τ,τ1=πi

p(τ) · (Costa(τ)− 1) + b(π, τ l(τ))+

+ (1−
∑

τ,τ1=πi

p(τ)) · (b(π, πi+1) + Costa(πiπi+1)− 1)

Note that the expression Costa(πiπi+1) − 1 is the agent’s
cost of traveling from πi to πi+1, which can either be 1 if no
color switching occurs, or W + 1 if color switching occurs.
Now, using b, UMPA can estimate the contribution of the
Advice modifiers to the agent’s expected cost of an entire
path π setting ECostb(π) = b(π, S).

An efficient algorithm for computing ECostb appears in
the Appendix.

Given the users’ proportions as estimated in Section 4.1
and the utility contributions estimated above, we can
compose the final heuristic estimate of the advised path
cost ECost(π), which is the expected agent’s cost across all
human generated path solutions in response to π:

ECost(π) = pf · Costa(π) + (1− pf − pb(π)) · ECosti+
pb(π) · ECostb(π)

4.4 Searching for Good Advice
Searching for advice is done by transforming the

maze(grid) to a tree such that the start node, S, is asso-
ciated with the root of the tree. Each node in the tree is
associated with a vertex in the maze. A node nv in the tree
that is associated with the vertex v will have an offspring
which is associated with v′ if no ancestor of nv is associated
with v′ and v′ is connected to v in the grid. Note that a
vertex in the grid might be associated with many nodes in
the tree. When given a node nv in the tree that is associated
with the vertex v, there is a unique path in the tree from the
root node of the tree to nv that is associated with a path on
the grid from S to v. We denote this path as θ.
A∗ [16], which is a best-first search algorithm in graphs,

uses the sum of a cost function and a heuristic function in
order to determine which node to view next. We use the
A∗ search algorithm on the tree, to find a path π from the
root node S to any target T . The cost function for a given
node nv is ECost(θ) and the agent uses the minimal agent
cost of traveling between v and T as the heuristic function
of nv in the tree. We use Dijkstra’s algorithm, which is an
efficient algorithm for calculating the shortest path from a
given node to all other nodes in a graph, starting at T , in
order to calculate the minimal agent cost to travel from each
vertex to T .

To limit the manipulation effect of UMPA, the search only
considers paths with cuts where the agent does not gain by
the user taking them. That is, the agent prefers that the
user takes the advised path and does not benefit from his
deviation. Formally, UMPA only considers paths such that,
for any suffix σ = πi · · ·πl(π), i ≥ 1, ECost(σ) ≥ Costa(σ)
holds. If A∗ stops with a path that does not satisfy the
condition above it will be rejected, and A∗ will be forced to
continue the search.

5. EXPERIMENTAL EVALUATION
We have developed an online system that allows people

to solve path selection problems in a maze. It can be ac-
cessed via http://azariaa.com/selfmazeplayer.swf. The
maze design was chosen to remove all effects of familiarity
with the navigation network from the experiments. Fur-
thermore, every human subject was presented with a single
instance of the problem in order to exclude effects of learn-
ing or trust. We ran two kinds of experiments. First, the
experiments were aimed at collecting data on users’ behav-
iors when facing advice that either benefited the users or the
system utilities regarding route selection. Second, after the
UMPA approach was applied using the collected data, we
ran experiments to validate our hypothesis regarding users’
behavior change as a result of providing them with advice
adapted to the user’s behavior as learned in the first exper-
iments. Furthermore, the main goal has been to test the
hypothesis that UMPA outperformed all of the other advice
generator methods that we considered.

Participation in our study consisted of 681 subjects from
the USA: 383 females and 298 males. The subjects’ ages
ranged from 18 to 72, with a mean of 37.

5.1 Methodology

5.1.1 Running Experiments on Amazon Mechanical
Turk

463

All of our experiments were run using Amazon Mechanical
Turk (AMT) [1], a crowd sourcing web service that coordi-
nates the supply and demand of tasks which require human
intelligence to complete. Amazon Mechanical Turk has be-
come an important tool for running experiments with human
subjects and was established as a viable method for data col-
lection [22]. We took several actions to encourage subjects
to truly attempt to find the shortest path: we only selected
workers with a good reputation; a set of questions, designed
to verify understanding of the task, was presented to the
subjects prior to the task execution; and as a stimulus, all
subjects were guaranteed a monetary bonus inversely pro-
portionate to the length of the path that they selected. Our
previous experience in running experiments on Mechanical
Turk demonstrated that almost all subjects have considered
our tasks seriously. We asked a group of university students
and Mechanical Turk workers to perform the same task and
found that the average score of the Amazon Turk workers
was higher than that of the students. Thus, our own expe-
rience confirms other studies [22] about the viability of this
medium for empirical research.

5.1.2 Experimental Setup
Each experiment consisted of a colored-maze panel similar

to the one depicted in Figure 1. A single panel was shown to
each participant. The user’s task was to select the shortest
path through the maze that connected the source and target
nodes. When subjects were presented with advice from the
system, they were informed that this advice was calculated
to reduce the number of color switches in addition to min-
imizing the path length. We implicitly asked the subjects
a question regarding the system’s intention to make sure
that they understood this crucial point. We used four dis-
tinct mazes, all of size 80 × 40. These mazes were complex
enough so that users would find it difficult to compute the
shortest path in the limited time allotted for the task. We
set the weight W for color switching to 15.

We ran four training sessions to learn user behaviors from
three mazes. Then we ran our UMPA algorithm on the
fourth maze to compute the advice, using information about
this maze and the parameters learned from the other three
mazes (we did this for each one of the four mazes). That is,
UMPA’s results are averaged over four different mazes and
training and testing data were strictly separated.

Finally, we presented the subjects with post-task ques-
tions that were designed to assess the general attitude to-
wards computer advice and the subjective evaluation of the
advised path quality.

5.1.3 Basic Algorithms
We compared the performance of our UMPA algorithm to

the following three cases:

• No advice (silent) – no advice is presented on the maze
panel,

• Shortest path – the advice presented corresponds to the
shortest path from source to target,

• Greedy – the advice that the user gets is the path com-
puted to minimize the agent’s cost of traversing it,
Costa.

The Shortest solution is the one that minimizes the cost
of the user and, therefore, we expect that its acceptance

by the users will be high. Moreover, the number of advice
ignorers will be small and the probability of deviation will be
low as well. However, since the agent’s cost for this path is
usually high, we expect that presenting Shortest will yield
the agent a relatively high average cost. When providing
Greedy advice, we run the risk that most of the users will
ignore it, while the ones that will accept it will yield the
highest benefits to the agent. We first compared the agent’s
average cost when providing any one of these three types of
advice. (This comparison was performed using ANOVA, a
method of analysis used to determine the level of statistical
significance when dealing with more than two groups). Then
we chose the one that was best for the agent and compared
the UMPA solution to this baseline algorithm. Then we
considered UMPA estimation methods, its performance vs.
the baseline algorithm and whether it decreased the user’s
benefit and satisfaction or if it was mutually beneficial for
both the agent and the user.

5.2 Basic Results
We calculated the effects that Silent, Shortest and Greedy

types of advice have on the average agent cost across paths
selected by users in our experiments. The corresponding
three bar charts on the left of Figure 3 summarize the results
(the lower the better). The average costs over four mazes
of types Silent, Shortest and Greedy were 559.73, 559.55
and 501.68, respectively. That is, the paths chosen by users
after receiving Greedy advice have resulted in a significantly
(p < 0.001) lower cost to the agent than the cost attained
when the other two types of advice were given (Shortest and
Silent).

We have also studied the statistics of the advice effect on
the user’s cost (see three left-most bar charts of Figure 4).
As expected, the cost of the paths chosen by users was sig-
nificantly lower (130.85) when Shortest advice was provided,
than when the other two types of advice were given (Greedy
(144.6) and Silent (142.75)). Moreover, we wanted to check
whether giving advice that results in the lowest costs to the
agent can also decrease the costs to the users, when com-
pared to the case where no advice is provided. The results
were mixed and no significant difference was found between
Greedy and Silent. That is, while Greedy advice signif-
icantly decreased the agent’s cost, it did not significantly
increase the user’s costs. We concluded that the UMPA ad-
vice generation algorithm should be compared to the case
where Greedy advice is provided.

5.3 UMPA Advice Algorithm Performance
We set the UMPA parameters as follows: the length of a

cut L1 was bound to 40; a cut’s potential increase in length
L2 to 20% of the corresponding original segment and the
discount factor δ in the cut-seemliness feature calculation
was set to 0.95. These parameters where chosen to optimize
prediction accuracy within computational limitations.

The first step in the evaluation of our UMPA algorithm
was to verify the effectiveness in computing p(M,π, πi, τ)
(i.e., the predicted number of users that will take cut τ when
facing divergence node i, when advice π was provided in
maze M). We found a high correlation (0.77) between this
prediction and the actual fraction of users who took it when
reaching the cut’s divergence node. A high correlation (0.7)
was also found between the actual fraction of users that took
advice π or manipulated it, the Advice modifiers and our

464

Figure 3: Average agent’s costs

Figure 4: Average users’ costs

predicted number of such users, pb(π). Finally, we obtained a
high correlation (0.76) between the estimated value of advice
π, ECosta(π) and the empirical average value of the actual
paths selected in response to advice π. This is significant
since the correlation between the agent’s cost of π itself and
the empirical average of the selected path was only 0.06.

We then compared the average cost attained by the agents
when users chose paths after receiving either the UMPA-
based advice or Greedy advice. Consider the two corre-
sponding bar charts on the right side of Figure 3 (the lower
the better). UMPA’s average costs over the four mazes
was 484.95 compared with the Greedy advice that was
501.68. That is, on average, the UMPA approach outper-
formed Greedy advice, resulting in significantly lower costs
(p < 0.05) for the agent.

We also compared the average cost incurred by the paths
chosen by users to the users themselves when receiving the
advice provided by the UMPA algorithm and Greedy advice
(see the two right-most bar charts of Figure 4). To our sur-
prise, the average results attained by the users that were
given the UMPA advice (142.33) were significantly better
(lower cost) than those attained by users who were presented
with Greedy advice (142.33) (p < 0.05). In summary, when
comparing the results obtained by running two advice gener-
ation techniques (one provides UMPA advice and the other
provides Greedy advice), we conclude that UMPA-based ad-
vice outperforms Greedy advice. That is, the average cost
incurred by the agent when users selected their paths and the
average cost incurred by the human users would decrease sig-
nificantly when the users were provided with UMPA advice.
So UMPA manipulative advice is indeed mutually beneficial
when compared with Greedy advice.

Finally, we considered the subjective view of the users on
the paths that were advised. Users were presented with the
following questions after they finished the route selection
task: (i) ”How good was the advice given to you by the sys-
tem?” and (ii) ”How much did you trust the advice given to
you by the system?” The possible answers were on a scale

Figure 5: Users’ satisfaction and trust

of 1-5, where 5 indicates the highest satisfaction and 1 the
lowest satisfaction. The results are presented in Figure 5.
Regarding the first question, UMPA advice was considered
to be significantly better than Greedy advice, with p < 0.05.
The average rating for UMPA was 3.29 and the average rat-
ing for Greedy was only 3.05. Similarly, with respect to trust,
the average rating of UMPA was 3.23 whereas the average
rating of Greedy was only 2.92, i.e., users trusted UMPA
advice significantly more than Greedy advice (p < 0.05).

6. CONCLUSIONS AND FUTURE WORK
This paper presents an innovative computational model

for advice generation in human-computer settings where
agents are essentially self-interested but share some com-
mon goals with the human. To assess the potential effec-
tiveness of our approach, we performed an extensive set of
path selection experiments in mazes. Results showed that
the agent was able to outperform alternative methods that
either solely considered the agent’s or the person’s benefit,
or did not provide any advice.

The approach that was described in this paper can be
technically summarized as follows: first, sample user re-
sponse to basic advice patterns. Then create a model of
the response using machine learning and relevant psycholog-
ical models. Finally, solve inverse kinematics of the model
in order to find the most profitable advice. This techni-
cal structure can be repeated in any domain or task where
a self-interested agent can provide advice to a human user
and the basic response data can be obtained. Specifically,
whenever the task can be converted into a path-in-graph for-
mulation (e.g. supply-chain plans), our solution can become
an out-of-the box (yet tunable) method for advice provision.

Given these encouraging results, we expect that the pro-
posed technology can be applied to other applications where
the agent’s goal is to provide people with advice that will
lead them to take beneficial actions. Recent applications,
such as coaching humans in weight-loss programs, programs
to help quit smoking or online service providers such as au-
tomated travel agents are domains that are promising.

In future work, we will extend this approach to settings in
which people and computers interact repeatedly, requiring
the agent to reason about the effects of its current advice on
people’s future behavior.

7. ACKNOWLEDGMENTS
We thank Ya’akov Gal, Shira Abuhatzera and Ariella

Richardson for their helpful comments and acknowledge
ERC (grant #267523) for supporting this research.

465

8. REFERENCES
[1] Amazon. Mechanical Turk services.

http://www.mturk.com/, 2010.

[2] D. Antos and A. Pfeffer. Using reasoning patterns to
help humans solve complex games. In IJCAI, pages
33–39, 2009.

[3] A. Azaria, Z. Rabinovich, S. Kraus, and C. Goldman.
Strategic information disclosure to people with
multiple alternatives. In Proc. of AAAI, 2011.

[4] A. Blume, D. V. DeJong, Y.-G. Kim, and G. B.
Sprinkle. Evolution of communication with partial
common interest. Games and Economic Behavior,
37(1):79 – 120, 2001.

[5] S. Bonaccio and R. S. Dalal. Advice taking and
decision-making: An integrative literature review and
implications for the organizational sciences.
Organizational Behavior and Human Decision
Processes, 101(2):127–151, 2006.

[6] H. Cai and J. T.-Y. Wang. Overcommunication in
strategic information transmission games. Games and
Economic Behavior, Vol. 56, Issue 1:7–36, July 2006.

[7] C. F. Camerer. Behavioral Game Theory. Experiments
in Strategic Interaction, chapter 2. Princeton
University Press, 2003.

[8] Y. Chen. Perturbed communication games with
honest senders and naive receivers. Journal of
Economic Theory, 146(2):401 – 424, 2011.

[9] C. G. Chorus, E. J. Molin, and B. van Wee. Travel
information as an instrument to change car drivers
travel choices. EJTIR, 6(4):335–364, 2006.

[10] L. de Alfaro, T. Henzinger, and R. Majumdar.
Discounting the future in systems theory. In
J. Baeten, J. Lenstra, J. Parrow, and G. Woeginger,
editors, Automata, Languages and Programming,
volume 2719 of Lecture Notes in Computer Science,
pages 192–192. Springer Berlin / Heidelberg, 2003.

[11] J. W. Dickhaut, K. A. McCabe, and A. Mukherji. An
experimental study of strategic information
transmission. Economic Theory, 6(3):389–403,
November 1995.

[12] M. Duckham and L. Kulik. ”Simplest” paths:
Automated route selection for navigation. In LNCS,
volume 2825, pages 169–185, 2003.

[13] R. Forsythe, R. Lundholm, and T. Rietz. Cheap talk,
fraud, and adverse selection in financial markets:
Some experimental evidence. The Review of Financial
Studies, Vol. 12, No, 3:481–518, Fall 1999.

[14] J. Glazer and A. Rubinstein. On optimal rules of
persuasion. Econometrica, 72(6):1715–1736, 2004.

[15] R. J. Hanowski, S. C. Kantowitz, and B. H.
Kantowitz. Driver acceptance of unreliable route
guidance information. In Proc. of the Human Factors
and Ergonomics Society, pages 1062–1066, 1994.

[16] P. Hart, N. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, Feb. 1968.

[17] M. Hipp, F. Schaub, F. Kargl, and M. Weber.
Interaction weaknesses of personal navigation devices.
In Proc of AutomotiveUI, 2010.

[18] H. H. Hochmair and V. Karlsson. Investigation of
preference between the least-angle strategy and the

initial segment strategy for route selection in unknown
environments. In Spatial Cognition IV, volume 3343 of
LNCS, pages 79–97, 2005.

[19] P. Hoz-Weiss, S. Kraus, J. Wilkenfeld, D. R.
Andersend, and A. Pate. Resolving crises through
automated bilateral negotiations. Artificial
Intelligence journal, 172(1):1–18, 2008.

[20] S. K. Hui, P. S. Fader, and E. T. Bradlow. Path data
in marketing. Marketing Science, 28(2):320–335, 2009.

[21] X. J. Kuang, R. A. Weber, and J. Dana. How effective
is advice from interested parties? J. of Economic
Behavior and Organization, 62(4):591–604, 2007.

[22] G. Paolacci, J. Chandler, and P. G. Ipeirotis. Running
experiments on Amazon Mechanical Turk. Judgment
and Decision Making, 5(5), 2010.

[23] K. Park, M. Bell, I. Kaparias, and K. Bogenberger.
Learning user preferences of route choice behaviour for
adaptive route guidance. IET Intelligent Transport
Systems, 1(2):159–166, 2007.

[24] N. Peled, Y. Gal, and S. Kraus. A study of
computational and human strategies in revelation
games. In Proc. of AAMAS, 2011.

[25] H. Rachlin and L. Green. Commitment, choice and
self-control. J. Exp. Anal. Behav., 17:15–22, 1972.

[26] L. Rayo and I. Segal. Optimal information disclosure.
Journal of Political Economy, 118(5):949–987, 2010.

[27] K.-F. Richter and M. Duckham. Simplest instructions:
Finding easy-to-describe routes for navigation. In
Proc. of the Geographic Information Sience, volume
5266 of LNCS, pages 274–289, 2008.

[28] I. Sher. Credibility and determinism in a game of
persuasion. Games and Economic Behavior, 71(2):409
– 419, 2011.

[29] J. Sobel. Giving and receiving advice. Working Paper,
August 2010.

[30] A. Tversky and D. Kahneman. Loss Aversion in
Riskless Choice: A Reference-Dependent Model. The
Quarterly J. of Economics, 106(4):1039–1061, 1991.

APPENDIX
Input: A maze, with an advised path π.
Output: ECostb(π) – estimated cost contributed by Advice

modifiers
1: ECostb ← Costa(π).

2: vec ∈ Rl(π) ← ~0. vec(0) = 1.
3: for each i < l(π) do
4: for each cut τ s.t. τ1 = πi do
5: {Predict the fraction of Advice modifiers who

take the cut}
a(τ)← (1 +

∑
j<i vec[j]) · p(τ)

6: ECostb ← ECostb + (Costa(τ)− Costa(o(τ))) · a(τ).
7: {Update mass at cut entry point.}

vec[i]← vec[i]− a(τ)
8: {Update the cut exit point}

vec[j|πj = τ l(τ)]← vec[j] + a(τ)
9: return ECostb.

Intuitively, the algorithm’s basic assumption is that the
set of users forms a continuous unit mass. The algorithm
then traces the flow of this unit of mass along different
cuts that diverge (or converge) at vertexes along the advised
path.

This algorithm can be implemented with a complexity of
O(#cuts+ l(π)).

466

Combining Human and Machine Intelligence in
Large-scale Crowdsourcing

Ece Kamar
Microsoft Research

Redmond, WA 98052
eckamar@microsoft.com

Severin Hacker
∗

Carnegie Mellon University
Pittsburgh, PA 15289

shacker@cs.cmu.edu

Eric Horvitz
Microsoft Research

Redmond, WA 98052
horvitz@microsoft.com

ABSTRACT
We show how machine learning and inference can be har-
nessed to leverage the complementary strengths of humans
and computational agents to solve crowdsourcing tasks. We
construct a set of Bayesian predictive models from data and
describe how the models operate within an overall crowd-
sourcing architecture that combines the efforts of people and
machine vision on the task of classifying celestial bodies de-
fined within a citizens’ science project named Galaxy Zoo.
We show how learned probabilistic models can be used to
fuse human and machine contributions and to predict the
behaviors of workers. We employ multiple inferences in con-
cert to guide decisions on hiring and routing workers to tasks
so as to maximize the efficiency of large-scale crowdsourcing
processes based on expected utility.

Categories and Subject Descriptors
I.2 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Design, Algorithms, Economics

Keywords
crowdsourcing, consensus tasks, complementary computing,
decision-theoretic reasoning

1. INTRODUCTION
Efforts in the nascent field of human computation have

explored methods for gaining programmatic access to peo-
ple for solving tasks that computers cannot easily perform
without human assistance. Human computation projects
include work on crowdsourcing, where sets of people jointly
contribute to the solution of problems. Crowdsourcing has
been applied to solve tasks such as image labeling, product
categorization, and handwriting recognition. To date, com-
puters have been employed largely in the role of platforms
for recruiting and reimbursing human workers; the burden of

∗Severin Hacker contributed to this research during an in-
ternship at Microsoft Research.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

managing crowdsourcing tasks and making hiring decisions
has relied on manual designs and controls. However, interest
has been growing in applications of learning and planning
to crowdsourcing.

We investigate principles and algorithms for construct-
ing crowdsourcing systems in which computer agents learn
about tasks and about the competencies of workers con-
tributing to solving the tasks, and make effective decisions
for guiding and fusing multiple contributions. As part of
this investigation, we demonstrate how we can leverage the
complementary strengths of humans and computer agents
to solve crowdsourcing tasks more efficiently. We describe
the operation of key components and overall architecture of
a methodology we refer to as CrowdSynth, and demonstrate
the operation and value of the methods with data and work-
load drawn from a large-scale legacy crowdsourcing system
for citizen science.

We focus on solving consensus tasks, a large class of crowd-
sourcing. With consensus tasks the goal is to identify a hid-
den state of the world by collecting multiple assessments
from human workers. Examples of consensus tasks include
games with a purpose (e.g., image labeling in the ESP game)
[13], paid crowdsourcing systems (e.g., product categoriza-
tion in Mechanical Turk) [6], and citizen science projects
(e.g., efforts to classify birds or celestial objects). Consen-
sus efforts can be subtasks of larger tasks. For example, a
system for providing real-time traffic flow and predictions
may contact drivers within targeted regions for reports on
traffic conditions [8].

We describe a general system that combines machine learn-
ing and decision-theoretic planning to guide the allocation
of human effort in consensus tasks. Our work derives from
a collaboration with the Galaxy Zoo citizen science effort
[1], which serves as a rich domain and source of data for
evaluating machine learning and planning methods as well
as for studying the overall operation of an architecture for
crowdsourcing. The Galaxy Zoo effort was organized to seek
help from volunteer citizen scientists on the classification of
thousands of galaxies that were previously captured in an
automated astronomical survey, known as the Sloan Digital
Sky Survey (SDSS). The project has sought assessments via
the collection of multiple votes from non-experts. Beyond
votes, we have access to a database of SDSS image analysis
data, containing 453 image features for each galaxy, which
were extracted automatically via automated machine vision.

We shall describe how successful optimization of the en-
gagement of people with Galaxy Zoo tasks hinges on models
learned from data that have the ability to predict the ul-

467

timate classification of a celestial objects, including objects
that are undecidable, and of the next votes that will be made
by workers. Such predictions enable the system to balance
the expected benefit versus the costs of hiring a worker. We
formalize Galaxy Zoo as a Markov Decision Process with
partial observability, using likelihoods of outcomes gener-
ated by the predictive models for states of ground truth and
for worker assessments. We demonstrate that exact com-
putation of the expected value of hiring workers on tasks is
infeasible because of the long horizon of Galaxy Zoo tasks.
We present approximation algorithms and show their effec-
tiveness for guiding hiring decisions. We evaluate the meth-
ods by drawing votes from the dataset collected from the
Galaxy Zoo system during its operation in the open world.
The evaluations show that the methods can achieve the max-
imum accuracy by hiring only 47% of workers who voted
in the open-world run of the system. The evaluations call
attention to the robustness of different algorithms to uncer-
tainties in the inferences from the learned predictive models,
highlighting key challenges that arise in fielding large-scale
crowdsourcing systems.

2. RELATED WORK
Modeling workers and tasks has been an active area of

crowdsourcing research. Whitehill et al. apply unsupervised
learning to simultaneously predict the correct answer of a
task, the difficulty of the task and the accuracy of workers
based on some assumptions about the underlying relation-
ships between the answer, the task, and workers [14]. Dai
et. el. assume that worker reports are independent given
the difficulty of tasks, and learn models of workers and task
quality under this independence assumption [3].

Previous work on decision-theoretic reasoning for crowd-
sourcing tasks focused on tasks that can be decomposed into
smaller tasks [10], and on workflows that are composed of an
improve and verify step, which can be solved via methods
that perform short lookaheads [3]. In a related line of work,
researchers proposed greedy and heuristic approaches for ac-
tive learning in crowdsourcing systems [11]. Our work differs
from previous approaches in the generality of the Bayesian
and decision-theoretic modeling, and in our focus on learn-
ing and executing expressive models of tasks and workers
learned from real-world data.

3. SOLVING CONSENSUS TASKS
A task is classified as a consensus task if it centers on

identifying a correct answer that is not known to the task
owner and there exists a population of workers that can
make predictions about the correct answer. Formally, let t
be a consensus task and A be the set of possible answers for
t. There exists a mapping t→ ā ∈ A that assigns each task
to a correct answer.

Figure 1 presents a schematic of components and flow of
analysis of a utility-directed consensus system. The consen-
sus system takes as input a consensus task. The system has
access to a population of workers, who are able to report
their noisy inferences about the correct answer. Given that
L ⊆ A is a subset of answers that the system and work-
ers are aware of, a report of a worker includes the worker’s
vote, v ∈ L, which is the worker’s prediction of the correct
answer. The system can hire a worker at any time or may
decide to terminate the task with a prediction about the cor-

Figure 1: CrowdSynth: Key components and flow
of analysis.

rect answer of the task based on reports collected so far (â).
The goal of the system is to predict the correct answer of a
given task based on potentially noisy worker reports while
considering the cost of resources.

A successful system for solving consensus tasks needs to
manage the tradeoff between making more accurate predic-
tions about the correct answer by hiring more workers, and
the time and monetary costs for hiring. We explore the op-
portunity to optimize parameters of this tradeoff by making
use of a set of predictive models and a decision-theoretic
planner.

The modeling component is responsible for constructing
and using two groups of predictive models: answer models
for predicting the correct answer of a given consensus task
at any point during the process of acquiring votes, and vote
models that predict the next state of the system by predict-
ing the votes that the system would receive from additional
workers should they be hired, based on the current informa-
tion state. The modeling component monitors the worker
population and task execution, and collects data about task
properties and worker statistics, votes collected, and feed-
back received about the correct answer. A case library of
execution data is used to build the answer and vote models.

We construct the answer and vote prediction models with
supervised learning. Log data of any system for solving con-
sensus tasks provides labeled examples of workers’ votes for
tasks. Labeled examples for training answer models are ob-
tained from experts who identify the correct answer of a task
with high accuracy. When expert opinion is not available,
the consensus system may assume that the answer deduced
from the reports of infinitely many workers according to a
predetermined consensus rule is the correct answer of a given
task (e.g., the majority opinion of infinitely many workers).
To train answer models without experts, the system collects
many worker reports for each task in the training set, de-
duces the correct answer for each task, and records either
the consensus answer or the undecidable label.

Both answer and vote models are inputs to the plan-
ner. Vote models constitute the stochastic transition func-
tions used in planning for predicting the future states of the
model. The planner makes use of answer models for esti-
mating the confidence on the prediction so that the planning
component can decide whether to hire an additional worker.

The decision-theoretic planner models a consensus task as

468

Figure 2: Galaxy Zoo interface for acquiring votes.

a Markov Decision Process (MDP) with partial observabil-
ity. The MDP model is able to represent both the system’s
uncertainty about the correct answer and uncertainty about
the next vote that would be received from workers. The
planner computes the expected value of information (VOI)
that would come with the hiring of an additional worker and
determines whether the system should continue hiring (H)
or terminate (¬H) at any given state to maximize the total
utility of the system. The utility is a combination of the
reward (or punishment) of the system for making a correct
(or incorrect) prediction and cost for hiring a worker.

3.1 Tagging Galaxies as a Consensus Task
In Galaxy Zoo, volunteers provide votes about the correct

classifications of millions of galaxies that have been recorded
in an automated sky survey [1]. Crowdsourcing provides a
novel way for astronomers to reach a large group of workers
around the world and collect millions of classifications under
the assumption that the consensus of many workers provide
the correct classification of a galaxy.

Figure 2 displays the main interface between the system
and workers for collecting worker reports. The system dis-
plays images of celestial objects taken from SDSS and asks
workers to classify them into 6 possible classes: elliptical
galaxy, clockwise spiral galaxy, anticlockwise spiral galaxy,
other spiral galaxy, and stars and mergers.

The dataset collected to date includes over 34 million
worker reports obtained for 886 thousand unique galaxies.
We use a subset of this dataset to train and test predictive
models. We use another subset to simulate the real-time exe-
cution of the methodology within a prototype system named
CrowdSynth and evaluate its performance under varying do-
main conditions.

4. PREDICTIVE MODELS FOR
CONSENSUS TASKS

We now focus on the construction of predictive models for
answers and votes.

4.1 Datasets
We shall perform supervised learning from a case library

that includes log entries collected during the operation of the
Galaxy Zoo system. Each log entry corresponds to a worker
report collected for a galaxy. A worker report is a combi-
nation of a vote (vi ∈ L), and information and statistics
(fsi) about the worker delivered vi. vi represents a worker’s

prediction of the correct answer (e.g., elliptical) and fsi in-
cludes the worker’s identity, the dwell time of the worker,
the time and day the report is received. In addition to vi
and fsi , a log entry for a galaxy includes the visual features
of a galaxy (SDSS features). We divided the celestial objects
in the Galaxy Zoo dataset into a training set, a validation
set and a testing dataset, each having 628354, 75005, and
112887 galaxies respectively.

We defined sets of features that summarize task character-
istics, the votes collected for a task, and the characteristics
of the workers reported for the task. f , the set of features for
a galaxy, is composed of four main sets of features: f0, task
features, fv, vote features, fw, worker features, and fv−w,
vote-worker features. Task features include 453 features that
are extracted automatically from sky survey images by mak-
ing use of machine vision [9]. These features are available for
each galaxy in the system in advance of votes from workers.
Vote features capture statistics about the votes collected by
the system at different points in the completion of tasks.
These features include the number of votes collected, the
number and ratio of votes for each class in L, the entropy
of the vote distribution, and the majority class. Worker
features include attributes that represent multiple aspects
of the current and past performance, behaviors, and expe-
rience of workers contributing to the current task. These
features include the average dwell time of workers on pre-
vious tasks, average dwell time for the current task, their
difference, mean and variance of number of tasks completed
in past, and average worker accuracy on aligning with the
correct answer. We use the training set to calculate features
about a worker’s past performance. Finally, vote-worker
features consist of statistics that combine vote distributions
with worker statistics. These include such attributes as the
vote by the most experienced worker, the number of tasks
responded by a worker, the vote of the worker who has been
most correct, and her accuracy.

A feature extraction function F takes a galaxy task and a
history of worker reports ht = {< v1, fs1 >, ..., < vt, fst >},
and creates f , the set of features described here, as input to
the predictive models.

Based on an analysis on the dataset, the designers of the
Galaxy Zoo system identified the following consensus rule:
After hiring as many workers as possible for a celestial ob-
ject (minimum 10 reports), if at least 80% of the workers
agree on a classification (e.g., elliptical, spiral, etc.), that
classification is assigned to the celestial object as the cor-
rect answer. Experts on galaxy classifications note that the
correct answers assigned to galaxies with this rule agree with
expert opinions in more than 90% of the cases, and thus us-
ing this rule to assign ground truth classification to galaxies
does not significantly diminish the quality of the system [9].
In our experiments, we consider galaxies with at least 30
votes and apply this rule to generate labeled examples.

Not all galaxies in the dataset have votes with 80% agree-
ment on a classification when all votes for that galaxy are
collected. We classify such galaxies as ”undecidable” and we
define A = L ∪ {undecided}, where L is the set of galaxy
classes. Having undecidable galaxies introduces the addi-
tional challenge for the predictive models of identifying tasks
that are undecidable, so that the system does not spend
valuable resources on tasks that will not converge to a classi-
fication. MA, the answer model, is responsible for deciding if
a galaxy is decidable as well as identifying the correct galaxy

469

class if the galaxy is decidable without knowing the consen-
sus rule that is used to assign correct answers to galaxies.
Because the number of votes each galaxy has in the dataset
varies significantly (minimum 30, maximum 95, average 44),
predicting the correct answer of a galaxy at any step of the
process (without knowing how many votes the galaxy has
eventually) is a challenging prediction task. For example,
two galaxies with the same vote distribution after 30 votes
may have different correct answers.

We perform Bayesian structure learning to data from the
case library to build probabilistic models that make predic-
tions about consensus tasks. For any given learning prob-
lem, the learning algorithm selects the best predictive model
by performing heuristic search over feasible probabilistic de-
pendency models guided by a Bayesian scoring rule [2]. We
employ a variant learning procedure that generates decision
trees for making predictions.

4.2 Predicting Correct Classification
We now explore the challenge of predicting the correct

answer of a consensus task based on noisy worker reports.
We first implement several basic approaches as proposed by
previous work [12], and then present more sophisticated ap-
proaches that can better represent the dependency relation-
ships among different features of a task.

The most commonly used approach in crowdsourcing re-
search for predicting the correct answer of a consensus task is
majority voting. This approach does not perform well in the
galaxy classification domain because it incorrectly classifies
many galaxies, particularly the tasks that are undecidable.

Next, we implement two approaches that predict the cor-
rect answer using Bayes’ rule based on the predictions of the
following models: MA(ā, F (f0, ∅)), a prior model for the cor-
rect answer, and MV ′(vi, ā, F (f0, hi−1)), a vote model that
predicts the next vote for a task conditional on the complete
feature set and the correct answer of the galaxy. Because vi
is the most informative piece of a worker’s report and pre-
dicting fsi is difficult, we only use MV ′ model to predict a
worker’s report.

The Naive Bayes approach makes the strict independence
assumption that worker reports are independent of each
other given task features and the correct answer of the task.
Formally, Pr(ā|f), the likelihood of the correct answer being
ā given feature set f , is computed as below:

Pr(ā|f) = Pr(ā|F (f0, ht))

≈MA(ā, F (f0, ∅))
tY
i=1

MV ′(vi, ā, F (f0, ∅))/Zn

where Zn is the normalization constant.
Next, we introduce an iterative Bayes update model that

relaxes the independence assumptions of the Naive Bayes
model. The iterative Bayes update model generates a pos-
terior distribution over possible answers at time step t by
iteratively applying the vote model on the prior model as
given below:

Pr(ā|f) ∝ Pr(ā|F (f0, ht−1))Pr(< vt, fst > |ā, F (f0, ht−1))/Zb

≈MA(ā, F (f0, ∅))
tY
i=1

MV ′(vi, ā, F (f0, hi−1))/Zb

where Zb is the normalization constant.
Another approach is building direct models for predicting

Figure 4: Comparison of accuracies of different mod-
els for predicting correct answer.

the correct answer of a task. A direct model takes as input
f , the complete set of features, and predicts ā. Figure 3
shows an example of a direct model trained for predicting
the correct answer of a galaxy task.

Figure 4 compares the accuracies of different answer mod-
els with a baseline model that classifies every task instance
as the most likely correct answer in the training set. Both
naive Bayes and iterative Bayes update models perform bet-
ter than the direct models when the system has a small
number of votes. However, the direct models outperform
all others as the system collects more votes and as vote fea-
tures become more predictive of the correct answer. When
the system has 45 votes for a galaxy, the accuracy of direct
models reach 95%. Based on the significantly stronger per-
formance of the direct models for large numbers of votes, we
use direct models in the consensus system.

4.3 Predicting the Next Vote
We also construct a model that predicts the next vote that

a system would receive based on task features and worker
reports collected so far. This model, symbolized as MV ,
takes as input the complete feature set f . It differs from
MV ′ in that the correct answer of a task (ā) is not an input
to this model. MV achieves 65% accuracy when 15 or more
votes are collected. We compare the performance of MV

with a baseline model that simply guesses the most likely
vote (elliptical galaxy), as the next vote. The comparison
shows that MV has better accuracy than the baseline when
10 or more votes are collected.

4.4 Predicting Termination
Although the system may decide to hire another worker

for a task, the execution on a task may stochastically ter-
minate because the system may run out of workers to hire
or it may run out of time. Tasks logged in the Galaxy Zoo
dataset are associated with different numbers of worker re-
ports. The system has to terminate once all reports for a
galaxy are collected. To model the distribution over votes
received per task for Galaxy Zoo, we construct a proba-
bilistic termination model from the training set (See Figure
5). The termination model predicts the probability of the
system stochastically terminating after collecting different
numbers of worker reports.

5. DECISIONS FOR CONSENSUS TASKS
At any time during the execution of the consensus system,

the system needs to make a decision about whether to hire
an additional worker for each task under consideration. If
the system does not hire another worker for a task, it termi-

470

Figure 3: Direct model generated with Bayesian structure learning from Galaxy Zoo data. The model predicts
correct answer of a task and next vote that the system would receive.

Figure 5: Termination probabilities estimated from
training data.

nates and delivers the most likely answer that is predicted
by the answer model. If the system decides to hire another
worker, it collects additional evidence about the correct an-
swer, which may help the system to predict the answer more
accurately. But, hiring a worker incurs monetary and time
costs. For solving consensus tasks effectively, the system
needs to trade off the long-term expected utility of hiring
a worker with the immediate cost. Deliberating about this
tradeoff involves the consideration of multiple dimensions of
uncertainty. The system is uncertain about the reports it
will collect for a given task, and it is not able to observe ā,
the correct answer of a consensus task. We shall model this
decision-making problem as an MDP with partial observabil-
ity, which makes calls to the answer and next vote models.
We show that exact solutions of consensus tasks over long
horizons is intractable and present approximate algorithms
for estimating the expected value of hiring a worker.

5.1 Modeling Consensus Tasks
A consensus task is partially observable because the con-

sensus system cannot observe the correct answer of the task.
For simplicity of representation, we model a consensus task
as an MDP with uncertain rewards, where the reward of
the system at any state depends on its belief about the
correct answer. A consensus task is formalized as a tuple

< S,A, T,R, l >. st ∈ S, a state of a consensus task at time
t, is composed of a tuple st =< f0, ht >, where f0 is the
set of task features initially available, and ht is the complete
history of worker reports received upto time t.
A, the set of actions for a consensus task include H, hire

a worker, and ¬H, terminate and deliver the most likely
answer to the task owner. T (st, α, st+1) is the likelihood
of transitioning from state st to st+1 after taking action α.
The transition function represents the system’s uncertainty
about the world and about worker reports. The system tran-
sitions to a terminal state if the selected action is ¬H. If the
system decides to hire a worker, the transition probability
to a next state depends on likelihoods of worker reports and
the likelihood of termination. A worker report is a combina-
tion of vi, worker’s vote, and fsi , the set of features about
the worker. To predict the likelihood of a worker report, we
use the next vote model, and use average worker statistics
computed from the training data to predict fsi .

The reward function R(st, α) represents the reward ob-
tained by executing action α in state st. The reward function
is determined by the cost of hiring a worker, and the utility
function U(â, ā), which represents the task owner’s utility
for the system predicting the correct answer as â when it is
ā. For the simple case where there is no chance of termina-
tion, R(st,H) is assigned a negative value which represents
the cost of hiring a worker. The value of R(st,¬H) depends
on whether the answer that would be revealed by the sys-
tem based on task features and reports collected so far is
correct. bt is a probability distribution over set A that rep-
resents the system’s belief about the correct answer of the
task, such that for any a ∈ A, bt(a) = MA(a, F (f0, ht)).
Let â be the most likely answer according to bt, the reward
function is defined as R(st,¬H) =

P
ā bt(ā)U(â, ā).

We model consensus tasks as a finite-horizon MDP. l, the
horizon of a task, is determined by the ratio of the maxi-
mum reward improvement possible (e.g., the difference be-
tween the reward for making a correct prediction and the
punishment of making an incorrect prediction) and the cost
for hiring an additional worker.

471

A policy π specifies the action the system chooses at any
state st. An optimal policy π∗ satisfies the following equa-
tion for a consensus task of horizon l.

V π
∗
(sl) = maxα∈AR(sl, α)

V π
∗
(st) = maxα∈A

`
R(st, α) +

X
st+1

T (st, α, st+1) V π
∗
(st+1)

´

Now, we can calculate the value of information (VOI) for
any given initial state si.

V OI(si)) = V H(si)− V ¬H(si)

= R(si, H) +
X
si+1

T (si, H, si+1) V π
∗
(si+1)

−R(si,¬H)

V OI is the expected value of hiring an additional worker
in state si. It is beneficial for the consensus system to hire
an additional worker when V OI is computed to be positive.

5.2 Solving Consensus Tasks Efficiently
A state of a consensus task at any time step is defined by

the history of observations collected for the task. The state
space that needs to be searched for computing an optimal
policy for a consensus task grows exponentially in the hori-
zon of the task. For large horizons, computing a policy with
an exact solution algorithm is infeasible due to exponential
complexity. For example, an average Galaxy Zoo task in-
cludes 44 worker reports, and the horizon of such a task can
be up to 93 time steps.

Myopic decision making and k-step lookahead search are
approaches proposed by previous work for approximating
the value of information efficiently [5, 4]. These approaches
could perform well for solving consensus tasks, if collecting
a small set of evidence changed the system’s prediction of
the correct answer. This condition is unlikely to be satisfied
by consensus tasks where worker’s reports each provide only
weak evidence about the correct answer, and the system
needs to reason about the value of collecting a large set of
worker reports. For instance, there exists a set of Galaxy
Zoo tasks with some particular initial features such that
even obtaining 10 consecutive worker reports of the same
galaxy label is not enough to change the system’s current
opinion about the correct answer. Thus, a limited lookahead
search has little chance of improving the predictions of the
system for this subset of tasks in a reasonable amount of
computation time.

Monte-Carlo planning has been used to solve large fully
observable MDPs [7]. We move to investigate sampling-
based solution algorithms, which can be employed in par-
tially observable real-world systems for solving consensus
tasks accurately and efficiently. These algorithms use Monte-
Carlo sampling to perform long lookaheads up to the hori-
zon and to approximate the value of information. Instead
of searching a tree that may be intractable in size, this ap-
proach samples execution paths (i.e., histories) from a given
initial state to a terminal state. For each execution path, it
estimates V ¬H , the value for terminating at the initial state,
and V H , the value for hiring more workers and terminating
later. The value of information is estimated as the difference
of these values averaged over a large number of execution
path samples. We introduce two algorithms that use this
sampling approach to approximate VOI, but differ in the

way they estimate V H . The lower-bound sampling (LBS)
algorithm picks a single best termination point in the fu-
ture across all execution paths, V H is assigned the expected
value of this point. The upper-bound sampling (UBS) algo-
rithm optimizes the best state for termination for each exe-
cution path individually. V H is estimated by averaging over
the values for following these optimal termination strategies.
Both algorithms decide to hire an additional worker if V OI
is computed to be positive. After hiring a new worker and
updating the current state by incorporating new evidence,
the algorithms repeat the calculation of V OI for the new
initial state to determine whether to hire another worker.

For any given consensus task modeled as an MDP with
partial observability, and any initial state si, a next state is
sampled with respect to the transition function; the likeli-
hood of sampling a state is proportional to the likelihood
of transitioning to that state from the initial state. Fu-
ture states are sampled accordingly until a terminal state
is reached. Because sampling of future states is directed by
the transition function, the more likely states are likely to
be explored. For each state sjt on path j, âjt is the answer
predicted based on the current state. When a terminal state
is reached, the correct answer for path j, āj , is sampled ac-
cording to the system’s belief about the correct answer at
this terminal state, when the system is most confident about
the correct answer. An execution path from the initial state
si to a terminal state sjn is composed of each state encoun-
tered on path j, the corresponding predictions at each state,
and the correct answer sampled at the end. It is represented
by the tuple: pj =< si, âi, s

j
i+1, â

j
i+1, ..., s

j
n, â

j
n, ā

j >.
An execution path represents a single randomly generated

execution of a consensus task. For any given execution path,
there is no uncertainty about the correct answer or the set of
observations that would be collected for the task. Sampling
an execution path maps an uncertain task to a deterministic
and fully observable execution. To model different ways a
consensus task may progress (due to the uncertainty about
the correct answer and the worker reports), a library of ex-
ecution paths (P) is generated by repeating the sampling
of execution paths multiple times. This library provides a
way to explore long horizons on a search tree that can be
intractable to explore exhaustively. If the library includes
infinitely many execution paths, it constitutes the complete
search tree.

Given an execution path pj that terminates after collect-
ing n reports, Vk(pj) is the utility for terminating on this
path after collecting k-many worker reports. Vk(pj) is com-
puted with respect to the answer predicted based on the
worker reports collected in the first k steps and the correct
answer sampled at the terminal state. Given that c is the
cost for hiring a worker, Vk(pj) is defined as follows:

Vk(pj) =

U(âjk, ā

j)− kc if k ≤ n
U(âjn, ā

j)− nc if n < k ≤ l

For simplicity of presentation, we assume a constant cost for
hiring workers. The definition of Vk(pj) and consequently
LBS and UBS algorithms can be easily generalized to set-
tings in which worker costs depend on the current state.

We define V ¬H with respect to execution path library P
as given below:

V ¬H(si) =
X

pj∈P
Vi(p

j)/|P |

472

The lower-bound sampling (LBS) algorithm approximates
V H as given below:

V H(si) = max
i<k≤l

(
X

pj∈P
Vk(pj)/|P |)

LBS picks the value of the best termination step in average
for all execution paths. This algorithm underestimates V H

because it picks a fixed strategy for future, and does not
optimize future strategies with respect to different worker
reports that could be collected in future states. LBS is a
pessimistic algorithm; given that the MDP model provided
to the algorithm is correct and the algorithm samples in-
finitely many execution paths, all hire (H) decisions made
by the algorithm are optimal.

The upper-bound sampling (UBS) approximates V H by
optimizing the best termination step individually for each
execution sequence:

V H(si) =
X

pj∈P
(max
i<k≤l

Vk(pj)/|P |)

In distinction to the LBS algorithm, the UBS algorithm
overestimates V H by assuming that both the correct state
of the world and future state transitions are fully observ-
able, and thus by optimizing a different termination strategy
for each execution sequence. The UBS algorithm is an op-
timistic algorithm; given that the MDP model provided to
the algorithm is correct and the algorithm samples infinitely
many execution paths, all not hire (¬H) decisions made by
the algorithm are optimal. In the next section, we empiri-
cally evaluate the performance of LBS and UBS algorithms
on a dataset collected from the Galaxy Zoo system.

6. EXPERIMENTS
We evaluated the ability of the CrowdSynth prototype

to guide the solution of consensus tasks on a subset of the
testset collected from the Galaxy Zoo project. The test-
set includes 44350 votes collected for 1000 randomly se-
lected galaxies, and 453 SDSS image features describing each
galaxy. We evaluated variations of the system by employing
different decision-making algorithms.

The MDP used in CrowdSynth for modeling Galaxy Zoo
tasks includes the belief update functions and transition
functions learned from real-world data, as described ear-
lier. These predictive models are not perfect; they can be
noisy, there can be inconsistencies between consecutive be-
liefs. This study also helps to evaluate the effect of the noise
in the building blocks of an MDP on the performance of dif-
ferent MDP solution algorithms.

6.1 Results
We compare the performance of the decision-theoretic

CrowdSynth methodology to two baselines. The first base-
line is named no hire as it hires no workers and delivers
the most likely answer prediction based on the features ex-
tracted digitally. The second baseline collects all worker
reports available for a task and makes a prediction about
the correct answer afterwards. We name this baseline hire
all. We also implemented myopic and k-step lookahead al-
gorithms, which have been proposed by previous work to es-
timate V OI. In these experiments, the system is rewarded
$1 for correctly predicting the correct answer of a task (in-
cluding predicting undecidables), and the cost of hiring a

Figure 6: Performance of decision-making models
with variation of worker costs.

Figure 7: Analysis of behavior of UBS algorithm for
varying worker costs.

worker is varied between $0.1 and $0.0001. The LBS and
UBS algorithms used in our investigations terminate after
2000 samples.

Figure 6 summarizes the performances of different decision-
making algorithms and baselines as a function of the cost of
a worker. We divide the figure into two regions of worker
costs: high worker costs (Region 1) and low worker costs
(Region 2). For high worker costs, none of the decision-
theoretic algorithms are able to perform better than the no
hire baseline, because the expected cost for hiring enough
workers to change the system’s prediction of the correct an-
swer is as high as or higher the expected benefit.

As shown in Figure 3, predictions of direct answer models
are noisier when a few worker reports are collected than
when no reports are collected. In Region 1, all decision-
theoretic algorithms are affected by this noise because the
lookahead depth is relatively short. In addition, the UBS
algorithm is affected negatively by the overestimation of VOI
in this region.

When the cost of a worker is low, the UBS algorithm per-
forms significantly better than all other algorithms and base-
lines. The performance of the LBS algorithm is negatively
affected by the underestimation of VOI in this region. k-step
lookahead algorithms are outperformed by UBS and by LBS
(except when cost is 0.005), because for many Galaxy Zoo
tasks, even having 16 steps lookahead may not be enough
to properly estimate V OI. Overall, the UBS algorithm out-
performs the default policy used in the Galaxy Zoo effort
(hire all) for all worker costs, including high worker costs.

The decision-theoretic approach can perform better than
the hire all baseline for varying cost values as it successfully
trades off the estimated utility for hiring a worker with the

473

Figure 8: Comparison of decision-making policies
under a fixed budget.

cost of doing so. Figure 7 reports the accuracy of the UBS
algorithm and the percentage of votes collected by the al-
gorithm for varying cost values. When the cost for hiring
a worker is very high, the algorithm hires very few workers
(less than 1 worker per celestial object), which results in a
slight improvement in accuracy. The algorithm gradually
improves its accuracy in predicting the correct answer by
hiring more workers as the cost decreases. The algorithm
reaches 95% accuracy by collecting only 23% of the reports,
it reaches the accuracy of the hire all policy by collecting
only 47% of the votes. The algorithm is able to improve its
accuracy by hiring only a subset of the votes because it can
distinguish the set of galaxies for which its decision is likely
to change in the future.

For the next set of experiments, we modify the problem
so that hiring decisions are not influenced by the cost of
hiring a worker, but instead by varying limitations in bud-
get. The budget constrains the total number of workers
that can be hired for 1000 celestial objects. The challenge
for the system is distributing a limited budget among 1000
different objects to achieve the highest prediction accuracy.
We experiment with four decision-making models. The first
model, random galaxy, randomly selects a celestial object
and collects all available votes for that object. The random
vote model is the approach followed by the original Galaxy
Zoo system. This model selects a random object and col-
lects a single vote for that object at each iteration until it
runs out of budget. UBS-budget and LBS-budget models
calculate VOI for each celestial object with the UBS and
LBS algorithms, and hire a worker with the highest VOI.

Figure 8 compares the performance of these models for
varying budgets. Both UBS and LBS models outperform
other approaches for all budget sizes. After collecting 20000
votes, the accuracy of the VOI models converge as the sys-
tem has collected all the evidence it needs to make accurate
predictions.

7. DISCUSSION AND FUTURE WORK
We reviewed our efforts to take a principled end-to-end

approach to consensus crowdsourcing. We composed a sys-
tem that combines machine vision, machine learning, and
decision-theoretic planning to make effective decisions about
when to hire workers and how to perform classifications
when observations cease. We constructed a prototype sys-
tem and evaluated our learning and decision-making tech-
niques on real-world data collected during the operation of
the Galaxy Zoo system in the open world. The experi-
ments demonstrate that the methodology can solve consen-

sus tasks accurately and achieve significant savings in worker
resources by intelligently allocating resources.

We are exploring extensions of the methods that can rea-
son about optimal timing and pricing of tasks. We have been
investigating models that can make predictions about indi-
vidual workers, so that the decision-theoretic planner can
make effective decisions about the best worker to hire and
the best task to assign to workers who come available. We
are also investigating Monte-Carlo approaches that can more
accurately estimate VOI. Finally, we are studying challenges
with the development of online crowdsourcing services that
have the ability to continue to learn from data, combine re-
ports in a coherent manner, and ideally route people and
tasks with the Bayesian and decision-theoretic procedures
that we have described.

8. ACKNOWLEDGMENTS
We thank Paul Koch for assistance with accessing Galaxy

Zoo data, Chris Lintott for sharing the Galaxy Zoo data, and
Dan Bohus, Rich Caruana, Paul Koch, and Chris Lintott,
for discussions and feedback.

9. REFERENCES
[1] Galaxy Zoo, 2007, http://zoo1.galaxyzoo.org/.

[2] D. Chickering, D. Heckerman, and C. Meek. A
Bayesian approach to learning Bayesian networks with
local structure. In UAI’97, 1997.

[3] P. Dai et al. Artificial intelligence for artificial
artificial intelligence. In AAAI, 2011.

[4] P. Dai, Mausam, and D. Weld. Decision-theoretic
control of crowd-sourced workflows. In AAAI, 2010.

[5] D. Heckerman, E. Horvitz, and B. Nathwani. Toward
normative expert systems: The Pathfinder project.
Stanford University, 1991.

[6] P. Ipeirotis. Analyzing the Amazon Mechanical Turk
marketplace. XRDS: Crossroads, The ACM Magazine
for Students, 17(2):16–21, 2010.

[7] L. Kocsis and C. Szepesvári. Bandit based
monte-carlo planning. Machine Learning: ECML
2006, pages 282–293, 2006.

[8] A. Krause, E. Horvitz, A. Kansal, and F. Zhao.
Toward community sensing. In IPSN. IEEE, 2008.

[9] C. Lintott et al. Galaxy Zoo: Morphologies derived
from visual inspection of galaxies from the Sloan
Digital Sky Survey? Monthly Notices of the Royal
Astronomical Society, 389(3):1179–1189, 2008.

[10] D. Shahaf and E. Horvitz. Generalized task markets
for human and machine computation. In AAAI, 2010.

[11] V. Sheng, F. Provost, and P. Ipeirotis. Get another
label? Improving data quality and data mining using
multiple, noisy labelers. In ACM SIGKDD, 2008.

[12] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap
and fast but is it good?: Evaluating non-expert
annotations for natural language tasks. In EMNLP,
2008.

[13] L. Von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 2008.

[14] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and
J. Movellan. Whose vote should count more: Optimal
integration of labels from labelers of unknown
expertise. NISP, 2009.

474

Reinforcement Learning from Simultaneous Human and
MDP Reward

W. Bradley Knox and Peter Stone
Deptartment of Computer Science
The University of Texas at Austin

{bradknox,pstone}@cs.utexas.edu

ABSTRACT
As computational agents are increasingly used beyond re-
search labs, their success will depend on their ability to
learn new skills and adapt to their dynamic, complex en-
vironments. If human users—without programming skills—
can transfer their task knowledge to agents, learning can
accelerate dramatically, reducing costly trials. The tamer
framework guides the design of agents whose behavior can
be shaped through signals of approval and disapproval, a
natural form of human feedback. More recently, tamer+rl
was introduced to enable human feedback to augment a tra-
ditional reinforcement learning (RL) agent that learns from
a Markov decision process’s (MDP) reward signal. We ad-
dress limitations of prior work on tamer and tamer+rl,
contributing in two critical directions. First, the four suc-
cessful techniques for combining human reward with RL
from prior tamer+rl work are tested on a second task,
and these techniques’ sensitivities to parameter changes are
analyzed. Together, these examinations yield more general
and prescriptive conclusions to guide others who wish to
incorporate human knowledge into an RL algorithm. Sec-
ond, tamer+rl has thus far been limited to a sequential
setting, in which training occurs before learning from MDP
reward. In this paper, we introduce a novel algorithm that
shares the same spirit as tamer+rl but learns simultane-
ously from both reward sources, enabling the human feed-
back to come at any time during the reinforcement learning
process. We call this algorithm simultaneous tamer+rl.
To enable simultaneous learning, we introduce a new tech-
nique that appropriately determines the magnitude of the
human model’s influence on the RL algorithm throughout
time and state-action space.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors, Performance

Keywords
reinforcement learning, human-agent interaction, interactive
learning, human teachers, shaping

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Computational agents may soon be prevalent in society,

and many of their end users will want these agents to learn
to perform new tasks. For many of these tasks, the human
user will already have significant task knowledge. Conse-
quently, we seek to enable non-technical users to transfer
their knowledge to the agent, reducing the cost of learning
without hurting the agent’s final, asymptotic performance.

In this vein, the tamer framework guides the design of
agents that learn by shaping—using signals of approval and
disapproval to teach an agent a desired behavior [7]. As orig-
inally formulated, tamer was limited to learn exclusively
from the human feedback. More recently, tamer+rl was in-
troduced to improve traditional reinforcement learning (RL)
algorithms, which learn from an MDP reward signal, with
human feedback [8]. However, tamer+rl has previously
only been tested on a single domain, and it has been lim-
ited to the case where the learning from human feedback
happens only prior to RL: sequential tamer+rl. We ad-
dress these limitations by improving upon prior work in two
crucial directions.

First, in Section 3, we provide a thorough empirical anal-
ysis of the sequential tamer+rl approach, testing the four
tamer+rl techniques that were previously found to be suc-
cessful. We test on two tasks—one identical to the single
prior tamer+rl task and a new task. We also provide a
much-needed examination of each technique’s performance
at a range of parameter values to determine the ease of
setting each parameter effectively, a critical aspect of us-
ing tamer+rl algorithms in practice that has been previ-
ously sidestepped. Together, these analyses yield stronger,
more prescriptive conclusions than were possible from prior
work. Two similar combination techniques, for the first
time, clearly stand out as the most effective, and we con-
sistently observe that manipulating action selection is more
effective than altering the RL update.

Second, in Section 4 we introduce a novel algorithm that
is inspired by prior work on tamer+rl but learns from
both human and MDP reward simultaneously. The princi-
pal benefit of simultaneous learning is its flexibility; it gives
a trainer the important ability to step in as desired to alter
the course of reinforcement learning while it is in progress.
We demonstrate the success of the two best-performing tech-
niques from our sequential experiments, action biasing and
control sharing, in this simultaneous setting. To meet de-
mands introduced by the simultaneous setting, we develop a
method to moderate the influence of the model of human re-
ward on the RL algorithm. Using this method, simultaneous

475

tamer+rl increases the human model’s influence in areas
of the state-action space that have recently received train-
ing and slowly decreases influence in the absence of training,
leaving the original MDP reward and base RL agent to learn
autonomously in the limit. Without this improvement, the
sequential techniques would be too brittle for simultaneous
learning.

2. PRELIMINARIES
In this section, we briefly introduce reinforcement learning

and the tamer Framework.

2.1 Reinforcement Learning
We assume that the task environment is a Markov decision

process (MDP) specified by the tuple (S, A, T , γ, D, R). S
and A are respectively the sets of possible states and actions.
T is a transition function, T : S×A×S → R, which gives the
probability, given a state st and an action at, of transitioning
to state st+1. γ, the discount factor, exponentially decreases
the value of a future reward. D is the distribution of start
states. R is a reward function, R : S × A × S → R, where
the reward is a function of st, at, and st+1. We will also
consider reward that is a function of only st and at.

Reinforcement learning algorithms (see Sutton and Barto
[15]), seek to learn policies (π : S → A) for an MDP that
maximize return from each state-action pair, where return
is
∑T
t=0E[γtR(st, at, st+1)]. In this paper, we focus on us-

ing a value-function-based RL method, namely SARSA(λ)
[15], augmented by the tamer-based learning that can be
done directly from a human’s reward signal. Though more
sophisticated RL methods exist, we use SARSA(λ) for its
popularity and representativeness, and because we are not
concerned with finding the best overall algorithm for our
experimental tasks but rather with determining how various
techniques for including a human model change the base RL
algorithm’s performance.

2.2 The TAMER Framework for Interactive
Shaping

The tamer Framework [7] is an approach to the problem
of how an agent should learn from numerically mapped re-
ward signals given by a human trainer. Specifically, these
feedback signals are delivered by an observing human trainer
as the agent attempts to perform a task.1 tamer is moti-
vated by two insights about human reward. First, human
reward is trivially delayed, slowed only by the time it takes
the trainer to assess behavior and deliver feedback. Second,
the trainer observes the agent’s behavior with a model of
that behavior’s long-term effects, so the human reward sig-
nal is assumed to be fully informative about the quality of
recent behavior. Human reward is more similar to an action
value (sometimes called a Q-value), albeit a noisy and triv-
ially delayed one, than MDP reward. Consequently, tamer
assumes human reward to be fully informative about the
quality of an action given the current state, and it models
a hypothetical human reward function, H : S × A → R,
as Ĥ in real time by regression. In the simplest form of
credit assignment, each human reward signal creates a la-

1In our experiments, the trainer has a button for positive reward
and one for negative. Multiple button presses are roughly inter-
preted as more intense feedback.

bel for the last state-action pair.2 The output of the resul-
tant Ĥ function—changing as the agent gains experience—
determines the relative quality of potential actions, so that
the exploitative action is a = argmaxa[Ĥ(s, a)].

3. SEQUENTIAL TAMER+RL
Observing that tamer agents typically learn faster than

agents learning from MDP reward but to a lower perfor-
mance plateau, we combined tamer and SARSA(λ) in the
original publication on tamer+rl [8]. The aim was to
complement tamer’s fast learning with RL’s ability to of-
ten learn better policies in the long run. These conjoined
tamer+rl algorithms address a scenario in which a human
trains an agent, leaving a model Ĥ of human reward, and
then Ĥ is used to influence the base RL algorithm somehow.
We call this scenario and the algorithms that address it se-
quential tamer+rl. For all tamer+rl approaches, only
MDP reward is considered to specify optimal behavior. Ĥ
provides guidance but not an objective. In this section, we
reproduce and then extend prior investigations of sequential
tamer+rl, yielding more prescriptive and general conclu-
sions than prior work allowed.

3.1 Combination techniques
Eight tamer+rl techniques were previously tested [8];

each uses Ĥ to affect the RL algorithm in a different way.
Four were largely effective when compared to the SARSA(λ)-
only and tamer-only agents3 on both mean reward over a
run and performance at the end of the run. We focus on
those four techniques, which can be used on any RL al-
gorithm that uses an action-value function. Below, we list
them with names we have created.4 In our notation, a prime
(e.g., Q′) after a function means the function replaces its
non-prime counterpart in the base RL algorithm.

• Reward shaping: R′(s, a) = R(s, a) + (β ∗ Ĥ(s, a))

• Q augmentation: Q′(s, a) = Q(s, a) + (β ∗ Ĥ(s, a))

• Action biasing: Q′(s, a) = Q(s, a)+(β∗Ĥ(s, a)) only
during action selection
• Control sharing: P (a=argmaxa[Ĥ(s, a)]) = min(β, 1).

Otherwise use base RL agent’s action selection mech-
anism.

In the descriptions above, β is a predefined combination
parameter. In our sequential tamer+rl experiments, β is
annealed by a predefined factor after each episode for all
techniques other than Q augmentation.

We now briefly discuss these techniques and situate them
within related work. In the RL literature, reward shaping
adds the output of a shaping function to the original MDP
reward, creating a new reward to learn from instead [3, 10].
As we confirm in the coming paragraph on Q augmentation,
the reward shaping technique used in this paper is not the
only way to do reward shaping, though it is the most direct
use of Ĥ for reward shaping.

2The trivial delay is dealt with using a credit assignment tech-
nique described previously [7].
3A tamer-only agent simply uses Ĥ to choose actions, ignoring

MDP reward. In sequential tamer+rl, Ĥ is constant, and thus
so is the agent’s policy.
4These four techniques are numbered 1, 4, 6, and 7 in past
work [8]. We altered action biasing to generalize it, but the ε-
greedy policies we use in our experiments are not affected.

476

If Ĥ is considered a heuristic function, action biasing is
the same action selection method used in Bianchi et al.’s
Heuristically Accelerated Q-Learning (HAQL) algorithm [1].
Control sharing is equivalent to Fernández and Veloso’s π-
reuse exploration strategy [4]. Note that both control sharing
and action biasing only affect action selection and can be
interpreted as directly guiding exploration toward human-
favored state-action pairs.

Q augmentation is action biasing with additional use of
Ĥ during the Q-function’s update. Wiewiora et al.’s re-
lated look-ahead advice [20] uses a discounted change in the
output of a state-action potential function, γφ(st+1, at+1)−
φ(st, at), for reward shaping and to augment action values
during action selection. Interestingly, look-ahead advice is
equivalent to Q augmentation when Ĥ is used for φ, the
state and action space are finite, and the policy is invariant
to adding a constant to all action values in the current state
(e.g., ε-greedy and soft-max).

3.2 Sequential learning experiments
We now describe our sequential tamer+rl experiments.

We first reproduce results on the single task on which the
techniques were previously tested.5 We then evaluate the
algorithms’ effectiveness on a different task. Additionally,
we analyze our results at a range of combination parameter
values (β values) to identify challenges to setting β’s value
without prior testing.

Using the original Ĥ representation (linear model of RBF
features), task settings, SARSA(λ) parameters, and training
records,6 we repeat past experiments on the mountain-car
task, using all four combination techniques found to be suc-
cessful in those experiments and a range of β combination
parameters. We then test these tamer+rl techniques on
a second task, cart pole, using an Ĥ model trained by an
author. We again use SARSA(λ), choosing parameters that
perform well but sacrifice some performance for episode-to-
episode stability and the ability to evaluate policies that
might otherwise balance the pole for too long to finish a run.
Both tasks are adapted from RL-Library [16]. In mountain
car, the goal is to quickly move the car up a hill to the
goal. The agent receives -1 reward for all transitions to non-
absorbing states. In cart pole, the goal is to move a cart so
that an attached, upright pole maintains balance as long as
possible. The agent receives +1 reward for all transitions
that keep the pole within a specified range of vertical. The
Ĥ for cart pole was learned by k-Nearest Neighbor. For
both tasks, SARSA(λ) uses a linear model with Gaussian
RBF features and initializes Q pessimistically, as was found
effective previously [8]. In these and later experiments, Ĥ
outputs are typically in the range [-2, 2].

We evaluate each combination technique on four criteria;

5The experiments described in this paper use a different imple-
mentation of tamer than was used in previous work [7]. This ver-
sion has minor algorithmic differences and one significant change
in the credit assignment technique, which we we will not fully
describe here for space considerations. Briefly, for each human
reward signal received, past tamer algorithms created a learning
sample for every time step within a window of recent experience,
resulting in many samples per human reward signal in fast do-
mains. We instead create one sample per time step, using all
crediting rewards to create one label.
6The models we create—Ĥ1 and Ĥ2—from the original training
trajectories perform a bit better than those from previous exper-
iments [8], which points to small implementation differences.

!""#$
!""%$
!"%#$
!"%%$
!&#$

'()*(+,-!./01$23456!./01$ 678()9$
*:(;</=$

>$(?=$ 3@A./$
B<(*</=$

C./D).0$
*:()</=$!

"#
$%
&"
'
#&
(%
)*
+
"%
,-
%

.-
#/
0%1

"&
%"
12
3-
("

%

45//6&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%

E"$

EF$

!"%F$
!"%%$
!&G$
!&H$
!&I$

'()*(+,-!./01$23456!./01$ 678()9$
*:(;</=$

>$(?=$ 3@A./$
B<(*</=$

C./D).0$
*:()</=$!

"#
$%
&"
'
#&
(%
)*
+
"%
,-
%

.-
#/
0%1

"&
%"
12
3-
("

%

:$(6&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%

E"$
EF$

!"I%$

!"J%$

!"F%$

!""%$

!"%%$

!&%$

"$ F$ J$ I$ #$ H$ K$ G$ &$ "%$ ""$ "F$ "J$ "I$ "#$!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

%

?6"123-("%2$,"&@#/3%

:#&/A%&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%532$.%BC%

'()*(+,-$

23456!./01$

678()9$*:(;</=$

>$(?=$

3@A./$B<(*</=$

C./D).0$*:()</=$

!"I%$

!"J%$

!"F%$

!""%$

!"%%$

!&%$

"$ F$ J$ I$ #$ H$ K$ G$ &$ "%$ ""$ "F$ "J$ "I$ "#$

!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

%

?6"123-("%2$,"&@#/3%

:#&/A%&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%532$.%BD%

'()*(+,-$

23456!./01$

678()9$*:(;</=$

>$(?=$

3@A./$B<(*</=$

C./D).0$*:()</=$

Figure 1: Comparison of TAMER+RL techniques with

SARSA(λ) and the TAMER-only policy on mountain car

over 40 or more runs of 500 episodes. Ĥ1 and Ĥ2 are

models from two different human trainers. The top chart

considers reward over the entire run, and the second

chart evaluates reward over the final 10 episodes. Error

bars show standard error. The third and fourth charts

display mean performance using Ĥ1 and Ĥ2 early in the

run, during the first 75 episodes.

full success requires outperforming the corresponding Ĥ’s
tamer-only policy and SARSA(λ)-only both in end-run per-
formance and cumulative reward (or mean reward across full
runs, equivalently).

3.3 Sequential learning results and discussion
Figures 1 and 2 show the results of our experiments for

sequential tamer+rl. For now, we only show results for
the β combination parameters that accrue the highest cu-
mulative reward for their corresponding technique. Figure 2
additionally shows learning curves for the first 30 episodes
of the cart pole run.

Qualitatively, our mountain car results are consistent with
previous work. Action biasing and control sharing succeed
on all four criteria and significantly outperform other tech-
niques in cumulative reward. Reward shaping and Q aug-
mentation also improve over SARSA(λ)-only by both met-
rics and over the tamer-only policies in end-run reward.

On cart pole, action biasing and control sharing again suc-

477

!"
#$!!"
$!!!"
%$!!"

&!!!!"

'()*(+,-./012"34567./012" 789():"
*;(<=0>"

?"(@>" 4AB/0"
C=(*=0>"

D/0E)/1"
*;()=0>"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

% 5$(6&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%

!"

$!!"

&!!!"

&$!!"

'()*(+,-./012"34567./012" 789():"
*;(<=0>"

?"(@>" 4AB/0"
C=(*=0>"

D/0E)/1"
*;()=0>"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

% @,886&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%

!"

&!!"

#!!"

F!!"

G!!"

&" #" F" G" $" H" %" I" J" &!" &&" &#" &F" &G" &$"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

%

A6"-.34("%.$1"&B#83%

5#&8C%&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%
'()*(+,-"

34567./012"

789():"*;(<=0>"

?"(@>"

4AB/0"C=(*=0>"

D/0E)/1"*;()=0>"

Figure 2: The same TAMER comparisons as in Figure 1,

except on cart pole over runs of 150 episodes. A single

Ĥ was used. End-run performance for cart pole is the

mean reward during the last 5 episodes.

ceed fully. This time, Q augmentation also meets the four
criteria for success, though it performs significantly worse
than action biasing and control sharing. Most interestingly,
reward shaping, at its best tested parameter, does not sig-
nificantly alter SARSA(λ)’s performance on either metric.

By choosing the best β parameter value for each tech-
nique, prior tamer+rl experiments sidestep the issue of
using an effective value without first testing a range of val-
ues. With experiments in two tasks, we can begin to address
this problem by examining each technique’s sensitivity to β
parameter changes and whether certain ranges of β are ef-
fective across different tasks. In Figure 3, we show the mean
performance of each combination technique as β varies. Ex-
amining the charts, we consider several criteria:

• performance at worst β value,
• range of beneficial β values,
• and existence of β values that are effective across tasks.

Evaluating the techniques on these three criteria creates a
consistent story that fits with our analysis of the techniques
at their best β parameter values (in Figures 1 and 2). The
two combination methods that only affect action selection—
action biasing and control sharing—emerge as the most ef-
fective techniques without a clear leader between them, and
they are followed by Q augmentation and then shaping re-
wards.

From an RL perspective, the weakness of reward shaping
may be counterintuitive. When researchers discuss combin-
ing human reward with RL in the literature, reward shaping
is predominantly suggested [19, 5], possibly because human
“reward” is seen as an analog to MDP reward that should be
used similarly. However, though reward shaping is generally
cast as a guide for exploration, it only affects exploration

indirectly through precariously tampering with the reward
signal. Action biasing and control sharing affect exploration
directly, without manipulating reward. Thus, they achieve
the stated goal of reward shaping while leaving the agent
to learn accurate values from its experience. Following this
line of thought, Q augmentation is identical to action bias-
ing during action selection, boosting each action’s Q-value
by the weighted prediction of human reward. In addition
to this direct guidance on exploration, Q augmentation also
changes the Q-value during the SARSA(λ) update’s calcula-
tion of temporal difference error. As discussed in Section 3.1,
Q augmentation is nearly equivalent to a form of reward
shaping called look-ahead advice [20]. In short, we observe
that the more a technique directly affects action selection,
the better it does, and the more it affects the update to
the Q function for each transition experience, the worse it
does. Q augmentation does both and performs between the
techniques that do only one.

Taken altogether, these experiments validate the conclu-
sions of past tamer+rl work and yield new, firmer con-
clusions about the relative effectiveness of each technique,
endorsing action biasing and control sharing over the two
other previously successful techniques. And more generally,
these results endorse manipulating action selection and leav-
ing the action-value model’s update unmolested.

4. SIMULTANEOUS TAMER+RL
To this point, similarly to all prior work on tamer, we

have assumed that the human training was finished prior
to any reinforcement learning. This “sequential” learning
is sometimes appropriate; for instance, when a difficult-to-
simulate reward function is tied to potentially costly learning
trials and the agent can train in simulation without signifi-
cant cost. However, in other scenarios this assumption can
be limiting. In this section, we investigate how to modify
sequential tamer+rl algorithms to allow a trainer to step
in as desired to alter the course of reinforcement learning
while it is in progress. We call this scenario and the algo-
rithms that address it “simultaneous” tamer+rl. Specifi-
cally, the agent should learn simultaneously from two feed-
back modalities—human reward and MDP reward—as one
fully integrated system. As in the sequential tamer+rl
approaches, we examine techniques that use only Ĥ from
tamer in the RL algorithm, otherwise leaving the two algo-
rithms as separate modules.

Since tamer empirically compares most favorably against
RL algorithms in early learning [7], we expect the greatest
gains to come from training near the beginning of learning.
However, training at any suboptimal point along the learn-
ing curve should benefit the agent, and we hope to do little
harm if the agent is already performing optimally and the
trainer’s feedback cannot help.

Some desirable characteristics for simultaneous learning
are:

1. steady behavior: When the agent’s behavior changes
frequently, giving quality feedback becomes more dif-
ficult.

2. responsiveness to the trainer: The agent should quickly
and obviously demonstrate that it is learning from hu-
man reward to maintain interactivity. Additionally,
quick responses aid a trainer’s own process of learning
how to teach effectively.

478

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'0'"12$%)&"+/)'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

)!!"

*!!"

+!!"
!"#"$%&%#'(%)(*+,*&-'./#'#%7"#8'(9"5*)2'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

#!!"

$!!!"

$#!!"

!"#"$%&%#'(%)(*+,*&-'./#':/)&#/;'(9"#*)2'

,-""."

,-"
/0120345"

%$#!"

%$&!"

%$$!"

%'!"

!()#" !(#" $")" #"
3/$4*)"+/)'5"#"$%&%#'6'

6,".$"

6,".)"

6,"
/0120345"

<
%"
)'
#%
7
"#
8'
5%

#'
%5

*(
/8

%'

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'":+/)'4*"(*)2'

Figure 3: Performance of each technique with each tested Ĥ over ranges of β parameters on two tasks: cart pole (CP)

and mountain car (MC). Note changes in y-axis scaling and that while β ≥ 1 control sharing always chooses by Ĥ.

3. trainer can give feedback to the MDP-only policy: If a
trainer comes in midway through learning, the trainer
should be able to capture the good aspects of what has
already been learned and criticize the negative aspects.

4. trainer’s influence is applied appropriately: Ĥ’s influ-
ence on the RL algorithm’s learning and/or action se-
lection should be larger in more recently trained areas
of the state-action space and smaller in areas trained
less recently.

Simultaneous learning—and its inclusion of RL-based ac-
tion selection during training—presents new challenges for
maintaining behavioral consistency. For instance, control
sharing abruptly shifts between two policies, which can cre-
ate erratic behavior with many different actions (both good
and bad) in a small time period, increasing the difficulty of
giving clear feedback. Also note that the second and third
characteristics are in opposition. Fully responding to the
trainer’s reward requires abandoning the policy learned by
MDP reward. Our module for determining human influ-
ence, described in the following section, strikes a balance by
ramping up the influence of Ĥ with increased human reward,
keeping the RL policy early on.

4.1 Determining the immediate influence of Ĥ
Simultaneous tamer+rl allows humans trainers to in-

sert themselves at any point of the learning process. Conse-
quently, Ĥ’s influence should increase in areas of the state-
action space with recent human training—but not in areas
that have not been targeted with feedback—and decrease in
the absence of training, leaving the set of optimal policies
unchanged in the limit.7 Thus, we must do more than an-
nealing a combination parameter, as is done in sequential
learning.

We determine Ĥ’s influence through a novel adaptation
of the eligibility traces often used in reinforcement learn-
ing [15]. We will refer to it as the eligibility module. Watch-
ing the demonstration of simultaneous tamer+rl at http:
//cs.utexas.edu/~bradknox/simultamerrl may be helpful
prior to reading the details below. The general idea of this
eligibility module is that we maintain an eligibility trace
for each state-action feature8, normalized between 0 and 1,

7Our approach is designed to have the qualitative characteristics
we see as necessary for simultaneous learning; we doubt any no-
tions of theoretical “correctness” can be assessed without brittle
assumptions about the human
8The feature vector is extracted from the current state-action
pair. We advise using features that generalize across state space
(e.g., Gaussian RBFs). The state-action features need not match

those of either Ĥ or Q.

that represents the recency of training while that feature
was active (i.e., non-zero). Then, the eligibility traces and
a time step’s feature vector together calculate a measure of
the recency of training in similar feature vectors, as shown
in Figure 4. That measure, multiplied by a constant scaling
parameter cs, is used as the β term introduced in Section 3.1.
The implementation follows.

Let e be the vector of traces and fn be the feature vec-
tor normalized such that each element of fn exists within
the range [0, 1]. The eligibility module is designed to make
β a function of e, fn, and cs with range [0, cs]. A guid-
ing design constraint is that when e = 1 (i.e., each element
of e is the maximum allowed), the normalized dot prod-
uct of e and any fn, denoted n(e·fn), should equal 1 (since

it weights the influence of Ĥ). To achieve this, we make
n(e·fn) = e · (fn / ‖ fn ‖1) = (e·fn) / (‖ fn ‖1) = β / cs.
Thus, at any time step with normalized features fn, the in-
fluence of Ĥ is calculated as β = cs(e·fn)/(‖ fn ‖1). This
formula has a desirable mathematical characteristic; for a
given e, β is higher when relatively large feature values cor-
respond to large trace values—indicating the current state-
action pair is similar to the recently trained state-action
pairs—and β is smaller when large feature values correspond
to small trace values.

Using accumulating traces capped at 1, the trace is up-
dated with fn during training: ei := min(1, ei + (fn,i ∗ a)),
where ei and fn,i are the ith elements of e and fn, re-
spectively, and a is a constant factor that moderates the
speed of accumulation. During time steps without training,
e := decayFactor ∗ e.

Though this eligibility module is inspired by eligibility
traces used in TD(λ), it differs from eligibility traces in sev-
eral key ways. This module maintains a vector of traces
similarly to how TD(λ)’s eligibility traces are maintained.
However, unlike eligibility traces, it only increases the traces
during training. In addition, rather using the traces to deter-
mine the extent that each feature’s corresponding Q-value
parameter is updated, we use them to output a measure
that roughly indicates how recently nearby states have been
trained.

4.2 Simultaneous learning experiments
Our experiments test the effectiveness of simultaneous

tamer+rl when training starts either at the beginning of
learning or after some learning has occurred. We again use
mountain car and cart pole, and we focus on the two best-
performing combination techniques, action biasing and con-
trol sharing.

The eligibility module’s features are Gaussian RBFs that

479

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'0'"12$%)&"+/)'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

)!!"

*!!"

+!!"
!"#"$%&%#'(%)(*+,*&-'./#'#%7"#8'(9"5*)2'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

#!!"

$!!!"

$#!!"

!"#"$%&%#'(%)(*+,*&-'./#':/)&#/;'(9"#*)2'

,-""."

,-"
/0120345"

%$#!"

%$&!"

%$$!"

%'!"

!()#" !(#" $")" #"
3/$4*)"+/)'5"#"$%&%#'6'

6,".$"

6,".)"

6,"
/0120345"

<
%"
)'
#%
7
"#
8'
5%

#'
%5

*(
/8

%'

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'":+/)'4*"(*)2'

Figure 3: Performance of each technique with each tested Ĥ over a range of β parameters on two tasks: Cart Pole (CP) and Mountain Car
(MC). Note changes in y-axis scaling.

unchanged in the limit. Thus, we must do more than an-
nealing a combination parameter, as is done in sequential
learning.

We determine Ĥ’s influence through a novel adaptation
of the eligibility traces often used in reinforcement learn-
ing (Sutton and Barto, 1998). We will refer to it as the eli-
gibility module. The general idea of this eligibility module
is that we maintain an eligibility trace for each state-action
feature7, normalized between 0 and 1, that represents the
recency of training while that feature was active (i.e., non-
zero). Then, the eligibility traces and a time step’s feature
vector together calculate a measure of the recency of train-
ing in similar feature vectors. That measure, multiplied by
a constant scaling parameter cs, is used as the β term intro-
duced in Section 3.1. The implementation follows.

Let −→e be the vector of traces and −→
fn be the feature vec-

tor normalized such that each element of −→
fn exists within

the range [0, 1]. The eligibility module is designed to make
β a function of −→e , −→fn, and cs with range [0, cs]. A guiding
design constraint is that when −→e is a unit vector, the normal-
ized dot product of −→e and any −→

fn, denoted n(−→e ·−→fn), should
equal 1 (since it weights the influence of Ĥ). To achieve this,
we make n(−→e ·−→fn) = −→e · (

−→
fn / � −→

fn �1) = (−→e ·−→fn) /

(� −→
fn �1) = β / cs. Thus, at any time step with nor-

malized features −→
fn, the influence of Ĥ is calculated as

β = cs(−→e ·−→fn)/(� −→
fn �1). This formula has a desirable

mathematical characteristic; for a given −→e , β is higher when
relatively large feature values correspond to large trace val-
ues — indicating the current state-action pair is similar to the
recently trained state-action pairs — and β is smaller when
large feature values correspond to small trace values.

Using accumulating traces capped at 1, the trace is up-
dated with −→

fn during training: ei := min(1, ei +(fn,i ∗a)),
where ei and fn,i are the ith elements of −→e and −→

fn, re-
spectively, and a is a constant factor that moderates the
speed of accumulation. During time steps without training,−→e := decayFactor ∗ −→e .

4.2 Simultaneous learning experiments
Our experiments test the effectiveness of simultaneous
TAMER+RL when training starts either at the beginning of

7The feature vector is extracted from the current state-action
pair. We advise using features that generalize across state space
(e.g., Gaussian RBFs). The state-action features need not match
those of either Ĥ or Q.

learning or after some learning has occurred. We again use
Mountain Car and Cart Pole, and we focus on the two best-
performing combination techniques, action biasing and con-
trol sharing. For the eligibility module, the scaling parame-
ter cs for Mountain Car and Cart Pole is respectively 100 and
200 for action biasing and 2 and 1 for control sharing. These
values were chosen to be on the upper end of each method’s
effective β values in Figure 3. The accumulation factor a
for eligibility is 0.2. Training in Mountain Car occurs either
for 16 episodes, starting at episode 1, or for 12 episodes af-
ter 20 episodes of SARSA(λ)-only learning. In Cart Pole,
training at start occurs for 12 episodes, and training after 25
episodes of SARSA(λ)-only learning lasts 8 episodes. The
start times are chosen to represent the beginning of learning
and also a point at which the SARSA(λ) agent has learned
a policy that is much improved but still quite flawed.8 The
number of episodes corresponds to an informal assessment
of how many episodes are needed to satisfactorily train the
agent; training at later start times progresses more quickly.
The trainer has a button that starts and stops training during
the designated training episodes, letting the human observe
without the agent updating Ĥ or the eligibility module.

An added experimental challenge is that the training is in-
extricably bound to one specific run, whereas sequential ex-
periments can reuse the same training session for any num-
ber of parameters and combination techniques, limiting the
depth of analysis that can be done for a set number of trainer-
hours. Mountain Car and Cart Pole training sessions typi-
cally took around 8 minutes and 15 minutes each, respec-
tively. Consequently, each experimental condition was lim-
ited to 3 runs of training for a total of 12 runs on each task.

4.3 Simultaneous learning results and discussion
The results of our simultaneous TAMER+RL experiments
are shown in Figure 4. Though the sample size is too
small to show statistical significance, there is a clear pattern
of both action biasing and control sharing outperforming
SARSA(λ). The condition that is closest to SARSA(λ) in
terms of standard error, control sharing on Cart Pole where
training begins after 25 episodes, still receives almost twice
the reward of SARSA(λ). We also observe that training at
the beginning of learning is more effective than training after
some autonomous learning, as we expected. Seeing this, one

8Note that sequential TAMER+RL differs from simultaneous
TAMER+RL where training occurs at the start because the sequen-
tial algorithm begins with a pre-trained Ĥ . The training episodes
are not counted in sequential TAMER+RL experiments.

−→e
−→
fn

For

For

and

and

0.9

0.05

β := cs
−→e · (

−→
fn / � −→

fn �1)

Figure 4: A simple graphic illustration of the calculation

of e · (fn / ‖ fn ‖1) = (e·fn) / (‖ fn ‖1), which is near

0 when the currently “active” features have not been

active during recent training and is near 1 when these

features have been. Here, consider fn to be a 4 × 4 set

of Gaussian radial basis functions that form a grid over

a 2-dimensional state space. (For simplicity, the action

is not considered here.) In the top scenario, the state is

somewhere in the top left square and the active features

overlap heavily with recently trained state. Thus, the

output is near one, possibly 0.9. In the bottom scenario,

the state is in the bottom-right square where there is

less overlap, resulting in a lower output such as 0.05.

are extracted similarly to the SARSA(λ) features. Also, β’s
application in control sharing cannot be action-specific, so
the eligibility module’s features for control sharing are a sin-
gle grid over the state space (not one grid per action as for
SARSA(λ) and for action biasing’s eligibility module). In
the eligibility module, the scaling parameter cs for mountain
car and cart pole is respectively 100 and 200 for action bias-
ing and 2 and 1 for control sharing. These values were chosen
to be near the upper end of each combination method’s ef-
fective β values in Figure 3. The accumulation factor a for
eligibility is 0.2. Training in mountain car occurs either for
16 episodes, starting at episode 1, or for 12 episodes after
20 episodes of SARSA(λ)-only learning. In cart pole, train-
ing at start occurs for 12 episodes, and training after 25
episodes of SARSA(λ)-only learning lasts 8 episodes. The
start times are chosen to represent the beginning of learning
and also a point at which the SARSA(λ) agent has learned
a policy that is much improved but still quite flawed.9 The
number of episodes corresponds to an informal assessment
of how many episodes are needed to satisfactorily train the
agent; training at later start times progresses more quickly.
The trainer, one of the authors, has a button that starts
and stops training during the designated training episodes,
letting the human observe without the agent updating Ĥ
or increasing any traces within the eligibility module. At
all times, whether training is occurring or not, the agent
continues to learn a Q-function.

An added experimental challenge is that the training is
inextricably bound to one specific run, whereas sequential

9Note that sequential tamer+rl differs from simultaneous
tamer+rl where training occurs at the start because the sequen-

tial algorithm begins with a pre-trained Ĥ. The training episodes
are not counted in sequential tamer+rl experiments.

!"#$%

!""&%

!""$%

!"$&%

!"$$%

!'&%

!'$%

"% #% (%)% &% *% +% ,% '% "$%

!
"#
$%
&"
'
#&
(%
)"

&%"
)*
+,
("

%

-./")*+,("%*$0"&1#2+%

3422/&4$%+*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%
-./0.123%

45678%
9:.0:8;<%$%
45678%
9:.0:8;<%#$%
=78>/7?%
0@./:8;<%$%
=78>/7?%
0@./:8;<%#$%

!",$%

!"*$%

!")$%

!"#$%

!"$$%

"% #% (%)% &% *% +% ,% '% "$% ""% "#% "(% ")% "&%!
"#
$%
&"
'
#&
(%
)"

&%"
)*
+,
("

%

=/")*+,("%*$0"&1#2+%

8#&2>%&4$%+*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%
-./0.123%

45678%
9:.0:8;<%$%
45678%
9:.0:8;<%#$%
=78>/7?%
0@./:8;<%$%
=78>/7?%
0@./:8;<%#$%

!""&%

!""$%

!"$&%

!"$$%

!'&%

$% #$%!
"#
$%
&"
'
#&
(%
?@
5
"%
0,
%A
,#

2B%
)"

&%"
)*
+,
("

%

8)*+,("+%C"D,&"%0&#*$*$A%

E*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%

45678%
9:.0:8;%

=78>/7?%
0@./:8;%

-./0.123%
78?A%

Figure 5: Simultaneous TAMER+RL results on moun-

tain car. Unlike sequential TAMER+RL, performance

during training episodes is counted. In the top graph,

mean reward is calculated over runs of 500 episodes in

mountain car and 150 episodes in cart pole. Standard

error is shown. In the lower two plots, learning curves

are shown at two different scales: the top plot shows

mean performance in the earlier episodes of the run and

the bottom plot shows mean performance over the en-

tire run. The number in each legend entry indicates the

episode number at which training started. A vertical

gray bar is placed at the point where the later training

period started, the 20th episode.

experiments can reuse the same training session for any
number of parameters and combination techniques, limit-
ing the depth of analysis that can be done for a set number
of trainer-hours. Mountain car and cart pole training ses-
sions typically took around 8 minutes and 15 minutes each,
respectively. Consequently, each experimental condition was
limited to 3 runs of training for a total of 12 runs on each
task.

4.3 Simultaneous learning results and discus-
sion

The results of our simultaneous tamer+rl experiments
are shown in Figures 5 and 6. Though the sample size is too
small to show statistical significance, there is a clear pattern
of both action biasing and control sharing outperforming
SARSA(λ). The condition that is closest to SARSA(λ) in
terms of standard error, control sharing on cart pole where

480

!"

!#"

!##"

!###"

!####"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'"

!
"#
$%
&"
'
#&
"%
("

&%"
()
%

*+,"(-./0"%-$1"&2#3.%

4533,&5$%.-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%
,-./-012"

34567"
89-/97:;"#"
34567"
89-/97:;"$'"
<67=.6>"
/?-.97:;"#"
<67=.6>"
/?-.97:;"$'"

!"

!#"

!##"

!###"

!####"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'"

!
"#
$%
&"
'
#&
0%
("

&%"
()
%

?,"(-./0"%-$1"&2#3.%

9#&3@%&5$%.-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%
,-./-012"

34567"
89-/97:;"#"
34567"
89-/97:;"$'"
<67=.6>"
/?-.97:;"#"
<67=.6>"
/?-.97:;"$'"

#"

!###"

$###"

%###"

&###"

#" $'"!
"#
$%
&"
'
#&
0%
AB
6
"%
5(

&-C
D1
E%

("
&%"

(-
./
0"

%

9(-./0".%F"G/&"%1&#-$-$C%

H-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%

34567"
89-/97:"

<67=.6>"
/?-.97:"

,-./-012"
67>@"

Figure 6: Learning curves for simultaneous

TAMER+RL on cart pole, following the same for-

mat as Figure 5.

training begins after 25 episodes, still receives almost twice
the reward of SARSA(λ). We also observe that training at
the beginning of learning is more effective—in terms of mean
reward during a run—than training after some MDP-only
learning, as we expected.

Seeing that training is most effective at the start of learn-
ing, one might ask whether the n episodes of MDP-only
learning before training is helping or whether the prior learn-
ing should be abandoned to start from scratch. We can
quantitatively evaluate this question. Starting from scratch
after n episodes is the same as simply training from the
start and stopping n episodes early. So if we ignore the
first n episodes of the later-training group and the last n
episodes of the training-at-start group, the comparison of
the groups’ mean reward addresses this question. In other
words, for a task with run size m, we examine two conditions
per combination technique: (1) from the trajectories where
training began at the first episode, the performance of the
the agent from episodes (1, 2, ...,m−n) is averaged, and (2)
from the trajectories where training began at episode n, the
performance of the agent during episodes (n+1, n+2, ...,m)
is averaged. Thus, each condition is examined over m − n
episodes, and training begins at the first episode of exami-
nation. The main difference between the conditions is that
the later-training group (i.e., starting at n) starts training
after already learning from MDP reward, so we can reason-
ably conclude that performance differences arise from the
presence or lack of MDP-only learning prior to training.

Of four such comparisons (2 techniques x 2 tasks, shown in
Figure 7), the later-training group outperforms three times
and is roughly equal once, suggesting that the prior learning
does indeed help.10

For clarity, we note that we do not aim to quantitatively
compare sequential and simultaneous tamer+rl. Our re-
sults in Figure 7 conclusively show the benefit of training
after some MDP-only learning, when it is too late to learn
sequentially. Therefore, simultaneous learning provides ben-
efits that sequential learning cannot. And when training
without MDP reward is relatively costless, sequential learn-
ing allows an agent to be thoroughly taught before begin-
ning more costly learning with MDP reward; thus, sequential
learning likewise provides benefits that simultaneous learn-
ing cannot. Neither learning scenario is strictly better than
the other.

These results, shown in Figures 5, 6, and 7, demonstrate
the potential effectiveness of simultaneous tamer+rl with
the eligibility module.

5. RELATED WORK
In this section, we situate our work within prior research

on naturally transferring knowledge to a reinforcement learn-
ing agent. We focus on work not already mentioned in Sec-
tion 3.1 or in the previous papers on tamer [7, 8].

Sridharan [13] also extended the original tamer+rl work [8],
showing that action biasing improves an RL agent’s learn-
ing in the domain of 3v2 keepaway. In this work, he tests a
“bootstrapping” approach for determining β that sets it by a
metric of agreement between the Q-function policy and the
Ĥ-policy, where more agreement yields a larger β.

In the only other algorithm for an agent learning simul-
taneously from both human and MDP reward [19], Thomaz
and Breazeal interfaced a human trainer with a table-based
Q-learning agent in a virtual kitchen environment. Their
agent seeks to maximize its discounted total reward, which
for any time step is the sum of human reward and MDP
reward. Their approach is a form of reward shaping, differ-
ing in that Thomaz and Breazeal directly apply the human
reward value to the current reward (instead of modeling
human reward and using the output of the model as sup-
plemental reward). Tenorio-Gonzalez et al. [18] expanded
this learning algorithm, additionally using human demon-
strations. In their algorithm—tested on a trainer and a vir-
tual robot—the RL agent learns from (s, a, r, s′) experiences
created during demonstrations.

Judah et al. consider a learning scenario that alternates
between “practice”, where actual world experience is gath-
ered, and an offline labeling of actions as good or bad by a
human critic [6]. Using an elegant probabilistic technique
with a few assumptions, the human criticism is input to a
loss function that lessens the expected value of candidate
policies while also automatically determining the level of
influence given to the criticism. From some mixed results
and comments from frustrated subjects, they predicted that
redesigning their system to be more interactive and to let

10The only other known difference between conditions is that
agents with prior learning were given less episodes of training than
those that were trained, as was described earlier in this section.
Despite the apparent disadvantage of fewer training episodes,
these agents still outperform those without prior learning in the
subset of episodes examined here.

481

!"#$%

!"#"%

!"##%

!&&%

!&'%

!&(%

!&)%

*+,-.%/0120.3% 4-.56-7%28160.3%!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

4%5
67
%"
12
3-
("

3%

82,9%#$(%'2,9-:,%;<=-$/>%/"#&2.%?"@-&"%,2.%
2$%!-:$,#2$%A#&%

.-%9:!-.7;%
<=2%/<>-6<%
5610.0.3%

$#%
?.+-?.5<@%
9:!-.7;%<=2%
/<>-6<%
5610.0.3% !"

#!!"
$!!!"
$#!!"
%!!!"
%#!!"
&!!!"
&#!!"
'!!!"
'#!!"

()*+,"-./0.,1" 2+,34+5"06/4.,1"!
"#
$%
&"
'
#&
(%
)*
+
"%
,-

&./
01
2%

-"
&%"

-.
34
("

5%6
78
%"
-.
34
("

3%

9.10%#$(%'.104,1%:;<4$=>%="#&$.$/%?"@4&"%1&#.$.$/%
.$%A#&1%B4="%

,+"789+,5:"
;<0"-;=+4;"
34/.,.,1"

%#"
>,)+>,3;?"
789+,5:";<0"
-;=+4;"
34/.,.,1"

Figure 7: A comparison of simultaneous TAMER+RL performance with and without MDP-only learning before

training. The lighter blue bars indicate the mean performance of agents that received 20 or 25 episodes of MDP-only

learning before the human began teaching. The episodes of prior learning are not counted towards mean reward. The

agents corresponding to darker blue bars had no such learning prior to training. Standard error is shown.

the human train periodically—characteristics of simultane-
ous tamer+rl—would improve performance.

Learning from demonstration (LfD) has also been used to
improve reinforcement learning, using preprogrammed poli-
cies [11] or humans [17, 12] to provide demonstrations for an
agent that observes and learns. These approaches are similar
to control sharing. An advantage, though, of human reward
over demonstration is that human reward permits learning
the relative values of actions, allowing techniques like action
biasing to gently push the behavior of the RL agent towards
the policy endorsed by Ĥ, whereas pure demonstration is all
or nothing—either the demonstrator or the learning agent
chooses the action. Additionally, trainers can reward state-
action pairs visited by the agent’s policy, whereas demon-
strations might not ever visit areas of the state space that
the LfD algorithm visits.

Other recent work has employed non-expert humans to
aid RL algorithms through guidance on feature selection [2],
identification and demonstration of high-level actions [14],
and giving natural language advice [9].

6. CONCLUSION
Prior work on tamer+rl is limited by having only been

tested on a single domain and by simply taking the best β
combination parameter from testing. Further, past tamer+
rl algorithms were designed for sequential learning and were
unsuitable for simultaneously learning from the trainer and
the MDP reward signal. This paper addresses these limita-
tions, giving a clear endorsement of using Ĥ to affect action
selection and, for the first time, enabling a human trainer to
interactively provide feedback at any time during the learn-
ing process, a critical improvement towards the practicality
and widespread applicability of the tamer framework.

Acknowledgments
This work has taken place in the Learning Agents Research Group
(LARG) at The University of Texas at Austin. LARG research
is supported in part by grants from the NSF (IIS-0917122), ONR
(N00014-09-1-0658), and the FHA (DTFH61-07-H-00030). W.
Bradley Knox has been supported by an NSF Graduate Research
Fellowship.

7. REFERENCES
[1] R. Bianchi, C. Ribeiro, and A. Costa. Heuristically

Accelerated Q–Learning: a new approach to speed up
Reinforcement Learning. Advances in AI – SBIA, 2004.

[2] L. Cobo, P. Zang, C. Isbell Jr, and A. Thomaz. Automatic
state abstraction from demonstration. In IJCAI, 2011.

[3] M. Dorigo and M. Colombetti. Robot shaping: Developing
situated agents through learning. Artificial Intelligence,
1994.

[4] F. Fernández and M. Veloso. Probabilistic policy reuse in
a reinforcement learning agent. AAMAS, 2006.

[5] C. Isbell, M. Kearns, S. Singh, C. Shelton, P. Stone, and
D. Kormann. Cobot in LambdaMOO: An Adaptive Social
Statistics Agent. AAMAS, 2006.

[6] K. Judah, S. Roy, A. Fern, and T. Dietterich.
Reinforcement Learning Via Practice and Critique Advice.
AAAI, 2010.

[7] W. Knox and P. Stone. Interactively shaping agents via
human reinforcement: The TAMER framework. K-CAP,
2009.

[8] W. Knox and P. Stone. Combining manual feedback with
subsequent MDP reward signals for reinforcement
learning. AAMAS, 2010.

[9] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik.
Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer. In The
AAAI-2004 Workshop on Supervisory Control of
Learning and Adaptive Systems, July 2004.

[10] M. Mataric. Reward functions for accelerated learning.
ICML, 1994.

[11] B. Price and C. Boutilier. Accelerating reinforcement
learning through implicit imitation. JAIR, 19:569–629,
2003.

[12] W. Smart and L. Kaelbling. Practical reinforcement
learning in continuous spaces. ICML, 2000.

[13] M. Sridharan. Augmented reinforcement learning for
interaction with non-expert humans in agent domains. In
Proceedings of IEEE International Conference on
Machine Learning Applications, 2011.

[14] K. Subramanian, C. Isbell, and A. Thomaz. Learning
options through human interaction. In 2011 IJCAI
Workshop on Agents Learning Interactively from Human
Teachers (ALIHT), 2011.

[15] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[16] B. Tanner and A. White. RL-Glue: Language-independent
software for reinforcement-learning experiments. JMLR,
10, 2009.

[17] M. Taylor, H. Suay, and S. Chernova. Integrating
reinforcement learning with human demonstrations of
varying ability. AAMAS, 2011.

[18] A. Tenorio-Gonzalez, E. Morales, and
L. Villaseñor-Pineda. Dynamic reward shaping: training a
robot by voice. Advances in Artificial
Intelligence–IBERAMIA 2010, pages 483–492, 2010.

[19] A. Thomaz and C. Breazeal. Reinforcement Learning with
Human Teachers: Evidence of Feedback and Guidance
with Implications for Learning Performance. AAAI, 2006.

[20] E. Wiewiora, G. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents.
ICML, 2003.

482

Automatic Task Decomposition and State Abstraction from
Demonstration

Luis C. Cobo
College of Engineering

Georgia Tech
Atlanta, GA 30332

luisca@gatech.edu

Charles L. Isbell Jr.
College of Computing

Georgia Tech
Atlanta, GA 30332

isbell@cc.gatech.edu

Andrea L. Thomaz
College of Computing

Georgia Tech
Atlanta, GA 30332

athomaz@cc.gatech.edu

ABSTRACT
Both Learning from Demonstration (LfD) and Reinforce-
ment Learning (RL) are popular approaches for building
decision-making agents. LfD applies supervised learning to a
set of human demonstrations to infer and imitate the human
policy, while RL uses only a reward signal and exploration
to find an optimal policy. For complex tasks both of these
techniques may be ineffective. LfD may require many more
demonstrations than it is feasible to obtain, and RL can take
an inadmissible amount of time to converge.

We present Automatic Decomposition and Abstraction
from demonstration (ADA), an algorithm that uses mutual
information measures over a set of human demonstrations
to decompose a sequential decision process into several sub-
tasks, finding state abstractions for each one of these sub-
tasks. ADA then projects the human demonstrations into
the abstracted state space to build a policy. This policy can
later be improved using RL algorithms to surpass the perfor-
mance of the human teacher. We find empirically that ADA
can find satisficing policies for problems that are too com-
plex to be solved with traditional LfD and RL algorithms.
In particular, we show that we can use mutual information
across state features to leverage human demonstrations to
reduce the effects of the curse of dimensionality by finding
subtasks and abstractions in sequential decision processes.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors.

Keywords
Reinforcement learning, learning from demonstration, task
decomposition, state abstraction.

1. INTRODUCTION
As it is impractical to implement manually every possible

skill an agent might need to flourish in a human environ-
ment, our research aims to enable autonomous agents to

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: RainbowPanda domain. The agent must
pick all balls, aiming at those that match the agent
color at each moment. With 12 continuous state fea-
tures, traditional RL does not converge in a reason-
able amount of time. ADA finds a satisficing policy
quickly by decomposing the problem into simpler
subtasks.

learn new skills from non-expert humans without interven-
tion from an engineer or programer. Agents such as non-
player characters in video games or robotic domestic assis-
tants must be able to adapt their behavior and learn new
skills from everyday people.

Our approach derives a great deal from Learning from
Demonstration (LfD) [3]. In the typical LfD scenario, an
agent learns a mapping from states to actions using super-
vised learning techniques on a set of human demonstrations
of a task. Such approaches assume that human demonstra-
tions are positive examples of a near-optimal policy.

While LfD has proven successful [2], human demonstra-
tions are expensive to obtain and, depending on the size of
the state-action space, may require an impractical number
of demonstrations. Additionally, small errors in imitating
the human policy can compound and lead the agent to an
unknown region of the state space. This large difference
between training and testing state distributions can signifi-
cantly impact performance.

In order to sidestep these shortcomings, we look for other
kinds of information that human demonstrations can com-
municate to a learning agent. Instead of direct policy in-

483

formation, we use human demonstrations to learn a state
abstraction and task decomposition to improve learning.

1.1 State Abstraction from Demonstration
We build on recent work in Abstraction from Demonstra-

tion [4] (AfD). In AfD, an agent uses human demonstrations
on a task to figure which features of the state space are rele-
vant for the task by measuring mutual information between
each feature and the actions taken by the human teacher.
Once the relevant features are identified, the agent builds
an abstract state space in which the human policy can be
expressed compactly, and then applies Reinforcement Learn-
ing (RL) algorithms to learn a policy in that abstract state
space. If the original state space contains policy-invariant [9]
features that can be ignored, this can lead to exponential
speedups in skill learning, compared with traditional, raw-
state space RL.

1.2 Task Decomposition from Abstraction
It is often the case that multipurpose agents have a high

number of input signals of which only a subset are relevant
for any specific task; however, using AfD does not help if all
state features are relevant for the skill to be learned.

Our key insight is that there are often tasks where the
entire state space is relevant for some part of the task, but
the task can decomposed in subtasks so that for any given
subtask there does exist an abstraction in which the policy
can be expressed. For example, when we drive a car, we
focus our attention almost completely on the car keys at the
start and end of a drive, but completely ignore them for the
rest of the trip. Our brain can receive simultaneously up to
11 million pieces of information, but it is estimated that at
any given moment a person can be consciously aware of at
most 40 of these [14].

Our goal is to infer this attentional focus, the particular
task decomposition and state abstraction that the human
demonstrator is using during their demonstration. We de-
fine a subtask as a region of the state space where only a
subset of features is relevant, this subset being different from
those of other subtasks. Thus we want a decomposition that
maximizes our ability to apply AfD in each part.

1.3 Automatic Decomposition and Abstraction
In this paper we introduce Automatic Task Decomposition

and State Abstraction from Demonstration (or Automatic
Decomposition and Abstraction (ADA)), which uses human
demonstrations to both decompose a skill into its subtasks
and find independent state abstractions for each subtask.
ADA can build more powerful abstractions than AfD, find-
ing compact state space representations for more complex
skills in which all state features are relevant at some point
in time.

To determine which features are relevant to a particular
subtask, we measure the mutual information between each
feature of the state and the action taken by a human in a
set of demonstrations. Once the state space is decomposed
in different subtasks, the agent can learn and represent a
compact policy by focusing only on the features that are
relevant at each moment.

Fig.1 shows a simple example in our experimental domain.
In this domain, an agent represented as a panda bear moves
in an spherical surface. The agent can move forward and
backwards and turn left and right. The overall task of the

agent is to pick up all the balls, but at each moment it can
only pick up balls of a specific color. With six balls, there are
12 continuous variables (relative angle and distance of each
ball) and 1 discrete variable, the color the agent is currently
allowed to pick up. In this 13-dimensional state space, tra-
ditional tabular RL takes an unreasonable amount of time
to converge. Further, the complexity of the policy grows ex-
ponentially with the number of balls. As we shall see, with
ADA, we can automatically decompose this problem into a
set of subtasks, one per color, with each one needing to pay
attention only to the closest ball of the target color. These
2-dimensional policies are easy to obtain, and the complex-
ity of the global policy grows linearly with the number of
balls.

After further situating our work in the next section, we
describe in detail the ADA and ADA+RL algorithms and
show that they can obtain good policies in problems where
traditional RL and LfD algorithms offer poor performance.

2. RELATED WORK
Our work is at the intersection of different research lines,

namely Learning from Demonstration, task decomposition,
and state abstraction for RL.

LfD is a broad area of research, and several works ex-
plore how to combine demonstrations with traditional RL
methods. Among these, using demonstrations or feedback
to guide exploration [17, 12] or to learn a reward function [1]
are complementary and could be combined with the method
we propose. Other previous work uses demonstrations to
extract task decompositions, like our method, but require a
dynamic Bayesian network representation of the transitions
and rewards models [16, 19], while our approach is model
free.

There are also many approaches to task decomposition,
but they usually require the user or the designer to explicitly
specify the task structure [6, 10]. Others rely on heuristics
that are adequate only for a very specific class of domains [8,
5, 18]. ADA is automatic and more general than these meth-
ods.

Regarding state abstraction in RL, prior work has used
L1 [13] and L2 regularization [7], as well as selection from
features that are based on Bellman error analysis [11]. While
these approaches select features to represent a near-optimal
value function, our work focuses on representing compactly
a satisficing human policy, which is likely to be simpler and
easier to learn than the optimal one. In the hierarchy for
MDP state abstractions [15], ADA abstractions are in be-
tween a∗-irrelevance and π∗-irrelevance.

3. AUTOMATIC DECOMPOSITION AND
ABSTRACTION

3.1 Preliminaries
We focus on sequential decision problems that can be ex-

pressed as Markov Decision Processes:

M = (S, A, P a
ss′ , Ra

s , γ) ,

where S is a finite state space, A a finite set of actions,
P a

ss′ = Pr (s′|s, a) is the transition model, Ra
s = r(s, a) the

reward function and 0 ≤ γ ≤ 1 the discount factor. F =
{F1, . . . , Fn} is the set of features of the state space, so that

484

S = {F1 × · · · × Fn} and a state s ∈ S is an n-tuple of
features s = (f1, f2, . . . , fn).

Solving an MDP means finding a policy π : S → A map-
ping states to actions. The value or sum of discount rewards
of taking action a in state s and then following a policy π is

Qπ(s, a) = Ra
s + γ

∑

s′∈S

P a
ss′Qπ(s′, π(s′)).

Most RL algorithms look for an optimal policy, i.e., the
policy that maximizes the sum of discounted reward,

π∗(s) = arg max
a∈A

Ra
s + γ

∑

s′∈S

P a
ss′Qπ∗

(s′, π∗(s′));

however, ADA will aim to find a satisficing policy, i.e., a pol-
icy that is comparable in performance to that of the human
teachers.

We utilize usual notation for set operations, including | · |
for cardinality. We use ‖ · ‖ for the L2 norm of a vector.

Human demonstrations are defined as a set of episodes,
each one comprising a list of state action pairs

H = {{(s1, a1), (s2, a2), . . .}, . . .}, si ∈ S, ai ∈ A.

Mutual information is a measure of the amount of entropy
in one random variable that can be explained by the value
of a different random variable,

I(X; Y) = H(X) − H(X|Y) = H(X) + H(Y) − H(X, Y),

and can be computed as

I(X; Y) =
∑

y∈Y

∑

x∈X

p(x, y) log

(
p(x, y)

px(x)py(y)

)
, (1)

where p(x, y) is the joint probability density function (pdf)
of random variables X and Y and px(x) and py(x) the re-
spective marginal pdfs of each random variable. Thus, we
define:

~miE = (I(F1; A), . . . , I(Fn; A))

as a vector whose elements are the mutual information be-
tween each feature of the state space and the action taken
by the human teacher, according to the samples of H in the
region E ⊂ S. To compute ~miE , we estimate the appropri-
ate joint and marginal pdfs using the samples of H that fall
in region E, and use Equation 1.

3.2 Overview
Given an MDP M and a set of human demonstrations

H for a skill to be learned, ADA finds a policy in three
conceptual steps and an optional fourth step:

1. Problem decomposition. Using H, partition the
state space S in different subtasks T = {t1, t2, . . .},
∪T = S, ti ∩ tj = ∅ if i 6= j.

2. Subtask state abstraction. Using H, determine,
for each subtask ti ∈ T the relevant features F̂i =
{Fi1 , Fi2 , . . .}, Fij ∈ F . and build a projection from
the original state space S to the abstract state space
φ(s) = {i, fi1,s, fi2,s, . . .} ∈ Ŝ, s ∈ ti.

3. Policy construction. Build a stochastic policy π(ŝ).

4. Policy improvement. Use Reinforcement Learning
to improve over the policy found in the previous step.
We refer to our algorithm as ADA+RL when it in-
cludes this step.

For clarity, we list the first two steps as if they are se-
quential; however, they are interwoven and concurrent. The
decomposition of the state space depends on the quality of
the abstractions that can be found on different subspaces.

3.3 Problem decomposition

Definition 1. A set of subtasks T = {t1, t2, . . .} of an
MDP M are a set of regions of the state space S such that:

• The set of all subtasks T form a partition of the original
state space S, i.e., ∪T = S and ti ∩ tj = ∅ if i 6= j.

• A subtask ti is identified by having a local satisficing
policy πi that depends only on a subset of the avail-
able features. This subset is different from neighboring
subtasks.

• The global policy π(ŝ), the combination of the policies
of each subtask, is also satisficing.

While this definition is not the typical one for subtasks
in a sequential decision problem, it turns out to be a useful
one, particularly if we focus on human-like activities. For ex-
ample, cooking an elaborate recipe requires multiple steps,
and each of these steps will involve different ingredients and
utensils. It is possible that two conceptually different sub-
tasks may depend on the same features, but in our frame-
work, and arguably in general, the computational benefits
of separating them are not significant.

With ADA, we can identify these subtasks given a set of
human demonstrations H with two requirements:

• There must be a sufficient number of samples minss

from each subtask in the set of demonstrations H.

• The class of possible boundaries between subtasks B =
{b1, b2, , . . .}, bi ⊂ S must be defined. Each boundary
divides the state space in two, bi and S − bi. ADA
will be able to find subtasks that can be expressed as
combinations of these boundaries.

The necessary number of samples is determined in the first
step of the ADA algorithm. This minimum sample size is
needed due to the metric we use to infer feature relevance.
Mutual information is sensitive to the limited sampling bias,
and will be overestimated if the number of samples consid-
ered is too low.

The decomposition algorithm is described in Algorithm 1.
At each iteration of the while loop, we consider a subspace
E, with E = S in the first iteration. We then consider all
valid boundaries. If there are none, then E itself is a subtask.
If there are valid boundaries, we score them and choose the
one with the highest score. We then split E according to
the boundary, and add the two new subspaces to the list of
state spaces to be evaluated, to be further decomposed if
necessary.

The boundaries B can have any form that is useful for
the domain. In our experiments we consider thresholds on
features, i.e., axis-aligned surfaces. Using these boundaries,

485

Algorithm 1 ADA problem decomposition.

Require: MDP M =
(
S, A, P a

ss′ , R
a
s , γ

)
, S = {F1 × . . . × Fn},

human demonstrations H = {{(s1, a1), (s2, a2), . . .}, . . .}, s ∈
S, a ∈ A, boundaries B = {b1, b2, . . .}, bi ∈ S, ǫ.
minss ← min sample size(H, ǫ)
T ← {}
S← {S}
while S 6= ∅ do
{pop removes the element from S}
E ← S.pop()
BE ← {b ∈ B, valid split(b, E, minss)}
if BE = ∅ then

T.push(E)
else

bbest ← arg maxb∈BE
(boundary score(b, E)))

S.push(bbest ∩ E)
S.push((S − bbest) ∩ E)

end if
end while
Return T

Algorithm 1 is just building a decision tree with a special
split scoring function and stopping criteria.

In the next subsections we discuss the details of the split
scoring function, the discriminator of valid boundaries, and
the estimator of the minimum number of samples necessary.
These contain the most interesting insights of ADA.

3.3.1 Boundary discriminator
Given a subspace E ⊂ S, mss and H, we consider a

boundary b ⊂ S to be valid if it meets three conditions:

1. There are enough samples in the set of human demon-
stration H to ensure we can measure mutual informa-
tion with accuracy on both sides of the boundary, i.e.

|{{s, a} ∈ H, s ∈ b ∩ E} | > minss,

|{{s, a} ∈ H, s ∈ (S − b) ∩ E} | > minss.

2. At least in one side of the boundary, either b ∩ E or
(S−b)∩E, it is possible to find a state abstraction, i.e.,
some features are policy-invariant and can be ignored.
We detail how we find these features in Section 3.4.

3. The state abstraction at both sides of the boundary is
not the same.

This boundary discriminator works as the stopping crite-
ria of the algorithm. When there are no more valid bound-
aries to be found, the decomposition step finishes.

3.3.2 Boundary scoring
The boundary scoring function determines the quality of

b as a boundary between different subtasks within a region
E ∈ S.

boundary score(b, E) =

∣∣∣∣∣∣

∣∣∣∣∣∣
~mib∩E

‖ ~mib∩E‖
−

~mi(S−b)∩E∣∣∣
∣∣∣ ~mi(S−b)∩E

∣∣∣
∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
.

(2)
The score is thus the euclidean distance between the nor-

malized mutual information vectors at both sides of the
boundary.

We are therefore measuring the difference between the rel-
ative importance of each feature at both sides of the bound-
ary. As we want to find subtasks that rely on different fea-
tures, we choose the boundary that maximizes this difference
(see Algorithm 1).

3.3.3 Minimum samples
Due to the limited sampling bias, mutual information is

overestimated if it is measured in an insufficient number of
samples. The minimum samples in ADA, given a set of
demonstrations H and parameter ǫ ≈ 0.1 is

mss = arg min
n

average

(
~miS − ~miS,n

~miS

)
> ǫ, (3)

where miS,n is the mutual information vector on the origi-
nal state space S, taking only a subset of n randomly chosen
samples from all the samples in H. The subtraction and di-
vision are element-wise and the average function takes the
average of the values of the resulting vector. Because of the
variability of mutual information, it is necessary to evalu-
ate Equation 3 several times for each possible n, each time
with a different and independently chosen set of samples.
Because of the limited sampling bias, the difference between
~miS and ~miS,n will grow as n decreases, and a binary search

can be used to find mss efficiently.

3.4 Subtask state abstraction
Given a region of the state space E ⊂ S, we consider ~miE

in order to estimate policy-irrelevant features. Even if a fea-
ture is completely irrelevant for the policy in a region of the
space, its mutual information with the action will not be
zero due to the limited sampling bias. Therefore, in ADA
we group the values of ~miE in two clusters separated by the
largest gap among the sorted values of the vector. If the
value difference between any two features in different clus-
ters is larger than the distance within a cluster, we consider
we found a good abstraction that discards the features in
the lower value cluster.

Note that this step occurs concurrently with the previous
one, since the decomposition step needs to know in which
regions of the state space there are good abstractions. Once
these steps complete, we can build the projection function
from the original function state space S to the abstract state
space φ(s) = {i, fi1 , fi2 , . . .} ∈ Ŝ, s ∈ ti.

3.5 Policy construction
Once the task decomposition and state abstraction are

completed and we have the projection function φ(s), we use
the demonstrations H to build a stochastic policy that sat-
isfies

P (π(ŝ) = ai) =

∣∣{{s, ai} ∈ H, φ(s) = ŝ∗}
∣∣

∣∣{{s, a} ∈ H, φ(s) = ŝ∗, a ∈ A}
∣∣ , (4)

where ŝ∗ equals to ŝ if |{{s, a} ∈ H, φ(s) = ŝ, a ∈ A}}| >
0. Otherwise, ŝ∗ equals to the nearest neighbor of ŝ for
which the denominator in Eq. 4 is not zero.

To compute the policy we project the state of each sam-
ple of H into the abstracted space and make a normalized
histogram of each action. This concludes the basic ADA
algorithm.

486

3.6 Policy improvement
ADA+RL adds another step, policy improvement, in which

we use Reinforcement Learning techniques to find the op-
timal policy that can be represented in the abstract state
space Ŝ. Unlike traditional LfD techniques, ADA was de-
signed so that the resulting policy can be easily improved
given additional experience. In this way, we can obtain a
better policy than that of the human teacher.

Given the kind of abstraction that ADA performs, boot-
strapping methods such as Sarsa or Q-learning are not guar-
anteed to converge in the abstract state space[15]. As such,
we can use either Monte Carlo methods or direct policy
search. In Section 4 we choose to use policy search because
it is fast and performs well given the compact state space
that ADA generates.

4. EXPERIMENTAL RESULTS

4.1 Domains
To test the ADA and ADA+RL algorithms, we used two

different domains, PandaSequential and RainbowPanda. We
implemented a 3D game interface, shown in Figure 1, to
capture human demonstrations. In both games, an agent (a
panda bear) runs on a spherical surface collecting a series
of colored balls. In PandaSequential, the agent must pick
balls of different colors in a specific, fixed order, while in
RainbowPanda, the agent is tinted with the color of the balls
it is allowed to pick at any given moment. The color of the
agent in RainbowPanda changes when the agent picks the
last ball that matches the current color and may also change,
with a small fixed probability, at any time step. With both
domains, the initial position of the balls is assigned randomly
at the start of each episode.

The state features are the distance and angle to each ball,
relative to the agent. In RainbowPanda there are two balls
of each color, so there are separate features for the closest
ball and further ball from the agent. Distance and angle are
measured in radians, and when a ball is not present (it has
already been picked up), both features take a value outside
of their normal range. RainbowPanda also has a discrete
feature that contains the color of the agent, which is the
color of the balls that the agent is allowed to pick up.

On both domains, the actions are move forward, back-
ward, rotate right, rotate left, and no operation. The agents
move backwards at a fourth of the speed they can move for-
ward. The balls are picked up just by touching them. If the
touched ball is the correct one to pick, the agent receives a
positive reward and the ball disappears. Nothing happens
if the agent touches a different ball. To compute the dis-
counted reward, we use a discount factor γ < 1. The games
were played at 20 frames per second, and this was also the
rate at which the state was updated in the screen and an
action was taken.

Both domains have similar interfaces, but their subtask
structure is quite different. In PandaSequential, the sub-
tasks have a fixed order, while in RainbowPanda there is
no fixed order and every subtask may appear many times
in the same episode. Additionally, in the first domain the
current subtask is determined by the presence or absence of
the balls (continuous variables) while in the second domain
the current subtask is encoded in the color of the agent (a
discrete variable).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training episodes #

200

300

400

500

600

700

800

St
ep

s
pe

r e
pi
so
de

PandaSequential 1-ball
1 ball

0 200000 400000 600000 800000 1000000
Training episodes #

2000

4000

6000

8000

10000

12000

14000

St
ep

s
pe

r e
pi
so
de

PandaSequential 2-ball
1 ball
2 balls

Figure 2: Results using Sarsa(λ) algorithm on a sim-
plified version of the domain with only one or two
balls. 1 extra ball decreases performance 2 orders
of magnitude, even if the algorithm is left training
2k times longer.

To compare LfD, AfD and ADA, we captured a set of hu-
man demonstrations. We obtained 400 episodes for the Pan-
daSequential domain (about 2 hours of gameplay) and 200
and 300 episodes, from different individuals, for the Rain-
bowPanda domain (1.5h and 2.25h, respectively).

4.2 Results
Using the domains described above, we compared ADA

with Reinforcement Learning using Sarsa(λ), Learning from
Demonstration using a C4.5 decision tree, and Abstraction
from Demonstration. We first discuss RL and LfD, then our
algorithm, and finally we compare the abstractions that our
algorithm and AfD found.

4.3 Reinforcement Learning using Sarsa
For Sarsa, we discretized the continuous values in 64 bins.

The results were very poor in these domains because the
dimensionality of the problems is so high. The simpler do-
main, PandaSequential, still has 646 possible states, for a
total of about 343 billion Q-values. To ensure our imple-
mentation of the algorithm was correct and find its limits,
we tested it with simplified versions of the game, with only
one and two balls. The results are shown in Figure 2. We
can see that Sarsa performs reasonably well for the case of
only one ball (4096 states), but no longer so for the two-
ball game (16.8 million states), even if leaving the algorithm
running for 8 days in a modern computer, this is, 2000 times

487

Table 1: LfD results over 10K episodes, using a C4.5
decision tree. Avg. steps computed only over suc-
cessful episodes.

Domain/Player Episodes Success rate Avg. steps

Sequential
100 0.28% 241.21
200 0.44% 227.79
400 0.82% 242.83

Rainbow/A
100 8.1% 1543.84
200 2.76% 1650.37

Rainbow/B
100 0.27% 1518.70
200 0.27% 1994.92
300 0.73% 1901.51

Table 2: Comparison of human performance, ADA,
and ADA+RL, measured in number of steps to task
completion averaged over 10 thousand episodes.
Domain/Player Episodes Human ADA ADA+RL

Sequential
100 322.67 360.75

267.11200 318.71 360.11
400 311.30 335.92

Rainbow/A
100 525.33 - -
200 504.71 626.27

466.59
Rainbow/B

100 540.03 596.46
200 536.43 593.45
300 533.56 583.34

longer than it took for the 1-ball policy to converge. The
policy performance keeps improving, but at an extremely
slow rate. Therefore, Sarsa is not an effective option for
these domains.

4.4 Learning from Demonstration using C4.5
To compare with the performance of traditional LfD tech-

niques, we trained a C4.5 decision tree with the demonstra-
tions captured from human players, in a purely supervised
learning fashion. We can see in Table 1 that LfD also per-
formed poorly. The best result we obtained, using all avail-
able demonstrations, was a policy that would reach the goal
state in less than 3% of the episodes1.

4.5 Automatic Decomposition and Abstraction
from Demonstration

To use ADA in our domains, we discretized the continuous
values in 64 bins (same as for RL/Sarsa), used ǫ = 0.1 and
considered as candidate boundaries every possible threshold
on every feature of the domain. ADA was much more ef-
fective than the other methods on both domains, and led to
near-optimal polices that succeeded on every episode. Ta-
ble 2 shows that we obtained policies comparable to those
of the human teacher. Note that even though the average
number of steps is slightly higher than for the LfD policy
in the Sequential domain, this is averaged over all episodes,
while the number for LfD is only averaged over the small
percentage of episodes that LfD is able to resolve.

The success of ADA, compared with LfD and Sarsa, is

1It should not be a surprise that sometimes, with more sam-
ples, the number of average steps on successful episodes in-
creases. This is due to the policy being able to deal with
more difficult episodes (remember that the initial placement
of the balls is random) that require more steps to complete.

due to its finding the right decomposition of the domains.
For both domains, the algorithm builds an abstraction that
focuses only on the angle with respect to the agent of the
next ball to be picked up. Which ball is the target ball de-
pends on what balls are present for the Sequential domain,
and on what is the current color the agent is targeting for
the Rainbow domain. The algorithm was able to identify
the right boundary on each domain. It was a surprise that
only the angle, and not the distance to the ball, was nec-
essary, but it is easy to see that a satisficing policy can be
found using only the angle: rotate until the ball is in front
of the agent and then go forward. In fact, this was what
the human players were doing, except in the rare case where
the ball to pick up was right behind the agent; since the
agent moves faster forward than backward it was usually
not worth moving backwards.

Only one case in Table 2 did not produce the abstraction
described above. Rainbow/B-100 episodes did not find any
abstraction. This was due to mss being higher than a third
of the total number of samples, therefore it could not find
any of the 3 subtasks, one per color and roughly of the same
size, that were found in the other cases. We tested a lower
value for ǫ and in that case the usual abstraction was found.

In the same table we can see results for ADA + RL, ap-
plying policy search on top of the policy found by ADA.
The abstraction built by ADA may prevent boot-strapping
algorithms such as Sarsa or Q-learning from converging, but
with only 192 states in the abstraction and a good starting
policy, we can use direct policy search methods. We could
obtain good results by just iteratively changing the policy
of each state and evaluating the effect in performance using
roll-outs.

Notice that, using this additional policy improvement step,
we can find policies that are better than those demonstrated
by the human teachers. The policies found were better than
those demonstrated in three ways. First, the preferred ac-
tion for states that were rarely visited was sometimes incor-
rect in the ADA policy because there were not enough sam-
ples in the demonstrations. ADA+RL could find the best
action for these uncommon states. Second, human players
would make the agent turn to face the target ball and then
move forward when the relative angle to the ball was less
than 15 degrees. ADA+RL found it was more efficient to
turn until the angle to the ball was less than 3 degrees and
only then move forward. Third, ADA policies assign some
probability to each action depending how often it is taken
in the demonstrations for a particular state. ADA+RL can
identify which actions were not appropriate for the state
and never execute them even if they appear in the demon-
strations, maybe because of distractions or errors from the
teacher. In short, the policy found by ADA+RL was a more
precise and less noisy version of the policy derived directly
from the demonstrations.

4.6 Abstraction from Demonstration
Finally, we tried AfD in the domains, using the abstrac-

tion algorithm described in Section 3.4 for the whole state
space. In the Sequential domain, AfD would identify as the
only useful feature the position of the first ball. This ab-
straction leads to a policy that can find the first ball quickly
but can only perform a random walk to find the other two
balls. The large difference in mutual information between
each ball position and the action is due to the fact that while

488

the first ball is present, its position is significant for the pol-
icy; however, the second ball is significant for the policy only
half of the time it is present, and the third ball only a third
of the time it is present.

Regarding AfD for the Rainbow domain, because the ac-
tive color at each moment is chosen at random, the mutual
information measures between each ball relative position and
the action are similar. In this case, AfD is able to identify the
true relevant features, i.e., the relative position to the clos-
est ball of each color. Due to the nature of AfD abstraction,
we could not use bootstrapping algorithms such as Sarsa,
and 643 = 262144 states are too many for our naive pol-
icy search, so we tried to obtain a policy using Monte Carlo
methods. Unfortunately, these are known to be much slower
to converge than Sarsa and, even after experimenting with
various exploration parameters, we could not reach a policy
better than a random walk.

We can thus conclude that for complex domains that can
be decomposed in different subtasks, ADA can find poli-
cies better than those demonstrated by humans, while tra-
ditional LfD, RL and AfD cannot find policies significantly
better than a random walk.

4.7 Discussion
There are several advantages of ADA over traditional LfD.

ADA can obtain much better performance from a small set
of samples, while LfD often needs more samples than it is
practical to obtain. In fact, for our two domains, we did
not have the resources to collect a number of demonstra-
tions large enough to obtain reasonable performance with
LfD. Additionally, even with an arbitrarily large number
of demonstrations, it is likely that ADA+RL can obtain
policies better than those demonstrated and thus beat LfD,
whose policy performance is limited by the quality of the
demonstrations used.

Regarding RL techniques, it may seem unfair to compare
those with ADA, as RL does not use the human demon-
strations that are necessary for ADA. Yet, in the domains
considered, even if we account for the time and cost of ac-
quiring the human demonstrations, ADA still outperforms
RL. We have seen in Section 4 that even for the simpler
version of the Sequential domain with 2 balls, we still do
not have a reasonable policy after a week. Using ADA, just
with half an hour of human demonstrations and less than
ten minutes of computing, we obtain a satisficing policy.

ADA is successful in these domains because it can find
different state abstractions for different regions of the state
space. Abstraction for Demonstration (AfD), a previous
technique combining RL and LfD, only finds a single ab-
straction for the whole domain, and therefore it does not
help much in the domains considered since all balls are rel-
evant at some point during the task. AfD could make a
small difference in performance by ignoring the distance to
the balls, but the complexity of an AfD policy would still
grow exponentially with the number of balls in the domain,
while the complexity of the ADA policy grows linearly with
the number of balls in the domain.

Obviously ADA cannot help if there is no possible de-
composition of the domain and every feature is important
at every moment; however we conjecture that such com-
plex policies are rare, especially among tasks that can be
demonstrated by humans. Humans have a limited capac-
ity of attention and accomplish complex tasks by dividing

them in manageable pieces. Therefore, if we have a set of
demonstrations of a complex task, it is likely there are task
decompositions to be found.

One “unfair” advantage of ADA over the other methods
is that we must provide it with a set B of candidate bound-
aries, which is after all a form of domain information. In
principle we could chose as boundary every possible subset
of S, but this would be computationally intractable, so we
must explicitly choose the candidate boundaries. This is a
small price to pay for the performance gains of the algorithm.
As a default choice, axis-aligned boundaries, i.e., thresholds
in a single feature, are a compact class that works well across
a diverse range of domains. They would work for the Taxi
domain, which is the typical example of task decomposition
in RL, using as boundary whether the passenger has been
picked up or not yet. If the features are learned from low-
level sensing information using unsupervised feature learn-
ing techniques, it is likely that one of the generated features
will provide adequate thresholds. Additionally, many learn-
ing algorithms have similar kinds of bias; e.g., decision trees
also consider only thresholds in a single feature, just like
ADA in our experimental setup.

A real limitation of ADA is that it does not consider
second-order mutual information relationships, and these
can be relevant. For example we can imagine a domain
where the action to take depends on whether two indepen-
dent random variables have the same value. The mutual
information between each variable and the action might be
0, but the mutual information between both variables and
the action would account for all the entropy of the action.
We have decided to use only first-order mutual information
because we believe it is enough to obtain a good decomposi-
tion of a wide range of problems and because the number of
samples needed to get an accurate estimate of higher-order
relationships is much larger. However, if a large number of
demonstrations is available, ADA can be easily extended to
use these additional mutual information measures.

One additional advantage of ADA, is that it can be used
as part of a larger system of transfer learning. Once an
autonomous agent learns a new skill and the subtasks it de-
composes to, the subtask policies can be useful for other
skills that may be decomposed in a similar way. An agent
might, e.g., as part of the policy improvement step for a spe-
cific subtask, try policies of previously learned subtasks that
have the same abstraction, maybe after comparing policies
and determining that the subtasks are similar. Demonstrat-
ing the utility of ADA for transfer learning is an important
area of future work.

5. CONCLUSIONS
We have introduced Automatic Task Decomposition and

State Abstraction from demonstration (ADA), an algorithm
that leverages a small set of human demonstrations to de-
compose a skill in different subtasks, find abstractions for
each of these subtasks, and build a compact satisficing pol-
icy for the skill. We have shown experimentally that, with
a small number of demonstrations, ADA can easily find a
policy for problems that are intractable using traditional
RL and LfD techniques. Furthermore, we have shown that,
given the structure of the policy that ADA finds, it can be
improved to obtain a policy that outperforms the human
teachers.

With this work we show that mutual information can be

489

used to extract useful domain knowledge of a sequential de-
cision process from a set of human demonstrations. In the
future, we plan to build upon this technique and combine it
with function approximation and transfer learning.

6. ACKNOWLEDGMENTS
This work is supported by the National Science Founda-

tion under Grant No. 0812116 and Obra Social “la Caixa”.

7. REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via
inverse reinforcement learning. International
Conference on Machine Learning, page 1, 2004.

[2] R. Aler, O. Garcia, and J. Valls. Correcting and
improving imitation models of humans for robosoccer
agents. In IEEE Congress on Evolutionary
Computation, volume 3, 2005.

[3] B. Argall, S. Chernova, M. Veloso, and B. Browning. A
survey of robot learning from demonstration. Robotics
and Autonomous Systems, 57(5):469–483, 2009.

[4] L. C. Cobo, Z. Peng, C. L. Isbell, and A. L. Thomaz.
Automatic Abstraction from Demonstration.
International Joint Conference on Artificial
Intelligence, pages 1243–1248, 2011.

[5] O. Şimşek and A. G. Barto. Using relative novelty to
identify useful temporal abstractions in reinforcement
learning. International Conference on Machine
Learning, page 95, 2004.

[6] T. Dietterich. The MAXQ method for hierarchical
reinforcement learning. In International Conference in
Machine Learning, pages 118–126, 1998.

[7] A. Farahmand, M. Ghavamzadeh, C. Szepesvari, and
S. Mannor. Regularized policy iteration. Advances in
Neural Information Processing Systems, 21:441–448,
2009.

[8] B. Hengst. Discovering hierarchy in reinforcement
learning with HEXQ. In International Conference on
Machine Learning, pages 234–250, 2002.

[9] N. K. Jong and P. Stone. State Abstraction Discovery
from Irrelevant State Variables. International Joint
Conference on Artificial Intelligence,
(August):752–757, 2005.

[10] A. Jonsson and A. Barto. Automated state
abstraction for options using the U-tree algorithm.
Advances in Neural Information Processing Systems,
pages 1054–1060, 2001.

[11] P. W. Keller, S. Mannor, and D. Precup. Automatic
basis function construction for approximate dynamic
programming and reinforcement learning.
International Conference on Machine Learning, pages
449–456, 2006.

[12] W. Knox and P. Stone. Combining Manual Feedback
with Subsequent MDP Reward Signals for
Reinforcement Learning. Annual International
Conference on Autonomous Agents and Multiagent
Systems, pages 10–14, 2010.

[13] J. Z. Kolter and A. Y. Ng. Regularization and feature
selection in least-squares temporal difference learning.
International Conference on Machine Learning,
94305:1–8, 2009.

[14] J. Kristeva. Strangers to ourselves. European
Perspectives: A Series In Social Thought And
Cultural Criticism. Columbia University Press, 1991.

[15] L. Li, T. J. Walsh, and M. L. Littman. Towards a
Unified Theory of State Abstraction for MDPs. In
International Symposium on Artificial Intelligence and
Mathematics, pages 531–539, 2006.

[16] N. Mehta, M. Wynkoop, S. Ray, P. Tadepalli, and
T. Dietterich. Automatic induction of MAXQ
hierarchies. In NIPS Workshop: Hierarchical
Organization of Behavior, pages 1–5, 2007.

[17] W. Smart and L. Pack Kaelbling. Effective
reinforcement learning for mobile robots. IEEE
International Conference on Robotics and Automation,
pages 3404–3410, 2002.

[18] M. Stolle and D. Precup. Learning Options in
Reinforcement Learning. Abstraction, Reformulation,
and Approximation, pages 212–223, 2002.

[19] P. Zang, P. Zhou, D. Minnen, and C. Isbell.
Discovering options from example trajectories.
International Conference on Machine Learning, pages
1217–1224, 2009.

490

Session 4C
Argumentation & Negotiation

Quantifying Disagreement in Argument-based Reasoning

Richard Booth
University of Luxembourg

Computer Science &
Communication

richard.booth@uni.lu

Martin Caminada,
Mikołaj Podlaszewski
University of Luxembourg
Security, Reliability & Trust

martin.caminada@uni.lu
mikolaj.podlaszewski@uni.lu

Iyad Rahwan
Masdar Institute of Science &

Technology, UAE
Massachusetts Institute of

Technology, USA
irahwan@acm.org

ABSTRACT
An argumentation framework can be seen as expressing, in
an abstract way, the conflicting information of an under-
lying logical knowledge base. This conflicting information
often allows for the presence of more than one possible rea-
sonable position (extension/labelling) which one can take.
A relevant question, therefore, is how much these positions
differ from each other. In the current paper, we will examine
the issue of how to define meaningful measures of distance
between the (complete) labellings of a given argumentation
framework. We provide concrete distance measures based
on argument-wise label difference, as well as based on the
notion of critical sets, and examine their properties.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

General Terms
Algorithms, Measurement, Theory

Keywords
argumentation, distance measures, complete labellings, ag-
gregation, belief revision

1. INTRODUCTION
Given a conflicting logical theory, an agent is faced with

the problem of deciding what it could reasonably believe.
As advocated in various nonmonotonic inference formalisms
such as default logic [24], it is often possible to identify
multiple reasonable positions, or so-called extensions. This
idea has been adopted in abstract argumentation theory
[14], which attempts to analyze possible extensions while
abstracting away from the underlying logic. In particular,
this theory views logical derivations as abstract arguments
(nodes in a graph), and conflicts as defeat relations (directed
arcs) over these arguments.

The presence of multiple reasonable positions raises a fun-
damental question: how different are two given evaluations

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of a conflicting logical theory? We attempt to answer this
question in the context of abstract argumentation theory.

This question is relevant to two fundamental problems.
The first problem is argument-based belief revision. Sup-
pose a diplomat receives instructions to switch his position
on one particular argument (see Section 3 for an example).
To maintain a consistent viewpoint, the diplomat must re-
vise his evaluation of other related arguments. Faced with
multiple possibilities, the diplomat may wish to choose the
one that differs the least from his initial position (e.g. to
maintain credibility).

The issue of distance is also relevant to the problem of
judgement aggregation over how a given set of arguments
should be evaluated collectively by a group of agents with
different opinions [11, 12, 23]. For instance it is very well
possible that the members of a jury in a criminal trial all
share the same information on the case (and hence have
the same argumentation framework) but still have different
opinions on what the verdict should be. Hence, these dif-
ferences of opinion are consequences not of differences in
the knowledge base but of the nature of nonmonotonic rea-
soning, which allows for various reasonable positions (exten-
sions). In the context of judgement aggregation one may ex-
amine the extent to which the collective position differs from
the various positions of the individual participants. Ideally,
one would like to have a collective position that is closest
to the collection of individual positions, for example such
that the sum of its distance to each individual position is
minimal.

In this paper, we examine a number of possible candidates
for measuring the distance between different labellings (eval-
uations) of an argumentation graph. The paper advances the
state-of-the-art in argument-based reasoning in three ways:
(1) We provide the first systematic investigation of quanti-
fying the distance between two evaluations of an argument
graph; (2) We examine a number of intuitive measures and
show that they fail to satisfy basic desirable postulates; (3)
we come up with a measure that satisfies them all. In addi-
tion to providing many answers, our paper also raises many
interesting questions to the community at the intersection
between argumentation and social choice.

2. ABSTRACT ARGUMENTATION
In this section, we briefly restate some preliminaries re-

garding argumentation theory. For simplicity, we only con-
sider finite argumentation frameworks.

Definition 1. An argumentation framework (AF for short)
is a pair A = (Ar,⇀), where Ar is a finite set of arguments

493

and ⇀⊆ Ar ×Ar.

We say that argument A attacks argument B iff (A,B) ∈⇀.
An AF can be represented as a directed graph in which the
arguments are represented as nodes and the attack relation
is represented as arrows.

In the current paper, we follow the approach of [6, 10] in
which the semantics of abstract argumentation is expressed
in terms of argument labellings. The idea is to distinguish
between the arguments that one accepts (that are labelled
in), the arguments that one rejects (that are labelled out)
and the arguments which one abstains from having an opin-
ion about (that are labelled undec for “undecided”).

Definition 2. Given an AF A = (Ar,⇀), a labelling for
A is a function L : Ar → {in, out, undec}.

Since a labelling is a function, it can be represented as a
set of pairs, each consisting of an argument and a label (in,
out, or undec). We are now ready to state the concept of
complete labelling [6, 10].

Definition 3. Let L be a labelling for AF A = (Ar,⇀). L
is a complete labelling (over A) iff for each A ∈ Ar it holds
that:

1. L(A) = in iff ∀B ∈ Ar : (B ⇀ A ⊃ L(B) = out)

2. L(A) = out iff ∃B ∈ Ar : (B ⇀ A ∧ L(B) = in).

We denote the set of all complete labellings of A by CompA.

As stated in [6, 10], complete labellings coincide with com-
plete extensions in the sense of [14]. Moreover, the relation-
ship between them is one-to-one. In essence, a complete ex-
tension is simply the in-labelled part of a complete labelling
[6, 10].

The labelling approach has also been defined for other se-
mantics, such as grounded, preferred, stable and semi-stable
semantics, as well as for ideal semantics (see the overview
article [2] for details). In this paper, however, we will focus
on the case of complete semantics and the associated com-
plete labellings, not only because of their relative simplicity,
but also because complete labellings serve as the basis for
defining labellings for various other semantics [10]. That
is, semantics like grounded [14], preferred [14], stable [14],
semi-stable [9], ideal [15] and eager [7] in essence select sub-
sets of the set of all complete labellings (see [2]). Since the
approach in the current paper is to compare any arbitrary
pair of complete labellings, our results are directly applica-
ble also to the aforementioned semantics.1

Example 1. Consider a simple argumentation framework
A = (Ar,⇀) with Ar = {A,B,C} and ⇀= {(A,B), (B,A),
(B,C)}. Then CompA = {L1,L2,L3}, where each Li may
be visualised in Fig. 1. In this and subsequent diagrams, a
node with a solid line indicates an in label, a dotted line
indicates out and a grey node indicates undec. Thus for
example the first labelling L1 = {(A, in), (B, out), (C, in)}.

1Another point to mention is that it has been proved that
complete-based semantics (that is, semantics whose sets of
extensions/labellings are subsets of the set of all complete
extensions/labellings), when used for the purpose of logical
inference, tend to produce fully instantiated argumentation
formalisms that satisfy reasonable properties in the sense of
[8, 22].

Figure 1: Three possible complete labellings L1,L2

and L3

Figure 2: The AF A1 and its four possible complete
labellings L1-L4

3. BELIEF REVISION AND JUDGEMENT
AGGREGATION

Consider three arguments about global warming, each one
grounded in some scientific evidence, with the following as-
sociated conclusions:

• A: Global warming is mainly caused by volcanic ac-
tivity.

• B: Global warming is mainly caused by natural varia-
tion in solar radiation.

• C: Global warming is a human-induced phenomenon.

Clearly, it is not possible to subscribe to both arguments A
and B, since they attribute global warming to different ma-
jor causes. However, both these arguments attack argument
C, which attributes global warming to human activity. This
situation can be modelled with the AF A1 shown in Fig.2.
Here there are four possible complete labellings L1-L4, which
are also depicted.

Suppose a diplomat was initially adopting the position
corresponding to labelling L3 in Fig. 2, which focusses on
human activity (argument C) as the main cause of global
warming.

However, recent elections in his home country gave rise
to a new climate-sceptical government, which requires the
diplomat to change his position in order to no longer ac-
cept argument C (that is: to revise his complete labelling
to one in which C is no longer labelled in). He is now faced
with two possible revisions of his original position L3. On
one hand, he can switch to labelling L1 or L2, citing the
alternative theory. On the other hand, he could switch to
labelling L4, admitting that the matter cannot be decided.

Let us assume that politicians like to maintain a repu-
tation of being generally consistent. Therefore, when they
switch their points of view, they like to minimize the extent
to which they deviate from their original positions. In the

494

above example, it is far from obvious which revision of the
original position L3 is less dramatic. On one hand, switch-
ing to the alternative theories L1 or L2 keeps the status of
at least one argument the same, while switching to labelling
L4 requires changing the status of all arguments involved.
On the other hand, switching the status of argument C from
being fully accepted to being completely rejected (as in L1

or L2) seems more severe than simply moving to a position
of indecision (as in L4).

Following up on the example above, suppose we have a
panel consisting of three scientists, with two supporting po-
sition L1, and one supporting position L2. Suppose the sci-
entists want to reach a collective position that is closest to
their respective individual positions, in order to minimize
the degree to which they individually deviate from their orig-
inal positions. To achieve this, should all of them concede to
the third undecided position L4, as is suggested in [11]? Or
should the third scientist individually concede to position
L1, ensuring the first two stick to their view? The answer to
this question relies crucially on how we quantify the distance
between the different positions.

The examples above highlight the need for a systematic
approach to identifying the extent to which two positions
differ, ideally creating a reliable quantitative measure of dis-
tance between different complete labellings.

4. DISTANCE BETWEEN LABELLINGS
The problem we are interested is the following:

Given an AFA, and given two complete labellings
S (the source labelling) and T (the target la-
belling) over A, how can we quantify the distance
from S to T , denoted d(S, T)?

Of course we don’t just want a method which applies to
only one AF, we want a method to be able to do this for
any given A.

Definition 4. A labelling distance (for AF A) is a function
d : CompA × CompA → N. A labelling distance method is
a function which assigns to every AF A a labelling distance
for A.

In the following sections we will provide a few concrete
definitions of distance functions. But first, are there any
properties which we should expect such a function to satisfy?

4.1 Properties for distance methods
In mathematics, when formalising the notion of distance

it is common to require that d be a metric. In our present
setting that means that the following hold for all complete
labellings S, T ,U over a given AF A:

(dm1) d(S,S) = 0
(dm2) d(S, T) > 0 if S 6= T
(dm3) d(S, T) = d(T ,S) (Symmetry)
(dm4) d(S, T) ≤ d(S,U) + d(U , T) (Triangle inequality)

Also, let’s define the following binary relation over CompA,
given a fixed source complete labelling S:

T1 ≤S T2 iff ∀A (T1(A) = S(A) ∨ T2(A) = T1(A))

T1 ≤S T2 means that every argument that T1 labels differ-
ently from S, is labelled equally differently by T2. Thus T2

differs from S at least as much as T1 does. It can be shown
that ≤S is a partial order over CompA with minimum ele-
ment S, i.e., S ≤S T for all T ∈ CompA. Let <S denote
the strict version of ≤S , i.e., T1 <S T2 iff both T1 ≤S T2 and
T2 6≤S T1. Thus the following might seem to be a reasonable
requirement on a distance function d:

(dm5) If T1 <S T2 then d(S, T1) < d(S, T2)
(Disagreement monotonicity)

To see why this might be reasonable, note that T1 <S T2
means that for every argument on which T1 disagrees with
S, the labelling T2 disagrees with S in exactly the same way,
but that there exists at least one argument on which T2 dis-
agrees with S, but for which T1 and S agree. In this case
it seems as though T2 is making strictly more changes to S
than T1 is, and so d should also endorse this conclusion. It
is not difficult to show that if d satisfies both (dm1) and
(dm5) then it satisfies (dm2).

We can also describe a postulate which is stronger than
(dm5). To express this property we first define the follow-
ing ordering over CompA, given any source labelling S and
target labellings T1, T2:

T1 ≤bS T2 iff ∀A
(
T1(A) = S(A) ∨ T1(A) = T2(A)
∨[T1(A) = undec ∧ S(A) 6= T2(A)]

)

Like ≤S , the ordering ≤bS forms a partial order with mini-
mum element S. The superscript “b” on ≤bS may be thought
of as standing for “between”, since T1 ≤bS T2 is merely ex-
pressing that, for all A ∈ Ar, T1(A) lies on a path be-
tween S(A) and T2(A), assuming the neighbourhood graph
in− undec− out over the labels. We may then propose the
following:

(dm5+) If T1 <bS T2 then d(S, T1) < d(S, T2)
(Betweenness monotonicity)

where <bS is the strict part of the relation ≤bS . Since clearly
T1 <S T2 implies T1 <bS T2 we have that (dm5+) is indeed
a strengthening of (dm5).

5. SUM-BASED DISTANCE
Our first family of distance functions is about simply find-

ing the raw quantity of disagreement between two complete
labellings. We can do this in terms of difference between
labels, that is, we assume we have some measure of disagree-
ment diff (x, y) for any x, y ∈ {in, out, undec} between the
different labels, and then obtain the distance between two
labellings by summing the differences between all arguments
in the AF (Ar,⇀) under consideration, i.e., take

d(S, T) =
∑

A∈Ar
diff (S(A), T (A)). (1)

Definition 5. If the function d can be defined from some
function diff : {in, out, undec}2 → N as in (1) then we say
d is a simple diff-based distance method.

It turns out that the results in this paper depend only on
a few fundamental requirements on diff , encapsulated in the
following definition:

Definition 6. A basic label difference measure is a function
diff : {in, out, undec}2 → N which satisfies the following
properties, for all x, y ∈ {in, out, undec}:

495

(diff 1) diff (x, x) = 0
(diff 2) diff (x, y) = diff (y, x)
(diff 3) diff (in, out) > 0
(diff 4) diff (in, undec) = diff (out, undec)

Note that this means, in effect, any simple diff-based mea-
sure based on a basic label difference measure is completely
specified by 2 quantities: diff (in, undec) and diff (in, out),
which may respectively be thought of as the costs attached
to a soft and hard conflict. From now on any unspecified
diff -measure will be assumed to satisfy (diff 1)-(diff 4).

Proposition 1. If d is a simple diff-based distance method
defined via a basic label difference measure then d satisfies
(dm1) and (dm3).

(We remark that Propositions 1-4 in this section actually all
follow as corollaries of a more general result, Theorem 1, in
Section 6.1). As we will see below, the remaining distance
properties from the previous section can easily be captured
by placing further, optional, constraints on diff . Let us take
in a few concrete examples.

Measuring incompatibility
The property (diff 3) ensures that a hard conflict always
contributes a strictly positive value. But note we do not
require a soft conflict to do the same. That is, we do not
insist on the following strengthening of (diff 3):

(diff 3+) diff (x, y) > 0 for x 6= y

In this way we allow diff -measures such as the following,
which is inspired by the work of [11]. A labelling L1 is
compatible with labelling L2 (written as L1 ≈ L2) iff there is
no argument A such that either [L1(A) = in and L2(A) =
out] or [L1(A) = out and L2(A) = in]. The idea behind
compatibility is to give a rough impression of how difficult it
is to publicly defend a position (labelling) that is not one’s
own. Although it might be possible to publicly accept or
reject an argument which one privately has no opinion about
(undec), or to remain silent about an argument that one
privately accepts or rejects, it is significantly more difficult
to publicly accept an argument which one privately rejects
(and vice versa). Our first concrete measure of distance
makes the distance zero if the two labellings are compatible,
and measures the “degree of incompatibility” if they are not.

diff ≈(in, out) = 1, diff ≈(in, undec) = 0.

This leads to a function d≈ (defined using diff ≈ via (1))
which is more like a “measure of conflict” between S and T .
Measure d≈ fails to satisfy (dm2), as can be seen in Fig. 1,
where d≈(L1,L3) = 0. If we do insist on (diff 3+) then we
ensure not only (dm2) but also (dm5):

Proposition 2. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3+) then d satisfies (dm5) (and hence also (dm2)).

Hamming distance
A very simple example of a diff -measure satisfying (diff 3+)
is as follows:

diff H(in, out) = diff H(in, undec) = 1.

Then the distance between S and T boils down to the num-
ber of arguments on which S and T differ, i.e., the Hamming

distance between S and T . Let dH denote the distance de-
fined using diff H . Consider for instance the results for Fig.
1, where we see that dH(L1,L2) = 3 = dH(L1,L3). Thus,
according to dH , labellings L2 and L3 are equidistant from
L1. However it might be thought that the change between
L1 and L2 is more “drastic” than that between L1 and L3,
since it involves a complete swing in the status of its ar-
guments from in (resp. out) to out (resp. in). This ex-
ample demonstrates that dH fails to satisfy (dm5+), since
L3 <bL1

L2 but dH(L1,L3) ≮ dH(L1,L2). Shouldn’t the
difference between in and out be strictly greater than the
difference between in (or out) to undec? In other words we
might expect:

(diff 5) diff (in, out) > diff (in, undec)

Proposition 3. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3+) and (diff 5) then d satisfies (dm5+).

Refined Hamming distance
An easy way to define a basic label difference measure which
satisfies both (diff 3+) and (diff 5) is to set:

diff rh(in, out) = 2, diff rh(in, undec) = 1,

where rh stands for “refined Hamming”. Note diff rh(x, y)
may be thought of as the length of the shortest path be-
tween x and y in the neighbourhood graph in−undec−out

over the labels. We denote by drh the distance obtained
by plugging diff rh into (1). Going back to Fig. 1, we have
drh(L1,L2) = 3× diff rh(in, out) = 6 and drh(L1,L3) = 3×
diff rh(in, undec) = 3, yielding the expected drh(L1,L3) <
drh(L1,L3). Propositions 1-3 aready tell us drh satisfies all
the distance properties from the previous section. The only
one which remains is the triangle inequality (dm4). But in
fact this too is satisfied, owing to the fact that diff rh sat-
isfies the following (which implies (diff 3+) for basic label
difference measures):

(diff 3++) 2× diff (in, undec) ≥ diff (in, out)

This property actually ensures that diff itself satisfies the
triangle inequality over the set of labels.

Proposition 4. If d is a simple diff-based distance method
defined via a basic label difference measure which satisfies
(diff 3++) then d satisfies (dm4).

Since diff H obviously satisfies (diff 3++) this means we
also get that dH satisfies (dm4). The incompatibility dis-
tance d≈, however, does not satisfy (dm4), as can be seen in
Fig. 1, where d≈(L1,L2) = 3 > 0 = d≈(L1,L3)+d≈(L3,L2).

6. CRITICAL SETS APPROACHES
Suppose we have the complete labelling S shown at the top

of Fig. 3 over an AF containing eight arguments {A,B,C,D,
E, F,G,H}. As usual a node with a solid line denotes the
argument is in, while a dotted line denotes out. Now con-
sider the two target labellings T1 and T2 shown below it.
T1 is obtained from S by leaving the labels of A,B,C,D
as they are and inverting the labels of the four arguments
E,F,G,H. For T2 we leave E,F,G,H untouched and invert
the labels of the four arguments A,B,C,D. The question
is: which of T1, T2 is closer to S? Or are they both equally
close?

496

Figure 3: Source labelling S and 2 target labellings
T1, T2

Let’s consider what a simple diff-based distance function
d has to say about this. One can see that we will get
d(S, T1) = 4 × diff (in, out) = d(S, T2). Thus any simple
diff-based distance will judge T1 and T2 as equidistant from
S.

However, on reflection it seems we can be more reasonable
and say that T2 is closer to S. Intuitively the reason is
based on the observation that disagreement between S and
T2 involves a higher degree of“contagion”. If two agents only
differ in their opinions on argument C (or only on D), this
would suffice to determine their disagreement over all other
arguments in that connected component (namely A,B,C,
and D). On the other hand, when comparing S with T2,
two agents would have to at least disagree (fundamentally
let’s say) on two arguments in order for this emerge.2

How can we make this intuition precise? We now inves-
tigate two possible ways in which the simple diff-based ap-
proach can be refined in order to take this into account. We
will see that the first one, although intuitive, is flawed.

6.1 Critical subsets approach
The first idea comes from a concept introduced by Gabbay

[16]. Instead of looking at all arguments, one specifically
focuses on the critical subsets.

Definition 7. Given an AF A = (Ar,⇀), a subset X ⊆
Ar is critical iff for any L1, L2 ∈ CompA we get L1 = L2

whenever L1 and L2 agree on the arguments in X. We
denote the set of critical subsets for A by crit(A).

In other words a critical subset for A is a set of arguments
whose status is enough to determine the status of all the
arguments in Ar. Clearly at least one critical subset will
always exist, for Ar is obviously critical. We are interested
in the minimal critical subsets.

2A similar intuition to this can be found in [5] in the context
of reasoning about action and belief update. The idea there
is that there might exist some causal links between the value
of one literal and that of another, which should be taken into
account when calculating how much one possible world, i.e.,
conjunction of literals, differs from another. If the change
in value of one literal is caused by another, then this change
should not count towards calculating the difference.

Definition 8. We denote the collection of set-theoretically
minimal subsets of crit(A) by mincrit(A), i.e.,

mincrit(A)
def
= {X ∈ crit(A) | @Y (Y ∈ crit(A) ∧ Y ⊂ X)}.

If we look at the AF of Fig. 3 one can check that one
critical subset is X1 = {C,E,G}, since, the label of E (re-
spectively G) determines the label of F (respectively H),
while the label of C determines the labels of A,B and D.
Indeed if C is in then A,B and D must all be out, if C is
out then A,B,D must all be in, while if C is undec then
A,B,D must all be undec too.

So, the first idea would be, given a basic label difference
measure diff , to pick some minimal critical subset X and
then just define, for all S, T ∈ CompA, d′(S, T) = dX(S, T),
where

dX(S, T)
def
=
∑

A∈X
diff (S(A), T (A)). (2)

Formally, the critical sets distance method cd is defined via a
function C which selects for eachA an element of mincrit(A)
and then sets cd(S, T) = dC(A)(S, T) for any S, T ∈ CompA.

Example 2. Taking the complete labellings S and T1, T2
in Fig. 3, and taking C(A) = {C,E,G} we get cd(S, T1) =
2 × diff (in, out) and cd(S, T2) = diff (in, out). Thus T2 is
deemed closer to S than T1 is.

The distance function dX in (2) actually fares rather well
when measured against the properties for distance functions
from earlier, provided diff is sufficiently well-behaved:

Theorem 1. Let X ∈ crit(A) and let dX be defined from
diff as in (2). Then dX satisfies (dm1) and (dm3). Fur-
thermore:
(i). If diff satisfies (diff 3+) then dX satisfies (dm5) (and
hence also (dm2)).
(ii). If diff satisfies (diff 3+) and (diff 5) then dX satisfies
(dm5+).
(iii). If diff satisfies (diff 3++) then dX satisfies (dm4).

Proof. (Outline) (dm1) and (dm3) follow immediately
from (diff 1) and (diff 3) respectively.
(i). First it is easy to check that if T1 ≤S T2 then, for all
A ∈ X (in fact for all A ∈ Ar),

diff (S(A), T1(A)) ≤ diff (S(A), T2(A)) (3)

(since either the left-hand side equals 0 or both sides are
equal). If moreover T1 <S T2 then T1 6= T2 and so, since X
is critical, there exists A∗ ∈ X such that T1(A∗) 6= T2(A∗).
From this and T1 ≤S T2 we know T1(A∗) = S(A∗), hence
diff (S(A∗), T1(A∗)) = 0 < diff (S(A∗), T2(A∗)) (the last
inequality following from (diff 3+)). Hence the inequal-
ity (3) is strict for at least one argument in X and thus
dX(S, T1) < dX(S, T2).
(ii). If T1 ≤bS T2 then, for all A ∈ X (in fact all A ∈ Ar),
either (a) T1(A) = S(A), or (b) T1(A) = T2(A), or (c)
T1(A) = undec and [(S(A) = in and T2(A) = out) or vice
versa]. In cases (a), (b) inequality (3) holds as in part (i)
above, while in (c) we get a strict inequality due to (diff
5). If T1 <bS T2 then T1 6= T2 so, since X is critical there is
some A∗ ∈ X such that T1(A∗) 6= T2(A∗). Then either we
are in the same situation as in (i) above, or case (c) obtains.
Either way the inequality (3) will be strict for A∗ and so
dX(S, T1) < dX(S, T2).

497

(iii). Follows from the fact that (diff 3++) ensures diff
itself satisfies the triangle inequality, which lifts straightfor-
wardly to dX .

Note the above result holds taking X to be any critical sub-
set, not only the minimal ones. By taking X = Ar we thus
obtain Propositions 1-4 from Section 5 as corollaries.

One problem is that more than one minimal critical sub-
set may exist. For example in the above example one can
check that another minimal critical subset can be obtained
by exchanging A for D to obtain X2 = {A,E,G}. Indeed
one can exchange any argument in the leftmost component.
One could also replace E by F or G by H. We would like the
distance (or at least the similarity ordering induced by it) to
be independent of the particular minimal critical subset we
use. Is it possible that we might get dX1(S, T1) 6= dX2(S, T2)
for different minimal critical subsets X1, X2? In the above
example the answer is no, but unfortunately this does not
always hold in general, as the next example shows.

Example 3. Let us return to the AF A1 depicted in Fig.
2. It is not the case that by knowing the label of one ar-
gument we know the full complete labelling, however, one
can check that if we know the label of any pair of argu-
ments, we automatically know the label of the third. Thus
we have mincrit(A1) =

{
{A,B}, {A,C}, {B,C}

}
. We have

d{A,B}(L1,L2) = 2 × diff (in, out) and d{A,B}(L1,L3) =
diff (in, out). Thus if we focus on the critical subset {A,B}
we obtain that L3 is closer to L1 than L2 is. But if in-
stead we focus on critical subset {A,C} we obtain the op-
posite conclusion, for d{A,C}(L1,L2) = diff (in, out) and
d{A,C}(L1,L3) = 2× diff (in, out).

This sensitivity to the choice of critical subset is somewhat
undesirable. Furthermore, as we will see next, even though
cd can easily be made to satisfy all the distance properties
we have presented thus far, there are some other, highly
intuitive, postulates that it fails to validate.

6.2 Symmetry properties
The next distance properties we propose come from sym-

metry considerations. The idea is that applying the distance
measure over AFs which are in some sense equivalent should
yield equivalent results. In the context of argumentation se-
mantics, such a property has been referred to as the language
independence principle [3]. We are interested in describing
a similar property in the context of distance measures. We
begin with the common idea of graph-isomorphism, applied
to argumentation frameworks.

Definition 9. LetA1 = (Ar1,⇀1) andA2 = (Ar2,⇀2) be
two AFs. An isomorphism from A1 to A2 is any bijection
g : Ar1 → Ar2 such that, for all A,B ∈ Ar1, A ⇀1 B iff
g(A) ⇀2 g(B). In the special case when A1 = A2 we call g
an automorphism.

So basically an isomorphism just changes the names of ar-
guments – or in the case of automorphism permutes them
– while preserving the attack structure. Of course if g is
an isomorphism from A1 to A2 then g−1 is an isomorphism
from A2 to A1.

If g is an isomorphism from A1 to A2 then we can extend
g to a function which converts any labelling S for A1 into
a labelling g(S) for A2. We define labelling g(S) simply by
taking [g(S)](A) = S(g−1(A)) for all A ∈ Ar2.

Proposition 5. Let g be an isomorphism from A1 to A2.
If S ∈ CompA1

then g(S) ∈ CompA2
.

The following property says that the distance should be
the same for isomorphic AFs. This is in line with the in-
tuition that an argument is characterised completely by its
interactions with the other arguments.

(Iso) If g is an isomorphism from A1 to A2 then
dA1(S, T) = dA2(g(S), g(T))

Note that this property differs from our previous distance
properties in that whereas they dealt with a fixed AF A as
given, this rule relates distance between labellings over dif-
ferent, but related, argumentation frameworks. Technically
speaking, while all the previous rules are properties of the
labelling distance dA for fixed A, (Iso) is a property of the
distance method, i.e., the mapping A 7→ dA (Definition 4).
In the case of automorphism we get the special case:

(Auto) If g is an automorphism on A then
dA(S, T) = dA(g(S), g(T))

The distance measure cd fails even to satisfy (Auto), as the
following example shows:

Example 4. Consider A1 in Fig. 2 and consider the map-
ping g such that g(A) = B, g(B) = C and g(C) = A. It
is easy to see that g is an automorphism on A1. Assume
C(A1) = {A,B}. Recall L1 = {(A, in), (B, out), (C, out)}
and L3 = {(A, out), (B, out), (C, in)}. So g(L1) = {(A, out),
(B, in), (C, out)} and g(L3) = {(A, in), (B, out), (C, out)}.
Then if (Auto) were satisfied we would expect cd(L1,L3) =
d{A,B}(L1,L3) = d{A,B}(g(L1), g(L3)), but d{A,B}(L1,L3) =
diff (in, out) 6= 2 × diff (in, out) = d{A,B}(g(L1), g(L3)).
Note this example assumes C(A1) = {A,B}, but it should
be clear that counterexamples can also be found if either of
the other two elements of mincrit(A1) were selected.

Summarising this section so far, we have managed to find
a distance method cd which respects the intuitions of the
example of Fig. 3, but at the expense of violating what seem
to be a highly desirable postulates ((Iso) and (Auto)) for
distance methods. Is there a distance method which can
satisfy all our desiderata? We shall now see that the answer
is yes.

6.3 Distance via issue-wise label difference
We want to capture the idea that the labels of two ar-

guments are “tied together”. For example in a simple 2-
argument AF consisting of two arguments A and B mutu-
ally attacking each other, there may be two arguments but
to all intents and purposes there is really only one “issue”
at stake, and that is whether A or B (or neither) should be
accepted. We want to isolate these different issues which
are being argued over. Given an AF A = (Ar,⇀), let us
define the following two binary relations over Ar. For any
A,B ∈ Ar:

• A ≡1 B iff ∀L ∈ CompA : L(A) = L(B)

• A ≡2 B iff ∀L ∈ CompA : (L(A) = in ⇔ L(B) =
out) ∧ (L(A) = out⇔ L(B) = in).

A ≡1 B means that the labels assigned to A and B are
exactly the same in all complete labellings, i.e., that A and
B are in a sense logically equivalent, while A ≡2 B means

498

that A and B always receive “opposite” labels: whenever A
is labelled in then B is labelled out, and vice versa. It is
easy to see that if A ≡2 B then we also have L(A) = undec

iff L(B) = undec. From these two relations we define

A ≡ B iff (A ≡1 B ∨A ≡2 B).

Thus if A ≡ B then intuitively the labels of A and B are “in
sync”, in that the label of one cannot be changed without
causing a change of equal magnitude to the label of the other.

Proposition 6. ≡ is an equivalence relation over Ar.

Proof. (Outline). Reflexivity holds since ≡1 is reflex-
ive. Symmetry holds since both ≡1 and ≡2 are symmet-
ric, and transitivity holds because of the following com-
position properties: (≡1 ◦ ≡1) = (≡2 ◦ ≡2) = ≡1 and
(≡1 ◦ ≡2) = (≡2 ◦ ≡1) = ≡2.

Within each ≡-equivalence class, there are at most 3 possible
labellings which can occur: either (i) all its elements are
labelled undec, or (ii) all its elements are set to in or out,
or (iii) the “inverse” labelling to (ii) occurs, in which those
arguments labelled in become out and those labelled out are
now in. Essentially each equivalence class acts as a single
3-valued argument. We call each such class an issue of the
given AF.

Definition 10. Given an AF A = (Ar,⇀), the set I(A) of
issues of A is defined as I(A) = Ar/ ≡. For A ∈ Ar we will
denote the ≡-equivalence class of A by [A].

For example, it can be checked that the issues for the AF in
Fig. 3 are {A,B,C,D}, {E,F} and {G,H}. In the AF of
Fig. 2, however, there are 3 issues {A}, {B} and {C}. Note
that in the former case the issues coincide exactly with the
strongly connected components [4] of the graph, whereas this
is not true of the latter case.

Now, rather than calculate distance via argument-wise la-
bel difference as we did in Section 5, we can instead do it
via issue-wise label difference. For this we need to define
the measure of disagreement DIFF (S, T , [A]) between two
labellings S and T on a single issue [A]. We do this using a
basic label difference measure diff :

DIFF (S, T , [A])
def
= diff (S(A), T (A)).

Proposition 7. DIFF is well-defined, i.e., if [A] = [B]
then diff (S(A), T (A)) = diff (S(B), T (B)).

Proof. (Outline) If [A] = [B] then either A ≡1 B or
A ≡2 B. In the former case the result is clear. In the latter
case one may simply check for each of the 9 possibile com-
binations of labels for S(A), T (A). E.g., if S(A) = in and
T (A) = undec then, from A ≡2 B we know S(B) = out and
T (B) = undec. Thus diff (S(A), T (A)) = diff (S(B), T (B))
since diff by (diff 4).

Note that this result depends on the assumptions that diff
satisfies (diff 1), (diff 2) and (diff 4).

Finally the issue-based distance measure id is defined by
setting, for any S, T ∈ CompA,

id(S, T) =
∑

[A]∈I(A)

DIFF (S, T , [A])

In the example in Fig. 3 we have id(S, T1) = 2×diff (in, out)
and id(S, T2) = diff (in, out), as with the critical subsets

approach of Section 6.1. For the example in Fig. 2 we get
id(L1,L2) = 2× diff (in, out) = id(L1,L3). So according to
the issue-based distance L2 and L3 are equidistant from L1.

The issue-wise distance measure can be related to the pre-
ceding critical subsets approach. Clearly we have id(S, T) =
dX(S, T) (see equation (2) in Section 6.1), where X is any
set formed by taking a representative of each ≡-equivalence
class. It turns out that we have the following:

Proposition 8. Let X be any set obtained by taking one
element of each issue in I(A). Then X ∈ crit(A).

Proof. (Outline) Let L1, L2 ∈ CompA be 2 complete
labellings which agree on X. We must show L1(A) = L2(A)
for all A ∈ Ar. Let A∗ ∈ X be the chosen representative of
[A] in X, so A∗ ≡ A. We know L1(A∗) = L2(A∗). Denote
this common label by x. If A∗ ≡1 A then both L1(A) and
L2(A) are equal to x as required. Suppose A∗ ≡2 A. If
x = in then both L1(A) and L2(A) are out. If x = out then
both L1(A) and L2(A) are in. Finally if x = undec then
both L1(A) and L2(A) are undec.

Thus id can be thought of as a critical-set based distance
which chooses from among a particular class of critical sets,
viz. those which contain one argument from each issue. Fur-
thermore, unlike the critical-set based distance the precise
choice of these elements is irrelevant. However the critical
set chosen need not be a minimal one, i.e., an element of
mincrit(A), as can be seen already in the AF of Fig. 2. We
may deduce from all this and Theorem 1 the following:

Theorem 2. id satisfies (dm1) and (dm3). Further-
more:
(i). If diff satisfies (diff 3+) then id satisfies (dm5) (and
hence also (dm2)).
(ii). If diff satisfies (diff 3+) and (diff 5) then id satisfies
(dm5+).
(iii). If diff satisfies (diff 3++) then id satisfies (dm4).

In addition, we have the following:

Theorem 3. The distance method A 7→ idA satisfies (Iso)
(and hence also (Auto)).

Proof. (Outline.) LetA1, A2 be 2 AFs connected by iso-
morphism g and let S, T ∈ CompA1

. To show idA1(S, T) =
idA2(g(S), g(T)) we show that the summands on each side
of this identity match up in pairs. More precisley we show
there is a bijection h : I(A1) → I(A2) such that, for each
[A] ∈ I(A1), DIFF (S, T , [A]) = DIFF (g(S), g(T), h([A])).
Indeed we can just define h([A]) = [g(A)]. The facts that h
is well-defined and injective are both proved using the prop-
erty that, for any A,B ∈ Ar1, A and B belong to the same
issue in I(A1) iff g(A) and g(B) belong to the same issue in
I(A2). h is clearly surjective since, given any [Z] ∈ I(A2) we
have [Z] = h([g−1(Z)]). Finally DIFF (g(S), g(T), h([A])) =
DIFF (g(S), g(T), [g(A)]) = diff ([g(S)](g(A)), [g(T)](g(A))).
Since [g(S)](g(A)) = S(g−1(g(A))) = S(A) by definition of
g(S) (and similarly for T), this equals diff (S(A), T (A)) =
DIFF (S, T , [A]) as required.

7. RELATED WORK AND CONCLUSION
We have initiated the investigation of the notion of dis-

tance between two reasonable evaluations of an argument
graph. While this issue has been investigated in non-argument
based accounts of both belief revision [18, 20], in judgement

499

aggregation [19, 21], and in abstract preferences [1], to our
knowledge we are the first to study it in the context of formal
argumentation theory.

We presented several different distance functions, all de-
fined on top of a difference function on the space of possible
labels {in, out, undec}. These functions fall into two groups:
those which sum the difference between the labels of all ar-
guments Ar in the framework, and those which single out
various subsets of Ar as being in some sense the critical
ones. We gave some postulates for such distance functions,
even though we saw that many simple and straightforward
candidates for distance measures suffer from some problem
or another, and we developed some intuitions via several
examples about what a distance function between complete
labellings should be like.

For future work we would like to investigate more closely
the issue-based distance method id. Specifically we are look-
ing for other properties that it satisfies, perhaps leading to
an axiomatic characterisation. We also want to apply these
new distances to the problems of revision and judgement ag-
gregation in argumentation. In revision we want to choose
the closest labelling to the current one which extends an
input new partial labelling. In questions of judgement ag-
gregation we want to choose the labellings which are closest
to the group as a whole. Similar considerations have been
applied in propositional contexts (e.g. [13, 17]), while a first
exploration of the use of Hamming-like distances (see Sec-
tion 5) in labelling-aggregation has been carried out by Cam-
inada et al. in [12], where it is used to check the manipulabil-
ity and Pareto optimality of certain aggregation operators.
They assume each member of a group of agents provides a
complete labelling, and that each agent’s preference relation
over the set of all complete labellings is given by Hamming
set or Hamming distance from its given labelling.

It would also be interesting to see if the issue-based method-
ology of Section 6.3 can be used to refine the distance-based
approaches already existing in general judgement aggrega-
tion. Finally, here we focused on complete labellings. This is
reasonable since they correspond to rational, coherent stand-
points. But the definitions will work for other families of
labellings too, like preferred, stable [14], and semi-stable [9].

8. ACKNOWLEDGEMENTS
Thanks are due to the reviewers for their encouraging re-

marks. Thanks also to Ringo Baumann, Gerhard Brewka
and the Individual and Collective Reasoning group at the
University of Luxembourg for some useful comments. Richard
Booth is supported by the FNR/INTER project “Dynamics
of Argumentation”. Martin Caminada and Miko laj Pod-
laszewski are supported by the National Research Fund,
Luxembourg (FNR) (LAAMI and LAAMIcomp projects).

9. REFERENCES
[1] N. Baigent. Preference proximity and anonymous

social choice. The Quarterly Journal of Economics,
102(1):161–169, 1987.

[2] P. Baroni, M. Caminada, and M. Giacomin. An
introduction to argumentation semantics. Knowledge
Engineering Review, 26:365–410, 2011.

[3] P. Baroni and M. Giacomin. On principle-based
evaluation of extension-based argumentation
semantics. Artificial Intelligence, 171(10-15):675–700,
2007.

[4] P. Baroni, M. Giacomin, and G. Guida.
SCC-recursiveness: A general schema for
argumentation semantics. Artificial Intelligence,
168(1-2):162–210, 2005.

[5] G. Brewka and J. Hertzberg. How to do things with
worlds: On formalizing actions and plans. Journal of
Logic and Computation, 3(5):517–532, 1993.

[6] M. Caminada. On the issue of reinstatement in
argumentation. In Proc. JELIA, pages 111–123, 2006.

[7] M. Caminada. Comparing two unique extension
semantics for formal argumentation: ideal and eager.
In Proc. BNAIC, pages 81–87, 2007.

[8] M. Caminada and L. Amgoud. On the evaluation of
argumentation formalisms. Artificial Intelligence,
171(5-6):286–310, 2007.

[9] M. Caminada, W. Carnielli, and P. Dunne.
Semi-stable semantics. Journal of Logic and
Computation, 2011. in print.

[10] M. Caminada and D. Gabbay. A logical account of
formal argumentation. Studia Logica, 93(2):109–145,
2009.

[11] M. Caminada and G. Pigozzi. On judgment
aggregation in abstract argumentation. Autonomous
Agents and Multi-Agent Systems, 22(1):64–102, 2011.

[12] M. Caminada, G. Pigozzi, and M. Podlaszewski.
Manipulation in group argument evaluation. In Proc.
IJCAI, pages 121–126, 2011.

[13] M. Dalal. Investigations into a theory of knowledge
base revision. In Proc. AAAI, pages 475–479, 1988.

[14] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial
Intelligence, 77(2):321–357, 1995.

[15] P. M. Dung, P. Mancarella, and F. Toni. Computing
ideal sceptical argumentation. Artificial Intelligence,
171(10-15):642–674, 2007.

[16] D. Gabbay. Fibring argumentation frames. Studia
Logica, 93(2):231–295, 2009.

[17] S. Konieczny, J. Lang, and P. Marquis. DA2 merging
operators. Artificial Intelligence, 157(1-2):49–79, 2004.

[18] D. Lehmann, M. Magidor, and K. Schlechta. Distance
semantics for belief revision. Journal of Symbolic
Logic, 66(1):295–317, 2001.

[19] M. Miller and D. Osherson. Methods for
distance-based judgment aggregation. Social Choice
and Welfare, 32(4):575–601, 2009.

[20] P. Peppas, S. Chopra, and N. Foo. Distance semantics
for relevance-sensitive belief revision. In Proc. KR,
pages 319–328, 2004.

[21] G. Pigozzi. Belief merging and the discursive dilemma:
an argument-based account to paradoxes of judgment
aggregation. Synthese, 152(2):285–298, 2006.

[22] H. Prakken. An abstract framework for argumentation
with structured arguments. Argument and
Computation, 1(2):93–124, 2010.

[23] I. Rahwan and F. Tohmé. Collective argument
evaluation as judgement aggregation. In Proc.
AAMAS, pages 417–424, 2010.

[24] R. Reiter. A logic for default reasoning. Artificial
Intelligence, 13:81–132, 1980.

500

Cooperative Dialogues with Conditional Arguments

Samy Sá
Universidade Federal do Ceará

Campus do Pici, Bl 910
Fortaleza, Brazil
samy@ufc.br

João Alcântara
Universidade Federal do Ceará

Campus do Pici, Bl 910
Fortaleza, Brazil

jnando@lia.ufc.br

ABSTRACT
We introduce an approach to cooperative dialogues as a
framework for group deliberation. One of its distinguish-
ing features is that it deals with conditional and constraint-
based arguments, which are built by employing abductive
and hypothetical reasoning. These kinds of arguments al-
low agents to use a variety of dialogue moves proper to a
cooperative debate, such as argument rewrites and condi-
tional attacks. In our approach, a group of agents develops
a dialogue as they explore different lines of thought to build
a group position in a yes or no decision. In essence, given a
matter for discussion, the parties involved will consider ar-
guments that either supports or rejects it and discuss such
arguments to decide whether or not to accept them. To
achieve that, agents will work as a team and combine their
knowledge to produce more complex arguments and study
possible flaws these might have.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Logic and constraint pro-
gramming; I.2.11 [Distributed Artificial Intelligence]:
Multiagent systems

General Terms
Theory

Keywords
Collective Intelligence, Reasoning (single and multiagent),
Argumentation, Logic Programming, Abduction

1. INTRODUCTION
Dialogues were introduced into multiagent systems to for-

malize the generation and interpretation of arguments ex-
changed amongst agents [1]. Such dialogues are perceived
as a game involving two antagonistic agents in a discussion
about some matter (a proposition). In this setting, the first
player tries to justify or defend the matter, while the second
will try to disqualify or attack it. However, we consider that
some dialogues are inherently cooperative in the sense that
the agents in a group might share a goal and be interested in

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

working together to justify or disqualify a proposition. This
is the case with Deliberation Dialogues [14], which is our
main focus. We believe that the key for this kind of cooper-
ation lies in abductive reasoning [7], which is a special kind
of non-monotonic reasoning, usually defined as inference to
the best explanation.

In this paper we focus on deliberation dialogues about
whether the group can explain a scenario or if they should
accept an argument from an external source. Our goal is
to allow agents to collectively engage in reasoning about
what to do, however without the need to share their en-
tire knowledge bases. This is an important feature, since in
human-agent interaction, knowledge bases cannot be simply
merged. We can also think of a self-preservation rationality,
for an agent might experience disadvantages if it later gets
into a negotiation or game involving an agent with whom it
just shared its entire knowledge base. On the other hand,
the kind of deliberation we propose is hardly as efficient as
joining the knowledge bases to draw collective conclusions.

In existing approaches to dialogues in multiagent systems
[1, 14], the agents in a group will share opinions (arguments)
to reach a consensus on which ones are good. Their knowl-
edge, however, is combined in a very limited way because
every opinion is proposed by a single agent. In our work,
agents engage in hypothetical reasoning to consider alterna-
tive scenarios and combine their knowledge further. As a
consequence, agents can cooperate to complement the argu-
ments from one another and reach a deeper understanding
of the possible flaws their arguments might have.

Our work defines a framework for the exchange of argu-
ments between agents, such as in multiagent dialogues [1]
and negotiation with abduction [17]. Multiagent dialogues
are characterized in [1] as a game involving two agents in
antagonistic positions about some matter of discussion, pos-
sibly a deal in a process of negotiation. Agents will place
arguments attacking each other opinions until one of them
can no longer respond, so the other will be the winner. Sim-
ilarly, negotiation is perceived as an exchange of proposals,
and whenever an agent can no longer counter the last, it
has to accept it. Negotiation was improved with abduc-
tion in [17], where the authors introduce the possibility of
conditional proposals based on abductive reasoning. In co-
operative deliberation as we introduce in this paper, agents
work as team mates and explore alternatives by exchange
arguments for the best interest of the group.

Amongst others, our framework has the following char-
acteristics: (i) agents can resort to hypothetical reasoning
to produce arguments; (ii) the agents in a group might be

501

able to combine their knowledge to produce elaborate ar-
guments that no single agent can conceive on its own; (iii)
the reasoning performed by a group of agents involves two
opposing consistent positions; (iv) the dialogues are guar-
anteed to end, so the agents are sure to reach an agreement
about the subject of discussion.

In Section 2, we will present abductive logic programs as
they are used throughout the paper. Next, we will introduce
conditional arguments in Section 3 and our approach to col-
lective dialogues in Section 4. These last two sections hold
our main contributions. We discuss related work in Section
5 and conclude the paper in Section 6 with a discussion on
the importance of our contributions and future work.

2. PRELIMINARIES

2.1 Extended Disjunctive Programs
In this paper, we account for programs as in Extended Dis-

junctive Programs (EDP’s) [10] without disjunctive heads.
An EDP is defined over a Herbrand Universe HB, the set

of all ground atoms the program might resort to. Such a
program consists of a set of rules of the form

r : LH ← L1, . . . , Lm, not Lm+1, . . . , not Ln

with LH being optional and n ≥ m ≥ 0. In this notation,
each Li is a literal (an atom A or its negation ¬A), LH is a
literal, and not is negation as failure (NAF). If L is a literal,
not L is called a NAF-Literal. We might speak of literals
to generalize literals and NAF-Literals. In a rule r on the
above form, we refer to LH as the head of the rule and write
head(r) to denote the set {LH}. We refer to the conjunc-
tion L1, . . . , Lm, not Lm+1, . . . , not Ln as the body of r, and
body(r) denotes the set {L1, . . . , Lm, not Lm+1, . . . , not Ln}.
We differ the literals of its positive and negative parts as
body+(r) and body−(r) to refer to the sets {L1, . . . , Lm} and
{Lm+1, . . . , Ln}, respectively. We also denote not body−(r)
as the set of NAF-Literals {not Lm+1, . . . , not Ln}. A rule
may be written as head(r) ← body+(r), not body−(r) or
head(r)← body(r), for body(r) = body+(r)∪ not body−(r).
A rule is an integrity constraint if head(r) = ∅ and it is a fact
if body(r) = ∅, in which case we do not write “←”. We say
a program is NAF-free if it does not contain NAF-Literals.

The semantics of an EDP is given by the Answer Sets
Semantics [10]. Consider LitP is the set of all literals in the
language of a program P and S one of its subsets. Let PS be
the set that contains all the instances head(r) ← body+(r)
of rules of P such that body−(r)∩S = ∅ and no other rules,
so PS is a NAF-free program. Given a NAF-free EDP P ,
Ans(P) is a minimal subset of LitP such that (i) for every
ground rule of P , if body+(r) ⊆ S, then head(r) ∈ S and (ii)
S is either consistent or S = LitP . Given an EDP P , S will
be an answer set of P if S = Ans(PS). A program might
have zero, one or multiple answer sets. An answer set S for
P is consistent if S does not simultaneously contain A and
¬A, for no atom in the language. The program itself will be
said consistent if it has a consistent answer set. Otherwise,
the program is inconsistent.

We draw special attention to the following terminology:

• A goal is a conjunction of literals and NAF-literals. If
G is a goal, then Lit(G) is the set of literals and NAF-
literals in G. If Hyp is a set of rules (a program),
Lit(Hyp) = {L ∈ (body(r) ∪ head(r))| r ∈ Hyp}.

• An EDP P satisfies G = L1, . . . , Lm, not Lm+1, . . . ,
not Ln (written P |= G) if P has an answer set S such
that {L1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln} ∩ S = ∅.
• Given a literal or NAF-literal L, we have: if L = A,

then neg(L) = ¬A; if L = ¬A, then neg(L) = A; if
L = not L′, L′ ∈ {A,¬A}, then neg(L) = L′.

2.2 Abductive Logic Programs
Abduction is a special kind of non-deductive reasoning

in which hypotheses are inferred to explain observable facts
otherwise not accepted by a theory. Abductive Logic Pro-
gramming brings this feature to standard logic programming
[12, 7]. We will now introduce Abductive Logic Programs
(ALP’s) as in the abductive framework of Extended Abduc-
tion [16, 17], but adapted to our objectives.

An abductive program is a pair 〈P,H〉, where P is an EDP
and H is a set of literals referred to as abducibles. If P is
consistent, then 〈P,H〉 is consistent. Throughout the paper
we will assume only consistent programs. A goal1 is satisfied
by 〈P,H〉 if {L1, . . . , Lm} ⊆ S and {Lm+1, . . . , Ln} ∩ S = ∅
for some answer set S of P .

Definition 1. Let G be a goal for the ALP 〈P,H〉. A
pair (E,F) is an explanation to G in 〈P,H〉 if

1. (P \ F) ∪ E has an answer set which satisfies G2,

2. (P \ F) ∪ E is consistent,

3. E and F are sets of literals such that E ⊆ H \ P and
F ⊆ H ∩ P .

Intuitively, an explanation (E,F) of G in 〈P,H〉 means
that by assuming the literals in E as true while retracting
(falsifying) the literals in F from P , the resulting P ′ = (P \
F)∪E satisfies G. If the original program has an answer set
satisfying G, then (∅, ∅) is an explanation and no changes
are needed in P . An explanation (E,F) is minimal if, for
any explanation (E′, F ′) such that E′ ⊆ E and F ′ ⊆ F ,
then E′ = E and F ′ = F . In general, only the minimal
explanations are of interest.

If an agent has a program 〈P,H〉 as its knowledge base, the
setH lists the literals the agent can resort to for hypothetical
reasoning. These literals might not be enough to explain
some goals, so an agent should be able to adapt and consider
unknown literals from such goals as abducibles too. This
capability might not be helpful when the agent is on its
own, but it can be essential in a group deliberation setting.

Definition 2. Given a goal G and a program 〈P,H〉,
Ab(P,H,G) is the set of literals that appear in G but appear
neither in P nor in H. An agent adapts to deliberate on G if
it considers the literals in Ab(P,H,G) as abducibles, i.e., if
it reasons as if its knowledge base were 〈P,H∪Ab(P,H,G)〉.

Example 1. Consider the following ALPs:

P1 : a← b; P2 : b← d; P3 : ← c, d;
b← c; d← not e; d;

e

H1 : {b, c} H2 : {d, e} H3 : {d, c}
1In [17], goal is referred as observation.
2This definition is for credulous explanations. Its choice
over skeptical explanations [11] makes possible to have more
explanations and gives us a better chance of finding good
related arguments in a discussion.

502

Consider a group of three agents Ag1, Ag2, Ag3. Each agent
Agi has its knowledge base in ALP 〈Pi, Hi〉, i = 1, 2, 3.
These agents can build, amongst others, the following mini-
mal explanations (as in Definition 1):

Ag1 : Ex1 = (E1, F1) = ({b}, { }) for G1 = a, b.
Ag1 : Ex2 = (E2, F2) = ({b, d}, { }) for G2 = a, d, not c.
Ag2 : Ex3 = (E3, F3) = ({d}, { }) for G3 = b.
Ag2 : Ex4 = (E4, F4) = ({ }, {e}) for G4 = d.
Ag3 : Ex5 = (E5, F5) = ({c}, {d}) for G5 = c.

The first explanation suggests that if b is true, Ag1 can prove
G1 = a, b. The second explanation uses the literal d ∈
Ab(P1, H1, G2), which is not in P1, so the agent has adapted
to deliberate on G2 (Definition 2) and has built the explana-
tion Ex2 in 〈P1, H1 ∪ Ab(P1, H1, G2)〉. It means that Ag1
cannot justify d in G2 and that if b is true, Ag1 can prove
the part of G2 that does not involve d, i.e., G ′2 = a, not c.
The explanation (E3, F3) has a similar meaning to that of
(E1, F1), and is highlighted because it can be combined with
the latter to create a new explanation to G1, as we will later
explore in the paper. The next explanation states that Ag2
believes e is true (〈P2, H2〉 |= e), but is capable to conceive e
being false, as it would explain G4 = d. Finally, Ag3 could
prove G5 = c under the conditions that c is true and d is
false, but it believes d is true and has no opinion about c. In
each case, an explanation is intended to mean that an agent
is willing to discuss some of its knowledge.

Further, the goal G6 = a, b, d cannot be satisfied by any
of the three programs, even though the program 〈P∪, H∪〉,
where P∪ =

⋃
Pi and H∪ =

⋃
Hi, i = 1, 2, 3, satisfies it.

We highlight that if the agents adapt (Definition 2), they can
produce explanations to G6. In the next section, we will show
explanations play a key role in the definition of conditional
arguments. Also, we will show agents capable of abductive
reasoning as above can satisfy G6 in the example as they
share and complement each others explanations.

3. CONDITIONAL ARGUMENTS
Intuitively, an argument consists of a conclusion and some

justification to it. The reading of an argument is that if its
justification is acceptable, the conclusion should be as well.
These arguments might be somehow defective, so other ar-
guments can be proposed to point its possible flaws. In this
section, we will formalize arguments and proceed to extend
this notion with hypothetical reasoning. To that sense, we
will introduce two kinds of conditional arguments: The first
kind is based on hypothetical scenarios in which a particu-
lar conclusion makes sense. Using this type of argument can
enrich the discussion of a matter, as it allows agents to go
deeper on exploring the possible flaws the arguments might
have and to cooperate with other agents by combining their
knowledge. The second kind of argument involves arguing
that some hypotheses from an argument can lead to absurd
conclusions, so it should be rejected.

Definition 3 (Arguments). An argument in an EDP
P is a pair (Hyp,G) where G is a goal and Hyp is a set of
instances of rules of P such that (i) there is a consistent
answer set of P that satisfies Hyp; (ii) Hyp |= G and (iii)
Hyp is minimal, so no Hyp′ ⊂ Hyp satisfies both i and ii.

If (Hyp,G) is an argument, the set Hyp is called the sup-
port or hypotheses set and G is the conclusion of the argu-

ment. Given an argument Arg = (Hyp,G), its set of literals
and NAF-literals is Lit(Arg) = Lit(Hyp) ∪ Lit(G).

In a dialogue, an agent can disagree with others by at-
tacking their arguments:

Definition 4. An argument Arg1 = (Hyp1, G1) attacks
Arg2 = (Hyp2, G2) if there is a L1 ∈ Lit(G1) such that
L1 = neg(L2) for some literal L2 ∈ Lit(Arg2).

Example 2. Consider an agent Ag with knowledge base
represented by the following EDP P :

P : a← not b;
c

The goal G1 = a, c is satisfied by P , so Ag can produce an
argument Arg1 = ({a ← not b; c}, G1) to explain it to the
other agents. The goal G2 = a,¬c, however, is not satisfied
by P , and Ag can produce the argument Arg2 = ({c}, c) to
suggest it cannot be satisfied by the group, since c denies ¬c
in G2. The conclusion of Arg3 = ({¬c ← a; a},¬c) denies
an hypothesis of Arg2, so Arg3 attacks Arg2.

3.1 Abduction-Based Conditional Arguments
An agent capable of abductive reasoning can conceive al-

ternative hypothetical scenarios in which a goal would be
satisfied. The agent can then build arguments in any al-
ternative scenario and highlight the conditions in which the
scenario would be acceptable. We refer to these arguments
as conditional arguments, for they can only be accepted by a
group of agents if the conditions presented in the argument
are satisfied by them. A notion of conditional arguments
has been introduced in [13], but the following definitions are
original and based on extended abduction (Section 2.2).

Definition 5 (Conditional Arguments). Consider
〈P,H〉, an ALP, and (E,F), a minimal explanation to the
goal G. The tuple (E,F,Hyp,G) is a conditional argument
to G if (Hyp,G) is an argument in P ′ = (P \F)∪E. An ar-
gument (E,F,Hyp,G) with E = F = ∅ is non-conditional.

If (E,F,Hyp,G) is a conditional argument, Hyp is its
support or hypothesis set, G is the conclusion and each el-
ement of Hyp is a hypothesis. To denote the set of condi-
tions that the explanation adds to the argument, we write
C(E,F) = E ∪ {not L | L ∈ F}. If Arg = (E,F,Hyp,G)
is a conditional argument, we denote its set of literals and
NAF-Literals as Lit(Arg) = C(E,F) ∪ Lit(Hyp) ∪ Lit(G).

The idea is that a conditional argument proposed by an
agent would be accepted in our framework if the explanation
in it is justified by the other agents.

Example 3. Consider an agent Ag with knowledge base
represented by the following ALP 〈P,H〉:

P : a← b;
c;

H : {b, c}
The goal G = a, c is not satisfied by P , but Ag can produce
the explanation (E,F) = ({b}, {}) and build the conditional
argument A = ({b}, { }, {b; a← b; c}, G) in P ′ = P ∪{b}.

The definition of attack with conditional arguments is
about the same as before, though now it is also possible
to attack the explanation attached to an argument.

503

Definition 6. An argument Arg1 = (E1, F1, Hyp1, G1)
attacks Arg2 = (E2, F2, Hyp2, G2) if there is a L1 ∈ Lit(G1)
such that L1 = neg(L2) for some literal L2 ∈ Lit(Arg2).
If (E1, F1, Hyp1, G1) is an attack to some argument and
C(E1, F1) 6= ∅, we say it is a conditional attack.

Example 4. Consider Arg1 = ({b}, { }, {b; a← b; c}, G),
G = a, c. The arguments Arg2 = ({ }, { }, {¬b← not d; },¬b)
and Arg3 = ({c}, { }, {c; ¬b← c; }, ¬b) are examples of at-
tacks to Arg1 that focus on its conditions. On top of that,
Arg3 is a conditional attack to Arg1.

3.2 Building Arguments Together
A conditional argument should only be accepted by a

group of agents if its conditions are satisfied by other agents.
The agents in a group should therefore cooperate to reduce
the number of conditions of an argument and transform it
into a non-conditional argument (Definition 5). This is done
by rewriting a conditional argument, i.e., adding support to
some of its conditions, even though it might be necessary to
introduce others.

Definition 7 (Argument Rewrite). Consider a con-
ditional argument Arg1 = (E1, F1, Hyp1, G1) proposed by
agent Ag1. Also, consider an agent Ag2 can produce an
argument Arg2 = (E2, F2, Hyp2, G2) such that G2 = L1,
for some L1 ∈ E1. Then, Ag2 rewrites Arg1 as Arg ′1 =
((E1 \ {L1}) ∪ E2, F1 ∪ F2, (Hyp1 \ {L1}) ∪Hyp2, G1).

In our framework, an argument rewrite will consist of a
dialogue move in which an agent attempts to unify its opin-
ion with those of other agents. In particular, if (E2 = ∅, the
rewriting consists in reducing the cardinality of E1, being
therefore an attempt to fulfill the conditions of Arg1.

Example 5. Consider Arg1 = ({a}, { }, {b ← a; a}, b)
and Arg2 = ({ }, { }, {a← c; c}, a). It is possible to rewrite
Arg1 into Arg ′1 = ({ }, { }, {b← a; a← c; c}, b), which is
a non-conditional argument to b.

Now consider Arg ′2 = ({c}, { }, {a ← c; c}, a). We can
rewrite Arg1 as Arg ′′1 = ({c}, { }, {b ← a; a ← c; c}, b),
which is a conditional argument with different conditions.

The process of rewriting allows for agents to cooperate
and build more elaborate arguments. In fact, any sequence
of argument rewrites Arg0, Arg1, . . . , Argn, provides a new
argument, possibly conditional, that combines the knowl-
edge of as many agents as the number of authors of argu-
ments in that sequence. In particular, if the sequence ends
with Argn = (∅, Fn, Hypn, G), the argument is eligible for
being accepted in our framework.

Example 6. Consider the agents and the goal G6 = a, b, d
taken from Example 1, together with the explanations below:

Ag1 : Ex6 = (E6, F6) = ({b, d}, { }) for G6.
Ag2 : Ex3 = (E3, F3) = ({d}, { }) for G3 = b.

The agent Ag1 cannot satisfy G6 but can build the explana-
tion Ex6 to it. The agent can build the conditional argument
A1 = ({b, d}, { }, {b; a ← b; d}, G6) in P ′ = P ∪ {b, d}.
Then, Ag2 should try to fulfill the conditions of A1, with
A2 = ({d}, { }, {d; b ← d; }, G3) to rewrite Arg1 into
Arg ′1 = ({d}, { }, {d; b ← d; a ← b; }, G6), which has
less conditions. Finally, Ag3 can complement this condition,

since P3 |= d. The third agent uses A3 = ({ }, { }, {d}, d)
to rewrite Arg ′1 into Arg ′′1 = ({ }, { }, {d; b ← d; a ←
b; }, G6), which is a non-conditional argument.

Arguments built with rewrites are possibly not derivable
by any of the agents individually (only by the group), which
is the case with Arg ′′1 above. An important property of such
arguments is that any attacks the agents can place against
Argi, will also attack those obtained by rewriting Argi.

Theorem 1. If Argi+1 = (Ei+1, Fi+1, Hypi+1, Gi+1) is
a rewrite of Argi = (Ei, Fi, Hypi, Gi) and there is an ar-
gument Argj = (Ej , Fj , Hypj , Gj) that attacks Argi, then
Argj is also an attack to Argi+1.

Proof. By exhaustion, suppose Argj is an attack that
negates a literal or NAF-literal L in
Gi: Since Gi+1 = Gi, Argj also attacks Argi+1;
Hypi: Observe that the process of rewriting arguments

will never remove hypotheses of Hypi that are program
rules, except for facts. Because Hypi is minimal, there
should be at least one rule r ∈ Hypi with L ∈ body(r).
As this rule is still a hypothesis in Argi+1, we conclude that
Argj is an attack to Argi+1;
C(Ei, Fi): Given that (Ei, Fi) is a minimal explanation,

each and every condition is also in the body of at least one
rule r ∈ Hypi or in the goal Gi. Therefore, even if L 6∈
C(Ei+1, Fi+1), it is sure that L ∈ body(r), for some r ∈
Hypi+1 or L ∈ Gi+1, so Argj attacks Argi+1.

Therefore, attacks are conserved over argument rewrites.

3.3 The Role of Integrity Constraints
In a cooperative dialogue, the agents attack arguments

they do not agree with, but also allow themselves to be con-
vinced otherwise by their teammates. For that reason, the
better an agent explains why it disagrees with an argument,
the better that agent contributes to the collective goal build-
ing a group position towards the arguments played. There-
fore, in such a cooperative setting, it makes sense for agents
to share the integrity constraints in their knowledge bases
whenever an argument would violate it. In that case, the
agent will attack with a constraint-based argument.

Definition 8. An argument Arg1 = (E1, F1, Hyp1, G1)
is a constraint-based attack to Arg2 = (E2, F2, Hyp2, G2) if

1. C(E1, F1) ⊆ Lit(Arg2), minimal w.r.t. set inclusion;

2. G1 = ⊥ (to express there is an inconsistency);

3. There is an integrity constraint r1 ∈ Hyp1 such that
(Hyp1 \ {r1})∪C(E1, F1) |= L, for each L ∈ body(r1).

If Hyp1 is unitary, Arg1 is an impossibility attack.

Constraint-based attacks enable agents to propose the re-
jection of an argument or goal to the group because it does
not comply with some of the agents’ integrity constraints.

Let r be an integrity constraint violated by Arg in 〈P,H〉,
i.e., all literals in the body of r are true in Arg. To build
a constraint-based attack, the agent reasons in the program
〈P \ {r}, Lit(Arg)〉 to build an Arg = (E,F ,Hyp,G) that
justifies the goal G =

∧{L | L ∈ body(r)}. The argument
Arg′ = (E,F ,Hyp ∪ {r},⊥) is a constraint-based attack.

An impossibility attack is an argument that is not subject
to debate and puts an end to a sequence of arguments.

504

Example 7. Consider an agent Ag with knowledge base
represented by the following ALP 〈P,H〉:

P : a← b;
c;
← a, c.

H : {b, c}
Consider A1 = ({ }, { }, {d← a, c; a; c}, d), an argument

that violates the integrity constraint ← a, c in 〈P,H〉. The
agent Ag, then, attacks A1 with the constraint-based attack
({a}, { }, {c;← a, c},⊥). Now, consider A2 = ({ }, { }, {a; c←
a}, G), G = a, c, that violates the integrity constraint ← a, c
in 〈P,H〉. The agent cannot accept it and produces the im-
possibility attack ({a, c}, { }, {← a, c},⊥).

We highlight that constraint-based attacks considers only
the facts and conclusions from the argument as abducibles.

3.4 Evaluating Arguments Together
For a group of agents to accept an argument, it is nec-

essary that all attacks against it had been proven inviable,
so any attacks the argument can receive should be evalu-
ated before it. As a consequence, the first arguments ac-
cepted will be those that receive no attacks or only received
conditional attacks whose conditions could not be comple-
mented by the group. After accepting an argument, the
agents should check for consequences in the acceptance of
other arguments in the dialogue: An accepted argument will
disqualify the ones it attacks and arguments that cannot be
further attacked will get accepted.

Definition 9 (Accepted Arguments). An argument
Arg1 = (E,F,Hyp,G) is accepted by an agent with knowl-
edge base represented by the ALP 〈P,H〉 if E = ∅ (F do not
need to be empty), and

1. there exists an answer set S of P with which Arg1
is consistent, i.e., S ∪ Lit(Arg1) does not violates
any integrity constraints in P and there is no L ∈
Lit(Arg1) such that neg(L) ∈ S; or

2. every attack the agent can place against Arg1 is de-
feated by another argument accepted by it.

A group of agents accepts an argument if all agents in the
group accept it.

Let S be an answer set of P and consider a L ∈ S such that
L = neg(L′), for some L′ ∈ Lit(Arg). The agent can build
an attack Arg′ = (E,F,Hyp, L) in P such that E = F = ∅,
Hyp ⊆ P and Hyp |= L. It is also possible that the agent
can build conditional attacks against Arg. If the argument
violates an integrity constraint in P , the agent should build
a constraint-based attack (Section 3.3). In that case, the
constraint-based attack should be played first, as it consists
of an attack based in all of its answer sets.

The following theorem draws a connection between our
work and abstract argumentation [8]. An argumentation
framework is a pair 〈S, ρ〉, where S is a set of arguments and
(e, f) ∈ ρ, e, f ∈ S, if e attacks f . One important concept is
that of a conflict-free set of arguments, in which no argument
attacks any other. An stable extension is a conflict-free set
of arguments S′ ⊆ S such that every argument in S \ S′ is
attacked by an element of S′. An argumentation framework
might have zero, one or multiple stable extensions.

Theorem 2. If S is the set of arguments with E = ∅
played in a discussion, and ρ = {(e, f) ∈ S×S | e attacks f},
then the set Acc of arguments accepted by the group is a sta-
ble extension of the argumentation framework 〈S, ρ〉.

Proof. (Sketch) An argument can only be added to Acc
if none of its attackers is accepted, so no other argument
in Acc attacks it and the set is conflict-free. Furthermore,
every other argument that could be accepted (with E = ∅),
but is not in Acc, was only rejected because it is attacked
by an argument in Acc.

Example 8. Consider a group of agents engaged in a dis-
cussion on the goal M0 = a, b, not c. Now suppose the argu-
ments played are (in order):

• Arg1 = ({ }, {c}, {a; b← a; },M0);

• Arg2 = ({ }, { }, {d; c← d; }, c) attacks Arg1;

• Arg3 = ({ }, { }, {a;¬d← a; },¬d) attacks Arg2;

• Arg4 = ({e}, { }, {e; d← e; }, d) attacks Arg3.

Furthermore, suppose that the agents cannot build any
other arguments in the dialogue. As a result, Arg4 is not
accepted by any of the agents, since the condition e was not
complemented. Because there are no other attacks against
Arg3 and it is non-conditional, Arg3 gets accepted and dis-
qualifies Arg2. Since the only attack to Arg1 was defeated, it
gets accepted and so does M0. Please note that an argument
being accepted means every agent accepts it as in Definition
9. Also, note that {Arg1, Arg3} is a stable extension of the
argumentation framework involving only the arguments with
E = ∅ and the attack relation between them.

4. COOPERATIVE DIALOGUES
In this section, we investigate the acceptance of a goal or

argument by a group of agents as we consider how agents
deliberate individually and as a group. The satisfiability of
a goal is debated as the agents place arguments to support it
and others attack or rewrite them, possibly combining their
knowledge in a cooperative process of group deliberation.
We suppose the agents are willing to work their arguments
for the best interest of the group and are honest. We also
assume the agents have their knowledge bases built on the
top of a common ontology and that they share the same
language for communication.

The ultimate goal of the group is to build a group position
towards a matter of discussion (a subject). To achieve that,
the agents will take part in a dialogue, i.e., they will take
turns playing arguments. The dialogue evolves through a
succession of rounds in which every agent plays once, either
making a move or passing. An agent will only pass if it
evaluates an argument and accepts it or if it cannot play
arguments. Every time a new argument is added, accepted
or rejected by the group, the current matter of discussion is
updated. In the first case, the recently added argument will
be discussed next. If an argument is accepted or rejected,
the agents will backtrack the dialogue to the last undecided
matter, i.e., they will get back to further discuss the last
subject that is still eligible for acceptance after receiving an
attack. A single sequence of moves involving arguments in
a dialogue is called a line of thought and the dialogue is the
collection of lines of thought, which forms a tree with root
on the initial matter of discussion.

505

4.1 Lines of Thought

Definition 10. A dialogue move is a quintuple Mv =
(Arg,M,R, P,Agent) where Arg is an argument, M is the
matter of discussion at the time Mv is played, and R ∈
{att, sup} indicates how the move is related to M , i.e., if
it attacks (att) or supports (sup) M . Similarly, P ∈ {T, F}
is the position of the argument towards the initial matter of
discussion M0 being true (T) or false (F). If M0 is a goal,
P = T (resp. P = F) means the goal can (resp. cannot)
be satisfied. If M0 is an argument, P = T (resp. P = F)
means the argument should be accept (resp. rejected) by the
group. Finally, Agent is the author of the move.

The initial matter of discussion is represented by a dif-
ferent move Mv0 that might present a goal instead of an
argument. Either way, this move is not based in a matter of
discussion (M = NULL) and supports itself (R = sup). It
also suggests the initial matter of discussion is true (P = T),
and has no author (Agent = NULL). Other moves are al-
ways played by agents. These attributes of each move are
kept to assure consistent reasoning during the dialogue, as
well as properly backtracking the dialogues as necessary.

The following definition resembles the concepts of argu-
ment dialogues and argument dialogue trees from [1].

Definition 11. In a cooperative dialogue with k agents, a
line of thought on a matter M0 is a nonempty finite sequence
of moves Mvi = (Argi,Mi, Ri, Pi, Agenti), i ≥ 0 such that

1. Mv0 = (M0, NULL, sup, T,NULL).

2. If i > 0, Argi is an argument, Mi is a matter, Ri ∈
{att, sup}, Pi ∈ {T, F} and Agenti ∈ {Ag1, . . . , Agk};

3. For some agent Agl, if M0 is a goal, the first move
played is Mv1 = (Arg1,M0, sup, T,Agl), since Arg1
should justify it. Otherwise, if M0 is an argument,
Mv1 = (Arg1,M0, att, F,Agl) and Arg1 attacks M0;

4. Agenti+1 6= Agenti;

5. For any i 6= j, Argi is a different argument from Argj;

6. If Argi+1 attacks Argi, then Ri+1 = att and Pi+1 6=
Pi; If Argi+1 rewrites Argi, then Ri+1 = sup and
Pi+1 = Pi;

7. If two moves Mvi,Mvj have Pi = Pj, the arguments
used are consistent towards one another, i.e., there is
no pair L, neg(L) in Lit(Argi) ∪ Lit(Argj).

8. If Mvi,Mvj, j > i, are moves in the same line of
thought, then Argj is not attacked by Argi.

A cooperative dialogue tree is a finite tree with root in Mv0
and where each branch is a line of thought. In such a tree, if
two moves Mvj ,Mvk are played after the same Mvi in dif-
ferent lines of thought (a ramification), then Argj 6= Argk.

A cooperative dialogue is developed as different lines of
thought are explored by the agents. When an argument is
played, it starts the process undecided (neither accepted nor
rejected) as it might be attacked, so that argument becomes
the current matter of discussion. If no agents will rewrite
or attack the current matter, the line of thought reaches
its end and that last argument is evaluated. The agents

will then reconsider the previously played arguments in that
line of thought in reverse order (backtrack), evaluating or
further attacking/rewriting matters as possible. A dialogue
stops when the first argument in a line of thought (other
than M0) is accepted. In that case, the initial matter gets
satisfied (if it is a goal) or rejected (if it is an argument).
Alternatively, the dialogue ends if the current matter is M0,
but no moves can be made to develop new lines of thought.
In that case, the group can not satisfy the initial matter (if
it is a goal) or has to accept it (if it is an argument).

To avoid repeating parts of the dialogue and assure con-
sistent reasoning, the group keeps record of the sets of ar-
guments accepted (Acc) and rejected (Rej). These sets are
initially empty and are updated as arguments are evaluated
by the group. We use the symbol ⇐ to express updates.

When the group concludes the evaluation of an argument
Argi (played in the move Mvi):

• If Argi is accepted by the group, Acc⇐ Acc∪{Argi}.
The group backtracks the dialogue to the last move
Mvj = (Argj ,Mj , Rj , Pj , Agentj) with Pj 6= Pi in the
same line of thought and rejects Argj (see below). If no
such Mvj exists, the argument has the same position
as the initial matter, so it is a goal that gets satisfied
and the dialogue is finished.

• If Argi is rejected by the group, Rej ⇐ Rej ∪ {Argi}.
The group backtracks the dialogue to the previous
movement in the same line of thought and continues
the dialogue. If no such movement exists, then Argi is
the initial matter, so the dialogue ends.

The dialogue tree and the sets Acc,Rej are kept accessible
to all agents (as a blackboard). An agent will only play an
argument Argj if it can still be accepted by the group, i.e.,
no arguments in Acc attack Argj at the time it is played.

Proposition 1. Every line of thought is finite, and so is
the dialogue tree.

Proof. (sketch) Arguments cannot be repeated in the
same line of thought. Therefore, attacks and rewrites are
limited and a line of thought cannot be infinite since no
cycles appear. Also, the language of the agents is finite
and different lines of thought have to start with different
arguments, so the dialogue tree is also finite.

Please note that each line of thought and the sets Acc
and Rej grow monotonically, since new arguments are in-
troduced, but none is removed. In addition, our concept of
line of thought assures the existence a stable extension (pos-
sibly more than one) over the arguments in the dialogue, as
stated in Theorem 2. This is a consequence of our restric-
tions on what kinds of arguments can be played. Such re-
strictions also assure that, given a subject for discussion, the
agents exhibit consistent group reasoning over two opposite
positions and no argument is left undecided.

Proposition 2. The dialogue tree is developed as a depth-
first search for a set of arguments accepted by the group that
defines the group position towards the initial matter.

Proof. (sketch) The agents will always consider the last
argument played to produce moves in the dialogue, and an
argument is evaluated when no attacks to it can be played.
That way, a single line of thought is explored at a time and
possible ramifications are only considered while backtracking
the arguments in a line of thought.

506

4.2 Individual Deliberation
In a group of agents deliberating cooperatively, the par-

ties propose arguments and collectively study the possible
flaws these might have. In order to do so, agents will take
turns to play arguments as they reason over two opposing
positions: One that supports the initial matter (acceptance
of an argument or satisfaction of a goal) and another that is
against it. All agents should argue over both positions in an
attempt to better explore the combination of their knowl-
edge bases. In what follows, when we say that an agent
tries to build or searches for an argument, we mean an ar-
gument that can still be played, i.e, that is not defeated by
arguments previously accepted by the group.

In each turn of an agent, it will conceive available moves
to play in the current line of thought. To do that, the agent
considers the current matter of discussion M and deliberates
accordingly by attempting the following steps (in order):

• If M is a goal G:

1. build an argument in P to justify G.

2. build a conditional argument to justify G.

• If M is an argument Arg = (E,F,Hyp,G):

1. verify if there is an A ∈ Acc that disqualifies Arg;

2. accept Arg, i.e., verify if it is accepted;

3. build a constraint-based attack (Def. 8) to Arg;

4. build an argument in P to attack Arg;

5. build a conditional argument to attack Arg;

6. build an argument in P to rewrite Arg;

7. build a conditional argument to rewrite Arg;

In each case, if the agent succeeds in a step, it will play
the argument built (if this is the case) and finish its turn
without trying the others. If M is an argument Arg and the
agent accepts it, the agent will pass its turn without making
a move. In case an agent fails in all steps, it will also pass,
for it cannot make a move.

If the current matter of discussion is a goal, the agent
attempts to build an argument to justify it. If it is an ar-
gument Arg, but it is not consistent with an answer set of
P , the agent will try to attack it. In that case, the agent
will first attempt constraint-based attacks, since violating
an integrity constraint means the argument might be incon-
sistent with multiple answer sets. Next, the agent tries to
build an attack (non-conditional) in P , based on an answer
set. Finally, the agent appeals to explanations and condi-
tional arguments to disqualify the argument in question. If
the argument is conditional with E 6= ∅, the agent should
try to rewrite the argument. If no attacks can be played
and the argument has E = ∅, the agent has to accept it
(Definition 9), so it passes its turn (no moves available).

4.3 Dialogue Example
Our dialogue framework proposes a model for group de-

liberation that is fair as all agents have the same number of
chances to play arguments in the discussion. In this process,
agents cannot only state their individual arguments and de-
mands on each matter of discussion, but also combine their
knowledge to build collective arguments. These agents take
turns placing arguments and might get convinced by their

colleagues to accept opinions they would not if they were
on their own. Next, we show an example of dialogue with
two lines of thought. For an easier comprehension of the
example, we will only show the arguments involved in each
move. We will show the updates of Acc, Rej and the current
matter of discussion.

Example 9. Consider a group of three agents engage in a dis-
cussion on the matter M0 = a, b, not c. In the sequel, we will list
the arguments placed by the agents and write (round, turn) to
enumerate them.

(1, 1) Ag1 plays Arg1 = ({}, {c}, {a; b← a; },M0);

(1, 2) Ag2 attacks Arg1 with Arg2 = ({}, {}, {d; c← d; }, c);
(1, 3) Ag3 attacks Arg2 with Arg3 = ({}, {}, {a;¬d← a; },¬d);
(2, 1) Ag1 accepts Arg3 and passes;

(2, 2) Ag2 attacks Arg3 with Arg4 = ({e}, {}, {e; d← e; }, d);
(2, 3) Ag3 cannot attack or rewrite Arg4 (pass);

(3, 1) Ag1 cannot attack or rewrite Arg4 (pass). Rej ⇐ Rej ∪
{Arg4}, M ⇐ Arg3;

(3, 2) Ag2 attacks Arg3 with Arg5 = ({}, {}, {¬a← not a; },¬a);
(3, 3) Ag3 attacks Arg5 with Arg6 = ({}, {}, {a; }, a);
(4, 1) Ag1 accepts Arg6 and passes;

(4, 2) Ag2 cannot attack or rewrite Arg6 (pass). Acc ⇐ Acc ∪
{Arg6}, Rej ⇐ Rej ∪ {Arg5}, M ⇐ Arg3;

(4, 3) Ag3 accepts its own argument Arg3 (pass);

(5, 1) Ag1 accepts Arg3 and passes;

(5, 2) Ag2 cannot attack or rewrite Arg3 (pass). Acc ⇐ Acc ∪
{Arg3}, Rej ⇐ Rej ∪ {Arg2}, M ⇐ Arg1;

(5, 3) Ag3 accepts Arg1 (pass);

(6, 1) Ag1 accepts Arg1 (pass);

(6, 2) Ag2 accepts Arg1, for it cannot attack or rewrite it, and
passes its turn. Acc⇐ Acc ∪ {Arg1}.

As a result of the acceptance of Arg1, the initial matter M0 is
also accepted and the discussion is finished.

In each step of the dialogue, the current matter is updated
to the last argument placed (after a move) or left undecided
(after arguments get evaluated). An argument is evaluated
if a full round passes and the agents do not make any moves.
In Example 9, if Ag2 were able to attack Arg3 on step (5,2)
or Arg1 on step (6,2), the dialogue would continue on a
different line of thought. Please note that Ag2 cannot use
Arg5 to attack the arguments Arg3 and Arg1 in different
lines of thought because it has been rejected in step (4,2).

5. RELATED WORK
Argumentative Deliberation [13] involves the use of argu-

ments by agents to support self deliberation and also em-
ploys abductive reasoning. This approach introduces con-
ditional arguments that are played in a dialogue, but the
abductive hypotheses are not shared as such. In a cooper-
ative setting, however, it makes sense to share them with
other agents. In our work, a group of agents can share hy-
pothesis to combine their knowledge and produce interesting
arguments that they would possibly not be able to conceive
individually. Judgement Aggregation [4] allows agents in
a group to combine their individual judgements over a set
of arguments and collectively decide which ones to accept.
Unlike our work, this approach does not consider communi-
cation amongst the agents. Abductive reasoning and argu-
mentation have also been combined together in [2, 15]. In

507

both papers, the explanations and arguments are produced
by a single agent at a time and their knowledge is not com-
bined. In our work, agents share their hypothesis to com-
bine their knowledge and reach consensus over acceptable
arguments and a group position towards a matter of discus-
sion. In [9, 5, 3] agents can share hypotheses to produce
group explanations. In our proposal, agents will provide ar-
guments to support or attack each others hypotheses. Our
goal, however, is not to produce group explanations with
combined hypotheses, but for agents to point out missing
pieces of their arguments, which can be complemented or
criticized by others. The works in [6, 18] study collabora-
tions in distributed argumentation as agents form coalitions
to produce group arguments. They consider partial argu-
ments, which are partial derivations of arguments that need
complimentary knowledge. Althought unclaimed, the kind
of reasoning they introduce is clearly abductive. Our work
innovates as group arguments are built in a dialogue and
extensively discussed by the agents, so the conditional argu-
ments, which are much similar to partial arguments, might
also be attacked and are subject to rejection. Another im-
portant difference is that our agents are able to detect pos-
sible inconsistencies amongst their beliefs as we recur to ex-
tended abduction [16, 17].

6. CONCLUSION AND FUTURE WORKS
We presented an approach to cooperative dialogues in

groups of agents. In our framework, agents can play ar-
guments and attack the opinions of each other, but can also
complement them and build more elaborate ones. This inno-
vative feature allows agents to rewrite arguments and com-
bine their knowledge as they search for an unified group
opinion about some matter of discussion and their own ar-
guments. We have enabled such a cooperative behavior by
employing abductive reasoning and changing the way that
abduction-based conditional arguments are placed in a dia-
logue. This cooperative behavior can be also perceived as
group deliberation. Even though we only consider argu-
ments and goals as initial matters of discussion, a group can
deliberate about how to accomplish agent goals, evaluate
proposals in a negotiation, make group decisions, and so on,
giving our framework a number of different applications. In
our future works, we will explore these applications, their
particularities, and study what kinds of roles the individual
preferences of agents should play in the process.

7. ACKNOWLEDGEMENTS
Research partially supported by CAPES (PROCAD).

8. REFERENCES
[1] L. Amgoud, S. Parsons, and N. Maudet. Arguments,

dialogue, and negotiation. In W. Horn, editor, ECAI,
pages 338–342. IOS Press, 2000.

[2] F. Bex and H. Prakken. Investigating stories in a
formal dialogue game. In Proceeding of the Conference
on Computational Models of Argument (COMMA
2008), pages 73–84. IOS Press, 2008.

[3] G. Bourgne, K. Inoue, and N. Maudet. Abduction of
distributed theories through local interactions. In
H. Coelho, R. Studer, and M. Wooldridge, editors,
ECAI, volume 215 of Frontiers in Artif. Intell, pages
901–906. IOS Press, 2010.

[4] M. Caminada and G. Pigozzi. On judgment
aggregation in abstract argumentation. Autonomous
Agents and Multi-Agent Systems, 22(1):64–102, 2011.

[5] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and
P. Torroni. Cooperation and competition in alias: A
logic framework for agents that negotiate. Ann. Math.
Artif. Intell., 37(1-2):65–91, 2003.

[6] I. de Almeida Móra, J. J. Alferes, and M. Schroeder.
Argumentation and cooperation for distributed
extended logic programs. In Nonmonotonic Reasoning
Workshop, 1998.

[7] M. Denecker and A. C. Kakas. Abduction in logic
programming. In A. C. Kakas and F. Sadri, editors,
Computational Logic: Logic Programming and Beyond,
volume 2407 of LNCS, pages 402–436. Springer, 2002.

[8] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[9] M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An
abductive framework for information exchange in
multi-agent systems. In J. Dix and J. A. Leite, editors,
CLIMA, LNCS, vol. 3259, pages 34–52. Springer, 2004.

[10] M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New
Generation Comput., 9(3/4):365–386, 1991.

[11] K. Inoue and C. Sakama. Abductive framework for
nonmonotonic theory change. In Proc. 14th
International Joint Conference on Artificial
Intelligence - Volume 1, pages 204–210, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[12] A. C. Kakas, R. A. Kowalski, and F. Toni. The role of
abduction in logic programming. In D. Gabbay,
C. Hogger, and J. Robinson, editors, Handbook in
Artificial Intelligence and Logic Programming,
volume 5 of Datalogiske Skrifter, pages 235–324.
Roskilde University, 1998.

[13] A. C. Kakas and P. Moraitis. Argumentative agent
deliberation, roles and context. In J. Dix, J. A. Leite,
and K. Satoh, editors, CLIMA, Datalogiske Skrifter,
vol. 93, pages 35–48. Roskilde University, 2002.

[14] P. McBurney, D. Hitchcock, and S. Parsons. The
eightfold way of deliberation dialogue. Int. J. Intell.
Syst., 22(1):95–132, 2007.

[15] F. Sadri, F. Toni, and P. Torroni. Logic agents,
dialogues and negotiation: An abductive approach. In
In Proc. AISB’01 Convention. AISB, 2001.

[16] C. Sakama and K. Inoue. An abductive framework for
computing knowledge base updates. Theory Pract.
Log. Program., 3:671–715, November 2003.

[17] C. Sakama and K. Inoue. Negotiation by abduction
and relaxation. In Proc. 6th International Joint
Conference on Autonomous Agents and Multiagent
Systems, AAMAS’07, pages 242:1–242:8, New York,
NY, USA, 2007. ACM.

[18] M. Thimm, A. J. Garcia, G. Kern-Isberner, and G. R.
Simari. Using collaborations for distributed
argumentation with defeasible logic programming. In
M. Pagnucco and M. Thielscher, editors, NMR’08,
pages 179–188. University of New South Wales,
Technical Report No. UNSW-CSE-TR-0819,
September 2008.

508

Defeasible Argumentation for Multi-Agent Planning in
Ambient Intelligence Applications

Sergio Pajares Ferrando
Dpto. de Sistemas Informáticos y Computación

Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

spajares@dsic.upv.es

Eva Onaindia
Dpto. de Sistemas Informáticos y Computación

Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

onaindia@dsic.upv.es

ABSTRACT
This contribution presents a practical extension of a theoretical model
for multi-agent planning based upon DeLP, an argumentation-based
defeasible logic. Our framework, named DeLP-MAPOP, is imple-
mented on a platform for open multi-agent systems and has been
experimentally tested, among others, in applications of ambient in-
telligence in the field of health-care. DeLP-MAPOP is based on a
multi-agent partial order planning paradigm in which agents have
diverse abilities, use an argumentation-based defeasible reasoning
to support their own beliefs and refute the beliefs of the others ac-
cording to their knowledge during the plan search process. The re-
quirements of Ambient Intelligence (AmI) environments featured
by the imperfect nature of the context information and heterogene-
ity of the involved agents make defeasible argumentation be an
ideal approach to resolve potential conflicts caused by the contra-
dictory information coming from the ambient agents. Moreover,
the ability of AmI systems to build a course of action to achieve the
user’s needs is also a claiming capability in such systems. DeLP-
MAPOP shows to be an adequate approach to tackle AmI problems
as it gathers together in a single framework the ability of planning
while it allows agents to put forward arguments that support or ar-
gue upon the accuracy, unambiguity and reliability of the context-
aware information.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Defeasible Argumentation, Multi-Agent Planning, Ambient Intel-
ligence.

1. INTRODUCTION
Ambient Intelligence (AmI) integrates concepts ranging from

Ubiquitous Computing to Artificial Intelligence with the vision that
technology will become invisible, embedded in our natural sur-
roundings, present whenever we need it, and adaptive to users [1].

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In AmI environments, people are surrounded with networks of em-
bedded intelligent devices that can sense the available context infor-
mation, anticipate, and perhaps adapt to their needs. In this contri-
bution, we handle these requirements by modeling ambient agents
as entities which manage a portion of the AmI environment, i.e.
they are responsible for one or more devices. Due to the imper-
fect nature of the context and the heterogeneity of ambient agents,
whose different viewpoints lead them to infer different assumptions
about the user’s current situation, ambient agents, as distributed
autonomous software entities, are required to engage in interac-
tions, argue with one another, and make agreements, individually
or collectively, while responding to changing circumstances of the
ambient environment. For this reason, ambient agents are being
advocated as a next-generation model for engineering complex dis-
tributed systems such as AmI systems. The aim in AmI is to make
the interaction between users and the smart environment easy.

Defeasible is the opposite of irrefutable or indisputable. A de-
feasible piece of information is a non-demonstrative piece of in-
formation that is acknowledged to be able to fail or be corrected.
Defeasible reasoning is usually realized as a rule-based approach
for reasoning with incomplete and inconsistent information through
the use of rules that may be defeated by other rules. Defeasible
reasoning has been successfully used in AmI applications [2]. On
the other hand, Defeasible Argumentation, which has recently be-
come a very active research field in computer science [3], is a form
of defeasible reasoning that emphasizes the notion of argument. An
argument is a chain of reasoning that concludes one piece of infor-
mation (conclusion) on the basis of some other pieces of informa-
tion (premises). Thus, defeasible argumentation can be viewed as a
powerful tool for reasoning about inconsistent information through
a rational interaction of arguments for and against some conclusion
derived by an ambient agent. Defeasible argumentation has also
been successfully proved in AmI applications [4].

The defeasible logic programming formalism DeLP [5] is one
of the most popular approaches to build defeasible argumentation.
Our framework, DeLP-MAPOP, builds upon DeLP to implement
the defeasible argumentation mechanism. The key element of DeLP
are defeasible rules (Head −� Body), which are used to represent
a deductive relation between pieces of knowledge that could be
defeated once another piece of knowledge is considered. For in-
stance, a defeasible rule like emergency −� patient-fever denotes
that an ambient agent believes that if the monitoring system re-
turns the patient has fever then there are provable reasons to de-
clare an emergency. The defeasible rule ∼emergency −� {normal-
pulse, conscious, correct-breathing} provides reasons to believe
the contrary, in whose case we say that the first piece of infor-
mation is acknowledged to fail in case {normal-pulse, conscious,
correct-breathing} hold in the context. However, assuming that

509

another ambient agent knows that the patient is vomiting blood,
i.e. {bloody-vomit} holds in the context, then it might derive the
patient has not a normal pulse by following the defeasible rules
{∼normal-pulse−� internal-bleeding; internal-bleeding−� bloody-
vomit}, which represents an attack to the defeasible rule whose con-
clusion is∼emergency. Thus, arguments (combinations of defeasi-
ble rules and facts) for conflicting pieces of information are built,
and then compared to decide which one prevails.

Planning is a desired ability in AmI systems to achieve a goal-
oriented behavior, i.e. to decide the course of action to meet the
needs of the specific application, for instance, stabilizing a patient
in a home-care system. Planning has been used in some AmI ap-
plications for monitoring and responding to the needs of a diabetic
patient [6]. Particularly, the work in [6] presents a centralized plan-
ner that manages distributed capabilities as it assumes that some
agents do not have planning capabilities. In this case, an agent
is implemented as a device, which prevents the agent from taking
responsibilities in building the plan due to its limitations in pro-
cessing and communication; for example, a cell phone could not
be able to autonomously plan to call a doctor given that other de-
vices detected that a user in the environment is ill [6]. However,
in our contribution an ambient agent is executed on an independent
host and can encompass several devices. This increases the com-
munication capacity as well as autonomy and endow agents with
the necessary abilities to pose a goal and build a plan for this goal.
This approach allows us to address many real applications where
the capabilities to perceive the context and perform the actions are
distributed across agents. Multi-Agent Planning (MAP) applied
to an AmI environment is intended as the ability of a team of am-
bient agents to build collaboratively a plan of actions that, when
performed in the AmI context, meets the needs and goals of the
application.

Partial Order Planning (POP) is a suitable planning approach
to address the requirements derived from a distributed planning
thanks to the application of a non-sequential behaviour and the least
commitment principle [7]. This is evidenced by the fact that most
existing architectures for integrating planning with execution, in-
formation gathering and scheduling are based on partial order plan-
ners. In [8], authors argue that POP-based frameworks offer a more
promising approach for handling domains with durative actions and
temporal and resource constraints as compared to other planning
approaches. In fact, most of the known implementations of plan-
ning systems capable of handling temporal and durative constraints
(e.g. NASA’s RAX [9]) are based on the POP paradigm. Even for
simple planning tasks, partial order planners offer a higher degree
of execution flexibility. For these reasons, this work is based on
Multi-Agent Partial Order Planning (MAPOP).

A extension of POP with DeLP-style argumentation, denoted
as DeLP-POP, was introduced in [10], where both actions and ar-
guments may be used to enforce some goal, if their conditions (are
known to) apply and arguments are not defeated by other arguments
applying. Unlike actions, arguments are not only introduced to in-
tentionally support some step of a plan, but they are also presented
to defeat or defend other supporting arguments in the plan. When
actions and arguments are combined in a partial order plan, new
types of interferences or threats appear [10] which need to be iden-
tified and resolved to obtain valid plans. Finally, the work in [11,
12, 13] proposes an extension of the DeLP-POP to a multi-agent
environment. Specifically, it proposes a dialogue for argumentative
plan search, by which agents exchange plan proposals and argu-
ments for or against such proposals. To the best of our knowledge,
these theoretical works have neither been implemented nor tested
on real-world domains such as AmI applications.

This contribution presents DeLP-MAPOP, a system that com-
bines, implements and tests features like multi-agent defeasible ar-
gumentation and multi-agent planning in AmI applications. DeLP-
MAPOP develops and implements an extended and refined version
of the framework presented in [12]; DeLP-MAPOP is applied and
experimentally tested in an AmI environment, it extends the agents’
knowledge bases and the dialogues during the plan search and it of-
fers a new classification of planning interferences. The remainder
of this paper is divided as follows. First, we introduce the basic
elements of the system; then we present the MAP protocol applied
in an AmI scenario to deal with a person suffering from a heart dis-
ease. Next, the experiments carried out to validate the present work
are described and analyzed. Finally, we conclude and present some
directions for future work.

2. COMPONENTS OF THE SYSTEM
In this section, we provide definitions for the notions of ambient

agent, context information, planning task, argument versus action
and plan, that will be later used for the definition of the DeLP-
MAPOP protocol.

2.1 Ambient Agents
In DeLP-MAPOP, ambient agents act as planning agents with

different beliefs, capabilities and preferences. Thus, we assume
the capabilities to perceive the context, perform actions and derive
new conclusions are distributed across ambient agents. Agents are
managed and supervised by the Agent Management System (AMS)
that is responsible for the following tasks: i) Exercising supervisory
control over access to the multi-agent platform; it is responsible
for authentication of resident ambient agents and control of reg-
istrations. ii) Discovering new user’s needs generated directly by
the user or indirectly by a smart device, which provides the input
to a DeLP-MAPOP process in terms of goals to be reached. iii)
When ii) occurs, the AMS agent gathers the ambient agents who
will participate in the planning process and will return the action
plan to satisfy the user’s needs. For instance, a device that moni-
tors the patient’s heart’s rate may detect the presence of arrhythmias
by means of an electrocardiogram, a symptom that might entail a
heart attack. In this case, the monitoring system generates the goal
patient-to-be-treated, and communicates it to the AMS agent.

The knowledge of an ambient agent mainly comprises context
information encoded as defeasible rules and initial facts, and con-
text capabilities represented as planning actions.

2.2 Context information
The representation scheme used by DeLP-MAPOP to model

components of the AmI environment is based on a state-variable
representation, where variables map to a finite domain of values
which represent the problem objects. A state-variable representa-
tion is equivalent to a classical planning representation in expres-
sive power and it is also useful in non-classical planning problems
as a way to handle numbers, functions and time. In this paper,
we will restrict our attention to only non-numeric variables. Since
actions change the state of the world and defeasible rules make as-
sumptions about the state of the world, actions and defeasible rules
are most naturally modeled as elements that change the values of
the state variables. The variable-value pair 〈vi, vli〉 denotes the
value vli is assigned to the variable vi. For instance, the variable-
value pair 〈 at-amb, pH 〉 indicates that the ambulance amb is lo-
cated at the patient’s home pH , that is, the value of the variable
denoting the position of the ambulance is the patient’s home.

In what follows, we define the set of elements used to represent
the agent’s context information. (i) the set of objects O that model

510

the elements of the planning domain over which the actions and
defeasible rules can act. (ii) the set of state variables V that are
used to model the states of the world: each state variable vi ∈ V is
mapped to a finite domain of mutually exclusive valuesDvi , where
∀vi ∈ V ,Dvi ⊆ O. (iii) the initial state of the problem Ψ, which is
a consistent set of variable-value pairs; a variable with no assigned
value in the initial state is assumed to have an unknown value. (iv)
the set of defeasible rules ∆, where each rule δ follows the form
〈head(δ)−�body(δ)〉; if the set of variable-value pairs in body(δ)
is warranted, i.e. if variables have the specified values in the pair,
then δ is applicable and for each 〈vi, vli〉 that appears in the head
of the rule, vi is assigned the value vli. (v) A is the set of planning
actions α = 〈P(α),X(α)〉, where P(α) is a set of preconditions
encoded as variable-value pairs that must be satisfied in order to
apply the effects in X(α), also encoded as 〈vi, vli〉.

2.3 Planning task
Each ambient agent x ∈ {Ag1 . . .Agn} is initially endowed

with a planning task Mx = (Ox, Vx,Ψx,∆x, Ax, Fx, G) where:

1. Ox is the set of objects known by the agent x.
2. Vx is the set of variables managed by agent x to represent the

agent’s knowledge about the state of the world.
3. Ψx = {〈vi, vli〉 | vi ∈ Vx; vli ∈ Dvi} represents the partial

view of the initial world state of agent x, i.e. the informa-
tion that agent x knows about the initial state. We assume⋃
x∈{Ag1...Agn}Ψx is a consistent set.

4. ∆x is a set of defeasible rules known by the agent x.
5. Ax is a set of planning actions known by the agent x.
6. Fx represents a consistent set of the agent-specific prefer-

ences Fx ⊆ {(a, d) | (a ∈ Ax), d ∈ [0, 100]}, where
action a is preferred with the estimated interest degree d.

7. G is the set of global goals that represent the needs of a user
in an AmI environment. G is expressed as a set of pairs
variable-value thus indicating the value each variable is ex-
pected to assume in the final state. Unlike the rest of ele-
ments, G is known by all of the ambient agents.

2.4 Arguments versus Actions
As we saw in the Introduction section, and based on the frame-

work presented in [10], both actions and arguments may be used to
enforce some task goal in DeLP-MAPOP. As illustrated in Figure
1 (a), an argument A for 〈vi, vli〉 proposed by an ambient agent
Ag1, is denoted asAAg1 = ({concl(AAg1)}, {rules(AAg1)}), where
concl(AAg1) = 〈vi, vli〉 is the argument conclusion and rules(AAg1)
is a subset of defeasible rules such that rules(AAg1) ⊆ ∆x. AAg1

is consistent if there exists a defeasible derivation for 〈vi, vli〉 from
base(AAg1)∪rules(AAg1), where base(AAg1) is the argument base,
the set of <variable,value> that must be warranted in the agent’s
context information. The existence of an argument AAg1 does not
suffice to warrant its conclusion 〈vi, vli〉, this depends on the inter-
actions among arguments as we will see in Section 3.3. We seman-
tically distinguish between supporting arguments (also known as
argument steps) as the arguments specifically used to support some
goal of the plan, and attacking arguments (also known as de-
featers) which are only introduced to attack some argument step
previously introduced in the plan.

The difference between assigning a value to a variable by an ar-
gument or by an action is that in the case of a planning action the
value is indisputable because it reflects a modification stated in the
problem domain modelling; however, the confirmation of a value
assigned to a variable by an argument depends on the interaction
with other attacking arguments.

2.5 Plans
In POP, a partial order plan Π is a set of partially ordered actions

(denoted by the relation ≺) which actually encodes multiple linear
plans. More specifically, a plan Π is a tuple Π = (A(Π),AR(Π),
G(Π), OC(Π), CL(Π),SL(Π)), where A(Π) denotes the set of
action steps, AR(Π) represents the set of argument steps, G(Π)
is the task’s common goals (the user’s needs), OC(Π) is a set of
ordering constraints, and CL(Π) and SL(Π) represent the sets of
causal and support links, respectively. In POP, Ψ and G are en-
coded as dummy actions {αΨ ≺ αG} where αΨ is also refereed to
as the initial step of the plan and αG to as the final step of the plan,
with X(αΨ) = Ψ, P(αG) = G, and P(αΨ) = X(αG) = ∅.

Let 〈vi, vli〉 be an open goal in Figure 1(b), motivated by some
action step αG ∈ A(Π), i.e. 〈vi, vli〉 ∈ P(αG); let 〈vk, vlk〉
be another open goal, motivated by some argument step AAg1 , i.e.
〈vk, vlk〉 ∈ base(AAg1). Then, the goal 〈vi, vli〉 ∈ P(αG) must
be supported by an argument, argumentAAg1 in Figure 1(b), which
introduces a support link (AAg1 , 〈vi, vli〉, αG) ∈ SL(Π), where
SL(Π) ⊆ ∆ × G(Π) × A. In contrast, the goal 〈vk, vlk〉 must
be supported by an action, α1 in Figure 1(b), which introduces
a causal link (α1, 〈vk, vlk〉,AAg1) ∈ CL(Π), where CL(Π) ⊆
A×G(Π)×∆. Triangles in Figure 1(b) represent argument steps
(i.e. arguments that support preconditions of action steps), while
rectangles represent action steps (i.e. actions that support the basis
of an argument step). Therefore, in this approach, goals must al-
ways be initially derived by some argument step, and an argument
base must be satisfied by another action step (including the initial
step). This way, a typical causal link in POP is now replaced by a
causal link and a support link. Note this representation allows us to
implicitly address the qualification problem [14] as every precon-
dition of a planning action is now supported by an argument step
rather than directly by an action effect. This way, agents may attack
the fulfillment of such precondition if they believe that there ex-
ist other non-explicit conditions that prevent the supporting action
from having its intended effects. This new conception of mandato-
rily supporting preconditions through argument steps gives rise to
a new and unique notion of threat. Under this new perspective, the
concept of argument-argument threat in [10, 12] is now replaced
by a broader notion of argument-argument threat that covers all the
interferences that arise between the elements of a plan in which
the qualification problem is addressed through the use of argument
steps. Depending on where these argument-argument threats occur
in the plan, we will distinguish between threats (Section 3.2) and
attacks (Section 3.3).

Su
p

p
o

rt
 L

in
k

C
au

sa
l L

in
k

(b) (a)

Figure 1: (a) An argument AAg1 for 〈vi, vli〉 by using two
defeasible rules: δ0 = {〈vi, vli〉} −�{〈vj , vlj〉} and δ1 =
{〈vj , vlj〉} −�{〈vk, vlk〉}, such that vi 6= vj and vj 6= vk and
{vi, vj , vk} ⊆ Vx; (b) An example of a partial plan.

511

3. MULTI-AGENT PLANNING PROTOCOL
First, we outline the procedure followed by the DeLP-MAPOP

protocol that interleaves a planning stage, an argumentation stage
and a selection stage. Given a set of global goals, G, that ad-
dress the requirements of an AmI application, agents build their
own planning task Mx so they can differently contribute to the con-
struction of the joint solution plan. The starting point of the MAP
protocol is an empty initial plan Π0 and the output is the solution
plan. Once checked the plan Π is not a solution, the first step is to
select an open goal Φ ∈ G(Π) of the planning task for resolution
(choose1 step in Algorithm 1). Then it comes the planning stage
(PROPOSALS step in Algorithm 1) where agents put forward and
exchange different partial order plans that would potentially solve
Φ. Following, agents get involved in an argumentative dialogue
(EVALUATION step in Algorithm 1) in which they expose their
arguments for or against each of the proposals. This evaluation pro-
cess performs a warranty procedure to determine which proposals
do not receive attacks or, otherwise, the received attacks do not suc-
ceed. Subsequently, ambient agents reach an agreement as to which
about the next partial plan and they continue the search exploration
(SELECTION step in Algorithm 1). The process is repeated until
a solution plan is found.

Algorithm 1: Multi-agent planning protocol overview.
input : The initial plan Π0 := {αΨ ≺ αG}.
output: The solution plan Π.

Π := Π0

while Π <> null do
if G(Π) = ∅ then

return Π [It is a plan solution.]
else

choose Φ ∈ G(Π);
Ref(Π,Φ) := PROPOSALS(Π,Φ);
[Each plan Πr of the set Ref(Π,Φ) is a choice
(partial-order plan) extending Π.]
if Ref(Π,Φ) = ∅ then

[Backtracking process.]
else

EVALUATION(Ref(Π,Φ));
Π := SELECTION();

return fail; [Not exists plan.]

The state-variable representation used in DeLP-MAPOP is based
on the latest PDDL (Planning Domain Definition Language) ver-
sion, PDDL3.1 [15], which was introduced in the context of the
2008 International Planning Competition. Here, we extend the lan-
guage PDDL3.1 for supporting the specification of defeasible rules
and the ambient agent’s preferences. Moreover, our language allow
us to specify binary variables. A state variable vi is interpreted in
PDDL3.1 as a function that represents a characteristic shared by
some of the objects that define the problem. vi is a tuple that takes
the following form vi = (vNi p1 . . . pn), where vNi is the unique
variable’s name and p1 . . . pn are the objects as input parameters
of the function. For instance, let pos-t11 be a variable that indi-
cates the current position of the medical team t11; this variable is
encoded in PDDL3.1 through the function (pos t11), where ’pos’
is the function name and t11 is the function parameter. An as-
signment of a value vli to a variable vi in PDDL3.1 is denoted by
(assign vi vli); and the comparison operation is represented by
(= vi vli). We also allow to express multi-valued variables for
1The open goal Φ is selected as the most costly open goal according
to a reachability analysis of the variables.

ease of coding, denoted by (member vi vli). For simplicity, we
will use the notation <variable,value> in the explanations and use
the PDDL3.1 language only to show the encoding of the defeasible
rules and planning actions of the planning task. All of these encod-
ings will be shown in a framed box labeled with the caption name
Listing.

3.1 Overview of the Application Scenario
This section provides a brief overview of the AmI application

upon which the framework DeLP-MAPOP is applied. The purpose
is to motivate the interest of this type of applications as well as the
utilization of a defeasible planning model to carry out the necessary
operations to fulfill the user’s need at a specific time.

Nowadays, more and more patients are suffering heart diseases
which is the main cause of premature death. The monitoring of
people suffering heart failure is currently a challenge for AmI sys-
tems. The work in [6] presents a first approach to use an AmI
system with centralized planning capabilities for assisting patients
suffering diabetics problems. Here, we assume that the patient’s
home is equipped with appropriate technologies to create the AmI
environment. The patient is monitored with a system, in the form of
a bracelet, which collects the patient’s physical activity and wire-
lessly transmits it to a device responsible for monitoring patient’s
heart rate. When a need is detected by this device, e.g. an extremely
lower level of a patient’s physical activity which may end up in a
heart attack, the AmI environment executes DeLP-MAPOP for as-
sisting the patient until the health services arrive to the patient’s
home.

In this application, we have the following ambient agents: a com-
munication agent in charge of using telecommunication devices
such as a cell telephone to call the emergency services; the assis-
tant agent, who is responsible for controlling an automated external
defibrillator, an activity tracking device, a position tracking device,
etc. to interact with both the environment and the user; and the
transport agent, whose main function is to guide the ambulance/he-
licopter to follow the best path to reach the patient’s home. Agents
have different capabilities according to their role so they contribute
to the overall plan with different actions accordingly. However, we
assume that agents’ beliefs concern any aspect of the context infor-
mation and so agents can make assumptions on the current status
of the application regarding any type of information. That is, be-
liefs are not necessarily related to the planning capabilities of the
agent, they can refer to any aspect of the AmI environment. The
hospitals’ preferences are associated with the transport-agent spe-
cific preferences, while the patient’s preferences are related to the
specific preferences of the assistant agent. For space reasons, we
omit the specification of the planning task of each ambient agents.

3.2 Plan proposals process
At the PROPOSALS stage, agents generate their refinements

Ref(Π,Φ) to solve an open goal Φ in a partial plan Π, similarly
to a plan-space planning process that builds a POP tree, except
that each refinement or successor of Π may be now generated by a
different agent. Another distinguishing characteristic of the partial
order plans generated in DeLP-MAPOP is that they also contain
argument steps, as explained in section 2.5, to support action pre-
conditions; this argument structure formed in each partial plan will
be later used in the EVALUATION process. The PROPOSALS
stage finishes when all agents have made their plan proposals at
their turn and these are communicated to the rest of agents. Then,
agents update their set of actions with the information appearing in
the refinements proposed by the other agents.

Let’s suppose an ambient agent Ag1 who has transport capabili-

512

ties and knows there are three hospitals in the city {H1, H2, H3}.
Each hospital disposes of two ambulances from {a11, a12 . . ., a32}
(one equipped with an Advanced Life Support (ALS) equipment,
and the other equipped with a Basic Life Support (BLS) equip-
ment) and one emergency helicopter from {h1, . . . h3}. Moreover,
Ag1 knows there are always two emergency medical teams from
the set {t11, t12 . . ., t32} on call in each hospital: one handles the
ALS emergency equipment, and is formed by an ambulance driver,
a nurse and a physician; the other handles the BLS equipment and
is formed by an ambulance driver and a nursing assistant. Ag1 also
has the defeasible rule specified in Listing 1 and the planning ac-
tion shown in Listing 2, among others. Note that the new location
of the ambulance and the medical-team are generated through the
defeasible rule moved-medical-assistance, which is embedded in
an argument whose base must be supported by the effects of the
action moving-medical-assistance. This allows agents to intervene
during the argumentative dialogue in the EVALUATION stage to
defeasibly attack the intended effects of the planning action; that
is, in case agents have beliefs that make them conclude that the
action would not achieve its expected effects.

(:def-rule moved-medical-assistance
:parameters(?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team)
:head (and (assign (at ?a) ?a2)

(assign (pos ?m) ?a2))
:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2)))

Listing 1: The body of the defeasible rule matches the effects
of the action moving-medical-assistance to deal with the quali-
fication problem.

(:action moving-medical-assistance
:parameters (?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team ?t - support-type)
:effect (and (assign (moved-amb ?a ?a1) ?a2)

(assign (moved-team ?m ?a1) ?a2))
:precondition (and (member (link ?a1) ?a2)

(member (type ?t) ?m)
(member (contains ?t) ?a)
(= (at ?a) ?a1)
(= (pos ?m) ?a1)))

Listing 2: An action for moving an ambulance from a location
to other one.

Let pH be the patient’s home. If Ag1 is asked to solve the open
goal P(αG) = 〈 at-?a, pH 〉 (’?a’ is an ambulance) generated by
the AMS agent to assist the patient, Ag1 generates at least 6 re-
finement plans (3 hospitals * 2 ambulances) by using Listings 1
and 2 at the PROPOSALS stage. One of these proposed refine-
ment plan generated is Π

Ag1
r , such that OC(ΠAg1

r) = {αΨ ≺ α1;
α1 ≺ AAg1 ; AAg1 ≺ αG}, as shown graphically in Figure 1(b); in
this particular example:
• concl(AAg1) = {〈 pos-t11, pH 〉, 〈 at-a11, pH 〉} matches

P(αG).
• X(α1) = {〈 moved-amb-a11-H1, pH 〉, 〈 moved-team-t11-

H1, pH 〉} matches base(AAg1).
Therefore, argument AAg1 is indirectly deriving the effects of

the action α1. However, unlike non-argumentative MAP systems,
in DeLP-MAPOP the open goal 〈 at-?a, pH 〉 can also be derived
by means of an argument that an agent, say Ag2, puts forward to
indicate, that according to its knowledge, ambulance a31 is already
at the patient’s home. The base of this argument may be supported
with the information provided by an ambulance position tracking

device which allows Ag2 to infer that an ambulance is already lo-
cated at the patient’s home. As the rest of agents do not own this
information, they would claim for the inclusion of an action that
moves an ambulance to the indicated place. Therefore, unlike clas-
sical planning, the argumentation mechanism in DeLP-MAPOP
enables supporting an open goal with the context information of an
agent without having to necessarily include an action to satisfy such
goal, which results in less costly plans. The next stage would show
the procedure to guarantee that a goal is satisfactorily warranted by
an argument.

3.3 Plan evaluation process
At the EVALUATION stage, agents become engaged in a num-

ber of argumentative dialogues aimed at evaluating the guarantee
of a successful execution of a plan proposal, i.e the possibility that
the actions’ intended effects or the derived information, both repre-
sented as argument steps in the plan proposal under evaluation, are
not achieved as a result of AmI environment changes.

The input of this process is Ref(Π,Φ), the set of plans proposed
by the agents at the previous plan proposal stage. Since ambi-
ent agents may have different available context information (rep-
resented as a combination of facts and defeasible rules) depending
on their information sources, they may not agree on the evalua-
tion of a plan proposal at some point during the dialogue. The
EVALUATION stage generates as many argumentative dialogues
as argument steps are present in the proposal plan under evalua-
tion. An argumentative dialogue is an exchange of arguments for
or against the fulfillment of an argument step, represented as a Plan
Argument Dialogue (PAD) tree T AΠr , where Πr ∈ Ref(Π,Φ) is the
refinement plan to be evaluated andA ∈ AR(Πr) is the particular
argument step to be evaluated. We denote the nodes in a PAD tree
as tuples of the form (Πr ,A, Γ), where Γ is a set of attacking argu-
ments (whose bases are warranted in the plan Πr) that will finally
determine if argument A is warranted in plan Πr . Every node in a
PAD tree (except the root) represents a defeater of its parent, and
the leaves of the tree correspond to undefeated plans. The set of di-
rect successors nodes of a given node Πr , is denoted as succ(Πr).
More specifically:

1. The root of the tree is labeled with (Πr,A, ∅).
2. A plan node (Πr,A, {B}) ∈ succ(Πr) represents an attack

against the argument A in plan Πr through the inclusion of
an attacking argument, namely B. Consequently, each node
in succ(Πr) stands for a defeater of the root argumentA, i.e.
B is a defeater of A.

3. A plan node (Πr,A, {B, C}) ∈ succ(succ(Πr)) indicates
an attack to the argument child B of the parent node through
the inclusion of a new attacking argument, say C, so this new
node is a supporter of the root argument A.

Informally we might see a PAD tree for an argument step A as
generating a dialectical tree [5] for A. But in DeLP-MAPOP the
nodes in the PAD tree are contextualized within a plan. Every linear
path from the root to a leaf corresponds to one different acceptable
argumentation line. Circular argumentation (also known as falla-
cious argumentation) is avoided by applying both conditions from
[5]: no argument can be reintroduced in the same argumentation
line and argument concordance must be guaranteed.

Let Ag2 be an agent that has the defeasible rules detailed in
Listing 3, and {〈device-measure-the-traffic-H1-pH, high 〉, 〈 maps-
google-distance-H1-pH, long 〉} ⊆ ΨAg2 . When Ag1 sends the
PAD tree T AAg1

Πr (containing only the root node) to the rest of
agents, Ag2 puts forward an attacking argument BAg2 =({〈 pos-
t11, H1 〉}, {δ0; δ1; δ2}), inspired by Listing 3, where:

513

• δ0 =(and 〈 pos-t11, H1 〉 〈 at-a11, H1 〉) −� (and 〈 moved-
amb-a11-H1, pH 〉 〈 moved-team-t11-H1, pH 〉 〈 traffic-jam-
between-H1-pH, true 〉 〈 is-far-from-H1-pH, true 〉).
• δ1 =〈 traffic-jam-between-H1-pH, true 〉 −�〈 device-measure-

the-traffic-H1-pH, high 〉.
• δ2 =〈 is-far-from-H1-pH, true 〉 −� 〈 maps-google-distance-

H1-pH, long 〉.
which attacks AAg1 . Unlike agent Ag1, agent Ag2 knows that

traffic jam is expected according to a smart device from the AmI
system that monitors the traffic density between the hospital H1
and the patient’s home pH, and also knows that the distance be-
tween them provided by a web mapping service as Google Maps,
is rather large. Both informations may be a reason to believe that
an ambulance, initially located at the hospital H1 will not arrive to
pH in time for assisting the patient. Thus, Ag2 creates a new node
(Π

Ag1
r ,AAg1 , {BAg2}) ∈ succ(Π

Ag1
r) among others, and sends it

to rest of agents.

(:def-rule moved-medical-assistance-denied
:parameters(?a - ambulance
?a1 address-hospital ?a2 - address-patient-home
?m - medical-team)
:head (and (assign (at ?a) ?a1)

(assign (pos ?m) ?a1))
:body (and (= (moved-amb ?a ?a1) ?a2)

(= (moved-team ?m ?a1) ?a2)
(= (traffic-jam-between ?a1 ?a2) true)
(= (is-far-from ?a1 ?a2) true)))

(:def-rule traffic-jam
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (traffic-jam-between ?a1 ?a2) true)
:body (= (device-measure-the-traffic ?a1 ?a2) high))

(:def-rule distance
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (is-far-from ?a1 ?a2) true)
:body (= (maps-google-distance ?a1 ?a2) long))

Listing 3: Defeasible rules for representing situations in which
the ambulance may not arrive on time.

In the next round of the dialogue, (Π
Ag1
r ,AAg1 , {BAg2}) is re-

ceived by the ambient agent Ag3 who discovers a new attacking
argument CAg3 that defeats BAg2 , which is based on Listing 4.

(:def-rule carpool-lane
:parameters(?a1 address-hospital
?a2 - address-patient-home)
:head (assign (traffic-jam-between ?a1 ?a2) false)
:body (= (carpool-lane-between ?a1 ?a2) true))

Listing 4: The defeasible rule used for representing a carpool
lane which may prevent an ambulance from being stuck by a
traffic congestion situation.

Assuming that 〈 carpool-lane-between-H1-pH, true 〉 ∈ ΨAg3 ,
then CAg3 = ({〈 traffic-jam-between-H1-pH, false 〉},{〈 traffic-
jam-between-H1-pH, false 〉 −� 〈 carpool-lane-between-H1-pH, true
〉}). That is, Ag3 knows that there is a carpool lane (as an express
lane) between H1 and pH, which is a reason to believe that the
ambulance a11 can skip the traffic congestion on the way to reach
the patient’s home. Ag3 creates a new plan (Π

Ag1
r , AAg1 , {BAg2 ,

CAg3}) extending (Π
Ag1
r ,AAg1 , {BAg2}) with CAg3 , and sends it to

the rest of agents. The evaluation dialogue for T AAg1

Πr continues
until all defeaters are put forward in a round.

In order to check whether the argument of the root node is de-
feated or undefeated, the following procedure on the PAD tree is

applied: label with a U (for undefeated) each terminal plan in the
tree (i.e. each plan with no defeaters at all). Then, in a bottom-up
fashion, we label a node with: U if each of its successors is labeled
with a D; and D (for defeated) otherwise.

A plan in Ref(Π,Φ) is labeled as an undefeated refinement
plan if all the root plans of its PAD trees are labeled as unde-
feated. Otherwise the plan is provisionally labeled as a defeated
refinement plan in the POP tree. Undefeated plans are obviously
preferred over defeated plans as they represent a plan with no ex-
pectation failures according to the ambient agents. Nevertheless,
defeated plans are maintained in the POP tree as their arguments
may become later undefeated as the problem evolves and informa-
tion changes. Finally, each ambient agent updates its initial facts
and defeasible rules with the facts and defeasible rules from the
exchanged arguments’ bases.

3.4 Plan selection process
At the SELECTION stage, the aim is to select the next plan Π to

be refined and continue with the plan-space planning process of the
PROPOSALS stage, unless Π is already a solution in which case
the DeLP-MAPOP protocol stops.

For selecting a plan, agents apply three criteria in order of pri-
ority over the set of evaluated plans from the previous stage. The
objective is to select a plan considering a compromise between the
desire to minimize the computational overhead and that of maxi-
mizing the quality of the solution plan. The three criteria are: first,
the system applies a warranty procedure to discard the plans eval-
uated as defeated in the evaluation stage. Second, a heuristic func-
tion is applied over the undefeated plans resulting from the above
filtering. We use two of the most popular heuristics in planning:
SUM and MAX heuristics [16]. The SUM heuristic estimates the
cost of a plan as the sum of the cost of the pending open goals in
the plan whereas the MAX heuristic returns the value of the most
costly open goal as heuristic estimation. Plans whose heuristic es-
timation is below a certain threshold are discarded from consider-
ation. Finally, the last filtering over the remaining plans considers
the preference functions. We have implemented two intersection
techniques aimed at selecting the most preferable plan by the am-
bient agents according to their preferences. The first mechanism
selects the plan whose actions are all among the preferences of ev-
ery agent with a degree of preference above a certain threshold. If
the application of this method returns an empty list then we com-
pute the number of preferred actions in each plan and we select the
plan with the largest proportion of preferred actions by the ambient
agents.

4. EXPERIMENTAL EVALUATION
The purpose of this section is to test the overall performance,

scalability and quality of DeLP-MAPOP versus a MAP system
with no argumentation (MAPOP) which has also been implemented
in the same agent platform, and discuss the benefits and limita-
tions of each system. We carried out several experiments consid-
ering three different levels of difficulty of the planning problem:
small (composed by 8 grounded actions and 50 grounded defea-
sible rules), medium (composed by 16 grounded actions and 100
grounded defeasible rules) and large (composed by 24 grounded ac-
tions and 150 grounded defeasible rules). We used teams of agents
of different size ranging from 1 (single-agent) to 5. We performed
several tests varying the number of agents of each type in the AmI
environment, namely transportation, communication and assistant
agents, and we took the median values over 20 repetitions for each
set of experiments with ’n’ agents, regardless the type of agent. We
used the MAX heuristic and the Intersection function.

514

DeLP-MAPOP and MAPOP are implemented on Magentix22,
a multi-agent platform based on Apache Qpid3, an open-source im-
plementation of Advanced Message Queuing Protocol for commu-
nication.

With regard to scalability and performance, Figures 2(a), 2(b)
and 2(c) show the average time spent on each stage of the DeLP-
MAPOP protocol, while Figure 2(d) shows the average total time
to find a solution plan, including parsing the problem file and ground-
ing the planning actions and defeasible rules. The horizontal axis
(the same for the rest of the figures) depicts the size of the team
of ambient agents, while the vertical axis displays the time in mil-
liseconds. As expected, the average time spent in DeLP-MAPOP
is always greater than the time spent in MAPOP due to the fol-
lowing reasons: i) in the PROPOSALS stage, the ambient agents
from DeLP-MAPOP do not only have to reason about which ac-
tions would achieve the selected open goal, but also need to reason
about which arguments would support it; ii) the EVALUATION
stage is not considered in MAPOP; and iii) the SELECTION stage
is replaced in MAPOP by a single heuristic function. It is also no-
ticeable that the more agents in a team, the more exchanged mes-
sages between them, causing each stage to take longer in DeLP-
MAPOP. Figure 2(e) illustrates precisely that, as the number of
agents increases, the number of exchanged messages is larger; Fig-
ure 2(f) shows that as the size of the team increases, the number of
dialogue rounds is lower because in this case more attacking argu-
ments tend to appear in a single round, thus decreasing the number
of rounds.

Figure 3 shows the evaluation of the quality of the obtained so-
lution plans. Figure 3(g) shows that the average number of action
steps in solution plans of DeLP-MAPOP is lower or equal than the
average number in solution plans of MAPOP. The reason is that
in MAPOP, an open goal that is not a threat can only be achieved
through an action step, while in DeLP-MAPOP the open goal can
also be supported by an argument step whose base is already guar-
anteed in the plan. In these cases, the cost of the DeLP-MAPOP
plans is smaller because fewer actions are required to support the
open goals, meaning that the agents’ beliefs support the fulfillment
of a goal without explicitly including an additional action in the
plan. The fact that argument steps are not used in MAPOP is pre-
cisely shown in Figure 3(h). On the other hand, we can see in
Figure 3(i) a comparison of the quality of plans generated with a
single-agent team versus plans generated by teams with more than
one agent. Obviously, in the first case, plans are sequential while
DeLP-MAPOP returns plans with parallel actions that can be si-
multaneously executed by different ambient agents.

We also carried out one more experiment: which action steps
in MAPOP solution plans are actually discarded during an argu-
mentative dialogue in DeLP-MAPOP plans. This latter aspect is
also a very relevant issue as we wanted to compare the plans re-
turned by both systems and see how many plans, and actions cor-
respondingly, of MAPOP were actually discarded by the agents in
DeLP-MAPOP during the argumentative dialogues. The results
of this experiment are shown in Figure 3(j). As can be seen, ac-
cording to the knowledge of the ambient agents, 0% of the solution
plans generated by DeLP-MAPOP comprise failing actions, i.e.
actions whose intended effects were acknowledged to fail at the
EVALUATION stage. Obviously, as long as agents acquire more
information from the context, argumentative dialogues will fit real-
ity better and, therefore, the guarantee of a successful solution plan
(a plan with no expected failures) would also be greater. Further-

2
http://www.gti-ia.upv.es/sma/tools/magentix2/index.php

3
http://qpid.apache.org/

more, this experiment allowed us to check the correctness of the
argumentative dialogues at the EVALUATION stage. However, in
the case of MAPOP, up to 50% of the plans had actions that were
discarded by the ambient agents in DeLP-MAPOP, that is, actions
that agents acknowledged that would not be successfully executed.

Examining the influence of preferences in DeLP-MAPOP, Fig-
ure 3(k) shows that the average satisfaction of each team with the
solution plans decreases as the size of the team increases. We cal-
culated the satisfaction of an individual agent on a solution plan
by averaging its preferences in the action steps of the plan, while
the team satisfaction is calculated as the average of the individual
satisfactions. Figure 3(l) shows that the difference of satisfaction
between agents tends to increase as the size of the teams also in-
creases. It is desirable that the difference is as small as possible for
that all agents are equally satisfied.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the specification, implementation and an ex-

haustive experimentation of DeLP-MAPOP, an argumentation-based
defeasible planning framework, on AmI applications. Our most rel-
evant contribution is a fully implemented MAP framework that has
been extensively tested in AmI environments. DeLP-MAPOP re-
alizes three independent but cooperative processes to propose, criti-
cize, defend and select alternative plan proposals. The results show
two advantages of DeLP-MAPOP over a MAP process with no
argumentation: (i) since each plan step of a plan proposal is collab-
oratively argued, DeLP-MAPOP returns plans whose actions are
not likely to fail at execution time according to the information and
beliefs of the ambient agents; and (ii) since open goals can also
be supported by argument steps whose base is warranted with the
facts of the plan, the context information and defeasible reasoning
of agents provide a means to satisfy goals of the problem without
an explicit inclusion of a planning action; this avoids considering
unnecessary action steps thus reducing the total cost of the plan.

As future work, we intend to test the effectiveness and feasibility
of DeLP-MAPOP in a hospital pilot program, as well as an ex-
tension to temporal defeasible argumentation for MAP [17]. Cur-
rently, we are working on the development of a more elaborated
heuristic function that (i) analyzes the transitions between the val-
ues a state variable can take, and (ii) considers the experiences from
the plan evaluation process (case-based argumentation) to predict
the potential number of attacks that a plan can receive. We are
also interested in studying the influence of the trust on the sources
(devices) used by the ambient agents to acquire the context infor-
mation as well as how a trust level determines the conflict resolu-
tion between attacking arguments. Finally, a comparison with other
MAP approaches will be considered.

Acknowledgements
This work is mainly supported by the Spanish Ministry of Sci-
ence and Education under the FPU Grant reference AP2009-1896
awarded to Sergio Pajares Ferrando, and projects, TIN2011-27652-
C03-01, Consolider Ingenio 2010 CSD2007-00022, and PROME-
TEO/2008/051.

6. REFERENCES
[1] E. Aarts. Ambient intelligence. Adaptive Hypermedia and

Adaptive Web-Based Systems, Springer, pp. 548–568, 2004.
[2] A. Bikakis and G. Antoniou. Distributed defeasible

contextual reasoning in ambient computing. Ambient
Intelligence, Springer, pp. 308–325, 2008.

515

Figure 2: Performance measures.

Figure 3: Quality measures.

[3] H. Prakken and G. Vreeswijk. Logics for defeasible
argumentation. Handbook of philosophical logic, pp.
4:218–319, 2002.

[4] A. Bikakis and G. Antoniou. Defeasible contextual reasoning
with arguments in ambient intelligence. IEEE Transactions
on Knowledge and Data Engineering, pp. 1492–1506, 2010.

[5] A. García and G. Simari. Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic
Programming, pp. 4:95–138, 2004.

[6] F. Amigoni, N. Gatti, C. Pinciroli and M. Roveri. What
planner for ambient intelligence applications?. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, pp. 35(1):7–21, 2005.

[7] J.S. Penberthy and D.S. Weld. UCPOP: A Sound, Complete,
Partial Order Planner for ADL. In Proc. of KR, pp. 103–114,
1992.

[8] D.E. Smith, J. Frank and A.K. Jónsson. Bridging the gap
between planning and scheduling. The Knowledge
Engineering Review, pp. 15(1):47–83, 2000.

[9] A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in interplanetary space: Theory and
practice. In Proc. of ICAPS, pp. 177–186, 2000.

[10] D. García, A. García, and G. Simari. Defeasible reasoning
and partial order planning. In Proc. of the International

Conference on Foundations of information and knowledge
systems, FoIKS 2008, LNCS 4932, pp. 311–328, 2008.

[11] S. Pajares and E. Onaindía. Defeasible Planning through
Multi-Agent Argumentation. Modelling Machine Emotions
For Realizing Intelligence, Smart Innovation Systems and
Technologies Series, pp. 13:311–342, 2011.

[12] P. Pardo, S. Pajares, E. Onaindía, L. Godo and P. Dellunde.
Multiagent Argumentation for Cooperative Planning in
DeLP-POP. In Proc. of AAMAS, pp. 971–978, 2011.

[13] S. Pajares, E. Onaindía and A. Torreño. An Architecture for
Defeasible-Reasoning-Based Cooperative Distributed
Planning. In Proc. of CoopIS in conjunction with OTM, pp.
200–217, 2011.

[14] M.L. Ginsberg and D.E. Smith. Reasoning about action II:
The qualification problem. Artificial Intelligence, pp.
3:311–342, 1998.

[15] D.L. Kovacs. Complete BNF description of PDDL3.1.
Technical report, 2011.

[16] X.L. Nguyen, and S. Kambhampati. Reviving partial order
planning. In Proc. of IJCAI, pp. 17:459–466, 2001.

[17] S. Pajares and E. Onaindía. Temporal Defeasible
Argumentation in Multi-Agent Planning. In Proc. of IJCAI ,
pp 2834–2835, 2011.

516

Personalizing Communication about Trust

Andrew Koster
IIIA-CSIC,

Universitat Autònoma de
Barcelona

Spain
andrew@iiia.csic.es

Jordi Sabater-Mir
IIIA-CSIC

Spain
jsabater@iiia.csic.es

Marco Schorlemmer
IIIA-CSIC,

Universitat Autònoma de
Barcelona

Spain
marco@iiia.csic.es

ABSTRACT
Agents in open multi-agent systems must deal with the dif-
ficult problem of selecting interaction partners in the face of
uncertainty about their behaviour. This is especially prob-
lematic if they have to interact with an agent they have not
interacted with before. In this case they can turn to their
peers for information about this potential partner. How-
ever, in scenarios where agents may be evaluated according
to many different criteria for many different purposes, their
peers’ evaluations may be mismatched with regards to their
own expectations. In this paper we present a novel method,
using an argumentation framework, that allows agents to
discuss and adapt their trust model. This allows agents to
provide, and receive, personalized trust evaluations, better
suited to the agent in need, as is shown in a prototypical
experiment.

Categories and Subject Descriptors
Computing Methodologies [Artificial Intelligence]: Dis-
tributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Trust, reliability and reputation; Argumentation

1. INTRODUCTION
In any society of intentional agents, trust is an essential

tool for selecting interaction partners. Trust is a personal
and subjective evaluation of a target for the fulfillment of a
specific goal. However, to choose a partner based on trust,
an agent needs information about it. In any environment
where it does not have direct experiences with interaction
partners, it turns to external sources to aid in making this se-
lection. Reputation is one source of such information. Rep-
utation is what a group of individuals say about an agent,
regarding its behaviour. Computational models of reputa-
tion usually obtain this by aggregating reported evaluations
from a large number of individual agents. If the aggregation
is performed properly, this can be an effective estimate of
an agent’s trustworthiness, precisely because it is an aggre-
gation of a large number of reported evaluations.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1.1 Reputation and Recommendation
The drawback of reputation that we focus on in this article

is that, if an agent has specific requirements, reputation cal-
culated as an aggregation of opinions can be an inadequate
measure to decide whether or not a target is able to meet
these requirements. This is especially true in any domain
where there are many different requirements an agent may
have for any specific task. A good reputation for fulfilling
that task does not guarantee that the agent complies with a
single agent’s specific requirements, just that it is generally
able to comply with agents’ needs.

For tasks such as buying an item in an online market-
place these measures are generally good enough: the range
of requirements between agents does not vary much, and
a good reputation generally means an agent is good over
the entire range of requirements. However, the same cannot
be said when the range of requirements increases. When a
choice depends on many different criteria, collaborative fil-
tering mechanisms may offer a solution. These mechanisms
provide personalized recommendations by relying on large
numbers of agents and matching the requesting agent’s pro-
file to that of agents who have provided evaluations [17].
These recommendations are more tailored to an individual’s
needs than reputation, because the system only uses eval-
uations from agents similar to the requesting agent. Such
mechanisms, however, have their own drawbacks. The first
is that they require a large number of agents providing not
only evaluations, but also a profile (representing the context
in which they made the evaluation and the goal they were
trying to achieve).

As multi-agent systems mature and gain in popularity,
the domains in which they may be applied increase, and not
all of these have a large number of agents providing profiles
and evaluations. An approach that does not rely on a large
network is to use an agent’s own network of friends, in order
to give personalized recommendations. This is the approach
we adopt in this paper.

1.2 Personalized Trust Recommendations
We assume an agent has a computational trust model to

aid with partner selection. Ultimately, computational trust
models and recommender systems have a very similar aim.
Both computational trust models and recommender systems
aim to provide accurate evaluations of other agents in order
for the agent to select a good partner, in the given context,
to achieve its goal.

The fundamental difference is what agent the calculation
centers on. Recommender systems aim to tailor a personal-
ized recommendation to the requesting agent. Trust mod-

517

els, on the other hand, take only the calculating agent’s goals
and beliefs into account when calculating a trust evaluation.
Upon receiving a trust evaluation this needs to be taken into
account: it is the sender’s subjective and personal evaluation
and may, therefore, not be useful to the requesting agent.

In this paper we propose a novel approach to communicate
about trust by learning a lesson from recommender systems:
we propose to personalize trust evaluations to the requesting
agent’s requirements. Our proposal is two-pronged. Firstly,
agents requesting information may communicate the goal,
and corresponding criteria, for which they need a partner
to perform a task. The supplying agent can then use this
goal and criteria to tailor a trust evaluation to it. Secondly,
agents may attempt to persuade each other that their be-
liefs about the environment, and the corresponding criteria
in their trust model, are incorrect. By combining these tech-
niques agents can communicate about personalized trust, al-
lowing them to better estimate a potential partner’s perfor-
mance for fulfilling a specific goal, given the agent’s beliefs
about the environment.

2. RELATED WORK
Using other agents’ trust evaluations directly is not a new

idea. A long-standing problem with such communication
has been lying or colluding agents. In such cases an agent
intentionally communicates a wrong trust evaluation. A so-
lution is to filter out communication from such agents [19].
The underlying assumption is that lying is the only reason
other agents’ trust evaluations can be mismatched and thus,
by detecting agents whose evaluations do not match the own
evaluations, the problem can be solved. However, in an envi-
ronment in which agents may use many different criteria to
evaluate each other, these methods will mark many agents
as liars who simply have a different opinion.

Koster et al. address this problem by translating others’
trust evaluations into the own frame of reference using a
machine learning algorithm [8]. However, as with any such
algorithm, this requires a large amount of data. In this case
the data consists of targets that both agents have evaluated,
and can thus be compared. This assumes both agents have
already interacted with many agents in the system. Thus it
does not work for agents who are new to the environment,
or environments with few agents.

Pinyol et al. [13] address the problem of communication in
a manner that does not require a large amount of data, by
using argumentation about trust. This allows agents to ex-
change information about their trust model, and thus each
agent can decide whether or not to accept a communicated
evaluation. While this does not assume agents are lying
if their trust evaluations do not match, it suffers a similar
drawback to the methods for detecting lies: it will discard a
large amount of information if there are many different cri-
teria on which to base an evaluation, because it may only ac-
cept or reject a communicated evaluation. We demonstrate
this drawback empirically in Section 6. There are other ap-
proaches that combine trust and argumentation [10, 6], but
these focus on different aspects of the area.

3. ADAPTRUST
Our method for enabling personalized communication a-

bout trust is based on three capabilities an agent must have:

1. An agent must be able to adapt its trust model in order
to personalize its evaluations to the other agent’s needs.

2. An agent must be capable of communicating its criteria

for evaluating trust, as well as the underlying beliefs and
goals leading to these criteria.

3. An agent must be willing and able to change its trust
model, if it is persuaded that its beliefs about the environ-
ment, and thus the criteria for calculating trust are wrong.

We assume that agents are willing to adapt their model if
they are convinced it is inaccurate. We use AdapTrust to en-
able this, and, additionally so agents can adapt their trust
model to another agent’s needs. AdapTrust is an exten-
sion of the BDI framework for intelligent agents [16]. As
the name implies, AdapTrust allows a trust model to be
adapted, according to an agent’s goals and beliefs. We pre-
sent the method in full detail in [9] and summarize it here.

Computational trust models are, fundamentally, methods
of aggregation: they combine and merge data from several
different sources into a single value, the trustworthiness of
a target. As argued in the introduction, the evaluation of a
target is dependent on the beliefs the evaluator has about the
world, as well as the goal it is trying to achieve. Luckily most
computational trust models come equipped with a way of
implementing this dependency: they have parameters that
can be used to adjust the behaviour of the trust model. The
aim of AdapTrust is not to present another trust model, but
to incorporate existing trust models into an intelligent agent.
This can be used to deal with the multifaceted aspects of
trust or, as we show in this article, adapt the trust model to
improve communication about trust.

In any computational trust model, there are parameters
that represent criteria for evaluating trustworthiness. For
instance, many trust models use a parameter to give less
importance to old information than new. This is useful if
old information can become outdated and thus new informa-
tion is more accurate than old. However, in a largely static
environment this is not the case. The value of this param-
eter should be adjusted to the dynamicity of the environ-
ment. In general, the parameters of the trust model should
be influenced by an agent’s changing criteria for evaluating
trustworthiness in a changing environment.

3.1 Priority System
The parameters of a trust model describe the importance

of the different criteria for evaluating trustworthiness. How-
ever, it is more useful to consider this the other way round:
the relative importance between the different criteria de-
fine a set of parameters for the trust model. These criteria
are directly under an intelligent agent’s control, and thus
an agent is able to adapt its trust model. AdapTrust de-
scribes the specific techniques necessary to do this. The
first of these is LPL, a language to describe the relative im-
portance of any two criteria that influence a parameter of
the trust model. We chose a subset of first-order logic with a
family of predicates to define this importance relation, also
called a priority ordering. For each parameter p of the trust
model, the binary predicates �p and =p are defined with
the expected properties of strict ordering and equality, re-
spectively. The terms of the language are a set of elements
representing the criteria that influence how the trust model
should work. A Priority System is defined as a satisfiable
theory in this language. For instance, consider an eCom-
merce environment. If an agent uses a weight w to calculate
its evaluation of a sale and it finds the price of an item to
be more important than its delivery time, it can have the
priority price �w delivery time in its Priority System.

518

3.2 Priority Rules
The second technique of AdapTrust is to create the link

between, on the one hand, an agent’s beliefs and goals and,
on the other hand, the priority between the different criteria
for evaluating trust. This link makes explicit the adaptive
process: a change in an agent’s beliefs or goals effects a
change in the priorities over the criteria, which changes the
parameters of the trust model. The connection between the
beliefs or goals and the priorities is made through what we
call priority rules. The priority rules are specified using an-
other first-order language, LRules, with predicates ;Belief

and ;Goal specifying how a set of beliefs, or a goal, respec-
tively, leads to a specific priority relation between two crite-
ria. By using these rules, we see that when the belief base
changes the priorities can change. Additionally this is how
the multifaceted aspect of trust is emphasized: the goal the
agent is trying to achieve influences the priority system and
thus the trust model. For instance, in the eCommerce exam-
ple above, our agent might need to buy a bicycle urgently.
It then has the goal buy urgent(bicycle). For this goal, de-
livery time is more important than the price, so it has the
priority rule buy urgent(bicycle) ;Goal (delivery time �w
price) and therewith adapts its trust model to the require-
ments of the goal.

We do not go into detail on how these priority rules come
to be. They can be programmed by a designer, or gener-
ated dynamically by a machine learning algorithm. How-
ever, what we are interested in here, is that they can also
be incorporated through communication with another agent.
We will return to this in Section 5, but first we describe the
basic argumentation framework that we extend to allow for
this communication. For a full description of the AdapTrust
mechanism we refer an interested reader to [9].

4. PINYOL’S ARGUMENTATION METHOD
In the previous section we addressed two of the three re-

quirements for agents to provide personal communications
about trust. The last is that they are able to communicate
about their criteria for evaluating trust. These criteria are
given by an agent’s beliefs and goals. What we need is thus
a communication language that allows agents to talk about
trust evaluations, the beliefs and goals these depend on, and
the causal relationship between the two. We present this
in Section 5, however Pinyol proposed a partial solution to
this problem: an information-seeking dialogue for commu-
nication about trust [14]. The main aim of this framework
is to allow the receiver of a communicated evaluation to de-
cide whether or not to accept it. The framework creates
an argument abstracting away from the computational pro-
cess of the trust model, thereby allowing agents to discover
what the original sources for evaluating a trust evaluation
are. However, when asked why an aggregation of sources
resulted in a specific evaluation, the model can only repeat
itself as this is modeled as a ground element of the argumen-
tation language. Our proposal extends the framework and
allows agents to answer such questions, but first we summa-
rize Pinyol’s argumentation framework.

4.1 Trust as an inferential process
Pinyol starts by modeling the trust model as an inference

relation between sentences in LRep, a first-order language
about trust and reputation [14]. This language is defined
by a taxonomy of terms used for describing the process of

computing trust. A trust model is considered as a compu-
tational process: given a finite set of inputs, such as beliefs
about direct experiences or reputation, it calculates a trust
evaluation for a target. The semantics of a computational
process can be given by the application of a set of inference
rules [7]. We define this as follows:

Definition 1 (Semantics of a trust model). We
say that a set of inference rules I is a specification of a trust
model if, given input ∆ and the resulting trust computation
δ, we have that ∆ ` δ, i.e., there exists a finite number of
applications of inference rules ι ∈ I by which we may infer
δ from ∆.
The inference rules themselves depend on the specifics of
the computational process and thus the actual trust model
being used, but for any computational trust model, such an
inference relation exists. For instance, a trust model might
have a rule:

img(T,X), rep(T, Y)

trust(T, X+Y
2

)

With img, rep and trust predicate symbols in LRep and
T,X and Y variables. For a specific target Jim, an a-
gent knows {img(Jim, 3), rep(Jim, 5)}. It can thus infer
trust(Jim, 4) using the rule above. For a full example of
representing a trust model in inference rules, we refer to [12].

4.2 Arguing about trust
Arguments are sentences in the LArg language. This lan-

guage is defined over another language LKR, that repre-
sents object-level knowledge . In Pinyol’s framework LKR =
LRep, but in Section 5 we will supplement this language in
order to extend the argumentation. A sentence in LArg is
a formula (Φ : α) with α ∈ LKR and Φ ⊆ LKR. This
definition is based on the framework for defeasible reason-
ing through argumentation, given by Chesñevar and Simari
[4]. This framework of argumentation provides a clear man-
ner for constructing arguments from an underlying language,
rather than just providing a way for resolving what set of
arguments fulfill certain criteria, which is the usual role of
an argumentation framework [5, 2]. An alternative could
be to model the trust model using a bipolar argumenta-
tion framework [1], however we choose to follow Pinyol’s
approach, which we explain here. Intuitively Φ is the defea-
sible knowledge required to deduce α. Defeasible knowledge
is the knowledge that is rationally compelling, but not de-
ductively valid. The meaning here, is that using the defea-
sible knowledge Φ and a number of deduction rules, we can
deduce α. The defeasible knowledge is introduced in a set of
elementary argumentative formulas. These are called basic
declarative units.

Definition 2 (Basic Declarative Units). A basic
declarative unit (bdu) is a formula ({α} : α) ∈ LArg. A
finite set of bdus is an argumentative theory.
Arguments are constructed using an argumentative theory
Γ and the inference relation `Arg, characterized by the de-
duction rules Intro-BDU, Intro-AND and Elim-IMP.

Definition 3 (Deduction rules of LArg).
Intro-BDU:

({α} : α)

Intro-AND:
(Φ1 : α1), . . . , (Φn : αn)

(
⋃n
i=1 Φi : α1 ∧ · · · ∧ αn)

Elim-IMP:
(Φ1 : α1 ∧ · · · ∧ αn → β), (Φ2 : α1 ∧ · · · ∧ αn)

(Φ1 ∪ Φ2 : β)

519

An argument (Φ : α) is valid on the basis of argumentative
theory Γ iff Γ `Arg (Φ : α). Because the deduction rules, and
thus `Arg, are the same for all agents, they can all agree on
the validity of such a deduction, however each agent builds
its own argumentative theory, using its own trust model. Let
I be the set of inference rules that specify an agent’s trust
model. Its bdus are generated from a set of LRep sentences
∆ as follows:

• For any ground element α in ∆, there is a correspond-
ing bdu ({α} : α) in LArg.
• For all α1, . . . , αn such that ∆ ` αk for all k ∈ [1, n],

if there exists an applicaton of an inference rule ι ∈ I,
such that α1,...,αn

β
, then there is a bdu ({α1∧· · ·∧αn →

β} : α1 ∧ · · · ∧ αn → β), i.e., there is a bdu for every
instantiated inference rule for the model specified by I.

LArg is a non-monotonic logic and implication is defined in
a similar manner to implication in logic programming. For
details on the semantics, we refer to Chesñevar and Simari’s
work [4]. Continuing the example from above, our agent
might have bdus:
({img(Jim, 3)} : img(Jim, 3)),
({rep(Jim, 5)} : rep(Jim, 5)) and
({img(Jim, 3) ∧ rep(Jim, 5)→ trust(Jim, 4)} :
img(Jim, 3) ∧ rep(Jim, 5)→ trust(Jim, 4)).

These bdus constitute an argumentative theory, from which
(Φ : trust(Jim, 4)) can be inferred, with Φ the union of
the defeasible knowledge of the argumentative theory. Sim-
ilarly, working backwards, an agent can build a valid argu-
ment supporting a trust evaluation it believes. Moreover,
it can communicate this argument. This forms the first
part of the information-seeking dialogue we need, in order
to enable personalized trust communications. The problem,
however, is that the trust model’s functioning is introduced
into the argumentation language in the form of bdus (see
above). This means agents cannot explain why their trust
model performs a specific calculation, because it is treated
as defeasible knowledge. In the next section we present our
extension to this framework, that allows agents to explain
the reasons for their trust model’s functioning.

5. PERSONALIZED TRUST
In this section we first present the extension of the argu-

mentation framework, allowing agents to fully express the
importance of criteria in their trust model. Subsequently
we provide a dialogue protocol, allowing two agents to com-
pare their trust evaluations, in order to discover where their
trust models diverge. We provide a range of options to allow
for the adaptation of their trust models, so that one agent
can compute a trust evaluation tailored to the personal re-
quirements of the other agent.

5.1 Extending the Argumentation Language
Pinyol’s argumentation framework does not allow us to

completely address the question of what criteria play a role
in computing a trust evaluation, let alone connect these to
underlying beliefs and goals. AdapTrust can answer this,
but does not provide a language in which to do so. We pro-
pose to extend the argumentation framework presented in
Section 4 with concepts from AdapTrust. In AdapTrust the
reason an agent performs this computation and not some
other one, is twofold: firstly the trust model follows an al-
gorithmic method for aggregating the input. Secondly, the
agent’s beliefs and goals fix the parameters of this algorithm.

We do not propose to explain the algorithmic processes in
the trust model, but the criteria, given by beliefs and goals,
that define the trust model’s parameters can be incorpo-
rated into the argumentative theory. For this, we need to
represent the dependency of the trust model on the beliefs
and goal of an agent in LArg. In LRep, the inference rules
I specify a trust model algorithm. However, in AdapTrust
this algorithm has parameters that depend on the agent’s
beliefs and goal. The inference rules should reflect this. Let
∆ ⊆ LRep and δ ∈ LRep, such that ∆ ` δ. From Definition
1 we know there is a proof applying a finite number of in-
ference rules ι ∈ I for deducing δ from ∆. However, this
deduction in AdapTrust depends on a set of the parameters,
which we denote Params. Therefore, the inference rules
must also depend on these parameters. For each ι ∈ I, we
have Paramsι ⊆ Params, the (possibly empty) subset of
parameters corresponding to the inference rule and the set
of parameters corresponding to a proof ∆ ` δ is simply the
union of all parameters of the inference rules used in the de-
duction. Let the beliefs Ψ and goal γ determine the values
for all these parameters. We denote this as ∆ `Ψ,γ δ, which
states that the trust model infers δ from ∆, given beliefs Ψ
and goal γ. Similarly we have ιΨ,γ ∈ IΨ,γ to denote a spe-
cific instantiation of the parameters Paramsι using beliefs
Ψ and goal γ.

This allows us to redefine the set of bdus and thus the
argumentative theory in such a way that the argumentation
supporting a trust evaluation can be followed all the way
down to the agent’s beliefs and goal. LKR must thus also
be extended to encompass the various languages in Adap-
Trust, namely LKR = LRep ∪ LPL ∪ LRules ∪ LBel ∪ LGoal,
where LPL is the language of priorities, LRules the language
describing Priority Rules, LBel the language of the agent’s
beliefs and LGoal that of the agent’s goals. Using this LKR,
the bdus for LArg are defined as follows:

Definition 4 (Basic Declarative Units for LArg).
Let δ ∈ LRep be an agent’s trust evaluation based on in-
ference rules IΨ,γ , such that ∆ `Ψ,γ δ with ∆ ⊆ LRep,
Ψ ⊆ LBel and γ ∈ LGoal. For each ι ∈ IΨ,γ , let Paramsι be
the corresponding sets of parameters. Let labels be a function
that, given a set of parameters, returns a set of constants in
LPL, the language of the priority system. Additionally let
Ξ ⊆ LRules be the agent’s set of trust priority rules and
Π ⊆ LPL be its priority system based on Ψ and γ, then:

1. For any sentence ψ ∈ Ψ, there is a corresponding bdu
({ψ} : ψ) in LArg.

2. The goal γ has a corresponding bdu ({γ} : γ) in LArg
3. For all priorities π ∈ Π and all the rules ξ ∈ Ξ the

following bdus are generated:

• if ξ has the form Φ ;Belief π and Φ ⊆ Ψ then
(
{

(
∧
ϕ∈Φ ϕ)→π} : (

∧
ϕ∈Φ ϕ)→π) is a bdu in LArg

• if ξ has the form γ ;Goal π then ({γ→π} : γ→π)
is a bdu in LArg

4. For all α1, . . . , αn such that ∆`Φ,γαk for all k ∈ [1,n],
if there exists an application of an inference rule ιΨ,γ ∈
IΨ,γ , such that α1,...,αn

β
and labels(ParamsιΨ,γ) = L

then ({(∧π∈ΠL
π)→(α1 ∧· · ·∧ αn → β)} : (

∧
π∈ΠL

π)→
(α1 ∧· · ·∧ αn → β)) is a bdu of LArg. With ΠL ⊆ Π
the set of priorities corresponding to labels L.

In items 1 and 2 the relevant elements of the agent’s rea-
soning are added to the argumentation language. In items 3

520

R1 E2 ∧ E3 → E1E2 img(Jim, 5) E3 rep(Jim, 1)

E1 trust(Jim, 5)

P1 img ! rep R2

P1→
(E2∧E3→E1)

T1 B1 ∧ B2 → P1B1
based on(rep,
hearsay)

B2
∀x : agent(x)
→ liar(x)

Figure 1: An example of an argument. The rectan-
gular nodes are bdus.

and 4 the implements for reasoning about trust are added:
in 3 the trust priority rules of AdapTrust, which link be-
liefs and goals to priorities, and in 4 the rules of the trust
model. The bdus added in 4 contain a double implication:
they state that if an agent has the priorities in ΠL then a
trust rule (which was a bdu in Pinyol’s argumentative the-
ory) holds. In practice what this accomplishes, is to allow
the argumentation to go a level deeper: agents can now ar-
gue about why a trust rule, representing an application of a
deduction rule in the trust model, holds. An argument for a
trust evaluation can be represented in a tree. We call this an
argumentation tree and give an example of one in Figure 1.
The argumentation tree can be followed by applying the de-
duction rules of LArg at each level. In order to be succinct we
have omitted the defeasible knowledge part of the sentences
in each node. Furthermore, we use shorthand in the tree by
referring to nodes, rather than repeating the content of a
node. For instance in node R1 we can expand E2∧E3 → E1

to its meaning: img(Jim, 5)∧ rep(Jim, 1)→ trust(Jim, 5).
An argumentation tree, such as this one, is used in a dialogue
to communicate personalized trust evaluations.

5.2 Dialogue Protocol for Personalizing Trust
The argumentation in the previous section can be used by

an individual agent to construe the reasons for having a trust
evaluation in a language that the other agents understand.
We now specify a protocol that allows agents to argue back
and forth in such a way that an agent is assured that, if the
dialogue completes successfully, it receives a personalized
recommendation at the end. The protocol is summarized in
the diagram of Figure 2.

The protocol defines a dialogue for two agents; a recom-
mendation-seeker and a recommendation-supplier. If, at any
point either of the agents does not want to continue convers-
ing, it may end the dialogue immediately. If this happens,
the seeker can use any information it has obtained during
the dialogue, but there is no guarantee the trust evaluations
communicated use the seeker’s criteria for calculating trust.
In the rest of this section, we describe the other options both
participants have at each point in the dialogue.

The dialogue starts with the seeker contacting the sup-
plier to request its recommendation of a partner to achieve
the seeker’s goal. The supplier provides a recommendation,
at which point the dialogue begins in earnest. The guid-
ing principle in the dialogue is that the seeker agent is try-
ing to decide whether the recommendation is acceptable or
what further information and adaptation is required for this.
Thus, in the diagram of Figure 2 the first decision is whether
or not to accept the argument. If the argument is not imme-
diately accepted, or rejected, the next step is to decide which
of the nodes of the argumentation tree is most likely to expe-
dite this decision. This choice is made in the “Select node in
argument” action of the diagram. In the description of the

Content
type

Accept

Select node in
argument

no
Trust

evaluation

Trust rule

Priority

Priority rule Add to
system

Offer
alternative

yes

Belief

Argue

Receive
argument

Successyes

Request
argumentation

Send alternative
priority with
argument

Restart

Failure

no

yes

Start persuasion
dialogue

yes

Try other
node

yes no

Reject Failureyes
no

no

no

Figure 2: Diagram of the dialogue protocol

protocol below, we also describe this selection process. After
selecting a node, the protocol determines what courses of ac-
tion are available to an agent, based on the type of the node.

The example we use to describe the dialogue is the same
as in the previous section, with the argumentation tree in
Figure 1. The supplier does not reveal the entire argumen-
tation tree at once. It only discloses information when the
seeker asks for it. At the start of the dialogue, the supplier
provides its trust evaluation E1 and the direct reasons for
having this evaluation (E2, E3 and R1).

The seeker receives the initial argument. In order to de-
cide whether it can accept the trust evaluation, it must de-
cide whether it can accept the premises of the argument.
This decision depends on the type of premises.

In LArg, a trust evaluation is based on a trust rule and a
number of inputs for the trust model. In the example these
are trust rule R1 and the trust evaluations E2 and E3. To
decide whether or not to accept a trust rule, the seeker can
compare it to the output of its own trust model, by using
this with the inputs in the argument. In the example, the
seeker can use trust evaluations E2 and E3 as inputs in its
own trust model: if the output is equal to evaluation E1 it
accepts that the underlying criteria for the supplier’s trust
model are similar to the criteria in its own trust model. If
not, it knows that the supplier’s trust model is different from
its own. The protocol gives a single course of action for trust
rules: ask the supplier’s reasons for it.

Another possibility is to ask about the trust evaluations
used as input for the supplier’s trust model. In the example
these are trust evaluations E2 and E3. For trust evaluations,
the protocol gives a single option: to ask the supplier for its
reasons, which, if supplied, would expand those nodes in the
argumentation tree. We omit these expansions, because the
resulting subtrees are similar to the argumentation for the
root, E1. Instead we focus on the expansion of rule R1. The
seeker asks for the argument explaining why the supplier
has trust rule R1. Upon receiving this argument the seeker
starts the decision process in Figure 2 again.

The reasons for a trust rule are clearly defined in LArg.
They are priorities over the criteria and a bdu that repre-

521

sents the dependency of the trust rule on these priorities.
In the example there is only one priority, P1, that influ-
ences the calculation of a trust evaluation from reputation
and image. The first step in the protocol is once again to
decide whether to accept or reject the argumentation, this
time supporting node R1. The seeker’s trust model provides
a way of deciding to reject the argument: if instantiating its
trust model with priority P1 does not allow it to compute
E1 from E2 and E3, then the agents’ underlying algorithmic
methods are too dissimilar for the supplier to be able to pro-
vide a personalized recommendation. Despite both agents
using the same priorities to instantiate the parameters of
their trust models, they compute different evaluations from
the same input. In this case the dialogue ends in failure: the
seeker should reject recommendations from the supplier and
try another agent. Just as in Pinyol’s framework, this is still
useful information: the agents know that they disagree and
that, in this situation, agreement is impossible.

If, in contrast, the seeker is able to emulate the supplier’s
trust calculation by using its priorities, then the only pos-
sible reason to not accept the trust rule outright is because
the seeker disagrees with at least one of the priorities in the
argumentation. The seeker can select such a priority and
choose what to do. The protocol offers two options. The
first is to ask why the supplier believes a priority holds. The
second is to propose using its own priority instead. Note
that the protocol allows an agent to explore both possibil-
ities: if at a later stage it reaches “Try other node” it can
try the alternative approach. The example continues using
the former option for the only priority available, P1, but the
latter approach is equally valid and is described in Section
5.2.2.

5.2.1 Reasoning about the supplier’s priorities
If the seeker asks why the supplier believes a priority

holds, the dialogue continues. In the example, the reasons
for the supplier having priority P1 are in the 4th level of the
argumentation tree of Figure 1.

The reasons for prioritizing one criterion over another, are
given by the priority rules of AdapTrust, which are adopted
as bdus in LArg. These priority rules are supported by ei-
ther beliefs or a goal. If the priority is supported by beliefs,
as in the example, the protocol defines four possibilities:

1. The seeker chooses not to add the priority rule to its
system. In this case its trust model will continue to be
based on different criteria from the supplier’s. It can try
to convince the supplier to use its own priorities instead.

2. The seeker agent tries to add the priority rule to its
system. This rule does not conflict with the rules it already
knows. In this case it can be seen as a gap in the agent’s
knowledge and it can choose to adopt this rule.

3. The seeker agent tries to add the priority rule to its sys-
tem and this rule does conflict with the rules it holds. In this
case the agents have found a context in which agreement is
impossible: the cognitive underpinnings of their trust mod-
els are different in this situation. The seeker agent should
reject recommendations from the supplier in this context.

4. The agents enter a separate persuasion dialogue in or-
der to convince each other about the validity of their beliefs.
This can be done using a state-of-the-art argumentation
framework for persuasion, such as the one proposed in [15].

Priority rules can also have goals in the antecedents, which
are treated similarly, although the option for a persuasion

dialogue is then not present. Conflicts between priority rules
are defined as follows:

Definition 5 (Conflict of Priority Rules). Let
U ⊆ LRules be a set of priority rules such that:

1. Π = {π′|(Φ′ ;beliefs π
′) ∈ U} is satisfiable in LPL

2. the set Φ, defined as the union of all Φ′, such that
(Φ′ ;Belief π

′) ∈ U , is satisfiable in LBel
Then a priority rule Ψ ;Belief π conflicts directly with U

iff Π ∪ {π} is unsatisfiable and Φ |= Ψ.
A set of priority rules Ξ ⊆ LRules conflicts with a rule ξ

if there is a set U ⊆ Ξ that conflicts directly with ξ.

Note that two rules do not conflict if their antecedents are
merely consistent, but only if one follows directly from the
other. This is because two consistent antecedents with dif-
ferent conclusions might be designed to trigger in different
situations, which is after all dependent on the beliefs and
goals an agent has. In the case of two rules with conflicting
conclusions triggering, AdapTrust contains a mechanism for
choosing a consistent set of priorities. Definition 5 only de-
fines conflicts for priority rules over beliefs. For goals it is
the same, but then it is simply that a single goal leads to a
conflicting set of priorities.

5.2.2 Reasoning about the seeker’s priorities
If, instead of continuing the argument about the supplier’s

priority, the seeker proposes an alternative priority, the roles
in the dialogue are switched. Now the supplier needs to dis-
cover why it should accept the seeker’s priority. The same
decision tree, in Figure 2, is used, but now the supplier per-
forms the choices. Note that there are always less options,
because using our LArg, the reason for having a priority
cannot be a trust evaluation, or a trust rule. Note that the
supplier has the possibility to accept a priority rule into its
knowledge base, but, unlike the seeker, can do this only tem-
porarily: it may do this with the sole purpose of calculating
a personalized trust evaluation for the seeker and its goal.

If at any point in the dialogue, either agent has adapted
its trust model, they should restart the dialogue in order to
verify that they have reached agreement and the supplier is
able to provide personalized recommendations.

6. EXPERIMENTS
In the previous section we described a new argumentation

framework to be able to communicate personalized trust
evaluations. We now compare this model of communica-
tion to Pinyol’s argumentation framework [14]. We have
implemented AdapTrust using Jason [3]. In order to make
a fair comparison, we keep everything as similar as possi-
ble to the experimental evaluation in [14], so we use the
trust model Repage [18] and run the experiment in a sim-
ulated eCommerce environment, in which we evaluate the
accuracy of buyers’ trust evaluations of the sellers by us-
ing three methods of communication: (1) accepting other
agents’ trust evaluations directly (no argumentation), (2) fil-
tering out mismatched communication with argumentation
(Pinyol’s argumentation) and (3) our model for communi-
cating personalized trust evaluations.

6.1 The Simulation Environment
The simulation environment initially runs 20 agents who

need to buy an item from any one of the 40 sellers in the
environment, as in Pinyol’s simulation. The sellers in this
environment offer products with a constant price, quality

522

and delivery time. These aspects of the product are used
to evaluate the trustworthiness of the seller. A buyer can
be “frugal”, in which case it gives more importance to the
quality of the product than to the price or delivery time. A
buyer can also be“stingy”, in which case it evaluates price as
being more important than delivery time or quality. Finally,
a buyer can be “impatient”, in which case the delivery time
is the most important. The buyer profiles are implemented
using AdapTrust’s priority rules, based on the beliefs of the
agent.

In addition to these basic profiles, the buyers can have
different goals. We have implemented the goal to buy a
bicycle, which is not associated with any priority rules, and
the goal to buy milk, which must be delivered quickly and
thus has an associated priority rule to prioritize delivery time
over both quality and price.

These two types of priority rules and the different profiles
and goals of the agents allow them to benefit from the full
dialogue of Section 5.2. Agents can attempt to persuade
each other to switch their basic profile. Because we rely
on pre-existing persuasion dialogues for this, we have sim-
ply hard-coded the outcome. A frugal agent can persuade a
stingy agent to change its profile (and thus become frugal as
well): a good quality item allows one to save money in the
longer term by not needing to replace it as soon. This serves
both agents’ underlying motivation of saving money. Fur-
thermore, the different goals, and associated priority rules
allow recommendation-suppliers to personalize their recom-
mendation to the seeker’s goal, as well as have the agents
exchange priority rules for their goal.

The simulation environment runs for 40 rounds to initial-
ize the environment. In each round the buyers buy an item
from a random seller. To ensure that no single buyer can ob-
tain full knowledge, by interacting with all the sellers, each
buyer can only interact with a configurable percentage of
the sellers. This percentage is thus a control on the amount
of knowledge each individual buyer can obtain about the set
of sellers. After buying, the buyers can communicate their
trust evaluations to exactly one other buyer. Depending on
the type of communication we wish to evaluate, they use
no argumentation, Pinyol’s argumentation, or personalized
trust evaluations to perform this communication.

After this initialization, we create a new agent, which is
the one to be evaluated. This agent knows nothing about the
environment. It is a frugal agent with a 50/50 chance to have
either goal, to buy a bicycle or milk, the same as the other
buyer agents in the system. However, this agent does not ex-
plore by interacting with random sellers, but rather needs to
discover the sellers’ trustworthiness through communication
with the established buyers. For this, it uses the configured
communication model, no argumentation, Pinyol’s model,
or ours.

6.2 Simulation Results
The results are plotted in Figure 3. The experiments were

run with an equal distribution of sellers offering one of either
good quality, price or delivery time. Similarly the buyers
were equally distributed over frugal, stingy and impatient
agents. The experiment agent was always frugal and had a
50/50 chance of having the goal to buy a bicycle or milk. On
the x-axis is plotted the percentage of sellers each buyer can
interact with directly during the initialization and is thus a
measure of the knowledge each agent can obtain about the

Figure 3: Experimental results. The x-axis repre-
sents the knowledge in the system and the y-axis
the quality of the evaluation.

environment. With 20 buyers, 5% is the minimum to have
all the sellers covered by at least one buyer. In this case,
to obtain information about all sellers, information from all
the buyers is needed. As the percentage of sellers each buyer
can interact with increases, it becomes easier to obtain an
accurate evaluation through communication, because the ex-
periment agent needs to communicate with less of the estab-
lished buyers to cover all the sellers. The y-axis plots the
average accuracy of the evaluation of all the sellers in the
system. After the experiment agent has finished its commu-
nication, it gives its evaluation of each of the seller agents.
This “estimate” is compared to what its evaluation would be
if it interacted with that seller. The difference of these two
evaluations is the error of the experiment agent and we take
the average of these errors as its score. To convert this to
a percentage we compare this error to the expected error, if
both the estimate and actual evaluations were chosen at ran-
dom. This is equal to the expected difference between two
standard uniform distributions, which is 1

3
. The y-axis thus

plots the percentage increase in accuracy over this expected
error of a random evaluation. Each point is the average of
100 experiments with the error bar being 1.96 standard de-
viations (representing an expected 95% of the population).

7. DISCUSSION
The experiment in the previous section is a proof-of-con-

cept demonstration of the presented method of personalized
trust communications. Despite being a prototypical imple-
mentation, the experiment already displays some interesting
features of this method. Our method displays the greatest
gains over Pinyol’s argumentation in scenarios where each
individual agent has little information about the entire sce-
nario. When the amount of information available to each
buyer is high, both Pinyol’s and our own method can obtain
near perfect information, because an agent can afford to dis-
card information from a greater number of agents. However,
when buyers do not have a lot of information, it is neces-
sary to obtain information from a larger number of agents
to accurately assess the trustworthiness of the sellers in the
system. When buyers can interact with 20% of the sellers,
our method is still slightly over 20% more accurate than
Pinyol’s method in the experiment scenario. We feel this
increase justifies the greater complexity and communication

523

of our method. Note that agents having had direct inter-
actions with 20% of the providers of a service is already on
the high side for many eCommerce, P2P or grid computing
scenarios. Despite this, we do not claim that the results
from this experiment carry over to other scenarios. We run
the experiment with a uniform distribution of both sellers’
qualities and buyers’ criteria in a simplified representation
of an eCommerce environment. Even in this simple environ-
ment, if we change the parameters, we see different results.
Specifically, the less likely it is that the experiment agent
finds agents who are like-minded, the more important it be-
comes for it to obtain personalized trust recommendations
from agents whose evaluation would otherwise need to be
discarded. More experimentation is needed in more diverse
scenarios to decide when personalized communication about
trust offers useful benefits to the agents. This experiment’s
purpose is to demonstrate the method’s functional viability
and sketch the general domain in which we expect agents
could use it.

7.1 Applications
Despite the experiment being based on a small and sim-

ulated scenario, it is able to show that even with just three
parameters for the agents and two different goals, a filtering
method will be left with too little information to work with,
necessitating the use of a method such as the one proposed
in this paper. This simple scenario serves as a proof of con-
cept for its application in more realistic scenarios, such as
the following:

P2P routing problems – one of the problems encoun-
tered in P2P networks is that of routing information. De-
ciding which peer can be trusted to transfer the required
information does not have a trivial answer, especially if
the network is used for diverse purposes, such as stream-
ing different types of media, for which different agents have
different requirements. Current trust and reputation mod-
els offer a possible solution [11], but only if they can get
enough information. Because the environment is generally
considered open and highly dynamic, exchanging informa-
tion is a necessity for trust models to work, and our method
provides this.

Automated eCommerce agents – the scenario we pre-
sented in the experimentation was a simplified eCommerce
environment, but as the scenario is extended with more
items and more properties of these items, the probability
of coinciding with another agent decreases correspondingly.
Therefore, despite there also being a far larger number of
agents in the system, those with similar backgrounds to
the own will still be sparse, necessitating a communication
model such as the one we describe. If the community of sell-
ers and buyers is relatively stable, then it might be possible
to use a translation approach, as described in [8], but if this
is not the case then our method provides a solution.

7.2 Future work
We recognize that the method we presented requires more

extensive experimental evaluation. We regard such an eval-
uation as future work and intend to use personalized trust
communication in different, realistic, scenarios and compare
it to contemporary recommender systems or the use of repu-
tation to give a more precise indication of what applications
will truly benefit from this model. The permitted options
in the dialogue can also be extended, for instance with per-

suasion about the correctness of priority rules. We intend
to provide a formal dialogue protocol and include such ex-
tensions in the near future.

Acknowledgements
This work is supported by the Generalitat de Catalunya
grant 2009-SGR-1434, the Agreement Technologies project
(CONSOLIDER CSD2007-0022, INGENIO 2010) and the
CBIT project (TIN2010-16306).

8. REFERENCES
[1] L. Amgoud and H. Prade. Using arguments for making and

explaining decisions. Artificial Intelligence,
173(3–4):413–436, 2009.

[2] T. J. M. Bench-Capon. Persuasion in practical argument
using value-based argumentation frameworks. JLC,
13(3):429–448, 2003.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming
MAS in AgentSpeak using Jason. Wiley, 2007.

[4] C. Chesñevar and G. Simari. Modelling inference in argu-
mentation through labelled deduction: Formalization and
logical properties. Logica Universalis, 1(1):93–124, 2007.

[5] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence,
7(2):321–358, 1995.

[6] E. Erriquez, W. van der Hoek, and M. Wooldridge. An
abstract framework for reasoning about trust (extended
abstract). In AAMAS’11, pages 1085–1086, 2011.

[7] N. D. Jones. Computability and Complexity: From a
Programming Perspective. MIT Press, 1997.

[8] A. Koster, J. Sabater-Mir, and M. Schorlemmer.
Inductively generated trust alignments based on shared
interactions (extended abstract). In AAMAS’10, pages
1571–1572, 2010.

[9] A. Koster, M. Schorlemmer, and J. Sabater-Mir. Opening
the black box of trust: Reasoning about trust models in a
BDI agent. JLC, In Press.

[10] S. Parsons, Y. Tang, E. Sklar, P. McBurney, and K. Cai.
Argumentation-basded reasoning in agents with varying
degrees of trust. In AAMAS’11, pages 879–886, 2011.

[11] A. Perreau de Pinninck, M. Schorlemmer, C. Sierra, and
S. Cranefield. A social network defence against white-
washing. In AAMAS’10, pages 1563–1564, 2010.

[12] I. Pinyol and J. Sabater-Mir. Towards the definition of an
argumentation framework using reputation information. In
Proc. of TRUST@AAMAS’09, pages 92–103, 2009.

[13] I. Pinyol and J. Sabater-Mir. An argumentation-based
protocol for social evaluations exchange. In ECAI’10,
Lisbon, Portugal, 2010.

[14] I. Pinyol Catadau. Milking the Reputation Cow:
Argumentation, Reasoning and Cognitive Agents,
volume 44 of Monografies de l’IIIA. CSIC, 2011.

[15] H. Prakken. Models of persuasion dialogue. In I. Rahwan
and G. Simari, editors, Argumentation in Artificial
Intelligence, chapter 14, pages 281–300. Springer, 2009.

[16] A. S. Rao and M. P. Georgeff. Modeling rational agents
within a BDI-architecture. In Proc. of KR’91, pages
473–484. Morgan Kaufmann, 1991.

[17] F. Ricci, R. Lior, B. Shapira, and P. B. Kantor.
Recommender Systems Handbook. Springer, 2010.

[18] J. Sabater-Mir, M. Paolucci, and R. Conte. Repage:
REPutation and imAGE among limited autonomous
partners. JASSS - Journal of Artificial Societies and Social
Simulation, 9(2), 2006.

[19] W. Teacy, J. Patel, N. Jennings, and M. Luck. TRAVOS:
Trust and reputation in the context of inaccurate
information sources. JAAMAS, 12(2):183–198, 2006.

524

From axiomatic to strategic models of bargaining with
logical beliefs and goals

Quoc Bao Vo and Minyi Li
Faculty of Information & Communication Technologies

Swinburne University of Technology, Australia
email: {bvo | myli}@swin.edu.au

ABSTRACT
In this paper, we introduce axiomatic and strategic models for bar-
gaining and investigate the link between the two. Bargaining situ-
ations are described in propositional logic while the agents’ pref-
erences over the outcomes are expressed as ordinal preferences.
Our main contribution is an axiomatic theory of bargaining. We
propose a bargaining solution based on the well-known egalitarian
social welfare for bargaining problems in which the agents’ logical
beliefs specify their bottom lines. We prove that the proposed so-
lution is uniquely identified by a set of axioms. We further present
a model of bargaining based on argumentation frameworks with
the view to develop a strategic model of bargaining using the con-
cept of minimal concession strategy in argument-based negotiation
frameworks.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems,
Intelligent Agents; J.4 [Computer Applications]: Social and Be-
havioral Sciences

General Terms
Design, Economics

Keywords
Bargaining and negotiation, Collective decision making, Judgment
aggregation and belief merging

1. INTRODUCTION
The formal theory of bargaining originated with John Nash’s

seminal papers [10, 11]. Nash’s 1950 paper establishes a frame-
work for bargaining analysis. In this paper, Nash initiated anax-
iomatic approachto bargaining, in which we abstract from the bar-
gaining process itself and specify a list of properties (axioms) that a
bargaining solution should satisfy. Nash then proposed four axioms
and proved that they uniquely characterise what is now known as
the Nash bargaining solution. In Nash’s 1953 paper, he then turned
to the question of how this solution might be obtained in bargain-
ing situations between self-interested agents; i.e., investigate the
bargaining problem using a strategic approach. In this paper, Nash
implicitly established a new research agenda, attempting to utilise

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the strategic (non-cooperative) approach to provide the foundations
for cooperative bargaining solution concepts.1 His approach was to
design a non-cooperative game, now known as the Nash demand
game, in which the only equilibrium outcome is exactly the one
suggested by Nash solution.

We’ll now turn our attention to multiagent systems in which
agents hold beliefs about the environment they are operating in and
have goals they want to achieve or maintain. In many multiagent
frameworks, the agents beliefs and goals are represented as logical
sentences. Moreover, the agents are required to interact, coordi-
nate and in most cases, negotiate to reach agreements about who
do what and who get what. Given that Nash’s theories and most lit-
erature on bargaining have been based exclusively on utility theory
(and possibly probability theory when uncertainty is present), it has
been a challenge to apply these game-theoretic models to develop
solutions for or analyse the agent negotiation problems when agents
hold logical beliefs and goals. Attempts have been made to convert
agents’ goals to a form of utility through a cost function (see e.g.,
[13]). However, questions remain on how agents’ logical beliefs
can be integrated into such a framework. Other researchers have
attempted to revive Nash’s approaches, particularly the axiomatic
approach, by studying the properties that a bargaining solution (of
a bargaining problem with logical goals) should satisfy (see e.g.,
[9, 8, 16, 15] and the reference therein). While [9] and [8] study
a number of logical properties for negotiation, it’s not clear what
bargaining solution they would suggest for self-interested bargain-
ers. In [16], an interesting bargaining solution is proposed together
with a study on a number of game-theoretic properties the proposed
solution satisfies. Zhang [15] introduces a framework that is per-
haps closest to what Nash intended with his axiomatic approach. In
this paper, Zhang proposes a solution, which he callssimultaneous
concession solution, and shows that it is exactly characterised by a
set of axioms. Zhang’s bargaining solution is, however, quite prob-
lematic because: (i) it’s syntax sensitive and, as a consequence,
prone to manipulation; and (ii) it actually removes the goals that
both agents agree on, the so-called “drowning effect”.

The present paper is an effort to reopen the Nash program, partic-
ularly for agent-based bargaining problems in which agents’ beliefs
and goals are expressed as logical sentences. Towards that end, we
introduce axiomatic and strategic models of bargaining. We pro-
pose a set of axioms that a bargaining solution should satisfy and
introduce a bargaining solution that is exactly characterised by the
proposed axioms. Our proposed bargaining solution is quite intu-
itive and based on the well-known egalitarian social welfare. Sub-
sequently, we also present a strategic model of bargaining based
on the minimal concession strategy and shown that its equilibrium

1This research agenda has been commonly referred to as the Nash
program (see [2]).

525

outcomes turns out to be the solution outcomes described by our
axiomatic theory.

The paper is organised as follows: we present some technical
definitions in Section 2. The axiomatic model of bargaining is in-
troduced in Section 3. In particular, we consider two cases: when
the agents’ bottom lines are fixed and based entirely on the agents’
initial beliefs; and when the agents’ bottom lines can be revised as
the negotiation progresses and the opponent can introduce convinc-
ing arguments to challenge the agent’s initial bottom line. A main
result is also introduced in Section 3. Section 4 presents a strategic
bargaining model which is based on the minimal concession strat-
egy with some substantial modification to allow the agents to hold
their position without having to make a concession through the use
of sufficiently convincing arguments. We follow the anonymous
reviewers’ recommendations by: (i) omitting a number of prelim-
inary results in Section 4, replacing them instead by a discussion
about our model and solution; and (ii) providing the proofs for all
of the theoretical results present in this paper. We agree with the
reviewers that the revised paper is more self-contained and thus,
significantly improved.

2. BACKGROUND

2.1 Logical Preliminaries
We consider a propositional languageL defined from a finite

(and non-empty) alphabetP together with the standard logical con-
nectives, including the Boolean constants⊤ and⊥. Furthermore,
we also assume thatPO ⊆ P is the non-empty alphabet for the
negotiation outcomes. That is, the propositional variables fromPO

constitute the issues to be settled by the negotiating agents. An
interpretationω is a total function fromP to {⊤, ⊥}. An interpre-
tationω is a model of a set of sentencesΦ ⊆ L if and only if every
sentence inΦ is satisfied byω. JΦK denotes the set of models of the
set ofL-sentencesΦ. Given a sentenceφ ∈ L, we’ll also writeJφK
instead ofJ{φ}K. An outcome (or alternative)o is a total function
from PO to {⊤, ⊥}. We denote byPO the set of all possible out-
comes. We will identify each outcomeo with the canonical term on
PO which haso as its unique model. For instance, ifPO = {p, q}
ando(p) = ⊤, o(q) = ⊥, theno is identified with the termp ∧ ¬q
(or pq̄, or {p, ¬q}).

2.2 Nash bargaining theory
Nash [10] established a framework to study bargaining. In his

framework, a set of bargainersN = {1, 2} tries to come to an
agreement over a set of possible alternativesA. If they fail to reach
an agreement, a disagreement eventD occurs. Each agenti ∈
N has a von Neumann - Morgenstern utility functionui : A ∪
{D} → R from which the set of all utility pairs that result from
some agreement,

S = {(u1(a), u2(a)) ∈ R2 : a ∈ A},

as well as the paird = (d1, d2), wheredi = ui(D) can be con-
structed.

Nash then defined the pair(S, d) to be a bargaining problem.
Nash subsequently defined the bargaining solution to be a function
f : B → R2 that specifies, for each bargaining problem(S, d), a
unique outcomef(S, d) ∈ S.

In the same paper, Nash also introduced an axiomatic theory of
bargaining. Rather than specifying an explicit model of the bar-
gaining procedure, the axiomatic approach aims to impose proper-
ties that one wants a bargaining solution to satisfy, and then look
for solutions with these properties. Nash proposed the following
four axioms:

A1. Invariance to equivalent utility representations.Let the bar-
gaining problem(S ′, d′) be obtained from(S, d) by the trans-
formationss′

i = αisi + βi and d′
i = αidi + βi, where

αi > 0, thenfi(S ′, d′) = αifi(S, d) + βi, for i = 1, 2.

A2. Symmetry. If the bargaining problem(S, d) is symmetric
(i.e., d1 = d2 and (s1, s2) ∈ S ⇔ (s2, s1) ∈ S), then
f1(S, d) = f2(S, d).

A3. Independence of irrelevant alternatives.If (S, d) and(S ′, d)
are bargaining problems such thatS ⊆ S ′ andf(S ′, d) ∈ S
thenf(S ′, d) = f(S, d).

A4. Pareto efficiency.If (S, d) is a bargaining problem withs, s′ ∈
S ands′

i > si for i = 1, 2, thenf(S, d) 6= s.

Another important contribution in Nash’s seminal paper is that,
he also tied the axiomatic theory of bargaining and his proposed
bargaining solution up nicely by proving that the proposed axioms
uniquely characterise the Nash bargaining solution.

3. A LOGICAL MODEL OF BARGAINING
Consider a finite setN = {1, 2} of two agents who try to come

to an agreement over the alternatives inO ⊆ PO. Each agenti has
a preference relation�i, which is assumed to be a total pre-order
(i.e., total, reflexive and transitive), defined over the set of alter-
nativesO. Each agenti also maintains a set of beliefsBi ⊆ L.
Essentially,Bi represents agenti’s beliefs about her available op-
tions outside of the negotiation or simply her reservation value.

REMARK : It’s important to note that the agents’ beliefs don’t en-
code their hard constraints. If an agent has a hard constraint that
can never be violated and that rules out an outcomeo ∈ PO then
o /∈ O. Rather, the agent’s beliefsBi encode her bottom line in the
bargaining, in the sense that, due to the requirement of individual
rationality, she will never agree on an outcome that is worse than
her bottom line.

We now define the bargaining problem to be a tupleBP = (O,
〈B1, �1〉, 〈B2, �2〉), whereO ⊆ PO is the set of outcomes and
Bi and �i are agenti’s beliefs and preference relation overO,
respectively. Following Nash [11] and other researchers in the lit-
erature of (cooperative) game-theoretic bargaining (see e.g., [12]),
we are also interested in abargaining solution, by which we mean
a functionf that specifies a unique outcome setf(BP) ∈ 2O for
every bargaining problemBP . The reason why we target an out-
come set as the solution of the bargaining problem instead of an
outcome inO will become clear later.

EXAMPLE 1. A vendor agent of a house (agent 1) is negotiat-
ing with a prospective buyer (agent 2) over the sale of the house.
The two issues they need to come to an agreement are: the price
of the house (i.e. whether the buyer should pay the vendor’s ask-
ing price), a proposition denoted byP , and the settlement (i.e.,
whether it should be an early settlement), denoted byE. Then
O = {PE, PĒ, P̄E, P̄ Ē} is the set of possible outcomes. In
this example, an outcome, saȳPĒ, indicates that the buyer would
pay a price lower than the vendor’s asking price such as the me-
dian house price of the area and the settlement will be according
to the standard settlement of three months after the date of pur-
chase. Assume further thatF denotes the proposition that the
vendor agent has an existing offer agreeing to pay him the ask-
ing price, andA denotes the proposition that the buyer can get a
similar property at a price lower than the asking price. Given:
B1 = {F, F ⇒ P, A ⇒ ¬P} andB2 = {F ⇒ P, A ⇒ ¬P},

526

andPE ≻1 PĒ ≻1 P̄E ≻1 P̄ Ē and P̄ Ē ≻2 PĒ ≻2 P̄E ≻2

PE, a bargaining problemBP = (O, 〈B1, �1〉, 〈B2, �2〉) can
be defined.

REMARK : Our bargaining model defined above is quite similar
to the ordinal bargaining model defined by Shubik [14]. In this
model, a bargaining situation (between two players) can be rep-
resented as a tuple(A, D, ≥1, ≥2), whereA is the set of possi-
ble agreements,D is the disagreement (i.e., the outcome when the
agents fail to reach an agreement), and≥1 and≥2 are the prefer-
ence orderings over the setA ∪ {D} of the agents1 and2, respec-
tively.2 In the ordinal bargaining model, a bargaining solutionF
maps from every bargaining situation(A, D, ≥1, ≥2) to an agree-
mentf(A, D, ≥1, ≥2) ∈ A (see e.g., [12] for more details).

In the following, we’ll explore the cases when the agents’ beliefs
define their bottom-lines (and thus, the disagreement position of the
agents), and also when the agents’ beliefs are uncertain and can be
revised (in relation to the opponents’ beliefs and position).

3.1 Bargaining with fixed bottom lines
When the agents’ beliefs are not revisable, they define the agents’

disagreement points. We can now discuss a reformulation of Nash’s
axioms for the logical bargaining model by associating agenti’s
disagreement point with his beliefs. Firstly, we will define the dis-
agreement point for a logical bargaining problem. Intuitively, the
notion of disagreement point (or threat point) has been used to en-
code a bargainer’s bargaining power. That is, the higher the utility
of the disagreement point to a bargainer, the more power she has as
she can walk away from the negotiation and obtain that high utility
outside of the negotiation. This matches with our designation of
the agent’s beliefs. It’s her beliefs that define what she thinks she
and her opponent can get outside of the negotiation, which subse-
quently defines her relative bargaining power and the negotiation
disagreement point.

DEFINITION 1. Let BP = (O, 〈B1, �1〉, 〈B2, �2〉) be a bar-
gaining problem, agenti’s disagreement pointis the outcomeDi ∈
O such that (i)Di is least preferred toi, and (ii) Di is consistent
with Bi. Then, agenti’s bargaining power is defined to be the
number of outcomes ruled out byDi, according to agenti’s prefer-
ence ordering:

Ui(Di) = #{o ∈ O : Di ≻i o}.

An outcomeo ∈ O is agreement-feasibleif o �i Di for i = 1, 2.

For bargaining with ordinal preference, it has been shown by
Osborne and Rubinstein [12] that a reformulation ofA1 (i.e., an
axiom expressing Invariance of Equivalent Preference Representa-
tions) would result in unattractive bargaining solutions.

In the rest of this paper, we’ll denote the agent other than agent
i by −i. Furthermore, for convenience of presentation, given two
outcomeso, o′ ∈ O, we’ll say thato′ � o if and only if o′ �i o for
i = 1, 2; similarly, o′ ≈ o if and only if o′ � o ando � o′.

Pareto Efficiencyaxiom can be formulated in our model as fol-
lows.

PE. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) is a bargaining problem
with o, o′ ∈ O ando′ � o ando′ ≻j o for somej ∈ {1, 2},
theno /∈ f(BP).

Note that in this paper, by Pareto-efficiency we mean the Strong
Pareto Efficiency, rather than the Weak Pareto Efficiency which
2The preference orderings are required to be total pre-orders. That
is, a complete transitive reflexive binary relation.

states that an outcome is only inefficient when there is some other
outcome that can improves forall agents.

Next, the axiom of Independence of Irrelevant Alternatives will
be formulated in our model as follows.

IIA. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) andBP ′ = (O′, 〈B1, �1

〉, 〈B2, �2〉) are bargaining problems withO ⊆ O′, and
f(BP ′) ⊆ O thenf(BP) = f(BP ′).

Finally, axiom Symmetry can be interpreted as imposing the
requirement of fairness on a bargaining solution. That is, when
the bargaining situation is symmetric for the two bargainers in the
sense that they have similar bargaining power and that there is no
possible agreement that can provide a particular payoff structure
to the two bargainers without another possible agreement that can
provide the opposite payoff structure, then the solution should give
the bargainers the same payoffs. With a discrete set of alternatives,
it can not be guaranteed to have an alternative that satisfies this
property.

EXAMPLE 2. Continue with our running example, consider the
following bargaining situation:BP = (O, 〈B1, �1〉, 〈B2, �2〉)
whereB1 = {E} andB2 = {E} (i.e., both bargainers insist in an
early settlement), andPE ≻1 P̄E ≻1 PĒ ≻1 P̄ Ē and P̄E ≻2

PE ≻2 P̄ Ē ≻2 PĒ. It’s easy to see that the two agents have
similar bargaining power in which they would both rule out the two
least preferred outcomes and it happens that, in this bargaining
situation, they share the same set of outcomes they are willing to
agree on, namely the set{PE, P̄E}. However, they have opposite
preferences over the outcomes in this set. Thus, neither outcome
would be an attractive solution in this bargaining situation. By
allowing this set of outcomes to be the solution in this situation,
we are open to any resolution, including Nash’s suggestion of non-
physical agreements such as the lotteries over these outcomes.

To ensure fairness, we will target outcomes that aim at maximis-
ing the payoffs for agents with the smallest gains (in utility). We de-
fine a cardinal gain of an outcomeo for an agenti to be the number
of outcomes betweeno and the disagreement pointDi. Formally,

DEFINITION 2. Let BP = (O, 〈B1, �1〉, 〈B2, �2〉) be a bar-
gaining problem and an agreement-feasible outcomeσ ∈ O, the
(cardinal)gain of outcomeσ for agenti is defined as follows:

Gi(σ) = #{o ∈ O : σ ≻i o & o �i Di}.

Basically, the axiom for fairness, to be presented in the follow-
ing, ensures that the difference between the bargainers’ gains would
be minimal. However, to avoid the bargainers to settle for fair but
suboptimal outcomes, we require only that fairness be subject to
the optimality of the outcome. We will introduce a concept to al-
low efficiency to be formulated in unanimity, namelyUnanimous
Efficiency(UE). Intuitively, if o′ can improve for both the worst-off
agent and the better-off agent in comparison too then o is con-
sidered to be UE-dominated byo′ and should not be selected as a
bargaining agreement. Formally,

DEFINITION 3. Let BP = (O, 〈B1, �1〉, 〈B2, �2〉) be a bar-
gaining problem with the agreement-feasible outcomeso, o′ ∈ O, o
is UE-dominated by o′ if mini=1,2(Gi(o

′)) ≥ mini=1,2(Gi(o))
and maxi=1,2(Gi(o

′)) ≥ maxi=1,2(Gi(o)), and at least one of
them has to be a strict inequality.

Moreover, we’ll also say that two outcomeso and o′ are UE-
equivalent if and only if mini=1,2(Gi(o

′)) = mini=1,2(Gi(o))
andmaxi=1,2(Gi(o

′)) = maxi=1,2(Gi(o)).

527

An outcome isunanimously efficient if it is not UE-dominated
by any other outcome.3

LEMMA 1. Let BP = (O, 〈B1, �1〉, 〈B2, �2〉) be a bargain-
ing problem with an agreement-feasible outcomeo ∈ O, if o is
unanimously efficient then it is also Pareto efficient.

Before proving Lemma 1, we state a convention to be used through-
out the rest of the paper: Given an outcomeo, if G1(o) = G2(o),
we assume thatarg mini=1,2(Gi(o)) will pick out a single value,
either1 or 2 (which one would be picked doesn’t matter). Further-
more, if j = arg mini=1,2(Gi(o)) thenarg maxi=1,2(Gi(o)) =
−j. That is,arg mini=1,2(Gi(o)) (resp.arg maxi=1,2(Gi(o))) is
guaranteed to deterministically return a single agentj (resp. −j)
whose cardinal gainGj(o) (resp.G−j(o)) is smallest (resp. largest).

Proof: Suppose, to the contrary, thato is not Pareto efficient. That
is, there areo′ ∈ O andj ∈ {1, 2} such thato′ ≻j o ando′ �−j o.
Obviously,o′ is agreement-feasible. We’ll consider two cases:

Case 1: arg mini=1,2(Gi(o
′)) = arg mini=1,2(Gi(o)) = k. If

k = j then min
i=1,2

(Gi(o
′)) > min

i=1,2
(Gi(o)) and max

i=1,2
(Gi(o

′)) ≥
max
i=1,2

(Gi(o)). If k 6= j then max
i=1,2

(Gi(o
′)) > max

i=1,2
(Gi(o)) and

min
i=1,2

(Gi(o
′)) ≥ min

i=1,2
(Gi(o)). Either way, we haveo is UE-

dominated byo′, and thus can not be unanimously efficient.
Case 2: arg mini=1,2(Gi(o

′)) 6= arg mini=1,2(Gi(o)). With-
out loss of generality, we can assume thatarg mini=1,2(Gi(o

′)) =
1 andarg mini=1,2(Gi(o)) = 2. That is,G1(o

′) = mini=1,2(Gi(o
′))

andG2(o) = mini=1,2(Gi(o)) andG2(o
′) = maxi=1,2(Gi(o

′))
andG1(o) = maxi=1,2(Gi(o)). Therefore,G1(o) ≥ G2(o) and
G2(o

′) ≥ G2(o). Also, becauseo′ ≻j o for somej ∈ {1, 2}, at
least one of the above inequality has to be strict. Sinceo′ ≻j o for
somej ∈ {1, 2} ando′ �−j o,4 G1(o

′) ≥ G1(o).
Hence,G1(o

′) ≥ G1(o) ≥ G2(o) andG2(o
′) ≥ G1(o

′) ≥
G1(o), and at least one of the inequalitiesG1(o) ≥ G2(o) and
G2(o

′) ≥ G1(o
′) has to be strict. In other words,mini=1,2(Gi(o

′)) ≥
mini=1,2(Gi(o)) andmaxi=1,2(Gi(o

′)) ≥ maxi=1,2(Gi(o)), and
at least one of these inequalities has to be strict.

Therefore,o is UE-dominated byo′, and thus can not be unani-
mously efficient. �

The followingFairnessaxiom can now be formulated.

FR. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) is a bargaining problem
with an agreement-feasible outcomeo ∈ O. If there is an
agreement-feasible and unanimously efficient outcomeo′ ∈
O such that|G1(o) − G2(o)| > |G1(o

′) − G2(o
′)| then

o /∈ f(BP).

In other words, axiomFR allows us to select the fairer outcomes
among those that are unanimously efficient.

In addition to the above Fairness axiom, we will also require that
when outcomes are UE-equivalent, the bargaining solution will not
be biased towards a particular one. The following axiom formulates
this requirement for unbiasedness.

UB. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) is a bargaining problem
with agreement-feasible and UE-equivalent outcomeso, o′ ∈
O. Then,o ∈ f(BP) if and only if o′ ∈ f(BP).

Finally, we will replace the Pareto Efficiency (PE) axiom by a
stronger one, requiring that the bargaining solution be unanimously
efficient, rather than only Pareto-efficient.
3Note that, similar to our remark about Pareto-efficiency, our defi-
nition of Unanimous Efficiency is also a strong one.
4We use−j to denote the agent other thanj.

UE. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) is a bargaining problem
with the agreement-feasible outcomeso, o′ ∈ O and o is
UE-dominated byo′ theno /∈ f(BP).

Obviously, by Lemma 1, if the bargaining solutionf satisfiesUE
then it also satisfiesPE. In the following, we’ll develop a bargain-
ing solution that is uniquely identified by the axiomsUE, FR and
UB. The developed solution is based on the well-knownegalitarian
solution:

THEOREM 1. There is a bargaining solutionfE : BP → 2O

given by:

fE(O, 〈B1, �1〉, 〈B2, �2〉) = arg max
o∈ES

(max
i=1,2

Gi(o)), where

ES = arg max
o∈AF

(min
i=1,2

Gi(o))

whereAF ⊆ O denotes the set of agreement-feasible outcomes of
BP .5 Then, a bargaining solutionf : BP → 2O satisfiesUE, FR,
andUB if and only iff = fE .

Before proving Theorem 1, we’ll discuss a relevant result. Note
that,≈ is an equivalence relation on the setO. Moreover, if we’ll
only focus on the setAF ⊆ O of agreement-feasible outcomes
of BP , thenAF can be reduced to a collection of equivalence
classes, such that each equivalence class can be represented by a
pair(G1(o), G2(o)), whereo is a member of the equivalence class.

LEMMA 2. If BP = (O, 〈B1, �1〉, 〈B2, �2〉) is a bargaining
problem thenfE(BP) contains at most two equivalence classes
of the agreement-feasible outcomes ofBP . Moreover, iffE(BP)
contains exactly one equivalence class then it has to be of the form
(g, g) (i.e., it gives both agents the same gain); iffE(BP) contains
exactly two equivalence classes then they have to be of the form
(g, h) and(h, g).

Proof (of the Lemma):Obviously, from the definition of the func-
tion fE , there existkmin, kmax ≥ 0 such that for every outcome
o ∈ ES, mini=1,2 Gi(o) = kmin and for every outcomeσ ∈
fE(BP), maxi=1,2 Gi(σ) = kmax. Thus, whenkmin = kmax,
fE(BP) contains exactly one equivalence class that is of the form
(g, g), whereg = kmin = kmax.

Otherwise,kmin 6= kmax andfE(BP) contains exactly two
equivalence classes of the form(g, h) and(h, g) whereg = kmin

andh = kmax. �

Proof (of the Theorem):First we prove that,fE satisfiesUE, FR,
andUB.

That fE satisfiesUE: Let BP = (O, 〈B1, �1〉, 〈B2, �2〉) be
a bargaining problem. Letσ ∈ fE(BP), we’ll prove thatσ is
unanimously efficient. Suppose, to the contrary, that there is an
agreement-feasible outcomeo ∈ AF such thatmini=1,2 Gi(o) ≥
mini=1,2 Gi(σ) andmaxi=1,2 Gi(o) ≥ maxi=1,2 Gi(σ) and at
least one of these inequalities is strict. Moreover, there existskmin ≥
0 such that∀a ∈ AF. mini=1,2 Gi(a) ≤ kmin and kmin =
mini=1,2 Gi(σ). Thus,kmin = mini=1,2 Gi(o) = mini=1,2 Gi(σ).
In other words,o ∈ ES. However, according to Lemma 2, there
existskmax ≥ 0 that, together withkmin, characterises the equiva-
lence classes definingfE(BP) and∀a ∈ ES. maxi=1,2 Gi(a) ≤
kmax andkmax = maxi=1,2 Gi(σ). Thus,maxi=1,2 Gi(a) ≤
maxi=1,2 Gi(σ). Contradiction.
5Note that more precise notations would beAFBP andESBP . But
since the bargaining problemBP is always clear from the context,
we’ll drop these subscripts.

528

That fE satisfiesFR: Suppose, to the contrary, that there is
a bargaining problemBP = (O, 〈B1, �1〉, 〈B2, �2〉) andσ ∈
fE(BP) such that there is a unanimously efficient outcomeo ∈
AF and|G1(σ) − G2(σ)| > |G1(o) − G2(o)|.

According to Lemma 2,σ belongs to the equivalence classes
characterised by the two non-negative numberskmin and kmax

(possibly equal to each other).
We havekmin = mini=1,2 Gi(σ) andkmax = maxi=1,2 Gi(σ).
Case 1: mini=1,2 Gi(o) = kmin. Since|G1(σ) − G2(σ)| >

|G1(o) − G2(o)|, clearly maxi=1,2 Gi(o) < kmax, which is a
contradiction becauseo is UE-dominated byσ.

Case 2: mini=1,2 Gi(o) < kmin. Sinceo is unanimously ef-
ficient, it is the case thatmaxi=1,2 Gi(o) > kmax. But then
|G1(σ)−G2(σ)| = kmax −kmin < max

i=1,2
Gi(o)− min

i=1,2
Gi(o) =

|G1(o) − G2(o)|. Contradiction.
It’s obvious thatfE satisfiesUB.
We are now proving that a solutionf satisfyingUE, FR, andUB

necessarily obtainsfE .
Suppose, to the contrary that, there exists a solutionf satisfying

UE, FR, andUB and a bargaining problemBP = (O, 〈B1, �1

〉, 〈B2, �2〉) such thatf(BP) 6= fE(BP). First, we’ll show
that it’s not possible forf(BP) \ fE(BP) 6= ∅. Assume by
way of contradiction that there exists an outcomeo ∈ AF such
that o ∈ f(BP) \ fE(BP). Then o is unanimously efficient
and is not ruled out by axiomFR. According to Lemma 2, the set
of outcomesfE(BP) can be partitioned into equivalence classes
characterised by the non-negative numberskmin andkmax (pos-
sibly equal to each other). Clearly,mini=1,2 Gi(o) ≤ kmin. If
mini=1,2 Gi(o) = kmin then, foro to be unanimously efficient,
maxi=1,2 Gi(o) ≥ kmax. Thus,maxi=1,2 Gi(o) = kmax In other
words,o ∈ fE(BP). Contradiction. Ifmini=1,2 Gi(o) < kmin

then, foro to be unanimously efficient,maxi=1,2 Gi(o) > kmax.
But then, there is a unanimously efficient outcomeσ ∈ fE(BP)
such that|G1(σ)−G2(σ)| = kmax − kmin < maxi=1,2 Gi(o)−
mini=1,2 Gi(o) = |G1(o) − G2(o)|. Thus,o /∈ f(BP) according
to axiomFR. Contradiction.

That fE(BP) \ f(BP) 6= ∅ follows trivially from axiom UB
and Lemma 2. �

It’s also straightforward to see thatfE satisfies axiomIIA .

COROLLARY 1. The bargaining solutionfE defined in Theo-
rem 1 satisfiesIIA .

So far in this section, the agent’s beliefsBi are only used to
define the agent’s disagreement point and don’t play much role
in characterising the negotiation outcome. The problem becomes
more challenging when we allow the agents’ beliefs to change ac-
cording to the bargaining situation.

3.2 Bargaining with revisable agents’ beliefs
According to the bargaining model introduced in the preceding

section, when the agents’ beliefsBi define the bottom-linesDi that
result in an empty set of agreement-feasible outcomesAF (i.e.,
{o ∈ O : o �1 D1} ∩ {o ∈ O : o �2 D2} = ∅), agreement is
not possible. Nevertheless, in most negotiations, the agents’ beliefs
represent their inclination toward a particular position rather than
unmovable. For instance, a buyer of a house may know for certain
that an identical house was sold a month ago for $y, and thus is
not too willing to pay much more than $y for this house. However,
knowing that there is no other house left in the area that he can buy,
he is perhaps willing to pay more than $y, if there are compelling
reasons for him to do so (e.g., there are other buyers who would
like to buy a house in the area). In this situation, ifP denotes the
proposition that the vendor agent’s asking price is higher than $y,

then¬P doesn’t necessarily define the buyer’s disagreement point.
It could be the case that the buyer believes in¬P , but is also willing
to retract this belief when learning about the scarcity of houses as
well as the high demand for houses in the area.

Given that the agents’ beliefs (and constraints) will play a cru-
cial role in this model of bargaining, we will make the agents’ hard
constraints explicit in our bargaining model. In the rest of the pa-
per, we will assume that the set of feasible negotiation outcomes is
defined by the hard constraintsC. We denote byOC the set of fea-
sible outcomes that satisfy the hard constraintsC. That is,o ∈ OC
if and only if JoK ∩ JCK 6= ∅.

Given the propositional languageL and the non-empty alphabet
PO for the negotiation outcomes, a bargaining problem is defined
to be a tupleBP = (C, 〈B1, �1〉, 〈B2, �2〉), whereC ⊆ L is the
set of hard constraints shared by all agents,Bi ⊆ L is the set of
agenti’s beliefs, and�i is agenti’s preference relation over the set
OC . Subsequently, the (movable) disagreement pointsDi ∈ OC
are defined such thatDi is least preferred to agenti andDi is con-
sistent withBi. Moreover, the set of agreement-feasible outcomes
AFBP is defined to be{o ∈ OC : o �1 D1} ∩ {o ∈ OC : o �2

D2}.6 We will first state a trivial lemma:

LEMMA 3. Let BP = (C, 〈B1, �1〉, 〈B2, �2〉) be a bargain-
ing problem, if the setC ∪ B1 ∪ B2 is consistent thenAFBP 6= ∅.

Proof: Let ω be a model ofC ∪ B1 ∪ B2. Let o ∈ PO be such that
ω ∈ JoK. Clearly,o ∈ OC ando is consistent with bothB1 andB2.
Thus,o �1 D1 ando �2 D2. Thus,o ∈ AFBP . �

On the other hand, when the setC ∪ B1 ∪ B2 is inconsistent, it
doesn’t always mean thatAFBP = ∅.

EXAMPLE 3. Continue with our running example and consider
the following bargaining situationBP = (C, 〈B1, �1〉, 〈B2, �2

〉), whereC = {P} (e.g., the agent receives the instruction from the
vendor not to sell the house for less than the asking price and this
is common knowledge), andB1 = {E} andB1 = {¬E}. Also,
suppose thatPĒ ≻1 PE andPE ≻2 PĒ. Clearly,C ∪ B1 ∪ B2

is inconsistent, butD1 = PE and D2 = PĒ, and AFBP =
{PE, PĒ}.

Given Lemma 3, one fairly naive idea is to perform belief merg-
ing (see e.g., [7]) with integrity constraint (i.e., mergingB1 andB2

with the integrity constraintC) to obtain a consistent belief baseX
which will be treated as the shared bottom line for both agents1 and
2. Subsequently, the bargaining model described in Section 3.1 can
be applied to characterise the negotiation outcome. Unfortunately,
this straightforward idea will not work, for the simple reason that
belief merging takes into account the two belief basesB1 andB2

when merging them with respect to the integrity constraintsC. But
it fails to take into consideration the agents’ preferences�1 and�2

regarding the preferred outcomes.

EXAMPLE 4. In the running example, consider a bargaining
situation in whichC = {⊤} (i.e., no hard constraints),B1 =
{P, ¬E}, and B2 = {E}. Furthermore, the agents preferences
are: PE ≻1 PĒ ≻1 P̄E ≻1 P̄ Ē and P̄E ≻2 P̄ Ē ≻2 PE ≻2

PĒ with D1 = PĒ andD2 = PE. Clearly,C ∪ B1 ∪ B2 is in-
consistent and most standard belief merging mechanisms (see [7])
would result in a merge belief baseX = ∆C(B1 ⊔B2) = {P}. By
takingX to define the common bottom line for both agents, the new
disagreement points for them becomeD′

1 = D1 andD′
2 = PĒ.

6When clear from the context, we will omit the subscript and write
AF instead.

529

Clearly, this has disadvantaged agent2. Moreover, it has also im-
posed agent1’s bottom line regarding attributeP on agent2 with-
out any reasonable justification and compensation.

On the other hand, any mechanism that searches for a negoti-
ation outcome based only on the agents’ preferences�1 and�2

without taking into account the agents’ beliefs is likely to produce
impractical outcomes as well. For instance, in the bargaining situa-
tion discussed at the beginning of this section, assume thatPE ≻1

PĒ ≻1 P̄E ≻1 P̄ Ē andP̄ Ē ≻2 P̄E ≻2 PĒ ≻2 PE. Assume
also that the vendor’s asking price is$x > $y, andB1 = {P, ¬E}
(i.e., the vendor agent knows that the house he is selling is currently
the only house for sale in the area and there are several buyers who
are looking for a house in the area, while a recent government regu-
lation requires mortgage lender to carry out a number of checks be-
fore releasing the fund for settlement), andB2 = {¬P, ¬E} (i.e.,
the buyer knows that an identical house was sold for$y last month).
As the set of agreement-feasible outcomesAF is empty, the agents
need to make concessions to possibly reach an agreement. With-
out taking into account the agents’ beliefs, the bargaining strategy
of minimal concession (see [5]) suggests the following negotiation
process: First, agent2, the buyer, will make a minimal concession
from its current offer ofP̄ Ē to P̄E; then, agent1 makes a minimal
concession, and accept the offerP̄E. This outcome is certainly
not justified since the right price in this case should be$x (thus,
agreeing onP) while the agents can also agree on¬E.

Therefore we argue that a reasonable mechanism should enable
the agents to use their beliefs to make the decision on what conces-
sion to make, taking into account their preferences. Consequently,
we’ll investigate a strategic model for bargaining in the following
section.

4. AN ARGUMENTATION-BASED MODEL
OF BARGAINING

The axiomatic bargaining model introduced above is inherently
static in the sense that only the outcome, and not the bargaining
process, is analysed. This ensures a number of advantages such as
tractability. Nevertheless, in most circumstances, it’s important to
study the bargaining process as well as the bargainers’ strategies.
For instance, we may be interested in knowing how the bargaining
outcome is affected by changes in the bargaining procedure, and
what would be the best strategy or decision a bargainer should take
in a given situation.

The bargaining protocol to be used by the agents to reach an
agreement is based on the belief negotiation models proposed by
Booth [3]. In this model, the negotiation proceeds in rounds. The
negotiation starts off with the initial offer profile~Θ0 = (Θ0

1, Θ
0
2),

where an offerΘj
i is a subset of the set of feasible outcomesO, in-

dicating the outcomes agenti is willing to accept afterj rounds of
negotiation. If~Θj (j ≥ 0) is consistent then the set of agreement-
feasible outcomesAF = Θj

1 ∩ Θj
2 is non-empty and a physical

agreement can be selected fromAF . If ~Θj (j ≥ 0) is inconsistent
then a “contest” between the agents will be carried out to select a
subset of agents who are required to “make some concessions”.7

The new offer profile~Θj+1 after the selected agents making the
concession allows the negotiation to proceed to the next round.
Under “certain predefined conditions”, a disagreement is reached.
Furthermore, under a monotonic concession protocol (see [13]), the
new offer profile~Θj+1 is required to include the previous one; i.e.,
7The generality of this protocol allows it to encompass many com-
mon negotiation protocols including the alternating-offer protocol
and the simultaneous-concession protocol.

~Θj ⊆ ~Θj+1), where ~S = (S1, . . . , Sn) ⊆ (T1, . . . , Tn) = ~T
if and only if Si ⊆ Ti for all i ∈ {1, . . . , n}. A more precise
bargaining protocol will be introduced later in this section.

From the discussion in the preceding section, a bargaining out-
come should be based on the agents’ beliefs about the bargaining
situation at hand while taking into account their preferences. To
formulate the idea that an agent’s beliefs that define her position on
certain bargaining issues can be undermined or dominated by her
opponent’s beliefs, we appeal to the argumentation-based frame-
work [4, 1]. In a strategic model of bargaining, a bargaining prob-
lem BP = (C, 〈B1, �1〉, 〈B2, �2〉) is based on a common lan-
guageL and a common outcome alphabetPO, with the set of hard
constraintsC being common knowledge while the agents beliefs
and preferences〈Bi, �i〉 for i = 1, 2 are their private information.
We will first reproduce some notions of argumentation theory.

DEFINITION 4. ([1]) Anargumentof a set of sentencesX ⊆ L
(aka.X-argument) under the constraintsC is a pair(H, h), where
h ∈ L andH ⊆ X, satisfying:

(i) C ∪ H is consistent,

(ii) C ∪ H |= h, and

(iii) H is minimal (i.e., no strict subset ofH satisfies(i) and(ii)).

H is called thesupport and h the conclusion of the argument
(H, h). Moreover, given two arguments(H, h) and (H ′, h′), if
H ⇔ H ′ andh ⇔ h′ then we treat them as the same argument.
That is, a set of arguments can not contain both arguments.

An argument(H ′, h′) is asubargumentof the argument(H, h)
iff H ′ ⊆ H.

Given a set of argumentsΓ, the baseof Γ is the set: BΓ =⋃
(H,h)∈Γ H.

We denote byAC(X) the set of allX-arguments under the con-
straintsC.

DEFINITION 5. ([1]) Let(H, h) and(H ′, h′) be two arguments
of AC(X):

• (H, h) rebuts (H ′, h′) if and only ifh ⇔ ¬h′.

• (H, h) undercuts (H ′, h′) if and only ifh ⇔ ¬h′′ for some
h′′ ∈ H ′.

When(H, h) rebuts or undercuts(H ′, h′), we also say that(H, h)
attacks (H ′, h′). When(H, h) attacks(H ′, h′) and(H ′′, h′′) at-
tacks(H, h), we say that(H ′′, h′′) defends(H ′, h′).

We are now in a position to formally define our bargaining pro-
tocol. First, we define the notion of bargaining proposal.

DEFINITION 6. Let BP = (C, 〈B1, �1〉, 〈B2, �2〉) be a bar-
gaining problem andOC denote the set of feasible outcomes. A
bargaining proposal (or, proposal) by agenti at stagej, denoted
by ρj

i is a pair (Θj
i , Γ

j
i), whereΘj

i ⊆ OC is the set of outcomes
agenti is willing to agree on andΓj

i ⊆ AC(L) is the set of argu-
ments agenti has used to defend her offersΘj

i .
The pair(ρj

1, ρ
j
2) of the agents’ proposals in stagej is called the

bargaining contextat stagej.

It’s important to note that, in a strategic model of bargaining the
agents beliefs and preferences〈Bi, �i〉 are their private informa-
tion. Therefore, agenti can introduce arguments that are not based
on her beliefs if she thinks that they would give her an advantage. In
the following, we’ll write

∨
Θ instead of

∨

o∈Θ

o. We will now define

the notion of an argument being relevant to a bargaining context.

530

DEFINITION 7. Let(ρ1, ρ2) be a bargaining context, whereρi =
(Θi, Γi) is agenti’s proposal, fori = 1, 2. An argument(H, h) is
relevant to this bargaining context (for agenti) if (H, h) /∈ Γi and

• ∨
Θ−i ∧ h |= ⊥; or

• (H, h) attacks an argument(H ′, h′) ∈ Γ−i.

Of the two non-trivial conditions above, the former says that
agenti rejects agent−i’s current offered outcomesΘ−i by ad-
vancing an argument(H, h) that contradictsΘ−i and thus requires
agent−i to make a concession. The latter allows agenti to ad-
vance an argument(H, h) to defeat a relevant argument(H ′, h′)
advanced by agent−i in previous rounds of bargaining.

In the bargaining protocol informally described at the beginning
of this section, for the “contest” to select who need to make a
revised proposal during a negotiation round, we assume that all
agents will have to submit the updated proposal in each round.
Furthermore, an agenti’s proposal in round0 has to contain a non-
empty offerΘ0

i 6= ∅ and, to simplify the protocol, it also contains
an empty set of argumentsΓ0

i = ∅. Agent i’s proposal in round
j > 0, ρj

i = (Θj
i , Γ

j
i) is required to meet the following conditions:

• Θj
i ⊇ Θj−1

i ;

• Γj
i ⊇ Γj−1

i such thatB
Γ

j
i
∪C is consistent and, ifΓj

i 6= Γj−1
i

then the new arguments have to be relevant to the previous
bargaining context(ρj−1

1 , ρj−1
2).

If ~Θj (j ≥ 0) is consistent then the set of agreement-feasible
outcomesAF = Θj

1 ∩ Θj
2 is non-empty and an agreement can

be selected fromAF . If ~Θj (j ≥ 0) is inconsistent then the bar-
gaining proceeds to the next round. If in two consecutive rounds
of bargaining, the bargaining context is not updated, i.e., for some
j ≥ 0, ρj

i = ρj+1
i = ρj+2

i for i = 1, 2, then the bargaining reaches
a disagreement.

LEMMA 4. The bargaining protocol defined above terminates.

Proof: Since the alphabetP of the languageL (and the alphabet
PO ⊆ P of the bargaining outcomes) is finite, there can only a
finite number of logically different arguments; i.e., the setAC(L)
is finite and the setOC is also finite. Thus, if the bargaining does
not terminate with a disagreement then at some point, both agents
will have exhausted the set of arguments and thus will have to in-
creasingly add the members ofOC in their respective offers and the
bargaining terminates with a non-empty set of agreement-feasible
outcomesAF . �

Given the negotiation protocol, our example in the preceding
section about the vendor agent who argues to convince the buyer
to change her position on the price of the house can be described as
follows.

EXAMPLE 5. We will assume that the alphabetP also contains
the following propositional symbols:Y for “ a similar house was
sold for $y last month”, M for “ house prices last month reflects
today market”, S for “ houses in the area have become scarce”,
D for “ there has been an increase in the demand for houses in
the area”, C for “ the market has changed with the price on the
up”, and R for “ bargainers should exercise reciprocity”. We’ll also
assume thatPE ≻1 PĒ ≻1 P̄E ≻1 P̄ Ē and P̄E ≻2 P̄ Ē ≻2

PĒ ≻2 PE are the agents’ respective preferences. That is, the
buyer’s preference on the value ofE (whether it should be an early
settlement) is conditional on the value ofP (whether she has to pay
the higher price).

The negotiation starts off with the initial proposal profile(({PE},
∅), ({P̄E}, ∅)). In the next round, the buyer introduces the argu-
ment({Y, M, Y ∧ M ⇒ ¬P}, ¬P) and the seller introduces the
argument({Y, S, D, S∧D ⇒ C, Y ∧C ⇒ P}, P) to defend their
respective positions. In the consecutive round, the seller then defeat
the buyer’s argument with the argument({C, C ⇒ ¬M}, ¬M).
This settles the issue on the price of the house with the buyer mak-
ing a concession and willing to accept any outcome from the set
{P̄E, P̄ Ē, P Ē}. However, since the set of agreement-feasible out-
comeAF = {PE} ∩ {P̄E, P̄ Ē, P Ē} remains empty, the buyer
then advances the argument({P, R, P ∧ R ⇒ ¬E}, ¬E). Since
the seller has no counter-argument, he makes a concession and is
willing to accept any outcome from the set{PE, PĒ}. They settle
with the outcomePĒ.

To formalise the notion of winning argument in an exchange be-
tween bargainers, we’ll appeal to the argument-based semantics of
admissibility, introduced by Dung [4].

DEFINITION 8. A setΓ of arguments isconflict-free if there
are no two arguments(H, h) and(H ′, h′) such that(H, h) attacks
(H ′, h′) or (H ′, h′) attacks(H, h).

A setΓ of arguments isadmissible if it is conflict-free and it
defends all of its members against all attackers.

A setΓ of arguments isstrongly admissible if it is admissible
and none of the arguments that attack its members belong to an
admissible set of arguments.

The following lemma is trivial since at all stagesj of the bar-
gaining,B

Γ
j
i

∪ C is required to be consistent.

LEMMA 5. The sets of arguments contained in the bargaining
proposals introduced by the agents according to the bargaining
protocol defined above are conflict-free.

The following axiom requires that bargainers do not ignore strongly
admissible sets of arguments that support an agent’s position.

SA. If BP = (C, 〈B1, �1〉, 〈B2, �2〉) is a bargaining problem
andAG ⊆ OC the agreement reached afterj rounds of bar-
gaining. If the set of argumentsΓ ⊆ Γj

i is strongly admis-
sible then for each outcomeo ∈ AG :

∧
(H,h)∈Γ h ∧ o is

consistent.

Intuitively, axiomSA requires that, if agenti can present an ar-
gument that agent−i can not defeat, then every agreed outcome
has to be consistent with the conclusions obtainable from this set
of arguments.

We can now state a lemma trivially derived from the definition
of strongly admissible sets of arguments.

LEMMA 6. Given a bargaining problemBP , if a sentenceh
is supported by a strongly admissible set of argumentsΓ from the
current bargaining context(ρj

1, ρ
j
2) then there does not exist any

admissible set of argumentsΓ′ from the current bargaining context
that supports¬h.

Equipped with Lemma 6 and assuming a belief revision operator
∗AGM that satisfies the AGM axioms (see [6]), we can now define
an argument-augmented bargaining problem of a given bargaining
problem.

DEFINITION 9. Let BP = (C, 〈B1, �1〉, 〈B2, �2〉) be a bar-
gaining problem and given a a belief revision operator∗AGM that
satisfies the AGM axioms. Consider the set of all admissible sets of

531

arguments of the baseB1 ∪B2: ASBP = {Γ ⊆ AC(B1 ∪B2) : Γ

is strongly admissible}. Let α denote
∧

(H,h)∈⋃
Γ∈ASBP

Γ

h, then

the argument-augmented bargaining problemof BP , denoted
byABP is defined to be(C, 〈B∗AGM

1 α, �1〉, 〈B∗AGM
2 α, �2〉).

Given a bargaining problemBP , the following bargaining solu-
tion can be defined:

fA-E(BP) =

{
disagreement ifAFABP = ∅
fE(ABP) otherwise

The following theorem is obvious (given Lemma 6 and the AGM
axioms):

THEOREM 2. The bargaining solutionfA-E satisfies axiomSA.

Given the negotiation protocol above and our proposed argument-
based bargaining framework, we are interested in finding the equi-
librium strategies in a bargaining situation. Note that, in a strategic
model of bargaining, a bargainer’s beliefs and preferences are her
private information and the bargaining progresses when the agents
exchange their proposals, in our bargaining protocol, by simulta-
neously putting them on the negotiation table. However, in the
presence of incomplete information, the agents clearly have the in-
centives not to reveal their true preferences and beliefs. Therefore,
to develop a tractable strategic model of bargaining, we’ll need to
make a number of assumptions including an enforceable penalty
mechanism which is also underlying the negotiation framework de-
veloped by Rosenschein and Zlotkin [13, 17]. Given such assump-
tions, we have developed a symmetric Nash equilibrium strategy
for the bargainers based on the minimal concession strategy intro-
duced by Dung et al. [5]. This consideration is beyond the scope
of the present paper and will be included in our future work.

5. CONCLUSION AND FUTURE WORK
In this paper we introduced an axiomatic model of bargaining

with logical beliefs and goals for the purpose of bargaining analy-
sis. To the best of our knowledge, our model is the first logic-based
axiomatic model of bargaining that does not suffer the problem of
syntax-sensitivity while still ensuring that our proposed bargaining
solution is uniquely characterized by a concise set of intuitive ax-
ioms (see e.g., [16, 15]). This is the most important contribution
of our paper. Moreover, our framework allows for a separation be-
tween the bargainers’ beliefs and their respective goals. This is im-
portant because not all beliefs of the agents that are relevant to the
negotiation will necessarily end up on the negotiation table. Many
of them may be used only for the agents to make decision about
whether to accept an offer or what counter-offer to be made.

We have also taken into account the problem of dynamic ne-
gotiation in which the bargainers’ bottom lines could be changed
during the negotiation. The problem is challenging, particularly in
the context of incomplete information. We appeal to the formalism
of argumentation framework to allow for the accommodation of
new and revised beliefs and their effects on the bargainers’ bottom
lines. We are currently investigating a strategic model of bargain-
ing to complement our axiomatic model. This is also the final step
in realising the famous Nash program. This work will be reported
in our future papers.

From a multi-agent systems point of view, it is always an im-
portant question to investigate the computational complexity of the
solutions and the concepts we have proposed. This also remains a
challenge to be addressed in the future work.

Acknowledgements
This work was supported by the Australian Research Council (ARC)
grants DP0987380 and DP110103671. The authors would like to
thank Prof Ryszard Kowalczyk for his support. The authors would
also like to thank the four anonymous reviewers of AAMAS-2012
for their very detailed comments and suggestions.

6. REFERENCES
[1] L. Amgoud and C. Cayrol. Inferring from inconsistency in

preference-based argumentation frameworks.J. Autom.
Reason., 29(2):125–169, 2002.

[2] K. Binmore.Game Theory and the Social Contract, Vol. 2:
Just Playing. The MIT Press, Mar. 1998.

[3] R. Booth. Social contraction and belief negotiation.
Information Fusion, 7(1):19–34, 2006.

[4] P. M. Dung. On the acceptability of arguments and its
fundamental role in nonmonotonic reasoning, logic
programming and n-person games.Artificial Intelligence
Journal, 77:321–357, 1995.

[5] P. M. Dung, P. M. Thang, and F. Toni. Towards
argumentation-based contract negotiation. InProcs. of
Computational Models of Argument: COMMA, pages
134–146, 2008.

[6] P. Gärdenfors.Knowledge in Flux: Modeling the Dynamics
of Epistemic States. The MIT Press, 1988.

[7] S. Konieczny, J. Lang, and P. Marquis. DA2 merging
operators.Artificial Intelligence, 157(1-2):49 – 79, 2004.

[8] T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical
foundations of negotiation: outcome, concession and
adaptation. InProceedings of the 19th National Conference
on Artificial Intelligence (AAAI-04), pages 293–298, 2004.

[9] T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical
foundations of negotiation: strategies and preferences. In
Proceedings of the 9th International Conference on the
Principles of Knowledge Representation and Reasoning
(KR’04), pages 311–318, 2004.

[10] J. Nash. The bargaining problem.Econometrica,
18(2):155–162, 1950.

[11] J. Nash. Two-person cooperative games.Econometrica,
21(1):129–140, 1953.

[12] M. J. Osborne and A. Rubinstein.Bargaining and Markets.
Academic Press, 1990.

[13] J. S. Rosenschein and G. Zlotkin.Rules of Encounter:
Designing Conventions for Automated Negotiation Among
Computers. MIT Press, Cambridge, Massachusetts, 1994.

[14] M. Shubik.Game Theory in the Social Sciences: Concepts
and Solutions. MIT Press, Cambridge, 1982.

[15] D. Zhang. A logic-based axiomatic model of bargaining.
Artif. Intell., 174(16-17):1307–1322, 2010.

[16] D. Zhang and Y. Zhang. An ordinal bargaining solution with
fixed-point property.J. Artif. Int. Res., 33:433–464,
November 2008.

[17] G. Zlotkin and J. S. Rosenschein. Mechanisms for automated
negotiation in state oriented domains.Journal of Artificial
Intelligence Research, 5:163–238, 1996.

532

Session 5C
Emergence

Crowd IQ - Aggregating Opinions to Boost Performance

Yoram Bachrach
Microsoft Research

yobach@microsoft.com

Thore Graepel
Microsoft Research

thoreg@microsoft.com

Gjergji Kasneci
Microsoft Research

gkasneci@gmail.com

Michal Kosinski
University of Cambridge

mk583@cam.ac.uk

Jurgen Van Gael
Microsoft Research

jurgen.vangael@gmail.com

ABSTRACT
We show how the quality of decisions based on the aggre-
gated opinions of the crowd can be conveniently studied
using a sample of individual responses to a standard IQ
questionnaire. We aggregated the responses to the IQ ques-
tionnaire using simple majority voting and a machine learn-
ing approach based on a probabilistic graphical model. The
score for the aggregated questionnaire, Crowd IQ, serves as a
quality measure of decisions based on aggregating opinions,
which also allows quantifying individual and crowd perfor-
mance on the same scale.

We show that Crowd IQ grows quickly with the size of the
crowd but saturates, and that for small homogeneous crowds
the Crowd IQ significantly exceeds the IQ of even their most
intelligent member. We investigate alternative ways of ag-
gregating the responses and the impact of the aggregation
method on the resulting Crowd IQ. We also discuss Contex-
tual IQ, a method of quantifying the individual participant’s
contribution to the Crowd IQ based on the Shapley value
from cooperative game theory.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Economics

Keywords
Human Intelligence, Opinion Aggregation, Shapley Value

1. INTRODUCTION
Human intelligence and group decision processes have been

extensively studied for many years. However, in recent years
internet-based technologies have dramatically changed the
ways in which people interact, socialize and communicate.
People exchange information through online social networks,

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

communicate their opinions through websites and rely on in-
ternet sources in their economic decisions. The accessibility
of such information makes it easier to aggregate the opinions
of many individuals and examine the quality of decisions
based on such aggregated information.

While collecting the opinions of individuals is easy, it is
more difficult to decide how to aggregate the opinions in
order to reach decisions, and measure the quality of the de-
cisions based on the aggregated information. There is often
a considerable variance in the individual opinions so reach-
ing optimal decisions is not a trivial task. Moreover, once
a decision has been reached, it is impossible to compare its
quality to other possible decisions that have not been taken.
Consequently, although aggregating the opinions of many
individuals is appealing, performing the aggregation process
successfully requires answering many important questions:
How does the quality of the decisions depend on the group
size? Is it better to base decisions on the opinions of the best
individual in a group, or is it better to rely on other people’s
opinions as well? How can one measure the contribution of
individuals to the quality of the decisions? Do individual
contributions depend more on the individual’s skill or on
her similarity to the group?

In an attempt to answer those questions we explore the
process of aggregating participants’ responses to IQ items on
the established IQ test1 - Raven’s Standard Progressive Ma-
trices (SPM) [26]. We treat participant’ responses to an IQ
test, expressed independently in a setting similar to popu-
lar crowdsourcing environments such as Amazon Mechanical
Turk, as their opinions regarding the correct solution. We
aggregate those individual opinions using majority vote or
a machine learning aggregator to reach a decision regarding
a correct response to each of the items. We then score this
test solved by the crowd using standard scoring procedures,
referring to the resulting IQ score as the Crowd IQ.

People’s responses to the SPM IQ test offer a convenient
and robust environment to study the aggregation of indi-
vidual opinions. First, SPM offers a set of non-trivial prob-
lems engaging a range of human cognitive abilities with well-
defined correct response and limited number of possible solu-
tions. Second, an individual’s IQ score is an elegant measure
of one’s mental abilities and is a good predictor of behavior

1We refer to individuals who have completed an IQ test
as participants, questions in such a test as items, and to
participants’ answers as responses.

535

and performance in a broad spectrum of contexts includ-
ing job and academic performance, creativity, health-related
behaviors and social outcomes [10, 11, 18, 28]. Third, the
Crowd IQ score provides a convenient quality measure of
the crowd’s aggregated decision. Finally, IQ scores provide
a uniform performance metric that allows exploring the re-
lationship between individual and crowd performance.

Our Contribution: We examine the properties of the
Crowd IQ and show that aggregating opinions of crowd
members can significantly boost the expected quality of the
decision. We show that the Crowd IQ grows quickly with
its size but then saturates, indicating diminishing returns
from each additional member. We also show that for homo-
geneous crowds the Crowd IQ significantly exceeds the IQ
of the most intelligent member in the crowd. Finally, we
show that an individual’s contribution to the Crowd IQ is
not solely related to the participant’s IQ but also depends
on the uniqueness of her contribution in the context of a
given crowd.

2. RELATED WORK
Many papers deal with aggregating the opinions of mul-

tiple agents to reach high quality decisions. Social choice
theory deals with joint decision making by self-interested
agents (see [29] for a broad discussion of this field), and is
a key research area in artificial intelligence and multiagent
systems. The Condorcet Jury Theorem from social choice
theorey provides theoretical bounds regarding the probabil-
ity of a set of agents to reach the correct decision under
majority voting [1, 20, 15]. However, the Condorcet Jury
Thereom uses strong assumptions which may not hold in
practice, such as requiring votes to be completely indepen-
dent. Our study can be viewed as an empirical examination
of this topic using data from IQ questionnaires.

Another related field is judgment aggregation [16] which
deals with aggregating group members’ individual judgments
on some interconnected propositions, expressed in a formal
logic language, into corresponding collective judgments on
these propositions. These fields have also been examined
by computer scientists, who found practical and compu-
tationally tractable ways of performing such aggregation,
ranging from machine learning approaches [12] to prediction
markets [22]. However, the IQ test items are not intercon-
nected, and our focus is on quantifying and decomposing the
group’s performance. In our paper we also ignore the com-
plications of aggregating agent opinions when such agents
are self-interested and may wish to influence the aggregated
choice [9, 8].

Human intelligence has been a central topic in psychol-
ogy. Psychologists noted that people’s performance on many
cognitive tasks is strongly correlated, leading to the emer-
gence of a single statistical factor, typically called “general
intelligence” [32, 10, 18, 28]. Recent work extends this to
“collective intelligence” for performance of groups of peo-
ple in joint tasks [35], which is not strongly correlated with
the maximal or average intelligence of the group members.
However, this approach examines explicit collaboration and
interaction between the group members, where the social
interaction may sometimes even hinder performance [17],
whereas we focus on information aggregation. Approaches
more similar to ours are [7, 19] and [34] which even pro-
poses a machine learning aggregator for image labeling in a
crowdsourcing environment. However, our focus is on the

impact of the aggregation methods and methods for quan-
tifying individual contribution based on a standardized IQ
test.

3. METHODOLOGY
We now describe the IQ test we used, our dataset of par-

ticipants’ responses, and the aggregation methods used to
establish the crowd’s solution to the test.

3.1 Standard Raven Progressive Matrices Test
The IQ test used in this study, Raven’s Standard Progres-

sive Matrices [23, 25], was developed by John C. Raven [24].
It is a multiple choice non-verbal intelligence test drawing
on Spearman’s theory of general ability [32] and consists of
m = 60 matrices with one element missing and k = 8 possi-
ble responses. Matrices are separated into five sets of 12 and
within each set the problems become increasingly difficult.
A sample item, similar2 to those used in the SPM is shown
on Figure 1.

Figure 1: Item similar to those in the SPM test

Raven’s SPM and its other forms (Advanced and Colored
Progressive Matrices) are one of the most popular intelli-
gence tests used in both research and clinical settings, as
well as in high-stake contexts such as in military personnel
selection and court cases [25].

3.2 Dataset and Scoring
Our sample consisted of 138 individuals, aged 15-17, who

filled the SPM during its standardization for the British mar-
ket in the year 2006 [23]. The sample is representative of the
British population.

The standard scoring procedure described in the test’s
manual was used to calculate individual and Crowd IQ scores [23].
The manual provides tables for translating the number of

2The SPM test is copyright protected, so we can only pro-
vide an item similar to those in the actual test, rather than
a sample item from the test itself.

536

correct responses (raw score) into an IQ score. The IQ scale
characteristic for SPM (and most other intelligence tests) is
standardized on a representative population to have a nor-
mal distribution with an average score of 100 and standard
deviation of 15. Hence, IQ scores allow for convenient com-
parisons between individuals, and comparing individual per-
formance with the general population. The distribution of
the raw scores and the IQ scores in our sample is shown on
Figures 2 and 3. The average number of correct responses
in the dataset is 36.04, with a standard deviation of 5.49.
The average IQ score is 99.57 with a standard deviation of
14.16.

Figure 2: Histogram of raw IQ scores

Figure 3: Histogram of IQ scores

3.3 Aggregating Individual Responses
Consider an IQ questionnaire consisting of m items, each

a multiple choice item with k possible responses. Denote
the possible responses K = {1, . . . , k}. The questionnaire
is administered to a set N of n participants, each provid-
ing a response for each of the items. Let rij ∈ K be the
response provided by participant j ∈ N to item i and rj be
the responses provided by participant j ∈ N to all items, so
rj = (r1j , r

2
j , . . . , r

m
j). We call rj the filled questionnaire for

participant j.

An aggregation method f takes the filled questionnaires
of the participants, r1, . . . , rn, and outputs a single filled
questionnaire aggfN , which contains a response to each of

the items, so aggfN = (r1agg, . . . , r
1
agg) where riagg ∈ K is the

response chosen to the item i. The aggregated questionnaire
aggfN is scored using the standard scoring key.

We now briefly describe the two aggregators used in this
paper: A simple majority aggregator with lexicographical tie-
breaking (MAJ), and a machine learning aggregator (ML).

3.3.1 Simple Majority Aggregation
The MAJ aggregator considers each item of the IQ ques-

tionnaire separately. It chooses the most common response
as the “correct” response, and thus bases the decision on the
choice made by the majority of the participants. If two or
more responses are selected an equal number of times (tie)
the first one in the lexicographical order is selected.

The MAJ aggregator has several limitations. First, it does
not use the information obtained from the responses to one
of the items to decide how to aggregate the responses to an-
other item. For example, if a user u has answered all items
correctly until item i and user v has answered all items in-
correctly until item i, when aggregating the responses to
an item i + 1, it might be desirable to give u’s opinion
more weight than v’s opinion. Further, the MAJ aggrega-
tor makes no assumptions about the data-generating process
other than that the correct response should be chosen more
frequently than any of the incorrect ones.

3.3.2 Machine Learning Based Aggregation
Our ML aggregator addresses the MAJ’s limitations. Sim-

ilarly to the MAJ aggregator, the goal of the ML one is to
take questionnaires completed by several participants and
output a single questionnaire with inferred correct responses.
In contrast to the MAJ aggregator, this is a non-simple ag-
gregation, in which the inferred response to an item also de-
pends on responses provided to other items. The model at-
tempts to make better inferences about the correct responses
to items by jointly modeling the participants’ aptitude and
the correct responses. The underlying assumption is that
each participant has an associated probability of knowing
the correct response to an item, their aptitude, and that
they will randomly guess the answer if they do not know
the correct response. The ML aggregator designed for this
study employs probabilistic graphical models [21, 13].

Probabilistic Graphical Models allow structurally de-
scribing the generative process assumed to underlie the ob-
served data in terms of latent and observed random vari-
ables. In the context of Crowd IQ, information like the cor-
rect response to an item or the intelligence of a participant
would be modeled as unknown latent variables whereas the
given response to an item by a user would be an observed
variable. The structure of the model is then determined by
the conditional independence assumptions made about the
variables in the model. Pearl [21] introduced Bayesian Net-
works to encode assumptions of conditional independence
in the form of a graph whose nodes represent the variables
and whose edges describe the dependencies between vari-
ables. We use the more general notion of a factor graph,
see e.g. [13], to describe the factorial structure of the as-
sumed joint probability distribution among the variables.
Once the structure of the model is defined in terms of a fac-
tor graph, observed variables can be set to their observed

537

values. Then approximate message passing algorithms [13]
can infer marginal probability distributions of unknown vari-
ables of interest such as the correct response to an item or
the intelligence of a participant.

Graphical Model for IQ Response Data: We wish to
infer the correct responses, so the graphical model contains
a set of random variables yq ∈ Yq that represent the correct
response to each of the items q. Each yq takes discrete values
in the set Yq of possible responses q. The model’s initial ig-
norance about the correct response is expressed by assuming
a uniform prior distribution over responses, yq ∼ Uniform.
We also wish to take into account the (unknown) aptitude
of participants in order to weigh their responses appropri-
ately. The aptitude of each participant i ∈ N is represented
by a random variable gi ∈ R, which can be interpreted as
the probability that the participant would know the correct
response. We choose uniform prior densities for these vari-
ables, gi ∼ Beta(1.0, 1.0). Here, Beta represents the family
of beta distribution, which allows us to compactly repre-
sent (unimodal) beliefs over the gi. We also introduce a
uniform “guessing” distribution B = Uniform, which models
the choice of response when the participant is assumed to be
guessing. Participant i’s response rj to item q, is assumed
to be drawn from the following distribution:

rj

{
∼ B with probability (1− gi)
= yq with probability gi

This means that with probability gi participant i chooses
the correct response yq and with probability 1− gi she ran-
domly guesses the answer based on the guessing distribution
B. Figure 4 illustrates this probabilistic graphical model in
the form of a factor graph. Note that the grey boxes repre-
sent plates which indicate repetition of the contained sub-
structure of the graphical model. In this case, q ranges over
the available items, i ranges over the available participants,
and j ranges over the available responses.

Figure 4: Factor graph for the ML aggregator

Inference in the model is performed using approximate
message passing (see [13] for details)3. As a result we ob-
tain a discrete marginal posterior distribution over responses
to each of the items, representing the model’s belief about

3Our implementation used the Infer.net library. For details
regarding Infer.net see: http://research.microsoft.com/en-
us/um/cambridge/projects/infernet/).

the correct response in light of the observed data. As a by-
product we also obtain the posterior marginal densities over
the aptitude variables gi for each user. To minimize the
probability of error we choose the response with the maxi-
mum posterior for each item as the aggregated response.

3.4 Contextual IQ: Individual’s Contribution
to the Crowd IQ

We now discuss our approach for quantifying an individ-
ual’s contribution to a Crowd IQ. Intuitively, individuals of
high IQ are likely to contribute more towards the aggregate
IQ of the crowd, i.e. the individual’s IQ divided by the sum
of the IQ scores of all the members of the crowd. However, as
individuals’ skills and knowledge may differ, the individual
contribution depends also on the relationship between the
patterns of her responses and those of the other members of
the crowd (or context). For example, imagine a crowd that
can correctly solve a subset of questions A but is unable to
provide a correct answer to questions B. Adding another
individual to this crowd that can correctly solve questions
A but does not know correct responses to questions B would
not increase the Crowd IQ score, while adding an agent that
knows correct responses to questions B can potentially boost
Crowd’s performance. We refer to this relative boost as a
Contextual IQ. Our approach to quantifying contextual IQ is
based on the Shapley value [30], a concept from cooperative
game theory.

3.4.1 Measuring Impact on Performance Using the
Shapley Value

Cooperative game theory studies the behavior of selfish
agents who must cooperate to achieve a goal, and analyzes
how the rewards from such cooperation should be distributed
among the agents. Solution concepts from game theory can
be used to find reward distributions fulfilling desirable prop-
erties, such as being fair or stable. Our methodology exam-
ines the game where the agents are the participants filling
the IQ test, and where the value of a coalition of agents is
the Crowd IQ of that coalition.

The Shapley value [30] can be viewed as a “power index”,
a tool for measuring an individual’s contribution or impor-
tance in the success of a team of agents, or for quantifying
an agent’s ability to influence a game’s outcome [31, 6]. The
Shapley value was used for measuring political influence of
parties forming a coalition in legislative bodies [14], analyz-
ing network reliabilitiy [5, 2, 4] and fair cost allocation [27,
33]. Further, the Shapley value is the only imputation ful-
filling certain fairness axioms [30].

The Shapley value relies on the marginal contribution of
an individual — the amount of additional utility gained
when that individual joins the crowd. We denote by π ∈ Sn
a permutation of the agents, so π : {1, . . . , n} → {1, . . . , n}
and π is onto. Denote by Γπi the predecessors of i in π, so
Γπi = {j|π(j) < π(i)}. Agent i’s marginal contribution in
the permutation π is mπ

i = v(Γπi ∪{i})−v(Γπi). The Shapley
value of an individual is her marginal contribution averaged
across all possible permutations of the individuals.

Definition 1. The Shapley value is the imputation
(φ1(v), . . . , φn(v)) where

φi(v) =
1

n!

∑

π∈Sn
mπ
i =

1

n!

∑

π∈Sn
(v (Γπi ∪ {i})− v (Γπi))

538

Consider a set N of agents (participants) filling an IQ
questionnaire, with m items and a set K of k possible re-
sponses to each item, and a set C ⊆ N to be used as a crowd
(coalition). Denote the responses of participant i ∈ C as
ri ∈ Km, and the set of responses of all the agents in C as
rC = (r1, . . . , r|C|). Thus the space of possible responses
of each agent is A = Km, and the responses of all the
participants are in the space A|C|. Consider an aggrega-
tor f : A|C| → A which maps the responses of all agents to
a single filled questionnaire.

As in Section 3.3, we denote the filled questionnaire ob-
tained by applying the aggregator f to the responses of the
agents in C as aggfC . In Section 3.3 we defined the aggregate
IQ of a crowd C as the IQ score of the filled questionnaire
aggfC . We define a cooperative game vf that maps any sub-
set C ⊆ N of agents into their aggregate Crowd IQ (the IQ

score of aggfC , the aggregate response for the crowd C). This
cooperative game over the set N of agents is defined with the
following characteristic function: vf (C) = IQ(aggfC), and is
called the Aggregate IQ Game.

In the Aggregate IQ Game, the“reward”of any coalition C
is the aggregate IQ of the crowd C, and vf (N) is the aggre-
gate IQ of the entire agent set N . Our goal is to decompose
vf (N) = IQ(aggfN), the total aggregate IQ score obtained
by the grand coalition N of all agents, to the individual con-
tribution of each agent. We refer to the set N of all agents
as the context in which we measure an agent’s individual
contribution. We are thus seeking a vector ~p = (p1, . . . , pn)
such that

∑n
i=1 pi = vf (N) where pi reflects i’s fair contri-

bution to the total IQ score. Due to the properties of the
Shapley value we can use it to fairly decompose the Crowd
IQ score. We define agent i’s Contextual IQ (for the given
context N) as its Shapley value in the above Aggregate IQ
game. One interpretation of this definition is that the aggre-
gate IQ of the crowd is decomposed into the contribution, in
IQ points, of each participant. These contextual IQ scores
sum up to the total aggregate IQ of the crowd N , and a
participant has a higher contextual IQ than another partic-
ipant if she is expected to have a higher positive influence
on the aggregate Crowd IQ score of a subset of participants
selected at random from the entire crowd N .

By Definition 1, the contextual IQ is the expected increase
in Crowd IQ when adding i to her predecessors in a random
permutation of the agent set N . Note that mπ

i is the increase
in Crowd IQ when adding i to a specific agent subset, Γπi ,
and the Shapley value is the average of these increments in
Crowd IQ across all agent permutations. Obviously, an indi-
vidual’s contextual IQ (Shapley value) is strongly affected by
her IQ score, as responding correctly to more items increases
the marginal contribution for mπ

i for many permutations π
(assuming a reasonable aggregator).

Computing contextual IQ using formula 1 requires a run-
ning time exponential in the number of the agents. We used
the approach of [3] for computing the Shapley value, which
offers a very high accuracy and a tractable polynomial run-
ning time. This algorithm samples many agent subsets (or
more precisely permutations) of the crowd and averages the
marginal contribution of the target agent in them to obtain
an accurate approximation of the Shapley value.

4. CROWD SIZE AND CROWD IQ
First, we unveil the relationship between the Crowd IQ

and its size. Figure 5 shows the relationship between the

size of the crowd (number of participants) and its IQ estab-
lished using both MAJ and ML aggregators as discussed in
Section 3.3. Each point in the plot is the average Crowd
IQ for q = 300 randomly selected crowds of the specified
size. Such repetitive sampling minimizes the influence of
the selection bias on the Crowd IQ estimates.

Figure 5: Crowd IQ scores based on the MAJ and
ML aggregators for different crowd sizes

Figure 5 shows that the Crowd IQ quickly increases with
the crowd size but saturates after reaching the crowd size of
14 participants and IQ of about 115, roughly one standard
deviation increase above the population mean. These results
indicate that the quality of the crowd decision is significantly
higher than the average IQ of its members. However, returns
from increasing the crowd size rapidly diminish after a cer-
tain size is reached. Also, Figure 5 shows that a machine
learning based aggregation consistently outperforms simple
majority aggregation, by learning which users provide cor-
rect responses more reliably.

5. SMARTER THAN A CROWD?
Here we investigate whether it is better to base decisions

solely on the opinions of the high-performing individuals in
a group, or to rely on other peoples’ opinions as well. One
way of examining this is to determine whether the Crowd
IQ is likely to exceed the IQ of the smartest individual in
the crowd. We use the approach described in Section 4 to
compute the relationship between Crowd IQ and its size and
we plot the maximal individual IQ for any given crowd size.

Figure 6 shows the relation between the crowd size, ex-
pected Crowd IQ, and expected maximal IQ for the entire
dataset used in this study. It is clear that in large crowds
characterized by a wide distribution of IQ scores, the max-
imal IQ consistently exceeds Crowd IQ. While Crowd IQ
for this population saturates around 115-120 IQ points, the
chance of the crowd encompassing individuals with extreme
IQ scores increases with the sample size.

However, it is common for the crowds to be composed
of individuals characterized by the similar IQ (homogeneous
crowds). For instance, the IQ of students of advanced de-
grees is likely to be homogenous and relatively high,as IQ
is correlated with academic performance. A homogeneous
crowd is less likely to contain an individual with an IQ score
much higher than the average IQ score in the crowd, so

539

Figure 6: Crowd IQ and maximal IQ (entire dataset)

the performance of the crowd may be superior to that of its
smartest individual. To examine this issue, we split our sam-
ple into a set of homogeneous subsamples based on the indi-
vidual IQ scores. Subsamples are denoted by P[L,H], where
[L,H] represents the range of participants’ IQ scores. Thus,
subsample P[110,120] contains individuals with IQ scores be-
tween 110 and 120.

Figures 7, 8, and 9 for subsamples P[95,105], P[110,120], and

P[80,90]
4 show that the Crowd IQ greatly exceeds its most

intelligent member’s IQ in homogeneous crowds. Also, a
homogeneous crowd’s advantage over its smartest member
increases as it grows.

Interestingly, the simple MAJ aggregator outperforms the
ML aggregator’s in homogeneous high and low IQ popula-
tions (P[110,120] and P[80,90]). A possible explanation of this
phenomenon might be related to the lack of outstanding
individuals in such crowds, that could be used by ML aggre-
gator to boost its performance. However, this clearly does
not apply to the similarly homogeneous P[95,105] subsample
where ML outperforms MAJ aggregator. Further, Figure 9
shows the decrease in performance of both aggregators for
very big crowd sizes. Aggregated performance might be af-
fected by especially popular but incorrect responses to the
difficult IQ items that may, for larger crowds, suppress the
correct but unpopular responses.

These results indicate that decisions based on the aggre-
gate opinions of rather homogeneous crowds are of a higher
quality than those based solely on the opinion of their most
intelligent member. On the contrary, in populations char-
acterized by a wide range of individual performance levels,
smartest members outperform the crowd. Note, however,
that in all cases the Crowd IQ greatly exceeds the IQ of the
average member of the crowd, as discussed in Section 4.

6. INDIVIDUAL IQ AND CONTEXTUAL IQ
We now focus on the relationship between individual and

contextual IQ. A participant’s contextual IQ is the expected
increase in Crowd IQ from adding that participant to a ran-
dom permutation of the crowd’s members. Given the op-
portunity to add another member to a team of an unknown

4The number of participants in these subsamples are:
|P[95,105]| = 48, |P[110,120]| = 39, |P[80,90]| = 39.

Figure 7: Crowd IQ and maximal IQ for P[95,105]

Figure 8: Crowd IQ and maximal IQ for P[110,120]

Figure 9: Crowd IQ and maximal IQ for P[80,90]

composition, the optimal choice is the agent with the high-
est contextual IQ. We now discuss the correlation between
individual IQ and contextual IQ using the crowd composed
of the entire population of n = 138 participants. Figure 10
presents a scatter plot correlating the participants’ IQ scores

540

with their contextual IQ scores.

Figure 10: IQ and Contextual IQ

As Figure 10 shows, there is a positive correlation between
IQ and Contextual IQ, but also a high variance of contextual
IQs for participants of equal IQ. For example, for the above-
average IQ of 105, contextual IQ ranges from very high,
through negligible to negative. Thus, even if more intelligent
people are generally contributing more to the Crowd IQ, the
value of their contribution varies and may even be negative.
This indicates that although adding the participant with
highest IQ score is a good heuristic, better results can be
achieved by using the Contextual IQ approach.

A participant’s contextual IQ depends on the aggregated
IQ, which in turn depends on the aggregator used. The co-
operative game used to generate Figure 10 was based on the
MAJ aggregator. Measuring the Crowd IQ under a different
aggregator (e.g. the ML aggregator), changes the contextual
IQ scores of the participants. For example, as shown in Fig-
ure 5, the Crowd IQ of all the participants is slightly higher
under the ML aggregator, and as the contextual IQ scores
must sum up to the total Crowd IQ, the sum of the contex-
tual IQ scores under the ML aggregator would be slightly
higher than their sum under the MAJ aggregator.

We now examine the extent to which a participant’s con-
textual IQ is sensitive to the aggregator. Figure 11 shows
a plot correlating a participant’s Contextual IQ under the
MAJ aggregator and her Contextual IQ under the ML ag-
gregator.

Figure 11 shows a high correlation between participant’s
contextual IQ under the MAJ and ML aggregators (correla-
tion coefficient of over 0.95). Thus, although the aggregator
has a slight impact on contextual IQ, the key factors af-
fecting contextual IQ are the participant’s IQ and the par-
ticipant match with the crowd (i.e. the uniqueness of her
contribution).

7. CONCLUSIONS AND LIMITATIONS
In this paper we focused on measuring the quality of de-

cisions based on aggregated opinions of the crowd. We pro-
posed that the aggregation of crowd opinions can be con-
veniently studied using the samples of individual responses
to standardized ability tests, such as Raven’s Standard Pro-
gressive Matrices. One of the main advantages of such sam-
ples is the ability to quantify both individual and crowd

Figure 11: Contextual IQ under the majority and
machine learning aggregator

performance on the same scale.
We showed that decisions based on the aggregated opin-

ions of the crowd are of higher quality than the average qual-
ity of the individual member’s opinions. A crowd of 14 indi-
viduals has an average IQ score of around 115, one standard
deviation above the average individual score. This finding is
especially important for crowdsourcing environments where
it is hard or impossible to detect highly performing individu-
als prior to the decision making process. We showed that the
decisions based on the aggregated opinions of homogeneous
crowds are better than the decisions based on the crowds’
best performing members, whereas the best approach for a
heterogeneous population is to identify the best performing
individual and base the decision on her opinions. Our find-
ings indicate that while an individual expert can be smarter
than the general opinion pool, she cannot compete against
the crowd of her highly performing colleagues, even if she
outsmarts each of them individually.

Finally, we proposed the concept of contextual IQ that al-
lows measuring individual contributions towards the aggre-
gate IQ of the crowd. We showed that although the contri-
bution is typically higher when the individual’s IQ is higher,
it also depends on the uniqueness of individual’s contribu-
tion in the context of a given crowd.

Limitations: Our approach has several limitations. First,
in our setting the crowd members expressed their opinions
independently. Such a situation is typical for many crowd-
sourcing environments, but our findings may not be relevant
to contexts in which crowd members can discuss or compare
their opinions. Second, we did not collect our data in an
actual crowdsourcing environment, where the structure of
the individual’s opinion might be different from what we
observed in our sample. For instance, while the dominant
strategy for filling the SPM IQ test is to attempt to answer
the item even if the correct response is unknown to the indi-
vidual, in some crowdsourcing environments (e.g. Amazon
Mechanical Turk) individuals may be punished for provid-
ing incorrect responses, and thus usually refrain from do-
ing so. Finally, the performance of the ML model was not
significantly or consistently higher than of the simple MAJ
aggregator which suggests that there is a field for improve-
ment. For example, a more advanced model could allow for

541

non-uniform distribution of incorrect responses.
Many questions are open for future research. Are there

better aggregators that give a stronger boost to Crowd IQ?
Which aggregators are better fitted for large and small crowds?
Do such aggregation effects also occur in domains other
than IQ and real-life crowdsourcing settings? Specifically,
would aggregating responses in crowdsourcing settings, such
as Amazon’s Mechanical Turk, yield similar results? Can the
match between an individual and a crowd be predicted us-
ing features such as personality, gender or country of origin?
Can contextual IQ be efficiently used to select small crowds
that would have a high performance in real-world tasks?

8. REFERENCES
[1] D. Austen-Smith and J.S. Banks. Information

aggregation, rationality, and the condorcet jury
theorem. American Political Science Review, pages
34–45, 1996.

[2] H. Aziz, O. Lachish, M. Paterson, and R. Savani.
Power indices in spanning connectivity games.
Algorithmic Aspects in Information and Management,
pages 55–67, 2009.

[3] Y. Bachrach, E. Markakis, E. Resnick, A.D. Procaccia,
J.S. Rosenschein, and A. Saberi. Approximating power
indices: theoretical and empirical analysis.
Autonomous Agents and Multiagent Systems, 2010.

[4] Y. Bachrach and J.S. Rosenschein. Power in threshold
network flow games. Autonomous Agents and
Multi-Agent Systems, 18(1):106–132, 2009.

[5] Y. Bachrach, J.S. Rosenschein, and E. Porat. Power
and stability in connectivity games. In Proceedings of
the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 2, pages
999–1006. International Foundation for Autonomous
Agents and Multiagent Systems, 2008.

[6] J. F. Banzhaf. Weighted voting doesn’t work: a
mathematical analysis. Rutgers Law Review,
19:317–343, 1965.

[7] A.P. Dawid and A.M. Skene. Maximum likelihood
estimation of observer error-rates using the em
algorithm. Applied Statistics, pages 20–28, 1979.

[8] O. Dekel, F. Fischer, and A.D. Procaccia. Incentive
compatible regression learning. In SODA, 2008.

[9] P. Everaere, S. Konieczny, and P. Marquis. The
strategy-proofness landscape of merging. Journal of
Artificial Intelligence Research, 2007.

[10] L.S. Gottfredson. Why g matters: The complexity of
everyday life. Intelligence, 24(1):79–132, 1997.

[11] A.R. Jensen. The g factor: The science of mental
ability. London: Westport, 1998.

[12] G. Kasneci, J. Van Gael, R. Herbrich, and T. Graepel.
Bayesian knowledge corroboration with logical rules
and user feedback. In Proceedings of the 2010
European conference on Machine learning and
knowledge discovery in databases: Part II, pages 1–18.
Springer, 2010.

[13] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[14] Dennis L. Voting power in the governance of the
international monetary fund. Annals of Operations
Research, 109(1-4):375–397, 2002.

[15] C. List and R.E. Goodin. Epistemic democracy:
generalizing the condorcet jury theorem. Journal of
Political Philosophy, 9(3):277–306, 2001.

[16] C. List and C. Puppe. Judgment aggregation: A
survey. Handbook of Rational and Social Choice, 2009.

[17] J. Lorenz, H. Rauhut, F. Schweitzer, and D. Helbing.
How social influence can undermine the wisdom of
crowd effect. Proceedings of the National Academy of
Sciences, 2011.

[18] D. Lubinski. Introduction to the special section on
cognitive abilities: 100 years after spearman’s
(1904)”general intelligence,’objectively determined and
measured”. Journal of Personality and Social
Psychology, 86(1):96, 2004.

[19] J.A. Lyle. Collective problem solving: Are the many
smarter than the few? 2008.

[20] A. McLennan. Consequences of the condorcet jury
theorem for beneficial information aggregation by
rational agents. American Political Science Review,
pages 413–418, 1998.

[21] J. Pearl. Probabilistic reasoning in intelligent systems :
networks of plausible inference. 1988.

[22] D.M. Pennock and R. Sami. Computational aspects of
prediction markets, 2007.

[23] J.C. Raven. Standard progressive matrices plus, sets
a-e.

[24] J.C. Raven. Progressive matrices. Éditions
Scientifiques et Psychotechniques, 1938.

[25] J.C. Raven. The raven’s progressive matrices: Change
and stability over culture and time. Cognitive
Psychology, 41(1):1–48, 2000.

[26] J.C. Raven, J.H. Court, and J.E. Raven. Manual for
Raven’s progressive matrices and vocabulary scales.
HK Lewis, 1978.

[27] D. Samet, Y. Tauman, and I. Zang. An application of
the aumann-shapley prices for cost allocation in
transportation problems. Mathematics of Operations
Research, pages 25–42, 1984.

[28] F.L. Schmidt and J. Hunter. General mental ability in
the world of work: occupational attainment and job
performance. Journal of Personality and Social
Psychology, 86(1):162, 2004.

[29] A. Sen. Social choice theory. Handbook of
mathematical economics, 3:1073–1181, 1986.

[30] L. S. Shapley. A value for n-person games. Contrib. to
the Theory of Games, pages 31–40, 1953.

[31] L. S. Shapley and M. Shubik. A method for evaluating
the distribution of power in a committee system.
American Political Science Review, 48:787–792, 1954.

[32] C. Spearman. The abilities of man. 1927.

[33] S.H. Tijs and T.S.H. Driessen. Game theory and cost
allocation problems. Management Science, pages
1015–1028, 1986.

[34] P. Welinder, S. Branson, S. Belongie, and P. Perona.
The multidimensional wisdom of crowds. In Neural
Information Processing Systems Conference (NIPS),
volume 6, page 8, 2010.

[35] A.W. Woolley, C.F. Chabris, A. Pentland, N. Hashmi,
and T.W. Malone. Evidence for a collective
intelligence factor in the performance of human
groups. Science, 330(6004):686, 2010.

542

Efficient Opinion Sharing
in Large Decentralised Teams

Oleksandr Pryymak, Alex Rogers, Nicholas R. Jennings
Electronics and Computer Science

University of Southampton
Southampton, UK

{op08r, acr, nrj}@ecs.soton.ac.uk

ABSTRACT
In this paper we present an approach for improving the accu-
racy of shared opinions in a large decentralised team. Specif-
ically, our solution optimises the opinion sharing process in
order to help the majority of agents to form the correct opin-
ion about a state of a common subject of interest, given only
few agents with noisy sensors in the large team. We build on
existing research that has examined models of this opinion
sharing problem and shown the existence of optimal parame-
ters where incorrect opinions are filtered out during the shar-
ing process. In order to exploit this collective behaviour in
complex networks, we present a new decentralised algorithm
that allows each agent to gradually regulate the importance
of its neighbours’ opinions (their social influence). This leads
the system to the optimised state in which agents are most
likely to filter incorrect opinions, and form a correct opinion
regarding the subject of interest. Crucially, our algorithm is
the first that does not introduce additional communication
over the opinion sharing itself. Using it 80-90% of the agents
form the correct opinion, in contrast to 60-75% with the ex-
isting message-passing algorithm DACOR proposed for this
setting. Moreover, our solution is adaptive to the network
topology and scales to thousands of agents. Finally, the use
of our algorithm allows agents to significantly improve their
accuracy even when deployed by only half of the team.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence

General Terms
Algorithms, Performance, Reliability

Keywords
Self-organisation, Emergent behaviour, Distributed problem
solving

1. INTRODUCTION

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The problem of sharing information in large networked teams
of hundreds and thousands of agents has recently received
much attention in terms of how to facilitate the resolution of
conflicting information and to improve its accuracy. In this
paper we focus on a case when agents share opinions about
the state of the common subject of interest, and these opin-
ions may conflict. The aim of each agent is to maximise
its accuracy by forming only correct opinions that corre-
spond to the subject’s true state. To fulfil its aim, the agent
fuses opinions from other agents and forms its own opin-
ion. However, in many decentralised systems, such as so-
cial communities and sensor networks, agents’ interactions
are restricted by a communication network. Thus, agents
can receive opinions only from a limited number of their
network neighbours. The complex topological properties of
such communication networks [8] give rise to surprising and
non-trivial collective behaviour in these opinion sharing pro-
cesses [3, 10]. For example, a team may suddenly change its
state when a large number of agents change their opinions
in an opinion cascade after just a single new observation
has been introduced [1]. Therefore, there is a crucial need
to take into consideration and exploit the properties of col-
lective behaviour in developing an agent-based approach for
improving the accuracy of shared opinions.

Recently, Glinton, Scerri and Sycara [4, 5, 6] have pre-
sented an agent-based model of opinion sharing to analyse
the impact of collective behaviour on the accuracy of the
agents’ opinions. In contrast to the classical models of opin-
ion sharing [3], the researchers model observations of the
common subject of interest by agents with noisy sensors.
This approach enables us to reason about the accuracy of
the opinions. Their analysis reveals that the accuracy dra-
matically increase in a narrow range of social influence pa-
rameters that encode how agents affect each other [4]. This
narrow range correspond to a phase transition between a sta-
ble state of the team (where opinions are not shared) and an
unstable one (where early and possible incorrect opinions are
shared on a large scale). Close to this phase transition the
number of agents that take part in an opinion cascade is dis-
tributed by a power law, and thus, opinion sharing exhibits
scale-invariant dynamics. At this point, frequent small cas-
cades prevent the team from overreacting to early and pos-
sibly incorrect opinions. While less frequent, large cascades
share the locally supported opinions to the rest of the team.
In Glinton et al.’s model the social influence parameters, on
which the opinion sharing depends, are implemented as im-
portance levels that each agent attributes to its neighbours’
opinions. Unfortunately, it is impossible to predict the im-

543

portance levels that introduce these scale-invariant dynam-
ics since the properties of the communication network has a
significant influence on the sharing processes and thus, an-
alytical analysis cannot be applied to teams with complex
communication networks [2]. In order to achieve the opti-
mal parameter in such system, Glinton et al. proposed the
Distributed Adaptive Communication for Overall Reliabil-
ity (DACOR) algorithm [5]. DACOR is an online algorithm
that adjusts the agents’ importance levels according to the
estimated local branching factor – the expected number of
neighbours that would change their opinions following the
change of an agent’s opinion. In particular, it was found
that in the area of optimal parameters the branching factor
is close to 1.

However, actually performing a decentralised estimation
of the branching factor by DACOR requires significant com-
munication overhead compared to the opinion sharing itself.
In many settings the capabilities of the agents are restricted
and communication is limited to opinion sharing only. These
restrictions can be found in many realistic settings, such as
sensor networks where it is expensive to share data, or so-
cial communities where people rely on the opinions of others
when they do not have enough resources or skills to anal-
yse the original information themselves. Therefore, there is
a need to address the open problem of improving the ac-
curacy of shared opinions in settings where communication
is strictly limited to opinion sharing. Moreover, to be ap-
plicable across a broad range of domains, a solution must
adapt to the network topology. However, as our empirical
evaluation reveals, the internal parameters of DACOR are
very sensitive to the team’s configuration and they have to
be tuned individually for different domains.

To address these shortcomings, we present a decentralised
algorithm for Adaptive Autonomous Tuning (AAT) of agents’
importance levels. AAT improves the accuracy of the opin-
ions in complex networks without introducing additional
communication overhead. In contrast to DACOR, our algo-
rithm relies solely on agents’ local observations, rather than
resource-intensive estimation of the branching factor. Our
approach is based on the observation that opinions in the
team becomes dramatically more accurate when the agents
apply the minimal importance levels to their neighbours that
still enable them to share opinions on the team scale. By
meeting this condition at the individual agent level, AAT
gradually tunes the team to the phase transition in the dy-
namics of the opinion sharing between the stable and the
unstable state. In such settings the team exhibits signifi-
cant improvement in the accuracy of agents’ opinions since
the team does not overreact to early and possibly incorrect
opinions and the agents share opinions in smaller groups
before a large cascade occurs.

In more detail, the contributions of this paper are:

1. We develop a novel decentralised algorithm, AAT, that
improves the accuracy of the opinions in a large team
with a complex communication network by exploiting
the properties of its collective behaviour. Crucially,
AAT is the first solution that operates when commu-
nication is strictly limited to opinion sharing, and is
able to adapt to the specific communication network
in which the agents find themselves.

2. We empirically evaluate AAT and show that it signif-
icantly outperforms the state-of-the-art solution, DA-
COR. Specifically, using AAT, 80-90% of the agents’

typically form the correct opinion about the common
subject of interest. This figure is significantly higher
than 60-75% for DACOR, and close to 90-95% that can
be reached by pre-tuning a team by an expensive em-
pirical exploration of its parameters. Moreover, AAT
introduces less computation expenses and each agent
requires 104 times less actions than with DACOR.

3. We show that AAT is the first efficient solution de-
signed to improve accuracy in teams with indifferent
agents that do not participate in the optimisation pro-
cess. Specifically, it significantly improves the accu-
racy with up to 50% of indifferent agents in the team.
This implies that AAT potentially can be used by the
large teams where it is impossible to update the be-
haviour of all agents, such as human-agent networks
or heterogeneous sensor networks.

The remainder of this paper is organised as follows. In
Section 2 the model of the environment, its properties and
metrics are discussed. In Section 3 the agents’ dynamics
are analysed and AAT is presented. Then, in Section 4
AAT is empirically evaluated to demonstrate its efficiency
in contrast to DACOR and it is compared with a team pre-
tuned for the highest accuracy. Section 5 concludes this
work.

2. PROBLEM DESCRIPTION
In this section, we formally describe an agent-based model
of opinion sharing that was recently proposed and analysed
by Glinton, Scerri and Sycara [4, 5, 6]. The aim of the model
is to capture the complex dynamics of opinion sharing in a
network of cooperative agents. In this model, some agents
have access to noisy sensors, and they introduce to the team
conflicting opinions of which only one is correct. Due to
communication constraints agents can only share opinions
with their network neighbours, without any additional in-
formation.

2.1 Model of Opinion Sharing
Formally, the Glinton, Scerri and Sycara model consists of a
large set of agents A = {il : l ∈ 1 . . . N}, N � 100 connected
by a undirected network G(A,E) where E is the set of edges
indicating which agents are neighbours and can therefore
communicate. Each agent, i ∈ A has a neighbourhood Di =
{j : ∃ (i, j) ∈ E} and the average number of neighbours is
defined as the expected degree d, where d =

∑
i∈A |Di|/N .

We assume that the network is sparse d � N in order to
observe the cascading behaviour in the sharing process.

The aim of every agent, and eventually of the whole team,
is to find the true state b of the common subject of interest,
for example B = {white, black}, where b ∈ B. We support
the assumption that B is binary following the argument that
a binary choice can be applied to a wide range of real world
situations [11]. However, our approach, presented later, does
not rely on this limitation and can be extended for |B| > 2.

The goal of each agent is to form its own correct opinion,
oi, such that oi = b. To recover this true state, agents rely on
noisy sensors and their neighbours’ opinions about the value
of b. To decide which conflicting opinion to adopt, agent i
forms its private belief Pi(b=white), which is the probability
that b = white (further denoted as Pi) and consequently
1 − Pi is the probability of b = black. The agent updates
its belief starting from some initial prior P ′i and the ongoing

544

belief is denoted by P ki where k is the current step of the
belief update sequence.

Only a small subset of agents S ⊂ A, |S| � N have noisy
sensors and can make observations of the true state b. Each
agent with a sensor i ∈ S periodically receives an observation
si ∈ B with a low accuracy r (0.5 < r � 1), which is the
probability of returning the true state b. To incorporate a
new observation from the sensor into its belief, the agent
uses formal reasoning based on Bayes’ theorem:

P ki =
cupdP

k−1
i

(1− cupd)(1− P k−1
i) + cupdP

k−1
i

, (1)

where

{
cupd = r if si = white

cupd = 1− r if si = black

After updating its belief with a number of observations the
agent may become confident enough to form its own opinion
oki about the true state b. It does so once its belief P ki
exceeds thresholds, following the opinion update rule:

oki =

undeter., initial, if k=0

white, if P ki ≥ σ
black, if P ki ≤ 1–σ

ok−1
i otherwise

(2)

wh
it
e

bl
ac
k

un
de
te
r

ok

1P'i0 σ1-σ

Pk
i

i

Figure 1: The opinion update rule

where thresholds {1–σ, σ} are the confidence bounds and
0.5 < σ < 1. The opinion update function has the shape
of a sharp hysteresis loop (Fig. 1), and because sensors are
noisy, it is possible that later observations will support the
opposite opinion, and the agent may change its opinion.

Every time the agent changes its opinion, it communi-
cates the new opinion to its neighbours. Consequently, these
neighbours update their own beliefs and may form their own
opinions. If the agent changes its opinion following a re-
ceived opinion from its neighbour, it participates in an opin-
ion cascade where a number of agents change their opinions
in a sequence after a critical sensor observation. In order
to incorporate opinions of the neighbours, the agent uses
Bayes’ theorem to update its belief similarity to sensor ob-
servations, such that when the agent receives new opinions
from its neighbours {oj : j ∈ Di}, it uses the same belief
update rule for each received opinion oj :

Eq. (1), where

{
cupd = ti if oj = white

cupd = 1− ti if oj = black
(3)

where ti ∈ [0, 1] is the importance level. This is the measure
of the social influence of the neighbour’s opinion (that is
a conditional probability on opinions communicated from
the neighbours). Note, the similarity with Equation 1 such
that the importance level is analogous to the accuracy of a
noisy sensor, r. However, unlike the accuracy r of a sensor,

importance level ti is unknown and each agent must find its
value. In Section 3 we offer our algorithm for this purpose.

The agents in this model are cooperative and thus, they
consider only the range ti ∈ [0.5, 1], where ti = 0.5 indi-
cates that the received opinion is ignored, and ti = 1 is the
maximum importance such that the agent changes its belief
to P ki = {1, 0} (depending on the received opinion) regard-
less of its previous value P k−1

i . The model implies that the
neighbours can be equally wrong in their opinions since sen-
sor readings are introduced randomly. Therefore, it makes
an additional assumption that the agent does not differen-
tiate the sources of received opinions and applies the same
importance level ti for all its neighbours. We intend to relax
this assumption in our future work and develop techniques
that will help to make decisions about the importance of the
opinions of each neighbours’ individually.

Glinton et al. showed that this model exhibits emergent
behaviour and the agents’ opinions converge to the true state
dramatically more often when the number of agents that
take part in an opinion cascade is distributed by a power
law, that is known as scale-invariant dynamics [5]. The
importance levels are a key parameter which regulate the
sharing process and thus, impact the distribution of sizes of
opinion cascades. Unfortunately, it was shown that it is in-
feasible in the general case to predict the importance levels
(temr), at which the emergent behaviour occurs, as this is
highly dependent on topology of the network, the distribu-
tion of the priors of the agents’ and the properties of the
sensors. When the team operates with importance levels
lower than the critical ∀i ∈ A : ti � temr, it is in the sta-
ble state of its dynamics and the agents cannot form their
own opinions because their beliefs never cross the confidence
bounds. Conversely, the team is in the unstable state when
ti � temr, and the agents instantly form confident beliefs,
propagate the first, possibly incorrect opinion, and do not
benefit from the presence of multiple sensors in the team.

2.2 Performance Metrics of the Model
In order to measure the performance of the team, the model
is simulated for a number of opinion dissemination rounds,
M = {ml : l ∈ 1 . . . |M |}, where in each round the new true
state bm ∈ B is selected randomly. We observe the agents’
final opinions, omi , at the end of each round, m. Each round
is limited by a large number of belief update steps, k, after
which the team is likely to converge to the state where no
agent is willing to change its opinion. The end of each round
constitutes a certain deadline when the current true state
expires. It may be followed by further rounds, in which
case, the agents reset their beliefs and opinions to the initial
values.

To measure the average accuracy of the agents’ opinions
at the end of each round, Glinton et al. [5] proposed a met-
ric based on the accuracy of the team that was defined as
the ratio between the number of dissemination rounds when
the agents’ final opinions are correct versus incorrect. This
metric heavily penalises the team for disseminating incor-
rect opinions. However, it can be also maximised if a large
proportion of the team does not form any opinion. This is
somewhat problematic because we note that in many sce-
narios it is also important for the agents to form an opinion
even if that opinion turn out to be incorrect. Thus, there
is a need to balance both the need to be correct, and to
actually form an opinion. Therefore we offer the accuracy

545

metric that measures how often an agent forms the correct
opinion on average:

R =
1

N |M |
∑

i∈A
|{m ∈M : omi = bm}| · 100% (4)

Additionally we introduce a metric from a perspective of a
single agent. Since it cannot determine when it has formed
a correct opinion, the agent is interested to measure how
often it forms an opinion. We denote this as an agent’s
awareness rate, hi, that is the proportion of dissemination
rounds where the agent i held an opinion rather than being
undetermined compared to the total number of rounds:

hi =
|{m ∈M : omi 6= undeter.}|

|M | (5)

This myopic metric can be calculated locally by each agent
and we use it as a basis of our algorithm later. Having intro-
duced the model, we look next at algorithms which optimise
the accuracy R, and in Section 4 we offer additional metrics
to evaluate their efficiency.

3. AUTONOMOUS ADAPTIVE TUNING
In this section, we present our Autonomous Adaptive Tun-
ing (AAT) algorithm, for improving the accuracy R of a
complex communication network by exploiting its collective
behaviour. In contrast to the existing algorithm, DACOR,
our solution does not introduce communication overhead
and communication is strictly limited to opinion sharing.
Specifically, in order to estimate the local branching factor,
DACOR requires that following a change of an agent’s opin-
ion, all its neighbours communicate on average d2 additional
service messages, where d is the expected number of neigh-
bours.

We address this shortcoming by developing a new solution
that updates agents’ importance levels autonomously, rely-
ing on their local observations. Specifically, AAT is built on
the observation that accuracy significantly increases when
the dynamics of the opinion sharing is in the phase transi-
tion between the stable state (when opinions are not shared,
∀i ∈ A : hi � 1) and an unstable one (when the first intro-
duced opinion is propagated on a large scale, hi = 1). This
creates a condition where the team does not overreact to
incorrect opinions and the agents share opinions in smaller
groups before a large cascade occurs. To reach this area
of optimal parameters, AAT gradually tunes an importance
level of each agent individually.

The three stages of AAT are described in the following
sections. Firstly each agent running AAT builds a set of
candidate importance levels to reduce the search space for
the following stages. Then the agent estimates the aware-
ness rates of the candidate levels after each dissemination
round. Finally, the agent selects an importance level to use
in the following round, considering how close its estimated
awareness is to the target awareness rate.

3.1 Candidate Importance Levels
In this section, we discuss how each agent running AAT
selects a number of candidate importance levels, Ti, which
reduces the continuous problem of selecting an importance
level to use, ti, from the range [0.5, 1] to a discrete problem.
In the general case Ti may be populated with importance
levels drawn from the range [0.5, 1] with a given step size,
for example 0.01. However, by analysing the dynamics of an

1P'i0 σ1-σ

oi
=bl

ac
k

k=3

o i
 =w
hi
te

k=12

u i =
7m

Pk
i

Figure 2: The sample dynamics of an agent’s be-
lief with marked steps when the agent changed its
opinion.

agent we can offer a solution for selecting a smaller number
of candidate levels which will help AAT to converge to the
optimal parameters faster.

Since the number of sensors is very small, we focus on
the analysis of the agents without sensors who inform their
beliefs using only their neighbours’ opinions. For example,
Figure 2 illustrates the sample dynamics of an agent’s belief,
P ki , where the agent i participated in 2 opinion cascades of
conflicting opinions. Starting from its prior P ′i , using Bayes’
theorem the agent updates its belief with 4 neighbours’ opin-
ions that support ‘black’ (i.e. 4 updates to the left from the
prior P ′i that decrease the agent’s belief P ki (b = white)),
after which the agent sequentially receives 11 opinions sup-
porting ‘white’ (i.e. updates to the right that increase P ki).

Clearly, the most important moments in this dynamic are
the update steps when the agent change its opinion (steps
k = 3 and k = 12) since only at these steps does the agent
communicates a new opinion to its neighbours. To find all
the cases whereby the agent can influence the local dynam-
ics, we must find all the importance levels for which the
opinion formation process may change. According to the
opinion update rule (Eq. 2) we can limit this analysis only
to those cases when the agent’s belief coincides with one of
the confidence bounds P ki ∈ {σ, 1–σ}. Considering also that
the maximum number of opinions that the agent can receive
is limited to the number of its neighbours, |Di|, we can allow
each agent to pre-calculate the candidate importance levels.
Specifically, the agent has to find only those importance lev-
els for which its belief coincides with one of the confidence
bound P li ∈ {σ, 1–σ} in l ∈ 1 . . . |Di| updates (see Eq. 3).
By solving this problem, the agent constructs a set of the
candidate importance levels that lead to opinion formation
after receiving 1 . . . |Di| identical opinions and reaching the
confidence bound σ or 1− σ:

Ti =
{
tli : P li (t

l
i) = σ, l ∈ 1...|Di|

}
∪

{
tli : P li (1− tli) = 1− σ, l ∈ 1...|Di|

}
(6)

As a result, the set of candidate levels is limited to twice the
number of neighbours: |Ti| = 2|Di|. This is a complete set
of importance levels for which the agent forms an opinion
on different update steps and it has to be initialised only
once. Now, the agent has to form its preferences over these
candidate levels to select the most appropriate one to use.

3.2 Estimation of the Awareness Rates
In this section we present the criteria according to which
AAT selects an importance level from the candidates. As
mentioned earlier, AAT is based on our observation that
the accuracy, R, is maximised when the dynamics of opinion
sharing is in a phase transition between stable and unstable
state. In order to reach such optimal parameters the agents

546

should use the minimal importance levels to their neighbours
that still enable them to share opinions on the team scale.

The intuition is that in order to form an accurate opinion,
the agent has to gather as many of its neighbours’ opinions
as possible before forming its own opinion. To do so, it has
to use the minimal importance level from its candidate set.
However, if all agents use the minimal importance level and
wait until all their neighbours form opinions, a deadlock
results where the opinion sharing stops. Therefore, each
agent must apply a minimal importance level to the received
opinions which guarantees that the agent actually forms its
own opinion and shares it further.

In terms of the model we can formalise this, such that in
order to maximise the accuracy, R each agent has to:

• Form its opinion, and thus, reach a high level of its
awareness rate (hi, the proportion of the rounds where
the agent held an opinion rather being undetermined)
since the agents with undetermined opinions decrease
the team’s accuracy;

• Form the correct opinion given its local view. Follow-
ing the intuition above, in order to do so, the agent has
to form an opinion as late as it is possible to gather
the maximum number of neighbours’ opinions.

To meet these conditions, the agent has to use the minimal
importance level out of the candidates, tli ∈ Ti, that always
lead to an opinion formation (hi = 1).

However, since sensors introduce observations randomly,
the opinion sharing dynamic in the area of the phase tran-
sition exhibits stochastic behaviour. As a result, during
some rounds opinions are not shared on a large scale and
the agents’ awareness rates suffer. Therefore, to improve
the overall accuracy and find the exact position of the phase
transition, each agent i has to compromise its own aware-
ness rate, hi. Specifically, the agent has to find the minimal
importance level, tli out of candidates Ti that delivers the
target awareness rate, htrg, that is slightly lower than the
maximum, 1. Formally, each agent solves the following op-
timisation problem:

ti = arg min
tli∈Ti

|hi(tli)− htrg| (7)

where hi(t
l
i) is the awareness rate that the agent achieves

using importance level tli. We analyse the impact of the
specific value of htrg on the accuracy in the empirical evalu-
ation (Section 4.1).

Now, in order to perform the optimisation in Equation 7,
the agent needs to calculate all awareness rates, h(tli), that
would be achieved by using tli ∈ Ti. However, according to
the definition of the awareness rate, hi (Eq. 5), it can be
measured only for the importance level, ti, that the agent
currently uses. By analysing the process of the agents’ belief
update, we propose the following approach to estimate the
awareness rate based on the local observation. Specifically,
to estimate the awareness rate, ĥli ≈ h(tli), the agent has to
decide if its opinion could have been formed had it used an
importance level, tli, rather than the actually used ti. We
identify two cases that indicate this:

1. Consider the case that the agent used importance level
ti in roundm and an opinion was formed, omi 6= undeter.
According to the belief update function (Eq. 3) all
higher importance levels, tli ≥ ti, would have led to the
more confident belief (|Pi(tli)| > |Pi(ti)|), and thus, to
opinion formation.

Algorithm 1 AAT

Procedure Update(i)
{Revises the current importance level after each round}
1: if Opinions Recieved : umi 6= 0 then
2: for all Candidate Levels : tli ∈ Ti do
3: if OpinionFormed(tli, ti,m) = True then

4: ĥli = UpdateAverageAwareness(ĥli, 1)
5: else
6: ĥli = UpdateAverageAwareness(ĥli, 0)

7: ti = SelectByAwareness
(
〈tli, ĥli〉 : l ∈ 1..|Ti|

)

2. Otherwise, if the opinion was not formed, the agent
can make a decision by comparing the number of up-
dates it has observed and the number required for the
candidate level, tli, to form an opinion. Specifically, the
minimal number of belief updates required to form the
opinion with the candidate level, tli, can be calculated
by recursively updating the agent’s belief (see Eq. 3)
starting its prior until it exceeds one of the confidence
bounds: σ for updates with tli, or 1 − σ with 1 − tli.
We denote this function as u(tli, P

′
i , σ). At the same

time, during the dissemination round the agent can
observe the maximum number of updates it has made
in favour of any conflicting opinion starting its prior.
We denote this value as umi . In Figure 2 it is observed
on the last belief update step umi = |4 − 11| = 7. Fi-
nally, the opinion should have been formed when the
the number of updates required for the candidate tli is
smaller or equal than the observed number umi .

Combining these cases, we construct a boolean function that
returns True if the agent might have formed an opinion in
the current round, m using importance level tli with actual
importance level ti:

OpinionFormed(tli, ti,m) =
(
omi 6= undeter. ∧ tli ≥ ti

)

∨ umi ≥ u(tli, P
′
i , σ) (8)

Following the definition of the awareness rate (Eq. 5),
to estimate the awareness rates for the candidate levels the
agent has to measure the proportion of dissemination rounds
m ∈M for which the condition above was matched:

ĥli =
|{m ∈M : OpinionFormed(tli, ti,m) = True}|

|M | (9)

Algorithm 1 describes the core procedure of AAT that im-
plements this approach to estimate awareness rates and is
executed after each dissemination round. If no opinions were
received (umi = 0), the agent cannot form its own opinion
with any of the importance level, and thus this case is lim-
ited by the condition on line 1. In lines 2-6, AAT updates
the estimates of the awareness rate for each of the candidate
levels according to the procedure described above. Now, ac-
cording to optimisation problem the agent solves (Eq. 7), it
has to select the importance level (line 7) that delivers the
awareness rate closest to the target, htrg, considering the
high interdependence between agents’ choices.

3.3 Strategy to Select an Importance Level
The agents’ opinions are highly interdependent and an im-
portance level chosen by a single agent eventually affects the
dynamics and awareness rates of all agents. Therefore, if the

547

agent would greedily select its importance level according to
the definition of its optimisation problem (Eq. 7), it may
dramatically change local dynamics. Instead, the agent has
to employ a strategy with less dramatic changes in its dy-
namics, in order that entire team estimate awareness rates
more accurately and converge to the solution faster.

To construct such a strategy, we note that since the low-
est importance level, t1i , from the candidates in ascending
order, requires more sequential updates to cross one of the
confidence bounds, while the largest tmax

i requires less, then
the awareness rates are distributed as a hill with a peak
for the largest importance level, tmax

i . Therefore, we offer
a hill-climbing strategy that makes use of this observation.
If the awareness rate delivered by the currently used impor-
tance level, ti = tli, is lower than target ĥli < htrg, the agent
must increase the importance level to the closest larger one
(i.e. l = l + 1). Conversely, if the closest lower importance
level is estimated to deliver an awareness rate higher than
ĥl−1
i > htrg, the agent chooses to use it in the next round

(i.e. l = l − 1). Our empirical evaluation confirmed that
the hill-climbing strategy delivers the higher accuracy then
the greedy strategy and for brevity we present results only
of AAT based on it.

4. EMPIRICAL EVALUATION
To empirically evaluate the performance of AAT and the ex-
isting DACOR, we consider a wide range of parameters in or-
der to examine their adaptivity and scalability. Specifically,
we evaluate the accuracy of teams with N ∈ {150 . . . 2000}
agents on networks with a variable expected degree, d ∈
{4 . . . 12}. The maximum size of a team is limited due to
the high computational expenses required to empirically pre-
tune a team for the highest accuracy that we use later as
a benchmark. We consider the following network topolo-
gies widely used in the literature: (a) a connected ran-
dom network; (b) a scale-free network with clustering fac-
tor pcluster = 0.7 [7]; (c) a small-world ring network with
prewire = 0.12 of randomised connections. [9]. New opinions
are introduced through a small number of sensors (|S| =
0.05N with accuracy r = 0.55) that are randomly distributed
across the team. To simulate a gradual introduction of
new opinions, only 10% of sensors make new observations
after the preceding opinion cascade has stopped. Finally,
all agents are initialised with the same confidence bound
σ = 0.8, initial opinion o0i = undeter., and individually
assigned priors P ′i that are drawn from a normal distribu-
tion N (µ = 0.5, s = 0.1) within the range of the confidence
bounds (1− σ, σ).

Before every round m we randomly choose the true state
bm ∈ B. Each round stops after 3000 sensors’ observations
and sequential opinion cascades. After this number of obser-
vations, the opinions of the agents with sensors converge to
the true state, and thus, the sharing process stops. The end
of each round constitutes a deadline when the current true
state expires, and agents reset their beliefs and opinions to
the initial values. AAT and DACOR tune the importance
levels in the first 150 rounds, then the metrics are measured
over the following 150 rounds. Error bars in figures indicate
the standard errors across a designated number of network
instances in each case.

4.1 Selection of the Target Awareness Rate
We first analyse the performance of our algorithm AAT with

0.8 0.85 0.9 0.95 1
60

70

80

90

100

Target awareness rate, htrg

A
cc

ur
ac

y,
 R

 (%
)

(a)

0.8 0.85 0.9 0.95 1
0.6

0.65

0.7

0.75

Target awareness rate, htrg

A
v.

 im
po

rt
an

ce
 le

ve
l,

〈t
i〉

(b)

Random Scale-free Small-world networks

Figure 3: (a) The accuracy and (b) the average im-
portance level achieved by AAT, both depend on
the target awareness rate htrg (40 instances of each
topology with N = 1000 and d ∈ {4 . . . 12}).

a regard to its single parameter – the target awareness rate
htrg. The analysis supports our earlier assertion, that htrg

has to be slightly lower than 1 to tune the team to the area of
optimal parameters. Figure 3 shows that the highest accu-
racy achieved when htrg = 0.9 regardless of the topology of
the network. The accuracy significantly drops for the higher
values of htrg (Fig. 3a) since agents select much larger im-
portance levels (Fig. 3b) to form opinions out of smaller
number of observations. Thus, they become overconfident
and the whole team converges to the early opinion without
fusing it with later observations that might be more accu-
rate. Considering the results, in our further evaluation we
use htrg = 0.9.

4.2 Accuracy of the Opinions
We now benchmark AAT against three alternative solutions.
First, we compare against DACOR (with parameters uA =
10, γ = 0.001, β = 0.1 selected to maximise the accuracy
of a random network with d = 8), the current state of the
art solution in this setting. In addition, we also benchmark
against a team pre-tuned for the highest performance on a
specific network instance. In more detail, to pre-tune a team,
we perform a resource intensive empirical exploration of each
network instance with fixed importance levels ∀i ∈ A : ti =
t, where t ∈ (0.5, 1) with a step of 0.05 over |M | = 150
rounds. Then we choose the importance level temr at which
the team exhibits the highest accuracy. Note, that this is
not the optimal solution, as it is infeasible to explore the
whole domain where agents may have different importance
levels. Still, this approximation exhibits a high accuracy
of 90 to 97% and shows its level that can be achieved by
fine tuning. However, temr varies between different network
instances since the area of optimal parameters is very narrow
and dependent on the team’s configuration. Therefore, to
illustrate how difficult such tuning is in practice, we also
benchmark against the team with the average 〈temr〉 for the
networks of the same size and topology.

The results of the accuracy benchmark are shown in Fig-
ure 4a. As can be seen, AAT shows accuracy close to the
results of the pre-tuned teams and significantly outperforms
the existing solution, DACOR, for all network topologies.
AAT scales well, since it reaches the stable accuracy around
of 86 to 88% for teams larger than 1000 agents. However, it
declines as the team size becomes lower than 1000 agents.
This is due to the fact that the properties of collective be-
haviour are less distinct in smaller teams. Analysis of the

548

500 1000 1500 2000
50

60

70

80

90

100
(1) Random network

A
cc

ur
ac

y,
 R

 (
%

)

Network Size, N
500 1000 1500 2000

(2) Scale−free network

A
cc

ur
ac

y,
 R

 (
%

)

Network Size, N
500 1000 1500 2000

(3) Small−world network

A
cc

ur
ac

y,
 R

 (
%

)

Network Size, N

AAT DACOR Individually pre-tuned importance level Average pre-tuned importance level

0

500

1000

1500

2000

500 1000 1500 2000
Network Size, N

500 1000 1500 2000
Network Size, N

500 1000 1500 2000
Network Size, N

0

500

1000

1500

2000

0

500

1000

1500

2000

C
on

ve
rg

en
ce

, t
im

es
te

p
k

C
on

ve
rg

en
ce

, t
im

es
te

p
k

C
on

ve
rg

en
ce

, t
im

es
te

p
k

50

60

70

80

90

100

50

60

70

80

90

100

(a)

(b)

Figure 4: (a) The accuracy and (b) the convergence of a team with AAT, DACOR, and pre-tuned importance
levels (40 instances of a each topology and network size with d ∈ {4 . . . 12}).

results also show that DACOR, unlike our adaptive AAT ap-
proach, is highly dependent on parameters which have to be
individually tuned for specific domains. In most cases DA-
COR has tuned the team to the unstable state where early
and possibly incorrect opinions are shared on a large scale.
Finally, the low accuracy achieved by teams with 〈temr〉 in-
dicates a clear need for an algorithm such as AAT that can
efficiently tune each team individually.

4.3 Opinion Convergence
AAT tunes the team into a phase transition between sta-
ble and unstable states where the sharing processes are the
slowest that still enable all agents to form their opinions.
However, this also implies that agents with AAT may form
their opinion slower. To measure the timeliness of the opin-
ion, we offer a convergence metric that is the average num-
ber of timesteps required for a team to reach the accuracy
of R ≥ 80%. In order to avoid distortion of its average
value, we exclude dissemination rounds when the team did
not reach the threshold level of the accuracy.

The results shown on Figure 4b indicate that convergence
time for AAT growth steadily with the size of a team. This
fact can explained by the increasing sparseness of the net-
work since its degree d is fixed. This results in a slower
sharing process as the shortest path increases as well.

DACOR exhibits much faster convergence since it tunes
the team into the area of the unstable state. This also ex-
plains its low accuracy discussed above. By contrast, most of
the teams with the average of pre-tuned levels exhibit stable
dynamics and do not share opinions on a large scale, while
some are in unstable state that result in a fast convergence.

Finally, the individually pre-tuned teams exhibit relatively
fast convergence. This indicates a drawback of AAT that

has to be addressed. Specifically, the online approach used
to build AAT results in slower convergence and alternative
solutions, such as offline pre-tuning, may exhibit equal or
higher level of accuracy with significantly faster convergence
at the same time.

4.4 Communication and Computation
Expenses

AAT is designed to improve accuracy without introducing
additional communication over opinion sharing. We com-
pare in Figure 5a the number of messages that agents ex-
change while the team is tuned by AAT, DACOR, and the
minimal number of messages required to share an opinion on
a team scale in a single cascade. The latter represents the
minimal communication, when agents share their opinions
only once to the neighbourhood, and thus, communicate in
total dN messages. The average number of messages for a
team with AAT is similar to the minimal communication,
since during some rounds a team does not disseminate opin-
ions on a large scale (as the result of htrg < 1).

In addition, AAT requires radically less actions by the
agents that are the changes of the importance levels than
DACOR in the process of tuning. AAT updates an impor-
tance level only once at the end of each round, while DACOR
updates an agent’s importance level if any of its neighbours
has received new opinion. The results that represent com-
putational expenses, are shown in Figure 5b. Both metrics
show that AAT is a highly scalable solution.

4.5 Team with Indifferent Agents
Finally, AAT is robust to the presence of the agents that
are indifferent and do not participate in the optimisation
process. This is due to the fact that the agents running AAT

549

500 1000 1500 2000
0

1

2

3

4

5

6
x 10

4

500 1000 1500 2000
0

20

40

60

80
(a)

M
es

sa
ge

s
 p

er
 A

ge
nt

pe

r
D

is
se

m
in

at
io

n
R

ou
nd

Network Size, N

DACORMinimal Communication

(b)

Network Size, N

AAT

Im
po

rt
an

ce
 L

ev
el

 C
ha

ng
es

 p
er

 A
ge

nt
pe

r
D

is
se

m
in

at
io

n
R

ou
nd

Figure 5: (a) Number of messages and (b) number of
importance level changes, for an agent per dissemi-
nation round (averaged over all experiments shown
in Figure 4).

tune their importance levels autonomously by adapting to
their neighbourhood. Thus, they mitigate the negative effect
introduced by the indifferent agents.

We illustrate this by evaluating a team with a variable
number of indifferent agents that are randomly distributed
across its population. The importance levels of indifferent
agents are not dynamically determined by AAT or DACOR
algorithms, but fixed and uniformly selected from the range
close to the critical importance level [0.55, 0.75]. The results
in Figure 6 shows that AAT with up to 50% of indifferent
agents delivers higher accuracy than can be achieved by us-
ing 〈temr〉. This shows the direct benefit from deploying
AAT even on half of the agents in a team over predicting
the critical importance level by analysing a number of similar
teams. Similar results are obtained for the other topologies
and team sizes.

5. CONCLUSIONS
In this paper, we developed a novel decentralised algorithm,
AAT, which significantly improves the accuracy of agents’
opinions by exploiting the properties of collective behaviour
in large networked teams. This is the first solution that can
be used by teams with complex communication networks in
the settings when communication is strictly limited to opin-
ion sharing. We showed that AAT significantly outperforms
the existing algorithm, DACOR, that also introduces addi-
tional communication to operate and requires higher com-
putational cost. The accuracy exhibited by AAT is close to
the highest accuracy that can be achieved by individually
pre-tuning a team by the resource expensive empirical ex-
ploration of its parameters. Moreover, we showed that AAT
is scalable, adaptive to the team’s configuration and robust
to the presence of indifferent agents that do not participate
in the optimisation process. Finally, since AAT relies only
on local view, the importance levels it estimates can be used
as the initial trust levels for an elaborate trust models when
no additional information is available.

Our future work in this area is to relax an assumption
that the agents do not differentiate between their neigh-
bours. This will require a new algorithm that estimates
individual importance levels for each neighbour based on
their opinion dynamics. Additionally, we also intend to ad-
dress an outlined problem of developing an attack resistant
solution that will help to mitigate the negative influence of

0 20 40 60 80 100
40

60

80

100

A
cc

ur
ac

y,
 R

 (
%

)

% of Indifferent Agents
AAT
DACOR

Pre-tuned importance level
Average pre-tuned importance level

Figure 6: The accuracy of the team with indifferent
agents (40 instances of a scale-free network with N =
1000, d ∈ {4 . . . 12}).

malicious agents [6].

6. REFERENCES
[1] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of

fads, fashion, custom, and cultural change as informational
cascades. Journal of Political Economy, 100(5):992–1026,
1992.

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. Hwang. Complex networks: Structure and dynamics.
Physics Reports, 424(4-5):175–308, 2006.

[3] C. Castellano, S. Fortunato, and V. Loreto. Statistical
physics of social dynamics. Reviews of Modern Physics,
81(2):591–646, May 2009.

[4] R. Glinton, P. Scerri, and K. Sycara. Towards the
understanding of information dynamics in large scale
networked systems. In Proceedings of 12th International
Conference on Information Fusion (FUSION’09), pages
794–801, Seattle, Washington, USA, 2009.

[5] R. Glinton, P. Scerri, and K. Sycara. Exploiting scale
invariant dynamics for efficient information propagation in
large teams. In Proceedings of 9th International Conference
on Autonomous Agents and Multiagent Systems
(AAMAS’10), pages 21–28, Toronto, Canada, 2010.

[6] R. Glinton, P. Scerri, and K. Sycara. An Investigation of
the Vulnerabilities of Scale Invariant Dynamics in Large
Teams. In Proceedings of 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’11),
pages 677–684, Taipei, Taiwan, 2011.

[7] P. Holme and B. Kim. Growing scale-free networks with
tunable clustering. Physical Review E, 65(2):2–5, Jan. 2002.

[8] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Statistical properties of community structure in large social
and information networks. In Proceeding of the 17th
International Conference on World Wide Web
(WWW’08), pages 695–705, 2008.

[9] M. Newman. Renormalization group analysis of the
small-world network model. Physics Letters A,
263(4-6):341–346, Dec. 1999.

[10] D. J. Watts. A simple model of global cascades on random
networks. In Proceedings of the National Academy of
Sciences of the United States of America, 99(9):5766–5771,
Apr. 2002.

[11] D. J. Watts and P. S. Dodds. Influentials, networks, and
public opinion formation. Journal of Consumer Research,
34(4):441–458, 2007.

550

Agents of Influence in Social Networks

Amer G. Ghanem
University of Cincinnati
Cincinnati, Ohio, USA

ghanemar@mail.uc.edu

Srinivasa Vedanarayanan
University of Cincinnati
Cincinnati, Ohio, USA

vedanasn@mail.uc.edu

Ali A. Minai
University of Cincinnati
Cincinnati, Ohio, USA
Ali.Minai@uc.edu

ABSTRACT
In recent years, social networking sites and social media have
become a very important part of peoples’ lives, driving ev-
erything from family relationships to revolutions. In this
work, we study the different patterns of interaction behavior
seen in an online social network. We investigate the differ-
ence in the relative time people allocate to their friends ver-
sus that which their friends allocate to them, and propose a
measure for this difference in time allocation. The distribu-
tion of this measure is used to identify classes of social agents
through agglomerative hierarchical clustering. These classes
are then characterized in terms of two important structural
attributes: Degree distributions and clustering coefficients.

We demonstrate our approach on two large social networks
obtained from Facebook. For each network we have the list
of all social interactions that took place over six months.
The total number of users in the two networks is 939,453
and 841,456, with 1.4 million and 8.4 million interactions,
respectively. Our results show that, based the interaction
behavior, there are four main classes of agents in both net-
works, and that they are consistent across the two networks.
Furthermore, each class is characterized by a specific profile
of degree distributions and clustering coefficients, which are
also consistent across both networks.

We speculate that agents corresponding to the four classes
play different roles in the social network. To test this, we
developed an opinion propagation model where opinions are
represented as m-bit strings communicated from agent to
agents. An agent receiving an opinion then selectively mod-
ifies its own opinions depending on the social and informa-
tional value it places upon communications from the send-
ing agent, its overall agreement with the sending agent, and
its own propensties. Opinions are injected into the system
by agents of specific classes and their spread is tracked by
propagating tags. The resulting data is used to analyze the
influence of agents from each class in the viral spread of ideas
under various conditions. The analysis also shows what be-
havioral factors at the agent level have the most significant
impact on the spreading of ideas.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Measurement, Performance, Human Factors

Keywords
Social Networks, Agent-Based Models, Information Propa-
gation, Facebook

1. INTRODUCTION
The advent of social networks is a major revolution in

the history of the Internet age. Today, being ‘online’ is the
default mode for millions of people worldwide. Many sec-
tors of society such as business, politics, advertising, gam-
ing, etc., have embraced social networks and have sought
to exploit their potential to reach the masses. Indeed, so-
cial media has allowed even individuals to set up channels
of communication that rival the commercial media in their
influence. The average user on Facebook has 130 friends,
and people spend over 700 billion minutes per month on
the site [5]. The growth of users on Google+ has occured
even faster. LinkedIn’s membership rocketed from 28 mil-
lion users to more than 35 million users in the six months
following the September 2008 onset of economic collapse [6].
The key factor that sustains such social networking sites and
the businesses based on them is the propagation of informa-
tion. Every user in the network is a potential point of idea
injection for mass propagation. However, it is clear that
not all users can achieve the same level of influence. This
depends on many factors such as the users’ behavior, the
semantic content of the information being propagated, the
structural properties of the network, etc. In this paper, we
use several large datasets to develop a behavior-based clas-
sification of agents in a social network (Facebook), and to
evaluate what type of agents are likely to be influential in
different situations.

2. BACKGROUND
There is already a large – and growing – body of research

devoted to understanding the structure and evolution of on-
line social communities[11][17][1][12]. Some of these studies
have classified members of social networks into one of three
classes[1][12] based on their structural role in the network:
Singletons are agents with zero friends; the giant component
comprises users who are connected directly or indirectly to

551

a large fraction of the entire network; and the the middle re-
gion covers small groups whose agents only interact mainly
with others within the group and not with the network at
large. In this study we aim to classify users into groups based
on their interactional behavior rather than structural posi-
tion. We believe that such classification will reveal valuable
insights on the way users divide their social time between
their friends on the network.

The issue of how ideas spread virally in a social network
has been of great interest recently. This work has consid-
ered a variety of factors that determine the importance of
individual agents in a network. These range from structural
properties to the nature of the users and their interactions
with each other. Trusov et al. [13] proposed a method for
finding influential users in a network community using the
number of their logins in a particular time frame as the
metric for being “influential”. Though intuitively appeal-
ing, this approach did not provide any unexpected insights.
Similarly, Crandall et al. [3] proposed a method to show
that social influence and similarity go hand-in-hand such
that users tend to form new links based on similarity, which
grows their sphere of social influence and, in turn, creates
more similarity with users to whom they create new links.

Simpkins et al. [19] considered the role of psychological
and cognitive factors in shaping the profile of idea propaga-
tion. They postulated that an idea has a ‘cognitive advan-
tage’ in being retained or accepted in a particular commu-
nity which is culturally circumscribed around that idea.

Kempe et al. [8] studied the problem of maximizing in-
formation spread in a social community network using rec-
ommendation or influential propagation in the form of a de-
creasing cascade model. In this model, a behavior spreads
in a cascading fashion according to a probabilistic rule, be-
ginning with a set of initially “active” or “influential” nodes.
In another paper [9], they propose an intuitive greedy algo-
rithm to show that it is a more efficient way to find which
set of individuals should be targeted in a network for maxi-
mizing the spread of influence. This work is closest to ours
in terms of its objectives.

In [10], Kleinberg showed that it is easier to find short
chains between points in some networks than others. He
proved that networks that include individuals operating with
purely local information are very adept at finding these short
chains. Considering the dynamics of a network, Ghosh et al.
[7] have proposed that predicting influential users depends
not only on the structure of the network, but also on de-
tails of the dynamic processes occurring on it. They classify
processes as conservative and non-conservative, and claim
that information spread is non-conservative. They empiri-
cally define influence as the number of in-network votes a
user’s post generates. This influence measure, and the re-
sulting ranking, is evaluated from the dynamics of voting
on the social news aggregator Digg, which represents non-
conservative information flow. They compare their predic-
tions of different influence models with this empirical esti-
mate of influence. The results show that non-conservative
models are better able to predict influential users on Digg
and the best predictor metric is found to be the normalized
α-centrality.

3. OVERVIEW
This paper presents results from two studies:
Study I: Classification of Social Agents: In this

Facebook Dataset
Network Nodes Edges Interactions
A:One Month (A1) 431,995 728,243 1,412,252
A:Six Months (A6) 939,453 273,215 7,483,904
A:One Year (A12) 1,164,003 4,555,524 24,373,015
B:One Month (B1) 451,092 827,068 1,974,590
B:Six Months (B6) 841,567 2,513,432 8442,451
B:One Year (B12) 969,047 3,317,531 22,092,564

Table 1: Statisctics of the Facebook Dataset used in this
paper

study, we use several anonymized datasets of FaceBook in-
teractions among large groups of agents over extended pe-
riods [22] to identify classes of agents based on interaction
behavior. In particular, we consider the relative social at-
tention agents devote to interacting with other agents, and
identify four distinct types of behavior in this regard. These
four classes are found to be robust across multiple datasets
in terms of both interaction patterns and structural prop-
erties, indicating that they capture real differences betwee
agents. We then train a neural network classifier to recog-
nize these classes, and show that it can successfully classify
agents in a novel dataset according to their interaction pat-
terns. We also provde provisional interpretations of the four
behavior patterns identified in this study.

Study II: Simulation of Influence Dynamics: In the
second study, we implement an agent-based simulation us-
ing a randomly chosen subset of a network in our dataset.
Agents in this simulation are labeled according to the class
assigned to them in Study I and follow the corresponding
pattern of relative social effort in their interactions with
other agents. All agents in the system begin with certain
“opinions”, and communicate these to other agents. This
influences the receiving agents to possibly modify their own
opinions and to communicate them further. The dynamics
of opinions originating in agents of different types are mon-
itored and the relative influence for each type of agent is
quantified. Essentially, the question addressed by this study
is, “Which class of agents are, on average, the most suitable
injection point for an idea that needs to be spread virally?”

4. STUDY I: CLASSIFICATION OF SOCIAL
AGENTS

The goal of this study is to classify agents in a large so-
cial network into different classes based on their pattern of
interaction with other agents. The approach followed is to
represent the agents’ interaction behavior in a suitable fea-
ture space, and to cluster the agents based on these features.

4.1 Datasets:
This study used two datasets - labeled A and B - repre-

senting agents on Facebook. Each dataset provides a social
graph indicating “friend” links between agents, and several
interaction graphs, indicating contacts between linked agents
over a period of time. The statistics for the networks are
given in Table 1. The data was obtained from [22] and used
with permission.

4.2 Community Extraction
Given the large number of agents in the datasets, we de-

cided to focus, in each network, on a subset of agents that

552

could be considered to have significant participation in a
functionally useful sense. To do this, we extracted commu-
nities of agents from the social networks using the clique
percolation method (CPM) [14][4]. In CPM, a k-community
is defined as the maximal chain of adjacent k-cliques. Two k-
cliques are considered to be adjacent if they share k-1 nodes.
We decided to use k = 5 because a value of k > 5 produces
very few communities, and a value of k = 4 produces too
many small ones. Only agents belonging to at least one com-
munity were classified in the analysis below, though their in-
teractions with all agents were taken into account. With this
restriction, the number of agents and links analyzed were:

Dataset A1: 1051 nodes and 3859 edges
Dataset A6: 21690 nodes and 202611 edges
Dataset A12: 64879 nodes and 959927 egdes

Dataset B1: 2229 nodes and 8128 edges
Dataset B6: 30532 nodes and 202611 edges
Dataset B12: 53633 nodes and 652776 edges

4.3 The Devotion Measure
The interaction pattern between two connected agents i

and j was measured through a quantity termed relative de-
votion, ∆ij , defined as:

∆ij = (Iij/Ii)− (Iji/Ij) ≡ Dij −Dji (1)

where Iij is the number of interactions that i has with j,
Ii is the total number of interactions for i, Iji is the number
of interactions that j has with i, Ij is the total number of
interactions for j (note that Iij = Iji), Dij is the fraction
of i’s interactions that are with j and Dji the fraction of j’s
interactions that are with i. Thus, −1 < ∆ij < 1, where a
negative value of ∆ij means that i allocates a lower fraction
of his/her social effort to interact with j than j is allocating
to interact with i, and vice-versa for a positive value. A
value of 0 means that i and j allocate the same portion of
their social effort to each other.

Based on this definition, each agent i has a devotion vec-
tor, ∆i = [∆i1 ∆i2 ... ∆ini], where ni denotes the number of
agents to which i is directly connected. Since, agents often
have high-dimensional devotion vectors with variable lengths
across agents, it is convenient to look at the histogram of
their relative devotion values. This is obtained by distribut-
ing the relative devotion values for i into 5 bins: [−1.0,−0.6],
[−0.6,−0.2], [−0.2,+0.2], [+0.2,+0.6] and [+0.6,+1.0]. The
total is normalized to 1 and the resulting length 5 vector,
qi = [q1i q

2
i q

3
i q

4
i q

5
i] is called the feature vector for agent i.

This feature vector constitutes a quantitative representation
of the agent in terms of its interaction behavior, and is the
basis of classification.

4.4 Agent Clustering
The feature vectors obtained for indivdual agents in Dataset

B6 were clustered using an agglomerative hierarchical clus-
tering algorithm with earth mover’s distance(EMD) as the
distance measure. It is defined to be the minimum move-
ment of probability mass required to transform one distri-
bution into another[15]. A fast EMD algorithm developed
by Pele et al.[15, 16] was used for calculations. Weighted
pair group with averaging was used as the distance measure
between merged clusters.

The clustering identified four types of agents in Dataset
B6. Some representative feature vectors for each class are
shown in Figure 1.

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(a) Cluster 1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(b) Cluster 2

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(c) Cluster 3

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(d) Cluster 4

Figure 1: Feature vectors for 20 representative members of
each class.

The dendogram for the clustering process is shown in Fig-
ure 2(a). Figure 2(b) shows the number of agents assigned
to each class, indicating that the vast majority of agents fall
into classes 2 and 4. Figures 2(c) and (d) show the distri-
bution of the node clustering coefficient and node degree for
each class. Node degree is defined as the number of links
incident on the node and the clustering coefficient as the
fraction of possible links that exist between the node’s im-
mediate neighbors [20][2].

It should be noted that, while only agents belonging to
communities were clustered, the calculation of relative de-
votion, node degree and clustering coefficient used the full
network, including unclassified agents. Thus, a significant
part of the information captured in the distributions of these
quantities comes from agents not included in the classifica-
tion.

4.5 Neural Network Classifier
While clustering provides a useful way to organize the

data, it is computationally expensive and, therefore, diffi-
cult to use with much larger datasets such as A12 or B12.
Even more importantly, it does not provide a way to classify
agents other than those included in the clustering process.
To address these problems – and to provide further valida-
tion of the classes discovered through clustering – a neu-
ral network classifier was trained to classify agents based
on their feature vectors, using the classes obtained through
clustering as the true classes. The classifier had two hidden
layers and was trained using the backpropagation algorithm
[21, 18] on a portion of the B6 dataset and validated and
tested on two other subsets of the data. Figure 3 shows the
confusion matrices for the training, validation and testing
case as well as over the entire B6 dataset. It is clear the
the neural network was extremely successful in learning the
classes.

Once trained, the neural classifier was applied to dataset
B12 dataset and provided class labels for all 53,633 agents.

553

 5 612 116 810231824252230 715 22111 927 317 413201928142629

5

10

15

20

25

30

35

(a) Dendrogram 1

1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

(b) Clusters’ Size

0 0.5 1
0

0.5

1
C1

0 0.5 1
0

0.5

1
C2

0 0.5 1
0

0.5

1
C3

0 0.5 1
0

0.5

1
C4

(c) Clustering Coefficient Dis-
tribution

0 100 200 300
0

0.5
C1

0 100 200 300
0

0.5
C2

0 100 200 300
0

0.5
C3

0 100 200 300
0

0.5
C4

(d) Degree Distribution

Figure 2: (a) Dendogram resulting from the clustering pro-
cess; (b) Number of agents placed in each cluster; (c) Distri-
bution of network clustering coeffiecient for each class; (d)
Distribution of node degree for each class.

However, since B12 had not been processed through cluster-
ing, the accuracy of these labels could not be verified. For
this, we used three methods:

Method 1: In this method, we plotted the feature vectors
for 20 representative agents from each class as given by the
neural network classifier (Figure 4). A comparison of these
with the feature vectors given in Figure 1 shows excellent
agreement, indicating that the classes assigned in B12 by
the classifier were qualitatively the same as those found by
clustering in B6. This is strong evidence that these classes
are, in fact, robust across different networks, and that the
classifier is able to generalize.

Method 2: Next, we plotted the degree distributions
(Figure 5) and clustering coefficient distributions (Figure 6)
for agents in all four classes as identified in B6 by cluster-
ing (Figures 5(a) and 6(a)) and by the neural classifier in
B12 (Figures 5(b) ad 6(b)). Comparing these, it is apparent
the corresponding distributions are similar, providing fur-
ther evidence that the clustering and the classifier are find-
ing the same classes in the two networks, and that each of
these classes has characteristic distributions of node degree
and clustering coefficients.

Method 3: Finally, we also performed a partial direct
comparison by taking a subset of agents from B12, subject-
ing them to the clustering algorithm, and comparing the la-
bels obtained with those given by the neural classifier. The
confusion matrix for this comparison is shown in Figure 7,
indicating that the two methods agreed on the classification
of almost 97% of the agents.

Taken together, these results indicate three things: 1)
The interaction behavior of agents in multiple social net-
works studied falls into four distinct and consistent classes;
2) These classes are robust and have invariant network-based
characteristics across different networks; and 3) The neu-
ral network classifier is able to assign classes accurately to

agents across different networks based on their feature vec-
tors.

(a) Training (b) Validation

(c) Test (d) All

Figure 3: Confusion matrices for the neural network clas-
sifier: (a) Data used to train the network; (b) Data used
to check for generalization during training but not used for
training directly;)c) Data not used during training at all;
(d) All data in B6.

4.6 Interpretation of the Classes
A natural question that arises is whether the classes found

by the above analysis are meaningful. While we are still in-
vestigating this issue in detail, some provisional suggestions
can be made as follows.

(Class 1 - Invisibles: This class comprises a small num-
ber of users who have very low node degree, high clustering
coefficients, and are only involved in a small number of in-
teractions, suggesting that they belong to a small, tight-knit
group of friends. They mainly have positive relative devo-
tion values, which means that their friends are more active
than they are, or they are generally ignored by their friends.

Class 2 - Normals: These comprise the majority of the
population, and have fairly high degree and a wide range for
number of interactions. The majority of Class 2 members
have low to moderate clustering coefficients, indicating that
they have a broad and loosely knit group of friends, but with
significant connectivity among these friends. Their directed
devotion values are around 0, which means they interact
with friends who interact with them.

Class 3 - Celebs: This class has a small number of mem-
bers with the majority being high degree nodes. The mem-
bers of this class have very low clustering coefficients and
a wide range of interactions, suggesting that they interact
with a large, disparate set of people. Their directed devotion
values are strongly negative, indicating that they allocate a
smaller portion of their social effort to their friends, who ac-
tually allocate a larger portion of their social effort to them.
In fact, most of the agents connected to Class 3 agents fall

554

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(a) Class 1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(b) Class 2

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(c) Class 3

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

−1 0 1
0

0.5
1

(d) Class 4

Figure 4: Feature distributions of typical members of clases
assigned by the neural classifier. This figure should be com-
parted with Figure 1.

0 100 200 300
0

0.5
C1

0 100 200 300
0

0.5
C2

0 100 200 300
0

0.5
C3

0 100 200 300
0

0.5
C4

(a) Clustering

0 100 200 300
0

0.5
C1

0 100 200 300
0

0.5
C2

0 100 200 300
0

0.5
C3

0 100 200 300
0

0.5
C4

(b) Classifier

Figure 5: Comparison of degree distribution

into the unclassified category and have highly positive rela-
tive devotion values (not shown).

Class 4 - Casuals: This class has a significant number
of members with the majority having degrees in the range
of 40-70. Most of them have low clustering coefficients, in-
dicating that they connect with a disparate group of agents.
The members of this class have a wide range of interca-
tions and devotion values skewed slightly negative., indicat-
ing that they allocate less social effort to their friends than
their friends allocate to them.

5. STUDY II: SIMULATION OF INFLUENCE
DYNAMICS

A central attribute of social networks is their ability to
spread information and influence – a fact used in viral mar-
keting, political campaigning, etc. Given the very interest-
ing agent classification described above, it is natural to ask
whether agents of some class(es) are more or less influential.
We addressed this issue through simulations of a multi-agent
models where the spread of information injected in one agent
of a particular class can be tracked across the network over
time.

The propagation of influence in a network can be affected

0 0.5 1
0

0.5

1
C1

0 0.5 1
0

0.5

1
C2

0 0.5 1
0

0.5

1
C3

0 0.5 1
0

0.5

1
C4

(a) Clustering

0 0.5 1
0

0.5

1
C1

0 0.5 1
0

0.5

1
C2

0 0.5 1
0

0.5

1
C3

0 0.5 1
0

0.5

1
C4

(b) Classifier

Figure 6: Comparison of clustering coefficient distribution

Figure 7: Direct neural network classifier validation on a
subset of B12 data

by a host of factors ranging from the structural characteris-
tics of the network to the nature of the ideas being communi-
cated. Here, we use a very simple model to study how opin-
ions might spread in the type of network analyzed above.
We consider the efficacy of agents from particular classes in
spreading their opinions within a large network where the
interaction behavior of individual agents follow those seen
in the corresponding datasets – for both classified and un-
classified agents.

5.1 Model Description
The social network used for the simulations is a subset of

the A12 network described above, with about n = 125, 000
agents. These are chosen to include a roughly proportionate
sample of classified agents and all their friends, whether clas-
sified or unclassified. The numbers for each type are: Class 1
- 108; Class 2 - 40,000; Class 3 - 114; Class 4 - 4,314; Unclas-
sified - 80,464. Each agent’s type is assigned as determined
by the clustering process (including the type “unclassfied”),
and its interaction behavior reflects that seen in the actual
dataset. Each agent, i, has a time-varying opinion vector,
zi(t) = [zi1(t) ... zim(t)], with m elements, each indicating
an opinion on some issue at time t. Each component zik can
take values −1 (positive); +1 (negative), or 0 (don’t care).
The simulations used a value of m = 7, with all bits assigned
randomnly and independently with equal probability for the
three values.

During simulation, every agent i sends out one message
per time-step to a randomly selected target agent among its
friends. The probability of agent i choosing a target agent,
j, at step t is given by pij(t) = Dij/

∑
k∈N(i)Dik, where

N(i) denotes the set of nodes to which i is directly con-
nected (its circle of friends) and Dik is the fraction of i’s
interactions that are with k according the real dataset A1,
i.e., Dik = Iik/Ii. Thus, over time, the fractions of inter-

555

actions i has with each of its friends reflect the proportion
found in the actual dataset. A communication from agent
i at time step t comprises its entire current opinion vec-
tor, zi(t). When agent j receives a message from agent i,
it identifies all the mismatching components, and indepen-
dently considers whether to modify its opinion on each of
these to match the one received from i. The probability of
doing so is determined by three influencing factors:

1. The similarity, Sij(t) between its own current opinion
vector, zj(t), and the received opinion vector, zi(t),
calculated as the number of matching bits in the two
vectors. The probability of change in component k is
increased by higher Sij , i.e., agent j is likelier to be
influenced by like-minded friends.

2. Its relative devotion, ∆ji towards the sending agent, i.
The probability of change in component k is increased
by higher ∆ij , i.e., agent j is likelier to be influenced
by agents it holds in higher esteem (as indicated by
relative devotion).

3. The intrinsic receptiveness, Rkj ∈ [0, 1], of agent j for
component k, indicating how receptive it is to changing
its opinion on this component.

The probability of changing component zkj to agree with

zki is given by:

pkj (t) = w1f1(Sij) + w2f2(∆ij) + f3(Rkj) (2)

where the wl are weights between 0 and 1, with w1 +w2 +
w3 = 1, and

f1(Sij) =

1
2
[1− (1− 2Sij)

1−αj] if Sij < 0.5
0.5 if Sij = 0.5
1
2
[1 + (2Sij − 1)1−αj] if Sij > 0

(3)

where αj ∈ [0, 1] is the similarity influence parameter.

f2(∆ij) =

1
2
[1− (−∆ij)

1−βj] if ∆ij < 0
0.5 if ∆ij = 0
1
2
[1 + ∆

1−βj
ij] if ∆ij > 0

(4)

where βj ∈ [0, 1] is it devotion influence parameter.

f3(Rkj) = Rkj = γj ∀k (5)

where γj ∈ [0, 1] is the receptiveness influence parameter.

Thus, the vector (α, βj , γj) determine the personality pro-
file of agent j in terms of its “influenceability”, with each
parameter controlling the power of a single factor as follows:

• If αj = 0, f1(Sij) = Sij , i.e., linear dependence on sim-
ilarity. As αj increases towards 1, f1(Sij) approaches
a threshold function at Sij = 0.5, so friends with
Sij > 0.5 have very high influence on i and friends
with Sij < 0.5 have almost none.

• If βj = 0, f2(∆ij) = (1+∆ij)/2, i.e., linear dependence
on devotion. As βj increases towards 1, f2(∆ij) ap-
proaches a threshold function at S∆ij = 0, so friends
with ∆ij > 0 have very high influence on i and friends
with ∆ij < 0 have almost none.

Classes
of
agents

(1, 0, 0) (0, 1 0) (0, 0, 1)

1 0.0008 (±0) 0.0008(±0) 0.0008 (±0)
2 19.1956

(±1.2)
61.8068
(±1.79)

83.9710
(±3.01)

3 18.6787
(±0.09)

48.2217
(±1.05)

61.6270
(±1.01)

4 18.2366
(±0.27)

48.8788
(±1.08)

63.0843
(±1.01)

Table 2: Spread statistics when only one influence factor is
operative

• γj just represents the agent’s intrinsic probability to
change a mismatched bit. A low value of γj < 0.5
indicates an agent that does not easily change its mind,
and a value higher than 0.5 an agent that is easier to
influence.

While exploring networks with different types of agents,
etc., is potentially a rich topic for research, in the present
simulations, we set αj = βj = γj = 0.5 ∀j, and vary the
relative weights, w1, w2 and w3 for each influencer. In par-
ticular, we consider the following cases:

1. Case 1 - One Influencer: Here, one of the weights
set to 1 and the other two to 0. This measures the
effect of each factor’s pure influence.

2. Case 2 - Two Influencers: In this case, two of the
weights are set to 0.5 and the third to 0. Thus, the
agent is equally influenced by two factors.

3. Case 3 - Three Influencers: Here, all weights are
set to 1/3, so all factors have equal influence.

In each simulation run, a particlar agent of a specific type
is chosen as the source and two of its opinion components are
tagged with a color. As these bits influence other agents to
change their opinions on these two components, those bits
are also tagged. At the end of the simulation, any agent
with one or two tagged bits is considered influenced. The
percentage of agents influenced over a 150 step simulation
is returned as the metric of influence. For each of the cases
discussed below, 20 independent simulation runs were done
with each type of agent as the source, so each case involved
80 separate runs.

5.2 Results
The results of our simulations for all three cases are dis-

cussed below.

Case 1: In the first set of simulations, one of the influence
weights was set to 1 individually, with the others set to 0.
The results are given in Table 2. Each entry represents the
perceptage of the agents in the network reached after 150
time steps, with the values in parentheses indicating the
standard deviation across the 20 trials.

Case 2: In the next set of simulations, two weights at a time
were set to 0.5 and the third to 0, thus exploring the joint
effect of two influencers at a time. The results are given in
Table 3.

556

Classes
of
agents

(0, 0.5, 0.5) (0.5, 0, 0.5) (0.5, 0.5, 0)

1 0.0008 (±0) 0.0008(±0) 0.0008 (±0)
2 72.0206

(±2.04)
50.7890
(±1.07)

47.0286
(±2.01)

3 54.9748
(±1.13)

47.0176
(±1.27)

42.2600
(±1.36)

4 55.7595
(±1.18)

47.7735
(±1.12)

42.6811
(±1.42)

Table 3: Spread statistics when two influence factors are
operative

Classes
of agents

(1/3, 1/3, 1/3)

1 0.0008 (±0)
2 69.2181 (±2.11)
3 45.9241 (±1.91)
4 47.2163 (±1.01)

Table 4: Spread statistics when all influence factors are op-
erative

Case 3: In these simulations, all weights were set to 1/3,
thus giving each influence factor equal effect. The results
were as shown in Table 4:

Several conclusions can be drawn from the results given
above. First, it should be remembered that the efficacy of in-
jecting opinions in one type of the agent or another depends
on several things: 1) The inherent reach of the agent, i.e.,
how far can the agent itself disseminate opinions through
direct connections; 2) The types of agents that it connects
to, and their reach patterns; and 3) The chains of devotion
linking agents along the tree of connections rooted at the
injected agent. We currently do not have a detailed analy-
sis of these factors, but the results given above reflect their
combined influence.

First, we consider the effect of the influencing factors, f1,
f2 and f3, as determined by their weights. The results show
that:

• Influence spreads least when the first factor – f1, sim-
ilarity of opinion – dominates. Given the model used,
the mean initial similarity among any two agents is
about 0.11, giving an influence factor f1 = 0.0584.
Thus when the weights are set as (1, 0, 0) (first table,
column 1), any mismatched bit in a receiving agent
has only a 5% chance of being influenced. It is also
clear that, in this situation, the class of the injected
agent has virtually no effect.

• Influence spreads most when the third factor – f3, in-
herent receptiveness – dominates. This is because f3
is set to a high value (0.5) for all agents, so a receiving
agent has a 50-50 chance of changing a mismatched
bit. In this case, the class of the injected agent does
matter – probably due to differences in connectivity
and clustering.

• When relative devotion is the only factor affecting in-
fluence (first table, column 2), the spread is between
that seen in the other two cases, reflecting variation
in relative devotion across the network. Here too, the
type of agent matters, which is expected given the dif-
ferent distributions of relative devotion for each class.

Next, we consider the differences among agent types in
terms of their efficacy as points of injection. The following
effects are observed:

• Type 1 agents are of virtually no use in propagat-
ing opinions. This reflects their low connectivity, high
clustering coefficients, and, bove all, their mostly posi-
tive relative devotion values – prcluding them for being
influential even with the friends they do reach.

• On average, Type 2 agents are the most effective injec-
tion points for opinions. They have high connectivity
and low clusterng coefficients, indicating the ability to
spread opinions to many different parts of the network.
With relative devotion values near zero, they also have
significant influence (f2 near 0.5) over their large cir-
cle of friends. Interestingly, the advantage of Type
2 agents is affected most strongly by the strength of
the similarity factor (f1) in the process. We speculate
that this reflects the fact that most friends for Type 2
agents have devotion values near zero towards them,
while friends of Type 3 and 4 agents have mostly posi-
tive values (as implied by the mostly negative devotion
values of Type 3 and 4 agents themselves). Thus, Type
2 agents rely mainly on their reach and the inherent
influenceability of their friends rather than devotion
to convince others. When these factors are reduced,
Type 2 agents lose almost all of their extra influence,
while Type 3 and 4 agents can still rely on devition
(factor f2) to compensate somewhat.

• Type 3 and Type 4 agents have almost the same level
of influence in all situations. Both classes have high de-
gree and low clustering coefficients, so they can spread
quite broadly. Additionally, their own mainly negative
∆ values indicate their most of their friends have pos-
itive relative devotion towards them, so when w2 > 0,
their influence is boosted by this.

A full analysis of the effects of influencing factors and
agent types requires a much more detailed investigation,
both through more simulation cases and through analysis
of network connectivity patterns. Results from such inves-
tigations will be reported in the future.

Acknowledgment This work was supported in part by a
National Science Foundation CreativeIT grant to Ali Mi-
nai (IIS-0855714). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation.

6. REFERENCES
[1] L. Backstrom, D. Huttenlocher, and J. Kleinberg.

Group Formation in Large Social Networks :
Membership , Growth , and Evolution. Science, 2006.

557

[2] A. L. Barabasi and R. Albert. Emergence of scaling in
random networks. Science, 286:509–511, 1999.

[3] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg,
and S. Suri. Feedback effects between similarity and
social influence in online communities. In In
Proceedings of the 14th Annual ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2008.

[4] I. Derényi, G. Palla, and T. Vicsek. Clique Percolation
in Random Networks. Physical Review Letters,
94(16):3–6, Apr. 2005.

[5] Facebook. Facebook statistics, Jan. 2011.

[6] M. Fraser and S. Dutta. The business advantages of
social networking. Finance and Management, the
month magazine of the ICAEW’s Finance and
Management Faculty, 168, 2009.

[7] R. Ghosh and K. Lerman. Predicting influential users
in online social networks. In In Proceedings of KDD
workshop on Social Network Analysis (SNAKDD,
2010.

[8] D. Kempe, J. Kleinberg, and . Tardos. Influential
nodes in a diffusion model for social networks. In In
Proceedings of the 32nd International Conference on
Automata, Languages, and Programming, pages
1127–1138, 2005.

[9] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In In
Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
2003.

[10] J. M. Kleinberg. Navigation in a small world. Nature,
Aug. 2000.

[11] R. Kumar and A. Tomkins. Structure and Evolution of
Online Social Networks. Work, pages 611–617, 2006.

[12] J. Leskovec, K. J. Lang, and M. W. Mahoney.
Community Structure in Large Networks : Natural
Cluster Sizes and the Absence of Large Well-Defined
Clusters ấLŮ arXiv : 0810 . 1355v1 [cs . DS] 8 Oct
2008. 2008.

[13] T. M., A. Bodapati, and R. Bucklin. Determining
influential users in internet social networks. Journal of
Marketing Research, (643):2010.

[14] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature, pages
1–10, 2005.

[15] O. Pele and M. Werman. A linear time histogram
metric for improved sift matching. In ECCV, 2008.

[16] O. Pele and M. Werman. Fast and robust Earth
Mover’s Distances. 2009 IEEE 12th International
Conference on Computer Vision, pages 460–467, Sept.
2009.

[17] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi. Defining and identifying communities in
networks. Proceedings of the National Academy of
Sciences of the United States of America,
101(9):2658–63, Mar. 2004.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back-propagating errors.
Nature, 323:533–536, 1986.

[19] B. Simpkins, W. Sieck, P. Smart, and S. Mueller. Idea

propagation in social networks: The role of cognitive
advantage. In 1st ITA Workshop on Network-Enabled
Cognition: The Contribution of Social and
Technological Networks to Human Cognition, July
2010.

[20] D. J. Watts and S. Strogatz. Collective dynamics of
“small-world” networks. Nature, 393:440–442, 1998.

[21] P. Werbos. Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, 1974.

[22] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and
B. Y. Zhao. User interactions in social networks and
their implications. In Proceedings of the 4th ACM
European conference on Computer systems, EuroSys
’09, pages 205–218, New York, NY, USA, 2009. ACM.

558

The Emergence of Commitments and Cooperation

The Anh Han
Centro de Inteligência Artificial
Departamento de Informática,

Faculdade de Ciências e
Tecnologia

Universidade Nova de Lisboa,
2829-516 Caparical

Portugal
h.anh@campus.fct.unl.pt

Luís Moniz Pereira
Centro de Inteligência Artificial
Departamento de Informática,

Faculdade de Ciências e
Tecnologia

Universidade Nova de Lisboa,
2829-516 Caparical

Portugal
lmp@di.fct.unl.pt

Francisco C. Santos
Centro de Inteligência Artificial
Departamento de Informática,

Faculdade de Ciências e
Tecnologia

Universidade Nova de Lisboa,
2829-516 Caparical

Portugal
fcsantos@fct.unl.pt

ABSTRACT
Agents make commitments towards others in order to influ-
ence others in a certain way, often by dismissing more prof-
itable options. Most commitments depend on some incentive
that is necessary to ensure that the action is in the agent’s
interest and thus, may be carried out to avoid eventual
penalties. The capacity for using commitment strategies
effectively is so important that natural selection may have
shaped specialized capacities to make this possible. Evolu-
tionary explanations for commitment, particularly its role
in the evolution of cooperation, have been actively sought
for and discussed in several fields, including Psychology and
Philosophy. In this paper, using the tools of evolutionary
game theory, we provide a new model showing that indi-
viduals tend to engage in commitments, which leads to the
emergence of cooperation even without assuming repeated
interactions. The model is characterized by two key param-
eters: the punishment cost of failing commitment imposed
on either side of a commitment, and the cost of managing
the commitment deal. Our analytical results and extensive
computer simulations show that cooperation can emerge if
the punishment cost is large enough compared to the man-
agement cost.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Multiagent systems

General Terms
Experimentation, Theory

Keywords
Evolution of Commitment, Evolution of Cooperation, Evo-
lutionary Game Theory, Prisoner’s Dilemma

1. INTRODUCTION
Over the last few years, several mechanisms have been

pointed out to promote the emergence and maintenance of

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

cooperation. From group and kin relations, memory and
reputation based reciprocity mechanisms, to social diversity
and context based reactions, grounded or not on incipient
levels of cognition, there has been a large improvement on
our capacity to understand the roots of animal and human
cooperation [3, 2, 20, 27, 42, 45, 14, 15]. They are cer-
tainly hugely important, but are they sufficient? Or, as
many have suggested [5, 19, 22], might there be other routes
to social behavior that have been neglected? Certainly there
are. Commitment, which amounts to expressing an inten-
tion rather than having it recognized, may stand as another
route to cooperation, even in its simplest form, as we pur-
port to show here.

Agents make commitments towards others when they give
up options in order to influence others. Most commitments
depend on some incentive that is necessary to ensure that the
action is in the agent’s interest and thus will be carried out
[12], on pain of some heavy penalty. Committers also incur
in a small cost when proposing or setting up a commitment
so as to make it credible upfront to others, and entice these
to accept to commit.

The capacity for using commitment strategies effectively
is so important that natural selection may have shaped spe-
cialized signaling capacities to make this possible [49, 37,
41, 26, 8, 4]. And it is believed to have an incidence on
the emergence of morality [38]. Assuming cooperation to
be, at best, just the result of individuals’ purely competitive
strategies can make it conceptually unstable [31], most es-
pecially in non-iterated or history-free interactions. And it
seems possible that the spread of simplistic notions, rooted
in science, about the evolutionary origins of social relation-
ships could foster a trend to make these relationships more
conflicted, and society more brutal. An antidote is an evo-
lutionary approach to behavior that incorporates a capacity
for mutual commitment, shown advantageous for all con-
cerned [26], even in non-iterated or memory-free settings.

Hence, our goal in this paper is to examine, through Evo-
lutionary Game Theory (EGT) [20, 45], how the most sim-
ple of commitment strategies work, and how they can give
rise to the emergence of cooperation. We shall do so in the
setting of the non-iterated Prisoner’s Dilemma (PD), a well-
known game-theoretical framework to study the evolution of
cooperation within populations of self-interested agents [2,
20, 27, 45] 1. In an interaction, each player has two options,

1There are other social dilemmas, such as the Stag Hunt
and the Chicken Game. [45], but the Prisoner’s Dilemma is

559

cooperates (C) or defects (D), and defect is the dominant
option – it is always better to defect in a one-shot interac-
tion. Both players should choose to defect, while they would
be better off by choosing to cooperate instead, thus leading
to the destruction of social welfare and individuals’ fitness.

In a nutshell, convincing others of one’s credibility in a
commitment proposal amounts to submit to options that
change the incentives of the situation. These options, namely
commitment cost and penalty for defaulting, can be ex-
pressed by the payoffs specified in a game. When opponent
players observe meticulously such payoffs, and realize that
compliance with a proposed commitment is in the propos-
ing player’s best interests, then, given any opponent player’s
open option to commit, these may change their expectations
and behavior accordingly, and adopt as a result a strat-
egy which either accepts commitment proposals or ignores
them. In general, there are four main reasons to believe a
commitment will be fulfilled [26]: i) a commitment can be
self-reenforcing if it is secured by incentives intrinsic to the
situation; ii) a commitment can be secured by external in-
centives controlled by third parties; iii) a commitment can
be backed by a pledge of reputation; and iv) a commitment
can be reinforced by internal emotional motives.

The first two types are secured in much the same way a
loan is secured by a collateral. They objectively change the
situation so that fulfillment becomes in the individual’s best
interests. The latter two types do not change the objective
contingencies; they are subjective commitments in that they
may involve a continued option of reneging, according to
some or other stance extraneous to the game’s given payoffs
matrix.

In our EGT setting however, we will simply assume that
a game’s payoff matrix, concerning a set of strategies, sum-
marily ingrains and expresses in its structure the impinge-
ment of all such contingencies. For instance, often a capacity
for commitment allows individuals to act in ways that reap
the benefits of image scoring through maintaining a repu-
tation, or the access of others to a social history of prior
interactions. In this study, for simplicity but also for ex-
hibiting the purity and power of the commitment mecha-
nism, we ignore the effect of repeated interactions [52], and
of any reputation [29, 32] associated with particular individ-
uals. We aim to show that the simplest of core commitment
mechanisms can improve cooperation, and leave any other
complications for the future, most promisingly how com-
mitment can be combined with and reinforce other known
mechanisms of cooperation. And perhaps surprisingly we
can do so. Thus, no credibility of commitment will be taken
into account [6] beyond that which is expressed in a game’s
payoff matrix. No reputation appraisal of the commitment
proposer is made by its co-player, and no historical or social
data is even available to do so. Each pairwise interaction
is purely based on fixed individual strategies that might in-
volve commitment or the lack thereof. Also, no “cheater or
deceit detection” or “intention recognition” is in place [14,
15]. Nevertheless, systematic unconditional bluffing on the
part of a player is a possible fixed feature of its strategy, in
the sense that, from the start, the player does not intend to
fulfill commitments.

It will be seen in our commitment model that players de-
faulting on their commitments, be they the proposing or the

known to represent one of the most difficult or fierce envi-
ronments for cooperation to emerge.

accepting party, will be subject to evolutionary disadvantage
for a wide range of parameters.

We show that more elaborate commitment strategies are
not strictly necessary for commitment to become evolution-
arily advantageous. Neither an aptitude for higher cogni-
tion, nor for empathy, nor for mind reading are needed.
These aptitudes would only be required for more sophis-
ticated forms of commitment, scaffolded atop the core one.
We will explain the evolution, in a population, of the capac-
ity for a simple form of commitment as the result of oth-
erwise being excluded from a group of committed promise
abiding cooperators, in the sense that this strategy tends
to invade the game playing population under rather general
conditions.

The remainder of this paper is organized as follows. In
Section 2, we discuss the relevant literature. In Section 3,
our EGT commitment model and its methods are defined
and explained. Forthwith, in Section 4, we proffer results
obtained with the model, both analytic and via numeric and
computer simulations. We conclude the paper with a discus-
sion section on commitment and its EGT modeling.

2. RELATED WORK
Evolution of cooperation has been a central research topic

of many fields, including Biology, Economics, Artificial In-
telligence, Political Science and Psychology [2, 20, 27, 42,
45, 15, 21]. Several mechanisms responsible for promoting
cooperative behavior have been recently identified (see sur-
veys in [27, 45]). In these contexts, several aspects have
been shown to play an important role in the emergence of
cooperation. Differently, our model does not require any
of those aspects, namely it does not assume kinship or in-
group relatedness of agents, nor repeated interactions or rep-
utation consideration, nor concrete structures of population
distribution. However, we envisage that the mechanism of
commitment could reinforce the existing mechanisms of co-
operations, e.g., easing the conditions for the emergence of
cooperation therein. This will be the subject of the future
work.

Evolutionary explanations of commitment, particularly its
role in the evolution of cooperation, have been actively sought
for and discussed in several fields, including Psychology and
Philosophy [26, 12, 18, 6, 8, 4, 38]. But there are only
a few computational models that show the evolutionary ad-
vantages of commitment in problems where cooperative acts
are beneficial [49, 37, 41]. In addition, often models rely on
repeated interactions or long-term relationships [8, 4], alike
the conditions where Triver’s direct reciprocity [52] may play
a role. Here we provide an analytic model in the framework
of evolutionary game theory showing that, with the avail-
ability of the mechanism of commitment, cooperation can
emerge even without assuming repeated interactions.

Last but not least, it is undoubtedly important to men-
tion the extensive literature of AI and Multi-agent System
research on commitment, e.g., [43, 54, 18, 6, 53, 16, 7]. The
main concern therein is how to formalize different aspects
of commitment and how a commitment mechanism can be
implemented in multi-agent interactions to enhance them
(e.g. for improved collaborative problem solving [54]), espe-
cially in the context of game theory. In contradistinction,
our concern is in the nature of an evolutionary explanation
of commitment, particularly how it can promote the emer-
gence of cooperation.

560

3. MODELS AND METHODS

3.1 Model
Let us consider a commitment variant of the Prisoner’s

Dilemma game in which a new type of cooperator (denoted
by COM C) that, before each interaction, asks the co-player
whether it commits to cooperate. If the co-player does not so
commit, there is no interaction. Both players get 0. Other-
wise, if the co-player commits, they then go on to play with
each other in the present interaction. If the co-player keeps
to its commitment, both players obtain the reward payoff,
R 2 . Otherwise (if the co-player fails its commitment), the
proposing or focal player obtains the sucker payoff, S, and
its co-player obtains the temptation payoff, T . However,
the one that fails the commitment will suffer a penalty cost,
and its non-defaulting co-player gains a compensation for
the potential loss due to its default of fulfilling the commit-
ment. For simplicity, we assume that these two amounts
(penalty and compensation) are equal, being denoted by
δ. The penalty cost can be a real monetary one, e.g., in
the form of prior debit (e.g., in the case of accommodation
rental) or of a subsequent punishment cost (e.g., commit-
ment was performed in terms of a legal contract, and one
who fails commitment must pay a cost to compensate for the
other), or an imaginary abstract value, e.g., public spread of
good/bad reputation (bad reputation for the one that fails,
and sympathy for the other), or even an emotional suffering
[26, 12, 18, 38]. How this cost is set up depends on the types
of commitment at work, or the reason for which the com-
mitment is believed to be fulfilled (see Introduction), which
topic is beyond the scope of this paper. However, various
techniques can be seen in [43, 18].

Two players that defect in an interaction obtain the pun-
ishment payoff, P 3 . As usual, for the Prisoner’s Dilemma,
the payoff entries satisfy the ordering, T > R > P > S,
whereas the four possible outcomes can be written down as
a payoff matrix

„ C D

C R,R S, T
D T, S P, P

«
For setting up a commitment, the proposer must pay a small
management cost, ε. The cost of proposing and setting up
the commitment might be high, but it is reasonable to as-
sume that this cost is quite small compared to the mutual
benefit of a cooperation strategy guaranteeing commitment,
ε << R.

Given the nature of a situation expressed in terms of pay-
off entries, one can naturally expect that if a proposed pun-
ishment cost, δ, is high enough compared to the cost of man-
aging the commitment, ε – to convince and guarantee that
cooperation is in the proposer’s interest and also drive away
potential exploiters – cooperation can emerge, even in the
fierce environment of the Prisoner’s Dilemma. This penalty

2Note that here we do not yet take into account execu-
tion noise (see, e.g., [45, 32]), i.e. the agents might mis-
implement their intended choice, from cooperate to defect
or vice versa. Thus, COM C will never mis-implement the
intended commitment choice.
3For the sake of a clear representation, in our analysis we
adopt P = 0 [40, 45] (as in the Donation game), even if the
more general case can be analyzed in the same manner and
portray similar results to the ones presented below.

and management relation is subject to detailed study below,
both analytically and by means of computer simulations.

We consider a finite population of a constant size, consist-
ing of four strategies: COM C (as described above), C (al-
ways cooperates, without proposing to commit), D (always
defects, and does not commit when being asked to), and
D COM (always defects, though commits when being asked
to). Here, we assume that cooperators, including COM C
and C players, always commit whenever being asked to since
they are better off to do so, as cooperation is their default
choice, and reasonable commitment deals only are proposed.
Hence, for the sake of exposition, the two other (unreason-
able) strategies, those of cooperators that refuse to com-
mit and of defectors that propose commitment, are omitted
here (they would become eliminated anyway). The former
is dominated by the pure cooperator strategy, C, while the
latter is by the pure defector strategy, D.

In each round, two random players are chosen from the
population for an interaction. For the row player, the (av-
erage) payoff matrix reads

0BB@
COMC C D DCOM

COMC R− ε/2 R− ε −ε S + δ − ε
C R R S S
D 0 T P P
DCOM T − δ T P P

1CCA (1)

Note that when a COM C interacts with another COM C,
only one of them pays the cost of having proposed com-
mitment, ε (e.g., the arbitrary one that proposes). There-
fore, the average payoff of a COM C in playing with another
COM C is, R− ε/2.

3.2 Methods
Our analysis is based on evolutionary game theory meth-

ods for finite populations [28, 23]. In the context of evolu-
tionary game theory, the individuals’ or agents’ payoff rep-
resents their fitness or social success. The dynamics of strat-
egy change in a population is governed by social learning,
that is, the most successful agents will tend to be imitated
by the others. There are many ways to model social learning
[20, 45, 36]. Adopting one of the most frequently used ones,
we shall consider the so-called pairwise comparison rule [51],
which assumes that an agent A with fitness fA adopts the
strategy of another agent B with fitness fB with probability
given by

1

1 + e−β(fB−fA)
,

where β controls the ‘imitation strength’, i.e., how strongly
the agents are basing the decision to imitate on fitness com-
parisons. For β = 0, we obtain the limit of neutral drift
– the imitation decision is random. For large β, imitation
becomes increasingly deterministic.

In the absence of mutations, the end states of evolution
are inevitably monomorphic: once such a state is reached,
imitation cannot produce change. We thus further assume
that, with a certain mutation probability µ > 0 (also dubbed
the exploration rate [50]), an agent switches randomly to a
different strategy without imitating another agent. The re-
sulting Markov Chain has a stationary distribution, which
characterizes the average time the population spends in each
of these monomorphic end states. Yet, for arbitrary explo-
ration rates and number of strategies, stationary distribu-

561

COM_C
77%

C
2%

D
19%

D_COM
2%

1.1ρN

21ρN

21ρN
1.8ρN

3.1ρN

Figure 1: Stationary distribution and fixation prob-
abilities. The population spends most of the time in
the homogenous state of COM C. The black arrows
stand for the transitions that are rather stronger
than neutral. The strongest transitions are from
C to D and D COM, and the slowest one is from
COM C to C. There are rather strong transitions
from D and D COM to COM C. Parameters: T =
2, R = 1, P = 0, S = −1; δ = 4; ε = 0.05; imitation
strength, β = 1; population size, N = 100; µN = 1/N
denotes the neutral fixation probability.

tions are often cumbersome to compute [17, 46, 39].
Fortunately, in the case of small exploration or mutation

rates, analytical computation of this stationary distribution
can be conveniently computed [11, 23, 17, 41]. The small ex-
ploration rates guarantee that, any newly occurred mutant
in a homogeneous population will fixate or become extinct
long before the occurrence of another mutation. Hence, the
population will always consist of at most two strategies. This
allows one to describe the evolutionary dynamics of our pop-
ulation in terms of a reduced Markov Chain, whose size is
equal to the number of strategies being considered (which is
4 in our case), and each state represents a possible monomor-
phic end state of the population associated with a one of the
strategies. The transitions between states are defined by the
fixation probabilities of a single mutant of one strategy in
a homogeneous population of individuals adopting another
strategy (see Figure 1 for better understanding).

T±(k) =
N − k
N

k

N

1

1 + e∓β[ΠA(k)−ΠB(k)]
(2)

More precisely, let N be the size of the population. Sup-
pose there are at most two strategies in the population, say,
k agents using strategy A (0 ≤ k ≤ N) and (N − k) agents
using strategies B. Thus, the (average) payoff of the agent
that uses A and B can be written as follows, respectively,

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1

(3)

where πX,Y stands for the payoff an agent using strategy X
obtained in an interaction with another agent using strategy
Y , given in the payoff matrix (1).

Now, the probability to change the number k of agents
using strategy A by ± one in each time step can be written
as

The fixation probability of a single mutant with a strategy
A in a population of (N − 1) agents using B is given by [51,
25, 11, 23, 17]

ρB,A =
1

1 +
PN−1
i=1

Qi
j=1

T−(j)

T+(j)

(4)

In the limit of neutral selection (β = 0), T−(j) = T+(j) ∀j.
Thus, ρB,A = 1/N . Considering a set {1, ..., q} of different
strategies, these fixation probabilities determine a transi-
tion matrix M = {Tij}qi,j=1, with Tij,j 6=i = ρji/(q − 1) and
Tii = 1−Pq

j=1,j 6=i Tij , of a Markov Chain. The normalized
eigenvector associated with the eigenvalue 1 of the trans-
posed of M provides the stationary distribution described
above [25, 11, 23, 17], describing the relative time the pop-
ulation spends adopting each of the strategies.

Now let us recall some important analytic measures which
will be used in our analytical study. In a pair-wise compar-
ison of strategy A with strategy B, we say that A is advan-
tageous (against B) if an A mutant has a fixation probabil-
ity in a population of agents using B greater than that of
the neutral selection (which equals the inverse of population
size, 1/N) [28, 27, 45]. Interestingly, it was shown that this
condition holds if

(N −2)πA,A + (2N − 1)πA,B > (N + 1)πB,A + (2N −4)πB,B
(5)

which, in the limit of large N , is simplified to

πA,A + 2πA,B > πB,A + 2πB,B (6)

Another important measure to compare the two strategies A
and B is which direction the transition is stronger or more
probable, an A mutant fixating in a population of agents
using B or a B mutant fixating in the population of agents
using A. It can be shown that the former is stronger if [24,
45]

(N − 2)πA,A +NπA,B > (N − 2)πB,A +NπB,B (7)

which, in the limit of large N , is simplified to

πA,A + πA,B > πB,A + πB,B (8)

4. RESULTS
We compute the fixation probabilities and stationary dis-

tribution numerically for small mutation or exploration rates
(see Methods). The population spends most of the time in
the homogeneous state where all individuals utilize the com-
mitment strategy (Figure 1).

In general, amongst the monomorphic states of the pop-
ulation, the strongest transitions are from C to D and C to
D COM. The difference of a small cost of proposing com-
mitment, ε, between COM C and C, leads to a near-neutral
transition from COM C to C. The more intricate transitions
are between COM C and D or D COM, which are the cen-
tral part of our analysis.

Between D and COM C, for ε << R, COM C is advanta-
geous. Namely, by a pairwise comparisons of COM C and D

562

[28, 27] that condition always holds if (in the limit of large
N , see Eq. (6))

ε <
2R

5
(9)

This inequality also guarantees that, for a population of size
N > 4, the more probable transition is from D to COM C,
i.e., satisfying that [24, 45] (see Eq. 8)

(N − 2)(R− ε

2
)−Nε > 0 (10)

Similarly, for big enough δ, COM C is advantageous against
D COM; namely, if

δ >
T −R− 2S

3
+

5ε

6
(11)

It guarantees that the transition of D COM to COM C is
more probable than the opposite if

(N − 2)(R− ε

2
) +N(S + δ − ε) > (N − 2)(T − δ) (12)

which holds if

δ >
N

2N − 2
(T −R− S +

3ε

2
) (13)

For large enough N , it is simplified to

δ >
T −R− S

2
+

3ε

4
(14)

Hence, for

δ > max{T −R− S
2

+
3ε

4
,
T −R− 2S

3
+

5ε

6
} (15)

the transition of D COM to COM C is the more probable
one, as well as greater than neutral.

Taking together with the fact that the transition of COM C
to C is near neutral, one can expect that if the two param-
eters δ and ε satisfy the inequalities (9) and (15), COM C
will prevail – the population will spend most of the time
in its homogenous state. This expectation is supported by
the numerical results in Figures 2 and 3. For a given pay-
off matrix of the PD, for strong enough punishment cost
of failing commitment, δ, and small enough cost of setting
up the commitment, ε, the population spends most of the
time in the homogeneous state of COM C (Figure 2). In
addition, this result is also flexible with respect to the pay-
off values of the PD (Figure 3). For the sake of a clear
representation of the result, we use in this numerical experi-
ment the Donation game [46] – a special case of PD – where
T = b, R = b− c, P = 0, S = −c, satisfying that b > c > 0;
b and c stand for “benefit” and “cost” of cooperation, respec-
tively. It shows that, for given δ and ε, for large enough b/c,
the population spends most of the time in the homogeneous
state of COM C.

So far, our analytic and numerical results were obtained
in the limit of small mutation rates. Next, by extensive
computer simulations, we show that this remarkable per-
formance of the commitment strategy COM C is flexible
with respect to mutation rates (Figure 4). Namely, for all
the mutation rates up to 0.1, the population always spends
most of the time in the homogenous state of COM C. It
also noteworthy, that our analytic results for small imitation
strengths and under the extremes of low and high mutation
or exploration rates — based on the methods described in
[1] — comply with this simulation results.

frequency

1

0

pu
ni

sh
m

en
t,
δ

 commitment cost, ε

Figure 2: Contour plot of the frequency of COM C
as a function of ε and δ. In a population of COM C,
COM D, C, and D individuals, for a wide range of
ε and δ, the population spends most of the time in
the homogeneous state of COM C. The smaller the
cost of proposing commitment, ε, and the greater
the punishment cost of failing commitment, δ, the
greater the frequency of COM C. The payoffs being
used are, T = 2, R = 1, P = 0, S = −1; imitation
strength, β = 1; population size, N = 100.

�

�

�

�

�

�
�
�
� �

� � �
� � � �

� � � � � � �
� � � � � � � � �

���� �

�

�

�

�

�

�
�
�
� �

���� �

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

b�c

fr
eq
ue
nc
y

COM_C C D_COMD

1

fre
qu

en
cy

benefit-to-cost, b/c
2 3 4 5 6 7

Figure 3: Frequency of each strategy as a func-
tion of benefit-to-cost ratio, b/c, for Donation game
(T = b, R = b−c, P = 0, S = −c, with b ≥ c). In a pop-
ulation of COM C, COM D, C, and D individuals,
for a large enough benefit-to-cost ratio, the popu-
lation spends most of the time in the homogeneous
state of COM C, while D prevails when this ratio
is very small. Parameters: δ = 4; ε = 0.05; imitation
strength, β = 1; population size, N = 100.

563

COM_C C D_COMD

� � �
�

�
�

� � � �� �
�

�
�

� � �
�

�

� � � � � � � � � �

� � � � � � � �
�

�

�12 �10 �8 �6 �4
0.0

0.2

0.4

0.6

0.8

1.0

mutation rate, Μ

Fr
eq
ue
nc
y

10-4 10-310-3 10-2 10-1

fre
qu

en
cy

mutation rate, μ

Figure 4: Frequency as a function of mutation
rates. Symbols indicate results from computer sim-
ulations (averaged over 109 update steps), and solid
lines show the numerical approximation results for
small mutation rates. The population consists of
COM C, COM D, C, and D individuals. COM C
always dominates for all the mutation rates up to
0.1. Parameter values (the same as in Figure 1):
T = 2, R = 1, P = 0, S = −1; δ = 4; ε = 0.05; imitation
strength, β = 1.0; population size, N = 100. The sim-
ulation results are obtained by averaging 40 runs,
and the initial population is equally likely to be in
one of the homogenous states.

All in all, our study exhibits that, in spite of the absence of
repeated interactions, reputation effect, network reciprocity,
as well as group and kin selection, the strategy of commit-
ment proposal may enable the emergence of cooperation. By
imposing a high cost for failing a commitment, when com-
pared to the cost of setting up or managing the commitment
deal, the commitment cooperative agents COM C can get
rid of the fake committers (D COM) as well as avoid being
exploited by the pure defectors (D), while playing approx-
imately equally well against the pure cooperators (C). The
results of this study suggest that our specialized capacity
for commitment, which might have been shaped by natural
selection [26] consists in a capacity for managing to impose
a high cost of punishment, whether it is monetary or of ab-
stract emotional or reputation value, with a relatively small
cost.

We note that there is a significant difference between our
commitment model and the works on costly punishment [30,
35, 9, 17, 10]. A commitment deal must be agreed by both
sides of it in advance, thereby giving credibility and justi-
fication to punish any defaulting player. In addition, the
prior agreement gives rise to compensation—the amount of
which, in some cases, is agreed explicitly in advance—to
the non-defaulting player. This compensation for the non-
defaulting player is the significant difference that makes suc-
cessful those players using the commitment strategy, while
those using the costly punishment strategy have only a nar-
row margin of efficiency [30]; does not stand out as a winning
strategy [9]; nor does it promote cooperation at all when tak-
ing into account antisocial punishment [35]. The compensa-
tion might bring benefit to the commitment strategists once

an appropriate deal would be arranged.
This suggests that although costly punishment, whether

it is social or antisocial, might not promote the evolution
of cooperation, what we call ‘justified’ punishment, which is
warranted by an appropriate commitment deal, does. This
kind of punishment might not be costly at all, and can even
bring net benefit to its upholder, hence leading to the emer-
gence of cooperation.

5. DISCUSSIONS
Within the general game theory concept of commitment,

several distinctions can help separate different subtypes. In
particular, some commitments are upfront promises of a next
move that can help, while others are upfront threats of a
subsequent move that can harm. Commitments can be con-
ditional or unconditional. Threats are usually attempts to
influence another person’s next move by stating a condi-
tional subsequent move, and that’s how we may envisage
them. Promises are more likely to be unconditional, and
that’s how we may conceive of them, though more generally
they can be conditional on the other fulfilling a matching
promise. Concerning this, we note a difference between a
commitment and a convention. A convention is a means for
monitoring a commitment: it specifies under what circum-
stances a commitment can be abandoned and how an agent
should behave both locally and towards others when one of
these conditions arises [54]. Commitments can also be just
towards oneself, taking into account the evolution of possible
futures afforded by actions and events, and the individual’s
prior and post preferences, in what might be classically seen
as a game against nature.

In [34, 33], three different types of individual commit-
ment – hard, revocable, and momentary – are studied in
such an evolution context. Let us recall that commitment,
in the context of game theory, is a device or mechanism to
decide the outcome with the other party [43]. Schelling dis-
tinguishes between commitment pure and simple and com-
mitment that takes the form of a threat. What he calls
“ordinary” commitment corresponds, in game theory, to the
making of an opening announcement in a sequential play,
which we dub preemptive, just before both players make
their actual move. To constitute a preemption, a player’s
announcement action must be irrevocable, that is a promise
that is assuredly kept. Preemptive commitment is not neces-
sarily profitable, because it hinges on the opponent’s actual
move. Schelling however does not assume the other type of
commitment as a “threat”, which pertains to the a player’s
move in reaction to the opponent’s move. Threats, being
conditional, may be of the “if-then-else” form, and can thus
combine a threat and a promise, the latter albeit implicit
whenever there are just two possible moves. We prefer in-
stead to label “reactive” such so-called threat commitments.
In the game context, these occur when the player with the
last move irrevocably pledges to respond, in a specified but
contingent way, to the opponent’s prior choice [19].

In a nutshell, some players can be “preemptive” commit-
ters – those that always propose and always accept pro-
posed commitments–, others may be “reactive” committers
– those that always make a “reactive” statement and comply
with the implicit requests in such statements–, while other
players, though accepting to commit nevertheless default on
their commitment, and even others simply omit and ignore
preemptive or reactive commitments in their strategies –

564

they might for instance be persistent defectors or persistent
cooperators as we have seen, or, for that matter, follow any
other strategy ignorant of commitment. Moreover, in iter-
ated games, commitments can concern future rounds and
not just the present one.

We purport to have shown that a simple commitment
abiding cooperative strategy can be evolutionarily advan-
tageous even in a non-iterated game setting. But much
remains to be explored. In the more general setting and
to avoid confusion, it can be helpful to distinguish, even if
only conceptually, between “execution moves” and “pre-play
moves” [19]. The terms first move and last move then always
refer exclusively to execution moves – the choices that ac-
tually generate the payoffs. In contrast, commitments come
earlier with respect to execution moves: they are pre-play
moves. A preemptive commitment is a pre-play move that
allows the player making it to take the first execution move.
A reactive commitment, although also a pre-play move, can
be made only by the player who has the last execution move.
In either case, by giving up on his or her choice through com-
mitting, the commitment player leaves the opponent with
“the last clear chance to decide the outcome” [43].

In our present game setting, however, there was no need
to make the distinction between the first and the second to
play, because each possible player strategy move is exhib-
ited and fixed from the start, as expressed and ingrained in
the payoff matrix. By so introducing the several commit-
ted unconditional move strategies – though the payoff is of
course conditional on the opponent’s move–, we can emulate
what would happen in a round if a move sequence actually
existed. Put briefly, our commitment model is of the sim-
plest kind and, moreover, it is brought to bear solely on the
very next move fold of a pair of players, with no history
available on prior commitments. Nevertheless, it captures
core features of commitment, namely the high cost of de-
faulting to discourage false commitment, and thus make it
plausible, and a comparatively small but non-zero cost of
commitment proposal to lend it initial credibility. On top
of this core model more elaborate models affording commit-
ment can subsequently be rooted, including those involving
delayed deceit..

What’s more, commitment (or intention manifestation)
and intention recognition, are but two sides of a coin really,
and their future joint study in the EGT setting is all but
unavoidable. It has become increasingly obvious that maxi-
mizing reproductive success often requires keeping promises
and fulfilling threats, even when that requires in turn sacri-
fices regarding individual short-term interests. That natural
selection has shaped special mental capacities to make this
possible seems likely, including a capacity for commitment
[26] and for intention recognition [14, 15]. The commit-
ment stance goes yet further, and many aspects of human
groups seem shaped by effects of commitments and inten-
tion recognition, namely group boundaries, initiation ritu-
als, ideologies, and signals of loyalty to the group [47, 48, 49].
Conversely, many aspects of groups seem to exist largely to
facilitate commitment to cooperate and to limit the utility
of coercive threats.

The generalized ability for commitment to support coop-
erative interaction is an important aspect of plasticity in
human behavior, and humans support their deal-making in
lots of ways. The law is full of instances of people using
techniques of commitment to establish the honesty of their

intentions, namely through a variety of contracts [13]. In-
stitutions themselves are supported on committal contracts,
and the law of the land proffers methods for constituting
and of accountability of social institutions [44].

We believe that studies of commitment will benefit greatly
from rigorous models that allow for their analytical study
and computer simulation, and in particular within the fold
of EGT for the better to examine the emergence of complex
social behavior.

6. ACKNOWLEDGMENT
HTA and FCS acknowledge the support from FCT-Portugal

(grant SFRH/BD/62373/2009 and R&D project
PTDC/FIS/101248/2008, respectively).

7. REFERENCES
[1] T. Antal, A. Traulsen, H. Ohtsuki, C. E. Tarnita, and

M. A. Nowak. Mutation-selection equilibrium in
games with multiple strategies. J. Theor. Biol.,
258:614–622, 2009.

[2] R. Axelrod. The Evolution of Cooperation. Basic
Books, ISBN 0-465-02122-2, 1984.

[3] R. Axelrod and W. Hamilton. The evolution of
cooperation. Science, 211:1390–1396, 1981.

[4] I. Back and A. Flache. The Adaptive Rationality of
Interpersonal Commitment. Rationality and Society,
20(1):65–83, 2008.

[5] C. Boehm. The natural selection of altruistic traits.
Human Nature, 10(3):205–252, 1999.

[6] C. Castelfranchi and R. Falcone. Trust Theory: A
Socio-Cognitive and Computational Model (Wiley
Series in Agent Technology). Wiley, 2010.

[7] A. K. Chopra and M. P. Singh. Multiagent
commitment alignment. In Proceedings of the 8th
International Joint Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), pages 937–944,
2009.

[8] de Vos, R. Smaniotto, and D. Elsas. Reciprocal
altruism under conditions of partner selection.
Rationality and Society, 13(2):139–183, 2001.

[9] A. Dreber, D. G. Rand, D. Fudenberg, and M. A.
Nowak. Winners don’t punish. Nature,
452(7185):348–351, 2008.

[10] E. Fehr and S. Gachter. Altruistic punishment in
humans. Nature, 415:137–140, 2002.

[11] D. Fudenberg and L. A. Imhof. Imitation processes
with small mutations. Journal of Economic Theory,
131:251–262, 2005.

[12] H. Gintis. Beyond selfishness in modeling human
behavior. In R. M. Nesse, editor, Evolution and the
capacity for commitment. New York: Russell Sage,
2001.

[13] O. R. Goodenough. Law and the biology of
commitment. In R. M. Nesse, editor, Evolution and
the capacity for commitment, pages 262–291. New
York: Russell Sage, 2001.

[14] T. A. Han, L. M. Pereira, and F. C. Santos. Intention
recognition promotes the emergence of cooperation.
Adaptive Behavior, 19(3):264–279, 2011.

[15] T. A. Han, L. M. Pereira, and F. C. Santos. The role
of intention recognition in the evolution of cooperative

565

behavior. In Proceedings of the 22nd international
joint conference on Artificial intelligence
(IJCAI’2011), pages 1684–1689, 2011.

[16] P. Harrenstein, F. Brandt, and F. Fischer.
Commitment and extortion. In The 6th international
joint conference on Autonomous agents and
MultiAgent systems, AAMAS ’07. ACM, 2007.

[17] C. Hauert, A. Traulsen, H. Brandt, M. A. Nowak, and
K. Sigmund. Via freedom to coercion: The emergence
of costly punishment. Science, 316:1905–1907, 2007.

[18] J. Hirshleifer. Game-theoretic interpretations of
commitment. In R. M. Nesse, editor, Evolution and
the capacity for commitment, pages 77–93. New York:
Russell Sage, 2001.

[19] J. Hirshleiffer. There are many evolutionary pathways
to cooperation. Journal of Bioeconomics, (1):73–93,
1999.

[20] J. Hofbauer and K. Sigmund. Evolutionary Games and
Population Dynamics. Cambridge U. P., 1998.

[21] L.-M. Hofmann, N. Chakraborty, and K. Sycara. The
evolution of cooperation in self-interested agent
societies: a critical study. In The 10th International
Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’11, pages 685–692, 2011.

[22] N. K. Humphrey. Varieties of altruism. Social
Research, (64):199–209, 1999.

[23] L. A. Imhof, D. Fudenberg, and M. A. Nowak.
Evolutionary cycles of cooperation and defection.
Proc. Natl. Acad. Sci. USA, 102:10797–10800, 2005.

[24] M. Kandori, G. J. Mailath, and R. Rob. Learning,
mutation, and long run equilibria in games.
Econometrica, 61:29–56, 1993.

[25] S. Karlin and H. E. Taylor. A First Course in
Stochastic Processes. Academic Press, New York, 1975.

[26] R. M. Nesse. Natural selection and the capacity for
subjective commitment. In R. M. Nesse, editor,
Evolution and the capacity for commitment, pages
1–44. New York: Russell Sage, 2001.

[27] M. A. Nowak. Five rules for the evolution of
cooperation. Science, 314(5805):1560, 2006. DOI:
10.1126/science.1133755.

[28] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg.
Emergence of cooperation and evolutionary stability
in finite populations. Nature, 428:646–650, 2004.

[29] M. A. Nowak and K. Sigmund. Evolution of indirect
reciprocity. Nature., 437(7063):1291–1298, 2005.

[30] H. Ohtsuki, Y. Iwasa, and M. A. Nowak. Indirect
reciprocity provides only a narrow margin of efficiency
for costly punishment. Nature, 457(7601):79–82, 2009.

[31] S. Oyama. Evolution’s Eye: A Systems View of the
Biology-Culture Divide. Durham, N.C.: Duke
University Press., 2000.

[32] J. M. Pacheco, F. C. Santos, and F. A. C. C. Chalub.
Stern-judging: A simple, successful norm which
promotes cooperation under indirect reciprocity. PLoS
Comput Biol, 2:12:e178, 2006.

[33] L. M. Pereira and T. A. Han. Evolution prospection.
In Proceedings of International Symposium on
Intelligent Decision Technologies (KES-IDT’09),
pages 51–63. Springer Studies in Computational
Intelligence 199, 2009.

[34] L. M. Pereira and T. A. Han. Evolution prospection in
decision making. Intelligent Decision Technologies,
3(3):157–171, 2009.

[35] D. G. Rand and M. A. Nowak. The evolution of
antisocial punishment in optional public goods games.
Nature Communications, 2:434, 2011.

[36] L. Rendell, R. Boyd, D. Cownden, M. Enquist,
K. Eriksson, M. W. Feldman, L. Fogarty, S. Ghirlanda,
T. Lillicrap, and K. N. Laland. Why copy others?
insights from the social learning strategies
tournament. Science, 328(5975):208–213, 2010.

[37] A. Robson. Efficiency in evolutionary games: Darwin,
nash, and the secret handshake. J Theo Biol,
144:379–396, 1990.

[38] M. Ruse. Morality and commitment. In R. M. Nesse,
editor, Evolution and the capacity for commitment,
pages 221–236. New York: Russell Sage, 2001.

[39] F. C. Santos and J. M. Pacheco. Risk of collective
failure provides an escape from the tragedy of the
commons. Proc Natl Acad Sci USA, 108:10421–5, 2011.

[40] F. C. Santos, J. M. Pacheco, and T. Lenaerts.
Evolutionary dynamics of social dilemmas in
structured heterogeneous populations. Proc. Natl.
Acad. Sci. USA, 103:3490–3494, 2006.

[41] F. C. Santos, J. M. Pacheco, and B. Skyrms.
Co-evolution of pre-play signaling and cooperation. J
Theo Biol, 274:30–35, 2011.

[42] F. C. Santos, M. D. Santos, and J. M. Pacheco. Social
diversity promotes the emergence of cooperation in
public goods games. Nature, 454:214–216, 2008.

[43] T. C. Schelling. The strategy of conflict. London:
Oxford University Press, 1990.

[44] J. R. Searle. Making the Social World: The Structure
of Human Civilization. Oxford University Press, 2010.

[45] K. Sigmund. The Calculus of Selfishness. Princeton U.
Press, 2010.

[46] K. Sigmund, H. D. Silva, A. Traulsen, and C. Hauert.
Social learning promotes institutions for governing the
commons. Nature, 466:7308, 2010.

[47] B. Skyrms. Evolution of the Social Contract.
Cambridge University Press, 1996.

[48] B. Skyrms. The Stag Hunt and the Evolution of Social
Structure. Cambridge University Press, 2003.

[49] B. Skyrms. Signals: Evolution, Learning, and
Information. Oxford University Press, 2010.

[50] A. Traulsen, C. Hauert, H. De Silva, M. A. Nowak,
and K. Sigmund. Exploration dynamics in
evolutionary games. Proc. Natl. Acad. Sci. USA,
106(3):709–712, 2009.

[51] A. Traulsen, M. A. Nowak, and J. M. Pacheco.
Stochastic dynamics of invasion and fixation. Phys.
Rev. E, 74:11909, 2006.

[52] R. L. Trivers. The evolution of reciprocal altruism.
The Quarterly Review of Biology, 46:35–57, 1971.

[53] M. Winikoff. Implementing commitment-based
interactions. In The 6th international joint conference
on Autonomous agents and multiagent systems,
AAMAS ’07, pages 868–875. ACM, 2007.

[54] M. Wooldridge and N. R. Jennings. The cooperative
problem-solving process. In Journal of Logic and
Computation, pages 403–417, 1999.

566

Author Index
Abdallah, Sherief, 1381
Adams, Julie, 569, 593
Agmon, Noa, 341, 1251
Ågotnes, Thomas, 1099
Alan, Perotti, 1023
Alberola, Juan M., 1379
Alberti, Marco, 1425
Albrecht, Stefano, 349
Alcântara, João, 501
Aldewereld, Huib, 1371, 1421
Alechina, Natasha, 1057, 1099, 1309
Alers, Sjriek, 1475
Alferes, José, 1423
Alford, Ron, 981
Allahverdyan, Armen, 1391
Almajano, Pablo, 1483
Alvarado, Oscar, 1493
Amarante, Maicon, 1351
Amor, Mercedes, 1427
An, Bo, 13, 863, 1307
Anand, Sarabjot Singh, 1367
Andrighetto, Giulia, 1189
Anshelevich, Elliot, 1321
Antos, Dimitrios, 55
Aravamudhan, Ajay Srinivasan, 1227
Argente, Estefanía, 1419
Artstein, Ron, 63
Athakravi, Duangtida, 1369
Atkinson, Katie, 1171
Aumann, Yonatan, 1293
Ayala, Inmaculada, 1427
Aylett, Ruth, 1197, 1457
Azar, Yossi, 897
Azaria, Amos, 459
Aziz, Haris, 585, 763, 1311

Bachrach, Yoram, 535
Bai, Aijun, 1215
Bai, Quan, 1459
Baier, Jorge, 997
Baldwin, Craig, 13
Banerjee, Bikramjit, 1441
Baptista, Márcia, 1175
Barlow, Gregory J., 1271
Barrera, Francisco, 129
Barrett, Samuel, 129, 357
Baumeister, Dorothea, 577
Bazzan, Ana, 1351, 1389, 1395
Becerik-Gerber, Burcin, 21, 1455
Bekris, Kostas, 247
Bench-Capon, Trevor, 1171
Benenson, Itzhak, 1453
Bergenti, Federico, 1435

Berzan, Constantin, 189
Bessiere, Christian, 1263
Beygelzimer, Alina, 1317
Bianchi, Reinaldo, 1395
Bída, Michal, 1469, 1477
Biec, Santiago, 1481
Bill-Clark, Luis, 1213
Birattari, Mauro, 139
Bistaffa, Filippo, 1461
Bloembergen, Daan, 1393, 1475
Blokzijl-Zanker, Michiel, 1207
Boella, Guido, 1023
Bölöni, Ladislau, 1345
Bonjean, Noélie, 1065
Bonzon, Elise, 1413
Booth, Richard, 493
Bošanský, Branislav, 905, 1301, 1473
Botia, Juan, 307
Botti, Vicent, 1355, 1377, 1419, 1493
Bou Ammar, Haitham, 383
Boureanu, Ioana, 1141
Bourgne, Gauvain, 1223
Boutilier, Craig, 737
Bowring, Emma, 1193
Brafman, Ronen, 1265
Brambilla, Manuele, 139
Brandl, Florian, 763
Brandts, Jordi, 1189
Bratman, Jeshua, 407
Brill, Markus, 585
Brito, Ismel, 1263
Brom, Cyril, 1469, 1477
Bromuri, Stefano, 1487
Brown, Matthew, 863
Brunskill, Emma, 1385
Budrene, Elena, 1337
Bügler, Max, 1475
Burnett, Chris, 1359

Caillou, Philippe, 1353
Caire, Giovanni, 1435
Caminada, Martin, 493
Campano, Sabrina, 1191
Čáp, Michal, 1473
Carnevale, Peter, 55
Castelfranchi, Cristiano, 1241
Cataldi, Mario, 1185
Cavallo, Ruggiero, 677
Cavedon, Lawrence, 1081, 1187
Ceppi, Sofia, 1323
Cerquides, Jesus, 1275
Chaganty, Arun Tejasvi, 391
Chakraborty, Nilanjan, 1161

1509

Chalkiadakis, Georgios, 417, 779, 787, 1165
Chang, Yu-Han, 45, 1295, 1505
Chatterjee, Sreerupa, 1333
Chella, Antonio, 1065
Chen Hui, Ong, 29
Chen, Inn-Tung, 1277
Chen, Jianing, 163
Chen, Jie, 105
Chen, Xiaoping, 1215
Chen, Yiling, 889
Chen, Yin, 1437
Cheng, Shih-Fen, 1227
Chhabra, Meenal, 1321
Chi, Luyan, 1295
Chien, Steve, 105
Chli, Maria, 1285
Claes, Daniel, 147, 1495
Cobo, Luis C., 483
Cohen, Robin, 1363
Colby, Mitchell, 425
Colombo Tosatto, Silvano, 1023
Conte, Rosaria, 1189
Corapi, Domenico, 1369
Corruble, Vincent, 1191
Cossentino, Massimo, 1065
Cramer, Henriette, 1197
Crandall, Jacob, 399
Cranefield, Stephen, 1491
Criado, Natalia, 1419
Croitoru, Madalina, 1249

Dam, Hoa, 1433
Damiano, Rossana, 1185
Dannenberg, Roger, 205
Das, Sanmay, 1291, 1321
Dasgupta, Prithviraj, 121
Dastani, Mehdi, 331, 1057, 1133, 1373
d’Avila Garcez, Artur, 1023
Dayama, Pankaj, 703
De Giacomo, Giuseppe, 1031
de Jonge, Dave, 1415
de la Hoz, Enrique, 1259
de Lucena, Carlos, 1225
de Melo, Celso, 55
de Sevin, Etienne, 1191
De Vos, Marina, 1369
de Weerd, Harmen, 1195
del Val, Elena, 1355, 1429
Delle Fave, Francesco Maria, 289, 1467
Demiris, Yiannis, 1207
Derbinsky, Nate, 1387
desJardins, Marie, 315
Devlin, Sam, 433
Di Caro, Gianni, 1205, 1503
Di Loreto, Ines, 1449

Dickerson, John, 711
Dignum, Frank, 1181
Dignum, Virginia, 1183, 1371, 1421
Dimas, Joana, 1175
Dimopoulos, Yannis, 1413
DiRenzo, Joseph, 13
Dobson, Andrew, 247
Dolan, John, 105, 1213
Dorigo, Marco, 97, 139
Doshi, Prashant, 1039, 1243, 1507
Dovgan, Erik, 1485
Driessen, Kurt, 383
Ducatelle, Frederick, 1205
Dunne, Paul, 939
Duong, Quang, 441
Durfee, Ed, 323, 1277

Eck, Adam, 1221
Elidrisi, Mohamed, 1289
Elkind, Edith, 627, 787
Endriss, Ulle, 635
Enz, Sibylle, 1197
Epstein, Daniel, 1389
Erdélyi, Gábor, 627
Ermon, Stefano, 965
Esteva, Marc, 1483

Fabregues, Angela, 1481
Falcone, Rino, 1241
Faliszewski, Piotr, 577
Faltings, Boi, 1273
Fang, Fei, 1299
Fang, Hui, 1365
Farinelli, Alessandro, 417, 1461
Faus, Jaume, 1499
Feige, Uriel, 897
Feldman, Michal, 771, 897
Fernandez, Alberto, 1429
Fink, Andreas, 1417
Fischer, Felix, 585
Fischer, Klaus, 1479
Foss, Bjarne, 1169
Fragiadakis, Daniel, 1327
Frazier, Spencer, 1505
Fredericks, Gary, 1255
French, Tim, 1091
Fridman, Natalie, 1343
Frieder, Asaf, 1281
Friedman, Michal, 1267
Fu, Tuanjie, 1331
Fuentes, Lidia, 1427

Gal, Ya’akov (Kobi), 451
Galstyan, Aram, 1391
Gambardella, Luca, 1205, 1503
Gams, Matjaž, 1485

Ganesan, Vijayalakshmi, 1403
Ganzfried, Sam, 871
Gao, Debin, 29
García-Fornes, Ana, 1377, 1379
Gatti, Nicola, 813, 1323, 1325
Gauci, Melvin, 163
Gaur, Prateek, 391
Gelfand, Michele, 451
Gemrot, Jakub, 1469
Genovese, Valerio, 1023
Genter, Katie, 1251
Gerding, Enrico, 661, 669, 1323
Gerrior, Matthew, 1321
Ghanem, Amer, 551
Ghorbani, Amineh, 1421
Ghose, Aditya, 1433
Ghosh, Siddhartha, 1471
Gil-Quijano, Javier, 1353
Gini, Maria, 1211, 1289
Giret, Adriana, 1493
Giusti, Alessandro, 1503
Gleizes, Marie-Pierre, 1065
Goel, Sharad, 1319
Goldman, Claudia, 459
Gomes, Ana Sofia, 1425
Gomes, Carla, 965
Gonçalves, Ricardo, 1423, 1425
Goodie, Adam, 1243
Goranko, Valentin, 1123
Gordon, Geoff, 1227
Gotta, Danilo, 1435
Governatori, Guido, 1375
Graepel, Thore, 535
Gratch, Jonathan, 55, 63
Grau, Ricardo, 1401
Griffiths, Nathan, 1367
Grimaldo, Francisco, 1357, 1499
Groß, Roderich, 163
Großekathöfer, Ulf, 1177
Grossi, Davide, 805
Grubshtein, Alon, 1267
Grześ, Marek, 1237
Guo, Mingyu, 745
Gutierrez, Patricia, 273, 1263
Gutman, Avital, 719

Hacker, Severin, 467
Hafizoǧlu, Feyza, 1349
Haghpanah, Yasaman, 315
Haim, Galit, 451
Han , The Anh, 559
Hanna, Nader, 79, 1463
Harland, James, 1443
Harrenstein, Paul, 585, 1311
Hasegawa, Takato, 795

Hashimoto, Naoyuki, 795
Hayes, Timothy, 21, 1455
Hazon, Noam, 879
Hendrix, Philip, 1337
Hennes, Daniel, 147, 1475, 1495
Hermann, Thomas, 1177
Hernández, Carlos, 997
Hervouet, Fabien, 1449
Hickmott, Sarah, 1163
Hoang, Trong Nghia, 155, 1233
Hoey, Jesse, 1237
Horvitz, Eric, 467, 889, 1329
Hossain, S. G. M. , 121
Hrstka, Ondřej, 37
Hsu, Jane Yung-jen, 1439
Hsu, Wynne, 215
Hu, Cuiyun, 1437
Huang, Lixing, 63

Iliev, Petar, 1115
Inoue, Katsumi, 1223
Iocchi, Luca, 1203
Isbell Jr., Charles L., 483
Ishowo-Oloko, Fatimah, 1167
Itoh, Hidenori, 1159
Iwasaki, Atsushi, 753, 795, 1305, 1327

Jacobson, Michael J., 79, 1463
Jain, Manish, 905
Jain, Shaili, 677
Jakob, Michal, 37, 1501
Jamroga, Wojciech, 1123, 1405
Jazizadeh, Farrokh, 21, 1455
Jeanpierre, Laurent, 1209
Jennings, Nick, 223, 231, 289, 417, 543, 669, 779, 1165,

1167, 1467, 1471
Jiang, Albert Xin, 1299, 1501
Jiang, Jie, 1371
Jiang, Siwei, 299
Jiang, Yichuan, 1331
Jih, Wan-rong, 1439
Joe, YongJoon, 1305
John, Richard, 1297
Johnson, Matthew, 1501
Jones, Andrew, 1141
Jonker, Catholijn, 1183
Julian, Vicente, 1379, 1493
Junges, Robert, 1335

Kaelbling, Leslie, 973
Kaisers, Michael, 947, 1393
Kalia, Anup, 1489
Kaluža, Boštjan, 955, 1485
Kalyanakrishnan, Shivaram, 129
Kamar, Ece, 467, 1329
Kaminka, Gal, 113, 955, 1343

Kandori, Michihiro, 1305
Kang, Sin-Hwa, 63
Kang, Yi-Lin, 1465
Kankanhalli, Mohan, 155
Kannan, Balajee, 1213
Kantor, George, 1213
Karnik, Aditya, 703
Kasneci, Gjergji, 535
Kato, Shohei, 1159
Kavulya, Geoffrey, 21, 1455
Kearns, Michael, 441
Keidar, Matan, 113
Kelaiah, Iwan, 79, 1463
Kerr, Reid, 1363
Keysermann, Matthias, 1197
Kianercy, Ardeshir, 1391
Kiekintveld, Christopher, 863
Kim, Eunkyung, 1295
Kim, Yoonheui, 1279
Kimmel, Andrew, 247
Klein, Laura, 21, 1455
Klein, Mark, 1259
Klenk, Matthew, 989
Klügl, Franziska, 1335
Klusch, Matthias, 1479
Knobbout, Max, 331
Knorr, Matthias, 1425
Knox, W. Bradley, 475
Koenig, Sven, 997
Kok, Eric, 1411
Kollar, Thomas, 1217
Komenda, Antonín, 1239, 1473, 1501
Kopp, Stefan, 1177
Kosinski, Michal, 535
Koster, Andrew, 517
Kot, Alex C., 1361
Kota, Ramachandra, 1165
Kraemer, Landon, 1441
Krampf, Johannes, 1487
Kraus, Sarit, 451, 459, 1281, 1297
Kriegel, Michael, 1457
Kudenko, Daniel, 433
Kuter, Ugur, 981, 989, 1201
Kwak, Jun-young, 21, 1455

Lagoudakis, Michail, 171
Lai, Darong, 1331
Laird, John, 1387
Lang, Fabian, 1417
Lang, Jérôme, 577, 585, 1247
Langford, John, 1317
Lau, Hoong Chuin, 257, 1227
Lau, Qiangfeng Peter, 215
Lazaric, Alessandro, 1325
Lee, Mong Li, 215

Leite, João, 1425
Leonetti, Matteo, 1203
Lespérance, Yves, 1031
Lesser, Victor, 1279
Letchford, Joshua, 1303
Lev, Omer, 611
Lewis, Bennie, 1219
Lewis, Michael, 1161
Lewis, Richard, 407
Li, Justin, 1387
Li, Minyi, 525
Liang, Han, 1261
Lin, Raz, 1281
Linkov, Igor, 1337
Lisý, Viliam, 1301, 1473
Littman, Michael, 947
Liu, Fan, 1459
Liu, Siyuan, 1361
Logan, Brian, 1057, 1309
Lombardo, Vincenzo, 1185
Lomuscio, Alessio, 1141
Lopez Carmona, Miguel Angel, 1259
Lopez-Mobilia, Adrian, 129
Lopez-Sanchez, Maite, 1483
Lorini, Emiliano, 1133
Low, Kian Hsiang, 105, 155, 1233
Luck, Michael, 1225
Luke, Sean, 197
Luo, Jian, 1015
Luštrek, Mitja, 1485
Lyle, Jeremy, 1441

MacAlpine, Patrick, 129
Machado , André, 1389
Magee, Liam, 1163
Maghami, Mahsa, 687
Magnenat Thalmann, Nadia, 1365
Mahdian, Mohammad, 1319
Maheswaran, Rajiv, 21, 45, 1295, 1297, 1299, 1455, 1505
Maleki, Sasan, 1471
Mamidi, Sunil, 45
Manenti, Lorenza, 1341
Mao, Hua, 1015
Mao, Xinjun, 1437
Marecki, Janusz, 821, 1235
Markakis, Vangelis, 779
Marsa-Maestre, Ivan, 1259
Marsella, Stacy, 1193
Martinho, Carlos, 1175
Mathews, Nithin, 97
Matignon, Laëtitia, 1209
Mattei, Nicholas, 1407
Maudet, Nicolas, 1223, 1313
Maule, Ben, 13
Mauri, Alessia, 1339

McClean, Sally, 417
Meeussen, Wim, 147, 1495
Mehrotra, Siddharth, 1161
Meir, Reshef, 771
Meisels, Amnon, 1267
Meneguzzi, Felipe, 1161
Meseguer, Pedro, 273, 1263
Męski, Artur, 1447
Meyer, Garrett, 13
Meyer, John-Jules, 1411
Miao, Chunyan, 1361, 1465
Michalak, Tomasz, 239
Migeon, Frédéric, 1065
MikoŁaj, Mikolaj, 493
Miles, Simon, 1225
Miller, Sam, 281
Minai, Ali, 551
Moler, Zbynĕk, 1501
Molineaux, Matthew, 989
Moraitis, Pavlos, 1413
Morel, Benoit, 1337
Morency, Louis-Phillippe, 63
Mouaddib, Abdel-Illah, 1209
Mouri, Takayuki, 753
Muise, Christian, 1031
Mutoh, Atsuko, 1159

Nagi, Jawad, 1503
Nahum, Yinon, 1291
Nakisaee, Ali, 1497
Nanjanath, Maitreyi, 1211
Narahari, Yadati, 703
Narayanan, Ajit, 1459
Natarajan, Prabhu, 155
Nau, Dana, 981, 1201
Nelson, Carl, 121
Newnan, Alex, 1505
Newstead, Anne, 79, 1463
Ng, Wing Lon, 653
Nguyen, Duc Thien, 257
Nguyen, Nhan-Tam, 1287
Nguyen, Trung Thanh, 1287
Ning, Yu, 1295
Nisan, Noam, 719
Nissim, Raz, 1265
Noriega, Pablo, 1419, 1421
Norman, Timothy, 1409
Novák, Peter, 1239, 1473
Nowé, Ann, 1401
Nunes, Ernesto, 1211
Nunes, Ingrid, 1225

Obara, Ichiro, 1305
Ochs, Magalie, 87
Ogawa, Yuki, 1347
Oh, Jean, 1161

Ohta, Naoki, 795
Okada, Isamu, 1347
Okamoto, Steven, 879
Oliehoek, Frans, 973, 1229
Onaindia, Eva, 509
Ong, Yew-Soon, 299, 1465
Ordóñez, Fernando, 847, 863
Oren, Nir, 1359
Ossowski, Sascha, 1173
Othman, Abraham, 645
Ottens, Brammert, 1273

Padget, Julian, 1369
Padgham, Lin, 1049, 1081, 1163, 1187
Pajares Ferrando, Sergio, 509
Palit, Imon, 653
Pan, Yinghui, 1015
Panozzo, Fabio, 813
Paolucci, Mario, 1357
Paraschos, Alexandros, 171
Pardo, Pere, 1231
Parkes, David, 889
Parr, Gerard, 417
Pĕchouček, Michal, 37, 905, 1239, 1301, 1473, 1501
Pedersen, Sindre, 1169
Pelachaud, Catherine, 87, 1179
Peled, Hilla, 265
Peña, Jorge, 1175
Penczek, Wojciech, 1447
Pennock, David, 1317, 1319
Penya-Alba, Toni, 1275
Pereira , Luís Moniz, 559
Perez, Victor, 1493
Pham, Manh Tung, 1257
Phelps, Steve, 653
Pinciroli, Carlo, 139
Pini, Maria Silvia, 1313, 1407
Pita, James, 1297
Piunti, Michele, 1241
Pizzo, Antonio, 1185
Popelová, Markéta, 1477
Porte, John, 79, 1463
Prada, Rui, 1175
Prakken, Henry, 1411
Prepin, Ken, 1179
Price, Michael J., 163
Procaccia, Ariel, 711
Proper, Scott, 1397
Pryymak, Oleksandr, 543
Pyrga, Evangelia, 1311

Qu, Xia, 1243

Rabinovich, Zinovi, 459
Raboin, Eric, 1201
Rahwan, Iyad, 493, 1167

Rahwan, Talal, 239
Raimundo, Guilherme, 1175
Rajagopal, Karthik, 1299
Ramamoorthy, Subramanian, 349, 1203
Ramchurn, Sarvapali, 223, 281
Ranathunga, Surangika, 1491
Ranjbar-Sahraei, Bijan, 1497
Rao, Karun, 375
Ravindran, Balaraman, 391
Read, Stephen, 55
Rebollo, Miguel, 1355, 1429
Reeves, Daniel, 1319
Reijngoud, Annemieke, 635
Ribeiro, Luís Landeiro, 1175
Richards, Deborah, 79, 1463
Riedl, Mark, 71
Robu, Valentin, 669, 1165
Rodríguez, Abdel, 1401
Rodriguez, Inmaculada , 1483
Rodriguez, Rosa Maria, 1493
Rodriguez-Aguilar, Juan Antonio, 1275
Rogers, Alex, 281, 289, 417, 543, 661, 1165, 1461, 1467,

1471
Roos, Magnus, 1287
Rose, Harry, 661
Rosenschein, Jeffrey, 611, 1315
Rossi, Francesca, 1313, 1407
Rothe, Jörg, 577, 1287
Rovatsos, Michael, 307
Rudolph, Sebastian, 1249
Ruff, Alexander, 1333
Rui, Zaojie, 1331
Ruiz, N., 1493
Russo, Alessandra, 1369

Sá, Samy, 501
Sabater-Mir, Jordi, 517, 1189
Sabouret, Nicolas, 1191
Sadat, Seyed Abbas, 1199
Sadrzadeh, Mehrnoosh, 1231
Saffidine, Abdallah, 1247
Samadi, Mehdi, 1217
Sandholm, Tuomas, 645, 711, 729, 871
Santos, Francisco C., 559
Santos, Pedro A., 1175
Sardina, Sebastian, 1049, 1081
Sarne, David, 1291, 1293, 1445
Satoh, Ken, 1369
Sattar, Abdul, 1375
Scerri, Adrian, 1213
Scerri, Paul, 1213, 1261, 1269
Scheidler, Alexander, 97
Scheutz, Matthias, 189
Schjølberg, Ingrid, 1169
Schorlemmer, Marco, 517

Schumacher, Michael, 1487
Schumann, René, 1487
Seedig, Hans Georg, 585
Segal, Richard, 821
Seidita, Valeria, 1065
Selman, Bart, 965
Sen, Sandip, 1333, 1349
Şensoy, Murat, 1365
Seow, Kiam Tian, 1257
Serrano, Emilio, 307, 1377
Service, Travis, 569, 593
Shankar, Kumar Shaurya, 1213
Shapiro, Steven, 1081
Shehory, Onn, 1291
Shieh, Eric, 13
Shivashankar, Vikas, 981
Sidner, Candy, 63
Sierra, Carles, 1415, 1481
Singh, Munindar, 1073, 1149, 1489
Singh, Satinder, 407, 441, 1277
Slavkovik, Marija, 1403, 1405
Sleight, Jason, 323
Slota, Martin, 1425
Slusallek, Philipp, 1479
Smith, Stephen, 1271
Sofy, Nadav, 1445
Soh, Leen-Kiat, 1221
Song, Zhao, 1199
Sonu, Ekhlas, 1039, 1507
Sørensen, Troels, 829
Sorg, Jonathan, 407
Sousa, Sergio, 1403
Spaan, Matthijs, 1229
Spanoudakis, Nikolaos, 171
Sridharan, Mohan, 181
Stein, Sebastian, 231, 669
Ştiurcă, Nicolae, 129
Stone, Peter, 129, 341, 357, 475, 1251
Stranders, Ruben, 289
Stranieri, Alessandro, 97
Subagdja, Budhitama, 1007, 1465
Such, José, 1377
Suetsugu, Katsuya, 1159
Sukthankar, Gita, 687, 1219
Sullivan, Keith, 197
Sutanto, Danny, 1253, 1431
Sycara, Katia, 879, 1161, 1269, 1409
Szczepański, Piotr, 239
Szreter, Maciej, 1447

Tambe, Milind, 13, 21, 847, 855, 863, 905, 955, 1193,
1297, 1299, 1307, 1455, 1501

Tan, Ah-Hwee, 1007, 1465
Tan, Yao-Hua, 1371
Tan, Yuan-Sin, 1007

Tang, Pingzhong, 729
Tay, Junyun, 205
Taylor, Charlotte, 79, 1463
Taylor, Matthew, 383, 1383
Taylor, Meredith, 79, 1463
Teacy, Luke, 417
Telang, Pankaj, 1073, 1489
Tennenholtz, Moshe, 771, 897
Teow, Loo-Nin, 1007
Tesauro, Gerry, 821
Tettamanzi, Andrea, 1339
Thakur, Subhasis, 1375
Thangarajah, John, 1049, 1081, 1187, 1443
Theng, Yin-Leng, 1361
Thom, James, 1163
Thomaz, Andrea, 483
Thompson, David, 105
Tittle, James, 1161
Tjønnås, Johannes, 1169
Todo, Taiki, 753
Tomaszewski, Christopher, 1213
Tomek, Jakub, 1477
Toniolo, Alice, 1409
Torrey, Lisa, 1383
Tran-Thanh, Long, 289
Trescak, Tomas, 1483
Trodd, Luke, 1443
Troquard, Nicolas, 1245
Trovò, Francesco, 1325
Troyan, Peter, 1327
Tsai, Jason, 1193
Tsao, Tiffany Yi-Ting, 1439
Tsimhoni, Omer, 459
Tumer, Kagan, 425, 1397
Turrini, Paolo, 805
Tuyls, Karl, 147, 383, 1393, 1475, 1495

Ueda, Suguru, 795, 1327
Ufimtsev, Vladimir, 121
Uras, Tansel, 997
Urieli, Daniel, 129

Valada, Abhinav, 1213
van der Hoek, Wiebe, 1115
van der Schaar , Mihaela, 1283
van der Torre, Leendert, 1023, 1373, 1403
van der Zwaan, Janneke, 1183
van Ditmarsch, Hans, 1091, 1247
Van-Gael, Jurgen, 535
van Oijen, Joost, 1181
Vanĕk, Ondřej, 37, 905
Varakantham, Pradeep, 21, 29, 1227, 1235, 1269, 1455
Vargas, Patricia, 1197
Vasirani, Matteo, 1173, 1429
Vaughan, Richard T., 1199
Vedanarayanan, Srinivasa, 551

Velagapudi, Prasanna, 1213, 1269
Velázquez-Quesada, Fernando R., 1091
Veloso, Manuela, 205, 1217
Venable, Kristen Brent, 1313, 1407
Venanzi, Matteo, 1241
Verbrugge, Rineke, 1195
Verheij, Bart, 1195
Verwer, Sicco, 1399
Vidal, José, 1255
Villatoro, Daniel, 1189
Vinyals, Meritxell, 1275, 1461
Vizzari, Giuseppe, 1341
Vladimirsky, Alexander, 965
Vo, Bao, 525
Voice, Thomas, 223
Vorobeychik, Yevgeniy, 1303, 1307
Vrancx, Peter, 1401
Vreeswijk, Gerard, 1411
Vu, Victor, 129
Vytelingum, Perukrishnen, 1167

Waizman, Gennady, 1453
Wallace, Iain, 1457
Walsh, Toby, 603
Wang, Wenwen, 1007
Warwas, Stefan, 1479
Waugh, Kevin, 871
Weiss, Gerhard, 383, 1497
Wellman, Michael, 441, 931
Whiteson, Shimon, 375
Wiedenbeck, Bryce, 931
Williamson, Simon, 29, 231
Winsper, Michael, 1285
Witwicki, Stefan, 973, 1277
Wöhler, Nils-Christian, 1177
Wong, Wilson, 1187
Wood, Wendy, 21, 1455
Wooldridge, Michael, 939, 1115
Woźna-Szcześniak, Bozena, 1447
Wu, Feng, 1215
Wunder, Michael, 947
Wyner, Adam, 1171

Xia, Guangyu, 205
Xia, Lirong, 603
Xie, Xiao-Feng, 1271
Xu, Jie, 1283
Xu, Yang, 1261

Yamamoto, Hitoshi, 1347
Yang, Rong, 13, 847, 1297, 1299
Yaros, John Robert, 947
Ye, Dayong, 1253, 1431
Yeoh, William, 257, 1227, 1269
Yin, Zhengyu, 855, 905, 1501
Yokoo, Makoto, 753, 795, 1305, 1327

Yorke-Smith, Neil, 1373
Yu, Hong, 71

Zame, William, 1283
Zappala, Julian, 1309
Zbrzezny, Andrzej, 1447
Zeng, Yifeng, 1015
Zhang, Haoqi, 889
Zhang, Jie, 299, 1365
Zhang, Minjie, 1253, 1431
Zhang, Shiqi, 181
Zhang, Yingqian, 1399
Zhou, Huiping, 1437
Zhu, Linglong, 1261
Zick, Yair, 787
Zilka, Avishay, 1343
Zivan, Roie, 265, 1267
Zoll, Carsten, 1197
Zuckerman, Michael, 1315

