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Sustaining Cooperation on Networks: An Analytical Study based on Evolutionary Game Theory

Raghunandan Ananthasayanam, Subramanian Chandrasekarapuram . . . . . . . . . . . . . . . . . 913
Behavioral Game Theoretic Models: A Bayesian Framework For Parameter Analysis

James Wright, Kevin Leyton-Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921



Session 5E – Game & Agent Theories
Scaling Simulation-Based Game Analysis through Deviation-Preserving Reduction

Bryce Wiedenbeck, Michael Wellman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
Towards Tractable Boolean Games

Paul Dunne, Michael Wooldridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
A Framework for Modeling Population Strategies by Depth of Reasoning

Michael Wunder, Michael Kaisers, John Robert Yaros, Michael Littman . . . . . . . . . . . . . . . 947
Detection of Suspicious Behavior from a Sparse Set of Multiagent Interactions

Boštjan Kaluža, Gal Kaminka, Milind Tambe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955

Session 1F – Planning
Probabilistic Planning with Non-Linear Utility Functions and Worst-Case Guarantees

Stefano Ermon, Carla Gomes, Bart Selman, Alexander Vladimirsky . . . . . . . . . . . . . . . . . 965
Heuristic Search of Multiagent Influence Space

Stefan Witwicki, Frans Oliehoek, Leslie Kaelbling . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
A Hierarchical Goal-Based Formalism and Algorithm for Single-Agent Planning

Vikas Shivashankar, Ugur Kuter, Dana Nau, Ron Alford . . . . . . . . . . . . . . . . . . . . . . . 981
DiscoverHistory: Understanding the Past in Planning and Execution

Matthew Molineaux, Ugur Kuter, Matthew Klenk . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Time Bounded Adaptive A*

Carlos Hernández, Jorge Baier, Tansel Uras, Sven Koenig . . . . . . . . . . . . . . . . . . . . . . 997

Session 2F – Knowledge Representation & Reasoning
Memory Formation, Consolidation, and Forgetting in Learning Agents

Budhitama Subagdja, Wenwen Wang, Ah-Hwee Tan, Yuan-Sin Tan, Loo-Nin Teow . . . . . . . . . 1007
Improved Use of Partial Policies for Identifying Behavioral Equivalence

Yifeng Zeng, Yinghui Pan, Hua Mao, Jian Luo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
Learning and Reasoning about Norms using Neural-Symbolic Systems

Guido Boella, Silvano Colombo Tosatto, Artur d’Avila Garcez, Valerio Genovese, Perotti Alan,
Leendert van der Torre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023

On Supervising Agents in Situation-Determined ConGolog
Giuseppe De Giacomo, Yves Lespérance, Christian Muise . . . . . . . . . . . . . . . . . . . . . . . 1031

Generalized and Bounded Policy Iteration for Finitely-Nested Interactive POMDPs: Scaling Up
Ekhlas Sonu, Prashant Doshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039

Session 3F – Agent-based Software Development
Measuring Plan Coverage and Overlap for Agent Reasoning

John Thangarajah, Sebastian Sardina, Lin Padgham . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
Programming Norm-Aware Agents

Natasha Alechina, Mehdi Dastani, Brian Logan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
Metamodel-Based Metrics for Agent-Oriented Methodologies

Noélie Bonjean, Antonio Chella, Massimo Cossentino, Marie-Pierre Gleizes, Frédéric Migeon, Va-
leria Seidita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065

Comma: A Commitment-Based Business Modeling Methodology and its Empirical Evaluation
Pankaj Telang, Munindar Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073

Revising Conflicting Intention Sets in BDI Agents
Steven Shapiro, Sebastian Sardina, John Thangarajah, Lawrence Cavedon, Lin Padgham . . . . . 1081



Session 4F – Logics for Agency
Action models for knowledge and awareness

Hans van Ditmarsch, Tim French, Fernando R. Velázquez-Quesada . . . . . . . . . . . . . . . . . 1091
Epistemic Coalition Logic: Completeness and Complexity

Thomas Ågotnes, Natasha Alechina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
Group Synthesis for Parametric Temporal-Epistemic Logic

Andrew Jones, Michał Knapik, Alessio Lomuscio, Wojciech Penczek . . . . . . . . . . . . . . . . . 1107
A Logic of Revelation and Concealment

Wiebe van der Hoek, Petar Iliev, Michael Wooldridge . . . . . . . . . . . . . . . . . . . . . . . . . 1115
State and Path Coalition Effectivity Models for Logics of Multi-Player Games

Valentin Goranko, Wojciech Jamroga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123

Session 5F – Logic and Verification
A logic of emotions: from appraisal to coping

Mehdi Dastani, Emiliano Lorini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133
Automatic Verification of Epistemic Specifications under Convergent Equational Theories

Ioana Boureanu, Andrew Jones, Alessio Lomuscio . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
Semantics and Verification of Information-Based Protocols

Munindar Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149

Main Program - Extended Abstracts
Innovative Applications

Emergence of Multi-generational Migration Behavior by Adaptiogenesis to Environmental Changes
Katsuya Suetsugu, Atsuko Mutoh, Shohei Kato, Hidenori Itoh . . . . . . . . . . . . . . . . . . . . 1159

A cognitive architecture for emergency response
Felipe Meneguzzi, Siddharth Mehrotra, James Tittle, Jean Oh, Nilanjan Chakraborty, Katia Sycara,
Michael Lewis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161

An Adaptive System for Proactively Supporting Sustainability Goals
Sarah Hickmott, Liam Magee, James Thom, Lin Padgham . . . . . . . . . . . . . . . . . . . . . . 1163

Cooperative Virtual Power Plant Formation Using Scoring Rules
Valentin Robu, Ramachandra Kota, Georgios Chalkiadakis, Alex Rogers, Nick Jennings . . . . . . 1165

A Storage Pricing Mechanism for Learning Agents in the Masdar City Smart Grid
Fatimah Ishowo-Oloko, Perukrishnen Vytelingum, Nick Jennings, Iyad Rahwan . . . . . . . . . . 1167

MAS for manufacturing control: A layered case study
Sindre Pedersen, Bjarne Foss, Ingrid Schjølberg, Johannes Tjønnås . . . . . . . . . . . . . . . . . 1169

Opinion Gathering Using a Multi-Agent Systems Approach to Policy Selection
Adam Wyner, Katie Atkinson, Trevor Bench-Capon . . . . . . . . . . . . . . . . . . . . . . . . . . 1171

Lottery-based Resource Allocation for Plug-in Electric Vehicle Charging
Matteo Vasirani, Sascha Ossowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173

Virtual Agents
The Role of Social Identity, Rationality and Anticipation in Believable Agents

Rui Prada, Guilherme Raimundo, Márcia Baptista, Joana Dimas, Pedro A. Santos, Carlos Mart-
inho, Jorge Peña, Luís Landeiro Ribeiro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175

On-the-fly behavior coordination for interactive virtual agents - A model for learning, recognizing and
reproducing hand-arm gestures online
Ulf Großekathöfer, Nils-Christian Wöhler, Thomas Hermann, Stefan Kopp . . . . . . . . . . . . . 1177

Live Generation of Interactive Non-Verbal Behaviours
Ken Prepin, Catherine Pelachaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179



Agent Communication for Believable Human-Like Interactions between Virtual Characters
Joost van Oijen, Frank Dignum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

A BDI Dialogue Agent for Social Support: Specification of Verbal Support Types
Janneke van der Zwaan, Virginia Dignum, Catholijn Jonker . . . . . . . . . . . . . . . . . . . . . 1183

An Agent-based Annotation Model for Narrative Media
Mario Cataldi, Rossana Damiano, Vincenzo Lombardo, Antonio Pizzo . . . . . . . . . . . . . . . . 1185

Goal-Driven Approach To Open-Ended Dialogue Management using BDI Agents
Wilson Wong, Lawrence Cavedon, John Thangarajah, Lin Padgham . . . . . . . . . . . . . . . . . 1187

Distributed Punishment as a Norm-Signalling Tool
Daniel Villatoro, Giulia Andrighetto, Jordi Brandts, Jordi Sabater-Mir, Rosaria Conte . . . . . . 1189

The "Resource" Approach to Emotion
Sabrina Campano, Nicolas Sabouret, Etienne de Sevin, Vincent Corruble . . . . . . . . . . . . . . 1191

Emotional Contagion with Virtual Characters
Jason Tsai, Emma Bowring, Stacy Marsella, Milind Tambe . . . . . . . . . . . . . . . . . . . . . 1193

Higher-order social cognition in rock-paper-scissors: A simulation study
Harmen de Weerd, Rineke Verbrugge, Bart Verheij . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

Robotics
Can I trust you? Sharing information with artificial companions

Matthias Keysermann, Ruth Aylett, Sibylle Enz, Henriette Cramer, Carsten Zoll, Patricia Vargas 1197
MO-LOST: Adaptive ant trail untangling in multi-objective multi-colony robot foraging

Zhao Song, Seyed Abbas Sadat, Richard T. Vaughan . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
Generating Strategies for Multi-Agent Pursuit-Evasion Games in Partially Observable Euclidean Space

Eric Raboin, Ugur Kuter, Dana Nau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Induction and Learning of Finite-State controllers from Simulation

Matteo Leonetti, Luca Iocchi, Subramanian Ramamoorthy . . . . . . . . . . . . . . . . . . . . . . . 1203
Spatial awareness in robotic swarms through local wireless communications

Frederick Ducatelle, Gianni Di Caro, Luca Gambardella . . . . . . . . . . . . . . . . . . . . . . . . 1205
Multi-Robot Learning by Demonstration

Michiel Blokzijl-Zanker, Yiannis Demiris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
Distributed Value Functions for the Coordination of Decentralized Decision Makers

Laëtitia Matignon, Laurent Jeanpierre, Abdel-Illah Mouaddib . . . . . . . . . . . . . . . . . . . . . 1209
Auctioning Robotic Tasks with Overlapping Time Windows

Ernesto Nunes, Maitreyi Nanjanath, Maria Gini . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
Real-World Testing of a Multi-Robot Team

Paul Scerri, Prasanna Velagapudi, Balajee Kannan, Abhinav Valada, Christopher Tomaszewski,
John Dolan, Adrian Scerri, Kumar Shaurya Shankar, Luis Bill-Clark, George Kantor . . . . . . . 1213

Online Planning for Large MDPs with MAXQ Decomposition
Aijun Bai, Feng Wu, Xiaoping Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215

Enabling Robots to Find and Fetch Objects by Querying the Web
Thomas Kollar, Mehdi Samadi, Manuela Veloso . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

Configurable Human-Robot Interaction for Multi-Robot Manipulation Tasks
Bennie Lewis, Gita Sukthankar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219

Agent Reasoning
Evaluating POMDP Rewards for Active Perception

Adam Eck, Leen-Kiat Soh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
Finding new consequences of an observation in a system of agents

Gauvain Bourgne, Katsumi Inoue, Nicolas Maudet . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223



User-Centric Preference-Based Decision Making
Ingrid Nunes, Simon Miles, Michael Luck, Carlos de Lucena . . . . . . . . . . . . . . . . . . . . . 1225

Lagrangian Relaxation for Large-Scale Multi-Agent Planning
Geoff Gordon, Pradeep Varakantham, William Yeoh, Hoong Chuin Lau, Ajay Srinivasan Arava-
mudhan, Shih-Fen Cheng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227

Tree-based Pruning for Multiagent POMDPs with Delayed Communication
Frans Oliehoek, Matthijs Spaan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229

Planning in the Logics of Communication and Change
Pere Pardo, Mehrnoosh Sadrzadeh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231

Intention-Aware Planning under Uncertainty for Interacting with Self-Interested, Boundedly Rational
Agents
Trong Nghia Hoang, Kian Hsiang Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233

Delayed Observation Planning in Partially Observable Domains
Pradeep Varakantham, Janusz Marecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235

Analysis of Methods for solving MDPs
Marek Grześ, Jesse Hoey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237

Decentralized Multi-agent Plan Repair in Dynamic Environments
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ABSTRACT
This paper considers randomized strategyproof approxima-
tions to distance rationalizable voting rules. It is shown that
the Random Dictator voting rule (return the top choice of
a random voter) nontrivially approximates a large class of
distances with respect to unanimity. Any randomized vot-
ing rule that deviates too greatly from the Random Dictator
voting rule is shown to obtain a trivial approximation (i.e.,
equivalent to ignoring the voters’ votes and selecting an al-
ternative uniformly at random).

The outlook for consensus classes, other than unanimity
is bleaker. This paper shows that for a large number of
distance rationalizations, with respect to the majority and
Condorcet consensus classes that no strategyproof random-
ized rule can asymptotically outperform uniform random se-
lection of an alternative. This paper also shows that veto
cannot be approximated nontrivially when approximations
are measured with respect to minimizing the number of ve-
toes an alternative receives.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Theory

Keywords
voting, distance rationalization, strategyproof, approxima-
tion

1. INTRODUCTION
The Gibbard-Satterthwaite theorem [11, 16] states that

any natural voting procedure can be manipulated. A grow-
ing body of work in computation social choice has investi-
gated methods for circumventing the Gibbard-Satterthwaite
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theorem through hardness of computation [2, 3, 8]. For ex-
ample, the manipulation problem for many common voting
rules has been shown to be NP-hard. However, these are
worst case results and say nothing about the manipulation
problem on average. Conitzer and Sandholm [3] show that
many voting rules can be manipulated in polynomial time
for a large fraction of elections.

Recently, Procaccia [15] considered approximating score-
based voting rules by strategyproof randomized voting rules.
However, Procaccia’s approach is limited to rules that have
a natural measure of score. This paper studies the approxi-
mation of common voting rules with respect to the distance
rationalization framework. Approaching the approximation
of voting rules from the viewpoint of distance rationaliza-
tion permits the approximation of voting rules that do not
necessarily have a natural measure of score.

In many elections there is an alternative that is a clear
winner. For example, if every voter prefers alternative w to
every other alternative, then w is the clear winner. Simi-
larly, if w is the Condorcet winner (i.e., w is preferred to
every other alternative by a majority of the voters), then w
is the clear winner of the election. Both of the previous ex-
amples are different notions of consensus in an election. In
the second example, a consensus is said to exist in an elec-
tion whenever there is a Condorcet winner. The Condorcet
consensus class is the subset of elections in which their ex-
ists a Condorcet winner. The distance rationality framework
casts voting in the context of selecting an alternative that is
closest to being a consensus winner. The notion of closeness
in the distance rationalization framework is formalized by
employing distances over elections. The distances employed
provide a natural means by which to measure the approx-
imation ratio obtained by strategyproof randomized voting
rules.

This paper shows that under the distance rationalizability
framework, consensus with respect to Unanimity and arbi-
trary votewise distances with lp norms can be approximated
to a nontrivial factor1. Thus, all positional scoring rules and
their (pseudo-)distance rationalizations, given by Elkind et
al. [4] can be nontrivially approximated. Similarly, 2− 2

n
and

O(m) approximations are obtained for the standard distance
rationalizations of plurality and Borda voting, respectively.
These approximation ratios are significantly better than ran-
dom selection of an alternative, which results in a Ω(n) and
Ω(nm) approximation for plurality and Borda, respectively.

Surprisingly, the Random Dictator rule (select the first

1An approximation ratio is said to be trivial if it is achieved
by selecting an alternative uniformly at random.
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choice alternative of a random voter) is shown to nontriv-
ially approximate all votewise distance rationalizations with
respect to Unanimity and lp norm. It is shown that devi-
ating too much from the Random Dictator rule results in a
trivial ratio under the l1 norm.

Lower bounds are provided for a number of distance ratio-
nalizations. For example, a bound of Ω(m) is proven for ap-
proximating the standard distance rationalization of Borda.

Approximation ratios obtained for a given voting rule are
highly dependent on the distance rationalization considered.
For example, under unanimity and the discrete distance,
plurality can be approximated to a factor of 2− 2

n
. However,

under the same distance and the majority consensus class,
plurality cannot be approximated better than Ω(n).

The outcome for consensus classes, other than unanimity
is bleaker. This paper shows for a number of other dis-
tance rationalizable voting rules that essentially one cannot
do better than uniform random selection of an alternative.

The remainder of this paper is as follows. Section 2 presents
preliminary definitions and related work. Section 3 presents
a number of upper and lower bounds on the approxima-
tions obtainable by randomized strategyproof voting rules
for a number of distance rationalizations. Section 4 con-
cludes with some final remarks.

2. PRELIMINARIES
This section begins by presenting the basic notation and

definitions employed throughout this paper and concludes
by discussing related work.

2.1 Elections and Strategy-Proofness
An election E = (A, V ) consists of a set of alternatives

A = {a1, · · · , am} and a tuple of voters V = {v1, · · · , vn}.
Each voter vi has a strict total preference order �i over the
set of alternatives A. Let v ∈ V and a ∈ A. Define v(a)
to be the rank of alternative a in v’s preference order. A
tuple of preference orders (�1, · · · ,�n) is referred to as a
preference profile. A voting rule f is a function that maps
each preference profile to a winning alternative.

Informally, a voting rule is manipulable if there exists a
preference profile under which some voters can benefit (pos-
sibly in expectation) by misrepresenting their true prefer-
ences. A voting rule is strategyproof if it is not manipulable.
That is, f is manipulable if there exists a preference profile
P = (�1, · · · ,�n), a voter vi and a preference order �′i
such that f(P ′) �i f(P ) where P ′ = (�1, · · · ,�′i, · · · ,�n).
If f is a randomized voting rule, then f is manipulable if
a voter can increase its expected utility by misrepresenting
her preferences under some preference profile.

The following two classes of deterministic voting rules are
used throughout this paper.

Definition 1. A deterministic voting rule is said to be uni-
lateral if it is a function of exactly one voters’ vote.

Definition 2. A deterministic voting rule is said to be duple
if it always elects one of two fixed alternatives.

The following result provides necessary conditions for a
randomized voting rule to be strategyproof.

Theorem 1 ([12]). If R is a strategyproof randomized voting
rule, then R is a probability distribution over unilateral and
duple rules.

2.2 Distance Rationalization
A consensus in an election E = (A, V ) is a clear winner2

w ∈ A. For example, if every voter in V ranks alternative w
first, then w can be considered the consensus winner. For-
mally, a consensus class K = (E ,W) is a tuple, where E is
a set of elections and W : E → A is a function that deter-
mines for each election E ∈ E the consensus winner. We
consider three consensus classes in which there exists a clear
winner [4, 5, 6, 13, 14].

1. Unanimity (U): Consists of all elections in which every
voter ranks the same alternative first. The consensus
winner is the alternative preferred by all voters.

2. Majority (M): Consists of all elections in which some
alternative is ranked first by a strict majority of the
voters. The consensus winner is the unique alternative
that more than half of the voters rank first.

3. Condorcet (C): Consists of all elections in which there
exists a Condorcet winner (i.e., an alternative that de-
feats every other alternative in a pairwise election).
The Condorcet winner is the consensus winner.

A consensus class can be extended to a voting rule over
arbitrary elections by defining the winning alternative in an
election E to be the alternative that is closest to being a
consensus winner. Such an extension requires a notion of
distance between elections.

Informally, a distance function d : X×X → R∪{∞} on a
set X is a function mapping pairs of elements in X to a non-
negative real value representing the distance between the
elements. A pseudo-distance function is similar to a distance
function but there may be distance 0 between two distinct
members of X. We are interested in (pseudo-)distances over
the set of elections.

Definition 3. Let K = (E ,W) be a consensus class and d a
(pseudo-)distance function on the set of elections. A voting
rule, f , is (K, d)-rationalizable if for every election E

f(E) ∈ argmin
a∈A

{
min

E′∈E : a∈W(E′)

{
d(E,E′)

}}
.

Refer to value d(a) = minE′∈E : a∈W(E′) {d(E,E′)} as the
distance score a. Distance rationalizable voting rules select
an alternative with the least distance score. In general, there
may be multiple alternatives that tie for the best distance
score. Voting rules break ties in such situations.

Some of the results in this paper apply to arbitrary dis-
tances of a particular form. Let d be a distance over prefer-
ence orders and let N be a norm on Rn. Then the function

d̂(E,E′) :=





∞ if A 6= A′ or
|V | 6= |V ′|

N(d(v1, v
′
1), · · · , d(vn, v

′
n)) otherwise

is a distance over preference profiles. Distances of the above
form are referred to as votewise distances [5].

Many of the norms used in votewise distances in the lit-
erature (and in the results presented in this paper) are the
lp norms (p ∈ N ∪ {∞}) defined for each r1, · · · , rn ∈ R as

lp(r1, · · · , rn) :=

{
(rp1 + · · ·+ rpn)

1
p if p ∈ N

max{r1, · · · , rn} if p =∞.
2Sometimes multiple consensus winners are allowed.
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Unless otherwise stated, it is assumed that the norm N
in the definition of d̂ is the l1 norm (i.e., the sum of the
distances over individual votes). For any norm N and any
distance over preference orders d, define N ◦ d to be the
corresponding votewise distance.

Several common votewise distances are employed through-
out this paper.

1. dswap(v, v
′) represents the number of adjacent pairs

that must be swapped in the preference order v in order
to obtain v′.

2. ddisc(v, v
′) is 0 if v = v′ and 1 otherwise.

3. Fix m numbers α1 ≥ · · · ≥ αm. Define the distance:
dα(v, v′) =

∑
a∈A |αv(a) − αv′(a)|.

We also consider the following non-votewise distance, dins.
dins is defined as follows. Let E = (A, V ) and E′ = (A, V ′)
be elections. For each vi ∈ V let�vi be vi’s preference order.
Likewise, for vi ∈ V ′, let �′vi be vi’s preference order. Then
dins(E,E

′) = |V \V ′|+ |V ′\V |+2|{vi ∈ V ∩V ′ :�vi 6=�′vi}|.
Elkind et al. [7] show that dins under C is essentially equiva-
lent to considering the number of voters that need be added
to an election to make a given candidate the Condorcet win-
ner. More formally, Elkind et al. show that given an election
E = (A, V ) and an alternative a ∈ A, there exists an election
E1 = (A, V ∪ V1) such that a is the Condorcet winner and
|V1| ≤ k, if and only if there exists an election E2 = (A, V2)
such that dins(E,E2) ≤ k.

2.3 Voting Rules
Several common voting rules considered in this paper are

now defined. The employed voting rules assign alternatives
a score based upon the voters’ preferences and then select
the alternative with the best score. We present the defini-
tions of the voting rules for situations where no ties in score
occur. When multiple alternatives tie for the best score,
an arbitrary, but fixed, tie breaking scheme is employed to
select a single alternative. All of the presented results are
unaffected by the actual tie breaking scheme employed.

1. Positional Scoring Rules: Let α = (α1, · · · , αm) be
a vector of m integers with α1 ≥ · · · ≥ αm. Under
the voting rule Rα, alternative a is awarded αk points
for each voter that ranks a in position k. The win-
ner under Rα is the alternative with the largest score.
Plurality is defined by α = (1, 0, · · · , 0), Borda by α =
(m−1,m−2, · · · , 1, 0) and veto by α = (1, 1, · · · , 1, 0).

Elkind et al. [4] show that every positional scoring rule
Rα is pseudo-distance rationalizable with respect to
(U , d̂α). Further, plurality and Borda are rationaliz-

able with respect to U with the distances d̂disc and
d̂swap, respectively.

2. Maximin: The Maximin score of an alternative a in an
election E is

sc(a) = min
b∈A\{a}

{|{vi ∈ V : a �i b}|} .

That is, the Maximin winner of an election E is the
alternative that performs the best in their worst pair-
wise election against any other alternative. Maximin
is (C, dins)-rationalizable [4].

3. Dodgson: The Dodgson score of an alternative a in an
election E = (V,A) is the minimum number of swaps
of adjacent alternatives in the preferences of voters to
make a the Condorcet winner. The winner is the al-
ternative with the smallest Dodgson score. Dogdson is
(C, d̂swap)-rationalizable.

2.4 Related Work
The manipulation problem has received much attention [1,

10, 15]. For a recent survey, see Faliszewski and Procac-
cia [9].

Recent work has investigated the approximation of com-
mon voting rules by randomized voting rules that are strat-
egyproof (or almost strategyproof). Procaccia [15] recently
quantified the level of approximation that can be obtained
for a number of score based voting rules.

Birell and Pass [1] relax the requirement that the random-
ized approximation be strategyproof. Rather, Birell and
Pass consider randomized voting rules such that no voter
can improve their expected utility by more than ε by voting
untruthfully. On a positive note, Birell and Pass show that
for ε sufficiently large (ω( 1

n
)), every deterministic voting rule

can be approximated by an ε-strategyproof randomized rule.
However, for ε = o( 1

n
), every ε-strategyproof voting rule is

a distribution over unilateral and duple rules (just as strat-
egyproof randomized voting rules are).

One drawback of Procaccia’s approach is that it is lim-
ited to score based voting rules. Birell and Pass [1] measure
the quality of an approximation by the minimum number
of votes that must be changed in order to elect the ap-
proximate winner. Hence, Birell and Pass’ results apply
to arbitrary voting rules. This paper investigates the use of
the distance rationalization framework to measure the qual-
ity of approximations obtained by randomized strategyproof
voting rules. Like Birell and Pass’ approach, our approach
allows for defining approximations to non-score based rules.

3. RESULTS
All of the results in this paper are stated for particular

distance rationalizations. For example, rather than saying
plurality can be approximated well, we state the distance
rationalization by which we are approximating. It will be
shown that the same voting rule can be approximated to
different degrees, depending upon the rationalization used.
Hence, it is meaningless to say, in this framework, that, for
example, plurality can be approximated well, since it de-
pends on which rationalization of plurality is employed.

Let (K, d) be a distance rationalization. Let E be an
election and let w be the winning alternative under (K, d).
A natural measure of the approximation ratio of a strat-
egyproof randomized voting rule R with respect to (K, d)

is E
(
d(R(E))
d(w)

)
, with the understanding that 0

0
= 1 and

n
0

= +∞ for any n > 0. It is straightforward to observe
that for the Majority and Condorcet consensus classes that
no strategyproof voting rule is guaranteed to return a con-
sensus winner when one exists. Hence, the approximation
ratio obtained by any strategyproof voting rule to distance
rationalizations with respect to Majority or Condorcet is
+∞. However, simply stating an approximation ratio of
+∞ for these consensus classes is less than desirable as it
may be the case that, for example, when there is a majority
winner, the given strategyproof voting rule always selects
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an alternative that is close to being a consensus winner.
Therefore, our lower bound results consider the approxima-
tion ratio obtained by randomized strategyproof voting rules
on elections where there is no consensus winner.

The presented upper bounds, with respect to U all employ
a strategyproof randomized voting rule that is consistent
with U . A unanimous winner, if it exists, is always selected.
Hence, if E is a member of the consensus class, then the
result is a perfect approximation.

3.1 Upper Bounds
Surprisingly the following strategyproof randomized vot-

ing rule obtains a nontrivial approximation ratio with re-
spect to (U , d̂), when d is any votewise distance and d̂ = lp◦d.

Random Dictator. Uniformly at random, select a voter
v. Return v’s first choice.

Theorem 2 shows that Random Dictator obtains a good
approximation to many distance rationalizations.

Theorem 2. Let d be a distance over preference orders,
p ∈ N ∪ {∞}, and let d̂ = lp ◦ d be the corresponding dis-
tance over elections. For preferences over m alternatives
and x ∈ A, let dMax(m,x) be the maximum distance be-
tween any preference order �, that does not rank x first,
to the closest preference order to � that does rank x first.
Let dMax(m) = maxx∈A{dMax(m,x)}. Let dMin(m,x) be
the minimum distance between any preference order �, that
does not rank x first, to any preference order that does rank
x first. Let dMin(m) = minx∈A{dMin(m,x)}.

Random Dictator approximates (U , d̂) to within a factor
of

(
1− 1

n

)
·
(
dMax(m)

dMin(m)
+ 1

)
.

Proof. Let E = (A, V ) be an election with n voters and m

alternatives. Let w ∈ A be a winning alternative in (U , d̂)
and let x be the number of voters that rank w first. If w is
the unanimous winner, then Random Dictator selects w and
obtains a perfect approximation. So assume that x ≤ n− 1.

For a ∈ A, let pa be the probability that a is selected by
Random Dictator. That is, pa is the ratio of the number
of voters that rank a first to the total number of voters n.
Hence, pw = x

n
.

Note that if an alternative a ∈ A \ {w} is selected by
Random Dictator, then a must be ranked first by at least
one voter. If p = ∞, then the maximum possible distance
score of any candidate is dMax(m) and the minimum possible
distance score of w is dMin(m). Thus, the expected distance
score is

E

(
d̂(R(E))

d̂(w)

)
≤ x

n
+
n− x
n
· dMax(m)

dMin(m)

≤
(

1− 1

n

)(
dMax(m)

dMin(m)
+ 1

)
.

Similarly, if p ∈ N, then the maximum distance score of a

possible winner under Random Dictator is (n−1)
1
p dMax(m).

Likewise, the minimum possible distance score of w is (n−
x)

1
p dMin(m). Thus, the approximation ratio obtained by

Random Dictator is

E

(
d̂(R(�))

d̂(w)

)
=

1

d̂(w)

[∑

a∈A
pad̂(a)

]

=
1

d̂(w)


x
n
d̂(w) +

∑

a∈A\{w}
pad̂(a)




≤ x

n
+

1

d̂(w)

∑

a∈A\{w}
pa(n− 1)

1
p dMax(m)

≤ x

n
+
n− x
n
· (n− 1)

1
p dMax(m)

(n− x)
1
p dMin(m)

=
x

n
+

(n− x)
1− 1

p

n
· (n− 1)

1
p dMax(m)

dMin(m)

≤ n− 1

n
+

(n− 1)
1− 1

p

n
· (n− 1)

1
p dMax(m)

dMin(m)

≤
(

1− 1

n

)(
dMax(m)

dMin(m)
+ 1

)
.

Recall that every positional scoring rule is pseudo-distance
rationalizable with respect to unanimity under the votewise
distance d̂α = l1 ◦ dα [4]. Note that if αi 6= αj whenever
i 6= j, then dMin(m) = 2(α1 − α2) and dMax(m) = 2(α1 −
αm). Corollary 1 shows that all positional scoring rules with
αi 6= αj are approximated by Random Dictator to within a
nontrivial factor.

Corollary 1. If Rα is a positional scoring rule, such that
αi 6= αj whenever i 6= j, then Random Dictator approxi-

mates (U , d̂α) to within a factor of
(

1− 1

n

)
·
(
α1 − αm
α1 − α2

+ 1

)
.

If α1 = α2 6= α3, then Random Dictator does not ap-
proximate (U , d̂α) well. Consider the election in which each
voter ranks alternative w second and no other alternative is
ranked first more than once. The distance score of w is 0,
but the distance score of every other alternative is at least
(n − 1)(α1 − α3). However, Random Dictator never selects
w in such elections.

Theorem 2 allows one to obtain nontrivial approxima-
tion ratios with respect to the standard distance rational-
izations of common voting rules. For example, Plurality is
known to be (U , d̂disc)-rationalizable. Since, under d̂disc,
dMin(m) = dMax(m) = 1, Random Dictator approximates

(U , d̂disc) to within a factor of 2− 2
n

. Hence, Random Dicta-
tor is significantly better than uniform random selection of
a candidate, which obtains an approximation ratio of Ω(n)
in the worst case (e.g., when some w ∈ A is ranked first by
all but one voter).

Similarly, Borda is (U , d̂swap)-rationalizable. Notice that
in this case dMax(m) = Θ(m) and dMin(m) = 1. Hence,
Random Dictator obtains a O(m) approximation. Note that
uniformly at random selecting an alternative obtains an ap-
proximation ratio of Θ(nm) to (U , d̂swap) (e.g., when one al-
ternative is ranked first by all but one voter and every other
alternative obtains the same distance score of Θ(nm)).

It may be expected that the voting rules presented by
Procaccia [15] will outperform Random Dictator, since an
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alternative is selected with probability proportional to its
score. However, electing an alternative with probability pro-
portional to its Borda score obtains a Θ(nm) approximation

to (U , d̂swap). Consider the election in which each voter has
the same preference order. Let A′ be the set of alternatives
ranked in the lower m

2
positions by each voter. The sum

of the scores of alternatives in A′ is Ω(nm2). Thus, the
probability that some alternative in A′ is selected is Θ(1).
Therefore, selecting an alternative with probability propor-
tional to its Borda score results in a Ω(nm) approximation.
In the case of Plurality, the strategyproof randomized voting
rule given by Procaccia [15] is the Random Dictator rule.

3.2 Lower Bounds
All of the presented lower bounds employ Yao’s Minimax

principle [17]. Consider the following two player game. The
space of the first player’s strategies consist of all duple and
unilateral voting rules and the second player’s strategies con-
sist of all preference profiles. Given a choice of a pure strat-
egy for each player, the outcome is defined to be the approxi-
mation ratio obtained by the unilateral or duple rule selected
by the first player on the preference profile selected by the
second player. Since the first player’s pure strategies con-
sist of all unilateral and duple rules, the first player’s mixed
strategies contain all strategyproof randomized voting rules.

Let P be any probability distribution over preference pro-
files. In this setting, Yao’s Minimax principle states that the
approximation ratio obtained by any strategyproof random-
ized rule is at most the approximation ratio obtained by the
best deterministic duple or unilateral rule over P . Hence,
the performance of any strategyproof randomized voting rule
can be lower bounded by constructing a probability distribu-
tion over preference profiles on which no unilateral or duple
rule performs well in expectation.

When employing Yao’s principle for proving lower bounds,
there are two cases to be considered: unilateral rules and
duple rules. For our purposes, it will suffice to treat a duple
rule as a set of two alternatives. Hence, for a duple rule
D, we may treat D as a set of two alternatives as we are
indifferent to how D selects a winner.

Let d̂ = l1◦d be a votewise distance. Let � be a preference
profile over m alternatives and let a ∈ A. Let da(�) be
the minimum distance between � and any other preference
profile �′ that ranks a first. We say that d and (U , d̂) are
rank based if da(�) depends only on the rank of a in �.
Thus, da(�) is independent of how the alternatives in A\{a}
are ranked and is also independent of the alternative a. That
is, if �a is any preference order that ranks a in position
k and �b is any preference order that ranks b in position
k, then da(�a) = db(�b). Hence, there exists a function
rd : N→ R≥0 such that da(�) = rd(k), where k is the rank
of a in �. Note that all the votewise distances defined in
this paper are rank based. Define dAve(m) = 1

m

∑m
k=1 rd(k).

The Random Dictator rule is not very desirable as it ig-
nores the preferences of all but one randomly selected voter.
However, as the next result shows, it is not possible to de-
viate too greatly from the Random Dictator rule and still
obtain a nontrivial approximation to (U , d̂), where d̂ is any
rank based votewise distance.

Theorem 3. Let (U , d̂) be rank based and let R be a strat-
egyproof randomized voting rule, such that with probability
p, R selects a duple rule and with probability q, R selects

a unilateral rule that does not select the voter’s first choice
alternative. If p = Ω(1) or q = Ω(1), then R obtains an
approximation ratio of Ω(ndAve(m)).

Proof. The proof of Theorem 3 employs Yao’s Minimax prin-
ciple, to that end we define a randomized procedure for gen-
erating preference profiles. The procedure constructs a pref-
erence profile as follows:

1. Let n = n′ + 1, m ≥ 4, and let m− 1 divide n′. Select
w ∈ A uniformly at random.

2. Choose permutations π over A \ {w} and σ over V
uniformly at random.

3. Define the preferences of the voters as follows. For
i ∈ {1, · · · , n′}, vσ(i) ranks alternative π(k) in position
π(k+ i)+1 (where the addition k+ i is modulo m−1)
and ranks w first. Voter vσ(n) ranks w second and
ranks the other alternatives arbitrarily.

Let E be a random election drawn from the above distri-
bution. By construction, there is some w ∈ A that is ranked
first by all but one voter. Hence, the distance score of w
is rd(2), as w is ranked second by one voter and the norm
is l1. For fixed distance function d, rd(2) = Θ(1). Also,
since m − 1 divides n′, every other alternative is ranked in

position k by at least n′
m−1

voters, for each k = 2, · · · ,m,
and is ranked first by at most one voter. Hence, every al-
ternative other than w achieves a distance score of at least
rd(1) + n′

m−1
·∑m

k=2 rd(k) = Θ(n · dAve(m)), since rd(1) = 0.

Consider first the case where p = Ω(1). That is, when
R selects a duple rule D with at least constant probability.
Since w is selected from A at random, the probability that
w ∈ D is at most 2

m
. Hence, with probability at least m−2

m
≥

1
3
, an alternative with distance score Θ(n ·dAve) is returned.

Therefore the approximation ratio of R is at least Θ(pn ·
dAve) = Ω(ndAve(m)).

Now consider the case where q = Ω(1). Since w is ranked
first by all but one alternative and the voter that does not
rank w first is selected uniformly at random, with proba-
bility q · n−1

n
, R selects an alternative other than w with a

distance score of Θ(n·dAve). Thus, again, the approximation
ratio of R is at least Θ(q · n−1

n
· ndAve) = Ω(ndAve).

Roughly speaking, Theorem 3 shows that for a strate-
gyproof randomized voting rule R to obtain a nontrivial ap-
proximation ratio to (U , d̂), Rmust, with probability tending
toward 1 for increasing numbers of voters and alternatives,
select an alternative that is ranked first by some voter.

Theorem 4. No strategyproof randomized voting rule ap-
proximates (U , d̂disc) (plurality) to a ratio less than 2− 2

n
.

Proof. Define the following procedure for constructing ran-
dom preference profiles:

1. Select w ∈ A uniformly at random. For ease of ex-
position, assume the members of A \ {w} are the first
m− 1 integers: 0, · · · ,m− 2.

2. Choose permutations π over A \ {w} and σ over V
uniformly at random.

3. For i ∈ {1, · · · , n − 1}, vσ(i) ranks w first and ranks
alternative k in position π(k+i)+1 (where the addition
is modulo m−1). vσ(n) ranks alternative k in position
π(k) and ranks w last.
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In any elections drawn from the given distribution, the
distance score of w is 1 (as all but one voter ranks w first).
The distance score of any other alternative is at least n− 1.

First, consider a duple rule D. Since w is selected uni-
formly at random, the probability that w ∈ D is at most 2

m
.

Thus, the probability that an alternative other than w is
selected is at least m−2

m
≥ 1

3
. Therefore, with probability at

least 1
3
, D selects an alternative other than w with distance

score at least n − 1, resulting in an approximation ratio of
at least n−1

3
.

Now consider a unilateral rule, U . Since U is unilateral,
there exists a single voter vi that determines the winner of
the election under U . The probability that vi ranks w first is
n−1
n

. Since w is ranked first or is ranked last by every voter,
any unilateral rule maximizes the probability of selecting w
when it always returns either the first or last ranked alterna-
tive of vi. Hence, U maximizes the probability of selecting
w when it always returns vi’s first choice alternative. There-
fore, any unilateral rule U selects w with probability at most
n−1
n

and with probability at least 1
n

, U selects an alterna-
tive other than w. Hence, the approximation ratio of U is
at least n−1

n
+ 1

n
· n−1

1
= 2 − 2

n
. Thus, no strategyproof

randomized voting rule approximates (U , d̂disc) to a factor
less than 2− 2

n
.

The remainder of the presented lower bound proofs use
the following procedure (or a slight variation) for creating a
distribution, P, on preference profiles.

1. Let n be even, m ≥ 4, and let m− 1 divide n
2

. Select
w ∈ A uniformly at random. For ease of exposition,
assume the members of A \ {w} are the first m − 1
integers: 0, · · · ,m− 2.

2. Choose permutations π over A \ {w} and σ over V ,
uniformly at random.

3. For i ∈ {1, · · · , n
2
}, let vσ(i) rank w first and rank

alternative k in position π(k+i)+1 (where the addition
k + i is modulo m − 1). For i ∈ {n

2
+ 1, · · · , n}, let

vσ(i) rank w second and rank alternative k in position
π(k+ i) + 2 if π(k+ i) 6= 1 and in position 1 otherwise.

Based on the above procedure, it is observed that the
selected alternative w is “close” (under most natural defini-
tions of distance) to being a consensus winner, since half of
the voters rank it first and the other half second. Since ev-
ery other alternative is ranked cyclically by the voters and
m−1 divides evenly into n

2
, each alternative other than w is

ranked in position k by the same number of voters. Let P ′
be the distribution over preference profiles identical to P, ex-
cept that for i ∈ {n

2
+1, · · · , n}, vσ(i) ranks w last. Lemma 1

will be employed in many of the lower bound proofs.

Lemma 1. Let K be a consensus class and let d be a dis-
tance over elections. Let E be an election drawn from P
or P ′. If for each alternative a ∈ A \ {w}, d(a) ≥ dmin,
then the approximation ratio achieved by any strategyproof
randomized voting rule to (K, d) is at least 1

2
· dmin
d(w)

.

Proof. Let R be any strategyproof randomized voting rule.
Let p be the probability that R selects a duple rule and 1−p
the probability that R selects a unilateral rule.

Consider first a duple rule, D. Since w is selected uni-
formly at random, the probability that w ∈ D is at most 2

m
.

Hence, the expected distance approximation of the alterna-
tive selected is at least

2

m
+
m− 2

m

dmin
d(w)

≥ 1

2

dmin
d(w)

,

since m ≥ 4.
Now consider a unilateral rule, U . Since w is ranked first

by exactly half of the voters and second by the other half
(last by the other half in the case of P ′) and those voters that
rank w first are randomly distributed amongst all voters,
the probability that U selects w is at most 1

2
. Hence, the

probability that U selects an alternative other than w is at
least 1

2
. The expected distance approximation is at least:

1

2
· d(w)

d(w)
+

1

2
· dmin
d(w)

>
1

2
· dmin
d(w)

.

Therefore, the approximation ratio obtained by R is at
least 1

2
· dmin
d(w)

.

Lemma 1 allows one to lower bound the approximation
ratio achievable for a number of distance rationalizations
by strategyproof randomized voting rules. In particular,
for scoring rules with α1 6= α2, Theorem 5 obtains a lower
bound close to the upper bound obtained by Corollary 1.

Theorem 5. If Rα is a positional scoring rule with α1 6= α2,
then no strategyproof randomized voting rule approximates
(U , d̂α) to within a factor less than

α1

α1 − α2
− S − α2

(m− 1)(α1 − α2)
,

where S =
∑m
k=1 αk.

Proof. Let E be an election drawn from P. Note that the
distance score of w is n(α1 − α2). Let k ∈ N such that
k(m − 1) = n

2
. Such a k exists, as m − 1 divides n

2
. Every

alternative a ∈ A \ {w} is ranked first k times, second k
times, and in position i ≥ 3, 2k times. If voter vi ranks a
in position r, then vi contributes 2(α1 −αr) to the distance
score of a, since the distance to the closest preference order
to vi in which a is ranked first is 2(α1−αr). Thus, for every
a ∈ A \ {w}

d(a) = k [2(α1 − α2)] + 2k

[
m∑

i=3

2(α1 − αi)
]

≥ 2k

[
2(m− 2)α1 − 2

m∑

i=2

αi

]

= 2k [2(m− 2)α1 − 2(S − α1)]

= 4k(m− 1)α1 − 4kS

= 2nα1 − 2

(
n

m− 1

)
S

By Lemma 1, the approximation ratio of any strategyproof
randomized voting rule is lower bounded by

1

2

2nα1 − 2
(

n
m−1

)
S

n(α1 − α2)
=

α1

α1 − α2
− S − α2

(m− 1)(α1 − α2)
.

Theorem 6. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (U , d̂swap) (Borda) is Ω(m).

574



Proof. Notice that in an election E drawn from P, d(w) = n
2

since w is ranked first by n
2

voters and second by n
2

voters.
Let k(m − 1) = n

2
. For any other alternative a ∈ A, a is

ranked in position 1 and 2, k times and in position r =
3, · · · ,m, 2k times. Each voter that ranks a in position r
contributes r−1 to d(a), as a must be swapped with at least
r − 1 alternatives in order for a to be ranked first. Hence

d(a) = k · 1 + 2k

m∑

r=3

(r − 1)

≥ 1

2
· n

m− 1

m∑

r=2

(r − 1)

=
1

2
· n

m− 1

(m− 1)m

2
= Ω(nm).

By Lemma 1 every strategyproof randomized voting rule
achieves an approximation ratio of Ω(m) on (U , d̂swap).

Lemma 2. Let E be an election drawn from P ′ and let a ∈
A \ {w}. There exists a set Aa ⊆ A \ {w} with |Aa| = Θ(m)
such that at least 3n

4
voters prefer all members of Aa to a.

Proof. Let E be an election drawn from P ′. Let π and σ be
the random permutations over A \ {w} and V used to con-
struct E. Let k ∈ N such that k(m−1) = n

2
. Since m−1 di-

vides n
2

, such a k exists. Among the voters, vσ(1), · · · , vσ(n
2
),

a is ranked last k times. Let vσ(i1), · · · , vσ(ik) be the k voters
that rank a last among the voters vσ(1), · · · , vσ(n

2
). By con-

struction, all the voters vσ(ij) have the same preference or-
der. Let Aa be the set of m

10
−1 alternatives that immediately

precede a in the voters vσ(ij)’s preference order. That is,
Aa consists of those alternatives that are ranked among the
bottom m

10
positions, other than a. For each ij , by construc-

tion, voter vσ(ij−l) ranks a in position m− l, for l < m− 1.
Thus, all alternatives in Aa are ranked above a by the voters
vσ(ij)−l, for each 0 ≤ l ≤ m − m

10
= 9m

10
. Therefore among

the voters vσ(1), · · · , vσ(n
2
), there are k · 9m

10
≥ 9(m−1)k

10
= 9n

20
voters that rank all alternatives of Aa above a.

A similar argument applies to the voters among vσ(n
2
+1),

· · · , vσ(n) that rank a second to last. Hence, among the vot-
ers vσ(n

2
+1), · · · , vσ(n), all members of Aa are ranked above

a by at least 9n
20

voters. Hence, the number of voters that

prefer all members of Aa to a is greater than 3n
4

.

Theorem 7. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (C, d̂disc) is Ω(n).

Proof. Let E be an election drawn from P ′. By Lemma 2,
for any alternative a ∈ A \ {w} to become the Condorcet
winner, Ω(n) voters must change their vote. However, for
w to become the Condorcet winner, only one voter must
change their vote. By Lemma 1, the approximation ratio of
any strategyproof randomized voting rule is Ω(n).

Theorem 7 roughly shows that no strategyproof random-
ized voting rule can outperform uniform random selection
of an alternative, since under d̂disc the maximum distance
score of any alternative is at most n.

Theorem 8. The approximation ratio obtained by any strat-
egyproof randomized voting rule to (C, d̂swap) (Dodgson) is
Ω(n).

Proof. Let E be an election drawn from P ′. To make a
the Condorcet winner, a must be swapped with at least
|Aa| = Θ(m) alternatives in the preferences of Ω(n) vot-
ers. To make w the Condorcet winner, it suffices that w
be swapped with all the alternatives in the preference or-
der of one voter that ranks w last. Thus, d(w) = O(m).
By Lemma 1, every strategyproof randomized voting rule
obtains an approximation ratio of Ω(n).

Theorem 9. The approximation obtained by any strate-
gyproof randomized voting rule to (C, dins) (Maximin) is Ω(n).

Proof. Recall that the dins score of an alternative a is equal
to the minimum number of voters that must be added to
make a the Condorcet winner. Let E be an election drawn
from P ′. The dins score of w is 1, since the addition of a
single voter that ranks w first will make w the Condorcet
winner. However, the dins score of every other alternative
is Ω(n), since to make any alternative a ∈ A \ {w} the Con-
dorcet winner Ω(n) voters must be added that rank a the
members of Aa. Hence, by Lemma 1, the approximation
ratio obtained by any strategyproof randomized voting rule
is Ω(n).

Notice that any alternative a can be made the Condorcet
winner by the addition of at most n + 1 voters that rank a
first. Hence, (C, dins) cannot be nontrivially approximated
by any strategyproof randomized voting rule.

Theorem 10. The approximation ratio obtained by any
strategyproof randomized voting rule to (M, d̂disc) is Ω(n).

Proof. Let E be an election drawn from P. To make w the
majority winner, a single voter that ranks w second must
change his vote. Every other alternative is ranked first by

n
2(m−1)

voters. Hence, to make any other alternative the

majority winner, at least n
2

+ 1− n
2(m−1)

= Ω(n) votes must

be changed. By Lemma 1, every strategyproof randomized
voting rule obtains an approximation ratio of Ω(n).

Theorem 11. Plurality is (M, d̂disc)-rationalizable.

Proof. Clearly, a majority winner is also the plurality win-
ner. Assume there is no majority winner. For alternative
a ∈ A, the distance from E to the closest election in which
a is a majority winner is bn

2
c+ 1− sc(a) (where sc(a) is the

plurality score of alternative a). Hence, the alternative with
the highest plurality score also has the lowest distance.

The distance rationalizations (U , d̂disc) and (M, d̂disc) have
a large difference in approximation ratios achievable by strat-
egyproof randomized voting rules even though they imple-
ment the same voting rule.

Procaccia [15] showed that veto can be approximated well
with respect to maximizing the selected alternative’s score.
We show that veto cannot be approximated well with respect
to minimizing the number of vetoes.

Let V be the consensus class consisting of elections in
which some alternative is not vetoed. The consensus win-
ner(s) are those alternatives that receive no vetoes.

Theorem 12. Veto is (V, d̂disc)-rationalizable.
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Proof sketch. It suffices to observe that the distance score
of an alternative a is simply the number of vetoes that it
receives. If alternative a has fewer vetoes than alternative
b, then the distance score of a is less than that of b.

For a ∈ A, let v(a), be the number of voters that veto a.
Since the total number of vetoes by all voters is n, uniform
randomly selecting an alternative results in an approxima-
tion ratio of 1

m

∑
a∈A v(a) = n

m
.

Theorem 13. The approximation ratio obtained by any
strategyproof randomized voting rule to (V, d̂disc) is Ω( n

m
).

Proof sketch. Let P ′′ be a distribution over preference pro-
files constructed similarly to P, except a single voter, se-
lected uniformly at random, ranks w last. Let E be an
election drawn from P ′′. Since w is vetoed by a single voter,
d(w) = 1. However, each a ∈ A \ {w} is vetoed by Ω( n

m
)

voters. The Theorem then follows by Lemma 1.

4. CONCLUSIONS
This paper explores the idea of measuring the approxi-

mation ratio achieved by a strategyproof randomized voting
rule with respect to a particular distance rationalization.
Indeed, if a particular voting rule is employed in a given do-
main due to a domain specific distance rationalization, then
the most natural measure of approximation is with respect
to that rationalization.

This paper shows that the unanimity consensus class can
be approximated well for a large class of distances by a single
strategyproof randomized voting rule. It is shown that the
Random Dictator voting rule (select the first choice alterna-
tive of a randomly selected voter) nontrivially approximates
a large number of distance rationalizations with respect to
unanimity. For a number of these distances, nearly tight
lower bounds are presented. It is shown that deviating too
greatly from the Random Dictator rule results in a trivial
approximation ratio (i.e., the ratio obtained by ignoring the
preference profile and selecting a random alternative).

The outlook for consensus classes, other than unanimity
is bleaker. It is also shown that no strategyproof random-
ized voting rule nontrivially approximates many distance ra-
tionalizations with respect to the Majority and Condorcet
consensus classes.

There exist a number of other distance rationalizations of
common voting rules other than those considered in this pa-
per. For example, the Copeland rule selects the alternative
that maximizes the number of pairwise elections it wins and
is rationalizable with respect to the Condorcet consensus
class [13]. Future work will investigate the quality of strate-
gyproof approximations obtainable to such rationalizations.

Another line of future work is to consider rationalization
frameworks other than distance rationalization. For exam-
ple, under the maximum likelihood estimation framework,
one can measure the approximation ratio achieved by a ran-
domized voting rule as a function of the likelihood of the
alternative selected by that rule to being the true winner
compared to the likelihood of the actual winner.
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ABSTRACT

We study elections in which voters may submit partial ballots con-

sisting of truncated lists: each voter ranks some of her top can-

didates (and possibly some of her bottom candidates) and is in-

different among the remaining ones. Holding elections with such

votes requires adapting classical voting rules (which expect com-

plete rankings as input) and these adaptations create various oppor-

tunities for candidates who want to increase their chances of win-

ning. We provide complexity results regarding planning various

kinds of campaigns in such settings, and we study the complexity

of the possible winner problem for the case of truncated votes.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Prob-

lem Complexity; I.2.11 [DistributedArtificial Intelligence]: Mul-

tiagent Systems

General Terms

Theory

Keywords

elections, manipulation, possible winner, bribery

1. INTRODUCTION
Elections and voting constitute an important mechanism for ag-

gregating preferences of independent agents (be it nations choos-

ing their leaders, people recommending movies, or software agents

planning their joint actions). In the standard model of voting, we

are given some set of candidates C and each agent (that is, each

voter) ranks all the candidates in C from the most preferred one

to the most despised one. Then, a voting rule is used to find the

winner(s). Unfortunately, ranking all candidates is feasible only if

there are very few candidates, and even then the voters might be un-

willing to provide full rankings. Indeed, most political elections are

held using the plurality rule, which asks each voter to name the fa-

vorite candidate only, and elects whoever gets the most votes. Also,

elections over large combinatorial domains (such as those encoun-

tered, for example, in multiagent planning settings) require the use

of nontrivial representation languages to express preference orders.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

One of the most natural solutions to the problem of overburden-

ing the voters with ranking too many candidates is to allow them

to cast truncated preference orders. Indeed, each voter is likely to

know who are her most favorite candidates and if she is unwilling

to put the effort into ranking the remaining ones, it is safe to assume

that she likes them less than the ranked ones but is otherwise indif-

ferent among them. We will call such preferences “top-truncated.”

On the other hand, it is possible that a voter is indifferent among

a large set of acceptable candidates, but truly hates some remaining

ones (compare this with the idea of destructive manipulation and

control [10, 23]). Then, we would say that this voter has “bottom-

truncated” preferences. Finally, it is also possible that a voter would

have strong preferences regarding a small number of her top candi-

dates and regarding a small number of her bottom candidates, but

would be indifferent regarding the large group of “middle-ranking”

candidates. We refer to such votes as “doubly-truncated.”

Although allowing truncated votes does not solve all problems

with ranking large candidate sets (for example, it seems completely

inappropriate for voting in large combinatorial domains), it cer-

tainly is a very good solution for some settings, both in political

elections (for example, top-truncated ballots are allowed in polit-

ical elections in Slovenia) and for software agents (for example,

if one builds a meta-search engine using voting techniques [12],

where the votes—search engine results for a given query—are nec-

essarily top-truncated).

Unfortunately, typical voting rules, such as, e.g., Borda (defined

formally in Section 2) inherently depend on voters providing com-

plete rankings and have to be adapted for the case of truncated

votes. For example, for Borda, we could assume that each un-

ranked candidate receives 0 points from a given vote (a method

used in Slovenia, which we will call the pessimistic scoring model).

Or, if there are m candidates but a vote ranks only k of them, then

the ranked candidates get m− 1, . . . ,m− k points (depending on

their position in the ranking) and each unranked candidate gets

m− k−1 points. This method is sometimes called modified Borda

(see, e.g., [15]) and is used, e.g., by the Irish Green Party to choose

its leader. We will call this method the optimistic scoring model;

optimistic scoring has the advantage that it provides an incentive

for voters to rank more candidates.

Given the two above variants of Borda, it is immediately clear

that a candidate can benefit from convincing some of the agents to

extend their votes. Under pessimistic scoring a candidate should

try to get as many voters as possible to add him or her to the rank-

ing; under optimistic scoring the situation is more complicated (see

Theorems 3.4 and 3.5).

Campaigns aimed at extending truncated ballots are particularly

attractive because they can be presented as “enhancing voters’

awareness” and as “providing voters with an incentive to cast their
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votes.” Also, they are less “invasive” than manipulation or bribery

actions (see, e.g., [19, 21, 18]), as they do not aim at changing vot-

ers’ preferences but only at extending them. Thus, such campaigns

are viewed as inherently positive. We study the computational com-

plexity of such campaigns in Section 3.

The fact that standard voting rules have to be modified for the

case of truncated votes can sometimes be viewed as too demand-

ing. In such situations election rules force the voters to provide

complete rankings. However, even then the reasons why truncated

preferences arise still apply. As a result, it is likely that voters still

have truncated preferences and simply complete them arbitrarily at

the time of voting. From the point of view of candidates, it is in-

teresting to know, given truncated votes, for which candidates are

there completions of the votes that ensure their victory. We study

such scenarios in Section 4, where we consider the possible winner

problem for the case of truncated votes.

We conclude the paper by describing related work and by pre-

senting future research directions in Sections 5 and 6.

2. PRELIMINARIES
Elections with truncated ballots. An election is a pair E =
(C,V ), where C = {c1, . . . ,cm} is a set of candidates and V =
(v1, . . . ,vn) is a collection of voters. Each voter is represented via

her preferences over the set C. There are many ways in which a

voter’s preferences can be modeled. Throughout this paper we use

a variant of the ordinal model, where each voter’s preferences are

represented via a (possibly partial) order over the set of candidates.

We will refer to this order either as a preference order, a ballot, or,

slightly abusing notation, a vote; we use these terms essentially in-

terchangeably. For example, ifC = {c1,c2,c3}, a voter who prefers
c1 to c2 and c2 to c3 (and, thus, has complete preferences) would

have preference order c1 ≻ c2 ≻ c3. We also allow the voters to

have partial preference orders. In particular, we focus on the fol-

lowing three classes of such votes. Let t and b be two nonnegative

integers such that t+b ≤ ‖C‖:

Doubly-truncated votes. A partial preference order ≻ on C is

(t,b)-doubly-truncated if there is a permutation π over

{1, . . . ,‖C‖} such that ≻ is of the form cπ(1) ≻ ·· · ≻ cπ(t) ≻
{cπ(t+1), . . . ,cπ(m−b)} ≻ cπ(m−b+1) ≻ ·· · ≻ cπ(m) (i.e., each

candidate in the set {cπ(t+1), . . . ,cπ(m−b)} is strictly be-

low cπ(t), strictly above cπ(m−b+1), but the voter is indif-

ferent among the members of the set; we refer to candi-

dates cπ(1), . . . ,cπ(t),cπ(m−b+1), . . . ,cπ(m) as the ranked can-

didates, and to the remaining ones as unranked). For a (t,b)-
doubly-truncated preference order ≻ we define top(≻) = t

and bottom(≻) = b.

Top-truncated votes. A partial preference order is t-top-truncated

if it is (t,0)-doubly-truncated.
Bottom-truncated votes. A partial preference order is b-bottom-

truncated if it is (0,b)-doubly-truncated.

We say that a preference order is doubly-truncated (top-

truncated, bottom-truncated) if there are values t and b for which

it is (t,b)-doubly-truncated (t-top-truncated, b-bottom-truncated).

Similarly, we say that an election E = (C,V ) is doubly-truncated

(top-truncated, bottom-truncated) if each vote in V is doubly-

truncated (top-truncated, bottom-truncated). We say that an elec-

tion is (at-most-t)-top-truncated if for each vote v in E, there is an

integer tv ≤ v such that v is tv-top-truncated.

We use the following, somewhat subtle, notation to describe

truncated votes. Let C be a set of candidates. If in a preference

order we write
←−
S , where S is a subset of C, then we mean listing

all members of S in some fixed (easily computable) order. If we

write
−→
S , then we mean listing all members of S in the reverse of

this order. If we write S (without any arrows on top), we mean

that S are the unranked candidates. For example, if T and B are

two disjoint subsets of C, then by
←−
T ≻C \ (T ∪B)≻←−B we mean

a (‖T‖,‖B‖)-doubly-truncated preference order where candidates

from T are ranked at the top of the vote (in some order), candidates

in B are ranked at the bottom of the vote (in some order), and the

remaining candidates in the middle are unranked.

Voting Rules for Top-Truncated Votes. A voting rule R maps

an election E = (C,V ) to a set R(E)⊆C of candidates. We allow a

voting rule to output more than one winner or no winner at all. Un-

fortunately, standard definitions of many voting rules assume that

the voters have complete preferences and it may not be completely

obvious how to adapt them to the case of truncated rules (see, e.g.,

how Brams and Sanver [7] obtained fallback voting, which accepts

top-truncated orders, from Bucklin voting, which requires complete

orders). We now describe how we adapt several well-known (fam-

ilies of) voting rules to top-truncated ballots.

Let E = (C,V ) be an election with candidate setC= {c1, . . . ,cm}
and voter collection V = (v1, . . . ,vn), where each vote is top-

truncated. A scoring vector α = (α1, . . . ,αm) is a vector of non-

negative integers such that α1 ≥ α2 ≥ ·· · ≥ αm. If all votes are

complete, then under scoring rule Rα , each candidate c j ∈ C re-

ceives αi points for each vote where c j is ranked on the i’th po-

sition. The winners of the election are the candidates with most

points. Typically, we consider families of scoring rules, with one

scoring vector for each possible number of candidates.

For example, for each positive integer k, k-approval uses vectors

of the form (1, . . . ,1,0, . . . ,0) with k ones; plurality voting is 1-

approval; and Borda uses vectors of the form (m−1,m−2, . . . ,0),
where m is the number of candidates.

If (some of) the votes are top-truncated then we modify this

point-assignment procedure as follows. For a t-top-truncated

vote cπ(1) ≻ ·· · ≻ cπ(t) ≻ {cπ(t+1), . . . ,cπ(m)}, each ranked can-

didate cπ(i), 1 ≤ i ≤ t, receives αi points, and each unranked can-

didate receives s points, where s = αm in the pessimistic scoring

model and s = αt+1 in the optimistic scoring model. Note that the

optimistic scoring model, when applied to Borda, is equivalent to

what is known as modified Borda; see, e.g., [15].

The pessimistic model is the most popular one in practice. It is

used, for example, in Slovenia and in Kiribati for truncated ballots

under Borda’s rule. One of the downsides of the pessimistic model

is that it gives incentives for voters to rank only a single candidate

(so the impact of the vote on the score of this candidate, relative to

the scores of other candidates, is greatest). On the other hand, the

optimistic model rewards the voters who rank more candidates: the

more candidates one ranks, the more points (in relative terms) these

candidates receive.

Compared to the case of scoring rules, voting rules based on

head-to-head comparisons of candidates are much easier to adapt.

Let E = (C,V ) be an election with candidate set C = {c1, . . . ,cm}
and voter collection V = (v1, . . . ,vn), where the voters may have

truncated votes. For each two candidates ci, c j , we define

NE(ci,c j) = ‖{k | vk prefers ci to c j}‖. Note that if all votes are

complete, then for each distinct ci,c j ∈C it holds that NE(ci,c j)+
NE(c j,ci) = n. However, when some votes are truncated then for

some ci,c j ∈ C it is the case that NE(ci,c j) +NE(c j,ci) < n (be-

cause some voters are, effectively, indifferent between ci and c j).

Under the Copeland rule, the score of a candidate ci ∈C is de-

fined as ‖{c j ∈ C \ {ci}|NE(ci,c j) > NE(c j,ci)}‖+ (1/2)‖{c j ∈
C\{ci}|NE(c j,ci) =NE(ci,c j)}‖. However, we will focus on a re-
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lated rule, called Copeland0 , where the score of a candidate ci ∈C
is defined to be ‖{c j ∈C \{ci}|NE(ci,c j) > NE(c j,ci)}‖ (i.e., de-
feating a candidate in a head-to-head contest gives one point, but

losing and tieing both have no effect on the score). Under maximin,

the score of a candidate ci ∈C is minc j∈C\{ci}NE(ci,c j). For both
rules, the winners are the candidates with the highest score. Given

an election E = (C,V ), a candidate c ∈C, and a voting rule R that

assigns scores to candidates, we write score(c) to denote the score

of candidate c. The election and the voting rule will always be clear

from context.

Computational Complexity and Algorithms. We assume fa-

miliarity with standard notions of complexity theory such as the

classes P and NP, and the notions of many-one polynomial-time

reducibility, NP-completeness, and NP-hardness. We also assume

familiarity with parameterized complexity theory and classes FPT

and W[1]. We point the reader to the textbook [28] for references.

We will need the following NP-complete problems.

PARTIAL-SET-MULTICOVER

Given: A base set B = {b1, . . . ,bm}, each element bi of B

paired with a positive integer req(bi) (the covering re-
quirement of bi), a family S = {S1, . . . ,Sn} of sub-
sets of B, each set S j paired with a positive integer
cost(S j), a nonnegative integer K (the budget), and a
nonnegative integer k (the covering request).

Question: Is there a set A⊆ {1, . . . ,n} and a set C ⊆ B such that:
(a) for each bi ∈C, ‖{ j ∈ A |bi ∈ S j}‖ ≥ req(bi) (that
is, for each element of C the sets S j , j ∈ A, jointly sat-
isfy its covering requirement), (b) ‖C‖ ≥ k (that is, C
satisfies the covering request), and (c) ∑ j∈A cost(S j)≤
K (that is, we do not exceed the budget)?

PARTIAL-SET-MULTICOVER is the most general of a family of

related problems. In PARTIAL-SET-COVER, each covering require-

ment is set to 1. In SET-MULTICOVER, we have to cover all ele-

ments in the base set (i.e., k = ‖B‖). In SET-COVER, each covering

requirement is set to 1 and k = ‖B‖. Finally, in X3C we have the

same setting as for SET-COVER, but ‖B‖ is a multiple of 3, each set

in S has exactly 3 elements and unit cost, and K = ‖B‖/3. Except
for X3C, each of these problems has a natural minimization variant

where we seek to minimize the total cost of the selected sets.

We will also use the following standard minimization problem.

KNAPSACK

Input: Nonnegative integers w1, . . . ,wn (the weights) and
v1, . . . ,vn (the values) and a nonnegative integer T (the
target value).

Output: A set A⊆ {1, . . . ,n} such that (a) ∑i∈A vi ≥ T and (b)

∑i∈Awi is minimal (or indication that such a set does
not exist).

A minimization problem A is a problem that asks us to compute

some solution s that minimizes a certain cost function cost(s). For
a given instance I, we write OPT(I) to denote the value of a so-

lution with minimal cost. For a given number α ≥ 1, we say that

an algorithm A is an α-approximation algorithm for a given min-

imization problem if for each input instance I, A outputs a valid

solution s such that cost(s) ≤ α ·OPT(I). A fully polynomial-time

approximation scheme (FPTAS) for a minimization problem is an

algorithm that, given an instance I and a positive rational value ε ,

runs in time polynomial in |I| and 1/ε (i.e., in time polynomial with

respect to the length of the encoding of I and the value of 1/ε), and

outputs a solution s such that cost(s) ≤ (1+ ε)OPT(I). It is well-
known that there is an FPTAS for KNAPSACK and that the decision

variant of KNAPSACK is NP-complete.

We will also study the possible (co-)winner problem, introduced

by Konczak and Lang [25]. For a given voting rule R, define:

R-POSSIBLE-WINNER (R-PW)

Given: An election E = (C,V ), where the ballots in V are
partial orders over the set of candidates, and a distin-
guished candidate p ∈C.

Question: Is it possible to complete the votes in E so that p is an
R winner?

An important special case of the possible winner problem is

the unweighted coalitional manipulation problem, R-UCM, where

some voters (so-called honest voters) have complete preference or-

ders, and some voters (so-called manipulators) have empty pref-

erence orders. Intuitively, in R-UCM the manipulators are seek-

ing possibly dishonest votes that would ensure their favorite candi-

date’s victory; see [19, 21] for more details on R-UCM.

3. CAMPAIGNING PROBLEMS
Let us now focus on campaign management problems that arise

in the context of top-truncated votes. As we have noticed, a can-

didate may benefit from convincing some voters to extend their

top-truncated preference orders. Naturally, some voters might be

harder to affect than others. Thus, we should assume that each

voter v has some function δ that describes the cost of extending v’s

top-truncated vote. However, since the voter is originally indiffer-

ent among the unranked candidates, it is reasonable to assume that

the cost of extending the vote depends only on the number of added

candidates and not on their names.

The task of the campaign manager is to figure out how (and to

what extent) to extend the votes in order to ensure her candidate’s

victory, while spending as little as possible. Following the nam-

ing convention from two papers on campaign management in elec-

tions [13, 31], we call our problem EXTENSION-BRIBERY.

3.1 Formal Definition
We now give a more formal description of extension bribery. Let

E = (C,V ) be a top-truncated election whereC = {p,c1, . . . ,cm−1}
and V = (v1, . . . ,vn). Let ∆ = (δ1, . . . ,δn) be a collection of func-

tions from nonnegative integers to nonnegative integers, such that

for each i, 1≤ i≤ n, it holds that δi(0) = 0 and δi is nondecreasing.

We will refer to the functions in ∆ as extension bribery cost func-

tions. Let E ′ = (C,V ′),V ′= (v′1, . . . ,v
′
n) be a top-truncated election

obtained from E by extending the votes inV . We define the cost of

extending E to E ′ to be ∑
n
i=1 δi(top(v

′
i)− top(vi)). The goal is to

find a minimal-cost extension of E that ensures p’s victory. Note

that in each vote that we extend by some k candidates, we are free

to rank these k candidates in any way, provided that they all follow

the originally ranked candidates.

For a given voting rule R, define:

R-EXTENSION-BRIBERY

Given: An election E = (C,V ), where the ballots inV are pos-
sibly top-truncated, a collection ∆ of extension-bribery
cost functions (one per voter), a distinguished candi-
date p ∈C, and a nonnegative integer B (the budget).

Question: Is there an extension of cost at most B of election E

where p is an R winner?

Each cost function δ in ∆ is represented by providing at most

‖C‖ integer values, δ (0),δ (1), . . . ,δ (‖C‖). Unless specified oth-

erwise, all integers are encoded in binary. In particular, we study
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two special cases of extension bribery cost functions δ (inspired

by cost functions from [14]). In the zero-cost model we take each

cost function δ to be such that δ (k) = 0 for each nonnegative inte-

ger k. In the unit-cost model, we take each function δ to be such

that δ (k) = k for each nonnegative integer k (that is, there is a unit

cost for extending each vote with a single candidate).

In the minimization variant of the problem the budget is not part

of the input, and we simply ask if it is possible to ensure p’s victory,

and if so, what is the lowest cost at which this can be achieved.

Different families of cost functions correspond to different cam-

paign settings. If we allow general cost functions, our problem

models a campaign management scenario where affecting each

voter may require a different amount of effort. The unit-cost model

corresponds to settings where we have no knowledge of the dif-

ficulty of affecting particular voters and we simply minimize the

number of additionally ranked candidates. The zero-cost model

corresponds to settings where we want to find out if extension-

bribery type campaign can succeed at all.

3.2 Checking the Possibility of Success
We consider the zero-cost model first. It turns out that in this

case EXTENSION-BRIBERY is easy for maximin and scoring rules

under the pessimistic scoring model.

THEOREM 3.1. EXTENSION-BRIBERY under the zero-cost

model is in P for maximin, and—under the pessimistic scoring

model—for each efficiently computable family of scoring rules.

PROOF. LetR be one of the voting rules from the theorem state-

ment. Set E = (C,V ) to be our input top-truncated election and let

p be the candidate whose victory we want to ensure. Irrespective of

our choice of R, the best we can do is to extend each top-truncated

vote that does not yet rank p to include p.

On the other hand, under scoring rules and the optimistic scor-

ing model already this very simplified variant of EXTENSION-

BRIBERY can be NP-complete. The reason for this is that under

optimistic scoring we have very strong side effects—adding a can-

didate to a vote decreases the score of the remaining unranked can-

didates. This means that under optimistic scoring with zero-costs

the best action a campaign manager can take is to fully extend all

votes. This, effectively, reduces the problem to the UCM problem.

THEOREM 3.2. For each voting rule R that can be represented

as a family of scoring rules, it holds that R-UCM reduces to R-

EXTENSION-BRIBERY under optimistic scoring with zero-costs.

PROOF. Let I = (C,V,W, p) be an instance of R-UCM, where

C is a set of candidates, V is a collection of honest voters, W is a

collection of manipulators, and p ∈ C is our preferred candidate.

We construct an instance I′ = (C,V ′,∆, p,0) of R-EXTENSION-

BRIBERY as follows: We set V ′ to be the concatenation of the lists

V andW ′, where each manipulator inW is replaced inW ′ by a voter
with 1-top-truncated vote p≻C \{p}, and we let ∆ be a collection

of zero-cost functions. The reader can verify that there is a solution

for I if and only if there is a solution of zero cost for I′.

Since it is now known that Borda-UCM is NP-complete [11,

5], we immediately have that Borda-EXTENSION-BRIBERY under

optimistic scoring is NP-complete as well, even in the zero-cost

model. For Copeland0 we also obtain NP-completeness in the zero-

cost model via a reduction from Copeland0-UCM (which is NP-

complete [20]), but this time the reduction is more involved.

THEOREM 3.3. Copeland0-EXTENSION-BRIBERY isNP-com-

plete, even in the zero-cost model.

However, in a way, Theorems 3.2 and 3.3 are not satisfying; in

either case our proofs use the fact that (almost) all voters rank (al-

most) all candidates. In realistic settings we would rather expect

that almost all voters would have very short top-truncated votes.

Thus, it is interesting to ask what happens for, say, Borda and

Copeland0 if our input election is restricted to contain (at-most-

k)-top-truncated votes, for some small value of k. Answering this

question seems nontrivial under the zero-cost model (with opti-

mistic scoring, for Borda). In particular, for the case of Borda, this

problem appears to be related to manipulation by more than two

manipulators (even though there is a proof of Borda-UCM NP-

completeness for the case of two manipulators, generalizing it to

the case of more manipulators is not trivial [11, 5]). However, we

can answer it for the case of the unit-cost model (see Theorem 3.4).

3.3 Minimizing the Campaign’s Cost
After the campaign manager verifies that indeed it is possible to

run a successful campaign, the next step is to find a campaign strat-

egy that requires smallest effort. In particular, if the manager has

little knowledge about the difficulty of affecting particular voters,

her most reasonable approach is to simply minimize the degree to

which she extends the votes. Formally, this is captured by the unit-

cost model. Unfortunately, it turns out that even in this very simple

model we reach broad hardness results.

THEOREM 3.4. EXTENSION-BRIBERY under the unit-cost

model is NP-complete for Borda (with optimistic scoring), maxi-

min, and Copeland0 , even if each vote is (at-most-6)-top-truncated.

PROOF. Let us consider the case of Borda first. We give a re-

duction from X3C. Let I = (B,S ) be our input instance where

B = {b1, . . . ,b3k} and S = (S1, . . . ,Sn). Without loss of general-

ity, we assume that k is odd.

We build an instance I′ = (C,V,∆, p,k) of Borda-EXTENSION-

BRIBERY (note that in our instance the budget it set to k). We set

C= B∪{p,x,y} and construct the voter collection as follows. First,
for each Si, 1≤ i≤ n, we introduce a voter vi with vote p≻

←−
Si ≻C\

Si. Then, we add enough (but at most polynomially many) 6-top-

truncated votes that ensure that for each j, 1≤ j ≤ 3k, score(b j) =
score(p)+k−1, and score(x)≤ score(p) and score(y)≤ score(p).
We do so by using the following construction.

Fix some candidate c ∈ C. We define a collection V (c) of vot-

ers to contain the following (3k+3)/6 pairs of voters. (To define

this collection of voters, we rename the candidates so that C =
{c,y,c3, . . . ,c3k+3}.) The first pair contains 6-top-truncated votes

c ≻ y ≻ c3 ≻ c4 ≻ c5 ≻ c6 ≻C \{c,y,c3,c4,c5,c6} and c6 ≻ c5 ≻
c4 ≻ c3 ≻ c ≻ y ≻ C \ {c,y,c3,c4,c5,c6}. The following pairs of

votes are constructed as follows. For each i, 1≤ i≤ ((3k+3)/2)−1,

letCi = {c6i+1,c6i+2,c6i+3,c6i+4,c6i+5,c6i+6} and add a pair of 6-
top-truncated votes

←−
Ci ≻ C \Ci and

−→
Ci ≻ C \Ci. It is easy to see

that withinV (c), it holds that for each candidate ci, 3≤ i≤ 3k+3,

we have score(ci) = score(c)−1, and that score(y) = score(c)−2.

(This is so because each candidate appears in the preference orders

of the voters in exactly one pair; in the first pair c gets one point

more than each of c3, . . . ,c6, and y gets one point less than each

of c3, . . . ,c6. In the further pairs each candidate ci gets as many

points as each of the candidates c3, . . . ,c6 in the first pair.) Thus, by
grouping together sufficiently many (but not more than polynomi-

ally many) collections of voters of the formV (c), for c∈B∪{p,x},
we can satisfy the score requirements from the paragraph above.

We complete the construction of I′ by setting ∆ to be a collection

of unit-cost functions.

We claim that if I is a yes-instance of X3C then there is an ex-

tension bribery of costs at most k that ensures p’s victory. Let
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A⊆{1, . . . ,3k} be a solution for I, that is, a set such that (a) ‖A‖≤ k

and (b)
⋃
i∈A Si =B. If we extend the votes vi with i∈A so that each

of them also ranks x, then it will cost ‖A‖, the scores of x and p will

not change, and the score of each bi ∈ B will decrease by k−1 (be-

cause A corresponds to an exact cover of B). As a result, p will be

a winner of the election.

For the other direction, we claim that if there is a solution to I′

of cost at most k then I is a yes-instance of X3C. To see this, note

that, by construction of (C,V ), a successful extension bribery has to
ensure that each bi ∈ B loses at least k−1 points. That is, we have

to ensure that at least 3k(k− 1) points are lost by the candidates

in B. On the other hand, we can extend the votes by adding at most

k candidates. Thus, on the average, each act of extending a vote has

to, effectively, decrease the scores of 3k(k−1)/k = 3k−3 candidates.

However, by an easy argument, this is possible only if we extend

some k votes of voters v1, . . . ,vn, each by adding either candidate x

or candidate y (but not both). Further, to decrease the score of each

candidate bi ∈ B by k− 1, these k voters have to correspond to an

exact cover of B.

The proofs for Copeland0 and maximin proceed similarly.

On the other hand, for the case of scoring rules under the pes-

simistic scoring model, we can, for all practical purposes, handle

essentially all cost models. As in the case of unit cost, the reason

for this is that under pessimistic scoring the best one can do is to

simply rank p in the votes that do not rank p yet. The only, fairly

easily solvable, difficulty is that under general cost functions one

has to decide which votes to extend.

THEOREM 3.5. There is an algorithm that given a scoring vec-

tor α = (α1, . . . ,αm), an instance I of Rα -EXTENSION-BRIBERY

in the pessimistic scoring model, and positive rational value ε , out-

puts (in time polynomial in the encoding size of I and 1/ε) a solution

s for I such that cost(s)≤ (1+ ε)OPT(I).

PROOF. Let I = (C,V,∆, p), where C = {p,c1, . . . ,cm−1}, V =
(v1, . . . ,vn), and ∆ = (δ1, . . . ,δn). Our algorithm works as follows.

First, if p is already a winner then we output an empty solution

and terminate. Otherwise, let c j be one of the current winners. We

have score(c j) > score(p). It is easy to see that it suffices to find

a set A ⊆ {1, . . . ,n} such that (a) for each i ∈ A, vi does not rank

p, (b) ∑i∈A αtop(vi)+1 ≥ score(c j)− score(p), and (c) ∑i∈A δi(1) is
minimal among all subsets satisfying the previous two conditions.

Clearly, finding such a set A reduces to solving a knapsack problem

(where the values δi(1) take the role of the weights and the val-

ues αtop(vi)+1 take the role of the values). A standard FPTAS for

knapsack proceeds either by scaling the weights or by scaling the

values; in our case we use a version that scales the weights.

The above proof implies that Rα -EXTENSION-BRIBERY is in P

when the cost functions are encoded in unary. For binary encoding

we have the following result.

THEOREM 3.6. If the scoring vector α is part of the input then

Rα -EXTENSION-BRIBERY, under either of our two scoring mod-

els, isNP-complete. However, for each fixed scoring vector α , Rα -

EXTENSION-BRIBERY is in P.

The NP-completeness proof for the pessimistic scoring model

follows by a simple reduction from KNAPSACK. P-membership

follows by using the same techniques as in Theorem 4.15 in [18].

3.4 Dealing with the Hard Cases?
The above results show that in many practically important cases

effective campaign management requires solving NP-complete

problems. Are there ways in which we can deal with this prob-

lem? Depending on the voting rule and the particular setting we

have several options. In this section we will focus on cases where

the only legal vote extensions are those that add p to those votes

that do not rank p yet. This is the most natural type of campaign

to run and from a practical perspective it is most important to be

able to solve EXTENSION-BRIBERY instances for this case (in ad-

dition, this strategy is optimal for maximin). Further, it seems

that more general variants of EXTENSION-BRIBERYmight require

much more involved approaches than presented here.

The main source of hardness of EXTENSION-BRIBERY prob-

lems is their close relation to set-covering problems. We consider

Copeland0 first. Let I = (C,V,∆, p,B) be an instance of Copeland0-
EXTENSION-BRIBERY. Let us assume that there is some candi-

date c ∈C,c 6= p, who has the highest score among all candidates

and whose score cannot be decreased by adding p to the truncated

votes (at cost B). This means that, in order to win, p has to obtain

score(c)− score(p) additional points. That is, the task of the cam-

paign manager is to find a subcollection V ′ of voters that do not

rank p, such that (a) the total cost of adding p to each vote in V ′ is
at most B, and (b) there is a group of at least score(c)− score(p)
candidates against whom p was losing-or-tieing the head-to-head

contests prior to vote extension and against whom p is winning

these head-to-head contests after the extension.

However, this simply means that the campaign manager has to

solve PARTIAL-SET-MULTICOVER for an instance with the base

set B equal to the set of candidates against whom p is losing-

or-tieing the head-to-head contests, with the family of sets S =
{S(v) | voter v does not rank p} (where S(v) is the subset of candi-
dates in B that voter v does not rank; the cost of S(v) is the cost of
including p in v’s preference order), with the covering requirement

of each d ∈ B being exactly the number of voters that would have

to additionally rank p ahead of d for p to win the head-to-head con-

test, with the covering request k equal to score(c)− score(p), and
with the same budget as in the EXTENSION-BRIBERY instance.

Based on this observation, and with a simple construction (omit-

ted due to space restriction), we see that if there were any way to

efficiently solve Copeland0-EXTENSION-BRIBERY then there also

would be an analogous way to solve PARTIAL-SET-MULTICOVER.

Unfortunately, it seems that PARTIAL-SET-MULTICOVER is a par-

ticularly difficult NP-complete problem: No nontrivial approxi-

mation algorithm for it is known (even though SET-COVER and

SET-MULTICOVER [22] have natural O(logm)-approximation al-

gorithms, where m is the size of the base set). One might hope that

the problem would at least be fixed-parameter tractable for the pa-

rameter “number of base-set elements to cover” (corresponding to

cases where p has a score close to that of the current winner) as for

this case PARTIAL-SET-COVER is in FPT [6]. Unfortunately, we

have the following result, which implies Corollary 3.8.

THEOREM 3.7. The problem PARTIAL-SET-MULTICOVER is

W[1]-complete for the parameter (k,B), where k is the number of

base-set elements to cover and B is the budget.

PROOF SKETCH. The proof of hardness proceeds via a reduc-

tion from the problem CLIQUE: Given an undirected graph G =
(V,E) and an integer k, does G have a clique of size k? CLIQUE

is W[1]-complete for the parameter k. Let G = (V,E) and k be a

given CLIQUE instance. For each v ∈ V , we define S(v) to be a

set containing v and all its neighbors. We construct an instance of

PARTIAL-SET-MULTICOVER where B = V , S = {S(v) | v ∈ V},
each set in S has cost 1, the budget is k, the covering requirement

of each element of B is k, and the covering request is k. The reader

can verify that this reduction is indeed correct.
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The W[1]-membership proof uses a careful reduction to the

SHORT-TURING-MACHINE-COMPUTATION problem [8].

COROLLARY 3.8. Copeland0-EXTENSION-BRIBERY is W[1]-
complete for the parameter (k,B), where k is the difference in score
between the preferred candidate and the current winner, and B is

the budget, and where the only allowed extensions are to add the

preferred candidate.

However, there is some hope for the case where each voter ranks

only few candidates (a situation corresponding to PARTIAL-SET-

MULTICOVER instances where each set contains almost all mem-

bers of the base set). The parametrized complexity of this variant

of Copeland0-EXTENSION-BRIBERY remains open (note that this

also justifies why it was worthwhile to prove Theorem 3.4).

One can apply a similar analysis as for the case of Copeland0

to the cases of Borda and maximin. However, there it turns

out that EXTENSION-BRIBERY does not resemble PARTIAL-SET-

MULTICOVER but rather SET-MULTICOVER. Thus, using the stan-

dard approximation algorithm for SET-MULTICOVER [22] we get

the following result.

THEOREM 3.9. For the cases of Borda-EXTENSION-BRIBERY

(in the optimistic scoring model) and maximin-EXTENSION-

BRIBERY, where the only allowed extensions are to add the pre-

ferred candidate, there are O(logm)-approximation algorithms

(where m is the number of candidates).

The sizes of the base sets for the SET-MULTICOVER instances

that we construct in the proof of the above theorem depend on

(a) the number of candidates that have a higher score than the pre-

ferred candidate (for the case of Borda) or (b) the number of can-

didates “blocking” our preferred candidate’s way to becoming the

winner (for the case of maximin). If our preferred candidate is close

to winning (in the sense of these candidate sets being small), we

can try to solve the corresponding SET-MULTICOVER instance us-

ing a dynamic programming algorithm (whose running time would,

nonetheless, be exponential, but with the exponent depending on

the sizes of these candidate sets).

4. POSSIBLE WINNER PROBLEM
Given an election E = (C,V ), with the list V of votes being par-

tial orders over the set of candidates C, the original POSSIBLE-

WINNER problem (PW, for short) asks whether there is an exten-

sion of the given partial votes into complete ones over C such that

a distinguished candidate wins the election. This problem was in-

troduced by Konczak and Lang [25] and has received significant

attention (see, e.g., [33, 3, 9, 35, 2]).

We consider the complexity of the possible winner problem if

the partial votes have the special form of truncated ballots. We for-

mulate these problems in the co-winner model, for a voting rule R.

R-POSSIBLE-WINNER-WITH-TOP-TRUNCATED-BALLOTS

Given: An election E = (C,V ), with possibly top-truncated
ballots in V , and a distinguished candidate p ∈C.

Question: Can p be made an R winner of the election that results
from E by fully extending all truncated ballots?

We define the corresponding problems for bottom- and doubly-

truncated ballots analogously and abbreviate these three problems

by, respectively, PWTTB, PWBTB, and PWDTB, omitting the

voting rule R. They capture the constructive variants as the pos-

sible winner problem does. Of course, one may also define the

corresponding variants of the necessary winner problem.

PW

PWDTBU(k) PWDTBL(k)

PWDTB

UCM

PWBTB

PWBTBU(k) PWBTBL(k)

PWTTB

PWTTBU(k) PWTTBL(k)

Figure 1: A hierarchy of possible winner problems

PWTTB is closely related to, but different from, the decision

problem EXTENSION-BRIBERY for the zero-cost model. While

in PWTTB we have to extend all votes to linear orders, in

EXTENSION-BRIBERY we have the freedom to extend votes only

partially. Still, EXTENSION-BRIBERY reduces to PWTTB for

each scoring rule in the optimistic scoring, zero-cost model.

Let k be a fixed positive constant. We consider the following re-

striction of PWTTB to top-truncated ballots with upper-bounded

(lower-bounded) length k: For every top-truncated ballot B, the

number of candidates ranked in B is at most k (at least k). The

restriction of PWTTB to such ballots is denoted by PWTTBU(k)
(PWTTBL(k)). Analogous definitions can be made for bottom-

truncated and doubly-truncated ballots. Let the corresponding pos-

sible winner problems with truncated ballots of either upper- or

lower-bounded length be denoted by PWBTBU(k), PWBTBL(k),
PWDTBU(k), and PWDTBL(k). Truncated ballots with upper-

bounded length may be seen as being heavily truncated, whereas

truncated ballots with lower-bounded length may be seen as be-

ing only moderately truncated. Because UCM uses ballots that are

either full or empty, neither PWTTBU(k) nor PWTTBL(k) is a
more general problem than UCM. An analogous comment applies

to PWBTBU(k), PWBTBL(k), PWDTBU(k), PWDTBL(k).
On the other hand, we immediately have from the definitions

that UCM is a special case of both PWTTB and PWBTB, which

in turn are special cases of PWDTB, and PWDTB is a special case

of PW. This is stated in Proposition 4.1 and shown in Figure 1. In

this figure, an arrow between two problems, A→ B, means that A

(polynomial-time many-one) reduces to B.

PROPOSITION 4.1. Among the possible winner problems with

and without truncated ballots defined above, we have the reduc-

tions shown in Figure 1.

Now, since the problems PWTTB, PWBTB, and PWDTB are

sandwiched between PW and UCM (recall that UCM is a special

case of PW), they immediately inherit any membership in P re-

sult from PW and any NP-hardness result from UCM. Thus, from

known results about the PW and UCM problems for common vot-

ing rules [10, 25, 3, 33], we can classify these into three groups:

(1) PW is in P for, e.g., plurality, veto, Condorcet, and plurality

with runoff (in the co-winner case); (2) UCM is NP-hard for, e.g.,

Copeland, STV, maximin, ranked pairs, most scoring rules, plus

all rules for which winner determination is NP-hard; (3) PW is

NP-hard and UCM is in P for, e.g., Bucklin, voting trees, plurality

with runoff (in the unique-winner case), and k-approval. Therefore,

among the voting rules listed above, the complexity of PWTTB,

PWBTB, and PWDTB is not yet known for Bucklin, voting trees,

plurality with runoff (in the unique-winner case), and k-approval.

THEOREM 4.2. For k-approval, the problems PWDTB and, a

fortiori, PWTTB and PWBTB are in P.

PROOF. Let V = (v1, . . . ,vn) be a given list of doubly-truncated

ballots over a set C of m candidates, with the given values top(vi)
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and bottom(vi) for each voter vi inV . Let p∈C be the distinguished

candidate. To decide whether p is a winner, we transform the given

instance into the following network flow problem:

1. For each i, 1 ≤ i ≤ n, if top(vi) < k, and the position of p

is not revealed in vi (i.e., p is among the unranked candi-

dates in vi), then add p at position top(vi) + 1 in vi. Let

V ′ = (v′1, . . . ,v
′
n) be the corresponding modified profile with

adjusted values top(v′i), 1≤ i≤ n.

2. For each i, 1≤ i≤ n: (a) if top(v′i)≥ k, then let Zi be the set

containing the first k candidates of v′i; (b) if top(v
′
i) < k and

bottom(v′i)≤ m− k, then let Zi be the set containing the first

top(v′i) candidates of v
′
i; (c) if top(v

′
i) < k and bottom(v′i) >

m− k, then let Zi be the set cotaining the first top(v′i) candi-
dates plus the first bottom(v′i)−m+ k candidates which are

ranked at the bottom of v′i.
3. For each c ∈C, let S(c) = ‖{i | c ∈ Zi}‖.
4. The flow network contains n+m+ 1 nodes: (a) one node c

for each candidate c ∈C\{p}, (b) one node v′i for each voter
v′i ∈V ′, (c) a source s, and (d) a sink t.

5. The flow network contains the following edges: (a) there is

an edge from s to every c∈C\{p}with capacity S(p)−S(c);
(b) there is an edge from c ∈C\{p} to v′i ∈V ′ with capacity
1 if and only if the position of c is not revealed in v′i; (c) there
is an edge from every v′i ∈V ′ to t with capacity




0 if top(v′i)≥ k;

k− top(v′i) if top(v′i) < k and bottom(v′i)≤ m−k;

m− top(v′i)
−bottom(v′i) if top(v′i) < k and bottom(v′i) > m−k.

We claim that p is a possible winner in the k-approval election

(C,V ) if and only if there is a flow of value ∑
n
i=1 ai in the network

constructed above, where (1) ai = 0 if top(v′i) ≥ k, (2) ai = k−
top(v′i) if top(v′i) < k and bottom(v′i) ≤ m− k, and (3) ai = m−
top(v′i)−bottom(v′i) if top(v

′
i) < k and bottom(v′i) > m−k.

Assume that p is a possible k-approval winner for (C,V ). That
means that there is an extension of the list of truncated ballots V

into a list W of complete ones such that p is a k-approval winner

of election (C,W ). Without loss of generality, we can assume that

p is placed at the first possible position in each vote vi where its

position is unrevealed. Let (C,V ′) be the profile thus modified.

The points every candidate gets in the profile (C,V ′) correspond to

the values S(c) of the above construction. We now show that there

is a flow of value ∑
n
i=1 ai in the network. First note that ∑

n
i=1 ai is

the sum of the unranked candidates among the first k positions in

all votes. Since no candidate gets more points than p in (C,W ),
there is a flow of value at most S(p)− S(c) from s to every node

c for each candidate c ∈ C \ {p}. If in the list of complete ballots

candidate c takes a position in a vote vi that was unrevealed in V ′,
there is a flow of value one from c to vi. Further, from each node vi,

1 ≤ i ≤ n, there is a flow to the sink t whose value corresponds to

the unrevealed candidates among the first k positions. Hence there

is a flow of the desired value in this network.

Now assume that there is a flow of value ∑
n
i=1 ai in the network.

For the given election (C,V ), we again first place candidate p at the

first possible position in the votes where its position was unrevealed

before, and we refer to the modified profile by V ′. If there is a flow
of value one from node c to vi, candidate c is placed among the first

k positions in vote vi. The sum of all ai ensures that all first k posi-

tions are taken in all votes, and the capacity of S(p)−S(c) from the

source s to the nodes corresponding to the candidates c ∈C \ {p}

ensures that no candidate can get more points than p. Hence, com-

pleting the profile V ′ as described results in a k-approval election

in which p is a winner.

5. RELATED WORK
Although most of the literature in voting theory assumes that

votes are full linear orders, truncated ballots have been considered

in a few papers. Brams and Sanver [7] consider ballots that consist

of ranked lists of approved candidates (i.e., of possibly truncated

ballots), and they propose two specific ways of aggregating them,

namely preference approval voting and fallback voting. Aggregat-

ing truncated ballots also appears in a stream of work in database

theory, where aggregating ordered lists of results to queries (pro-

vided by web search engines, for example) corresponds to aggre-

gating several ordered lists in which, typically, every element ap-

pears only in some lists, not in all (see, e.g., [12, 17, 1]). Assuming

that the elements that are not ranked in a list are considered less

relevant than the elements that appear in it, it is clear that the prob-

lem consists in aggregating a set of top-truncated rankings into a

complete ranking. The aggregation rules used in this community

are median rankings, which minimize some distance to the ballots,

such as, typically, the Kemeny rule. One reason why these median

ranking rules are used by this community is that their definition ex-

tends in a straightforward way to truncated rankings. Here we focus

on other rules, and we also show that any other possible rule can be

extended in a systematic way to truncated ballots, by considering

all possible extensions of the truncated ballots. Rank aggregation

with partial information is also important in peer-reviewing [30],

and it received considerable attention from the machine learning

community. For example, doubly-truncated votes are a special case

of a similar notion studied by Lebanon and Mao [26]. Finally, En-

driss et al. [16] provide a general approach to voting with many

kinds of ballots, including truncated ballots.

Section 3 deals with the issue of campaign management for the

case of truncated votes. Campaign management as a computa-

tional problem appeared, e.g., in [13, 31]. In particular, the latter

work considered the problem SUPPORT-BRIBERY where the cam-

paign manager can extend votes. However, there the voters already

have fixed preference orders, whereas in EXTENSION-BRIBERY

the manager has the freedom to ask the voters to additionally rank

any subset of candidates in any order. In this sense EXTENSION-

BRIBERY is similar to the BRIBERY problem [18], except that in

BRIBERY if we buy a given vote, we can rewrite it completely.

Section 4 relates to computing possible winners. This notion has

been introduced by Konczak and Lang [25] and has been studied

from a computational point of view (see, e.g., [33, 3, 29]). The

relation to preference elicitation is further explored by Walsh [32].

Parameterized complexity results for the possible winner problem

are given by Betzler et al. [4]. Kalech et al. [24] design voting pro-

tocols in which agents submit their preferences incrementally, in

rounds, and study experimentally the probability that there exists a

necessary winner given the amount of information known. Lu and

Boutilier [27] use minimax regret to output a robust winner given

incomplete preferences, which is a way of coping with the possi-

bly high number of possible winners. Xia and Conitzer [34] use

the maximum likelihood approach to define voting rules form in-

complete votes. Finally, a restricted variant of the possible winner

problem, where the incompleteness of the profile comes from the

fact that some alternatives were not known initially, is the possi-

ble winner problem with respect to the addition of new alternatives

(PWNA) [9, 35, 2]. In PWNA, each voter has a full linear order

over the setC of “known” candidates, but there is also a set A of ad-

ditional candidates. The question is whether it is possible to extend
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the linear orders of the voters to rank all the candidates inC∪A, so
that some given candidate is a winner. At first sight it may look as if

PWNA were a subproblem of PWTTB, PWBTB, and PWDTB.

However, in the PWNA problem the remaining alternatives can be

ranked anywhere, whereas in the case of truncated ballots they have

to come between the ranked top and ranked bottom candidates.

6. CONCLUSIONS AND FUTUREWORK
We have studied various aspects of elections when the input

votes are truncated rankings consisting of a ranked list of top can-

didates and/or a ranked list of bottom candidates. We proposed

ways of extending some voting rules to truncated ballots, and have

addressed the complexity of the problem of persuading voters to

extend their votes so as to ensure that a given candidate wins. Con-

sidering truncated ballots as incompletely specified rankings, we

showed that determining possible winners makes sense in this set-

ting. While the complexity of the possible winner problem for trun-

cated ballots follows from known results for many voting rules, we

provided an efficient algorithm in one of the few other cases.

The generalization of voting rules to truncated ballots, and the

study of such generalizations, deserves more attention. One goal is

to extend common social-choice-theoretic properties to truncated

ballots and to see if the properties fulfilled by a voting rule are

still fulfilled in this generalization. Introducing new properties ap-

plicable only to (properly) truncated ballots may also make sense.

Considering truncated ballots as incomplete ballots, how likely is it

that the result is determined (i.e., that there exists a necessary win-

ner) when all voters have specified ballots of a given size? (Kalech

et al. [24] address a similar question in a different setting.) It is ob-

vious how to prove that for the Bucklin rule: If top lists are of size

⌈m/2⌉ then there exists a necessary winner. It may also be interest-

ing to build elicitation protocols so as to ask voters to expand their

truncated ballots in a minimal way, in terms of the number of bits

exchanged, so that the outcome of the vote is determined. Finally,

we still have to address the complexity of PWDTB for plurality

with runoff (in the unique-winner case), voting trees, and Bucklin.
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ABSTRACT
We study the problem of computing possible and neces-
sary winners for partially specified weighted and unweighted
tournaments. This problem arises naturally in elections
with incompletely specified votes, partially completed sports
competitions, and more generally in any scenario where
the outcome of some pairwise comparisons is not yet fully
known. We specifically consider a number of well-known so-
lution concepts—including the uncovered set, Borda, ranked
pairs, and maximin—and show that for most of them pos-
sible and necessary winners can be identified in polynomial
time. These positive algorithmic results stand in sharp con-
trast to earlier results concerning possible and necessary
winners given partially specified preference profiles.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory, Algorithms

Keywords
Social Choice Theory, Tournament Solutions, Possible and
Necessary Winners, Computational Complexity

1. INTRODUCTION
Many multi-agent situations can be modeled and analyzed

using weighted or unweighted tournaments. Prime examples
are voting scenarios in which pairwise comparisons between
alternatives are decided by majority rule and sports com-
petitions that are organized as round-robin tournaments.
Other application areas include webpage and journal rank-
ing, biology, psychology, and AI (also see [6], and the ref-
erences therein). More generally, tournaments and tourna-
ment solutions are used as a mathematical tool for the anal-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ysis of all kinds of situations where a choice among a set
of alternatives has to be made exclusively on the basis of
pairwise comparisons.

When choosing from a tournament, relevant information
may only be partly available. This could be because some
preferences are yet to be elicited, some matches yet to be
played, or certain comparisons yet to be made. In such
cases, it is natural to speculate which are the potential and
inevitable outcomes on the basis of the information already
at hand.

For complete tournaments, a number of attractive solution
concepts have been proposed (see, e.g., [6, 17]). Given any
such solution concept S, possible winners of a partial tour-
nament G are defined as alternatives that are selected by S
in some completion of G, and necessary winners are alterna-
tives that are selected in all completions. By a completion
we here understand a complete tournament extending G.

In this paper we address the computational complexity of
identifying the possible and necessary winners for a number
of solution concepts whose winner determination problem
for complete tournaments is tractable. We consider four
of the most common tournament solutions—namely, Con-
dorcet winners (COND), the Copeland solution (CO), the
top cycle (TC ), and the uncovered set (UC )—and three
common solutions for weighted tournaments—Borda (BO),
maximin (MM ) and ranked pairs (RP). For each of these
solution concepts, we characterize the complexity of the fol-
lowing problems: deciding whether a given alternative is a
possible winner (PW ), deciding whether a given alternative
is a necessary winner (NW ), and deciding whether a given
subset of alternatives equals the set of winners in some com-
pletion (PWS). These problems can be challenging, as even
unweighted partial tournaments may allow for an exponen-
tial number of completions. Our results are encouraging, in
the sense that most of the problems can be solved in poly-
nomial time. Table 1 summarizes our findings.

Similar problems have been considered before. For Con-
dorcet winners, voting trees and the top cycle, it was already
shown that possible and necessary winners are computable
in polynomial time [16, 19, 20]. The same holds for comput-
ing possible Copeland winners that were considered in the
context of sports tournaments [8].

A more specific setting that is frequently considered
within the area of computational social choice differs from
our setting in a subtle but important way that is worth be-
ing pointed out. There, tournaments are assumed to arise
from pairwise majority comparisons on the basis of a profile

585



of individual voters’ preferences.1 Since a partial prefer-
ence profile R need not conclusively settle every majority
comparison, it may give rise to a partial tournament only.
There are two natural ways to define possible and neces-
sary winners for a partial preference profile R and solution
concept S. The first is to consider the completions of the
incomplete tournament G(R) corresponding to R and the
winners under S in these. This is covered by our more gen-
eral setting. The second is to consider the completions of
R and the winners under S in the corresponding tourna-
ments.2 Since every tournament corresponding to a comple-
tion of R is also a completion of G(R) but not necessarily
the other way round, the second definition gives rise to a
stronger notion of a possible winner and a weaker notion of
a necessary winner. Interestingly, and in sharp contrast to
our results, determining these stronger possible and weaker
necessary winners is computationally hard for many voting
rules [16, 25].

In the context of this paper, we do not assume that tour-
naments arise from majority comparisons in voting or from
any other specific procedure. This approach has a number
of advantages. Firstly, it matches the diversity of settings to
which tournament solutions are applicable, which goes well
beyond social choice and voting. For instance, our results
also apply to a question commonly encountered in sports
competitions, namely, which teams can still win the cup
and which future results this depends on (see, e.g., [8, 14]).
Secondly, (partial) tournaments provide an informationally
sustainable way of representing the relevant aspects of many
situations while maintaining a workable level of abstraction
and conciseness. For instance, in the social choice setting
described above, the partial tournament induced by a par-
tial preference profile is a much more succinct piece of in-
formation than the preference profile itself. Finally, specific
settings may impose restrictions on the feasible extensions
of partial tournaments. The positive algorithmic results in
this paper can be used to efficiently approximate the sets
of possible and necessary winners in such settings, where
the corresponding problems may be intractable. The voting
setting discussed above serves to illustrate this point.

2. PRELIMINARIES
A partial tournament is a pair G = (V,E) where V is

a finite set of alternatives and E ⊆ V × V an asymmetric
relation on V , i.e., (x, y) ∈ E implies (y, x) /∈ E. If (x, y) ∈
E we say that x dominates y. A (complete) tournament T
is a partial tournament (V,E) for which E is also complete,
i.e., either (x, y) ∈ E or (y, x) ∈ E for all distinct x, y ∈ V .
We denote the class of complete tournaments by T .

Let G = (V,E) be a partial tournament. Another partial
tournament G′ = (V ′, E′) is called an extension of G, de-
noted G ≤ G′, if V = V ′ and E ⊆ E′. If E′ is complete,
G′ is called a completion of G. We write [G] for the set of
completions of G, i.e., [G] = {T ∈ T : G ≤ T}.

For each x ∈ V , we define the dominion of x in G by

1See, e.g., [1, 2, 15, 24, 25] for the basic setting, [3] for
parameterized complexity results, [12, 13] for probabilistic
settings, and [7, 26] for settings with a variable set of alter-
natives.
2These two ways of defining possible and necessary winners
are compared (both theoretically and experimentally) in [16,
20] for three solution concepts: Condorcet winners, voting
trees and the top cycle.

S PWS NWS PWSS

COND in P [16] in P [16] in P (Th. 1)
CO in P (Th. 2)a in P (Th. 2)a in P (Th. 2)
TC in P [16]a in P [16] in P (Th. 3)
UC in P (Th. 4) in P (Th. 5) NP-C (Th. 6)

BO in P (Th. 7)a in P (Th. 9) in P (Th. 8)b

MM in P (Th. 10)a in P (Th. 11) in P (Th. 12)b

RP NP-C (Th. 13) coNP-C (Th. 14) NP-C (Cor. 1)

a This P-time result contrasts with the intractability of the
same problem for partial preference profiles [16, 25].

b Assuming that the weight n is polynomial in the size of the
partial tournament.

Table 1: Complexity of computing possible winners
(PW) and necessary winners (NW) and of checking
whether a given subset of alternatives is a possible
winning set (PWS) under different solution concepts
given partial tournaments.

D+
G(x) = {y ∈ V : (x, y) ∈ E}, and the dominators of x

in G by D−G(x) = {y ∈ V : (y, x) ∈ E}. For X ⊆ V , we let
D+
G(X) =

⋃
x∈X D

+
G(x) and D−G(X) =

⋃
x∈X D

−
G(x).

For given G = (V,E) and X ⊆ V , we further write EX→

for the set of edges obtained from E by adding all missing
edges from alternatives in X to alternatives not in X, i.e.,

EX→ = E ∪ {(x, y) ∈ X × V : y /∈ X and (y, x) /∈ E}.

We use EX← as an abbreviation for EV \X→, and respec-
tively write Ex→, Ex←, GX→, and GX← for E{x}→, E{x}←,
(V,EX→), and (V,EX←).

Let n be a positive integer. A partial n-weighted tourna-
ment is a pair G = (V,w) consisting of a finite set of alter-
natives V and a weight function w : V × V → {0, . . . , n}
such that for each pair (x, y) ∈ V × V with x 6= y,
w(x, y) + w(y, x) ≤ n. We say that T = (V,w) is a (com-
plete) n-weighted tournament if for all x, y ∈ V with x 6= y,
w(x, y)+w(y, x) = n. A (partial or complete) weighted tour-
nament is a (partial or complete) n-weighted tournament for
some n ∈ N. The class of n-weighted tournaments is denoted
by Tn. Observe that with each partial 1-weighted tourna-
ment (V,w) we can associate a partial tournament (V,E)
by setting E = {(x, y) ∈ V : w(x, y) = 1}. Thus, (partial)
n-weighted tournaments can be seen to generalize (partial)
tournaments, and we may identify T1 with T .

The notations G ≤ G′ and [G] can be extended naturally
to partial n-weighted tournaments G = (V,w) and G′ =
(V ′, w′) by letting (V,w) ≤ (V ′, w′) if V = V ′ and w(x, y) ≤
w′(x, y) for all x, y ∈ V , and [G] = {T ∈ Tn : G ≤ T}.

For given G = (V,w) and X ⊆ V , we further define wX→

such that for all x, y ∈ V ,

wX→(x, y) =

{
n− w(y, x) if x ∈ X and y /∈ X,

w(x, y) otherwise,

and set wX← = wV \X→. Moreover, wx→, wx←, GX→, and
GX← are defined in the obvious way.

We use the term solution concept for functions S that
associate with each (complete) tournament T = (V,E), or
with each (complete) weighted tournament T = (V,w), a
choice set S(T ) ⊆ V . A solution concept S is called resolute
if |S(T )| = 1 for each tournament T . In this paper we will
consider the following solution concepts: Condorcet winners
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(COND), Copeland (CO), top cycle (TC ), and uncovered set
(UC ) for tournaments, and maximin (MM ), Borda (BO),
and ranked pairs (RP) for weighted tournaments. Of these
only ranked pairs is resolute. Formal definitions will be pro-
vided later in the paper.

3. POSSIBLE & NECESSARY WINNERS
A solution concept selects alternatives from complete

tournaments or complete weighted tournaments. A partial
(weighted) tournament, on the other hand, can be extended
to a number of complete (weighted) tournaments, and a so-
lution concept selects a (potentially different) set of alterna-
tives for each of them.

For a given a solution concept S, we can thus define
the set of possible winners for a partial (weighted) tour-
nament G as the set of alternatives selected by S from some
completion of G, i.e., as PWS (G) =

⋃
T∈[G] S(T ). Analo-

gously, the set of necessary winners of G is the set of al-
ternatives selected by S from every completion of G, i.e.,
NWS (G) =

⋂
T∈[G] S(T ). We can finally write PWSS (G) =

{S(T ) : T ∈ [G]} for the set of sets of alternatives that S
selects for the different completions of G.

Note that NWS (G) may be empty even if S selects a
non-empty set of alternatives for each tournament T ∈ [G],
and that |PWSS (G)| may be exponential in the number of
alternatives of G. It is also easily verified that G ≤ G′

implies PWS (G′) ⊆ PWS (G) and NWS (G) ⊆ NWS (G′),
and that PWS (G) =

⋃
G≤G′ NWS (G′) and NWS (G) =⋂

G≤G′ PWS (G′).
Deciding membership in the sets PWS (G), NWS (G), and

PWSS (G) for a given solution concept S and a partial
(weighted) tournament G is a natural computational prob-
lem. We will respectively refer to these problems as PWS ,
NWS , and PWSS , and will study them for the solution con-
cepts mentioned at the end of the previous section.3

For complete tournaments T we have [T ] = {T} and thus
PWS (T ) = NWS (T ) = S(T ) and PWSS (T ) = {S(T )}. As a
consequence, for solution concepts S with an NP-hard win-
ner determination problem—like Banks, Slater, and TEQ—
the problems PWS , NWS , and PWSS are NP-hard as well.
We therefore restrict our attention to solution concepts for
which winners can be computed in polynomial time.

For irresolute solution concepts, PWSS may appear a
more complex problem than PWS . We are, however, not
aware of a polynomial-time reduction from PWS to PWSS .
The relationship between these problems may also be of in-
terest for the “classic” possible winner setting with partial
preference profiles.

4. UNWEIGHTED TOURNAMENTS
In this section, we consider the following well-known solu-

tion concepts for unweighted tournaments: Condorcet win-
ners, Copeland, top cycle, and uncovered set. Weighted
tournaments will then be considered in Section 5.

4.1 Condorcet Winners
Condorcet winners are a very simple solution concept and

will provide a nice warm-up. An alternative x ∈ V is a

3Formally, the input for each of the problems consists of an
encoding of the partial (n-weighted) tournament G and, for
partial n-weighted tournaments, the number n.

Condorcet winner of a complete tournament T = (V,E) if
it dominates all other alternatives, i.e., if (x, y) ∈ E for all
y ∈ V \ {x}. The set of Condorcet winners of tournament T
will be denoted by COND(T ); obviously this set is always
either a singleton or empty.

It is readily appreciated that the possible Condorcet win-
ners of a partial tournament G = (V,E) are precisely the
undominated alternatives, and that a necessary Condorcet
winner of G should already dominate all other alternatives.
Both properties can be verified in polynomial time.

Each of the sets in PWSCOND(G) is either a single-
ton or the empty set, and determining membership for a
singleton is obviously tractable. Checking whether ∅ ∈
PWSCOND(G) is not quite that simple. First observe that
∅ ∈ PWSCOND(G) if and only if there is an extension G′

of G in which every alternative is dominated by some other
alternative. Given a particular G = (V,E), we can define
an extension G′ = (V,E′) of G by iteratively adding edges
from dominated alternatives to undominated ones until this
is no longer possible. Formally, let

E0 = E and Ei+1 = Ei ∪ {(x, y) ∈ Xi × Yi : (y, x) /∈ Ei},

where Xi and Yi denote the dominated and undominated
alternatives of (V,Ei), respectively. Finally define E′ =⋃|V |
i=0Ei, and observe that this set can be computed in poly-

nomial time.
Now, for every undominated alternative x of G′ and every

dominated alternative y of G′, we not only have (x, y) ∈ E′,
but also (x, y) ∈ E. This is the case because in the inductive
definition of E′ only edges from dominated to undominated
alternatives are added in every step. It is therefore easily
verified that PWSCOND(G) contains ∅ if and only if the set
of undominated alternatives in G′ is either empty or is of size
three or more. We have shown the following easy result.

Theorem 1. PWCOND , NWCOND , and PWSCOND can be
solved in polynomial time.

The results for PWCOND and NWCOND also follow from
Proposition 2 of Lang et al. [16] and Corollary 2 of Konczak
and Lang [15]. We further note that Theorem 1 is a corollary
of corresponding results for maximin in Section 5.2. The
reason is that a Condorcet winner is the maximin winner of a
1-weighted tournament, and a tournament does not admit a
Condorcet winner if and only if all alternatives are maximin
winners.

4.2 Copeland
Copeland’s solution selects alternatives based on the num-

ber of other alternatives they dominate. Define the Copeland
score of an alternative x in tournament T = (V,E) as
sCO(x, T ) = |D+

T (x)|. The set CO(T ) then consists of
all alternatives that have maximal Copeland score. Since
Copeland scores coincide with Borda scores in the case of
1-weighted tournaments, the following is a direct corollary
of the results in Section 5.1.

Theorem 2. NWCO , PWCO , and PWSCO can be solved
in polynomial time.

PWCO can alternatively be solved via a polynomial-time
reduction to maximum network flow (see, e.g., [8], p. 51).
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4.3 Top Cycle
A subset X ⊆ V of alternatives in a (partial or com-

plete) tournament (V,E) is dominant if every alternative in
X dominates every alternative outside X. The top cycle of
a tournament T = (V,E), denoted by TC (T ), is the unique
minimal dominant subset of V .

Lang et al. have shown that possible and necessary win-
ners for TC can be computed efficiently by greedy algo-
rithms ([16], Corollaries 1 and 2). For PWSTC , we not only
have to check that there exists a completion such that the set
in question is dominating, but also that there is no smaller
dominating set. It turns out that this can still be done in
polynomial time.

Theorem 3. PWSTC can be solved in polynomial time.

Proof Sketch. Consider a partial tournament G =
(V,E) and a set X ⊆ V of alternatives. If X is a sin-
gleton, the problem reduces to checking whether X ∈
PWSCOND(G). If X is of size two or if one of its elements
is dominated by an outside alternative, X /∈ PWSTC (G).
Therefore, we can without loss of generality assume that
|X| ≥ 3 and (y, x) /∈ E for all y ∈ V \ X and x ∈ X. The
Smith set of a partial tournament is defined as the minimal
dominant subset of alternatives [22].4 It can be shown that
there exists a completion T ∈ [G] with TC (T ) = X if and
only if the Smith set of the partial tournament (X,E|X×X)
equals the whole set X. Since Brandt et al. [4] have shown
that the Smith set of a partial tournament can be computed
efficiently, the theorem follows.

4.4 Uncovered Set
Given a tournament T = (V,E), an alternative x ∈ V is

said to cover another alternative y ∈ V if D+
T (y) ⊆ D+

T (x),
i.e., if every alternative dominated by y is also dominated
by x. The uncovered set of T , denoted by UC (T ), then is
the set of alternatives that are not covered by some other
alternative. A useful alternative characterization of the un-
covered set is via the two-step principle: an alternative is
in the uncovered set if and only if it can reach every other
alternative in at most two steps.5 Formally, x ∈ UC (T ) if
and only if for all y ∈ V \ {x}, either (x, y) ∈ E or there is
some z ∈ V with (x, z), (z, y) ∈ E. We denote the two-step
dominion D+

E(D+
E(x)) of an alternative x by D++

E (x).
We first consider PWUC , for which we check for each al-

ternative whether it can be reinforced to reach every other
alternative in at most two steps.

Theorem 4. PWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and
an alternative x ∈ V , we check whether x is in UC (T ) for
some completion T ∈ [G].

Consider the graph G′ = (V,E′′) where E′′ is derived
from E as follows. First, we let D+(x) grow as much as
possible by letting E′ = Ex→. Then, we do the same for

its two-step dominion by defining E′′ as E′D
+
E′ (x)→. Now

it can be shown that x ∈ PWUC (G) if and only if V =
{x} ∪D+

E′′(x) ∪D++
E′′ (x).

A similar argument yields the following.

4For complete tournaments, the Smith set coincides with
the top cycle.
5In graph theory, vertices satisfying this property are often
called kings.

Theorem 5. NWUC can be solved in polynomial time.

Proof. For a given partial tournament G = (V,E) and
an alternative x ∈ V , we check whether x is in UC (T ) for
all completions T ∈ [G].

Consider the graph G′ = (V,E′′) with E′′ defined as fol-
lows. First, let E′ = Ex←. Then, expand it to E′′ =

E′D
−
E′ (x)→. Intuitively, this makes it as hard as possible for

x to beat alternatives outside of its dominion in two steps.
Then it can be shown that x ∈ NWUC (G) if and only if
V = {x} ∪D+

E′′(x) ∪D++
E′′ (x).

For all solution concepts considered so far—Condorcet
winners, Copeland, and top cycle—PW and PWS have the
same complexity. One might wonder whether a result like
this holds more generally, and whether there could be a
polynomial-time reduction from PWS to PW . The follow-
ing result shows that this is not the case, unless P=NP.

Theorem 6. PWSUC is NP-complete.

Proof Sketch. LetG = (V,E) be a partial tournament.
Given a set X ⊆ V and a completion T ∈ [G], it can be
checked in polynomial time whether X = UC (T ). Hence,
PWSUC is obviously in NP.

NP-hardness can be shown by a reduction from Sat. For
each Boolean formula ϕ in conjunctive normal-form with a
set C of clauses and set P of propositional variables, we
construct a partial tournament Gϕ = (Vϕ, Eϕ). Define

Vϕ = C × {0, 1} ∪ P × {0, . . . , 5} ∪ {0, 1, 2},
i.e., along with three auxiliary alternatives, we introduce
for each clause two alternatives and for each propositional
variable six. We write ci, pi, Ci, and Pi for (c, i), (p, i),
{ci : c ∈ C}, and {pi : p ∈ P}, respectively. Let

X = C × {0} ∪ P × {0, 1, 2} ∪ {0, 1, 2}.
Then, Eϕ is defined such that it contains no edges between
alternatives in Vϕ \ X. For alternatives x ∈ X, Eϕ is
given by the following table, in which each line is of the
form D−Gϕ(x) ∩ V \ X → x → D+

Gϕ
(x) ∩ X and where it

is understood that x dominates all alternatives in Vϕ \ X
unless specified otherwise. For improved readability some
curly braces have been omitted and a comma indicates set-
theoretic union.

{p3 : p ∈ c}, {p4 : p̄ ∈ c}, c1 → c0 → 2, P2, {p1 : p /∈ c}, {p0 : p̄ /∈ c}
p3 → p0 → 0, p2, {c0 : p̄ ∈ c}
p4 → p1 → 0, p2, {c0 : p ∈ c}

P3, P4, p5 → p2 → 2, {q0, q1 : q 6= p}
P3, P4 → 0 → 2, C0, P2

C1, P5 → 1 → 0, C0, P2

∅ → 2 → 1, P0, P1

It now suffices to show that Eϕ is specified in such a way
that X is the uncovered set of some completion of Gϕ if and
only if ϕ is satisfiable.

For every p ∈ P , the edges between p0, p1, and 1 are
left unspecified. The idea is that p0 and p1 are the only
candidates to cover p5, p0 and 1 are the only candidates to
cover p4, and p1 and 1 are the only candidates to cover p3.
As p0 ∈ D+

Gϕ
(p3), p1 ∈ D+

Gϕ
(p4), and 1 ∈ D+

Gϕ
(p5), there

are two possibilities of extending Gϕ in such a way that p3,
p4 and p5 are covered simultaneously and X is the uncovered
set. Either all the edges in
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(a) {(p0, p1), (p1, 1), (1, p0)}, or all those in

(b) {(p1, p0), (p0, 1), (1, p1)}

have to be added to Eϕ to achieve this (additionally some
edges among Vϕ \ X have to be set appropriately as well).
Possibility (a) corresponds to setting p to “true.” In this
case, p1 also covers c1 for every clause c ∈ C that con-
tains p. Possibility (b) corresponds to setting p to “false”
and causes p0 to cover c1 for every clause c ∈ C that con-
tains p̄. Moreover, for each c ∈ C, the only candidates in X
to cover c1 are p1 if p ∈ c and p0 if p̄ ∈ c. Observe that
1 ∈ D+

Gϕ
(c1) for all c ∈ C. Thus, if p̄ ∈ c, p1 covering p3

precludes p0 covering c1. Similarly, if p ∈ c, p0 covering p4
precludes p1 covering c1. Accordingly, if T is a completion
of Gϕ in which X is the uncovered set, one can read off a
valuation satisfying ϕ from how the edges between p0, p1,
and 1 are set in T . For the opposite direction, a satisfying
valuation for ϕ is a recipe for extending Gϕ to a tourna-
ment in which X is the uncovered set. It can be checked
that every alternative in X reaches every other alternative
in at most two steps, whereas every alternative in Vϕ \X is
covered by some alternative in X.

5. WEIGHTED TOURNAMENTS
We now turn to weighted tournaments, and in particular

consider the solution concepts Borda, maximin, and ranked
pairs.

5.1 Borda
The Borda solution (BO) is typically used in a voting

context, where it is construed as based on voters’ rankings
of the alternatives: each alternative receives |V | − 1 points
for each time it is ranked first, |V | − 2 points for each time
it is ranked second, and so forth; the solution concept then
chooses the alternatives with the highest total number of
points. In the more general setting of weighted tournaments,
the Borda score of alternative x ∈ V in G = (V,w) is defined
as sBO(x,G) =

∑
y∈V \{x} w(x, y) and the Borda winners

are the alternatives with the highest Borda score. If w(x, y)
represents the number of voters that rank x higher than y,
the two definitions are equivalent.

Before we proceed further, we define the notion of a b-
matching, which will be used in the proofs of two of our
results. Let H = (VH , EH) be an undirected graph with
vertex capacities b : VH → N0. Then, a b-matching of H
is a function m : EH → N0 such that for all v ∈ VH ,∑
e∈{e′∈EH :v∈e′}m(e) ≤ b(v). The size of b-matching m is

defined as
∑
e∈EH m(e). It is easy to see that if b(v) = 1 for

all v ∈ VH , then a maximum size b-matching is equivalent to
a maximum cardinality matching. In a b-matching problem
with upper and lower bounds, there further is a function
a : VH → N0. A feasible b-matching then is a function m :
EH → N0 such that a(v) ≤∑e∈{e′∈EH :v∈e′}m(e) ≤ b(v).

If H is bipartite, then the problem of computing a maxi-
mum size feasible b-matching with lower and upper bounds
can be solved in strongly polynomial time ([21], Chapter
21). We will use this fact to show that PWBO and PWSBO

can both be solved in polynomial time. While the following
result for PWBO can be shown using Theorem 6.1 of [14], we
give a direct proof that can then be extended to PWSBO .

Theorem 7. PWBO can be solved in polynomial time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, x ∈ V . We give a polynomial-time algorithm
for checking whether x ∈ PWBO(G), via a reduction to the
problem of computing a maximum size b-matching of a bi-
partite graph.

LetGx→ = (V,wx→) denote the graph obtained fromG by
maximally reinforcing x, and s∗ = sBO(x,Gx→) the Borda
score of x in Gx→. From Gx→, we then construct a bipartite
graph H = (VH , EH) with vertices VH = V \ {x} ∪ E<n,
where E<n = {{i, j} ⊆ V \ {x} : w(i, j) + w(j, i) < n},6
and edges EH = {{v, e} : v ∈ V \ {x} and v ∈ e ∈ E<n}.
We further define vertex capacities b : VH → N0 such that
b({i, j}) = n − w(i, j) − w(j, i) for {i, j} ∈ E<n and b(v) =
s∗ − sBO(v,Gx→) for v ∈ V \ {x}.

Now observe that in any completion T = (V,w′) ∈ [Gx→],
w′(i, j) + w′(j, i) = n for all i, j ∈ V with i 6= j. The sum
of the Borda scores in T is therefore n|V |(|V | − 1)/2. Some
of the weight has already been used up in Gx→; the weight
which has not yet been used up is equal to α = n|V |(|V | −
1)/2−∑v∈V sBO(v,Gx→). We claim that x ∈ PWBO(G) if
and only if H has a b-matching of size at least α.

Since H can be constructed efficiently, and since a maxi-
mum size b-matching can be computed in strongly polyno-
mial time, our algorithm runs in polynomial time.

We now extend this proof to a pseudo-polynomial time
algorithm for PWSBO .

Theorem 8. PWSBO can be solved in pseudo-polynomial
time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, and X ⊆ V . We give a pseudo-polynomial time
algorithm for checking whether X ∈ PWSBO(G), via a re-
duction to the problem of computing a maximum b-matching
of a graph with lower and upper bounds.

Assume that there is a target Borda score s∗ and a com-
pletion T ∈ [G] with X ∈ PWSBO(T ) and sBO(x, T ) = s∗

for all x ∈ X. Then, the maximum Borda score of an al-
ternative not in X is s∗ − 1. As we do not know s∗ in ad-
vance, we initialize it to the maximum possible Borda score
of n(|V |− 1) and decrease it until we find a completion that
makes X the set of Borda winners or until s∗ = 0.

For a given s∗, we construct a bipartite graph H =
(VH , EH) with vertices VH = V ∪ E<n, where E<n =
{{i, j} ⊆ V : i 6= j, w(i, j) + w(j, i) < n}, and edges
EH = {{v, e} : v ∈ V and v ∈ e ∈ E<n}. Lower bounds
b : VH → N0 and upper bounds a : VH → N0 are defined
as follows: For vertices x ∈ X, lower and upper bounds
coincide and are given by a(x) = b(x) = s∗ − sBO(x,G).
All other vertices v ∈ VH \ X have a lower bound of
a(v) = 0. Upper bounds for these vertices are defined
such that b(v) = s∗ − sBO(v,G) − 1 for v ∈ V \ X, and
b({i, j}) = n− w(i, j)− w(j, i) for {i, j} ∈ E<n.

Observe that the weight not yet used up in G is equal
to α = n|V |(|V | − 1)/2 −∑v∈V sBO(v,G). We claim that
membership of X in PWSBO(G) can be decided via the fol-
lowing algorithm. Start by initializing s∗ to n(|V | − 1). In
each step, construct the bipartite graph H described above
for the current value of s∗. If H has a feasible b-matching
of size at least α, return “yes.” Otherwise decrement s∗ by
one and repeat. If s∗ = 0 and no feasible b-matching of size
at least α has been found, return “no.”

6Note that w(i, j) = wx→(i, j) for alternatives i, j ∈ V \{x}.
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It is straightforward to prove that this algorithm is cor-
rect. The essential idea is that a feasible b-matching of size α
corresponds to a completion of G in which all alternatives in
X have the same Borda score s∗, while all other alternatives
have a strictly smaller Borda score.

The algorithm requires at most n(|V |−1) iterations, each
of which involves the computation of a maximum size b-
matching of a bipartite graph H. The latter can be done
in strongly polynomial time, so the algorithm has an overall
running time of O(n · |V |k) for some constant k.

We conclude this section by showing that NWBO can be
solved in polynomial time as well.

Theorem 9. NWBO can be solved in polynomial time.

Proof. Let G = (V,w) be a partial weighted tourna-
ment, x ∈ V . We give a polynomial-time algorithm for
checking whether x ∈ NWBO(G).

Let G′ = Gx←. We want to check whether some other
alternative y ∈ V \ {x} can achieve a Borda score of more
than s∗ = sBO(x,G′). This can be done separately for each
y ∈ V \ {x} by reinforcing it as much as possible in G′. If
for some y, sBO(y,G′y→) > s∗, then x /∈ NWBO(G). If, on
the other hand, sBO(y,G′y→) ≤ s∗ for all y ∈ V \ {x}, then
x ∈ NWBO(G).

Since the Borda and Copeland solutions coincide in un-
weighted tournaments, the above results imply that PWCO

and NWCO can be solved in polynomial time. The same is
true for PWSCO , because the Copeland score is bounded by
|V | − 1.

5.2 Maximin
The maximin score sMM (x, T ) of an alternative x in a

weighted tournament T = (V,w), is given by its worst pair-
wise comparison, i.e., sMM (x, T ) = miny∈V \{x} w(x, y). The
maximin solution, also known as Simpson’s method and de-
noted by MM , returns the set of all alternatives with the
highest maximin score.

We first show that PWMM is polynomial-time solvable by
reducing it to the problem of finding a maximum cardinality
matching of a graph.

Theorem 10. PWMM can be solved in polynomial time.

Proof Sketch. We show how to check whether x ∈
PWMM (G) for a partial n-weighted tournament G = (V,w).
Consider the graph Gx→ = (V,wx→). Then, sMM (x,Gx→)
is the best possible maximin score x can get among all
completions of G. If sMM (x,Gx→) ≥ n

2
, then we have

sMM (y, T ) ≤ wx→(y, x) ≤ n
2

for every y ∈ V \ {x} and
every completion T ∈ [Gx→] and therefore x ∈ PWMM (G).
Now consider sMM (x,Gx→) < n

2
. We will reduce the prob-

lem of checking whether x ∈ PWMM (G) to that of find-
ing a maximum cardinality matching, which is known to be
solvable in polynomial time [11]. We want to find a com-
pletion T ∈ [Gx→] such that sMM (x, T ) ≥ sMM (y, T ) for
all y ∈ V \ {x}. If there exists a y ∈ V \ {x} such that
sMM (x,Gx→) < sMM (y,Gx→), then we already know that
x /∈ PWMM (G). Otherwise, each y ∈ V \ {x} derives its
maximin score from at least one particular edge (y, z) where
z ∈ V \ {x, y} and w(y, z) ≤ sMM (x,Gx→). Moreover, it is
clear that in any completion, y and z cannot both achieve
a maximin score of less than sMM (x,Gx→) from edges (y, z)
and (z, y) at the same time.

Construct the following undirected and unweighted graph
H = (VH , EH) where VH = V \ {x} ∪ {{i, j} ⊆ V : i 6= j}.
Build up EH such that: {i, {i, j}} ∈ EH if and only if i 6= j
and wx→(i, j) ≤ sMM (x,Gx→). In this way, if i is matched
to {i, j} in H, then i derives a maximin score of less than or
equal to sMM (x,Gx→) from his comparison with j. Clearly,
H is polynomial in the size of G. Then, the claim is that
x ∈ PWMM (G) if and only if there exists a matching of
cardinality |V | − 1 in H.

For NWMM we apply a similar technique as for NWBO :
to see whether x ∈ NWMM (G), we start from the graph
Gx← and check whether some other alternative can achieve
a higher maximin score than x in a completion of Gx←.

Theorem 11. NWMM can be solved in polynomial time.

We conclude the section by showing that PWSMM can
be solved in pseudo-polynomial time. The proof proceeds
by identifying the maximin values that could potentially be
achieved simultaneously by all elements of the set in ques-
tion, and solving the problem for each of these values using
similar techniques as in the proof of Theorem 10.

Theorem 12. PWSMM can be solved in pseudo-
polynomial time.

Proof Sketch. Let G = (V,w) be a partial n-weighted
tournament, and X ⊆ V . We give a pseudo-polynomial time
algorithm for checking whether X ∈ PWSMM (G).

If X ∈ PWSMM (G) there must be a completion T ∈ [G]
and s∗ ∈ {0, . . . , n} such that sMM (i, T ) = s∗ for all i ∈ X.
We check for each possible s∗ whether X can be made the
set of maximin winners with a maximin score of s∗.

Assume that s∗ > n
2

. Then, X ∈ PWSMM if and only if
X is a singleton {x} and wx→(x, j) > n

2
for all j ∈ V \ {x}.

Let s∗ < n
2

. Similarly as in the proof of Theorem 10, we
construct an undirected unweighted graph H = (VH , EH)
with VH = V ∪ {{i, j} ⊆ V : i 6= j} and capacity function
c. Build up EH such that if i ∈ X then {i, {i, j}} ∈ EH if
and only if w(i, j) ≤ s∗ ≤ n− w(j, i), and if i ∈ V \X then
{i, {i, j}} ∈ EH if and only if w(i, j) < s∗. We claim that
there is a matching of cardinality |V | in H if and only if there
is a completion T in which for all i ∈ X, sMM (i, T ) = s∗ and
for all i ∈ V \ X, sMM (i, T ) < s∗. Intuitively speaking, an
edge {i, {i, j}} in such a matching corresponds to w(i, j) =
s∗ in the completion if i ∈ X and to w(i, j) < s∗ if x ∈ V \X.

Finally, we study separately the case s∗ = n
2

. The differ-
ence with the case s∗ < n

2
is that now, it is possible that both

(i, j) and (j, i) account for the maximin score of i and j in the
completion. We create a flow network N = (VN , EN , s, t, c)
where VN = VH ∪ {s, t}. For each i ∈ V , there is an edge
(s, i) in EN with capacity 1. For all distinct i, j ∈ V , there
are two edges (i, {i, j}) and (j, {i, j}) in EN with capacity 1
if w(i, j) ≤ s∗ ≤ n − w(j, i); otherwise there are no edges
between i, j and {i, j} in N . For all i, j ∈ X, there is an
edge ({i, j}, t) in EN with capacity 2. For each i ∈ V and
each j ∈ V \ X, EN contains an edge ({i, j}, t) with ca-
pacity 1. We claim that the maximum value of the flow
equals |V | if and only if X ∈ PWSMM (G). Here, an edge
(i, {i, j}) with nonzero flow in a maximum flow corresponds
to w(i, j) = w(j, i) = s∗ in the completion if i, j ∈ X and to
w(i, j) < s∗ if i ∈ V \X.

Obviously, all cases can be completed in pseudo-
polynomial time.
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5.3 Ranked Pairs
The method of ranked pairs (RP) is the only resolute so-

lution concept considered in this paper. Given a weighted
tournament T = (V,w), it returns the unique undominated
alternative of a transitive tournament T ′ on V constructed
in the following manner. First order the (directed) edges of
T in decreasing order of weight, breaking ties according to
some exogenously given tie-breaking rule. Then consider the
edges one by one according to this ordering. If the current
edge can be added to T ′ without creating a cycle, then do
so; otherwise discard the edge.7

It is readily appreciated that this procedure, and thus the
winner determination problem for RP , is computationally
tractable. The possible winner problem, on the other hand,
turns out to be NP-hard. This also shows that tractability
of the winner determination problem, while necessary for
tractability of PW , is not generally sufficient.

Theorem 13. PWRP is NP-complete.

Proof Sketch. Membership in NP is obvious, as for a
given completion and a given tie-breaking rule, the ranked
pairs winner can be found efficiently.

NP-hardness can be shown by a reduction from Sat. For a
Boolean formula ϕ in conjunctive normal-form with a set C
of clauses and set P of propositional variables, we construct
a partial 8-weighted tournament Gϕ = (Vϕ, wϕ) as follows.
For each variable p ∈ P , Vϕ contains two literal alternatives
p and p̄ and two auxiliary alternatives p′ and p̄′. For each
clause c ∈ C, there is an alternative c. Finally, there is an
alternative d for which membership in PWRP (Gϕ) is to be
decided.

In order to conveniently describe the weight function wϕ,
let us introduce the following terminology. For two alter-
natives x, y ∈ Vϕ, say that there is a heavy edge from x to
y if wϕ(x, y) = 8 (and therefore wϕ(y, x) = 0). A medium
edge from x to y means wϕ(x, y) = 6 and wϕ(y, x) = 2,
and a light edge from x to y means wϕ(x, y) = 5 and
wϕ(y, x) = 3. Finally, a partial edge between x and y means
wϕ(x, y) = wϕ(y, x) = 1.

We are now ready to define wϕ. For each variable p ∈ P ,
we have heavy edges from p to p̄′ and from p̄ to p′, and
partial edges between p and p′ and between p̄ and p̄′. For
each clause c ∈ C, we have a medium edge from c to d and
a heavy edge from the literal alternative `i ∈ {p, p̄} to c if
the corresponding literal `i appears in the clause c. Finally,
we have heavy edges from d to all auxiliary alternatives and
light edges from d to all literal alternatives. For all pairs x, y
for which no edge has been specified, we define wϕ(x, y) =
wϕ(y, x) = 4.

Observe that the only pairs of alternatives for which wϕ
is not fully specified are those pairs that are connected by a
partial edge. It can be shown that alternative d is a possible
ranked pairs winner in Gϕ if and only if ϕ is satisfiable. In-
tuitively, choosing a completion w′ of wϕ such that w′(p′, p)
7The variant of ranked pairs originally proposed by Tide-
man [23], which was also used by Xia and Conitzer [25],
instead chooses a set of alternatives, containing any alter-
native that is selected by the above procedure for some way
of breaking ties among edges with equal weight. We do not
consider this irresolute version of ranked pairs because it was
recently shown that winner determination for this variant is
NP-hard [5]. As mentioned in Section 3, this immediately
implies that all problems concerning possible or necessary
winners are NP-hard as well.

is large and w′(p̄′, p̄) is small corresponds to setting the vari-
able p to “true.”

Since the ranked pairs method is resolute, hardness of
PWSRP follows immediately.

Corollary 1. PWSRP is NP-complete.

Computing necessary ranked pairs winners turns out to be
coNP-complete. This is again somewhat surprising, as com-
puting necessary winners is often considerably easier than
computing possible winners, both for partial tournaments
and partial preference profiles [25].

Theorem 14. NWRP is coNP-complete.

Proof Sketch. Membership in coNP is again obvious.
For hardness, we give a reduction from UnSat that is a
slight variation of the reduction in the proof of Theorem 13.
We introduce a new alternative d∗, which has heavy edges to
all alternatives in Vϕ except d. Furthermore, there is a light
edge from d to d∗. It can be shown that d∗ is a necessary
ranked pairs winner in this partial 8-weighted tournament if
and only if ϕ is unsatisfiable.

6. DISCUSSION
The problem of computing possible and necessary winners

for partial preference profiles has recently received a lot of at-
tention. In this paper, we have investigated this problem in
a setting where partially specified (weighted or unweighted)
tournaments instead of profiles are given as input. We have
summarized our findings in Table 1.

A key conclusion is that computational problems for par-
tial tournaments can be significantly easier than their coun-
terparts for partial profiles. For example, possible Borda or
maximin winners can be found efficiently for partial tourna-
ments, whereas the corresponding problems for partial pro-
files are NP-complete [25].

While tractability of the winner determination problem is
necessary for tractability of the possible or necessary winners
problems, the results for ranked pairs in Section 5.3 show
that it is not sufficient. We further considered the problem
of deciding whether a given subset of alternatives equals the
winner set for some completion of the partial tournament.
The results for the uncovered set in Section 4.4 imply that
this problem cannot be reduced to the computation of pos-
sible or necessary winners, but whether a reduction exists in
the opposite direction remains an open problem.

Partial tournaments have also been studied in their own
right, independent of their possible completions. For in-
stance, Peris and Subiza [18] and Dutta and Laslier [10]
have generalized several tournament solutions to incomplete
tournaments by directly adapting their definitions. In this
context, the notion of possible winners suggests a canonical
way to generalize a tournament solution to incomplete tour-
naments. The positive computational results in this paper
are an indication that this may be a promising approach.

Other open problems follow more directly from our re-
sults. For example, it will be interesting to see whether
strongly polynomial-time algorithms exist for PWSBO and
PWSMM . Furthermore, we have not examined the complex-
ity of computing possible and necessary winners for some
attractive tournament solutions such as the minimal cover-
ing set, the bipartisan set [17] and weighted versions of the
top cycle and the uncovered set [9].
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An interesting related question that goes beyond the com-
putation of possible and necessary winners is the following:
when the winners are not yet fully determined, which un-
known comparisons need to be learned, or which matches
should be played? The construction of a policy tree defin-
ing an optimal protocol minimizing the number of questions
to be asked or the number of matches to be played, in the
worst case or on average, is an even more challenging issue
that we leave for further research.
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ABSTRACT
This paper considers the communication complexity of ap-
proximating common voting rules. Both upper and lower
bounds are presented. For n voters and m alternatives, it is
shown that for all ε ∈ (0, 1), the communication complexity
of obtaining a 1−ε approximation to Borda is O(log( 1

ε
)nm).

A lower bound of Ω(nm) is provided for fixed small values
of ε. The communication complexity of computing the true
Borda winner is Ω(nm log(m)) [5]. Thus, in the case of
Borda, one can obtain arbitrarily good approximations with
less communication overhead than is required to compute
the true Borda winner.

For other voting rules, no such 1±ε approximation scheme
exists. In particular, it is shown that the communication
complexity of computing any constant factor approximation,
ρ, to Bucklin is Ω(nm

ρ2
). Conitzer and Sandholm [5] show

that the communication complexity of computing the true
Bucklin winner is O(nm). However, we show that for all δ ∈
(0, 1), the communication complexity of computing a mδ ap-
proximate winner in Bucklin elections is O(nm1−δ log(m)).
For δ ∈ ( 1

2
, 1), a lower bound of Ω(nm1−2δ) is also provided.

Similar lower bounds are presented on the communication
complexity of computing approximate winners in Copeland
elections.
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Theory
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The naive application of a voting rule requires each voter
to send their entire preference order over the set of alter-
natives. If there are n voters and m alternatives communi-
cating every voter’s preference order requires Θ(nm log(m))
bits be communicated. However, using an intelligent elicita-
tion protocol can result in significant savings. Conitzer and
Sandholm [5] show that a number of voting rules can be com-
puted with low communication overhead. For example, the
communication complexity of plurality is O(n log(m)) and
the communication complexity of single transferable vote is
O(n log2(m)). Conitzer and Sandholm further characterized
the communication complexity of a number of common vot-
ing rules by presenting lower bounds on the communication
complexity of each.

Not every voting rule can be computed with a low amount
of communication overhead [5]. Determining the true win-
ner in Borda and Copeland elections requires communication
complexity Θ(nm log(m)). Likewise, computing the win-
ner in a Bucklin election requires communication complexity
Θ(nm).

Conitzer and Sandholm [5] suggest that when, for exam-
ple, voting over issues of relatively low importance:

Knowing which voting rules require little commu-
nication is especially important when the issue to
be voted on is of low enough importance that the
following is true: the parties involved are willing
to accept a rule that tends to produce outcomes
that are slightly less representative of the voters’
preferences, if this rule reduces the communica-
tion burden on the voters significantly.

A more natural approach in such situations is to use a
low communication complexity approximation to the de-
sired voting rule. For example, rather than selecting plu-
rality (with communication complexity Θ(n log(m))) over
the preferred voting rule Borda (with communication com-
plexity Θ(nm log(m))), it is more natural to obtain a 1 − ε
approximation to Borda, for some ε ∈ (0, 1), using a reduced
amount of communication.

This paper considers the communication complexity of ap-
proximating common score-based rules. It is shown that it is
possible to obtain arbitrarily good approximations to some
voting rules using less communication than is required to
compute the actual winner. For example, an approximation
scheme for Borda voting is presented that, for all ε ∈ (0, 1),
obtains a 1−ε approximation to Borda with communication
complexity O(log( 1

ε
)nm). It is shown that, up to constant

factors, this approximation scheme is optimal. That is, it
is shown that for all δ ∈ (0, 1 − 1√

2
), the communication
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complexity of computing a 1√
2

+ δ approximation to Borda

is Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

While some voting rules, such as Borda, admit 1 ± ε ap-
proximation schemes, others do not. We show that for any
ρ > 1, the communication complexity of computing a ρ ap-

proximate winner in Bucklin elections is Ω
(
nm
ρ2

)
. Conitzer

and Sandholm [5] show that O(nm) bits of communication
are sufficient to determine the true Bucklin winner.

For sufficiently good approximations, lower bounds on the
communication complexity of Ω(nm) for computing approx-
imate winners in Copeland elections are presented as well.

Both incremental preference elicitation [6, 8, 9] and ap-
proximation of voting rules [2, 3, 10] has seen increasing
attention. Most work on approximation of voting rules con-
siders rules under which it is NP-hard to compute the true
winner [2, 3, 10], or attempts to employ approximation in an
effort to guarantee strategy-proofness [11]. However, to the
best of the authors’ knowledge, this paper is the first to pro-
vide bounds on the communication complexity of computing
approximate winners under voting rules.

The remainder of this paper is structured as follows. Pre-
liminary definitions and background are presented in Section
2. Section 3 presents the upper and lower bounds on the
communication complexity of approximating Borda, Buck-
lin, and Copeland. Section 4 presents a discussion of the
results and some future work.

2. PRELIMINARIES
This section provides basic background related to voting

rules, communication complexity, and the proof methods
employed in this paper.

2.1 Voting Rules
Let V be a set of n voters and let A be a set of m alterna-

tives. Each voter, vi, has a strict preference order, �i, over
the m alternatives. A preference profile is a vector of voter
preference orders.

A voting rule is a mapping from preference profiles to
winning alternatives. In the interest of obtaining results on
approximating voting rules, this paper restricts its attention
to rules that assign each alternative a score-based on the
voters’ preference. That is, if sc : A → R is a function
assigning a score to each alternative, then the winner is the
alternative that maximizes/minimizes its score. Score-based
voting rules allow for natural measures of approximation.

This paper considers the following voting rules.

1. Borda: Each alternative a is awarded m− k points for
every voter that ranks a in its k-th position. The Borda
winner is the alternative with the greatest score. If w
is the Borda winner and a any other alternative, then

the approximation ratio obtained by a is sc(a)
sc(w)

≤ 1.

2. Bucklin: The Bucklin score of each alternative a is
the minimum value of k such that a strict majority of
voters rank a in one of the top k positions. The Bucklin
winner is the alternative with the least score. If w is
the Bucklin winner and a any other alternative, then

the approximation ratio obtained by a is sc(a)
sc(w)

≥ 1.

3. Copeland: An alternative a is said to defeat an alter-
native b in a pairwise election if a strict majority of

voters prefer a to b. Under Copeland every alternative
a receives one point for every alternative that a defeats
in a pairwise election and half a point for every alter-
native a ties. The Copeland winner is the alternative
with the greatest score. If w is the Copeland winner
and a any other alternative, then the approximation

ratio obtained by a is sc(a)
sc(w)

≤ 1.

For Borda and Copeland, the approximation ratio ob-
tained by a communication protocol, f , is ρ ∈ [0, 1] if for

every preference profile, P , sc(f(P ))
sc(w)

≤ ρ, where f(P ) is the

alternative selected by f under P and w is the winning al-
ternative in P . Likewise, f obtains a ρ ≥ 1 approxima-
tion in Bucklin elections if for every preference profile, P ,
sc(f(P ))
sc(w)

≥ ρ.

For each voter v ∈ V and alternative a ∈ A, let v(a) be
the rank of a in v’s preference order. For example, if v has
the preference order

x � y � a � z,

then v(a) = 3.

2.2 Communication Complexity
This paper employs the standard model of communication

complexity [5, 7, 12]. The objective is to compute the out-
come of a voting rule f(�1, · · · ,�n). However, each piece of
the input �i is known only to a single voter vi. A protocol
for computing f consists of a number of rounds. During each
round, a single voter announces a single bit to all other vot-
ers. In a deterministic protocol, the next voter to announce
a bit and the bit to be announced are completely determined
by the preceding rounds and that voter’s preference order.
A communication pattern is the sequence of bits announced.
The winner elected by the voters is then a function of the
particular communication pattern observed. Note that in a
k round deterministic protocol there are at most 2k possible
communication patterns.

During each round of the protocol all voters have observed
the same sequence of communicated bits. The protocol ter-
minates when sufficient information has been communicated
for every voter to compute f , or in our case to determine
an approximate winner. The communication complexity of
approximating a voting rule f is the worst case number of
bits sent by the best approximation protocol.

In order to compute lower bounds on the amount of com-
munication required to approximate certain voting rules, a
slight generalization of the standard lower bound technique
of constructing a fooling set is employed. The definition for
rules that select alternatives that maximize their score is
presented. The definition for rules that select alternatives
that minimize their score is analogous.

Definition 1 (Fooling set). Let sc be a score-based voting
rule. A ρ-fooling set S for sc is a set of preference profiles
with the following properties:

1. w ∈ A is the winning alternative in every preference
profile in S under the score-based voting rule sc.

2. In every preference profile P ∈ S, every a ∈ A \ {w}
does not obtain a ρ-approximate solution in P . That

is sc(a)
sc(w)

< ρ, for every a ∈ A \ {w}.
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3. For every N preference profiles P1 = (v11 , · · · , v1n), · · · ,
PN = (vN1 , · · · , vNn ) in S, there exists a vector of in-
dices (r1, · · · , rn) ∈ {1, · · · , N}n such that w does not
obtain a ρ-approximation in Pr = (vr11 , · · · , vrnn ) (i.e.,
it is possible to mix voters from the N preference pro-
files such that w no longer obtains a ρ-approximation).
That is, there exists some alternative a ∈ A such that
sc(w)
sc(a)

< ρ.

Theorem 1. If sc is a score-based voting rule and S a fool-
ing set, then the deterministic communication complexity of

computing a ρ-approximation to sc is Ω
(

log
(
|S|
N

))
.

Proof. Suppose there is a deterministic protocolD that com-

putes a ρ-approximation to sc in
⌊
log
(
|S|
N

)⌋
−1 bits. Thus,

there are at most 2

⌊
log
( |S|
N

)⌋
−1

< |S|
N

possible communica-
tion patterns. By the pigeonhole principle, there exists N
preference profiles Pi = (vi1, · · · , vin) for i = 1, · · · , N in S
that have the same communication pattern under D.

Since all the Pi’s exhibit the same communication pat-
tern, the protocol must select the same alternative w under
each. Let r = (r1, · · · , rn) ∈ {i, j}n such that w does not
obtain a ρ-approximation in Pr. By assumption, such an r
exists. It is known that D produces the same communica-
tion pattern on Pr as it does on all the Pi’s [1]. Since D
exhibits the same communication pattern on Pr as it does
all the Pi’s, D must select w as the winning alternative in
Pr. However, w does not obtain a ρ-approximation in Pr;
a contradiction. Hence, the communication complexity of

obtaining a ρ approximation is Ω
(

log
(
|S|
N

))
.

A natural question is whether Conitzer and Sandholm’s [5]
fooling set constructions already provide lower bounds on
the communication complexity of computing approximate
winners for the score-based voting rules considered in this
paper. However, on inspection, it is observed that Conitzer
and Sandholm’s lower bound proofs for Borda, Bucklin, and
Copeland construct fooling sets in which the single winning
alternative a has a constant number of points more than
the next highest alternative(s). Unfortunately, in our set-
ting, Contizer and Sandholm’s constructions are not strong
enough to lower bound the deterministic communication re-
quirements of approximately computing these rules. That
is, the ratio of the scores of the winning alternative to the
scores of the other alternatives need to be bounded away
from 1. With Contizer and Sandholm’s constructions, the
ratio of the score of any alternative to that of the winning
alternative tends towards 1 for increasingly large elections.

2.3 Probabilistic Method
The stronger requirements on the fooling sets needed to

lower bound the deterministic communication complexity of
approximately computing voting rules complicates the con-
struction of fooling sets. However, the fooling set need not
actually be constructed. Showing the existence of such a set
is sufficient for the lower bound proofs.

Instead of explicit constructions, the lower bound proofs
in this paper employ a powerful method from combinatorics
to show the existence of objects satisfying certain properties.
The probabilistic method proves the existence of a combi-
natorial object satisfying certain properties as follows:

1. First, construct a probability distribution over the ob-
jects of interest.

2. Second, show that an object drawn from that distri-
bution possesses the desired properties with strictly
positive probability.

Since with probability greater than zero the object drawn
from the distribution satisfies the requirements, it is assured
to exist. Using the probabilistic method, an appropriate
fooling set can be shown to exist without providing an ex-
plicit construction.

The probabilistic method is employed in our lower bound
proofs by constructing a distribution over preference pro-
files. This distribution over preference profiles then implic-
itly defines a distribution over sets of preference profiles (i.e.,
potential fooling sets). It is shown that a set of k preference
profiles drawn from this distribution satisfies the fooling set
properties with strictly positive probability. It can be con-
cluded that a fooling set of size k exists, which implies a
Ω(log( k

N
)) lower bound on the communication complexity.

All of the presented lower bound results hinge on Chernoff
bounds [4].

Theorem 2 (Chernoff [4]). Let X1, · · · , Xn be n indepen-
dent random variables taking on values 0 or 1, such that
Pr(Xi = 1) = p, for each i = 1, · · · , n. Let X =

∑n
i=1Xi

and let δ ∈ (0, 1) then

Pr(X < (1− δ)E(X)) = Pr(X < (1− δ)pn) < e
−pnδ2

2 .

3. RESULTS
Upper bounds on the communication complexity of ob-

taining approximations to Borda and Bucklin are presented
first. It is shown that arbitrarily good approximations to
Borda can be obtained with less communication overhead
than computing the true Borda winner. For Bucklin, it is
shown that a number of non-constant approximations can
be achieved with less communication complexity than com-
puting the true Bucklin winner.

A number of lower bounds are then presented on the com-
munication complexity of obtaining a number of approxima-
tion ratios with respect to Borda, Bucklin, and Copeland.
In particular, it is shown that the Borda and Copeland vot-
ing rules require Ω(nm) communication complexity to com-
pute sufficiently good constant factor approximations. For
Bucklin, it is shown that for any constant ρ, the communi-
cation complexity of computing a rho-approximate winner
in Bucklin elections is Ω( 1

ρ2
nm), which, for fixed ρ, matches

the upper bound given by Conitzer and Sandholm for com-
puting the true Bucklin winner.

3.1 Upper Bounds
Conitzer and Sandholm [5] show that the communication

complexity of determining the Borda winner is Θ(nm log(m)).
Theorem 3 shows that a (1− ε) approximation to Borda can
be obtained by a protocol with communication complexity
O(log( 1

ε
)nm).

Informally, in the protocol presented in Theorem 3, each
voter announces an approximate rank of each alternative in
its preference order using a O(log( 1

ε
)) bits. That is, the

preference order of each voter is divided into k equally sized
segments and each voter indicates which of the k segments
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each alternative falls into using only O(log(k)) bits per al-
ternative. With this information, upper and lower bounds
can be inferred for the Borda score of each alternative. The
alternative with the greatest upper bound is selected as the
winner. The proof of Theorem 3 shows that arbitrarily good
approximation ratios can be obtained given an appropriate
choice of k.

Theorem 3. For all ε ∈ (0, 1), there is a deterministic
communication protocol that approximates Borda to within a
factor of 1−ε with communication complexity O(log( 1

ε
)nm).

Proof. Given ε ∈ (0, 1), let k =
⌈
4
ε

⌉
. Let a1, a2, · · · , am be

a fixed ordering on the alternatives in A. For each ai, every
voter, v, announces in order the value l ∈ (0, k − 1) such
that

v(ai) ∈
[⌈
lm

k

⌉
,

⌈
(l + 1)m

k

⌉
+ 1

]
.

This procedure requires dlog(k)enm = O(log( 1
ε
)nm) bits

for fixed ε.
For a voter v and alternative a, let vl(a) be the value

of l returned by voter v for a. For each alternative a ∈ A,
define the following lower and upper bounds, lb(a) and ub(a),
respectively, on a’s true Borda score:

lb(a) =
∑

v∈V

(
m−

⌈
(vl(a) + 1)m

k

⌉
+ 1

)
,

ub(a) =
∑

v∈V

(
m−

⌈
vl(a)m

k

⌉)
.

In essence, the upper bound on a’s true Borda score is ob-
tained by assuming that a’s true rank in each voter’s pref-
erence order falls at the lower end of the range of ranks
reported by each voter. The lower bound is obtained by as-
suming that a’s true rank falls at the upper end of the range
reported by each voter.

Then, for each a ∈ A

ub(a)− lb(a) =
∑

v∈V

(⌈
(vl(a) + 1)m

k

⌉
−
⌈
vl(a)m

k

⌉
− 1

)

≤
∑

v∈V

(
(vl(a) + 1)m

k
+ 1− vl(a)m

k
− 1

)

=
nm

k
.

The protocol selects the alternative a with the greatest
ub(a) value. Now it is shown that a is a 1 − ε approximate
winner.

Let w be the true Borda winner. Since the sum of all the
alternatives scores is nm(m−1)

2
, sc(w) ≥ n(m−1)

2
. Also since

a was selected, sc(w) ≤ ub(w) ≤ ub(a). The approximation

ratio is

sc(a)

sc(w)
≥ lb(a)

sc(w)

≥ ub(a)− nm
k

sc(w)

=
ub(a)

sc(w)
−

nm
k

sc(w)

≥ ub(a)

ub(a)
− 2m

k(m− 1)

≥ 1− 4

k
≥ 1− ε.

It will be shown that obtaining any constant factor ap-
proximation to Bucklin requires Ω(nm) communication com-
plexity. Since, the true Bucklin winner can be determined
using O(nm) bits of communication complexity, there does
not exists any asymptotically better communication proto-
col to obtain a constant factor approximation to Bucklin.
However, non-constant factor approximations can be easily
obtained in Bucklin elections.

Theorem 4. For every δ ∈ (0, 1), there is a deterministic
communication protocol that obtains a mδ approximation to
Bucklin with communication complexity O(nm(1−δ) log(m)).

Proof. Consider the following protocol. Every voter broad-
casts the top m(1−δ)− 1 entries in its preference order using
O(nm(1−δ) log(m)) bits. If any alternative appears in the

top m(1−δ) positions in a strict majority of voters, then the
true Bucklin winner must also appear in the top m(1−δ) po-
sitions by a strict majority of the voters as well. Hence, the
true Bucklin winner can be computed given the partial lists
of preferences reported by each voter.

Otherwise, if no alternative appears in the top m(1−δ) po-
sitions in a strict majority of voters, the Bucklin score of
any alternative is at least m(1−δ). Since the Bucklin score
of every alternative is at most m, every alternative is a

m

m(1−δ) = mδ approximation solution. Hence, an arbitrary
alternative may be selected in this case.

3.2 Lower Bounds
All of the lower bound proofs will employ the same pa-

rameterized distribution over preference profiles.
Let the set of m alternatives be A = {a1, · · · , am}. Fix

w ∈ A and partition A \ {w} into the following sets

1. X = {xi : i = 1, · · · , |X|},

2. Y = {yri : i = 1, · · · , |Y |
2

and r ∈ {0, 1}}

3. Z = {zri : i = 1, · · · , |Z|
2

and r ∈ {0, 1}}.

The sizes of the sets X, Y , and Z will depend upon the
particular voting rule and desired approximation ratio. In-
formally, we construct a distribution over preference profiles
that satisfies the following properties:

1. w is preferred to every alternative in X by every voter,

2. for every alternative in a ∈ Z ∪ Y , half of the voters
prefer w to a and the other half prefer a to w, and
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3. for every two alternatives a, b ∈ A \ {w}, half of the
voters prefer a to b and the other half prefer b to a.

Thus, every alternative in A\{w} obtains a roughly average
score under the considered voting rules.

We then show that for any N preference profiles drawn
from this distribution with high probability it is possible to
mix and match the voters from theN preference profiles such
that, there is some alternative z ∈ Z that an overwhelming
majority of the voters prefer to all members of Y ∪X. That
is, it is possible to mix and match the voters such that the
score of some z ∈ Z is significantly higher than z’s score in
any of the individual preference profiles. In particular, z’s
score will be significantly higher than that of w.

For r ∈ {0, 1}, let Yr = {yri : i = 1, · · · , |Y |
2
}, similarly for

Zr. Let πX be a fixed permutation over X. Let n = 2n′.
Construct a distribution P over preference profiles as fol-

lows. Every preference profile from P is constructed using
the following random procedure. For each i ∈ {1, · · · , n′},
select r ∈ {0, 1}|Z0| and j ∈ {0, 1}|Y0| uniformly at random.
Voter v2i has preference order:

zr11 � · · · � z
r|Z0|
|Z0|

� yj11 � · · · � y
j|Y0|
|Y0|

� w � πX(1) � · · · � πX(|X|)
� y¬j11 � · · · � y¬j|Y0||Y0|

� z¬r|Z0|
|Z0| � · · · � z¬r11

Voter v2i−1 has preference order:

z¬r11 � · · · � z¬r|Z0|
|Z0|

� y¬j11 � · · · � y¬j|Y ||Y |

� w � πX(|X|) � · · · � πX(1)

� yj11 � · · · � y
j|Y |
|Y |

� zr|Z0|
|Z0| � · · · � z

r1
1

Notice that w is preferred to every alternative in X and
is ranked among the upper half of the alternatives by ev-
ery voter. Thus, w has a strictly better than average score
under Borda, Bucklin and Copeland. However, every other
alternative a ∈ A \ {w} obtains a score that is roughly aver-
age, since if voter v2i ranks a in position k, then v2i−1 ranks
a in position m− k. Also notice that each z ∈ Z0 is placed
among the top |Z0| positions in voter v2i with probability
1
2
, independent of the rankings of the other members of Z0.
Lemma 1 shows that with high probability, given any

N preference profiles P1, · · · , PN , it is possible to mix and
match voters from the N profiles in such a way that w no
longer obtains a good approximation ratio.

Lemma 1. Let Pi = (vi1, · · · , vin) for i = 1, · · · , N be ran-
dom preference profiles drawn from P and let δ ∈ (0, 1).
There exists a z ∈ Z0 and a r ∈ {1, · · · , N}n such that in
Pr = (vr11 , · · · , vrnn ), z is ranked among the top |Z0| posi-

tions by at least (1 − δ)(1 − 1
2

N−1
)n voters with probability

at least 1− e−
|Z0|(1− 1

2
N−1

)n′δ2
2 .

Proof. Recall that for each i ∈ {1, · · · , n′} and z ∈ Z0, ex-
actly one of v12i and v12i−1 rank z among the top |Z0| posi-

tions. Without loss of generality, assume that v12i ranks z
among the top |Z0| positions.

The probability that for each j ∈ {2, · · · , N}, vj2i also

ranks z among the top |Z0| positions (rather than vj2i−1)

is 1
2

N−1
. Hence, independently for each i ∈ {1, · · · , n′},

with probability p = 1 − 1
2

N−1
there exists indices j, k ∈

{1, · · · , N} such that vj2i and vk2i−1 both rank z among the
top |Z0| positions.

By Chernoff bounds, for each δ ∈ (0, 1), there are fewer
than (1− δ)pn′ indices i ∈ {1, · · · , n′} such that there exists
j, k ∈ {1, · · · , N}, where vj2i and vk2i−1 both rank z among

the top |Z0| positions with probability at most e−
pn′δ2

2 .
If at least (1−δ)pn′ such indices i exists, then there exists

an r ∈ {1, · · · , N} such that z is ranked among the top
|Z0| positions by 2(1− δ)pn′ = (1− δ)pn voters, since each
such i contributes 2 voters that rank z among the top |Z0|
positions.

As each z ∈ Z0 is placed independently of the other mem-
bers of Z0, the probability that for every z ∈ Z0 there exist
fewer than (1−δ)pn′ indices i ∈ {1, · · · , n′}, such that there
exist j, k ∈ {1, · · · , N} where vj2i and vk2i−1 both rank z

among the top |Z0| positions, is at most e−
|Z0|pn′δ2

2 .

Theorem 5 will provide the basis for all of the lower bound
proofs.

Theorem 5. Let ε ∈ (0, 1
2
), δ = 1− (1− ε) 1

2 , n = 2n′, and

N = 2 + dlog( 1
δ
)e = O(log( 1

ε
)). There exists a set of

2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)

preference profiles S such that

1. w is ranked in position |Z0|+ |Y0|+ 1 by all voters in
every preference profile in S,

2. For every N preference profiles Pi = (vi1, · · · , vin), i =
1, · · · , N , from S, there exists an r ∈ {1, · · · , N}n and
z ∈ Z0, such that in Pr = (vr11 , · · · , vrnn ), z is ranked
among the top |Z0| positions by at least (1−ε)n voters.

Proof. The proof of Theorem 5 employs the probabilistic
method. Let S be a collection of

[
e
|Z0|(1− δ2 )n′δ2

8

] 1
N

− 1 = 2
Ω

(
ε2

log(1/ε)
n|Z0|

)

random preference profiles drawn from P. Note that the col-
lection S may not contain distinct preference profiles, since
we sample from P with replacement.

Clearly, by construction, every preference profile in S sat-
isfies property (1).

Notice that 1
2

N−1 ≤ δ
2
. Consider N random preference

profiles P1, · · · , PN drawn from P. By Lemma 1, the proba-
bility that there is no z ∈ Z0 and r ∈ {1, · · · , N}n such that,

in Pr there are at least (1 − δ
2
)(1 − 1

2

N−1
)n > (1 − δ)2n =

(1− ε)n voters that rank z among the top |Z0| positions is

e−
|Z0|(1− 1

2
N−1

)n′δ2
8 < e−

|Z0|(1− δ2 )n′δ2
8 .
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The probability that the collection S satisfies property (2)
is

Pr[S satisfies (2)] ≥ 1− Pr[S fails (2)]

≥ 1−
(
|S|
N

)
Pr[P1, · · · , PN fails (2)]

> 1− |S|NPr[P1, · · · , PN fails (2)]

≥ 1− |S|N · e−
|Z0|(1− δ2 )n′δ2

8

> 0,

where, in the second and third lines, Pr[P1, · · · , PN fails (2)]
is the probability that N randomly selected preference pro-
files from P fails to satisfy property (2).

Since with probability strictly greater than 0, S satisfies
property (2), it is concluded that such a collection S exists.

Notice that if a given preference profile P appears in S
more than N −1 times, then S does not satisfy property (2)
(because mixing and matching voters from N copies of P
results in another copy of P ). Hence, there are necessarily
a set of

|S|
N

= 2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)

distinct preference profiles that satisfies (1) and (2).

For a given ε ∈ (0, 1), let Sε be the set shown to exist in
Theorem 5 and let Nε be the corresponding value of N .

Theorem 5 can be used to prove lower bounds on the
communication complexity of approximating Borda, Buck-
lin, and Copeland.

Theorem 6. Let ρ ∈ ( 1√
2
, 1) and 1√

2
+ δ = ρ. The com-

munication complexity of obtaining a rho-approximation to

Borda is Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

Proof. Let c = 1
2
(1 + 1√

2ρ
). Let α = 1 − 1

2cρ
and let β =

1− 2(1− α)2. Notice that 1
1−α = 2cρ and 1−α

1−β = 1
2(1−α) .

Let m be sufficiently large so that
(

m−1
m−1/(1−α)

)
< 1

c
. Let

ε = 1− c. Thus, 1
1−ε = 1

c
.

Employing Theorem 5 requires that we must specify how
A is partitioned into X, Y , and Z. It suffices to specify the
sizes of each set, as we are indifferent to the particular alter-
natives in each. Let Z0 and Z1 each contain βm alternatives
and let Y0 and Y1 each contain (α−β)m alternatives. Thus,
|Z| + |Y | = 2αm and |X| = m − 2αm − 1. Notice that
β < α < 1

2
, so A can be partitioned in this manner.

Let Sε be the set shown to exist in Theorem 5. Then

|Sε| = 2
Ω

(
ε2

log(1/ε)
n|Z0| − log(log(1/ε))

)

= 2
Ω

(
δ3

log(1/δ)
nm− log(log(1/δ))

)

.

It will be shown that Sε is a ρ-fooling set.
In every preference profile in Sε, w is ranked in position
|Z0| + |Y0| + 1 = αm + 1. Hence, the Borda score of w is
n(m− αm− 1) in every preference profile in S. The Borda
score of every other alternative is at most nm−1

2
. Thus, the

approximation ratio obtained by any x ∈ A \ {w} is

sc(x)

sc(w)
≤ nm−1

2

n((1− α)m− 1)

=

(
1

1− α

)(
m− 1

m− 1/(1− α)

)
1

2

< (2cρ) · 1

c
· 1

2
= ρ

Thus, in every preference profile in S, no alternative other
than w obtains a rho-approximation.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by (1 − ε)n of the voters. Hence, the
Borda score of z is at least (1 − ε)n(m − βm). In Pr the
approximation obtained by w is then

sc(w)

sc(x)
≤ n((1− α)m− 1)

(1− ε)n(1− β)m

<
1− α

(1− ε)(1− β)

=
1

2(1− α)(1− ε)

<
1

2
· (2cρ) · 1

c
= ρ

Therefore, in any Nε = O(log(1/δ)) preference profiles, it
is possible to mix voters in such a way that w no longer ob-
tains a rho-approximation. Therefore, the communication
complexity of computing a rho-approximation to Borda is

log

( |Sε|
Nε

)
= Ω

(
δ3

log(1/δ)
nm− log(log(1/δ))

)
.

Our construction shows that sufficiently good approxi-
mations to Borda have communication complexity Ω(nm).
The lower bound for Bucklin is significantly stronger. It is
shown that any deterministic communication protocol that
computes any constant factor approximation to Bucklin has
communication complexity Ω(nm). Further, non-trivial lower
bounds are presented for a number of non-constant approx-
imation ratios.

Theorem 7. Let ρ > 1. The communication complexity of

obtaining a ρ-approximation to Bucklin is Ω
(
nm
ρ2

)
.

Proof. Let α = 1
2(ρ+1)

and β = 2α2. Let m be sufficiently

large so that m−1
m

> ρ
ρ+1

. Let ε = 1
4
.

Let Z0 and Z1 each contain βm alternatives and let Y0 and
Y1 each contain (α − β)m alternatives. Thus, |Z| + |Y | =
2αm and |X| = m− 2αm− 1. Notice that β < α < 1

2
, so A

can be partitioned in this manner.
Let Sε be the set shown to exist in Theorem 5, then

|Sε| = 2Ω (n|Z0|) = 2
Ω

(
nm

ρ2

)

.

In every preference profile in Sε, w is ranked in position
|Z0| + |Y0| + 1 = αm + 1. Hence, the Bucklin score of w is
αm+ 1. The Bucklin score of x ∈ A \ {w} is at least m−1

2
.
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Hence, the approximation obtained by x ∈ A \ {w} is

sc(x)

sc(w)
≥

m−1
2

αm
= (ρ+ 1)

m− 1

m
> ρ.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by at least (1 − ε)n = 3n

4
of the voters.

Hence, the Bucklin score of z is at most βm. In Pr, the
approximation obtained by w is then at least

sc(w)

sc(x)
≥ αm

βm
=
α

β
=

1

2α
> ρ.

Therefore, in any Nε preference profiles, it is possible to
mix voters in such a way that w no longer obtains a ρ-
approximation. By Theorem 1, the communication com-
plexity of obtaining a ρ-approximation to Bucklin is

log

( |Sε|
Nε

)
= Ω

(
nm

ρ2

)
.

The previous subsection showed that for each δ ∈ (0, 1),
the communication complexity of computing a mδ approxi-
mate winner in Bucklin elections is O(nm(1−δ) log(m)). The

next result provides a lower bound of Ω(nm(1−2δ)) for all
δ ∈ ( 1

2
, 1) on the communication complexity of computing a

mδ approximate winner in Bucklin elections.

Theorem 8. Let δ ∈ (0, 1
2
). The communication complexity

of obtaining a mδ approximation to Bucklin is Ω(nm(1−2δ)).

Proof Sketch. The Theorem follows from the proof of The-
orem 7, by letting ρ = mδ. The fooling set Sε in the proof
of Theorem 7 contains

|S| = 2
Ω

(
nm

ρ2

)

= 2
Ω
( nm
m2δ

)

= 2
Ω
(
nm(1−2δ)

)
.

All that needs to be observed is that the partition of A
into X, Y , and Z, given the selection of sizes for each in
the proof of Theorem 7, is still valid. However, this is easily
determined to be true.

Therefore, the communication complexity of computing a
mδ approximation to Bucklin is

log

( |S|
Nε

)
= Ω

(
nm(1−2δ)

)
.

A lower bound on the communication complexity of com-
puting ρ-approximate winners for Copeland is provided next.

Theorem 9. Let ρ ∈ ( 1√
2
, 1) and 1√

2
+ δ = ρ. The commu-

nication complexity of obtaining a ρ-approximation to Copeland
is Ω (δnm).

Proof. Let m = m′ + 1, c = 1
2
(1 + 1√

2ρ
). Let α = 1 − 1

2cρ

and let β = 1 − 2(1 − α)2. Notice that 1
1−α = 2cρ and

1−α
1−β = 1

2(1−α) . Let m′ be sufficiently large so that 1
(1−β)m′ <

(1− c)ρ. Let ε = 1
4
.

Let Z0 and Z1 each contain βm′ alternatives and let Y0

and Y1 each contain (α−β)m′− 1 alternatives. Thus, |Z|+
|Y | = 2αm′ − 2 and |X| = m′ − 2αm′ + 2. Notice that
β < α < 1

2
, so A can be partitioned in this manner.

Let Sε be the set shown to exist in Theorem 5, then

|Sε| = 2Ω (n|Z0|) = 2Ω (δnm).

It will be shown that Sε is a ρ-fooling set.
In every preference profile in Sε, w defeats all members of

X and ties all members of Z∪Y in pairwise elections. Hence,

the Copeland score of w is |X|+ |Z|+|Y |
2

= (1− 2α)m′+ 2 +
αm′ − 1 = (1 − α)m′ + 1 in every preference profile in S.

The Copeland score of every other alternative is at most m′
2

.
Thus, the approximation ratio obtained by any x ∈ A \ {w}
is

sc(x)

sc(w)
=

m′
2

(1− α)m′ + 1

<
1

2(1− α)
= cρ

< ρ.

For any Nε preference profiles, there exists a z ∈ Z and
r ∈ {1, · · · , Nε} such that in Pr, z is ranked among the
top |Z0| positions by over half of the voters. Hence, in
pairwise elections z defeats all alternatives in X and Y .
By construction, if z0i ∈ Z defeats z in a pairwise elec-
tion, then z necessarily defeats z1i in a pairwise election.

Hence, the Copeland score of z is at least |X|+ |Z|
2

+ |Y | =
(1− 2α)m′ + 2 + βm′ + 2(α− β)m′ − 2 = (1− β)m′.

Likewise, w defeats every alternative in X in a pairwise
election. However, if w defeats z0i then z1i necessarily defeats
w. Likewise, for the alternatives in Y . Thus, the Copeland

score of w is at most |X|+ |Z|+|Y |
2

= (1−2α)m′+2+αm′−1 =
(1− α)m′ + 1.

Thus, in Pr, the approximation obtained by w is

sc(w)

sc(x)
≤ (1− α)m′ + 1

(1− β)m′

=
(1− α)

(1− β)
+

1

(1− β)m′

=
1

2(1− α)
+

1

(1− β)m′

< cρ+ (1− c)ρ
= ρ.

Therefore, the communication complexity of obtaining a
rho-approximation to Copeland is

log

( |Sε|
Nε

)
= Ω (δnm) .

4. CONCLUSIONS
This paper presents upper and lower bounds on the com-

munication complexity for computing approximate winners
in Borda, Bucklin, and Copeland elections. It is shown
that for every ε > 0 the communication complexity of com-
puting a 1 − ε approximate winner in a Borda election is
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O
(
log( 1

ε
)nm

)
. For δ ∈ (0, 1 − 1√

2
), we show that comput-

ing a 1√
2

+ δ approximate winner in Borda elections has

communication complexity Ω
(

δ3

log(1/δ)
nm− log(log(1/δ))

)
.

However, computing the true Borda winner has communi-
cation complexity Ω(nm log(m)).

In Bucklin elections, the communication complexity of
computing the true winner is Θ(nm). We show that for
all ρ > 1, computing a ρ approximate winner in a Buck-

lin election has communication complexity Ω
(
nm
ρ2

)
. Hence,

fixed constant factor approximate winners in Bucklin elec-
tions cannot be computed with asymptotically less commu-
nication than computing the true Bucklin winner. How-
ever, we show that for all δ ∈ (0, 1), computing a mδ ap-
proximate Bucklin winner has communication complexity
O(nm1−δ log(m)). For δ ∈ ( 1

2
, 1), a lower bound on the

communication complexity of computing a mδ approximate
Bucklin winner of Ω(nm(1−2δ)) is presented.

A Ω(δnm) lower bound is also presented for the com-
munication complexity of computing 1√

2
+ δ, δ ∈ (0, 1 −

1√
2
) approximate winner in Copeland elections. However,

as the communication complexity of determining the true
Copeland winner is Θ(nm log(m)), this lower bound leaves
open the possibility of an approximation scheme for Copeland,
similar to the scheme presented for Borda.

The lower bounds on the communication complexity for
computing approximate Borda and Copeland winners only
hold for sufficiently good approximation ratios. It may be
the case that worse constant factor approximation ratios can
be obtained to these rules with a reduced communication
complexity overhead. However, we conjecture that the com-
munication complexity of obtaining any constant factor ap-
proximation to Borda and Copeland is Ω(nm). This is an
interesting line of future work.

A second line of future work is the design of non-constant
factor approximation protocols similar to the one presented
for Bucklin. Along this theme, a construction that allows
for non-constant factor lower bound proofs is desirable. The
construction presented in this paper is limited to sufficiently
small constant factor lower bound proofs for Borda and
Copeland. It is also desirable to extend this construction
to Maximin elections also.

Finally, a third, and potentially fruitful line of further
work is the study of the randomized communication com-
plexity of both exact and approximation winner determina-
tion. To the best of our knowledge, the randomized commu-
nication complexity of (approximate or exact) winner deter-
mination has not be studied.
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ABSTRACT
The Internet Engineering Task Force develops and promotes Inter-
net standards like TCP/IP. The chair of the Task Force is chosen by
an election which starts with a set of voters being selected at ran-
dom from the electorate of volunteers. Selecting decision makers
by lottery like this has a long and venerable history, having been
used in Athenian democracy over two millennia ago, as well as for
over 500 years from the 13th Century to elect the Doge of Venice.
In this paper, we consider using such lotteries in multi-agent de-
cision making. We study a family of voting rules called lot-based
voting rules. Such rules have two steps: in the first step, k votes are
selected by a lottery, then in the second round (the runoff), a voting
rule is applied to select the winner based on these k votes. We study
some normative properties of such lot-based rules. We also inves-
tigate the computational complexity of computing the winner with
weighted and unweighted votes, and of computing manipulations.
We show that for most lot-based voting rules winner determination
and manipulation are computationally hard. Our results suggest that
this general technique (using lotteries to selecting some voters ran-
domly) may help to prevent strategic behavior of the voters from a
computational point of view.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sciences–
Economics; I.2.11 [ Distributed Artificial Intelligence]: Multi-
agent Systems

General Terms
Algorithms, Economics, Theory

Keywords
social choice, voting, manipulation

1. INTRODUCTION
A central question in computational social choice is whether com-

putational complexity can protect elections from manipulation. For
certain voting rules it is NP-hard to compute a beneficial manipula-
tion. Modifications like hybridizing together voting rules have also
been proposed to make manipulations NP-hard to compute [8, 12].
Of course, NP-hardness results about the complexity of computing

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

manipulations needs to be treated with caution since NP-hardness is
only a worst-case notion and “hard” instances may be rare. See [13,
15] for some recent surveys. Of course, if it is already computation-
ally hard for a manipulator to compute the winner, then intuitively
it is likely to be computationally hard also to find a beneficial ma-
nipulation. Indeed, there are voting rules like Kemeny’s, Dodgson’s
and Slater’s where just computing the winner is NP-hard [4, 1, 2,
9].

In this paper, we show that a simple form of non-determinism
also offers a potential escape from manipulation. We study a sim-
ple “tweak” to a voting rule that uses a lottery to select a subset
of the voters before applying the original voting rule. This tweak
is inspired by the election procedure for the Chair of the Internet
Engineering Task Force (IETF). The IETF develops and promotes
Internet standards like TCP/IP. Every two years, ten people are ran-
domly selected from among the 100 or so eligible volunteers to be
the voting members of the nominations committee. This committee
then nominates the new Chair using some (unspecified) voting rule.

Similar elections have been used in several other settings. For
instance, a complex election procedure involving multiple lotteries
was used to select the Doge of Venice for over 500 years. Lotter-
ies were also used in the election of the Archbishop of Novgorod,
one of the oldest offices in the Russian Orthodox Church. More re-
cently, a lottery was used in 2004 to select a Citizens’ Assembly on
Electoral Reform which then voted on changing British Columbia’s
provincial voting system. In 2006, Ontario ran a similar lottery
to decide on its provincial voting system. Several Spanish savings
banks use a lottery amongst their account holder to select an assem-
bly that then elects representatives for the account holders. Finally,
elections involving lotteries have also been proposed as a means to
reform both the British House of Lords, and the US House of Rep-
resentatives.

It has been suggested that lotteries are more democratic than elec-
tions since they are inherently egalitarian and arguably less corrupt-
ible [11]. On the other hand, lotteries are not without their issues.
For instance, the electorate needs to be confident in the randomness
of the selection process. To this end, the IETF has defined a robust,
general, public method for making random selections (RFC 3797 -
Publicly Verifiable Nominations Committee Random Selection).

Our contributions. We study a family of voting rules, called
lot-based rules, motivated by the election procedure used to select
the Chair of the IETF. Lot-based rules are composed of two steps:
in the first step, k votes are selected by a lottery, then in the sec-
ond step (the runoff), a voting rule (called the runoff rule) is applied
to select the winner based on these k votes. We study some nor-
mative properties of lot-based rules. We investigate the computa-
tional complexity of computing the winner of lot-based rules with
weighted and unweighted votes, respectively, and of computing a
manipulation. We show that for most lot-based voting rules win-
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ner determination and manipulation are computationally hard. Our
results suggest that this general technique (using lotteries to select-
ing some voters randomly) prevents strategic behavior of the voters
from a computational point of view.

Related work. Lot-based rules are a type of randomized voting
rule. Gibbard [17] proved that when there are at least 3 candidates,
if a randomized voting rule satisfies Pareto optimality and a proba-
bilistic version of strategy-proofness, then it must be a probability
mixture of dictatorships (called random dictatorships). We note
that any random dictatorship is a lot-based rule, where k = 1, and
the runoff rule selects the top-ranked candidate as the winner when
there is a single vote.

Conitzer and Sandholm [8] and Elkind and Lipmaa [12] studied
another type of hybrid voting systems where manipulations are hard
to compute. Their systems have two steps: in the first step, a (pos-
sibly randomized) voting rule is used to rule out some candidates,
and in the second step another voting rule (not necessarily the same
as the one used in the first step) is used to select the winner from
the remaining candidates. We note that in the first step of their sys-
tems, some candidates are eliminated, while in the first step of our
lot-based rules, some voters are eliminated. In that sense, lot-based
rules can also be seen as a universal tweak that adds a pre-round
that randomly eliminates some voters, to make voting rules hard to
manipulate. It would therefore be interesting to consider even more
complex voting systems which do both.

Technically, the winner determination problem studied in this pa-
per is also closely related to the problem of constructive control by
adding/deleting votes (CCAV/CCDV) [5]. In the winner determina-
tion problem studied in this paper, we are given a lot-based rule, a
profile P , a candidate c, and a number 0 ≤ p ≤ 1. We are asked
to decide whether the probability for c to win is larger than p. In
CCAV we are also given a set of new votes P ′, and we are asked
whether c can be made win by adding no more than T votes in P ′.
In CCDV we are asked whether c can be made win by deleting no
more than T votes in P . Suppose for some voting rule, it is NP-hard
to compute CCDV where exactly T votes are deleted. Then, winner
determination for the corresponding lot-based rule is also NP-hard,
where |P | − T votes are randomly selected in the runoff, and we
are asked whether the probability for c to win is strictly larger than
0. On the other hand, an algorithm for the counting variant of CCAV
(that computes how many ways c can be made win by adding ex-
actly T votes in P ′) can be used to compute the probability for c to
win in P ′ for the corresponding lot-based rule, where T votes are
randomly selected in the runoff.

Finally, we note that for lot-based rules, it is easy for the chair to
compute the winner provided computing the winner for the runoff
rule is easy. This is different from a voting rule like Kemeny’s
where computing the winner of a given profile is hard. Whilst com-
puting the winner for lot-based rules is computationally easy, it is
nevertheless computationally hard to manipulate such rules. In or-
der for a manipulator to compute the benefits of a false vote, she
needs to compute the probability for a given candidate to win, which
we will show to be computationally intractable.

2. PRELIMINARIES
Let C = {c1, . . . , cm} be the set of candidates (or alternatives).

A linear order � on C is a transitive, antisymmetric, and total re-
lation on C. The set of all linear orders on C is denoted by L(C).
An n-voter profile P on C consists of n linear orders on C. That
is, P = (V1, . . . , Vn), where for every j ≤ n, Vj ∈ L(C). The
set of all n-profiles is denoted by Fn. We let m denote the num-
ber of candidates. A (deterministic) voting rule r is a function
that maps any profile on C to a unique winning candidate, that is,

r : F1 ∪ F2 ∪ . . . → C. A randomized voting rule is a func-
tion that maps any profile on C to a distribution over C, that is,
r : F1 ∪F2 ∪ . . .→ Ω(C), where Ω(C) denotes the set of all prob-
ability distributions over C. For any randomized scoring rule r, any
profile P , and any alternative c, (r(P ))(c) is the probability for c
to win.

For any profile P and any pair of candidates {c, d}, let DP (c, d)
denote the number of times that c � d in P minus the number of
times that d � c in P . The weighted majority graph (WMG) is
a directed graph whose vertices are the candidates, and there is an
edge between every pair of vertices, where the weight on c → d
is DP (c, d). We note that in the WMG of any profile, all weights
on the edges have the same parity (and whether this is odd or even
depends on the number of votes), and DP (c, d) = −DP (d, c).

The following are some common voting rules. If not mentioned
specifically, ties are broken in the fixed order c1 � c2 � · · · � cm.
• Positional scoring rules: Given a scoring vector of m integers,

~sm = (~sm(1), . . . , ~sm(m)), for any vote V ∈ L(C) and any c ∈ C,
we let ~sm(V, c) = ~sm(j), where j is the rank of c in V . For any
profile P = (V1, . . . , Vn), we let ~sm(P, c) =

∑n
j=1 ~sm(Vj , c).

The rule selects c ∈ C so that ~sm(P, c) is maximized. We assume
scores are decreasing. Examples of positional scoring rules are plu-
rality, for which the scoring vector is (1, 0, . . . , 0), majority which
is the special case of plurality in which m = 2, and Borda, for
which the scoring vector is (m− 1,m− 2, . . . , 0).
• STV: This rule requires up to m − 1 rounds. In each round,

the candidate with the least number of voters ranking them first is
eliminated until one of the remaining candidates has a majority.
• Approval: Each voter submits a set of candidates (that is, the

candidates that are “approved” by the voter). The winner is the
candidate approved by the largest number of voters. Every voter
can approve any number of candidates.
• Voting trees: A voting tree is a binary tree withm leaves, where

each leaf is labelled with a candidate. Each internal node is labelled
with the child candidate that wins a pairwise election. The candi-
date labelling the root of the tree (i.e. wins all its rounds) is the
winner. The rule that uses a balanced voting tree is the Cup rule.
• Copeland: We compare every pair of candidates. Each candi-

date gets 1 point every time it is preferred by more than half the
voters. The candidate with the highest total score wins.
•Maximin: A candidate’s score in a pairwise election is the num-

ber of voters that prefer it over the opponent. A candidate’s overall
score is the lowest score it gets in any pairwise election. The candi-
date with the highest overall score wins.
• Ranked pairs: We consider every pair of candidates in turn,

starting with the pair not yet considered in which there is the great-
est majority of voters who prefer the first candidate to the second.
We construct a ranking which fixes the first candidate above the sec-
ond unless, by transitivity, this contradicts a previous decision. The
candidate at the top of this ranking wins.

In this paper, when we define a linear order, we sometimes do
not explicitly specify the rankings among a set of candidates. In
such cases, the candidates are ranked according to ascending or-
der of their subscripts. For example, let m = 4, [c2 � Others]
represents the linear order [c2 � c1 � c3 � c4]. For any set
of candidates C, Rev(C) represents the linear order where candi-
dates in C are ranked according to the descending order of their
subscripts. For example, [c2 � Rev(Others)] represents the linear
order [c2 � c4 � c3 � c1].

3. LOT-BASED VOTING RULES
We define lot-based voting rules as follows.

DEFINITION 1. Let X denote a voting rule (deterministic or
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randomized). We define a randomized voting rule LotThenX as
follows. Let k be a fixed number that is no more than the number
of voters. The winner is selected in two steps: in the first step, k
voters are selected uniformly at random, then, in the second step,
the winner is chosen by applying the voting rule X to the votes of
the k voters selected in the first step.

For instance, LotThenApproval is an instance of this rule in which
the set of voters is first reduced by a lottery, and then a winner is
chosen by approval voting. All lot-based rules are parameterized by
k, which is the number of randomly selected runoff voters. We em-
phasize that in the first step of lot-based rules, some voters are elim-
inated, while in the first step of voting systems studied by Conitzer
and Sandholm [8] and Elkind and Lipmaa [12], some candidates
are eliminated.

We first consider the axiomatic properties possessed by lot-based
voting rules. As the rules are non-deterministic, we need proba-
bilistic versions of the usual axiomatic properties.1

DEFINITION 2. A randomized voting rule r satisfies
• anonymity, if for any profile P = (V1, . . . , Vn), any permuta-

tion π over {1, . . . , n}, and any candidate c, we have r(P )(c) =
r(Vπ(1), . . . , Vπ(n))(c), where r(P )(c) is the probability of c in the
distribution r(P );
• neutrality, if for any profile P , any permutation M over C, and

any candidates c, we have r(P )(c) = r(M(P ))(M(c));
• unanimity, if for any profile P where all voters rank c in their

top positions, we have r(P )(c) = 1;
• weak monotonicity, if for any candidate c and any pair of pro-

files P and P ′, where P ′ is obtained from P by raising c in some
votes without changing the orders of the other candidates, we have
r(P )(c) ≤ r(P ′)(c);
• strong monotonicity (a.k.a. Maskin monotonocity), if for any

candidate c and any pair of profiles P = (V1, . . . , Vn) and P ′ =
(V ′1 , . . . , V

′
n), such that for every j ≤ n and every d ∈ C, c �Vj

d⇒ c �V ′j d, we have r(P )(c) ≤ r(P ′)(c);
• Condorcet consistency, if whenever there exists a candidate

who beats all the other candidates in their pairwise elections, this
candidate wins the election with probability 1.

When the voting rule is deterministic (i.e. the unique winner wins
with probability 1), all these properties reduce to their counterparts
for deterministic rules. The next two theorems show that LotThenX
preserves some (but not all) of the axiomatic properties of X .

THEOREM 1. If the voting rule X satisfies anonymity/ neutral-
ity/ (strong or weak) monotonicity/ unanimity, then for every k,
LotThenX also satisfies anonymity/ neutrality/ (strong or weak)
monotonicity/ unanimity.

The proofs are quite straightforward, and are omitted due to space
constraints. However, there are other properties that can be lost like,
for instance, Condorcet consistency.

THEOREM 2. LotThenX may not be Condorcet consistent even
when X is.

Proof: Suppose n = 2k + 1, k + 1 voters vote in one way and the
remaining k voters vote in the reverse order. The lottery may se-
lect only the votes of the minority, which means that the Condorcet
winner loses. 2

We note that when n = k, LotThenX becomes exactlyX . There-
fore, if X does not satisfy some axiomatic property, neither does
LotThenX .
1Definitions of the axiomatic properties for approval are omitted
due to the space constraints.

THEOREM 3. If LotThenX satisfies an axiomatic property for
every k, then X also satisfies the same axiomatic property.

4. COMPUTING THE WINNER
In the remainder of this paper, we focus on the case where k < n,

that is, when lot-based voting rules are non-deterministic. Hence,
even if we know all the votes, we can only give a probability in gen-
eral that a certain candidate wins. The EVALUATION problem we
study is defined similar to the evaluation problem defined in [10].

DEFINITION 3. In an EVALUATION problem, we are given a
lot-based rule r, a profile P , a number p in [0, 1], and a candidate
c. We are asked to compute whether (r(P ))(c) > p.

We note that in EVALUATION, the number of runoff voters k is a part
of the input. In this section, we show that lot-based voting rules may
provide some resistance to strategic behavior by making it compu-
tationally hard even to evaluate who may have won. In particular,
we show that there exist deterministic voting rules for which com-
puting the winner is in P, but EVALUATION of the corresponding
lot-based voting rule is NP-hard. As is common in computational
social choice, we consider both weighted voted with a small number
of candidates, and unweighted votes with an unbounded number of
candidates. Of course, even if EVALUATION is hard, the manipula-
tor may still be able to compute an optimal strategy in polynomial
time. This issue will be discussed in Section 5.

4.1 Weighted votes
With weighted votes, computing who wins the Cup or Approval

rule is polynomial. On the other hand, deciding if a candidate wins
LotThenCup or LotThenApproval with greater than some probabil-
ity is computationally intractable.

THEOREM 4. EVALUATION for LotThenCup is NP-hard when
votes are weighted and there are three or more candidates.

Proof: We give a reduction from a special SUBSET-SUM. In such a
SUBSET-SUM problem, we are given 2k′ integers S = {w1, . . . , w2k′}
and another integer W . We are asked whether there exists S ⊂ S
such that |S| = k′ and the integers in S sum up to W . We consider
the cup rule (balanced voting tree) where ties are broken in lexico-
graphical order. We only show the proof for three candidates; other
cases can be proved similarly. For any SUBSET-SUM instance, we
construct an EVALUATION for LotThenCup instance as follows.
Candidates: C = {a, b, c}. The cup rule has a play b and the
winner of this play c. Let k = k′ + 1.
Profile: For each i ≤ 2k′, we have a vote c � a � b of weight wi.
In addition, we have one vote b � a � c of weightW . We consider
the problem of evaluating whether candidate a can win with some
probability strictly greater than zero.

If the lottery does not pick b � a � c, then c wins for sure. If
the lottery picks the vote b � a � c, then there are three cases to
consider. In the first case, the sum of the weights of the other k′

votes is strictly less than W . Then, b beats a in the first round, so
a does not win. In the second case, the sum of the weights of the
other k′ votes is strictly more than W . Then, a beats b in the first
round, but then loses to c in the second round, so a does not win.
In the third case, the sum of weights of the other k′ votes is exactly
W . Then, a wins both rounds due to tie-breaking. Hence a wins
if and only if the sum of the weights of the remaining k′ votes is
exactly W . Thus the probability that a wins is greater than zero if
and only if there is a subset of k′ integers with sum W . 2
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THEOREM 5. There is a polynomial-time Turing reduction from
SUBSET-SUM to EVALUATION for LotThenApproval with weighted
votes and two candidates.2

Proof sketch: Given any SUBSET-SUM instance {w1, . . . , w2k′}
and W , we construct the following two types of EVALUATION for
LotThenApproval instances: the profiles in both of them are the
same, but the tie-breaking mechanisms are different. For each i ≤
2k′, there is a voter with weight wi who approves candidate a. In
addition, there is voter with weight W who approves b. Let P de-
note the profile and k = k′+ 1. For any p ∈ [0, 1], we letA(p) (re-
spectively, B(p)) denote the EVALUATION instance where ties are
broken in favor of a (respectively, b), and we are asked whether the
probability that a (respectively, b) wins for P is strictly larger than
p. Then, we use binary search to search for an integer i such that

i ∈ [0,
(
2k′+1
k′
)
−
(

2k′
k′+1

)
] and the answers to bothA

(
1− i+1

(2k
′+1

k′+1 )

)

and B
(

i

(2k
′+1

k′+1 )

)
are “yes”. If such an i can be found, then the

SUBSET-SUM instance is a “yes” instance; otherwise it is a “no”
instance. 2

It follows that, with weighted votes and two candidates, if EVAL-
UATION for LotThenApproval is in P then P=NP.

4.2 Unweighted votes
When the number of candidates is bounded above by a constant,

computing the probability for a candidate to win for LotThenX is in
P for any anonymous voting ruleX . Algorithm 1 uses dynamic pro-
gramming, and exploits the fact that when the number of candidates
is bounded above by a constant, the number of different profiles of
n votes for anonymous voting rules is polynomial in n (no more
than nm!). For anonymous rules, it suffices to characterize a pro-
file by an m! dimensional vector (called a voting situation), where
each dimension corresponds to a linear order V , and the component
represents how many copies of V in the profile. For each natural
number t, we let Dt ⊆ Nm!

≥0 denote the set of all vectors whose
components sum up to t.

Algorithm 1: Evaluation
Input: LotThenX, a profile P ∈ Dn, a candidate c.
Output: The probability p(P ) for c to win.

1 for each Pt ∈ Dt do

2 Let p(P − Pt) =

{
1 if P − Pt ≥ ~0 and X(Pt) = c
0 otherwise

,

where (P − Pt) is a vector in Nm!
≥0 ;

3 end
4 for l = t− 1 to 0 do
5 for each Pl ∈ Dl do

6 Let p(P − Pl) =
∑
~e∈D1

1

m!
· p(P − Pl − ~e);

7 end
8 end
9 return p(P );

Even though Algorithm 1 runs in polynomial time, its complexity
is still very high in the worst case. For example, when m = 5,
Algorithm 1 runs in time Θ(n120). We next show that when the
number of candidates is unbounded, EVALUATION for LotThenX
is hard to compute for many common voting rules including Borda,
Copeland, Maximin and Ranked Pairs.
2The proof can be easily extended to any LotThenX where X is
the same as the majority rule when there are only two candidates.

THEOREM 6. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenBorda is NP-hard.

Proof: We prove the NP-hardness by a reduction from the EXACT
3-COVER (X3C) problem [16]. In an X3C instance, we are given
a set V = {v1, . . . , v3q} of 3q elements and S = {S1, . . . , St}
such that for every i ≤ t, Si ⊆ V and |Si| = 3. We are asked
whether there exists a subset J ⊆ {1, . . . , t} such that |J | = q and⋃
j∈J Sj = V .
For any X3C instance V = {v1, . . . , v3q} and S = {S1, . . . , St},

we construct an EVALUATION instance for LotThenBorda as fol-
lows.
Candidates: C = {c} ∪ V ∪D, where D = {d1, . . . , d3q2}. Let
k = q.
Profile: For each j ≤ t, we let Vj = [(S \ Sj) � c � D � Sj ].
The profile is P = (V1, . . . , Vt). We are asked to compute whether
the probability for c to win is larger than zero (p = 0).

Suppose the EVALUATION instance has a solution. Then, there
exists a sub-profile P ′ of P such that |P ′| = q and Borda(P ′) =
c. Let P ′ = (Vi1 , . . . , Viq ). We claim that J = {i1, . . . , iq}
constitutes a solution to the X3C instance. Suppose there exists
a candidate v ∈ V that is not covered by any Sj where j ∈ J .
Then, v is ranked above c in each vote in P ′, which contradicts the
assumption that c is the Borda winner.

Conversely, let J = {i1, . . . , iq} be a solution to the X3C in-
stance. Let P ′ = (Vi1 , . . . , Viq ). It follows that for each v ∈
V , the Borda score of c minus the Borda score of v is at least
3q2 − (3q − 3) × q > 0. For each d ∈ D, c is ranked above d
in each vote in P ′. Therefore, c is the Borda winner, which means
that the EVALUATION instance is an “yes” instance. 2

THEOREM 7. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given candidate
to win under LotThenBorda is #P-complete.

Proof: We prove the theorem by a reduction from the #PERFECT-
MATCHING problem. Given three sets X = {x1, . . . , xt}, Y =
{y1, . . . , yt}, and E ⊆ X × Y , a perfect matching is a set J ⊆ E
such that |J | = t, and all elements in X and Y are covered by J .
In a #PERFECT-MATCHING instance, we are asked to compute the
number of perfect matchings. Given any #PERFECT-MATCHING in-
stanceX , Y , andE, we construct the following instance of comput-
ing the winning probability of a given candidate for LotThenBorda.
Candidates: C = {c, b} ∪X ∪ Y ∪A, where A = {a1, . . . , a2t}.
Let k = 2t. Suppose ties are broken in the following order: X �
Y � c � Others. We are asked to compute the probability that c
wins.
Profile: For each edge (xi, yj) ∈ E, we first define a vote Wi,j =
[X � ai � c � Y � b � Others], where elements within Y ,
X , Ai and Bj are ranked in ascending order of their subscripts.
Then, we obtain Vi,j from Wi,j by exchanging the positions of the
following two pairs of candidates: (1) xi and ai; (2) yj and b. Let
PV = {Vi,j : ∀(xi, yj) ∈ E}.

For each j ≤ t, we define a vote Uj = [Rev(Y ) � c � at+j �
Rev(X) � Others], where Rev(X) is the linear order where the
candidates in X are ranked in descending order of their subscripts.
Let PU = {U1, . . . , Ut}. Let the profile be P = PV ∪ PU .

Let P ′ be a sub-profile of P such that |P ′| = k = 2t. We
first claim that if Borda(P ′) = c, then PU ⊆ P ′. For the sake
of contradiction, suppose PV ∩ P ′ = {Vi1,j1 , . . . , Vil,jl}, where
l > t. Because |X| = t, there exists i ≤ t such that i is included
in the multiset {i1, . . . , il} at least two times. For any candidate
c′, let s(P, c′) denote the Borda score of c′ in P . It follows that
s(P, xi) > s(P, c), which contradicts the assumption that c is the
Borda winner.
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Next, we prove that for any P ′ = PU ∪{Vi1,j1 , . . . , Vit,jt} such
that Borda(P ′) = c, J = {(xi1 , yj1), . . . , (xit , yjt)} is a perfect
matching. Suppose J is not a perfect matching. If x ∈ X (respec-
tively, y ∈ Y ) is not covered by J , then we have s(P, x) = s(P, c)
(respectively, s(P, y) = s(P, c)), which means that c is not the
Borda winner due to tie-breaking. This contradicts the assumption.
We note that different P ′ correspond to different perfect matchings.
Similarly, any perfect matching corresponds to a different profile
P ′ such that |P ′| = 2t and Borda(P ′) = c. We note that the prob-
ability that c wins is the number of such P ′ divided by

(
t+|E|

2t

)
.

Therefore, computing the probability for c to win is #P-hard. It is
easy to check that computing the probability for c to win is in #P.
2

It has been shown that computing constructive control by delet-
ing votes is NP-complete [14]. Therefore, we have the following
corollary.

COROLLARY 1. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenCopeland and for Lot-
ThenMaximin is NP-hard.

THEOREM 8. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenRankedPairs is NP-
hard.

Proof: We prove the NP-hardness by a reduction from a special
X3C problem V = {v1, . . . , v3q} and S = {S1, . . . , St}, where
t ≥ 3q and t is even. (If t < 3q then we add 3q − t copies of S1 to
S, and if t is odd then we add 1 copy of S1 to S.) For any element
vi, we let ∆(vi) denote the number of times ci is covered by Sj .
For any X3X instance where t ≥ 3q and t is even, we construct the
following EVALUATION instance.

Candidates: V ∪{c, d, e}. Ties are broken in the order d � e �
c � V . Let k = |P | − q.

Profile: Let P denote a profile composed of the votes shown in
Table 1. We are asked to compute whether the probability for c to
win is larger than zero (p = 0).

# Votes
P1: for each j ≤ t d � e � Sj � c � (V \ Sj)
P2: t/2− q + 1

c � d � e � V
Rev(V) � c � e � d

P3: q − 1
c � d � e � V

Rev(V) � e � c � d
P4: for each i ≤ 3q,

t/2−∆(vi)
d � vi � c � e � Others

Rev(Others) � vi � e � c � d
P5: for each i ≤ 3q,

t/2−∆(vi)
d � c � e � vi � Others

Rev(Others) � e � vi � c � d

Table 1: The profile P for LotThenRankedPairs.
In the profile, P1 is used to encode the X3C instance; P2 and P3

are used to reduce the weights on the edge d → c and e → c in
the weighted majority graph; P4 is used to reduce the weights on
the edges vi → c, and P5 is used to balance the weight loss on
e → vi introduced in P4. We make the following observation on
the weighted majority graph of P .
• There is an edge d → e with weight t, an edge e → c with

weight 2q − 2. The edge between c and d has zero weight.
• For any i ≤ 3q, there is an edge d→ vi with weight t, an edge

e → vi with weight t, and all edges between c and vi have zero
weight.

Suppose we remove q votes from P , then because t ≥ 3q, we
have that d → e, d → vi and e → vi are fixed in the final order.
We note that {d, e} � c only in votes in P1 . Therefore, if q votes

can be eliminated to make c win for ranked pairs, then in all of
them, we must have {d, e} � c, otherwise d → e and e → c will
be fixed before c→ d is considered. It follows that the q eliminated
votes must come from P1. Moreover, in order for c to win, the
weight on each edge from V to c should be no more than q − 2,
otherwise a path from d via some candidates in V will be fixed
before c→ d is considered. This means that the eliminated q votes
in P1 correspond to an exact cover of {v1, . . . , v3q}. Therefore,
EVALUATION for LotThenRankedPairs is NP-hard. 2

For LotThenPlurality, we have the following corollary, which fol-
lows from a polynomial-time dynamic programming algorithm that
solves the counting variant of CCAV in [22].

COROLLARY 2. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given candidate
to win under LotThenPlurality can be solved in polynomial time.

5. MANIPULATION
Suppose there are a group of manipulators who know the vote of

the non-manipulators. We consider the computational complexity
for the manipulators to compute (perhaps non-truthful) votes so that
a preferred candidates wins the election. We limit our attention to
unweighted votes. We consider two types of manipulation problem
defined as follows.

DEFINITION 4. In a fixed manipulation problem, given the votes
of the non-manipulators, a favoured candidate and a probability p,
we ask if the manipulator(s) can cast fixed vote(s) so that the candi-
date wins with probability greater than p. In an improving manip-
ulation problem, we are not given any p but are given the truthful
vote of the manipulator(s) and we ask if the manipulator(s) can cast
fixed vote(s) so that the probability of the given candidate winning
increases.

An interesting extension, which we leave for future work, is when
the manipulator(s) can decide how to vote after the lottery has taken
place. This will increase the opportunities for manipulation.

It is easy to see that the improving manipulation problem for Lot-
ThenPlurality can be computed in polynomial time: the optimal
strategy for the manipulator(s) is to vote for c. Therefore, it follows
from Corollary 2 that fixed manipulation for LotThenPlurality is in
P. By Algorithm 1, when the number of candidates and the number
of manipulators are bounded above and the voting rule X is anony-
mous, both the fixed and the improving manipulation problems are
in P.

COROLLARY 3. When the number of candidates and the num-
ber of manipulators are bounded and votes are unweighted, fixed
or improving manipulation of LotThenX is in P for any anonymous
rule X .

When the number of candidates is not bounded, adding a lot-
tery can increase the complexity of computing a manipulation. For
example, when there is only one manipulator, computing a manipu-
lation for Borda is in P, but it is NP-hard to compute both fixed and
improving manipulations of LotThenBorda.

THEOREM 9. When the number of candidates is unbounded and
votes are unweighted, fixed manipulation of LotThenBorda is NP-
hard for even a single manipulator.

Proof: We prove the NP-hardness by a reduction from X3C that is
similar to the reduction in the proof of Theorem 6. Given an X3C
instance V = {v1, . . . , v3q} and S = {S1, . . . , St}, we construct
the following manipulation instance for LotThenBorda as follows.
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Candidates: C = {c} ∪ V ∪D, where D = {d1, . . . , d3q2}. Let
k = q.
Profile: For each j ≤ t, we let Vj = [(S \ Sj) � c � D � Sj ].
The profile is P = (V1, . . . , Vt). Let p =

(
t−1
q−1

)
/
(
t
q

)
.

We claim that in this instance the optimal strategy for the manip-
ulator is to vote for [c � D � S]. We note that if the manipulator
is not eliminated by the lottery, then c must win. This happens with
probability

(
t−1
q−1

)
/
(
t
q

)
. If the manipulator is eliminated by the lot-

tery, then following the same reasoning in the proof of Theorem 6,
the probability for c to wins is strictly larger than 0 if and only if the
X3C instance has a solution. This proves that fixed manipulation of
LotThenBorda is NP-hard. 2

THEOREM 10. When the number of candidates is unbounded
and votes are unweighted, improving manipulation of LotThenBorda
is NP-hard for even a single manipulator.

Proof: We prove the NP-hardness by a reduction from X3C. Given
an X3C instance V = {v1, . . . , v3q} and S = {S1, . . . , St}, we
construct the following manipulation instance for LotThenBorda as
follows. W.l.o.g. q is even (otherwise we add three new elements
{v3q+1, v3q+2, v3q+3} to V and {v3q+1, v3q+2, v3q+3} to S).
Candidates: C = {c}∪V∪D∪E, whereD = {d1, . . . , d3q2}, E =
{e1, . . . , e3q2}. Let k = 3q/2.
Profile: We will construct the profile in the way such that (1) if the
manipulator vote for [c � D � E � S] and is not eliminated by
the lottery, then the probability for c to win is non-zero if and only
if the X3C instance has a solution, and (2) if the manipulator vote
for [S � D � E � c] and is not eliminated by the lottery, then
c never wins. Therefore, even though [c � D � E � S] seems
better than [S � D � E � c], it is hard for the manipulator to
figure out whether the former is strictly better. More precisely, for
each j ≤ t, we let

Vj = [(S \ Sj) � D � c � E � Sj ]

and Uj = [(S \ Sj) � Rev(E) � c � Rev(D) � Sj ]
Let P1 = {V1, . . . , Vt} and P2 = {U1, . . . , Ut}. Let E′ =
{e1, . . . , e3q+20}. Let P3 consist of q/2− 1 copies of

[c � D � (E \ E′) � S � E′]

The profile is P = P1 ∪P2 ∪P3. We are asked whether the manip-
ulator can find a vote better than W = [S � D � E � c].

Suppose the X3C instance has a solution, w.l.o.g. denoted by
{S1, . . . , Sq}. We prove that if the manipulator votes for W ′ =
[c � D � E � S], then the probability for c to win is higher
than in the case where she votes for W . We note that if the lottery
eliminates the manipulator, the probability for c to win cancels out.
Therefore, we only need to focus on the lotteries where the manipu-
lator is selected. We note that if the manipulator votes for V , then c
cannot win. If the manipulator votes forW ′ and the lottery chooses
her and {V1, . . . , Vq/2, Uq/2+1, . . . , Uq} ∪ P3, then c is the Borda
winner, which means that there is an improving manipulation.

On the other hand, suppose that there is an improving manipu-
lation. We claim that if the lottery selects the manipulator and c is
the Borda winner, then (1) all votes in P3 must be selected, and (2)
the votes selected in P1 ∪ P2 constitute an exact cover. If (1) or
(2) is not satisfied, then in the profile after the lottery without the
manipulator’s vote, there exists a candidate in V whose Borda score
is higher than the Borda score of c by at least 2|D|+3q, which con-
tracts the assumption that c is the Borda winner when we also take
into account the manipulator’s vote. Therefore, the X3C instance
has a solution. 2

LotThenX often inherits any computational resistance to manip-
ulation that the voting rule X may have. For example, LotThen-
STV inherits the computational complexity of STV against manip-
ulation [3].

THEOREM 11. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenSTV.

Proof: We prove the NP-hardness by a reduction from a special
unweighted coalitional manipulation problem for STV with one
manipulator (UCM1) where c is ranked in the top position in at
least one vote in PNM . This problem is NP-complete [3]. For any
UCM1 instance (STV, PNM , c) where c is ranked in the top posi-
tion in at least one vote in PNM (|PNM | = n − 1), we construct
the following manipulation problem. Let C′ denote the set of can-
didates in the UCM1 instance.

Candidates: C′ ∪ {d}, where d is an auxiliary candidate.
Profile: Let P denote a profile of 2n − 1 votes as follows. The

first n−1 votes, denoted by P1, are obtained from PNM by putting
d right below c. The next n votes, denoted by P2, all rank d in
the first position (other candidates are ranked arbitrarily). Let k =
|P | − 1 and p = 0. For the improving manipulation problem, we
let W be an arbitrary vote where d is ranked in the top position.

We note that if none of votes in P2 is eliminated, then d is the
winner, because it is already ranked in the top position by more
than half the votes. Therefore, the only way c can win is if some
voter in P2 is eliminated in the first round.

Suppose the UCM1 instance has a solution, denoted by V . Then,
let V ′ denote the linear order over C′ ∪ {d} obtained from V by
ranking d in the bottom position. Let P ′ denote the profile where
a vote in P2 is eliminated by the lot. We note that d is ranked in
the top position n− 1 times in P ′. Therefore, d is never eliminated
in the first |C′| − 1 rounds. Moreover, for any j ≤ |C′| − 1, the
candidate that is eliminated in the jth round for P ′ is exactly the
same as the candidate that is eliminated in the jth round for PNM ∪
{V }. In the last round, c is ranked in the top position n times, which
means that STV(P ′) = c. Hence, the probability c wins is strictly
larger than 0, which is the probability c wins if the manipulator
votes for W .

On the other hand, suppose the manipulator can cast a vote V ′ to
make c win with a non-zero probability. As we have shown above,
c wins only when a voter in P2 is eliminated in the first round. Let
P ′ = (P−n, V

′). We note in STV for P ′, d must be eliminated in
the last round, because d is ranked in the top position at least n− 1
times. Moreover, we recall that c is ranked in the first position in at
least one vote in PNM , and d is ranked right below c in the corre-
sponding vote in P ′. Therefore, d beats all candidates in C′ \ {c}
in their pairwise elections, which means that in the last round the
only remaining candidates must be c and d. Let V be a linear order
obtained from V ′n′ by removing d. It follows that V is a solution to
the UCM1 instance.

Therefore, it is NP-hard to compute a fixed or improving manip-
ulation for LotThenSTV, even with a single manipulator. 2

Similarly LotThenRankedPairs inherits the computational com-
plexity of RankedPairs against manipulation [23].

THEOREM 12. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenRankedPairs.

Proof: We prove the NP-hardness by a reduction from a special
UCM1 problem for ranked pairs, where n is odd (|PNM | = n−1),
and no weight in the majority graph is larger than n− 5 (if there is,
then we tweak the instance by adding two pairs of votes {[c � c1 �
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· · · � cm−1], [cm−1 � cm−2 � · · · � c1 � c]}). This problem
is NP-complete [23]. For any such UCM1 instance (RP, PNM , c)
where n is odd, we construct the following manipulation problem.
Let C′ = {c, c1, . . . , cn−1} denote the set of candidates in the
UCM1 instance.

Candidates: C′∪{d, e}, where d and e are auxiliary candidates.
Profile: Let P denote a profile of 3n− 2 votes as follows.
• The first n− 1 votes are obtained from PNM by putting d � e

right below c.
• The remaining votes are defined in the following table.

# Votes
n d � e � Others � c

(n− 1)/2 d � c � e � Rev(Others)
(n− 1)/2 e � c � d � Rev(Others)

Let k = |P | − 1 and p = 0. For the improving manipulation
problem, let W = [d � e � Others � c].

Let P ′ denote the profile obtained from P by removing one vote
of [d � e � Others � c]. We make the following observation on
the weighted majority of P ′.
• The sub-graph for candidates in C′ is the same as the weighted

majority graph of the UCM1 instance.
• There is an edge from d to e with weight 2(n− 1).
• There are no edges between d and c, and e and c.
• The weights on the edges from d or e to C′ \ {c} is n− 1.
Therefore, in the final ranking, it is fixed that d � e � (C′ \{c}).

Suppose ties among edges are broken in the order where e → c
is fixed before c → d, whenever there is a tie (or alternatively,
we can first obtain a set of candidates who win with some ways to
break ties among edges, and then use the fixed tie-breaking d �
e � c � Others to select the winner). We note that if no vote for
[d � e � Others � c] is eliminated by the lottery, then the winner
must be d, because no matter what the manipulator votes for, in the
resulting majority graph either e→ c with weight 1 or d→ c with
weight 1, and in cases where there is an edge c → d, its weight
must be 1 (we recall that e → c will be fixed before considering
c → d, due to the tie-breaking mechanism). Therefore, the only
cases where c wins is when a vote of [d � e � Others � c] is
eliminated in the first round.

If the UCM1 instance has a solution, denoted by V , then we let
the manipulator vote for [c � e � d � V ]. This makes c win with
non-zero probability (n/(3n − 1)), which is strictly larger than 0
(the probability c wins when the manipulator votes for W ).

On the other hand, suppose the manipulator can cast a vote V ′

to make c win with non-zero probability. We have already argued
that in the cases where c wins, a vote for [d � e � Others � c]
must be eliminated in the first round. In such cases c is the winner
under ranked pairs if and only if (1) both d and e are ranked below
c in V ′, and (2) the vote obtained from V ′ by removing d and e is a
solution to the UCM1 instance.

Therefore, it is NP-hard to compute a fixed or improving manip-
ulation for LetThenRankedPairs, even with a single manipulator. 2

Finally, we prove that LotThenCopeland and LotThenMaximin
are both intractable to manipulate.

THEOREM 13. With unweighted votes and an unbounded num-
ber of candidates, for even a single manipulator, fixed and improv-
ing manipulation are NP-hard for LotThenCopeland and LotThen-
Maximin.

Proof sketch: The proof is similar to the proof of Theorem 8. For
both rules, we use a profile P illustrated in Table 2 to show the
reduction. In this proof, w.l.o.g. (t− q) is even.

# Votes
for each j ≤ t d � e � Sj � c � Others

(t− q)/2 c � d � e � V
Rev(V) � c � e � d

for each i ≤ 3q,
(t+ 2− q)/2−∆(vi)

d � vi � c � e � Others
Rev(Others) � vi � e � c � d

for each i ≤ 3q,
(t+ 2− q)/2−∆(vi)

d � c � e � vi � Others
Rev(Others) � e � vi � c � d

Table 2: The profile P for fixed or improving manipulation.

Let k = |P |+ 1− q. For the fixed manipulation problem, we let
p = 0. We note that the manipulator can make c win with positive
probability only if she ranks c in the top, and the votes eliminated
in P corresponds to an exact cover of V . For the improving ma-
nipulation problem, we let W = [d � e � V � c]. It follows
that if the manipulator’s vote is W , then c wins with 0 probabil-
ity. Therefore, there is an improving manipulation if and only if the
fixed manipulation problem (with p = 0) has a solution. 2

6. SAMPLING THE RUNOFF VOTERS
So far we have not discussed in details how to select the runoff

voters. Of course if we only need to select k voters uniformly at
random, then we can perform a naïve k-round sampling: in each
round, a voter is drawn uniformly at random from the remaining
voters, and is then removed from the list. However, it is more
difficult to generate k voters with some non-uniform distribution.
For example, different voters in a profile may have different vot-
ing power [20], and we may therefore want to generate the voters
in the runoff according to this voting power. More precisely, we
want to compute a probability distribution over all sets of k voters,
and each time we randomly draw a set (of k voters) according to
this distribution to meet some constraints. Let M denote the set
of all n × k 0-1 matrices, in each of which the sum of each row
is no more than 1 and the sum of each column is exactly 1. That
is, M = {(a(i,j)) : a(i,j) ∈ {0, 1}, ∀i ≤ n,

∑
j a(i,j) ≤ 1 and

∀j ≤ k,
∑
i a(i,j) = 1}. Each matrix inM represents a set of k

voters. Formally, we define the sampling problem as follows.

DEFINITION 5. In the LOTSAMPLING problem , we are given
a natural number n (the number of initial voters), a natural number
k (the number of runoff voters), and a vector of positive rational
numbers (p1, . . . , pn) such that for any j ≤ n, 0 ≤ pj ≤ 1 and∑
j≤n pj = k. We are asked to compute a sample of k voters such

that, and for every j ≤ n, the probability that vote j is chosen is
pj .

Using algorithms in [7]. we have the following corollary.

COROLLARY 4. LOTSAMPLING can be solved in polynomial
time.

7. CONCLUSIONS
Our main computational complexity results are summarized in

Table 3. The prevalence of computational intractable results in this
table suggests that lot-based voting is worth further attention. This
simple non-deterministic tweak to voting rules appears to provide
considerable (worst-case) resistance to manipulation. There are
many directions for future work in addition to the questions already
raised. For instance, we could consider the computational complex-
ity of EVALUATION for other lot-based voting rules. In particular,
we conjecture that EVALUATION for LotThenPlurality is NP-hard.
We also intend to look at the cost of computing manipulations of

609



Rule X LotThenX

EVALUATION
Fixed

Manipulation
Improving

Manipulation

Borda NP-hard
(Theorem 6)

NP-hard
(Theorem 9)

NP-hard
(Theorem 10)

STV ? NP-hard
(Theorem 11)

Ranked
pairs

NP-hard
(Theorem 8)

NP-hard
(Theorem 12)

Copeland NP-hard
(Corollary 1)

NP-hard
(Theorem 13)Maximin

Table 3: Summary of our complexity results.

lot-based voting rules in practice [24, 25, 27]. We could also con-
sider the control of lot-based voting by the chair. In addition to the
usual forms of control like addition of candidates or of voters, we
have another interesting type of control where the chair influences
the outcome of the lottery. Such control is closely related to con-
trol by deletion of voters. Other types of control include the chair
choosing the size of the lottery and the chair choosing the voting
rule used in the runoff after the lottery. Another interesting direc-
tion would be to consider the computation of possible and necessary
winners for lot-based voting rules [18, 26].
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ABSTRACT
In multiagent systems, social choice functions can help ag-
gregate the distinct preferences that agents have over alter-
natives, enabling them to settle on a single choice. Despite
the basic manipulability of all reasonable voting systems, it
would still be desirable to find ways to reach a stable result,
i.e., a situation where no agent would wish to change its vote.
One possibility is an iterative process in which, after every-
one initially votes, participants may change their votes, one
voter at a time. This technique, explored in previous work,
converges to a Nash equilibrium when Plurality voting is
used, along with a tie-breaking rule that chooses a winner
according to a linear order of preferences over candidates.

In this paper, we both consider limitations of the iter-
ative voting method, as well as expanding upon it. We
demonstrate the significance of tie-breaking rules, showing
that when using a general tie-breaking rule, no scoring rule
(nor Maximin) need iteratively converge. However, using a
restricted tie-breaking rule (such as the linear order rule
used in previous work) does not by itself ensure conver-
gence. We demonstrate that many scoring rules (such as
Borda) need not converge, regardless of the tie-breaking
rule. On a more encouraging note, we prove that Itera-
tive Veto does converge—but that voting rules “between”
Plurality and Veto, k-approval rules, do not.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Theory

Keywords
Social choice theory, Iterative Voting, Nash Equilibrium

1. INTRODUCTION
When multiple agents have independent, perhaps differ-

ing, views over a set of alternatives, one way to decide upon
an alternative is to use social choice theory (i.e., voting) to
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aggregate their preferences and arrive at a common decision.
However, the possibility of strategic manipulation remains a
potential pitfall; the well-known Gibbard-Satterthwaite re-
sult [7, 13] states that strategic voting is potentially benefi-
cial in any reasonable non-dictatorial voting system. Hence,
analyzing elections has been complicated by the possibility
that voters would attempt manipulations, and/or speculate
on the actions of other players so as to try and counter-
manipulate. Further complicating analysis is that effective
manipulation is strongly tied to the information each player
has of the game and his knowledge of the truthful preferences
of other players [15]; many papers dealing with manipula-
tion assume that all players have complete information of
the game.

One approach to understanding an election is to treat it as
a process, and see if we can reach some point of equilibrium,
where all players are satisfied with their votes/manipulations,
no longer wishing to change them. The most obvious can-
didate for such a stable solution would be to find a Nash
equilibrium. However, as there may be multiple Nash equi-
libria in a game, many of them trivial (e.g., when all voters
vote for any specific candidate), this may seem like an overly-
weak option to pursue. It is, in a sense, too broad a tool to
use in analyzing an election.

In previous work, Meir et al. [10] suggested the frame-
work of iterative voting: all participants vote, and then—
knowing only the result—may change their votes, one at a
time, though not in a predetermined order.1 This iterative
process stops when an equilibrium is reached, when no player
wishes to change his vote. A similar process can be seen, “in
action”, online at various websites used to coordinate dates
for an event, such as www.doodle.com; following an initial
vote, every participant can change his vote. Obviously, as
players change their choices one at a time, iterative voting
rules are more naturally suited to a relatively small number
of players, or an especially close election.

In their paper, Meir et al. [10] proved that using the simple
Plurality voting rule, with a deterministic tie-breaking rule
that uses a fixed linear order on candidates to break ties
(and further assuming that all voters have equal weight),
an iterative vote will converge to a Nash equilibrium when
voters always give the best response possible to the current
situation (in light of their preferences). They also showed
that with weighted voters, or when using better-reply strate-
gies (instead of best-replies), convergence is not guaranteed.

1If they were allowed to vote simultaneously, it is easy to
prove that the result may never converge to an equilibrium;
and a predetermined order would just be a new voting rule.
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The authors further explored nondeterministic tie-breaking
rules, and showed that while they may not always converge,
if the starting point is a truthful state and voters are un-
weighted, the game will converge.

In the current paper, we examine the robustness of this
framework, as well as expanding it to encompass, beyond
Plurality, an additional voting rule. We discover that when
dealing with deterministic tie-breaking rules, the type of
tie-breaking rule is crucial for a positive result: if we do
not restrict the choice of tie-breaking rules, no scoring rule
can guarantee convergence, and going beyond scoring rules,
the Maximin voting rule is also not guaranteed to converge.
Furthermore, regardless of the tie-breaking rule used, itera-
tive voting cannot be generalized to all scoring rules, as the
Borda voting rule is not guaranteed to converge under any
tie-breaking rule. However, when using a linear-order tie-
breaking rule, the iterative process with the Veto voting rule
does converge when voters use the best-response strategy.2

Examining if voting rules “between” Plurality and Veto (k-
approval rules) are guaranteed to converge as well, we find
that they are not.

1.1 Related Work
While we use the framework established by Meir et al. [10],

the notions of an iterative approach to voting, as well as of
seeking election equilibria, exist in previous research. An it-
erative process for reaching decisions was offered for agents
in Ephrati and Rosenschein [5], but it uses a mechanism
to transfer money-like value among agents, and hence is ir-
relevant to our voting procedures. Several researchers have
considered reaching an equilibrium with an iterative (or dy-
namic) process, in particular when deciding on an allocation
of public goods. A summary of much of that work can be
found in Laffont [9], which details various approaches, in-
cluding different equilibria choices (Nash, local dominant,
local maximin) and methods. However, in order to reach
an equilibrium, they limit the possible preference choices
to single-peaked preferences. Another branch of research
deals with a process of having a player propose a change in
the current state, and hold a vote on its acceptance. Such
a model was used by Shepsle [14], who chose to force an
equilibrium by using a combination of preference limitation
and organizational limitations. De Trenqualye [3] chose to
achieve an equilibrium by using a specific voting rule and
Euclidean preferences. More recently, Airiau and Endriss [1]
examined—theoretically and experimentally—the possibil-
ity of an equilibrium in such games, using Plurality-type
voting rules (the threshold can be different than 50% for a
change to be accepted).

In searching for equilibria (albeit not iteratively), Fed-
dersen et al. [6] chose (like Laffont) to limit preferences to
single-peaked preferences. Others, like Hinich et al. [8], for
example, chose to change the single-peak limitation to a spe-
cific probabilistic model of voters over a Euclidean space of
candidates, while changing other parts of the model (such as
allowing for abstentions). A somewhat different approach,
taken by Messner and Polborn [11], analyzed equilibria by
coalitional manipulation (hence, using a stronger equilib-

2Iterative vetoing is used, in the real world, in various situa-
tions, such as elimination decisions in various“reality shows”
(e.g., American Idol, America’s Next Top Model, etc.). As
they usually use a single judge’s preferences to break ties, it
is indeed linear-order tie-breaking.

rium than Nash—a method also utilized by Dhillon and
Lockwood [4]). However, one of the main limitations of
many of the papers mentioned above is that they assume
some knowledge of other players’ preferences.

Attempting to investigate the role of knowing other play-
ers’ knowledge, Chopra et al. [2] examined iterative voting
with Plurality, and showed the effects of limiting a player’s
knowledge of the other players’ preferences. Another inter-
esting model, proposed in Myerson and Weber [12], found
a Nash equilibrium for scoring rules, assuming that vot-
ers have some knowledge of which candidates have a bet-
ter chance of winning (based, for example, on pre-election
polls), but this does not mean that every election results in
an equilibrium.

1.2 Overview of the Paper
In the following section, we give a brief overview of elec-

tions, and describe the model of iterative voting that we
will be exploring throughout the paper. In Section 3 we
show that the characteristics of the tie-breaking rule can af-
fect convergence; we give examples showing that for every
scoring rule, as well as for Maximin, there is a (non-linear-
ordered) tie-breaking rule for which it will not always con-
verge.

We show in Section 4 that the Borda voting rule is not
guaranteed to converge, regardless of the tie-breaking rule
used. After that, we limit ourselves to linear-ordered tie-
breaking rules, and in Section 5 we show that using the Veto
voting rule to create the Iterative Veto procedure results in
a voting rule that always converges to a Nash equilibrium.
However, we also show that generally, when using k-approval
voting rules, they do not always converge, even when using
linear-ordered tie-breaking rules. Finally, we discuss various
open problems, and the issues that make them difficult (and
interesting).

2. DEFINITIONS

2.1 Elections and Voting Systems
Before detailing our iterative game, we first define elec-

tions, and how winners are determined.

Definition 1. Let C be a group of m candidates, and let
A be the group of all possible preference orders over C. Let
V be a group of n voters, and every voter vi ∈ V has some
element in A which is its true, “real” value (which we shall
mark as ai), and some element of A which it announces as
its value, which we shall denote as ãi.

Note that our definition of a voter incorporates the possi-
bility of its announcing a value different than its true value
(strategic voting).

Definition 2. A voting rule is a function f : An → 2C \ ∅.

There are many known voting systems; one category among
them is the family of scoring rules.

Definition 3. A scoring rule is a voting rule that uses a
vector (α1, α2, . . . , αm−1, 0) ∈ Nm such that αi ≥ αi+1.
Each voter gives α1 points to its first choice, α2 points to the
second, and so on. The candidates with the highest scores
are the winners.
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There are several well-known scoring rules.

• Plurality: The scoring vector is (1, 0, 0, . . . , 0)—a point
is only given to the most preferred candidate.

• Veto: The scoring vector is (1, 1, 1, . . . , 1, 0)—a point
is given to everyone except the least-preferred candi-
date.

• Borda: The scoring vector is (m−1,m−2, . . . , 2, 1, 0)—
a candidate receives points according to its preference
rank.

• k-approval (or k-veto): The scoring vector is
(1, 1, . . . , 1, 0, 0, . . . , 0)—a point is given to the most
preferred k candidates (or points are given to all ex-
cept the least-preferred k candidates).

There are also voting systems that are not scoring rules,
such as Maximin.

Definition 4. The Maximin voting rule defines for every
two candidates x, y ∈ V a score N(x, y) which is the num-
ber of voters who preferred x over y. Each candidate then
receives the score Sx = min

y∈V \x
N(x, y). The winners are the

candidates with the maximal score.

Our definition of voting rules allows for multiple winners.
However, in many cases what is desired is a single winner;
in these cases, a tie-breaking rule is required.

Definition 5. A tie-breaking rule is a function t : 2C → C
that, given a set of elements in C, chooses one of them as a
(unique) winner.

There can be many types of tie-breaking rules, such as
random or deterministic, lexical or arbitrary. One family of
tie-breaking rules that will be of interest to us is the family
of linear-ordered tie-breaking rules.

Definition 6. Linear-ordered tie-breaking rules are tie-break-
ing rules that decide upon a winner based on some preference
order over C (an element of A). Practically, this means that
if a, b ∈ D ⊆ C and t(D) = a, then if a, b ∈ D′ ⊆ C, then
t(D′) 6= b.

While this paper does not deal with weighted games, ex-
panding the above definitions to games that allow weighted
voters is straightforward: a voter vi with weight wi is con-
sidered as if it were wi different voters with the same pref-
erences and strategy.

2.2 The Iterative Game
The following definitions and explanations follow the frame-

work established by [10]. We do not assume that every voter
knows the preferences of the others; on the contrary, we as-
sume that each player only knows the current results (and
scores) of the game, and is not aware of other voters’ prefer-
ences. Hence, voters are myopic; they only think of changing
their vote so as to improve the current situation, as they do
not take into account future steps by other players (we also
assume they are not trying to learn what their rivals’ pref-
erences are, based on their strategies).

Formally, we are viewing the election as a game, in which
each player has an internal preference (ai), and a strategy
(ãi). The outcome of the game is t(f(ã1, ã2, . . . , ãn)). We

wish to find a Nash equilibrium, in which no player wishes to
change his strategy, i.e., a situation in which, for any voter
vi ∈ V and any a′i ∈ A:

t(f(ã1, ã2, . . . , ãi, . . . , ãn)) �ai t(f(ã1, ã2, . . . , ã
′
i, . . . , ãn))

However, we do not just want to prove that such an equi-
librium exists; rather, we wish to show a process that makes
that equilibrium reachable from the original starting point
(which in many cases might be, due to lack of prior infor-
mation, truthful on the part of the voting agents—though
this is not a necessary requirement for our proofs).

Definition 7. An iterative election game G is made up of
an initial election (which we shall mark as G0), followed by
further elections (G1, G2, . . .), with the difference between
election Gi and Gi+1 being that one voter changed his de-
clared preference. A game is stable if there is an n such that
for all i > n, Gi = Gn.
G0 may be a truthful state (i.e., voters vote according to

their real preferences), but it is not necessarily so.

Obviously, since at every step some voter may change
something about his reported preferences, no election need
be stable. However, analysis becomes more interesting once
we limit the voter’s possible changes, requiring individual
rationality. In that case, a valid step is one in which the
winner of the election changes (due to the myopic steps of
the players, a move that does not change the winner is point-
less), and one which changes the winner to one that the
voter who changed his strategy finds more preferred than
the previous winner (according to the voter’s internal, real
preferences). Formally, a step from Gi to Gi+1 is one in
which all voters played in Gi according to the strategies
(ã1, ã2, . . . , ãn) ∈ An, and for some player vj ∈ V , there is a
strategy ã′j ∈ A such that:

t(f(ã1, ã2, . . . , ã
′
j , . . . , ãn)) �aj t(f(ã1, ã2, . . . , ãj , . . . , ãn))

Under the assumption of individual rationality, a stable
game is one that has reached a Nash equilibrium.

Furthermore, we define a specific type of step for our anal-
ysis, following [10].

Definition 8. A best response step is one in which the
voter changing his strategy cannot cause a more preferred
candidate to win using a different strategy.

In specific voting rules below, we shall further refine what
a best response move means in various circumstances.

3. USING ARBITRARY TIE-BREAKING RULES

3.1 Scoring Rules

Theorem 1. An iterative scoring rule game with a de-
terministic tie-breaking rule, even for unweighted voters that
use best-response moves and start from a truthful state, does
not always converge.

Proof. Our examples will be somewhat complex, as we
deal with a large family of voting rules. In some cases us-
ing a best response is obvious, as there is only one choice
that results in making a specific candidate the winner. In
other cases, there may be multiple options to reach the same
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winner. In the examples below, we use a “natural” defini-
tion, in which players who are taking off points from the
current winner will a) give him 0 points, b) award the new
winner maximal points, and c) if all things are equal, will
prefer to be as close as possible to their truthful preferences.
However, even if one does not use such a definition, cycles
are still created—just longer cycles, as they may go through
several more steps than detailed here.

First, we shall deal with the case where there are at least
three candidates that do not receive maximal scores (i.e.,
αm−2, αm−1, αm < α1). We have at least four candidates,
a, b, c and d. Our tie-breaking rule is that when c is tied
with others, except b, c wins. When b is tied with others,
except d, b wins. When d is tied with others, except a and
c, d wins. We write a � b � c to express that a is a voter’s
favorite candidate, c is his least preferred candidate, and b
is ranked in between. We have two voters:

Voter 1: a � b � c � d
Voter 2: c � d � b � a

We can add several dummy candidates so the score given
by voter 1 to b is less than is given to a, and the score voter 2
gives to d is less than given to c (and dummy voters, making
these dummy candidates irrelevant as winner possibilities).
The winner in this state is c (either he is the sole winner,
or through a tie with a). The only option for improving
the result for voter 1 is to make b victorious, changing his
preference to b � a � d � c. Voter 2 can improve the
result by changing his preference to d � c � a � b, making
d the winner (possibly through winning the tie between b
and d). The option available to voter 1 is to return to his
original preference order, making a, his favorite, the winner.
However, now voter 2 will return to his original preference
as well, as it ensures the victory of c, his most preferred
candidate.

If there are only two candidates that receive less than the
maximal score, then we use a different game, one with six
candidates. Our tie-breaking rule makes b win when a, b, c,
d are tied; a wins when a, c, d are tied; c wins when a and c
are tied; and c wins when a, c, d, e are tied (other ties that
include d make him the winner; if they do not include d, but
do include e or f , then e/f is the winner, with f triumphing
over e). Let us look at two voters:

Voter 1: a � b � c � d � e � f
Voter 2: b � c � a � d � e � f

The winner here is candidate b (since a, b, c, d are tied).
However, when voter 1 changes his stated preference to a �
c � d � e � f � b, then a, his favorite, becomes the
winner (since a, c, d are tied). Voter 2 can only improve this
situation by changing his stated preference to a � c � d �
e � b � f , making c victorious. Voter 1 can now improve
his situation by returning to his original preference, making
a the winner. In this case, voter 2 will gladly return as
well to his original preference, as that will make his favorite
candidate, b, win.

If there is only one candidate that receives the less-than-
maximal score, this is the Veto voting rule, for which there
is a similar, but simpler, example. We shall use two voters,
and we can describe the voting rule and tie-breaking rule
fully with a table, marking the victor according to whom
the voters chose to veto.

a b c d e
a b c d e d
b c d a a a
c d a b a a
d e a a a a
e d a a a a

In our case, the voters’ real preferences are:

Voter 1: c � b � d � e � a
Voter 2: b � d � c � e � a

The truthful starting point would result in b being the
winner. As voter 1 would rather that c win, he will move
to veto b. Following that, voter 2 would move to veto b as
well, as that would result in d winning. Voter 1, who would
rather that c win, will return to vetoing a, and as voter 2
would rather that b be victorious, would return to vetoing a
as well, returning to our original starting point.

3.2 Maximin

Theorem 2. An iterative Maximin game with determin-
istic tie-breaking, even for unweighted voters that use best-
response moves and start from a truthful state, does not al-
ways converge.

Proof. We shall again use two voters and four candi-
dates. The voters’ preferences are:

Voter 1: c � d � b � a
Voter 2: b � d � c � a

We define the tie-breaking rule as follows: b = c = d⇒ b;
c = b ⇒ c; a = b = c ⇒ b; a = b = c = d ⇒ c; c = d ⇒ c;
b = d⇒ b. All the rest include a, and result in a being the
winner.

Beginning in a truthful state, the scores of c, b and d are
tied at the top, hence b is the winner. Voter 1 has no better
manipulation than one that makes c victorious, and changes
his preference to c � b � d � a, which evens the score of
b and c, and c is the winner. Voter 2 now seeks to make
b the winner, and succeeds by announcing his preferences
to be a � b � d � c (which ties, with the top score, a, b,
and c). Voter 1, by returning to his original preference list,
makes the score of a, b, c and d equal, resulting in c being
the winner, and Voter 2 can retaliate by returning to his
original preference list as well, under which b, his favorite,
was victorious.

4. USING BORDA
Despite the significance of tie-breaking rules, there are

voting rules that will not converge, regardless of the tie-
breaking rule used.

Theorem 3. An iterative Borda game with every type of
tie-breaking rule, even for unweighted voters that use best-
response moves and start from a truthful state, does not al-
ways converge.

Proof. The example here is the same as the first example
used in the proof of Theorem 1. However, the analysis in the
Borda rule is much simpler, as in this case ties never occur,
and hence, there is no need to rely on tie-breaking rules to
achieve the necessary result: at every stage the winner will
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Figure 1: The cycle of Borda non-convergence (top
left is the truthful state)

have 4 points, while the other candidates will have 3 points
or fewer (see Figure 1).

Notice that this proof stands for all scoring rules for which
m ≥ 4 and for which α1 > α2 and α3 > 0, and Borda is just
one example of such a scoring rule.

5. USING VETO AND K-APPROVAL
If we confine our work to tie-breaking rules that enforce

a linear order on candidates, most of our counter-examples
no longer work, and convergence becomes a possibility.

5.1 Veto

Definition 9. A best response in the case of the Veto vot-
ing rule implies that the current (undesired) winner is ve-
toed.

Theorem 4. An iterative Veto game with deterministic
linear-order tie-breaking and unweighted voters which use
a best-response strategy, converges even when not starting
from a truthful state.

Proof. Suppose there is an iterative election game G
that includes a cycle. We shall confine our game to the
cycle only, mark an arbitrary state in the cycle as G0, and
enumerate the rest of the cycle accordingly. Note that G0 is
not necessarily the opening state of the original game.

Definition 10. scorei(x) is defined as the score of candi-
date x in game state Gi. max(Gi) is defined as the score of
the winning candidate in Gi.

Lemma 5. If there is a cycle, then for j < i, max(Gi) ≤
max(Gj) + 1, and if max(Gi) = max(Gj) + 1, there is only
one candidate with that score.

Proof. By induction: for n = 0 the lemma is true by def-
inition. Assuming it is true for n′ < n, we shall prove it for
n. If for some j, max(Gn−1) = max(Gj)+1, then it is a sin-
gle candidate, and therefore, the next stage will make that
candidate’s score go down to max(Gj), and add a point to
another candidate. As that candidate’s score was less than
max(Gn−1), its new score will be, at most, max(Gn−1),
and if it is exactly max(Gn−1), it is a single candidate. If
max(Gn) < max(Gn−1), then due to the induction assump-
tion, max(Gn) < max(Gi) + 1 for i < n (there cannot be
equality, for that means max(Gn−1) > max(Gi) + 1).

Figure 2: General overview of Veto proof

If, for every i < n, max(Gn−1) ≤ max(Gi), then if the
candidate that gets an additional point at stage n has a lower
score than max(Gn−1), this means max(Gn) ≤ max(Gn−1),
and the induction requirements still stand. If it has the score
max(Gn−1), it becomes the single candidate with a score of
max(Gn−1)+1, and max(Gn) ≤ max(Gi)+1 for i < n.

Notice that since we can choose G0 arbitrarily from the
cycle, due to the last lemma, max(G0) + 1 ≥ max(Gi) ≥
max(G0)− 1, otherwise, there will be no possibility for the
cycle to return to its starting point.

Lemma 6. There can be at most n · (m − 2) consecutive
steps in which the voter changed his veto from candidate a
to candidate b, and candidate a became the winner.

Proof. Every time a voter changes his veto, he indicates
that he prefers the current vetoed candidate to the current
winner; that is, the winner is someone he likes less and less
as the game progresses. Since there are n voters and, at
most, m−1 candidates that are worse than the current one,
and as the voter will not vote for the very worst candidate,
there are n · (m− 2) steps.

We shall deal, first of all, with the easiest case, solved by
the lemma above, when there is always only one candidate
with the winning score (the tie-breaking rule is never used).
In this case, at every step, the old winner loses a point, and
the new winner gets a point. This is the case dealt with in
Lemma 6, and as the number of steps is limited, there can
be no cycle.
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Figure 3: When only one candidate has maximal
score

Figure 4: When multiple candidates have the max-
imal score
Diagrams showing why there is a limit on the increase and
decrease of maximal score. When there is a state with only
one candidate with maximal score, the maximal score will ei-
ther remain the same with a single winner (move type A) or
decrease (move type B). If it is a state where there are sev-
eral candidates with the maximal score, the maximal score
will either (move type D) increase while creating a situation
with a single winner (which cannot increase) or the max-
imal score will remain the same (move type C). This also
illustrates why the score cannot go down much if there is
a cycle—it can only increase by one in the whole cycle; at
no point can we reach a maximal score 2 points higher than
another.

Having dealt with that case, let us take a closer look at
G0, which we can define as one of the states in which there
is more than one candidate with a maximal score. Note that
there must be more than one of these states, since if there
were a single winner in Gi and more than that in Gi+1,
a candidate received a point and did not become a unique
winner, i.e., his score in Gi was, at most, max(Gi)−2. Since
this is a cycle, there must be a step in which he returns to
that score (if it is Gi+1, then for a cycle to happen, the same
candidate will need to rise again so the voter that increased
his score in Gi will veto him again).

Lemma 7. For every state Gi in which there is more than
one candidate scoring max(Gi), max(Gi) = max(G0),
|{x|scorei(x) = max(Gi)}| = |{x|score0(x) = max(G0)}|
and |{x|scorei(x) = max(Gi)−1}| = |{x|score0(x) = max(G0)−
1}|. This means there is always the same number of candi-
dates with the maximal score, and with maximal score −1.
Furthermore, these are always the same candidates, switch-
ing between the two scores: {x|scorei(x) ∈ {max(Gi),max(Gi)−
1}} = {x|score0(x) ∈ {max(G0),max(G0)− 1}}.

Proof. According to Lemma 5, ifmax(Gi) = max(G0)+
1, there is only one candidate with the winning score, and
we are not dealing with such a state. Suppose max(Gi) =
max(G0)−1; according to the same lemma, this means there
is only one candidate with the winning score in G0, which
we defined as a state having at least two.

At any step in the game, one player loses a point and
another gets it. Hence, if the number of those with the
maximal score and maximal −1 score is not the same as
in G0, some candidate lost (or gained) a point, which has
a score lower than maximal −1. However, as the maximal
score will never be max(G0) − 1 (otherwise, according to
Lemma 5, there would only be one candidate with winning
score in G0), there is no way in the cycle for the candidate
to be vetoed when it has a score of max(G0)− 1, and get a
lower score. As no candidate that has a score of max(G0) or
max(G0)−1 can get a smaller score, the group of candidates
with these scores stays fixed throughout the cycle.

Definition 11. LetB be the group of candidates who changed
places in states in which max(Gi) = max(G0): {x|∃i such
that scorei(x) = max(G0) and ∃j such that scorej(x) =
max(G0)− 1}.

Let z ∈ B be the lowest ranked candidate, according to
the linear tie-breaking rule, in B. However, as at some state
i it has a score of max(G0), and at state j has a score of
max(G0)− 1, there is a state i′ in which it is vetoed and its
score drops. At state i′ it is the winner, meaning that all
b ∈ B \ z have a score of max(G0)− 1. This further means
that there is always only one element of B with the score
of max(G0) (since the number of candidates with that score
is constant, and candidates not in B never have a score of
max(G0)− 1), and that candidate is always victorious over
any other candidates with that score (since it is a part of B,
it needs to be vetoed).

Thus a step during the game will either give a candidate
with a score of max(G0) a point that will make him win
by giving him a score of max(G0) + 1, or give a point to
a candidate with the score of max(G0) − 1 (and veto the
single candidate with a score of max(G0) + 1, or, if such
does not exist, a candidate in B with a score of max(G0)),
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making him the winner. Hence, the voted-for candidates
always become the winners, and according to Lemma 6, this
is a finite process.

5.2 k-Approval, k ≥ 3

For the k-approval voting rule, for k ≥ 3 we prove, as for
Borda, a stronger claim than for general scoring rules—we
prove that even when using linear-ordered tie-breaking rules,
k-approval is not guaranteed to converge.

Theorem 8. An iterative k-approval or k-veto game, when
k ≥ 3, with linear-ordered tie-breaking rule, even for un-
weighted voters that use best-response moves and start from
a truthful state, does not always converge.

Proof. We shall provide a proof for 3-approval—it can
be expanded for any larger k by adding additional dummy
variables. Our tie-breaking rule is linear, with the prefer-
ence: b � c � a � d � e � f . Let us assume the existence
of 50 voters whose preferences are a � b � c � d � e � f .
50 others prefer a � b � d � c � e � f ; 50 others prefer
b � c � d � a � e � f , and 50 others a � c � d � b � e �
f . So a, b, c and d have the same number of points, which
is maximal—150, and e and f have 0 points. Another voter
votes for a � d � e � b � c � f , and the 3 voters we will
deal with have the following preferences:

Voter 1: b � a � e � f � c � d
Voter 2: c � b � e � f � d � a
Voter 3: d � c � a � e � f � b

Following all voters, a is the winner with 153 points. b,
c and d have 152 points each, e has 3 points, and f has no
points. Voter 1 realizes that he can make his favorite, b,
win, by changing his vote to b � e � f � c � d � a (a,
b, c and d are now all tied with 152 points). Voter 2 now
sees he can make his favorite, c, win, by changing his vote
to c � e � f � d � a � b (a, c and d are tied with 152
points, b has 151 points). At this point, voter 3 realizes he
too can make his favorite the victor, by changing his vote to
d � e � f � b � c � a (so d has 152 points, a, b and c have
151 points). Now, voter 1 understands that returning to his
original vote would make a the winner, which he prefers over
d (now a and d are tied with 152 points). Following that,
voter 2 sees that he can make b victorious by returning to
his previous preference (since a, b and d will be tied with
152 points). Returning to our starting position, voter 3 sees
that returning to his original vote would make a the winner,
which is preferable, for him, over b.

6. DISCUSSION AND FUTURE WORK
An iterative voting process has a certain natural attrac-

tiveness, allowing voters to modify their stated preferences,
in light of what they see about the results of an election.
Assuming that all voters are equivalently entitled to make
modifications, it seems an appealing way to acknowledge
the strategic nature of voters, allowing them to change their
votes to get results they prefer. If the process converges,
we reach some stable expression of the aggregated group
preference—but the process may not converge.

We began by shedding some light on the limitations of
this mechanism, and on some of the elements that enable it
to converge, under specific circumstances. We showed that
the makeup of the tie-breaking rule is critical for iterative

voting to become a useful, converging mechanism. This is
due to the basic construction of iterative voting; if ties never
occur, the analysis is straightforward, either towards guar-
anteed convergence or not (Iterative Borda does not always
converge; Iterative Plurality and Veto always will).

As ties are a significant element of what complicates the
iterative convergence problem, the specific mechanism used
to resolve them is part of what guarantees convergence (or
lack of it): Some tie-breaking rules in certain circumstances
ensure convergence; others do not. There is still much to
clarify regarding this interaction between tie-breaking rules
and equilibria. We have yet to establish the necessary re-
quirements on tie-breaking rules that ensure convergence
even when dealing with Iterative Plurality, let alone with
other voting rules. We conjecture that requirements may be
different for weighted and unweighted voting games.

However, even when eliminating considerations of tie-break-
ing rules, and even when we limit ourselves to scoring rules,
we see that some voting rules—in fact, most of them—will
never give us guaranteed convergence (such as Borda, and
similar scoring rules with more than three different values).
Furthermore, even if we allow ourselves to use only 1s and
0s in our scoring rules, we reach the surprising conclusion
that other than the edges of this space (i.e., preference vec-
tors where all but one element is 0, or all but one element
is 1), almost no other part of this space can guarantee con-
vergence.

This points to the basic difficulty of the iterative process—
in many types of voting rules, a voter’s change of stated pref-
erence may have unintended side-effects, so when a player
wishes to make a certain candidate victorious, he may be
inadvertently setting the stage for another candidate to be-
come a viable contender, to be made the winner by another
player. Contrast that with Iterative Plurality or Veto, in
which only one candidate benefits (and as a corollary, only
one candidate is damaged). However, this is still highly
dependent on tie-breaking rules, and hence there might be
some tie-breaking criteria that would enable these voting
rules to converge as well.

The problem of unexpected candidates becoming viable is
further exacerbated with the Maximin voting rule. In that
case we encounter a problem of actually defining a “best
response”—no longer is there a straightforward definition of
a single candidate gaining or losing points. Rather, many
candidates may be affected, but which ones will be affected
and made viable in the long run cannot be computed or ana-
lyzed in a simple or predictable way. While we have begun to
analyze this particular non-scoring-rule voting mechanism,
the iterative process for these types of voting rules remains
mostly unexplored.

The non-convergence of many voting rules may suggest
that it would be useful to consider different solution strate-
gies, instead of best-response. While we know [10] that using
a better-response strategy does not help, as it will not guar-
antee convergence even for Iterative Plurality, other solution
strategies may enable convergence for a wider range of vot-
ing rules. However, we have yet to find a satisfactory voting
strategy, which is both natural and ensures convergence.

The new voting rule we explored, Iterative Veto, despite
having some superficial resemblance to Iterative Plurality,
does not have the “self-reinforcing” dynamic that Iterative
Plurality has, in which once a candidate has become non-
viable he will never return to relevance. In Iterative Veto,
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candidates’ scores can increase very little from the initial
stage, and when their score decreases, it may increase the
number of viable candidates, making the process more tur-
bulent then its Plurality equivalent. By making the ultimate
winner potentially a candidate which was not viable at the
outset, Iterative Veto enables us to reach Nash equilibria
that were impossible using Iterative Plurality.

On a final note, we have not dealt with computational
complexity issues here, as they were not relevant in the sce-
narios we considered. However, when expanding the analy-
sis to other voting rules, such issues may arise. For exam-
ple, [15] showed that finding a manipulation, even for a sin-
gle manipulator in an unweighted game, is NP-complete for
“ranked-pair”games such as STV and second-order Copeland.
Therefore, each voter may struggle to find the step to im-
prove his situation (and of course, struggle to find his best
response).
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ABSTRACT
Complexity of voting manipulation is a prominent research topic
in computational social choice. In this paper, we study the com-
plexity of optimal manipulation, i.e., finding a manipulative vote
that achieves the manipulator’s goal yet deviates as little as possi-
ble from her true ranking. We study this problem for three natural
notions of closeness, namely, swap distance, footrule distance, and
maximum displacement distance, and a variety of voting rules, such
as scoring rules, Bucklin, Copeland, and Maximin. For all three
distances, we obtain poly-time algorithms for all scoring rules and
Bucklin and hardness results for Copeland and Maximin.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Algorithms, Theory

Keywords
voting, manipulation, swap distance, footrule distance

1. INTRODUCTION
Mechanisms for aggregating the preferences of heterogeneous

agents play an important role in the design of multi-agent sys-
tems [9]. Such mechanisms are typically implemented by voting
rules, i.e., mappings that, given the rankings of the available al-
ternatives by all agents, output an alternative that best reflects the
collective opinion. There are many different voting rules that are
used for group decision making; see, e.g., [3] for an overview.

A weakness shared by all reasonable voting rules is their sus-
ceptibility to manipulation: for any voting rule over a set of al-
ternatives C, |C| ≥ 3, that is not a dictatorship, there are voting
situations where some voter would be better off if, instead of sub-
mitting her true ranking of the alternatives, she submitted a vote
that did not quite match her true preferences. This was observed by
Gibbard [11] and, independently, by Satterthwaite [18] more than
30 years ago, and a lot of research effort since then has been spent

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

on identifying voting rules that are at least somewhat resistant to
manipulation.

In their pioneering paper [2], Bartholdi, Tovey and Trick pro-
posed to use computational complexity as a roadblock in the way of
manipulative behavior: they observed that, in practice, the manip-
ulator needs an efficient method to find a successful manipulative
vote, and a voting rule that does not admit such a method may be
viewed as being relatively less vulnerable to manipulation. How-
ever, most classic voting rules, with the notable exception of STV,
turn out to be susceptible to manipulation in this sense [2, 1].

In this paper, we study a refinement of the question asked by
Bartholdi, Tovey and Trick. We observe that, while the manipu-
lator is willing to lie about her preferences, she may nevertheless
prefer to submit a vote that deviates as little as possible from her
true ranking. Indeed, if voting is public (or if there is a risk of in-
formation leakage), and a voter’s preferences are at least somewhat
known to her friends and colleagues, she may be worried that vot-
ing non-truthfully can harm her reputation—yet hope that she will
not be caught if her vote is sufficiently similar to her true ranking.
Alternatively, a voter who is uncomfortable about manipulating an
election for ethical reasons may find a lie more palatable if it does
not require her to re-order more than a few candidates. Finally, a
manipulator may want to express support for candidates she truly
likes, even if these candidates have no chances of winning; while
she may lie about her ranking, she would prefer to submit a vote
where her most preferred candidates are ranked close to the top.

These scenarios suggest the following research question: does a
voting rule admit an efficient algorithm for finding a manipulative
vote that achieves the manipulator’s goals, yet deviates from her
true ranking as little as possible? To make this question precise,
we need to decide how to measure the discrepancy between the
manipulator’s true preferences and her actual vote. Mathematically
speaking, votes are permutations of the candidate set, and there are
several distances on permutations that one can use. In our work,
we consider what is arguably the two most prominent distances on
votes, namely, the swap distance [12] (also known as bubble-sort
distance, Kendall distance, etc.) and the footrule distance [20] (also
known as the Spearman distance), as well as a natural variation
of the footrule distance, which we call the maximum displacement
distance.

In more detail, the swap distance counts the number of candidate
pairs that are ranked differently in two preference orderings. Thus,
when the manipulator chooses her vote based on the swap distance,
she is trying to minimize the number of swaps needed to transform
her true ranking into the manipulative vote. We remark that for
swap distance, our problem can be viewed as a special case of the
swap bribery problem [8]; however, our question is not addressed
by existing complexity results for swap bribery [8, 7, 6, 19] (see
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Section 7 for a discussion). The footrule distance and the maximum
displacement distance are based on computing, for each candidate,
the absolute difference between his positions in the two votes; the
footrule distance then computes the sum of these quantities, over all
candidates, while the maximum displacement distance returns the
largest of them. We believe that each of these distances captures
a reasonable approach to defining what it means for two votes to
be close to each other; therefore, we are interested in analyzing the
complexity of our manipulation problem for all of them.

We study our problem for several classic voting rules, namely,
Bucklin, Copeland, Maximin, as well as all scoring rules. For all
these rules, the algorithm of Bartholdi et al. [2] finds a successful
manipulation if it exists. However, this algorithm does not nec-
essarily produce a vote that is optimal with respect to any of our
distance measures: in particular, it always ranks the manipulator’s
target candidate first, even if this is not necessary to achieve the
manipulator’s goal. Thus, we need to devise new algorithms—or
prove that finding an optimal manipulation is computationally hard.

For all three distances, we obtain the same classification of these
rules with respect to the complexity of finding an optimal manipula-
tion: our problem is easy for Bucklin and all polynomial-time com-
putable families of scoring rules (see Section 2 for definitions), but
hard for Copeland and Maximin. For swap distance and footrule
distance, we strengthen these hardness results to show that our
problem is, in fact, hard to approximate up to a factor of Ω(logm),
where m is the number of candidates.

Our results provide a fairly complete picture of the complexity
of finding an optimal manipulative vote for the three distances and
four types of voting rules that we consider. Interestingly, they in-
dicate that scoring rules (and the Bucklin rule, which is closely re-
lated to a subfamily of scoring rules known as k-approval) are fun-
damentally easier to manipulate than Copeland and Maximin; we
remark that this observation is also suggested by the recent work
of Obraztsova et al. [16, 15] on the complexity of manipulation
under randomized tie-breaking. Thus, we believe that, besides be-
ing interesting for its own sake, our work contributes to the broad
agenda of understanding the intrinsic complexity—and, therefore,
practical applicability—of various voting rules.

2. PRELIMINARIES
An election is given by a set of candidates C = {c1, . . . , cm}

and a vector R = (R1, . . . , Rn), where each Ri, i = 1, . . . , n, is
a linear order over C; Ri is called the preference order (or, vote)
of voter i. For readability, we will sometimes write �i in place of
Ri. If a �i b for some a, b ∈ C, we say that voter i prefers a to b.
We denote by r(cj , Ri) the rank of candidate cj in the preference
order Ri: r(cj , Ri) = |{c ∈ C | c �i cj}| + 1. We denote the
space of all linear orders over C by L(C). We denote by (R−i, L)
the preference profile obtained from R by replacing Ri with L.

A voting correspondence F is a mapping that, given a candidate
setC and a preference profile R overC outputs a non-empty subset
of candidates S ⊆ C; we write S = F(R). The candidates in S
are called the winners of election (C,R). A voting correspondence
F is said to be a voting rule if it always produces a unique winner,
i.e., |F(R)| = 1 for any profile R.

A voting correspondence can be transformed into a voting rule
with the help of a tie-breaking rule. A tie-breaking rule for an elec-
tion (C,R) is a mapping T = T (R, S) that for any S ⊆ C, S 6= ∅,
outputs a candidate c ∈ S. A tie-breaking rule T is lexicographic
with respect to a preference ordering � overC if for any preference
profile R over C and any S ⊆ C it selects the most preferred can-
didate from S with respect to �, i.e., we have T (S) = c if and only
if c � a for all a ∈ S \ {c}. In the context of single-voter manipu-

lation problems, where there is one voter that considers lying about
his vote to obtain a better outcome, of particular interest are benev-
olent and adversarial tie-breaking rules: the former breaks ties in
the manipulator’s favor while the latter breaks ties against the ma-
nipulator’s wishes (i.e., tie-breaking is lexicographic with respect
to, respectively, the manipulator’s true preference ordering and its
inverse). In the traditional computational social choice terminology
benevolent and adversarial tie-breaking correspond to, respectively,
non-unique and unique winner settings.
Voting rules We will now describe the voting correspondences
considered in this paper. All these correspondences assign scores to
candidates; the winners are the candidates with the highest scores.
In what follows, we will assume that these correspondences are
transformed into voting rules by breaking ties adversarially; how-
ever, all of our results can be adapted in a straightforward manner
to benevolent or, more generally, lexicographic tie-breaking.
Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such that
α1 ≥ · · · ≥ αm defines a scoring rule Fα as follows. Each voter
grants αi points to the candidate she ranks in the i-th position; the
score of a candidate is the sum of the scores he receives from all
voters. The vector α is called a scoring vector; we assume without
loss of generality that the coordinates of α are nonnegative inte-
gers given in binary. We remark that scoring rules are defined for a
fixed number of candidates, and therefore do not quite fit our def-
inition of a voting rule. Thus, one needs to consider families of
scoring rules (one for every possible number of candidates). From
the algorithmic perspective, it is natural to restrict our attention to
polynomial-time computable families of scoring rules, where the
scoring vector αm for an m-candidate election can be computed
in time poly(m). Two well-known examples of such families are
Borda, given by α = (m− 1, . . . , 1, 0), and k-approval, given by
αi = 1 if i ≤ k, αi = 0 if i > k.
Bucklin Given an n-voter election, the Bucklin winning round is
the smallest value of r such that the r-approval score of at least one
candidate exceeds n/2. The Bucklin score of a candidate c ∈ C is
his r-approval score, where r is the Bucklin winning round.
Copeland A candidate a is said to win a pairwise election against
b if more than half of the voters prefer a to b; if exactly half of the
voters prefer a to b, then a is said to tie his pairwise election against
b. Under the Copelandα rule, α ∈ Q ∩ [0, 1], each candidate gets
1 point for each pairwise election he wins and α points for each
pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is given
by the number of votes c gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.
Distances A distance on a space X is a mapping d : X × X →
R that has the following properties for all x, y, z ∈ X: (1) non-
negativity: d(x, y) ≥ 0; (2) identity of indiscernibles: d(x, y) = 0
if and only if x = y; (3) symmetry: d(x, y) = d(y, x); (4) triangle
inequality: d(x, y) + d(y, z) ≥ d(x, z).

In this paper, we will be interested in distances over votes, i.e.,
mapping of the form d : L(C) × L(C) → R. In fact, since we
are interested in asymptotic complexity results, we will consider
families of distances (dm)m≥1, where dm is a distance over the
space of all linear orderings of the set {c1, . . . , cm}. Specifically,
we will consider three such families (in the following definitions,
C = {c1, . . . , cm} andR andL are two preference orders in L(C),
also denoted as �R and �L):

Swap distance. The swap distance dswap(L,R) is given by

dswap(L,R) = |{(ci, cj) | ci �L cj and cj �R ci}|.
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This distance counts the number of swaps of adjacent candi-
dates needed to transform L into R.

Footrule distance. The footrule distance dfr(L,R) is given by

dfr(L,R) =

mX
i=1

|r(ci, L) − r(ci, R)|.

This distance calculates by how much each candidate needs
to be shifted to transform L into R, and sums up all shifts.

Maximum displacement distance. The maximum displacement
distance dmd(L,R) is given by

dmd(L,R) = max
i=1,...,m

|r(ci, L) − r(ci, R)|.

This distance is similar to the footrule distance; the only dif-
ference is that instead of summing up all shifts it only con-
siders the maximum shift.

It is not hard to verify that the swap distance, the footrule dis-
tance, and the maximum displacement distance fulfill all distance
axioms. It is also known [5] that the swap distance and the footrule
distance are always within a factor of two from each other: we
have dswap(L,R) ≤ dfr(L,R) ≤ 2dswap(L,R) for any space of
candidates C and any L,R ∈ L(C).

3. OUR MODEL
We will now formally describe our computational problem.

DEFINITION 3.1. Let D = (dm)m≥1 be a family of integer-
valued distances, where dm is a distance over L({c1, . . . , cm}).
Let F be a voting rule. An instance of (D,F)-OPTMANIPULATION
is given by an election (C,R) with C = {c1, . . . , cm}, R =
(R1, . . . , Rn), a voter i ∈ {1, . . . , n}, a candidate p ∈ C, and
a positive integer k. It is a “yes”-instance if there exists a vote
L ∈ L(C) such that F(C, (R−i, L)) = {p} and dm(Ri, L) ≤ k,
and a “no”-instance otherwise.

REMARK 3.2. The problem (D,F)-OPTMANIPULATION is in
NP as long as all distances in D and the rule F are poly-time com-
putable: one can guess a vote L and check that F(C, (R−i, L)) =
{p} and dm(Ri, L) ≤ k. In particular, it is in NP for all distance
families and voting rules considered in this paper.

REMARK 3.3. We formulated OPTMANIPULATION as a deci-
sion problem. However, it also admits a natural interpretation as
an optimization problem: in this case, we are given an election
(C,R), a voter i and a candidate p, and the goal is to find the small-
est value of k such that there exists a vote L ∈ L(C) at distance at
most k fromRi that satisfies F(C, (R−i, L)) = {p} (k is assumed
to be +∞ if there is no vote L with F(C, (R−i, L)) = {p}). In
this version of the problem, one can relax the optimality condi-
tion, and ask for an approximately optimal manipulative vote: an
algorithm is said to be a ρ-approximation algorithm for (D,F)-
OPTMANIPULATION, ρ ≥ 1, if, given an instance of the problem
for which the correct answer is k ∈ R ∪ {+∞}, it outputs a value
k′ that satisfies k ≤ k′ ≤ ρk. We will consider the optimization
version of OPTMANIPULATION (and prove hardness of approxi-
mation results) for Copeland and Maximin under swap distance
(Sections 4) and footrule distance (Section 5).

REMARK 3.4. In our definition of OPTMANIPULATION, the
manipulator wants to make a specific candidate elected; the identity
of this candidate is given as a part of the instance description. An
alternative approach would be to ask if the manipulator can obtain

what he considers a better outcome by submitting a non-truthful
vote, i.e., whether there is a vote L ∈ L(C) such that dm(Ri, L) ≤
k and F(C, (R−i, L)) �i F(C,R); we will refer to this problem
as OPTMANIPULATION′. Clearly, an efficient algorithm for OPT-
MANIPULATION can be used to solve OPTMANIPULATION′, by
determining the winner w under truthful voting, and then running
the OPTMANIPULATION algorithm for all candidates that the ma-
nipulator ranks above w. Hence, OPTMANIPULATION is at least
as hard as OPTMANIPULATION′. In what follows, we will provide
polynomial-time algorithms for the “harder” problem OPTMANIP-
ULATION. On the other hand, all our NP-hardness results apply
to the “easier” problem OPTMANIPULATION′: in fact, in all our
hardness proofs the manipulator’s goal will be to make his favorite
candidate the election winner. Using OPTMANIPULATION as our
base problem allows for a direct comparison between the problem
of finding the optimal manipulation and the swap bribery problem
(see Section 7).

4. SWAP DISTANCE
We start by considering optimal manipulability with respect to

what is perhaps the best known distance on votes, namely, the swap
distance dswap.

4.1 Scoring Rules and Bucklin
The main result of this section is a simple polynomial-time al-

gorithm that solves OPTMANIPULATION for swap distance and
an arbitrary scoring rule; we then show that this algorithm can be
adapted to work for the Bucklin rule.

An observation that will be important for our analysis of scor-
ing rules in this and subsequent sections is that once we select the
position of the manipulator’s preferred candidate p, we know his
final score. Thus, once p’s position is fixed, it remains to rank
other candidates so that their scores remain strictly lower than that
of p (recall that we use adversarial tie-breaking). More formally,
let sα(c) be the total number of points a candidate c receives from
non-manipulators under a voting rule Fα; we will say that a posi-
tion j is safe for a candidate c` given that p is ranked in position f
if sα(c`) + αj < sα(p) + αf . Clearly, for a manipulation to be
successful, all candidates other than p should be ranked in positions
that are safe for them.

Fix a scoring rule Fα with α = (α1, . . . , αm). Our algorithm
relies on a subroutine A that given an election (C,R) with |C| =
m, a voter i, a candidate p, and a position f in i’s vote, finds an
optimal manipulation for i among all votes that rank p in position
f . More formally, let

Lf (α) = {L ∈ L(C) | Fα(C, (R−i, L)) = {p}, r(p, L) = f};

our subroutine outputs ⊥ if Lf (α) is empty and a vote L̂ such
that dswap(L̂, Ri) ≤ dswap(L,Ri) for all L ∈ Lf (α) otherwise.
Given A, we can easily solve (dswap,Fα)-OPTMANIPULATION:
we run A for all values of f between 1 and m and output “yes” if
at least one of these calls returns a vote L̂ with dswap(L̂, Ri) ≤ k.
Thus the running time of our algorithm ism times the running time
of A. It remains to describe A.

THEOREM 4.1. For any α = (α1, . . . , αm) ∈ Z+
m there

exists a procedure A that takes an n-voter m-candidate election
(C,R), a voter i ∈ {1, . . . , n}, a candidate p ∈ C, and a position
f ∈ {1, . . . ,m} as its input, outputs ⊥ if Lf (α) = ∅ and a vote
L̂ that satisfies dswap(L̂, Ri) ≤ dswap(L,Ri) for all L ∈ Lf (α)
otherwise, and runs in time O(m2 log(nα1)).

PROOF. For convenience, let us renumber the candidates in C
so that cm = p and c1 �i . . . �i cm−1. Our algorithm proceeds in
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m− 1 rounds. In the `-th round, ` = 1, . . . ,m− 1, we determine
the final position of candidate c`; we then say that this candidate
is pinned to that position, and the position becomes unavailable.
Initially, all candidates are unpinned and all positions are available.

Initialization: We pin p to position f (thus f becomes unavail-
able), and then fill the remaining positions with the candidates in
C \ {p}, in the order of i’s preferences, i.e., placing c1 in the high-
est available position and cm−1 in the lowest available position. In
what follows, we will shift the candidates around in order to make
p the winner.

Round `, ` = 1, . . . ,m − 1 Suppose that in the beginning of the
round candidate c` is ranked in position j. If j is safe for c`, we
pin c` to position j (which then becomes unavailable) and proceed
to the next round. Otherwise, we find the smallest value of h such
that position h is available and safe for c`; if no such value of h can
be found, we terminate and return ⊥. If a suitable value of h has
been identified (note that h > j), then c` gets pinned to position
h, and all unpinned candidates in positions j+ 1, . . . , h are shifted
one available position upwards.

If A does not abort (i.e., return ⊥), it terminates at the end of
the (m − 1)-st round and returns the vote obtained at that point.
Each round involves O(m) score comparisons and shifts, and each
comparison can be performed in time O(log(nα1)); this implies
the bound of O(m2 log(nα1)) on the running time. It remains to
argue that A works correctly.

The following observation will be useful for our analysis.

LEMMA 4.2. Suppose that at the beginning of round ` candi-
date c` is ranked in position j. Then positions 1, . . . , j − 1 are not
available at that point.

PROOF. An easy inductive argument shows that the set of can-
didates ranked above c` at the beginning of round ` is a subset of
{c1, . . . , c`−1}. For each t = 1, . . . , ` − 1, candidate ct is pinned
in round t and therefore by the beginning of round ` his position is
unavailable. As this holds for all positions above j, the lemma is
proved.

We split the rest of proof into two lemmas.

LEMMA 4.3. If the subroutine A(C,R, i, p, f) outputs a vote
L̂ then L̂ ∈ Lf (α), and if it outputs ⊥ then Lf (α) = ∅.

PROOF. By construction, if A outputs a vote L̂, then r(p, L̂) =
f . Moreover, every other candidate cj can only be pinned to a
position that is safe for him. Since A returns L̂ only when all can-
didates in C are pinned, we have Fα(C, (R−i, L̂)) = {p}, and
hence L̂ ∈ Lf (α).

Now, suppose that A(C,R, i, p, f) =⊥. This means that for
some candidate c`, ` ≤ m− 1, our algorithm was unable to find an
available safe position. Let L̂ be the vote constructed by the algo-
rithm by the beginning of round `, and let h be the lowest available
position at the beginning of round `.

Suppose for the sake of contradiction that Lf (α) 6= ∅, and let L
be some vote in Lf (α). Since the algorithm has output ⊥, position
h is not safe for c`. Thus, in L candidate c` is ranked in position
h + 1 or lower. Consequently, some candidate ct that is ranked
in position h + 1 or lower in L̂ must be ranked in position h or
higher in L. Since positions h + 1, . . . ,m are not available at the
beginning of round `, they are occupied by candidates who were
pinned to these positions in earlier rounds (and, possibly, by p),
i.e., t < `. This means that position h was available when ct was
processed, but the algorithm chose not to place ct in position h. By

Lemma 4.2, it was not the case that ct was pinned to the position it
was in at the beginning of round t. Hence, the reason why ct was
ranked in position h+ 1 or lower was that h (and, a forteriori, any
position above h) was not safe for ct. On the other hand, we have
argued that ct is ranked in position h or higher in L, a contradiction
with L ∈ Lf (α). Thus it has to be the case that Lf (α) = ∅.

LEMMA 4.4. If A(C,R, i, p, f) = L̂, then dswap(L̂, Ri) ≤
dswap(L,Ri) for all L ∈ Lf (α).

PROOF. We will prove a somewhat stronger statement: there
is a unique optimal vote in Lf (α), and this vote coincides with
L̂. Suppose for the sake of contradiction that there exists a vote
L ∈ Lf (α) such that dswap(L,Ri) ≤ dswap(L′, Ri) for all L′ ∈
Lf (α) and L 6= L̂. Let c` be the first candidate ranked differently
by L and L̂, i.e., ` = min{j | r(cj , L) 6= r(cj , L̂)}.

Suppose first that r(c`, L̂) > r(c`, L). It cannot be the case
that c` remains in place during round `: by Lemma 4.2 all posi-
tions above c` in L̂ are filled with candidates in {c1, . . . , c`−1},
and r(cj , L̂) = r(cj , L) for j < `. Hence, c` has to move during
round `. Now, r(c`, L̂) is the highest available position that is safe
for c`. Since r(c`, L) is necessarily safe, it follows that r(c`, L)
must be unavailable at the beginning of round `. However, this
means that there is a candidate cj , j < `, pinned to this position
in L̂, and all such candidates are ranked in the same positions in L
and L̂, a contradiction.

Thus, it has to be the case that r(c`, L̂) < r(c`, L). Let cj be the
candidate ranked in position r(c`, L̂) in L; we have j > ` by our
choice of `. Let L′ be the vote obtained from L by swapping c` and
cj . We claim thatL′ ∈ Lf (α) and dswap(L′, Ri) < dswap(L,Ri),
thus contradicting our choice of L.

To see that L′ ∈ Lf (α), observe that after the swap the scores of
all candidates other than c` do not go up and r(c`, L′) = r(cj , L) =

r(c`, L̂), so position r(c`, L′) is safe for c`. It remains to prove
that dswap(L′, Ri) < dswap(L,Ri). To this end, we need and ad-
ditional definition: we say that a pair of candidates (c, c′) is an in-
version in a voteR if r(c, Ri) < r(c′, Ri), but r(c, R) > r(c′, R).
Clearly, the swap distance from R to Ri is simply the number of
inversions in R. Thus, our goal is to show that L′ has fewer inver-
sions than L.

Observe first that (cj , c`) is an inversion in L, but not in L′.
Among all other pairs of candidates, it suffices to consider pairs of
the form (cj , c) and (c, c`), where c is ranked between cj and c` in
L; any other pair of candidates is an inversion in L if and only if it
is an inversion in L′.

Since j > `, we have three possibilities:

c` �i c �i cj . In this case, both (cj , c) and (c, c`) are inversions
in L, but neither of them is an inversion in L′.

c` �i cj �i c. In this case, (c, c`) is an inversion in L, but (cj , c)
is not. On the other hand, (c, cj) is an inversion in L′, but
(c`, c) is not.

c �i c` �i cj . In this case, (cj , c) is an inversion in L, but (c, c`)
is not. On the other hand, (c`, c) is an inversion in L′, but
(c, cj) is not.

Thus, for any candidate c ranked between cj and c` inL the pairs
involving c contribute at least as much to the inversion count of L
as to that of L′. By taking into account the pair (cj , c`) itself, we
conclude that dswap(L′, Ri) < dswap(L,Ri), a contradiction.

It follows that L̂ is the optimal vote in Lf (α) and the proof of
the lemma is complete.

622



The theorem now follows easily from Lemmas 4.3 and 4.4.

We have already explained how to convert the subroutine A into an
algorithm for OPTMANIPULATION. Thus, we obtain the following
corollary.

COROLLARY 4.5. For every polynomial-time computable fam-
ily F̂ = (Fm

α )m=1,... of scoring rules, the problem (dswap, F̂)-
OPTMANIPULATION is in P.

For the Bucklin rule, the algorithm is essentially the same; the
only difference is in the definition of a safe position.

THEOREM 4.6. (dswap,Bucklin)-OPTMANIPULATION is in P.

PROOF SKETCH. Consider an election (C,R) and a manipula-
tor i. Just as in the proof of Theorem 4.1, it suffices to design a
procedure that, for a given value of f ∈ {1, . . . ,m}, searches for
the best manipulative vote that ranks p in position f and returns ⊥
if no such vote can make p the unique winner.

Fix a particular value of f , and let Lf = {L ∈ L(C) | r(p, L) =
f}. Let Lf be an arbitrary vote in Lf . Let r∗ be the smallest value
of r such that p’s r-approval score in (C, (R−i, Lf )) is greater
than n/2; note that r∗ does not depend on the choice of Lf . For
every candidate c ∈ C, and every r = 1, . . . ,m, let sr(c) denote
c’s r-approval score in (C,R−i), and let s be p’s r∗-approval score
in (C, (R−i, Lf )); note that s > n/2.

To make p the winner, we need to ensure that r∗ is the Bucklin
winning round and that the r∗-approval score of any candidate c ∈
C \{p} does not exceed s. Thus, if there is a candidate c ∈ C \{p}
such that sr(c) > n/2 for some r < r∗ or sr∗(c) ≥ s, then there
is no vote in Lf that makes p the unique election winner, so we
return ⊥ and stop.

Now, suppose that this is not the case. Set C1 = {c ∈ C \ {p} |
sr∗(c) = s − 1}, C2 = {c ∈ C \ (C1 ∪ {p}) | sr(c) =
bn
2
c for some r < r∗}. Intuitively, candidates from C1 can pre-

vent p from winning by receiving the same r∗-approval score as
p, which happens if they are ranked in the top r∗ positions. Simi-
larly, candidates from C2 can prevent p from winning by receiving
a strict majority vote in an earlier round; this happens if they are
ranked in the top r∗ − 1 positions. Thus, p is the unique Buck-
lin winner in the election where the manipulator submits a vote
L ∈ Lf if and only if (a) r(c, L) > r∗ for all c ∈ C1 and (b)
r(c, L) ≥ r∗ for all c ∈ C2. We will say that a position j is safe
for a candidate c ∈ C \ {p} if (1) c 6∈ C1 ∪ C2 or (2) c ∈ C1 and
j > r∗ or (3) c ∈ C2 and j ≥ r∗. The argument above shows that
p is the unique Bucklin winner in (C, (R−i, L)) if and only if in L
each candidate c 6= p is ranked in a position that is safe for him.

Given this definition of a safe position, we can apply the algo-
rithm for scoring rules described in the proof of Theorem 4.1; note
that this algorithm operates in terms of safe positions rather than
actual scores. The proofs of correctness and optimality are identi-
cal to those for scoring rules (these proofs, too, are phrased in terms
of safe positions).

4.2 Maximin and Copeland
For both Maximin and Copeland, finding an optimal manipula-

tion with respect to the swap distance turns out to be computation-
ally hard. In fact, we will prove that the optimization versions of
these problems (see Remark 3.3) cannot be approximated up to a
factor of δ log |C| for some δ > 0 unless P=NP; this implies, in
particular, that the decision versions of these problems are NP-hard
(and hence, by Remark 3.2, NP-complete).

We provide reductions from the optimization version of the SET
COVER problem [10]. Recall that an instance of SET COVER is

given by a ground set G = {g1, . . . , gt} and a collection S =
{S1, . . . , Sr} of subsets of G. In the optimization version of the
problem, the goal is to find the smallest value of h such that G
can be covered by h sets from S; we denote this value of h by
h(G,S). More formally, we are interested in the smallest value of
h such that G = ∪S′∈S′S′ for some collection of subsets S ′ ⊆ S
with |S ′| = h. A ρ-approximation algorithm for SET COVER is
a procedure that, given an instance (G,S) of set cover, outputs a
value h′ that satisfies h(G,S) ≤ h′ ≤ ρ · h(G,S). There exists
a δ > 0 such that SET COVER does not admit a polynomial-time
δ log t-approximation algorithm unless P=NP [17]. The inapprox-
imability result still holds if we assume that (1) G = ∪S∈SS; (2)
t ≤ r; and (3) r ≤ tK for some positive constant K. Indeed, if (1)
fails, the instance does not admit a solution, (2) can be achieved by
duplicating sets in S, and (3) follows by a careful inspection of the
proof in [17]. Thus, in what follows, we only consider instances of
SET COVER that satisfy conditions (1)–(3).

THEOREM 4.7. There exists a δ > 0 s. t. (dswap,Maximin)-
OPTMANIPULATION does not admit a polynomial-time δ log |C|-
approximation algorithm unless P=NP.

PROOF. Suppose that we are given an instance (G,S) of SET
COVER with G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satisfies
conditions (1)–(3).

In our election, the candidate set isC = {p}∪G∪X∪S, where
X = {x1, . . . , x2r} and S = {s1, . . . , sr}.

The proof of McGarvey theorem [14] implies that we can con-
struct a preference profile R′ with n′ voters, where n′ is polyno-
mially bounded in t and r, so that n′ is even and:

• For any c ∈ C \ {p} exactly n′/2 − 2 voters prefer p to c.
• For any Sj ∈ S and any g` ∈ Sj exactly n′/2 − 2 voters

prefer g` to sj .
• For any other pair of candidates (c, c′) ∈ G ∪ S × G ∪ S,

exactly n′/2 voters prefer c to c′.
• For j = 1, . . . , 2r − 1 exactly n′/2 − 4 voters prefer xj to
xj+1, and n′/2 − 4 voters prefer x2r to x1.

• For any gj ∈ G and any x ∈ X exactly n′/2 voters prefer
gj to x.

• For any sj ∈ S and any x ∈ X exactly n′/2 − 4 voters
prefer sj to x.

Denote the Maximin score of candidate c in election (C,R′) by
s(c). We have s(p) = n′/2− 2, s(gj) = n′/2− 2 for any gj ∈ G
(this follows from condition (1)), s(sj) = n′/2−4 for any sj ∈ S,
and s(xj) = n′/2 − 4 for any xj ∈ X .

We let n = n′+1, i = n and set our preference profile to be R =
(R′, Rn), where voter n (the manipulator) ranks the candidates as

p � g1 � . . . � gt � x1 � . . . � x2r � s1 � . . . � sr.

This completes the description of our (dswap,Maximin)-OPTMA-
NIPULATION instance (as we consider the optimization version of
the problem, we need not specify k).

Observe that p’s final Maximin score is n′/2−1 if and only if the
manipulator ranks p first. Further, the final Maximin score of any
candidate in X ∪ S is at most n′/2− 3. Finally, the final Maximin
score of a candidate gj ∈ G is n′/2−1 if in the manipulator’s vote
gj appears above all candidates s` such that gj ∈ S` and n′/2 − 2
otherwise. Thus, to make p the unique winner, the manipulator
should rank him first, and rank each candidate gj ∈ G below a
candidate representing a set that covers gj .

Suppose that h(G,S) = h, i.e., there exists a collection of sub-
sets S ′ = {Si1 , . . . , Sih} with i1 < . . . < ih such that ∪S′∈S′S′ =
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G. Consider a vote L that ranks p first, followed by candidates
si1 , . . . , sih (in this order), followed by candidates inX∪G (in the
order of their appearance in Rn), followed by the remaining candi-
dates in S (in the order of their appearance inRn). By the argument
above, p is the unique Maximin winner of (C, (R′, L)). Further-
more, we have dswap(L,Rn) ≤ h(t+ 2r+ (r−h)): to transform
Rn into L, we swap each of the candidates sij , j = 1, . . . , h, with
(a) t candidates in G, (b) 2r candidates in X and (c) at most r − h
candidates in S. By condition (2), we obtain dswap(L,Rn) ≤ 4hr.

On the other hand, consider an arbitrary vote L′ such that p is
the unique Maximin winner of (C, (R′, L′)). Construct a bipartite
graph with the vertex setG∪S in which there is an edge between gj
and s` if and only if s` is ranked above gj in L′. We claim that this
graph contains a matching of size h. To see this, consider a greedy
algorithm that constructs a matching by inspecting the vertices in
G one by one and matching each vertex to one of its previously
unmatched neighbors in S; if some vertex in G cannot be matched,
the algorithm proceeds to the next vertex. If this algorithm termi-
nates without finding h edges, it means that the matched vertices in
S correspond to a cover of size at most h− 1, a contradiction with
h(G,S) = h.

Consider a pair of candidates (gj , s`) that corresponds to an edge
of this matching, and an arbitrary candidate x ∈ X . It cannot be
the case that L′ ranks gj above x and x above s`: otherwise, by
transitivity, L′ would rank gj above s`. Therefore, at least one of
the pairs (gj , x) and (x, s`) is ordered differently in Rn and L′,
and therefore each edge of the matching contributes at least 2r to
the swap distance between L′ and Rn. Summing over all edges of
the matching, we obtain that dswap(Rn, L

′) ≥ 2hr.
Now, suppose that there is a polynomial-time ρ-approximation

algorithm M for (dswap,Maximin)-OPTMANIPULATION: given
an instance of (dswap,Maximin)-OPTMANIPULATION that admits
a successful manipulative vote L with dswap(L,Ri) = k, this al-
gorithm outputs a value k′ that satisfies k ≤ k′ ≤ ρk. Consider
the following algorithm M′ for SET COVER: given an instance
(G,S) of SET COVER with |G| = t, |S| = r, M′ transforms it
into an instance of (dswap,Maximin)-OPTMANIPULATION as de-
scribed above, applies M, and divides the returned value by 2r.
Clearly, M′ runs in polynomial time. We claim that it provides a
2ρ-approximation algorithm for SET COVER.

Indeed, let h = h(G,S). Then for the corresponding instance of
(dswap,Maximin)-OPTMANIPULATION there exists a successful
manipulative vote L with dswap(L,Ri) ≤ 4hr and hence M out-
puts a value k′ that satisfies k′ ≤ 4ρhr. On the other hand, for any
successful manipulative vote L′ we have dswap(L′, Ri) ≥ 2hr,
and hence the value k′ output by M satisfies k′ ≥ 2hr. Thus, M
produces a value h′ that satisfies h ≤ h′ ≤ 2ρh.

Since |C| = O(t + r) and, by condition (3), r ≤ tK (where K
is a constant whose value can be extracted from the proof in [17]),
we have log |C| ≤ γ log t for a suitable constant γ > 0. There-
fore, if there exists a polynomial-time (δ′ log |C|)-approximation
algorithm for (dswap,Maximin)-OPTMANIPULATION for δ′ > 0,
then there exists a polynomial-time (2δ′γ log t)-approximation al-
gorithm for SET COVER. By [17], for small enough δ this implies
P=NP.

The argument for Copeland is similar.

THEOREM 4.8. There exists a δ > 0 such that for any α ∈ Q∩
[0, 1], (dswap,Copelandα)-OPTMANIPULATION does not admit a
polynomial-time δ log |C|-approximation algorithm unless P=NP.

PROOF SKETCH. Suppose that we are given an instance (G,S)
of SET COVER with G = {g1, . . . , gt}, S = {S1, . . . , Sr} that

satisfies conditions (1)–(3); we will additionally assume that t and
r are odd.

In our election, the candidate set is C = {p} ∪ G ∪ X ∪ S,
where X = {x1, . . . , x6r} and S = {s1, . . . , sr}. There exists a
tournament over the candidate set C such that that:

• p beats all candidates in G ∪ S as well as 6r − (t + 1)/2
candidates in X , and loses to all other candidates in X .

• Every candidate gi ∈ G is tied with all candidates s` such
that gi ∈ S` and beats all other candidates in X ∪ S.

• Every candidate inG beats exactly (t−1)/2 other candidates
in G.

• Every candidate in X ∪ S beats exactly (7r − 1)/2 other
candidates in X ∪ S.

Thus, by McGarvey theorem [14], we can construct a preference
profile R′ with n′ voters that generates this tournament; moreover,
we can assume that n′ is even and polynomially bounded in t and r,
We let n = n′ + 1, i = n and set our preference profile to be R =
(R′, Rn), where voter n (the manipulator) ranks the candidates as

p � g1 � . . . � gt � x1 � . . . � x6r � s1 � . . . � sr.

This completes the description of our (dswap,Copelandα)-OPT-
MANIPULATION instance; note that n is even and therefore the
value of α is unimportant for our analysis.

Observe that in R the Copeland score of p is (t − 1)/2 + 7r,
the Copeland score of each gj ∈ G is (t − 1)/2 + 7r, and the
Copeland score of each candidate inX ∪S is at most (7r−1)/2+
1 < 4r. Thus, under truthful voting p is not the unique winner;
indeed, for p to be the unique winner, in the manipulator’s vote
every candidate gj ∈ G must be ranked below some candidate s`
such that gj ∈ S`. Note also that the manipulator’s vote can only
affect the outcomes of pairwise elections for candidate pairs of the
form (gj , s`), gj ∈ S`. Thus, no matter how the manipulator votes,
the Copeland score of every candidate x ∈ X is at most 4r <
(t− 1)/2 + 7r, and the Copeland score of every candidate s` ∈ S
is at most 4r + t < (t− 1)/2 + 7r (recall that we assume t < r),
and hence candidates inX ∪S are not among the election winners.
We conclude that L is a successful manipulative vote if and only if
it ranks each candidate gj ∈ G below a candidate representing a set
that covers gj , This condition is almost identical to the one in the
proof of Theorem 4.7, and, from this point on, the proof repeats the
proof of Theorem 4.7 almost verbatim; the reader can verify that
the analysis is not negatively impacted by the fact that the set X
contains 6r candidates (rather than 2r candidates, as in the proof
of Theorem 4.7).

5. FOOTRULE DISTANCE
For the footrule distance our analysis turns out to be much eas-

ier than for the swap distance: for scoring rules and Bucklin, we
design a simple matching-based algorithm, and for Copeland and
Maximin we can use the fact that the swap distance and the footrule
distance are always within a factor of 2 from each other, as this al-
lows us to inherit the hardness results of the previous section.

5.1 Scoring Rules and Bucklin
The overall structure of our argument is similar to the one in

Section 4: for any scoring rule Fα with α = (α1, . . . , αm) we will
design a procedure A′ that, given an election (C,R) with |C| =
m, a voter i, the preferred candidate p, a target position f for the
preferred candidate, and a bound k on the distance, constructs a
vote L such that (a) F(C, (R−i, L)) = {p}; (b) r(p, L) = f ; (c)
dfr(L,Ri) ≤ k, or returns ⊥ if no such vote exists. We then run
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this procedure for f = 1, . . . ,m and return “yes” if at least one of
these calls does not return ⊥.

We assume without loss of generality that the manipulator ranks
the candidates as c1 �i . . . �i cm (note that this is different from
the assumption we made in Section 4), and denote by sα(c) the
score of a candidate c ∈ C in election (C,R−i) under the voting
rule Fα. Let r be the rank of p in i’s truthful vote, i.e., p = cr .

A′ proceeds by constructing a bipartite graph G with parts X =
C \{p} and Y = {1, . . . ,m}\{f}; there is an edge from cj to ` if
and only if position ` is safe for cj , i.e., sα(cj)+α` < sα(p)+αf ,
Each edge has a weight: the weight of the edge (cj , `) is simply
|j−`|. Clearly, there is a one-to-one correspondence between votes
L that rank p in position f and satisfy Fα(C, (Ri, L)) = {p}
and perfect matchings in this graph. Furthermore, the cost of a
matching M is x if and only if the corresponding vote LM sat-
isfies dfr(LM , Ri) = x + |r − f |. Thus, it suffices to find a
minimum cost perfect matching in G; our algorithm returns the
vote L that corresponds to this matching if its cost does not exceed
k−|r−f | and ⊥ otherwise. The graphG can be constructed in time
O(m2 log(nα1)), and a minimum-cost matching can be found in
time O(m3) [4].

We summarize these observations as follows.

THEOREM 5.1. For every polynomial-time computable family
F̂ = (Fm

α )m=1,... of scoring rules, the problem (dfr, F̂)-OPTMA-
NIPULATION is in P.

For the Bucklin rule, it suffices to combine the matching-based
algorithm given above with the definition of a safe position given
in the proof of Theorem 4.6. We obtain the following corollary.

COROLLARY 5.2. (dfr,Bucklin)-OPTMANIPULATION is in P.

5.2 Maximin and Copeland
In Section 2 we have mentioned that for any candidate set C

and any pair of votes L,R ∈ L(C) we have dswap(L,R) ≤
dfr(L,R) ≤ 2dswap(L,R) [5].

Now, suppose that there exists a ρ-approximation algorithm Afr

for (dfr,F)-OPTMANIPULATION for some voting rule F . Con-
sider an instance (C,R, i, p) of (the optimization version of) this
problem, and let

L′ = {L ∈ L(C) | F(C, (R−i, L)) = {p}}.
If L′ 6= ∅, let k = min{dfr(L,Ri) | L ∈ L′}. On this instance
Afr outputs a value k′ that satisfies k ≤ k′ ≤ ρk; this value corre-
sponds to a vote L ∈ L′ such that dfr(L,Ri) = k′.

Now, for any vote L′ ∈ L′ we have

dswap(L′, Ri) ≥ 1

2
dfr(L

′, Ri) ≥ k

2
.

On the other hand, for L we obtain

dswap(L,Ri) ≤ dfr(L,Ri) = k′ ≤ ρk.

Now, consider an algorithm Aswap for (dswap,F)-OPTMANIPU-
LATION that, given an instance of the problem, runs Afr on it
and returns the value reported by Afr. The computation above
proves that Aswap is a 2ρ-approximation algorithm for (dswap,F)-
OPTMANIPULATION (note that Aswap returns +∞ if and only if
L′ = ∅). Combining this observation with Theorems 4.7 and 4.8,
we obtain the following corollaries.

COROLLARY 5.3. There exists a δ > 0 s. t. (dfr,Maximin)-
OPTMANIPULATION does not admit a poly-time δ log |C|-appro-
ximation algorithm unless P=NP.

COROLLARY 5.4. There exists a δ > 0 such that for any α ∈
Q∩ [0, 1], (dfr,Copelandα)-OPTMANIPULATION does not admit
a poly-time δ log |C|-approximation algorithm unless P=NP.

6. MAX DISPLACEMENT DISTANCE
Maximum displacement distance is fairly generous to the ma-

nipulator. Indeed, the optimal manipulation problems for swap dis-
tance and footrule distance become trivial if the maximum distance
k is bounded by a constant: in this case, there are only polyno-
mially many possible manipulative votes, and the manipulator can
try all of them. In contrast, for the maximum displacement dis-
tance, there are exponentially many votes even at distance 2 from
the true vote (to see this, cut the manipulator’s vote into segments
of length 3; within each segment, the candidates can be shuffled in-
dependently). Nevertheless, from the algorithmic perspective max-
imum displacement distance exhibits essentially the same behav-
ior as swap distance and footrule distance: we can design efficient
algorithms for all scoring rules and the Bucklin rule, and derive
NP-hardness results for Copeland and Maximin.

6.1 Scoring Rules and Bucklin
For scoring rules, we can use a simplified variant of the min-cost

matching argument given in Section 5.1. Again, suppose that we
are given a scoring rule Fα with α = (α1, . . . , αm), an election
(C,R) with |C| = m, a manipulator i, a preferred candidate p
and a distance bound k. We assume that the manipulator ranks the
candidates as c1 �i . . . �i cm. For each f = 1, . . . ,m we try
to find a successful manipulative vote L with dmd(L,Ri) ≤ k that
ranks p in position f ; in fact, it suffices to consider only values of
f that satisfy |f − r(p,Ri)| ≤ k. For each such f , we construct
a bipartite graph G with parts C \ {p} and {1, . . . ,m} \ {f}. In
this graph, there is an edge from cj to ` if and only if ` is safe for
cj (we use the same definition of a safe position as in Section 5.1)
and |` − j| ≤ k. In contrast to the construction in Section 5.1,
the graph is unweighted. It is immediate that there is a one-to-
one correspondence between perfect matchings inG and successful
manipulative votes at distance at most k from Ri. Thus, we obtain
the following result.

THEOREM 6.1. For every polynomial-time computable family
F̂ = (Fm

α )m=1,..., of scoring rules, the problem (dmd, F̂)-OPT-
MANIPULATION is in P.

For the Bucklin rule, we use the same approach as in Section 5,
i.e., combine the matching-based algorithm with the definition of
a safe position given in the proof of Theorem 4.6. This results in
following corollary.

COROLLARY 6.2. (dmd,Bucklin)-OPTMANIPULATION is in P.

6.2 Maximin and Copeland
For Maximin and Copeland, finding an optimal manipulation

with respect to the maximum displacement distance is computa-
tionally hard; however, in contrast with our results in Sections 4
and 5, we are only able to show the NP-hardness of the decision
version of this problem (rather than inapproximability of its opti-
mization version). We omit the proofs of the following two theo-
rems due to space constraints; both proofs are based on (somewhat
involved) reductions from SET COVER.

THEOREM 6.3. (dmd,Maximin)-OPTMANIPULATION is NP-
complete.

THEOREM 6.4. For any α ∈ Q ∩ [0, 1], (dmd,Copelandα)-
OPTMANIPULATION is NP-complete.
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7. OPTIMAL MANIPULABILITY AND
SWAP BRIBERY

The problem of finding an optimal manipulation with respect
to the swap distance can be viewed as a special case of the swap
bribery problem [8]. In the swap bribery model, there is an ex-
ternal party that wants to make a particular candidate the election
winner. This party can pay the voters to change their preference
orders, with a price assigned to swapping each pair of candidates
in each vote. The goal is to decide whether the manipulator can
achieve his goal given a budget constraint. Clearly, our problem is
a special case of swap bribery, where for one voter each swap has
unit cost, and for the remaining voters the prices are set to +∞.
Swap bribery is known to be hard, even to approximate, for almost
all prominent voting rules, including such relatively simple rules as
2-approval. Thus, the easiness results of Section 4 identify a new
family of easy instances of the swap bribery problem, thus comple-
menting the results of [7, 6, 19]. It would be interesting to see if
a somewhat more general variant of the swap bribery problem for
scoring rules, where only one voter can be bribed but swap bribery
prices can be arbitrary, remains tractable; it is not clear if the algo-
rithm given in Section 4 can be adapted to handle this setting.

On the other hand, one may wonder if the hardness results of
Section 4 are implied by the existing hardness results for swap
bribery. However, this does not seem to be the case: the hardness
(and inapproximability) of swap bribery for Copeland and Max-
imin follows from the hardness results for the possible winner prob-
lem [21], and the latter problem is easy if all but one voter’s prefer-
ences are fixed (it can be verified that the algorithm of Bartholdi et
al. [2] works even if the positions of some candidates in the vote are
already fixed). Thus, the hardness results for Copeland and Max-
imin given in Section 4 strengthen the existing hardness results for
swap bribery with respect to these rules.

8. CONCLUSIONS AND FUTURE WORK
We have considered the problem of finding a successful manip-

ulative vote that differs from the manipulators’ preferences as little
as possible, for three distance measures on votes and four types of
voting rules. Our results are summarized in Table 1 (where “NPC”
stands for “NP-complete” and “(logm)-inapp.” stands for “inap-
proximable up to a factor of Ω(logm)”).

A natural direction for future work is extending our results to
other distances on votes; for instance, it should not be too hard to
generalize our results for weighted variants of swap and footrule
distances; such distances play an important role in several applica-
tions of rank aggregation, and have received considerable attention
in the literature (see [13] and references therein). At a more tech-
nical level, we remark that for maximum displacement distance we
only have NP-hardness results for Copeland and Maximin; it would
be interesting to see if this variant of our problem admits efficient
approximation algorithms.

Sc. rules Bucklin Copeland Maximin
dswap P P (logm)-inapp. (logm)-inapp.

dfr P P (logm)-inapp. (logm)-inapp.
dmd P P NPC NPC

Table 1: Summary of results
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ABSTRACT
An important research topic in the field of computational social
choice is the complexity of various forms of dishonest behavior,
such as manipulation, control, and bribery. While much of the
work on this topic assumes that the cheating party has full infor-
mation about the election, recently there have been a number of
attempts to gauge the complexity of non-truthful behavior under
uncertainty about the voters’ preferences. In this paper, we an-
alyze the complexity of (coalitional) manipulation for the setting
where there is uncertainty about the voting rule: the manipulator(s)
know that the election will be conducted using a voting rule from a
given list, and need to select their votes so as to succeed no matter
which voting rule will eventually be chosen. We identify a large
class of voting rules such that arbitrary combinations of rules from
this class are easy to manipulate; in particular, we show that this
is the case for single-voter manipulation and essentially all easy-
to-manipulate voting rules, and for coalitional manipulation and
k-approval. While a combination of a hard-to-manipulate rule with
an easy-to-manipulate one is usually hard to manipulate—we prove
this in the context of coalitional manipulation for several combina-
tions of prominent voting rules—we also provide counterexamples
showing that this is not always the case.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Economics, Theory

Keywords
Computational Social Choice, Manipulation, Uncertainty

1. INTRODUCTION
Voting is an established framework for making collective deci-

sions, and as such has applications in settings that range from po-
litical elections to faculty hiring decisions, selecting the winners
of singing competitions, and the design of multiagent systems. In
some of these settings, the number of candidates and/or voters can
be large, yet the decision needs to be made quickly. Whenever this

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is the case, the algorithmic complexity of, on the one hand, winner
determination and, on the other hand, various forms of dishonest
behavior in elections, plays an important role in the selection of a
voting rule: we want the former to be as low as possible, while
keeping the latter as high as possible.

Traditionally, the complexity of voting rules is studied under the
full information assumption: for instance, in the single-voter ma-
nipulation problem, which is perhaps one of the most fundamental
problems in the complexity-theoretic analysis of voting rules, it is
assumed that the manipulator knows the set of candidates, the num-
ber and the true preferences of all honest voters, and, crucially, the
voting rule. However, it is widely recognized that this assumption
is not always realistic, and recently a number of papers tried to ana-
lyze the complexity of cheating in elections and/or determining the
likely election winners under various forms of uncertainty about
the election (see Section 1.1 for an overview).

In this paper, we study the complexity of manipulation (both by
a single voter and by a coalition of voters) in settings where there is
uncertainty about the voting rule itself. That is, we assume that the
manipulator(s) know that the voting rule belongs to a certain (finite
or infinite) family of rules bF , and they want to select their votes so
as to ensure that their preferred candidate wins, no matter which of
the rules in bF is chosen.

Admittedly, in political elections the voting rule to be used is typ-
ically known before the votes are cast, and the manipulator would
be well advised to fully understand the voting rule before modify-
ing her vote. However, in other applications of voting this is not
always the case. For instance, it is not unusual for a university de-
partment to ask graduate students to provide a ranking of faculty
candidates; however, the graduate students are not told how the
hiring committee makes its decision (anecdotally, a wide variety
of voting rules can be used for this purpose). Another example is
provided by conference reviewing: at some point in the decision-
making process, the program committee members may be asked to
rank the papers whose fate has not been decided yet; the PC chair
will then aggregate the rankings in a way that has not been an-
nounced to the PC members (and may, in fact, be unknown to the
PC chair when she initiates the process). In some of these settings,
the voters may believe that the voting rule will be chosen from a
specific family of rules: for instance, the voters may know that the
rule to be used is a scoring rule, or, more narrowly, a k-Approval
rule (with the value of k unknown), or a Condorcet-consistent rule
(see Section 2 for definitions); the situation where the voters know
the voting correspondence, but not the tie-breaking rule is also cap-
tured by this description. They may then want to select their votes
so that their favorite candidate wins the election no matter which of
the voting rules in this family is chosen.

We study the complexity of this problem for several families of
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voting rules. We limit ourselves to the setting of voting manipu-
lation (either by a single voter or by a coalition of voters), though
one can ask the same question in the context of election control or
bribery (see, e.g., [13] for the definitions and a survey of recent re-
sults for these problems). We mostly focus on families that consist
of a small number (usually, two) prominent voting rules, such as
Plurality, k-Approval, Borda, Copeland, Maximin and STV. Our
goal is not to classify all such combinations or rules: rather, we try
to illustrate the general techniques that can be used for the analysis
of such settings.

One would expect a combination of easy-to-manipulate rules
to be easy to manipulate, and a combination of several hard-to-
manipulate rules or an easy-to-manipulate one with a hard-to-ma-
nipulate one to be hard to manipulate. Our results for classic voting
rules mostly confirm this intuition, with the exception of settings
where we combine a hard-to-manipulate rule with one that is very
indecisive. However, we show that these results are not univer-
sal: we provide an example of two hard-to-manipulate rules whose
combination is easy to manipulate, as well as an example of two
easy-to-manipulate rules whose combination is hard to manipulate.
While the rules used in these constructions are fairly artificial, they
nevertheless illustrate interesting aspects of our problem.

1.1 Related Work
Our works fits into the stream of research on winner determina-

tion and voting manipulation under uncertainty. In the context of
winner determination, perhaps the most prominent problem in this
category is the possible/necessary winner problem [16], where the
voting rule is public information, but, for each voter, only a par-
tial order over the candidates in known; the goal is to determine if
a candidate wins the election for some way (the possible winner)
or for every way (the necessary winner) of completing the voters’
preferences; a probabilistic variant of this problem has also been
considered [1]. Our problem is more similar in flavor to the nec-
essary winner problem, as the manipulator has to succeed for all
voting rules in the family.

Uncertainty about the voting rule has been recently investigated
by Baumeister et al. [5], who also consider the situation where the
voting rule will be chosen from a fixed set. In contrast to our work,
they assume that all voters’ preferences are known, and ask if there
is a voting rule that makes a certain candidate a winner with respect
to these preferences; thus, in their work the manipulating party is
the election authority rather than one of the voters.

Our problem is, in a sense, dual to the one considered by Conitzer
et al. [7]: in their model the voting rule is known, but the prefer-
ences of some of the honest voters are (partially) unknown; they ask
if the manipulator can cast a vote that improves the outcome (from
his perspective) for every realization of the honest voters’ prefer-
ences; thus, just like us, they assume an adversarial environment.

There has also been some work on settings where the effects
of the manipulator’s actions are uncertain. This is the case, for
instance, for the model of safe strategic voting [19], where one
voter announces a manipulative vote, and one or more voters with
the same true preferences may follow suit; the original manipula-
tor does not know how many followers he will have and needs to
choose the vote so as to improve the outcome for some number of
followers, while ensuring that the outcome does not get worse for
any number of followers. Another example is cloning [9], where
the cheating party clones one or more candidates; the voters are
assumed to rank the clones of a given candidate consecutively, but
the exact order of the clones in voters’ preferences is unknown.
Our work is most similar to the variant of this problem known as 1-
CLONING, where the cheating party has to succeed no matter how

the voters order the clones.
Finally, we remark that the idea of combining two or more voting

rules has been considered in early work on computational social
choice [10, 14]; however, in both of these papers, voting rules are
combined in a way that is very different from our work.

2. PRELIMINARIES
Given a finite set S, we denote by L(S) the space of all lin-

ear orders over S. An election is a triple E = (C, V,R), where
C = {c1, . . . , cm} is the set of candidates, V is the set of voters,
|V | = n, and R = (R1, . . . , Rn) is the preference profile, i.e., a
collection of linear orders over C. The order Ri is called the pref-
erence order, or vote, of voter i; we will also denote Ri by �i.
When a �i b for some a, b ∈ C, we say that voter i prefers a to b.
A candidate a is said to be the top-ranked candidate of voter i, or
receive a first-place vote from i, if a �i b for all b ∈ C \ {i}.

A voting correspondence F is a mapping that, given an elec-
tion E = (C, V,R) outputs a non-empty subset S ⊆ C; we write
S = F(E). The elements of the set S are called the winners of the
election E under F . If |F(E)| = 1 for any election E, the map-
ping F is called a voting rule; whenever this is the case, we abuse
notation and write F(R) = c instead of F(R) = {c}. We will
sometimes abuse terminology and refer to voting correspondences
as voting rules.

A voting correspondence F is said to be neutral if renaming the
candidates does not alter the set of winners: that is, for any election
E = (C, V,R) and any permutation π of the set C, the election
E′ obtained by replacing each candidate c in R by π(c) satisfies
F(E′) = {π(c) | c ∈ F(E)}. F is said to be monotone if
promoting a winning candidate does not make him lose the elec-
tion: if c ∈ F(E), then c ∈ F(E′), where E′ is obtained from
E by swapping c with the candidate ranked just above c in some
vote (this notion of monotonicity is sometimes referred to as weak
monotonicity).

Voting rules We will now describe the voting rules (correspon-
dences) considered in this paper. For all rules that assign scores to
candidates (i.e., scoring rules, Copeland, and Maximin), the win-
ners are the candidates with the highest scores.

Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm such that
α1 ≥ · · · ≥ αm defines a scoring rule Fα over a set of candidates
of size m: a candidate receives αj points from each voter who
ranks him in the j-th position, and the score of a candidate is the
total number of points he receives from all voters. The vector α
is called a scoring vector. We assume without loss of generality
that the entries of α are nonnegative integers given in binary. As
we require voting rules to be defined for any number of candidates,
we will consider families of scoring rules: one for every possible
number of candidates. We denote such families by {Fαm}m=1,...,
where αm = (αm1 , . . . , α

m
m) is the scoring vector of length m.

Two well-known examples of such families are Borda, given by
αm = (m− 1, . . . , 1, 0) for all m > 1, and k-Approval, given by
αmi = 1 if i ≤ k, αmi = 0 if i > k. The 1-Approval rule is also
known as Plurality.

Condorcet We say that a candidate a wins a pairwise election
against b if more than half of the voters prefer a to b; if exactly half
of the voters prefer a to b, then a is said to tie his pairwise election
against b. A candidate is said to be a Condorcet winner if he wins
pairwise elections against all other candidates. The Condorcet rule
outputs the Condorcet winner if it exists; otherwise, it outputs the
set of all candidates (recall that a voting correspondence should
always output a non-empty set of winners).
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Copeland Given a rational value α ∈ [0, 1], under the Copelandα

rule each candidate gets 1 point for each pairwise election he wins
and α points for each pairwise election he ties.
Maximin The Maximin score of a candidate c ∈ C is equal to
the number of votes he gets in his worst pairwise election, i.e.,
mind∈C\{c} |{i | c �i d}|.
STV Under the STV rule, the election proceeds in rounds. During
each round, the candidate with the lowest Plurality score is elim-
inated, and the candidates’ Plurality scores are recomputed. The
winner is the candidate that survives till the end. If several candi-
dates have the lowest Plurality score (we will refer to this situation
as an intermediate tie), we assume that the candidate to be elimi-
nated is chosen according to the lexicographic order over the can-
didates: if S is the set of candidates that have the lowest Plurality
score in some round, we eliminate the candidate cj such that j ≥ i
for all ci ∈ S. We remark that STV, as defined here, always has a
single winner; however, because of the lexicographic tie-breaking
rule it is not neutral.

3. PROBLEM STATEMENT
We assume that we are given a collection bF = {Fi}i∈I of voting

correspondences. The set bF can be finite of infinite; for instance,bF can be the set of all (families of) scoring rules, in which case it
is infinite. When bF is infinite, we assume that it admits a succinct
description; if bF is finite, it is assumed to be listed explicitly.

We consider the complexity of (coalitional) manipulation in elec-
tions when the manipulator does not know which of the voting rules
in bF will be selected. We state our definitions in the unique winner
model, i.e., we assume that the manipulator’s goal is to make its
preferred candidate the unique winner with respect to each of the
voting correspondences in bF ; however, most of our results remain
true in the co-winner model, where the manipulator would like to
ensure that its preferred candidate is one of the winners under each
of the voting correspondences in bF .

Name: bF -MANIPULATION BY SINGLE VOTER (SM)

Input: An election (C, V ) with |C| = m, |V | = n− 1, a prefer-
ence profile R = (R1, . . . , Rn−1), and a candidate p ∈ C.

Question: Is there a vote L ∈ L(C) such that p is the unique
winner in (R, L) with respect to each of the voting corre-
spondences in bF?

Voters 1, . . . , n − 1 are referred to as the honest voters, and the
last voter (the one who submits vote L and wants p to win) is re-
ferred to as the manipulator.

Name: bF -COALITIONAL MANIPULATION (CM)

Input: An election (C, V ) with |C| = m, |V | = h, a set M ,
|M | = s = n− h, a preference profile R = (R1, . . . , Rh),
and a candidate p ∈ C.

Question: Is there a profile L = (L1, . . . , Ls) ∈ Ls(C) such that
p is the unique winner in (R,L) with respect to each of the
voting correspondences in bF?

If bF is finite, we say that an algorithm A for bF -SM or bF -CM
is a polynomial-time algorithm if its running time is polynomial
in n, m, and | bF|; if bF is infinite, we require the running time of
A to be polynomial in n and m. We remark that bF -SM (respec-
tively, bF -CM) is in NP for any finite collection bF of polynomially
computable voting rules: it suffices to guess a manipulative vote L

(respectively, a list (L1, . . . , Ls) of manipulative votes) and verify
that it makes p the unique winner under every rule in bF . Thus, in
what follows, when proving that these problems are NP-complete
for some finite bF , we will only provide an NP-hardness proof.

Traditionally, the problems bF -SM and bF -CM are studied for
the case | bF| = 1. In what follows, whenever bF = {F}, we omit
the curly braces and write F -SM/CM instead of {F}-SM/CM to
conform with the standard notation.

4. MANIPULATION
We start by considering the SM problem. In their classic pa-

per [3], Bartholdi, Tovey and Trick show that this problem is poly-
nomial-time solvable for Copelandα (for every rational α ∈ [0, 1]),
Maximin, and all scoring rules (while Bartholdi et al. do not explic-
itly consider scoring rules other than Plurality and Borda, it is not
hard to see that their algorithm works for any scoring rule).

Remarkably, for all these rules the manipulative vote can be
found by essentially the same algorithm. This algorithm starts by
ranking p first; it is safe to do so, because all of these rules are
monotone. Note that at this point we can already compute p’s final
score; let us denote it by s(p). The algorithm then fills up posi-
tions 2, . . . ,m in the vote one by one. When considering position
i, i ≥ 2, it tries to place each of the still unranked candidates into
this position. At this point, the identities of the candidates in po-
sitions 1, . . . , i − 1 are already known, so one can determine the
score of each candidate c if it were to be placed in position i (this is
true for Copeland, Maximin and all scoring rules, but need not be
true in general, even for monotone rules); let us denote this quan-
tity by si(c). If there exists a candidate c such that si(c) < s(p), it
is placed in position i; if there are several such candidates, one of
them is selected arbitrarily. If no such candidate can be found, the
algorithm reports that no manipulative vote exists.

Bartholdi et al. prove the correctness of this algorithm for all vot-
ing correspondences that (1) are monotone and (2) have the prop-
erty that the score of a candidate c can be determined if we know
which candidates are ranked above and below c in each vote, and
the winners are the candidates with the highest score. Copelandα,
α ∈ Q∩ [0, 1], Maximin, and all scoring rules satisfy both of these
conditions, and STV satisfies neither of them; indeed, STV-SM is
known to be NP-complete [2].

We will now show that the algorithm of Bartholdi et al. extends
to bF -SM for any finite set bF that consists of voting correspon-
dences that satisfy (1) and (2).

THEOREM 4.1. Let bF be a finite set of voting rules such that
every rule Fi ∈ bF satisfies conditions (1) and (2). Then bF -SM
can be solved in polynomial time.

PROOF. Let bF = {F1, . . . ,F`}. Our algorithm proceeds in
rounds: in round i, i = 1, . . . ,m, we consider position i.

In the first round, we place p in the top position; let sj(p) denote
p’s score with respect to the rule Fj , j = 1, . . . , `, in the resulting
election.

Now, consider round i, i = 2, . . . ,m. For each candidate c that
has not been ranked in round 1, . . . , i − 1, let sji (c) be his score
under rule Fj if he were to be ranked in position i at this point. If
there exists an unranked candidate c such that sji (c) < sj(p) for
all j = 1, . . . , `, we place c in position i; if there are several such
candidates, we choose one of them arbitrarily. If no such candi-
date exists, we report that the input instance of bF -SM cannot be
manipulated. If we manage to successfully rank all candidates, we
report that there exists a successful manipulative vote; in fact, our
algorithm constructs it.
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Clearly, if our algorithm reports that a manipulative vote exists,
this is indeed the case. Conversely, suppose that our algorithm re-
ports that the given election cannot be manipulated. This means
that during some round i, we have sji (c) ≥ sj(p) for some voting
rule Fj ∈ bF and every candidate c that has not been ranked in
rounds 1, . . . , i−1. But then consider the execution of the original
algorithm of Bartholdi et al. [3] on the instance of Fj-SM given
by the same election. The algorithm of Bartholdi et al. could
have made exactly the same choices as our algorithm in rounds
1, . . . , j − 1. Therefore, it, too, would have reported that its input
instance is a “no”-instance. Since the algorithm of Bartholdi et al.
is known to be correct, this means that no manipulative vote could
have made p the unique winner with respect to Fj . Hence, our in-
stance of bF -SM is a “no”-instance as well, which means that our
algorithm is correct.

The proof of Theorem 4.1 is very simple. However, the result
itself plays a key role in our understanding of single-voter manip-
ulation under voting rule uncertainty. Indeed, to the best of our
knowledge, for all classic voting rules for which single-voter ma-
nipulation is known to be easy, a manipulative vote can be con-
structed using the algorithm of [3]. Therefore, we cannot hope to
put together two or more classic easy-to-manipulate rules so that
the manipulation problem with respect to the combination of these
rules is computationally hard.

One can nevertheless ask if such a combination of rules exists.
We will now show that the answer to this question is “yes”: we
present two easy-to-manipulate rules, which we will call STV1 and
STV2, such that STVi-SM is polynomial-time solvable for i =
1, 2 but {STV1, STV2}-SM is NP-hard. Admittedly, these rules
are not particularly natural; but then Theorem 4.1 shows that we
cannot hope to prove a result of this type for natural voting rules.

The main idea of the construction is that each of these rules can
be manipulated either by making p the STV winner or by using an
easy-to-compute “trapdoor”; however, the “trapdoors” for STV1

and STV2 are incompatible with each other, so, to manipulate both,
one needs to manipulate STV.

Formally, STV1 is defined as follows. Form ≤ 3, all candidates
are declared to be the winners. For m > 3, the rule is not neutral
in a very essential way: candidates cm−2, cm−1 and cm play a
special role. Specifically, if some voter ranks cm−3+j in position
m−3+j for j = 1, 2, 3, then the candidate ranked first by this voter
is declared to be the election winner; if there are several such voters,
the set of winners consists of these voters’ top choices. Otherwise,
the winner is the winner under the STV rule.

STV2 coincides with STV1 for m ≤ 3. For m > 3, if some
voter ranks cm−3+j in position cm+1−j for j = 1, 2, 3, then the
candidate ranked first by this voter is declared to be the election
winner (again, the election may have multiple winners if there are
several such voters), and otherwise the winner is the STV winner.

THEOREM 4.2. STV1-SM and STV2-SM are in P. However,
{STV1, STV2}-SM is NP-complete.

PROOF. Consider an instance of STV1. Suppose that some of
the honest voters rank cm−3+j in positionm−3+j for j = 1, 2, 3,
and let S be the set of these voters’ top choices. If S 6= {p}, no
matter what the manipulator does, all candidates in S will be de-
clared the election winners, so the manipulator cannot make p the
unique winner. If S = {p}, or if none of the honest voters ranks
cm−3+j in position m− 3 + j for j = 1, 2, 3, the manipulator can
rank p first and place cm−3+j in positionm−3+ j for j = 1, 2, 3;
this would make p the unique winner. In any case, the manipula-
tor’s problem is in P. A similar argument shown that STV2-SM is
in P.

To show that {STV1, STV2}-SM is NP-hard, we will provide
an NP-hardness reduction from STV-SM, which is known to be
NP-complete [2].

Given an instance of STV-SM with a set of candidates C =
{c1, . . . , cm′}, a set of voters V , |V | = n− 1, a preference profile
R = (R1, . . . , Rn−1) over C, and a preferred candidate p ∈ C,
we will modify it as follows. We let m = m′ + 3 and set C′ =
C ∪ {cm−2, cm−1, cm}. We ask each of the voters to rank each of
the candidates in C in the same position as before, and rank cm−1

in position m− 2, followed by cm−2 and cm; denote the resulting
preference profile by R′.

Observe that the manipulator can make p the unique winner of
this election under STV1 either by ranking cm−3+j in positionm−
3 + j for j = 1, 2, 3, or by making p the unique STV winner.
Similarly, the manipulator can make p the unique winner of the
new election under STV2 either by ranking cm−3+j in position
m+ 1 − j for j = 1, 2, 3, or by making p the unique STV winner.

Now, suppose that the original instance of STV-SM is a “yes”-
instance, and let L ∈ L(C) be the manipulative vote that makes
p the STV winner in that election. Consider the vote L′ obtained
from L by ranking cm−1, cm−2, and cm after all candidates in
C (in this order). In (R′, L′), no voter ranks cm−2, cm−1, cm
according to either of the “trapdoors”, so both in STV1 and in
STV2 the STV rule is applied. Further, in (R′, L′) candidates
cm−2, cm−1, cm receive no first-place votes, so under STV they
are eliminated before any candidates in C. STV then proceeds in
the same way as on (R, L), thus making p the winner.

Conversely, suppose that there exists a vote L′ ∈ L(C′) such
that p is the unique winner in (R′, L′) with respect to both STV1

and STV2. Since L cannot rank cm in positions m − 2 and m
simultaneously, it follows that p is the STV winner in (R′, L′).
Now, consider the execution of STV1 on (R′, L′). If L′ does not
rank any of the candidates in C′ \ C in the top position, after the
first three steps the execution of STV1 on (R′, L′) coincides with
the execution of STV on (R, L), where L is obtained from L′ by
removing cm−2, cm−1 and cm. Thus, in this case L is a successful
manipulative vote that witnesses that the original instance of STV-
SM is a “yes”-instance.

Now, suppose thatL′ ranks a candidate fromC′\C first; assume
without loss of generality that the top candidate in L is cm. Then
simply removing cm−2, cm−1 and cm from L′ would not neces-
sarily work: if the top candidate in the resulting vote receives no
first-place votes in R, this candidate would have been eliminated
in the very beginning in (R′, L′), but may survive much longer in
the modified election. Thus, we need a slightly different strategy.
Let C0 be the set of candidates that receive no first-place votes in
R. We construct L from L′ by removing cm−2, cm−1 and cm and
moving candidates in C0 to the bottom of the vote (without chang-
ing the relative ordering of all other candidates). Then on (R′, L′)
STV starts by eliminating cm−1, cm−2 and the candidates in C0.
At this point, each candidate has at least one first-place vote; hence,
because of our intermediate tie-breaking rule, cm is the first candi-
date to be eliminated, and we are left with an election E′′ over
C \C0. On the other hand, in (R, L) the set of candidates with no
first-place votes coincides with C0, so after the first |C0| elimina-
tion rounds we obtain an election over C \ C0 that coincides with
E′′. Hence, p is the unique STV winner in (R, L), and hence our
original instance of STV-SM is a “yes”-instance.

We remark that Theorem 4.2 holds for coalitional manipulation as
well: for the easiness result, note that the manipulators may use
trapdoors to manipulate STV1 or STV2, and the hardness result
generalizes trivially.

The next question that we would like to explore is whether a
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combination of an easy-to-manipulate rule with a hard-to-manipu-
late one is hard to manipulate. We will now illustrate that this is the
case for two classic voting rules, namely, STV and Borda.

THEOREM 4.3. {Borda, STV}-SM is NP-complete.

PROOF. We will provide a reduction from STV-SM. Consider
an instance of STV-SM given by an election (C, V ) with C =
{c1, . . . , cm}, |V | = n−1, a preference profile R = (R1, . . . , Rn−1),
and a candidate p ∈ C; assume without loss of generality that
n ≥ 3. Suppose that p is not ranked first by any of the voters in
V . Then if the manipulator does not rank p first, p get eliminated
before any candidate that has a positive Plurality score in (C, V )
and therefore does not win the election. Hence, the manipulator has
to rank p first. Observe also that the rest of the manipulator’s vote
does not matter in this case: it can only impact the candidate elim-
ination process after p is eliminated, at which point p has already
lost the election. Thus, if no voter in V ranks p first, the manipula-
tor’s problem is in P: the manipulator should rank p first and check
if this achieves the desired result. We can therefore assume without
loss of generality that in our input instance of STV-SM candidate
p receives at least one first-place vote.

Thus, assume that p is the top candidate of voter 1. Let D =
{cim+j | i = 1, . . . , n, j = 1, . . . ,m}, and set C′ = C ∪ D.
Modify all votes in R by inserting the candidates in D right below
p in each vote, in an arbitrary order; let R′ be the resulting profile.

Let s(c) denote the Borda score of a candidate c ∈ C in (C, V,R),
and let s′(c) denote his score in (C′, V,R′). We have s(c) ≤
(n − 1)(m − 1) for all c ∈ C. Moreover, we have s′(p) =
s(p)+mn(n−1), as p getsmn extra points from each vote. On the
other hand, every other candidate in C gets at most mn(n− 2) ex-
tra points from voters 2, . . . , n−1 and no extra points from voter 1.
Thus, for any c ∈ C \ {p} we have

s′(c) ≤ s(c)+mn(n−2) ≤ mn(n−1)−m−n+1 < s′(p)−m.
Also, the Borda score of any d ∈ D in (C′, V,R′) is less than
s′(p). Thus, if the manipulator ranks the candidates in C in top m
positions, p is the unique Borda winner of the resulting election.

On the other hand, no matter how the manipulator votes, under
STV all candidates in D will be eliminated before all candidates in
C that have a non-zero Plurality score: indeed, the Plurality score
of each d ∈ D is at most 1, and the intermediate tie-breaking rule
favors candidates in C over those in D.

We are now ready to show that our reduction is correct. Let L
be a successful manipulative vote for the original instance, and let
C0 be the set of all candidates in C with no first-place votes in
(R, L). Note that the candidates in C0 are eliminated in the first
|C0| rounds of STV. Now, consider the vote L′ obtained from L
by ranking the candidates in D in positions m+ 1, . . . ,m(n+ 1).
In the election (R′, L′) candidate p has the highest Borda score.
Moreover, under STV we will first eliminate all candidates in C0∪
D. At this point, we obtain the same election as after |C0| rounds
of STV on (R, L)—and hence the same winner. Thus, L′ is a
successful manipulative vote in the new election.

Conversely, suppose that L′ ∈ L(C∪D) is such that in (R′, L′)
candidate p is both the unique Borda winner and the (unique) STV
winner. Let C′0 be the set of candidates in C that have no first-
place votes in (R′, L′). When we execute STV on (R′, L′), we
eliminate all candidates in D ∪ C′0 prior to eliminating any of the
candidates in C \C′0. Let L be the vote in L(C) obtained by delet-
ing all candidates in D from L′ and moving all candidates in C′0 to
the bottom |C′0| positions (without changing the relative ordering
of the candidates in C \ C′0). Then C′0 is exactly the set of can-
didates in C who have no first-place votes in (R, L). Therefore,

when we execute STV on (R, L), we eliminate all candidates in
C′0 prior to eliminating any candidates in C \C′0. Thus, the profile
obtained after running STV for |D| + |C′0| steps on (R′, L′) coin-
cides with the profile obtained after running STV for |C′0| steps on
(R, L). Thus, L is a successful manipulative vote for the original
election.

Another interesting (and arguably natural) combination of vot-
ing rules is {Plurality, STV}. Here, we were unable to provide
a black-box reduction showing that the combination of these rules
is hard to manipulate. However, a careful inspection of Bartholdi
and Orlin’s proof [2] establishes that {Plurality, STV}-SM is in-
deed NP-hard: by tweaking the instance of STV constructed in
that proof we can ensure that the manipulator’s preferred candidate
is the unique Plurality winner.

However, there are also examples where the combination of a
hard-to-manipulate rule and an easy-to-manipulate one is easy to
manipulate. Consider, for instance, the following rule: if some
candidate receives strictly more than bn/2c first-place votes, he is
the unique election winner; otherwise, all candidates are winners.
We will refer to this rule as the Majority rule. Majority is not par-
ticularly decisive, but apart from that it is a reasonable voting rule.
Clearly, it is easy to manipulate: the manipulator simply needs to
check if ranking p first does the job. Moreover, the combination of
Majority and STV is easy to manipulate, too.

THEOREM 4.4. {Majority, STV}-SM is in P.

PROOF. Consider an election E = (C, V,R). If in this election
p is ranked first by at most bn/2c − 1 voters, the manipulator can-
not make p the Majority winner, so this is a “no”-instance of our
problem. On the other hand, if p is ranked first by at least bn/2c
voters, the manipulator can rank p first, making him both the unique
Majority winner and the unique STV winner.

The reason why the combination of Majority and STV is easy to
manipulate is that Majority is always guaranteed to elect the STV
winner: if some candidate has more than bn/2c votes, he will ob-
viously win under STV, and in all other cases Majority elects all
candidates. Using this observation, we can now generalize Theo-
rem 4.4. We will say that a voting correspondence F1 is a refine-
ment of a voting correspondence F2 if for any election E we have
F1(E) ⊆ F2(E), and there exists an election for which this con-
tainment is strict. Now, it is easy to see that STV is a refinement of
Majority. Also, some of the voting rules defined in Section 2 are
refinements of each other: namely, both Copeland and Maximin
are refinements of Condorcet. Yet another example is provided by
the so-called second-order Copeland rule, proved to be NP-hard to
manipulate in [3]: this rule is obtained by combining the Copeland
rule with a rather sophisticated tie-breaking rule, and is therefore
a refinement of Copeland. Now, it is easy to see that the proof of
Theorem 4.4 implies a more general fact.

COROLLARY 4.5. If a voting correspondence F1 is a refine-
ment of a voting correspondence F2 and F2-SM is in P, then so is
{F1,F2}-SM.

We remark that Corollary 4.5 crucially relies on the fact that we
consider the unique-winner version of SM, and the requirement
that a voting correspondence should produce a non-empty set of
winners for every election. Also, the converse of Corollary 4.5 is
not true, as illustrated by Copeland and second-order Copeland.
Another important observation is that Corollary 4.5 applies equally
well to the coalitional manipulation problem; we will make use of
this fact in Section 5.
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Now, suppose we have two hard-to manipulate rules. Clearly,
it can be the case that their combination is also hard to manipu-
late: for example we can take two copies of STV (if we insist that
these two rules should be distinct, we can modify one of the copies
to produce a different winner on a single profile; this does not af-
fect the complexity of our problem). To conclude this section, we
provide an example of two voting rules F1 and F2 such that both
F1-SM and F2-SM are NP-complete, but {F1,F2}-SM is in P;
thus, counterintuitively, even a combination of hard-to-manipulate
rules can be “easy” to manipulate (it will become clear in a minute
why we used quotes in the previous sentence).

Our first voting rule is STV. Our second rule, which we will
denote by STV′, is obtained from STV by the following modifi-
cation: if ci is the STV winner in E, then we output ci+1 as the
unique winner (where cm+1 := c1). Now, clearly, manipulating
STV′ is just as hard as manipulating STV: we simply have to solve
the STV manipulation problem for a different candidate. However,
for any election E, STV and STV′ have different winners, so there
is no way the manipulator can make p win under both of them.
Thus, the manipulator’s problem is “easy”, in the sense that it sim-
ply cannot achieve its goal, so every instance of {STV, STV′}-SM
is a “no”-instance. We summarize these observations as follows.

THEOREM 4.6. STV′-SM is NP-complete. On the other hand,
{STV, STV′}-SM is in P.

We remark that Theorem 4.6 extends trivially to coalitional manip-
ulation.

5. COALITIONAL MANIPULATION
The coalitional manipulation problem is known to be NP-hard

for many prominent voting rules, such as Borda [6, 8] and some
other scoring rules [20], Copelandα forα ∈ (Q∩[0, 1])\{0.5} [11,
12] and Maximin [21]; it goes without saying that the hardness re-
sult for STV-SM [2] implies that STV-CM is NP-hard as well.
Therefore, we cannot hope for a general easiness result along the
lines of Theorem 4.1. Nevertheless, we can identify some interest-
ing combinations of voting rules for which CM is in P.

We start by observing that Condorcet-CM is in P. Indeed, the
manipulators can simply rank p first in all of their votes and check
if that makes p the Condorcet winner; note that the answer to this
question does not depend on how the manipulators rank the other
candidates. Now, by extending Corollary 4.5 to the coalitional ma-
nipulation problem, and using the fact both Maximin and Copeland
are refinements of the Condorcet rule, we obtain the following
corollaries.

COROLLARY 5.1. {Condorcet,Maximin}-CM is in P.

COROLLARY 5.2. {Condorcet,Copelandα}-CM is in P for any
α ∈ Q ∩ [0, 1].

Of course, the coalitional manipulation problem is also easy for
the Majority rule, and it can be easily checked that each of the rules
defined in Section 2 is a refinement of the Majority rule. Thus,
we could obtain a similar easiness result for the combination of
Majority and any other rule. We chose to state Corollaries 5.1 and
5.2 for the Condorcet rule, as the latter is more decisive and has
been considered in prior work on computational social choice, al-
beit in the context of control [4].

We will now move on to another family of voting rules whose
combinations can be shown to be easy to manipulate. A recent pa-
per by Lin [18] shows that the coalitional manipulation problem
is easy for k-Approval for any value of k. We will now prove a

stronger statement: coalitional manipulation is easy even for com-
binations of k-Approval rules (for different values of k).

THEOREM 5.3. For any finite set K = {k1, . . . , k`} ⊆ N, the
problem {k1-Approval, . . . , k`-Approval}-CM is in P.

PROOF. Consider an electionE withC = {c1, . . . , cm}, |V | =
h, |M | = s, and R = (R1, . . . , Rh). We can assume without loss
of generality that p = cm.

Since k-Approval is monotone for any value of k, it is optimal
for the manipulators to rank p first in all s votes. For each k ∈ K,
let sk(p) be p’s k-Approval score in the resulting election. Now,
the manipulators’ goal is to rank every other candidate c ∈ C \{p}
so that for each k ∈ K the k-Approval score of c is strictly less
than sk(p). We can assume without loss of generality that for each
k ∈ K and each c ∈ C \ {p} the k-Approval score of c in R is
strictly less than sk(p): otherwise, we clearly have a “no”-instance
of our problem. Now, for each r = 2, . . . ,m and each cj , j =
1, . . .m − 1, let x(r, j) be the maximum number of times that cj
can be ranked in position r or higher in the manipulators’ votes so
that its k-Approval score is less than sk(p) for every k ∈ K. These
values are easy to compute from the candidates’ k-Approval scores
in R, k ∈ K; our assumption on the initial scores ensures that they
are non-negative.

We will now construct a flow network so that the maximum
flow in this network corresponds to a successful set of manipu-
lative votes, if one exists. Our network has a source S, a sink
T , a node cj for each j = 1, . . . ,m − 1, and a node pr for
r = 2, . . . ,m; intuitively, node pr corresponds to position r in
the manipulators’ votes. There is an edge of capacity s from S to
each cj , j = 1, . . . ,m − 1, and an edge of capacity s from each
pr , r = 2, . . . ,m, to T . Essentially, the edge from S to cj en-
sures that cj is ranked by each manipulator, and the edge from pr
to T ensures that each of the manipulators fills position r in his
vote. It remains to explain how to connect the candidates with the
positions.

For each cj ∈ C \ {p} we build a caterpillar graph that con-
nects cj to pm, . . . , p2. More formally, for each candidate cj ,
j = 1, . . . ,m − 1, we introduce nodes zj,m, . . . , zj,2 and edges
(cj , zj,m), (zj,r, zj,r−1) for r = m, . . . , 3, and (zj,r, pr) for r =
m, . . . , 2. The capacity of (cj , zj,m) and (zj,r, pr), r = m, . . . , 2,
is +∞, and the capacity of (zj,r, zj,r−1), r = m, . . . , 3, is given
by x(r − 1, j). This completes the description of our network (see
Figure 1).

x(4, 1)

p2

S

p5p4p3

c2 c3 c4c1

T

x(2, 1)

x(3, 1)

Figure 1: Network in the proof of Theorem 5.3, m = 5

We claim that this network admits a flow of size s(m − 1) if
and only if there exists an assignment of candidates to the posi-
tions in the manipulators’ votes such that the k-Approval score of
each c ∈ C \ {p} is less than sk(p) for every k ∈ K. Indeed,
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suppose that such a flow exists. Since all capacities are integer,
we can assume that this flow is integer. It saturates all edges leav-
ing S, so there are s units of flow leaving each cj , j = 2, . . . ,m.
This flow has to reach p2, . . . , pm traveling through the caterpillar
graph associated with cj . Thus, we can associate the flow on the
edge (zj,r, pr) with the number of times that cj is ranked in po-
sition pr . The capacity constraints on edges guarantee that these
numbers correspond to a valid set of manipulators’ votes. More-
over, for each r = m, . . . , 2, the total flow from cj to pr, . . . , p2
is at most x(r, j), which ensures that cj is ranked in positions
pr, . . . , p2 at most x(r, j) times. Hence, for each k ∈ K and each
j = 1, . . . ,m − 1, the k-Approval score of cj is less than that of
p, and therefore p is the unique winner under each of the rules in
our collection. Conversely, a vote that makes p the unique election
winner with respect to each k-Approval, k ∈ K, can be converted
into a valid flow; if x manipulators rank cj in position r, we send
x units of flow on (zj,r, pr).

Theorem 5.3 has an interesting implication. Let bFα be the family
of all scoring rules. Observe that bFα includes the Borda rule, for
which coalitional manipulation is hard. Nevertheless, it turns out
that bFα-CM is solvable in polynomial time.

THEOREM 5.4. bFα-CM is in P.

PROOF. We will use the following folklore observation [17]: a
candidate c is the unique winner of an election E = (C, V,R)
with respect to each |C|-candidate scoring rule if and only if c is
the unique k-Approval winner of E for k = 1, . . . , |C| − 1. Thus,
to solve bFα-CM on an instance with m candidates, it suffices to
apply the algorithm described in the proof of Theorem 5.3 with
K = {1, . . . ,m − 1}. Clearly, the running time of this algorithm
is polynomial in n and m.

We will now provide several examples of combinations of rules
for which coalitional manipulation is hard. We will focus on clas-
sic voting rules, and investigate combinations of the most promi-
nent easy-to-manipulate rule, namely, Plurality, with Borda and
Copeland, which are both hard for coalitional manipulation.

THEOREM 5.5. {Plurality,Borda}-CM is NP-complete.

PROOF. Similarly to the proofs in Section 4, we will start with
an instance of Borda-CM; this problem is known to be NP-hard
even for two manipulators and three input votes [8]. Consider an
instance of Borda-CM with C = {c1, . . . , cm}, |V | = 3, R =
(R1, R2, R3) and |M | = 2; assume without loss of generality that
m ≥ 8. Since both Borda and Plurality are neutral, we can assume
without loss of generality that p = cm.

For each i = 1, . . . ,m− 1, let Xi be an arbitrary vote in L(C)
that ranks p first and ci last, and let X ′i be the vote obtained by
reversing Xi (i.e., if in Xi candidate c is ranked above candidate
d, then in X ′i candidate d is ranked above c, for any c, d ∈ C).
We modify the input election by adding votes Xi and X ′i for all
i = 1, . . . ,m − 1; denote the resulting election by R′. Note that
this increases p’s Plurality score by m− 1, but the Plurality score
of any other candidate only increases by 1. On the other hand, the
Borda score of each candidate increases by exactly (m− 1)2.

Suppose we have started with a “yes”-instance of Borda-CM,
and let L1, L2 be the manipulators’ votes such that p is the unique
Borda winner of (R, L1, L2). Clearly, p is also the unique Borda
winner of (R′, L1, L2). Moreover, the Plurality score of p in
(R′, L1, L2) is at least m − 1 ≥ 7, while the Plurality score of
any other candidate is at most |V | + |M | + 1 = 6, so p is also the

unique Plurality winner in (R′, L1, L2) (the careful reader will
notice that we can relax the requirement that m ≥ 8 by observ-
ing that Borda is monotone). Conversely, suppose that our instance
of {Plurality,Borda}-CM is a “yes”-instance. Then there exist
some votes L′1, L′2 ∈ L(C) that make p the unique Borda winner
of (R′, L′1, L′2). But then p is also the unique Borda winner of
(R, L1, L2).

It is interesting to compare Theorem 5.4 and Theorem 5.5: the for-
mer implies that the combination of Borda with all k-Approval
rules is easy to manipulate, whereas the latter shows that the com-
bination of 1-Approval (i.e., Plurality) and Borda is hard to ma-
nipulate; we remark that the proof of Theorem 5.5 extends easily
to the combination of Borda with k-Approval for any constant k.

A construction similar to the one used in the proof of Theo-
rem 5.5 shows that {Plurality,Copelandα}-CM is NP-complete
for α ∈ (Q ∩ [0, 1]) \ {0.5} (this is the range of values of α for
which Copelandα-CM in known to be NP-complete). The only
difference is that for Copeland we cannot assume that the number
of voters is a small constant (we will, however, assume that there
are exactly two manipulators, as this is known to be sufficient for
the NP-hardness of this problem [11, 12]). Therefore, instead of
adding one pair (Xi, X

′
i) for each i = 1, . . . ,m−1, we add h such

pairs, where h is the number of honest voters. This modification
has no impact on Copeland scores: if c beats d in the original pro-
file, this remains to be the case when the new votes are added; the
converse is also true. However, the Plurality score of p increases
by h(m − 1), whereas the Plurality score of any other candidate
increases by h, and, as a result, does not exceed 2h + 2 (even tak-
ing the manipulators’ votes into account). Assuming without loss
of generality that m ≥ 4 and h ≥ 3, we obtain that p is the unique
Plurality winner of the modified election, irrespective of how the
manipulator votes. The rest of the argument proceeds as in the
proof of Theorem 5.5. We obtain the following corollary.

COROLLARY 5.6. {Plurality,Copelandα}-CM is NP-complete
for α ∈ (Q ∩ [0, 1]) \ {0.5}.

Perhaps unsurprisingly, the combination of Borda and Copeland
is hard to manipulate as well.

THEOREM 5.7. {Borda,Copelandα}-CM is NP-complete for
α ∈ (Q ∩ [0, 1]) \ {0.5}.

PROOF. We employ a variant of the construction used in the
proof of Corollary 5.6: we start with an instance of Copelandα-
CM with C = {c1, . . . , cm}, |V | = h, |M | = 2, and R =
(R1, . . . , Rh) and modify it to obtain an instance of our problem in
which p is the Borda winner no matter how the manipulator votes.

We assume without loss of generality that h > 2. Let C′ =
C ∪ {d}, and modify R by ranking d in the last position in each
preference order; denote the resulting profile by R′. In R′, d loses
all pairwise elections, no matter how the manipulator votes; more-
over, the final Copelandα scores of all candidates do not depend on
how the manipulators rank d.

Now, let X be some vote in L(C ∪ {d}) that ranks p first and
d second, let X ′ be obtained by reversing X , and let X ′′ be ob-
tained from X ′ by swapping p and d. Add 2mh pairs of the form
(X,X ′′) to R′; denote the resulting profile by R′′. Clearly, the
addition of these new votes cannot possibly change the outcome of
any pairwise election other than the one between p and d; more-
over, p won his pairwise election against d even before these new
votes were added, so this remains to be the case. We conclude that
the Copelandα score of any candidate c ∈ C in R′′ exceeds his
Copelandα score in R by exactly 1.
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SM CM
easy + easy = easy all “nice” rules k-Approval
easy + easy = hard {STV1, STV2} {STV1, STV2}
easy + hard = hard {Borda, STV}, {Plurality, STV} {Plurality,Borda}, {Plurality,Copeland}
easy + hard = easy {Majority, STV} {Condorcet,Copeland}, {Condorcet,Maximin}, scoring rules
hard + hard = easy {STV, STV′} {STV, STV′}
hard + hard = hard {STV, STV} {Borda,Copeland}

Table 1: Summary of results

On the other hand, the new votes increase the Borda score of ev-
ery candidate other than p and d by 2m2h (relative to R′), whereas
the Borda score of p goes up by 2m2h+ 2mh and Borda score of
d goes up by 2m2h − 2mh. Since the Borda scores of all candi-
dates in R′ do not exceedmh, p is the unique Borda winner in R′′
irrespective of how the manipulator votes. The rest of the proof is
similar to that of Theorem 5.5 and Corollary 5.6.

We remark that the proofs of Theorems 4.3, 5.7 and 5.5 and
Corollary 5.6 are based on the same idea: we can modify an elec-
tion so that the (relative) scores of all candidates with respect to
one rule remain essentially unchanged while making a certain can-
didate a winner with respect to another voting rule. This suggests
that these rules exhibit certain independence; this is somewhat rem-
iniscent of Klamler’s work on closeness of voting rules (see Klam-
ler [15] and references therein). Formalizing this notion of inde-
pendence is an interesting direction for future work.

6. CONCLUSIONS AND FUTURE WORK
We have investigated the problem of (coalitional) manipulation

under uncertainty about the voting rules. Our results are summa-
rized in Table 1. While we have not established the complexity of
our problem for all possible combinations of voting rules, our re-
sults identify a number of approaches for dealing with problems of
this type and the features of voting rules that make their combina-
tions easy or hard to manipulate.

An obvious direction for future work is extending our approach
to other forms of cheating in elections, such as control and bribery.
Also, an interesting variant of our problem in the context of single-
winner manipulation can be obtained by adopting the paradigm of
safe strategic voting [19]. That is, instead of assuming that the ma-
nipulator wants to get a certain candidate elected, we take the more
traditional approach, where the manipulator, too, has a preference
order and would like to improve the election outcome with respect
to this order; we can then ask whether the manipulator can vote so
that the outcome improves for at least one voting rule in the given
family and does not get worse with respect to the other rules.
Acknowledgments This research was supported by National Re-
search Foundation (Singapore) under grant 2009-08. We would
like to thank the anonymous AAMAS referees for their very useful
feedback.

7. REFERENCES
[1] Y. Bachrach, N. Betzler, and P. Faliszewski. Probabilistic

possible winner determination. In AAAI’10, pages 697–702,
2010.

[2] J. Bartholdi and J. Orlin. Single transferable vote resists
strategic voting. Social Choice and Welfare, 8(4):341–354,
1991.

[3] J. Bartholdi, C. Tovey, and M. Trick. The computational
difficulty of manipulating an election. Social Choice and
Welfare, 6(3):227–241, 1989.

[4] J. Bartholdi, C. Tovey, and M. Trick. How hard is it to
control an election? Mathematical and Computer Modeling,
16(8/9):27–40, 1992.

[5] D. Baumeister, M. Roos, and J. Rothe. Computational
complexity of two variants of the possible winner problem.
In AAMAS’11, pages 853–860, 2011.

[6] N. Betzler, R. Niedermeier, and G. J. Woeginger.
Unweighted coalitional manipulation under the Borda rule is
NP-hard. In IJCAI’11, pages 55–60, 2011.

[7] V. Conitzer, T. Walsh, and L. Xia. Dominating manipulations
in voting with partial information. In AAAI’11, pages
638–643, 2011.

[8] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh.
Complexity of and algorithms for Borda manipulation. In
AAAI’11, pages 657–662, 2011.

[9] E. Elkind, P. Faliszewski, and A. Slinko. Cloning in
elections. In AAAI’10, pages 768–773, 2010.

[10] E. Elkind and H. Lipmaa. Hybrid voting protocols and
hardness of manipulation. In ISAAC’05, pages 206–215,
2005.

[11] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland
voting: Ties matter. In AAMAS’08, pages 983–990, 2008.

[12] P. Faliszewski, E. Hemaspaandra, and H. Schnoor.
Manipulation of Copeland elections. In AAMAS’10, pages
367–374, 2010.

[13] P. Faliszewski and A. D. Procaccia. AI’s war on
manipulation: Are we winning? AI Magazine, 31(4):53–64,
2010.

[14] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Hybrid
elections broaden complexity-theoretic resistance to control.
Mathematical Logic Quarterly, 55(4):397–424, 2009.

[15] C. Klamler. On the closeness aspect of three voting rules:
Borda—Copeland—Maximin. Group Decision and
Negotiation, 14:233–240, 2005.

[16] K. Konczak and J. Lang. Voting procedures with incomplete
preferences. In MPREF’05, pages 124–129, 2005.

[17] J. Lang, 2010. Private communication.
[18] A. Lin. The complexity of manipulating k-approval

elections. In ICAART’11, pages 212–218, 2011.
[19] A. Slinko and S. White. Non-dictatorial social choice rules

are safely manipulable. In COMSOC’08, pages 403–413,
2008.

[20] L. Xia, V. Conitzer, and A. Procaccia. A scheduling approach
to coalitional manipulation. In ACM EC’10, pages 275–284,
2010.

[21] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and
J. Rosenschein. Complexity of unweighted manipulation
under some common voting rules. In IJCAI’09, pages
348–353, 2009.

634



Voter Response to Iterated Poll Information

Annemieke Reijngoud and Ulle Endriss
Institute for Logic, Language and Computation (ILLC)

University of Amsterdam
Email: annemieke@averechts.nl, ulle.endriss@uva.nl

ABSTRACT
We develop a formal model of opinion polls in elections and
study how they influence the voting behaviour of the par-
ticipating agents, and thereby election outcomes. This ap-
proach is particularly relevant to the study of collective deci-
sion making by means of voting in multiagent systems, where
it is reasonable to assume that we can precisely model the
amount of information available to agents and where agents
can be expected to follow relatively simple rules when ad-
justing their behaviour in response to polls. We analyse two
settings, one where a single agent strategises in view of a
single poll, and one where multiple agents repeatedly up-
date their voting intentions in view of a sequence of polls.
In the single-poll setting we vary the amount of informa-
tion a poll provides and examine, for different voting rules,
when an agent starts and stops having an incentive to ma-
nipulate the election. In the repeated-poll setting, using
both analytical and experimental methods, we study how
the properties of different voting rules are affected under
different sets of assumptions on how agents will respond to
poll information. Together, our results clarify under which
circumstances sharing information via opinion polls can im-
prove the quality of election outcomes and under which cir-
cumstances it may have negative effects, due to the increased
opportunities for manipulation it provides.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Theory, Economics

Keywords
Computational Social Choice, Voting Theory

1. INTRODUCTION
Voting theory has recently come to play an important role
in the study of multiagent systems [2, 12]. One of the most

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

intriguing questions in voting is how agents strategise when
casting their vote, in view of both their personal preferences
and their beliefs about the strategies followed by others. In
political elections, voters will often form their beliefs about
the strategies of others on the basis of opinion polls. In this
paper, we start from the same idea and propose a simple
formal model for representing relevant information in a poll
and the ways in which agents may respond to that informa-
tion when deciding on what strategy to follow.

Most political elections are based on the plurality rule, un-
der which a candidate obtains a point for every voter rank-
ing her first, and the candidate with the largest number of
points gets elected. In the context of this rule, the most
natural type of information to publish in an opinion poll
is the expected number of points for each candidate. De-
spite its widespread use, the plurality rule has been severely
criticised for being overly simplistic and not allowing voters
to adequately express their preferences. In multiagent sys-
tems, we have the opportunity to instead work with the full
range of voting rules that have been proposed and studied
in social choice theory [11]. This widening of the scope as
far as the voting rule is concerned suggests to also consider
a generalisation of the concept of opinion poll. To clarify
this point, consider, for instance, the Copeland rule, under
which you vote by submitting a strict linear order over the
candidates and the score of a candidate is computed as the
difference between the number of opponents she will beat in
a one-to-one majority contest and the number of opponents
she will lose to in such a contest (the candidate with the
maximal Copeland score wins). In a poll, we could publish
the (expected) Copeland score of each candidate or we could
record how many copies of each possible ballot (linear order)
were received. Alternatively, we could publish the majority
graph (the directed graph on the set of candidates in which
we include an edge from x to y if a majority of voters prefer
x over y) or the weighted majority graph (in which each edge
is annotated with the strength of the relevant majority).

To formally capture these ideas, we shall define a poll in-
formation function as a function mapping the ballots re-
ceived from the voters in an opinion poll to an appropriate
structure (e.g., a majority graph or a list of scores). The
output of this function is then communicated to the vot-
ers, thereby providing them with partial information on the
voting intentions declared by the others.

We shall analyse two scenarios. In the first, we study the
incentives of a voter, who is provided with the output of a
poll information function, to vote truthfully in a subsequent
election. Intuitively, if a poll provides a lot of information,
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then this will increase the opportunities of our voter to ben-
efit from voting untruthfully, while a poll carrying very little
information might be expected to reduce such opportunities
and thereby induce truthful voting. Our results clarify, for
several voting rules and several types of opinion polls, to
what extent this basic intuition is in fact correct.

In the second scenario, voters participate in a sequence of
polls, and in each round one of the voters can update her
ballot in view of the poll information received. We consider
several types of policies that a voter might use to perform
this update: a strategist will choose a ballot such that no
other ballot provides a strictly better outcome for some and
at least as good an outcome for all possible ways of the
other voters voting that would be consistent with the poll
information received; a pragmatist will support her favourite
candidate from a small set of, say, two front-runners; and a
truth-teller will always vote truthfully. For different vot-
ing rules and for different combinations of these policies,
we analyse whether such a system will converge to a stable
state, i.e., whether it will terminate. We then observe that
the “rule” we obtain when this kind of game is played for
a specific voting rule and a specific set of response policies
may be considered a voting rule in its own right, and we
study how the properties of the original voting rule relate
to the properties of this induced rule. An example for such
a property is the frequency of electing a Condorcet winner,
i.e., a candidate that would beat any other candidate in a
one-to-one majority contest.

Similar phenomena have been studied before. Brams and
Fishburn [1] give several examples that show, for both the
plurality rule and another system known as approval voting,
that executing a series of polls before the actual election can
have both positive and negative effects in view of electing a
Condorcet winner. Chopra et al. [4] give further examples,
showing that a sequence of polls may or may not terminate.
Meir et al. [7] identify conditions, in case the plurality rule is
used, under which termination can be guaranteed. Finally,
the work of Conitzer et al. [5] on the problem of strategic ma-
nipulation under partial information is closely related to the
first scenario we study: an opinion poll is one way to model
the partial information available to a manipulator. For com-
parison, most research on opinion polls in political science,
such as the work of Irwin and Van Holsteyn [6], typically fo-
cuses on other concerns, e.g., the question of how polls affect
the expectations of voters regarding election outcomes.

We proceed as follows. In Section 2 we review basic con-
cepts from voting theory and define our model. Our results
on strategic manipulation under limited information as pro-
vided by an opinion poll are presented in Section 3, and
our results on voter response to iterated poll information
are summarised in Section 4. Section 5 concludes. In the
interest of space, we omit the proofs of some of our results.
These proofs, as well as additional results, may be found in
the Master’s thesis of the first author [10].

2. THE MODEL
In this section we introduce our model. We first recall rel-
evant concepts from voting theory [11], and then define the
central notion of poll information function.

2.1 Voting Theory
Let N be a finite set of n voters (or agents), and let X be
a finite set of m alternatives (or candidates). Each voter i

is endowed with a preference order �i on X . To vote, each
voter i submits a ballot bi (which may or may not be identical
to �i, i.e., she may or may not vote truthfully). We adopt
the standard assumption that both preferences and ballots
are strict linear orders on X . Let L(X ) be the set of all such
orders. A profile b = (b1, . . . , bn) ∈ L(X )N is a vector of bal-
lots, one for each voter. A voting rule F : L(X )N → 2X \{∅}
is a function mapping ballot profiles to nonempty sets of al-
ternatives, the election winners. Most natural voting rules
may produce ties, and thus a set of winners rather than a
single winner. We can obtain a resolute voting rule, i.e.,
a rule that always returns a single winner, by pairing our
voting rule of choice with a tie-breaking rule. We restrict
attention to tie-breaking rules under which ties are broken
according to some fixed but arbitrary order over the alter-
natives. W.l.o.g., we shall assume that this fixed order is
the lexicographic order a � b � c � · · · , i.e., we shall work
with the lexicographic tie-breaking rule.

The following are examples for common voting rules [11]:

• Positional scoring rules: A PSR is defined by a scoring
vector (s1, . . . , sm) with s1 > . . . > sm and s1 > sm.
An alternative receives sj points for each voter who
ranks it at the jth position. The alternative(s) with
the most points win(s) the election. Important PSRs
are plurality with scoring vector (1, 0, . . . , 0), antiplu-
rality (or veto) with scoring vector (1, . . . , 1, 0), and
Borda with scoring vector (m−1,m−2, . . . , 0).
• Copeland: An alternative’s score is the number of pair-

wise majority contests it wins minus the number it
loses. The alternative(s) with the highest score win(s).
A pairwise majority contest between alternatives x and
y is won by x if a majority of voters ranks x above y.
• Maximin (also known as Simpson): An alternative’s

score is the lowest number of voters preferring it in any
pairwise contest. The alternative(s) with the highest
score win(s).
• Bucklin: An alternative’s score is the smallest k such

that a majority of voters rank the alternative in their
top k. The alternative(s) with the lowest score win(s).
• Single transferable vote: An STV election proceeds in

rounds. In each round the alternative(s) ranked first
by the fewest voters get(s) eliminated. This process is
repeated until only one alternative remains (or until all
remaining alternatives are ranked first equally often).

Voting rules can be categorised by their formal properties,
often referred to as axioms [11]. A voting rule is anonymous
if it treats all voters symmetrically. A resolute voting rule is
surjective if for every alternative there exists a profile under
which that alternative wins. A constant voting rule is a rule
that always elects the same unique winner. If there is a voter
such that her top-ranked alternative is always the unique
winner, then the voting rule is dictatorial. Otherwise it is
nondictatorial. A voting rule is unanimous if it elects (only)
alternative x whenever x is ranked first by all voters. A
voting rule satisfies the Pareto condition if it does not return
an alternative y that is ranked below some other alternative
x by all voters. Note that any Pareto efficient rule is also
unanimous (but not vice versa).

Finally, a voting rule is Condorcet-consistent if it elects
(only) the Condorcet winner whenever it exists, and it is
strongly Condorcet-consistent if it elects (only) the full set
of weak Condorcet winners whenever that set is nonempty.
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A weak Condorcet winner is an alternative that does not lose
any pairwise majority contest, although it may tie some. A
Condorcet winner wins any pairwise majority contest. Note
that (weak) Condorcet winners only exist for some profiles.
If a Condorcet winner does exist, then it must be unique,
while there can be several weak Condorcet winners.

2.2 Polls and Poll Information Functions
In our model of an opinion poll, each voter is asked for her
ballot.1 We call the resulting ballot profile a poll profile.
Often we would not want to communicate the whole poll
profile to the electorate, e.g., to respect the privacy of voters
or because it would be computationally too expensive to do
so. Let I be the set of all possible pieces of poll information
that we might want to communicate to the electorate in
view of a given poll profile. A poll information function
(PIF) is a function π : L(X )N → I mapping poll profiles to
elements of I. Here are some natural choices for I and the
corresponding PIF π:

• Profile: The profile-PIF simply returns the full input
profile: π(b) = b.
• Ballot: The ballot-PIF returns a vector recording how

often each ballot occurs in the input profile.
• (Weighted) Majority Graph: The (W)MG-PIF returns

the (weighted) majority graph of the input profile. A
majority graph is a directed graph in which each node
represents an alternative. There is an edge (x, y) from
x to y if x wins their pairwise majority contest. In
a weighted majority graph, each edge (x, y) is labelled
with the difference in number between voters ranking
x above y and voters ranking y above x.
• Score: Given a voting rule F , the corresponding score-

PIF returns for each alternative its score under the
input profile according to F . F should assign points
to each alternative for this PIF to be well-defined.
• Rank: Given a voting rule F , the corresponding rank-

PIF returns the rank of each alternative under the in-
put profile according to F . F should rank all alterna-
tives for this PIF to be well-defined.
• Winner: Given a voting rule F , the corresponding

winner-PIF returns the winning alternative(s) under
the input profile according to F : π(b) = F (b).
• Zero: The zero-PIF does not provide any information,

i.e., it simply returns a constant value: π(b) = 0.

Upon receiving the signal π(b), and assuming she knows how
π is defined, what can voter i infer about the poll profile b?
Of course, she knows her own ballot bi with certainty. So,
what can she infer about the remainder of the profile, b−i?
We call the set of (partial) profiles that voter i must consider
possible in view of the information she holds after receiving
π(b) her information set. It is defined as follows:

Wπ(b)
i := {c−i ∈ L(X )N\{i} | π(bi, c−i) = π(b)}

We may think of π(b) as the actual world and ofWπ(b)
i as the

set of possible worlds that are consistent with i’s knowledge
in world π(b). Indeed, W satisfies the basic properties we
would expect from a knowledge operator:

1In most real-world opinion polls, pollsters do not ask all
voters for their opinion. We can simulate this in our abstract
model by simply dropping information on some of the voters
before communicating the poll to the electorate.

• (REF) b−i ∈ Wπ(ai,b−i)
i

• (SYM) if b−i ∈ Wπ(ai,c−i)
i , then c−i ∈ Wπ(ai,b−i)

i

• (TRA) if b−i ∈ Wπ(ai,c−i)
i and c−i ∈ Wπ(ai,d−i)

i , then

b−i ∈ Wπ(ai,d−i)
i

Axiom (REF) simply states that the actual poll profile is
always part of every voter’s information set. Axioms (SYM)
and (TRA) together express that whenever a voter consid-
ers some ballot profile possible, then that profile would also
induce her current information set. For a discussion of the
knowledge-theoretic properties of polls in view of strategic
voting we refer to the work of Chopra et al. [4].

We define the degree of“informativeness”of a PIF in terms
of the information sets it induces:

Definition 1. A PIF π is said to be at least as infor-

mative as another PIF σ, if Wπ(b)
i ⊆ Wσ(b)

i for all poll
profiles b ∈ L(X )N and all voters i ∈ N .

We note that Conitzer et al. [5] work with a similar notion
of information set, except that they do not require an in-
formation set to be induced by poll information, but rather
permit any set of conceivable profiles to form the informa-
tion set of a given voter. Moreover, they do not include a
voter’s own ballot in her information set. There are also
interesting connections to the work of Chevaleyre et al. [3]
on the compilation complexity of voting rules: their compi-
lation functions are the same types of functions as our PIFs.

3. RESPONSE TO A SINGLE POLL
In this section we analyse the case where, on the basis of an
opinion poll, a single voter chooses to vote strategically.

3.1 Manipulation wrt. Poll Information
Suppose we run an opinion poll and communicate the result
to voter i using PIF π (and suppose i did vote truthfully in
the poll) and we then run the actual election. Will i have an
incentive to manipulate and vote untruthfully, assuming she
believes that the other voters will not change their ballot?
We assume she does, if there is a scenario consistent with
the poll information she received that will result in a better
election outcome for her and there is no scenario where she
will do worse than when voting truthfully.

Definition 2. Let π be a PIF. Given a resolute voting
rule F , a voter i, and a profile b with bi = �i, we say
that i has an incentive to π-manipulate using ballot c?i , if

F (c?i , c−i) �i F (�i, c−i) for some profile c−i ∈ Wπ(b)
i and

F (c?i , c−i) �i F (�i, c−i) for all other profiles c−i ∈ Wπ(b)
i .

In above definition, �i is the reflexive closure of �i and
both relations are extended from elements of X to singleton
sets over X in the natural manner. F (�i, c−i) denotes the
winning singleton under voting rule F when everyone votes
as in profile c, while voter i votes according to �i, etc.

A voting rule is susceptible to π-manipulation if there is
a voter who has an incentive to π-manipulate (for some b
and some c?i ). If a resolute voting rule is not susceptible to
π-manipulation, then it is immune to π-manipulation.

Lemma 1. If a PIF π is at least as informative as another
PIF σ, then any resolute voting rule that is susceptible to σ-
manipulation is also susceptible to π-manipulation.
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Proof. See Reijngoud [10].

As an immediate corollary to Lemma 1, we obtain that, if
π is at least as informative as σ, then any resolute voting
rule that is immune to π-manipulation is also immune to
σ-manipulation. In the sequel, we shall prove several sus-
ceptibility and immunity results for specific PIFs. Lemma 1
shows how such results can be transferred to other PIFs.

3.2 Susceptibility Results
When π is the profile-PIF, returning the full poll profile, then
our notion π-manipulation reduces to the standard notion of
manipulability used in voting theory. The seminal Gibbard-
Satterthwaite Theorem [11] states that any resolute voting
rule for three or more alternatives that is surjective and
nondictatorial will be susceptible to manipulation. We shall
now prove a simple generalisation of this theorem, relating
the notion of π-manipulability applied and the informational
requirements of the voting rule used.

Not every voting rule requires all information a ballot pro-
file supplies to compute the winners. For the plurality rule,
for example, it suffices to give for each alternative the num-
ber of ballots in which it is ranked first. For a given PIF
π : L(X )N → I, we say that a voting rule F is computable
from π-images if there exists a functionH : I → 2X \{∅} such
that F = H ◦π. We furthermore say that F is strongly com-
putable from π-images if it is computable from π-images and
π(b) = π(bi, c−i) entails F (ci, b−i) = F (c) for any two pro-
files b and c, i.e., upon learning π(b) a voter i can compute
the winners for any way of voting herself (rather than just
for bi). For example, the Copeland rule is computable but
not strongly computable from MG-information (i.e., from
images under the MG-PIF), while it is strongly computable
from WMG-information. Furthermore, any anonymous vot-
ing rule is strongly computable from ballot-information.

Theorem 1. Let π be a PIF. When m > 3, any resolute
voting rule that is surjective, nondictatorial, and strongly
computable from π-images is susceptible to π-manipulation.

Proof. Let π be a PIF with range I and let F be a
resolute voting rule meeting above conditions. From the
Gibbard-Satterthwaite Theorem it follows that F is suscep-
tible to profile-manipulation, i.e., there exist a profile b, a
voter i, and a ballot c?i such that F (c?i , b−i) �i F (�i, b−i).
Since F cannot differentiate between profiles that produce
the same I-structure, we get F (�i, c−i) = F (�i, b−i) for
any c−i with π(�i, c−i) = π(�i, b−i). As F is strongly com-
putable from π-images, this entails F (c?i , c−i) = F (c?i , b−i)
for any c−i with π(�i, c−i) = π(�i, b−i). Hence, F is sus-
ceptible to π-manipulation.

The conditions of Theorem 1 are not necessary for suscep-
tibility. There are resolute voting rules that are surjective,
nondictatorial, and susceptible to π-manipulation, yet not
computable from π-images, as our next result shows.

Theorem 2. When m > 3 and n is even, any strongly
Condorcet-consistent voting rule, paired with the lexico-
graphic tie-breaking rule, is susceptible to MG-manipulation.

Proof. Let X , N and F satisfy above conditions and
let π be the MG-PIF. We construct a profile with three
weak Condorcet winners such that voter i’s second favourite
alternative wins if she votes truthfully, and her first favourite
wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Let �i = b � a � c �
X\{a, b, c}, where alternatives X\{a, b, c} are ranked in any
order. And let c?i = b � c � a � X\{a, b, c}. Let b−i be a
profile in which n−2

2
voters submit b � a � c � X\{a, b, c},

and n−2
2

+ 1 voters submit c � a � b � X\{a, b, c}. Then
F (�i, b−i) = a (as ties are broken in favour of a) and
F (c?i , b−i) = b. It is not difficult to check that there is no

profile c−i ∈ Wπ(�i,b−i)
i such that F (c?i , c−i) ≺i F (�i, c−i).

It follows that F is susceptible to MG-manipulation.

Examples for voting rules that are strongly Condorcet-
consistent include the maximin-rule, but not, for instance,
the (Condorcet-consistent) Copeland rule.

Our final example for a π-susceptibility result concerns
PSRs. Observe that a PSR is unanimous if and only if s1 >
s2 holds for the scoring vector defining it.

Theorem 3. When m > 3 and n > 4, any unanimous
positional scoring rule, paired with the lexicographic tie-
breaking rule, is susceptible to winner-manipulation.

Proof. Let X , N and F satisfy above conditions and let
π be the winner-PIF wrt. F . We construct a profile where
voter i’s third favourite alternative wins if she votes truth-
fully and her second favourite wins if she votes untruthfully.

Fix a, b, c ∈ X with a 6= b 6= c. Let �i = c � a �
b � X\{a, b, c}, where alternatives X\{a, b, c} are ranked
in any order. And let c?i = a � c � b � X\{a, b, c}. If
n is odd, let b−i be a profile in which n−3

2
voters submit

a � b � X\{a, b}, n−3
2

voters submit b � a � X\{a, b}, and
the remaining two voters submit c � b � a � X\{a, b, c} and
b � a � c � X\{a, b, c}. If n is even, let b−i be a profile in
which n−2

2
voters submit a � b � X\{a, b}, and n−2

2
voters

submit b � a � X\{a, b}, and the remaining voter submits
b � c � a � X\{a, b, c}. Since F is unanimous, i.e., s1 > s2,
we get F (�i, b−i) = b and F (c?i , b−i) = a. It is not difficult

to check that there is no profile c−i ∈ Wπ(�i,b−i))
i such that

F (c?i , c−i) ≺i F (�i, c−i). It follows that F is susceptible to
winner-manipulation.

3.3 Immunity Results
We now turn our attention to voting rules that are immune
to certain types of manipulation. First, it is not difficult
to verify that any dictatorial as well as any constant voting
rule will be immune to profile-manipulation (and thus, by
Lemma 1, also to any other form of manipulation). At the
other extreme, as we shall see next, we can obtain immunity
results for two large classes of voting rules with respect to
the weakest form of immunity considered here, namely zero-
manipulation. The next theorem is inspired by (and corrects
a minor mistake in) a result due to Conitzer et al. [5].

Theorem 4. When n > 3, any strongly Condorcet-
consistent voting rule, paired with the lexicographic tie-
breaking rule, is immune to zero-manipulation.

Proof. Let N and F satisfy above conditions and let π
be the zero-PIF. Fix any voter i, any poll profile b with
bi = �i, and any untruthful ballot c?i . Since c?i 6= �i, there
is a pair of alternatives such that x �i y and y �c?i x.
Claim: there exists a profile c−i such that F (c?i , c−i) ≺i
F (�i, c−i). If n is odd, let c−i be a profile in which n−1

2

voters submit x � y � X\{x, y}, and n−1
2

voters submit
y � x � X\{x, y}, where alternatives X\{x, y} are ranked
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in any order. If n is even, let c−i be a profile in which n−2
2

voters submit x � y � X\{x, y}, and n−2
2

voters submit
y � x � X\{x, y}, and the remaining voter submits y �
x � X\{x, y} in case x lexicographically precedes y and
x � y � X\{x, y} otherwise. Then F (�i, c−i) = x and
F (c?i , c−i) = y. Hence, for any untruthful ballot c?i there is a
situation where i will do strictly better by voting truthfully.
It follows that F is immune to zero-manipulation.

Conitzer et al. [5] state a slightly stronger variant of
Theorem 4: any resolute voting rule that is (not neces-
sarily strongly) Condorcet-consistent is immune to zero-
manipulation. This is true for an odd number of voters,
as may be seen by revisiting the first part of our proof. For
an even number of voters, however, Condorcet consistency
is not sufficient, as demonstrated by the following example.

Example 1. Consider a scenario with 4 voters and 3 al-
ternatives (a, b, c). Suppose that voting rule F elects the
Condorcet winner if one exists, and otherwise the bottom
choice of voter 1. Let �1 = a � b � c, and consider bal-
lot c?1 = a � c � b. Now there is a profile c−1 such that
voter 1 benefits from voting untruthfully, namely when the
others vote a � b � c, b � a � c, and b � a � c. Then
F (�1, c−1) = c and F (c?1, c−1) = b. It is not difficult to
check that there is no profile c−1 such that F (c?1, c−1) ≺1

F (�1, c−1). It follows that F is a resolute voting rule that is
Condorcet-consistent and susceptible to zero-manipulation.

We stress that Theorem 4 also cannot be simplified to stating
that any voting rule that always elects some weak Condorcet
winner whenever one exists is immune to zero-manipulation.

The following theorem strengthens another result by
Conitzer et al. [5], who use a bound of n > 6m− 12.

Theorem 5. When n > 2m − 2, any positional scoring
rule, paired with the lexicographic tie-breaking rule, is im-
mune to zero-manipulation.

Proof. Let N , X and F satisfy above conditions and let
π be the zero-PIF. Fix any voter i and any poll profile b
with bi = �i. And fix any untruthful ballot c?i such that
F (c?i , c−i) 6= F (�i, c−i) for some profile c−i. Then there
exists a pair of alternatives such that x �i y and y �c?i x,
and x’s score differs from y’s in �i and c?i . Claim: there
exists a profile c−i such that F (c?i , c−i) ≺i F (�i, c−i). If n
is odd, let c−i be a profile in which n−1

2
voters submit x �

y � X\{x, y}, and n−1
2

voters submit y � x � X\{x, y},
where every alternative z ∈ X\{x, y} is ranked last by at
least one voter. If n is even, let c−i be a profile in which
n−2
2

voters submit x � y � X\{x, y}, and n−2
2

voters submit
y � x � X\{x, y}, where every alternative z ∈ X\{x, y} is
ranked last by at least two voters, and the remaining voter
submits the ranking that is like �i but with x and y swapped
in case x lexicographically precedes y and c?i with x and y
swapped otherwise. Then F (�i, c−i) = x and F (c?i , c−i) =
y. Hence, F is immune to zero-manipulation. Observe that
the bound of n > 2m − 2 follows from our requirements
on the number of voters ranking each z ∈ X\{x, y} last.
(The case with 4 voters and 3 alternatives must be checked
separately.)

Together, Theorem 4 and Theorem 5 cover a broad range of
voting rules. In particular, as is well known [11], the classes
of Condorcet-consistent rules and PSRs do not overlap.

So far, all our immunity results involved either trivial vot-
ing rules (dictatorships and constant rules) or the trivial in-
formation set (for zero-manipulation). While we should not
expect many positive results between these two extremes,
they are not impossible to obtain either:

Theorem 6. When n > 2m − 2, the antiplurality rule,
paired with the lexicographic tie-breaking rule, is immune to
winner-manipulation.

Proof. Let N and F satisfy above conditions and let
π be the winner-PIF wrt. F . W.l.o.g., we may assume that
voters only submit an alternative they wish to veto. Fix any
voter i, any profile b with bi is voter i’s true least favourite
alternative, and any ballot c?i 6= bi. Claim: voter i never
has an incentive to π-manipulate. Suppose m > 3 and
F (b) = w. If w = bi, then i cannot change the outcome.
If w = c?i , let c−i be a profile in which n−1 voters veto
some x ∈ X\{bi, w}, and all alternatives x ∈ X\{bi, w} are
vetoed by at least one voter. If w ∈ X\{bi, c?i }, let c−i be a
profile in which n−2 voters veto some x ∈ X\{bi, w}, and all
alternatives x ∈ X\{bi, w} are vetoed by at least two voters,
and the remaining voter vetoes w in case w lexicographically
precedes bi and some alternative x ∈ X\{bi, w} otherwise.
Then F (bi, c−i) = w and F (c?i , c−i) = bi. Hence, F is im-
mune to winner-manipulation. (The case with 2 alternatives
must be checked separately.)

Theorem 7. When n > 10, the plurality rule, paired
with the lexicographic tie-breaking rule, is immune to MG-
manipulation.

Proof. See Reijngoud [10]. The main insight is that for
n > 10 the majority graph does not give enough information
for a voter to infer the identity of the plurality winner.

4. REPEATED RESPONSE TO POLLS
In this section we study the case where voters repeatedly
react to opinion polls. We assume that all voters will vote
truthfully in an initial poll. Then, given the poll informa-
tion communicated to the voters (using a PIF), one voter
is given the opportunity to update her ballot. This process
is repeated until no further voter wishes to update her bal-
lot (or until a given maximum number of rounds has been
reached). We then apply the voting rule to this final profile
to determine the election winner.

An important parameter in this kind of voting game is
given by the response polices that voters use to update their
ballots. We shall first formulate several such policies, and
then formally introduce the voting games considered here.
As we shall see, any such game (the definition of which in-
cludes a voting rule F ) induces a new voting rule F t (where
t is the number of rounds played), and we will analyse the
properties of F t in view of those of F .

4.1 Response Policies
In each round, a voter i who has the opportunity to update
her ballot must decide what to do based on her true prefer-
ence order �i, her previously submitted ballot bi, and her
current information set Wi. A response policy determines

for each voter i a function δi : L(X )×L(X )× 2L(X )N\{i} →
L(X ), mapping (�i, bi,Wi) to a new ballot b′i. We shall
work with the following policies:
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• Truth-teller: A truth-teller always votes truthfully, i.e.,
δi(�i, bi,Wi) = �i.
• Strategist: A strategist computes her best responses to

a poll and uses (any) one of them. Only if her current
ballot is amongst the best responses, she will always
use it. If we restrict attention to the plurality rule
and assume that polls give score-information, then this
policy is similar to the policy used by Meir et al. [7].
• Pragmatist: A pragmatist cannot or does not want to

compute her best response to a poll, e.g., because this
takes too much effort. A k-pragmatist always moves
her favourite amongst the k currently highest ranked
alternatives to the first position in her ballot, without
changing the relative ranking of the others. This policy
is also described by Brams and Fishburn [1].

We assume any given voter will use the same policy through-
out. Voters also have to decide how to vote in the first round.
As mentioned above, we assume that they all choose to vote
truthfully then. This is not unreasonable, given the immu-
nity results to zero-manipulation in Section 3.3.

Note that in the framework defined here, voters only take
into account information from the latest poll round. How-
ever, the framework could be extended to include previous
rounds by adding the information sets induced by those
rounds to the input arguments of δi.

4.2 Induced Voting Rules
Let us now formally define the notion of voting game.

Definition 3. A voting game is a tuple G = 〈F, π, δ〉,
where F is a resolute voting rule, π is a PIF, and δ =
(δ1, . . . , δn) is a vector of response policies.

A voting game proceeds in rounds. Initially, all voters vote
truthfully. In each subsequent round, exactly one voter
changes her ballot. This voter is selected from the set of
voters who wish to change. Whether or not a voter i wishes
to do so depends on her response policy δi. At the end of
each round, π(b) is computed for the new poll profile b and
the result is communicated to all voters. For a voting game
to be uniquely defined, we need to fix the order in which
voters may change their ballot. Any such order is allowed
(none of our results will depend on the order chosen).

A voting game G induces a new voting rule F t when the
number of rounds to be played is t.

Definition 4. Let G = 〈F, π, δ〉 be a voting game, and
let t ∈ N be the number of rounds to be played. Then a voting
rule F t is induced by G by stipulating for any profile b:

F t(b) :=

{
x ∈ X

∣∣∣ x is an election winner after t rounds
when b is the truthful, initial profile

}

A game terminates in round t if no voter wishes to change
her ballot according to her response policy at the end of t.
If G always terminates after at most t rounds, then we write
F ? instead of F t. Clearly, if all voters are truth-tellers, then
any voting game terminates after 0 rounds. Moreover, if F
is immune to π-manipulation and all voters are strategists,
then G terminates after 0 rounds as well.

Meir et al. [7] show that for any voting game G with F be-
ing the plurality rule and π the score-PIF wrt. the plurality
rule, if p voters are strategists and n−p voters are truth-
tellers, then G terminates after at most m · p rounds. To be

precise, these authors show this for a specific kind of strate-
gist response policy, namely one in which a voter, whenever
her current ballot is not amongst the best responses, changes
her ballot to the best response in which the next alternative
to win is the one she ranks first. We obtain a similar result
for an electorate composed of truth-tellers and pragmatists
(as opposed to strategists). In fact, under these assumptions
the result can be generalised to arbitrary PSRs:

Lemma 2. Let G = 〈F, π, δ〉 be any voting game such that
F is a PSR, paired with the lexicographic tie-breaking rule, π
is the rank-PIF wrt. F , and δ is a vector of p k-pragmatists
and n−p truth-tellers. Then G terminates after 6 p rounds.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b. Let Ht

k(b) be the set of k highest ranked alter-
natives in b according to F t. Claim: Ht

k(b) = Ht+1
k (b) for

any number of rounds t ∈ N. Suppose that voter i changes
her ballot at round t. Since i is a k-pragmatist, and F is
a PSR, we have that no alternative x ∈ Ht

k(b) loses points
and no alternative y ∈ X\Ht

k(b) wins any. Hence, each voter
will update her ballot at most once and G terminates after
at most p rounds.

A similar argument can be used to prove that if F is the
Copeland rule and all voters are k-pragmatists, then G ter-
minates after at most n rounds. This also holds in case
F is the maximin rule or the Bucklin rule. On the other
hand, games defined in terms of other voting rules or other
response policies need not always terminate:

Example 2. Consider a scenario with 2 voters and 3 al-
ternatives (a, b, c). Let F be the Copeland rule, paired with
the lexicographic tie-breaking rule. Let π be the MG-PIF.
Suppose all voters are strategists. Consider the ballot profile
b = (a � b � c, c � b � a). Then F 0(b) = a, F 1(b) = b,
F 2(b) = a, F 3(b) = c, F 4(b) = a, . . . (voters 2 and 1 alter-
nate moving alternative b up and down in their ballots).

4.3 Properties of Induced Voting Rules
For a given voting rule F , and under certain assumptions on
the PIF used and the response policies of voters, what will be
the properties of F t (and F ?, when it is well-defined)? This
is the question we shall investigate next. Specifically, we are
interested in properties that transfer from F to F t and F ?.
Let us begin with a simple observation: If F is dictatorial,
then any induced rule (for any PIF and any response policy
defined here) will be dictatorial as well. More interestingly,
we also obtain a transfer result for unanimity:

Theorem 8. Let G = 〈F, π, δ〉 be any voting game such
that F is unanimous, π is a PIF, and δ is a vector of prag-
matists, strategists and truth-tellers. Then F t is unanimous
for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b such that there is an alternative w that is
ranked first by all voters. Claim: F t(b) = w for any number
of rounds t ∈ N. Proof by induction. Since F is unanimous,
we have that F 0(b) = w. Now, suppose that F t(b) = w,
and that voter i wishes to change her ballot and may do so
next. As no truth-teller or pragmatist who already has her
favourite alternative winning will ever change her ballot, we
only need to consider the case where i is a strategist. Since
strategists always switch to a ballot that is at least as good
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as their previous ballot for all profiles in their information
set (and strictly better for some), we have that F t+1(b) = w.
This proves that F t is unanimous for any t ∈ N.

However, the Pareto condition, which is slightly stronger
than unanimity, does not always transfer:

Example 3. Consider a scenario with 2 voters and 3 al-
ternatives (a, b, c). Let F be a voting rule that returns all
alternatives that are not Pareto dominated, paired with the
lexicographic tie-breaking rule. Let π be the winner-PIF wrt.
F . Suppose all voters are strategists and let t > 1. Con-
sider the ballot profile b = (b � c � a, c � a � b). Then
F t(b) = a (because the second voter will rank a on top, given
that she has no chance to make c win, which is disadvantaged
by the tie-breaking rule), even though alternative a is Pareto
dominated by alternative c in profile b.

We also cannot guarantee the transfer of the Pareto condi-
tion for voting games in which all voters are pragmatists.
Other properties that do not always transfer are surjectiv-
ity, anonymity, and Condorcet consistency. For all of these
properties there are counterexamples in which all voters are
strategists and polls give ballot-information. We omit these
examples due to space constraints. On the other hand, un-
der certain conditions, Condorcet consistency does transfer:

Theorem 9. Let G = 〈F, π, δ〉 be any voting game such
that F is Condorcet-consistent, π is the rank-PIF wrt. F ,
and δ is a vector of truth-tellers and pragmatists. Then F t

is Condorcet-consistent for any t ∈ N.

Proof. Let G, F , π, and δ satisfy above conditions. Fix
any profile b with a Condorcet winner w. Claim: F t(b) = w
for any number of rounds t ∈ N. Proof by induction. Since
F is Condorcet-consistent, we have that F 0(b) = w. Now,
suppose that F t(b) = w, and that voter i wishes to change
her ballot and may do so next. Since i is a k-pragmatist
for some k ∈ N, and w is among the k currently highest
ranked alternatives, we have that w cannot lose support in
any pairwise contest with respect to its original pairwise
scores. It follows that F t+1(b) = w. This proves that F t is
Condorcet-consistent for any t ∈ N.

4.4 Condorcet Efficiency: Simulations
It is widely acknowledged that Condorcet consistency is a
highly desirable property, but many important voting rules
do not satisfy it [11]. The Condorcet efficiency of a voting
rule is its tendency to elect the Condorcet winner. Theo-
rem 9 identifies conditions under which Condorcet consis-
tency transfers from F to F t, but it does not say anything
about the transfer of Condorcet efficiency. Brams and Fish-
burn [1] give several examples that show that polls can have
a positive and a negative effect on the Condorcet efficiency
of a voting rule. To study how positive or negative this effect
is we shall make use of simulations.

We generated election data with n ranging from 10 to 100
in steps of 5 while keeping m fixed at 5, and m ranging from
3 to 15 in steps of 1 while keeping n fixed at 50 (using a sim-
ple program implemented in Java 1.6.0). For each of these
combinations we generated 10,000 (truthful) ballot profiles
with a Condorcet winner using the impartial culture (IC)
assumption, which states that any permutation of alterna-
tives is equally likely to occur as a voter’s preference order.
The limitations of the IC assumption are well known [9]; in
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Figure 1: Average probability of electing the Con-
dorcet winner for 50 voters and 5 alternatives over
10,000 trials. Poll effect on Condorcet efficiency is
significant (p < 0.05) for plurality, STV and Bucklin.

particular, we should not expect the preferences in a real-
world electorate to be distributed uniformly. Nevertheless,
the IC assumption is still the de facto standard used in social
choice theory; results based on it provide an important base
line and allow for direct comparison with a large number of
findings documented in the literature.

Our first experiment was set up to test the effect of polls
on the Condorcet efficiency of plurality, Borda, Copeland,
STV, and Bucklin when polls provide (at least) rank-
information, and all voters are 2-pragmatists or all voters
are 3-pragmatists. That is, voters want to have as much
electoral influence as they can without having to think too
hard about a new ballot, unlike strategists. Note that we
included the Copeland rule for comparison, but we already
know that the rule itself is Condorcet-consistent, and thus
its induced voting rule will be as well (cf. Theorem 9). We
fixed the order in which voters may change their ballot to be
the ascending order: voters were offered a chance to update
their ballot according to their index in N , beginning with
the successor of the voter who was the last to change. All
induced voting rules were run until termination.

Figure 1 shows the results for 50 voters and 5 alterna-
tives; the other voter-alternative combinations showed a
similar pattern, except for plurality, to which we will come
back later. We used R to analyse our data [8], and McNe-
mar’s test to determine whether the poll effect was signif-
icant. The results for no-polls vs. polls for 2-pragmatists
were p = 0, p = 0.13, p < 0.001, and p = 0 for plurality,
Borda, STV, and Bucklin respectively. For no-polls vs. polls
for 3-pragmatists they were p < 0.001, p = 0.13, p < 0.001,
and p < 0.001 for the same rules. Thus, polls had a signifi-
cant positive effect on the Condorcet efficiency of plurality,
STV and Bucklin, and no significant effect for Borda.

Intuitively, one can think of the pragmatist response pol-
icy as offering a Condorcet winner another chance to win if it
ended up among the k highest ranked alternatives in the first
round. For plurality and Bucklin we can state this intuition
as a general rule: if all voters are 2-pragmatists and the Con-
dorcet winner is among the two highest ranked alternatives
in the first round, then it will always win under induced vot-

641



Plurality

C
on

do
rc

et
 E

ffi
ci

en
cy

 (%
)

0
20

40
60

80
10

0
No Polls
Polls, Strategists (score-PIF)
Polls, Strategists (rank-PIF)

Figure 2: Average probability of electing the Con-
dorcet winner for 50 voters and 5 alternatives over
10,000 trials. Poll effect on Condorcet efficiency is
significant (p < 0.05) if polls give score-information.

ing rule F ?. This follows from Lemma 2 and properties of F .
However, if all voters are 3-pragmatists, then this no longer
holds. Generally, an alternative in a runoff between 2 alter-
natives has a greater chance of winning to start with than an
alternative in a runoff between 3. We would therefore expect
the 2-pragmatist response policy to have a greater positive
effect on the Condorcet efficiency than the 3-pragmatist re-
sponse policy. Indeed, our data reflect this expectation. On
the other hand, as m increases, it becomes less likely that the
Condorcet winner ends up amongst the two highest ranked
alternatives in the first round. This would explain that for
large numbers of alternatives (m > 12), the 3-pragmatist re-
sponse policy had a greater positive effect on the Condorcet
efficiency of plurality than the 2-pragmatist response policy.

Our results also show that polls had a greater effect on
plurality and Bucklin than on STV and Borda. This might
be due to the substantially lower Condorcet efficiency of
these rules, leaving more room for improvement.

So, polls improve the Condorcet efficiency of the widely
used plurality rule if all voters are pragmatists. What about
strategists? In our second experiment we tested the effect
of polls on the Condorcet efficiency of plurality under the
assumption that polls give rank- or score-information and
that all voters are strategists. As under rank-information
the induced rule did not always terminate, we ran t = 10, 000
poll rounds, after which 38% of all elections did terminate.
The results of the second experiment are shown in Figure 2.
Again, we only show the results for elections with 50 voters
and 5 alternatives. McNemar’s test on paired results gave
p = 0.27 for no-polls vs. rank-polls and p < 0.001 for no-
polls vs. score-polls. Thus, polls had a significant positive
effect on the Condorcet efficiency of plurality when voters
received score-information. On the other hand, when polls
only gave rank-information, we observed no significant effect
on Condorcet efficiency. The latter effect, however, turned
significantly positive for large m/n ratios, and significantly
negative for small m/n ratios.

How can we explain this pattern? Providing a strategist
with less information has two opposing effects: (1) she is
more likely to update her ballot, because even if she actually

cannot make a different alternative win, she may think she
can; and (2) she is less likely to update her ballot, because
she is risk-averse. Which effect is stronger is difficult to
predict, but our simulation results suggest that this depends
at least in part on the number of voters and alternatives.

5. CONCLUSION
We have developed a framework to study the effects of polls
on voting behaviour and election outcomes. We found that
when voters do not have any information about the voting
intentions of others, then for many voting rules they never
have an incentive to vote untruthfully. However, they start
having these incentives as soon as they know who is currently
winning, according to the poll. This does not necessarily
mean that polls have a negative effect on the election out-
come. Some favourable properties of voting rules do persist,
and may even be strengthened, when a rule is complemented
with a series of polls to which the voters can respond.

For properties that do not persist in general, further work
on simulations, similar to our study of Condorcet efficiency,
will be required. Beyond this, it would be interesting to in-
vestigate whether combinations of properties of voting rules
induce particular properties of elections with polls. Finally,
it would be worthwhile to consider additional types of poli-
cies according to which voters respond to poll information
and to investigate their influence on election outcomes.
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ABSTRACT
A market maker sets prices over time for wagers that pay out con-
tingent on the future state of the world. The market maker has
knowledge of the probability of realizing each state of the world,
and of how the price of a bet affects the probability that traders
will accept it. We compare the optimal policy for risk-neutral (ex-
pected utility maximizing) and Kelly criterion (expected log-utility
maximizing) market makers. Computing the optimal policy for
a risk-neutral market maker is relatively simple, while computing
the optimal policy for a Kelly criterion market maker is challeng-
ing, requiring advanced techniques adapted from the computational
economics literature to run efficiently. We show that while a risk-
neutral market maker has an optimal policy that does not depend on
the market maker’s state, a Kelly criterion market maker’s optimal
policy has an intricate dependence on both time and state. Counter-
intuitively, a Kelly criterion market maker may offer bets that are
myopically irrational with respect to the market maker’s beliefs for
the entire trading period. In contrast, a risk-neutral market maker
never offers a myopically irrational bet.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11 [Distrib-
uted Artificial Intelligence]: Multi-agent Systems

General Terms
Algorithms, Economics, Experimentation

Keywords
Agent Design, Computational Economics, Interpolation, Numeri-
cal Dynamic Programming, Kelly Criterion, Wagering

1. INTRODUCTION
Market makers are trading agents that set the prices for assets in

exchanges. Market makers profit in two ways: first, by the bid/ask
spread imposed when they buy a contract at a lower price than they
sell it for, and second, by speculatively taking on positions and
holding that inventory for a profit. Many realistic market-making
settings, like Las Vegas sports betting or a proprietary trading desk
at a bank, are characterized by a market maker that has a good prior
on the future state of the world and on how traders will bet as prices

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

change. A complication arises when traders and the market maker
have substantially different beliefs. Then, the market maker must
balance two competing factors: the desire to hedge bets for a cer-
tain profit, and the desire to profit in expectation from wagers made
at favorable prices. For instance, a market maker could find itself
in a situation where it could either increase its exposure to an event
it thinks will probably occur at a bargain price, or hedge out its
current risk on that event in order to guarantee a small but certain
profit.

In this paper, we compute the policy of a Kelly criterion market
maker over a series of interactions with traders. The Kelly crite-
rion [Kelly Jr, 1956] is a way to make bets that mandates maximiz-
ing the expected log utility of a setting. While simple as a guiding
precept, the Kelly criterion accomplishes a broad range of objec-
tives: over a series of bets, it is the fastest way to double an initial
investment, produces the highest median wealth, and produces the
highest mode wealth. Poundstone [2006] provides a compelling in-
troduction to the Kelly criterion and its use in practice, particularly
by the mathematician and hedge fund manager Ed Thorp.

There are two prior literatures that deal with the sequential in-
teraction of a market maker with traders: artificial intelligence, and
finance. In the AI literature, there are cost function based mar-
ket makers [Chen and Pennock, 2007, 2010]—agents which price
bets so that they are neutral between them being accepted and them
being not accepted [Ben-Tal and Teboulle, 2007, Agrawal et al.,
2009]. Another closely-related branch of the AI literature involves
Bayesian market makers which attempt to learn the correct value of
a security by applying Bayes Rule to a series of interactions with
traders [Das, 2008, Das and Magdon-Ismail, 2009, Chakraborty
et al., 2011]. In contrast to these agents, the market makers we
consider here behave rationally in the classical sense: they maxi-
mize utility given knowledge of the future and of how their prices
affect trader actions.

In the finance literature, Glosten and Milgrom [1985] defined the
basic framework used in many later works, including ours, for a
market maker interacting with an anonymous pool of traders. Kyle
[1985] considers a game-theoretic interaction between a profit-seek-
ing monopolistic market maker and a mix of noise traders and in-
formed traders. Our setting is similar, in that we consider utility-
maximizing pricing by a monopolistic market maker, but we as-
sume that no traders are privileged in their information. The most
challenging part of our work involves computing the policy of a
risk-averse market maker. The notion of a risk-averse, rather than
risk-neutral, market maker was introduced in Rock [1996].

Our experimental results show that a Kelly criterion market maker
follows a complex time-dependent strategy. In the early stages of
wagering, the market maker will attempt to match orders to profit
from the bid/ask spread. Towards the end of trading, the policy
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gradually shifts to myopic optimization on the market maker’s pri-
vate beliefs. Perhaps surprisingly, we show that in the early stages
of the market, profiting from the bid/ask spread dominates the de-
sire to sell inventory at agreeable prices, that is, if it facilitates more
trade, a Kelly criterion market maker should buy obligations at a
price higher than, or sell obligations at a price lower than, its pri-
vate beliefs. Moreover, because the inventory a risk-averse market
maker accumulates affects the prices it offers, the market maker
could offer bets that are myopically irrational for the entire trading
period. This is in contrast to a risk-neutral market maker that would
never offer a myopically irrational bet.

2. MODEL
Following Glosten and Milgrom [1985], the setting is a repeated

sequential interaction between the market maker and a set of traders.
In each period, the market maker sets prices for a finite set of bets,
and then a trader is drawn randomly from a large pool of potential
traders. That trader enters the market and selects one of the offered
bets to make with the market maker (or none at all). After a finite
number of periods the process halts, one of the n events is realized,
and the bets are settled with the traders.

Our setting is closest to Das and Magdon-Ismail [2009], which
also involved a dynamic stochastic optimization. In that work, how-
ever, the market maker was responding to a shock in the state of
the world and was attempting to learn the new, correct values for
contracts. In contrast, here, the market maker’s beliefs over the
probabilities of the future state of the world do not change, and the
market maker seeks to maximize expected utility over the interac-
tion with the traders.

2.1 Traders
The traders have the following features:

• Traders are anonymous, so there is no way for the market
maker to distinguish between traders. Anonymity is a stan-
dard component of many models in the literature (for exam-
ple, Feigenbaum et al. [2003] and Das [2008]), because it is
natural for settings where prices are posted publicly, as is the
standard in electronic markets.

• Traders are myopic, not strategic. They exist for only a sin-
gle period: they enter the market, perceive the prices of-
fered by the market making agent, select a bet to take (or no
bet), and then exit. The traders do not learn from historical
prices or strategize about their behavior. Myopic traders (also
known as noise traders) are a feature of much of the litera-
ture [Glosten and Milgrom, 1985, Kyle, 1985, Othman and
Sandholm, 2010]. Empirical studies of market microstruc-
ture have shown that the behavior of these agents is qual-
itatively very similar to behavior observed in real markets
with human traders [Gode and Sunder, 1993, Othman, 2008].
However, in some settings the simple behavior of these agents
may be an unrealistic model [Chen et al., 2007, Dimitrov and
Sami, 2008, Chen et al., 2010].

• The number of trading periods is drawn independently of the
market maker’s policy. Since traders have the ability to de-
cline to place a bet with the market maker if they do not find
the offered bets agreeable, this condition means that the num-
ber of traders placing bets with the market maker is not a
constant—instead, it will depend on the market maker’s pol-
icy. We assume the market maker knows the true distribution
of the number of trading periods.

2.2 Utility and the Bellman equation
The market maker’s state can be represented by a tuple (t,w) of

the index of the participating agent t ∈ {1, 2, . . .}, and the wealth
vector w, where wi is the market maker’s wealth (payoff) if state
of the world ωi ∈ Ω is realized. (Since exactly one trader appears
in each period, the variable t can be thought of as an index over
discrete time.) There is a termination state (t̄,w), where the mar-
ket maker gets an expected utility payout based on his subjective
beliefs p̂, which he believes to be the correct distribution over the
possible futures:

V (t̄,w) ≡
n∑

i=1

p̂iu(wi)

Without loss of generality, a risk-neutral market maker receives
its expected linear utility on termination:

V (t̄,w) ≡
n∑

i=1

p̂iwi

A Kelly criterion market maker receives its expected log utility
on termination:

V (t̄,w) ≡
n∑

i=1

p̂i log(wi)

The bets a market maker offers can be expressed by vectors in
payout space x ∈ Rn, so that xi is the trader’s payoff (that is, the
market maker’s loss) if ωi is realized. For instance, imagine that
the market maker is fielding bets on which of three horses will win
a horse race. A bet that pays the trader 10 dollars if the first horse
wins, 5 dollars if the second horse wins, and nothing if the third
horse wins, is represented by the vector (10, 5, 0).

The market maker’s policy when interacting with trader t, π(t, ·) :
Rn 7→ R, maps these vectors to the amount the market maker
would charge the agent for each bet. We denote by the zero-vector
bet 0 an agent declining to make a bet with the market maker, and
set π(0) = 0. (This can be interpreted as the intersection of the
individual rationality constraint of the traders (who would want
π(0) ≤ 0) and of the market maker (who would want π(0) ≥ 0).)
The market maker knows the probability that an agent will accept
a bet given the prices. Because traders are anonymous, the mar-
ket maker has no way to distinguish between traders and so these
probabilities are the same for all traders.

In full generality, there is a chance δ(t) of the interaction ter-
minating immediately before the t-th trader participates. Conse-
quently, the value of being in state (t,w) is

V (t,w) = (1− δ(t))
∑

x

P (Trader takes bet x at price π(x))

· V (t+ 1,w − x + π(x))

+δ(t)V (t̄,w)

In every state (t,w), a utility-maximizing market maker em-
ploys the optimal policy π∗ defined by the Bellman equation

π∗(t,w) = arg max
π

(1− δ(t))
∑

x

P (Trader takes bet x at price π(x))

· V (t+ 1,w − x + π(x))

+δ(t)V (t̄,w)

with respective values V ∗ defined by
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V ∗(t,w) = (1− δ(t))
∑

x

P (Trader takes bet x at price π∗(x))

· V (t+ 1,w − x + π∗(x))

+δ(t)V (t̄,w)

Solving these equations when the market maker has log utility
is very challenging. We proceed to discuss how we solve for the
optimal policy and values in this case.

3. COMPUTATION OF THE POLICY OF A
KELLY CRITERION MARKET MAKER

When given a specification of the value function V ∗(t + 1,w),
it is simple to calculate the optimal value V ∗ and policy π∗ of any
state in the previous time step t. Thus, backward induction from
the termination state is a straightforward way to solve for optimal
values and policy across every time step. A complication arises
from the difficulty in representing arbitrary V ∗(t + 1,w). While
the termination state is closed form, the previous time steps will
generally not have closed form representations. In order to solve a
Kelly criterion market maker’s problem with backward induction,
we must find a way to approximately represent the value function
concisely.

3.1 Shape-preserving interpolation
While the value function for an arbitrary time step may have a

complex, non-analytic form, we know a great deal about its shape
from the properties it inherits from the log utility of the terminat-
ing state [Stokey et al., 1989]. In particular: (1) it is increasing in
wealth, (2) it is concave, and (3) it goes to minus infinity as the
wealth in any state goes to zero.

Since these properties are intrinsically linked to the logarithmic
utility of the Kelly criterion market maker, we choose to adopt
an approximation technique that preserves these properties, shape-
preserving interpolation. Specifically, we employ the shape-preser-
ving interpolation developed theoretically in Constantini and Font-
anella [1990]. By shape-preserving, we mean that the technique
retains the partial derivatives, concavity, and monotonicity of the
original function, and by interpolation, we mean that the approx-
imated function precisely matches the actual function at a set of
interpolating points. While shape-preserving interpolation is well-
known in the scientific computing literature [Judd, 1998], this spe-
cific technique has been featured rarely. Perhaps the most practical
example is Wang and Judd [2000], who study a tax planning prob-
lem with stochastic stocks and bonds.

Because the theory of shape-preserving interpolation developed
in Constantini and Fontanella [1990] is complete only for two di-
mensions, we focus only on settings with two events for the rest of
the paper. While it does appear possible to extend the interpolation
into n dimensions, it would suffer from the curse of dimensional-
ity and take significantly longer to compute the approximate value
function. The restriction to two events is not as limiting as it might
first appear, because many realistic and popular settings involve wa-
gers on binary events. An example from sports betting is whether
the Red Sox or Yankees will win their upcoming match. An exam-
ple from finance is credit-default swaps, where a bond either does
or does not experience a default event.

In order to properly preserve the shape of the function, shape-
preserving interpolation requires computing the partial derivatives
with respect to the wealth in each state at the interpolating points.
We compute these values by using the envelope theorem; since
V ∗(t,w) is given by the maximizing policy π∗, we calculate the
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Figure 1: The utility function u(x, y) = .6 log x + .4 log y on
the rectangle [2, 4]2.
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Figure 2: The quilt which matches the function values and par-
tial derivatives.
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Figure 3: Evaluating the quilt using Bernstein bases produces
a good approximation.

partial derivatives with respect to wealth by numerically differ-
entiating the value function when the maximizing policy is fol-
lowed [Mas-Colell et al., 1995, Wang and Judd, 2000].

We proceed to describe the interpolation procedure at a high

647



level, first on a single rectangle and then over the whole positive
orthant. Figure 1 shows a sample expected utility function over a
single rectangle.

The first step to creating an approximate interpolating function
on this rectangle is to generate a three-by-three quilt (continuous,
piecewise-linear approximation) of the function by matching the
function values and partial derivatives at the vertices of the rectan-
gle. Figure 2 shows the quilt that results from the utility function in
Figure 1. This quilt retains the monotonicity, concavity, and partial
derivatives at the vertices of the original function.

The final step is to evaluate the quilt using bivariate Bernstein
basis functions. These are a variation-minimizing set of functions
that retain the monotonicity, concavity, and partial derivatives at the
vertices of the quilt. Of course, the quilt retained these properties
from the original function itself, and so the interpolation is shape
preserving. By variation minimizing, we mean that the bases are
weighted to produce a polynomial that minimizes the sup (L∞)
norm error. It is therefore accurate to think of the Bernstein bases as
smoothing the piecewise linear quilt [Judd, 1998]. Figure 3 shows
the interpolated function that results from the process. Since the
Bernstein evaluation step works directly on the quilt, the function
is approximated concisely: for each interpolating rectangle we only
need to store the sixteen values that create the quilt.

Computing the shape-preserving interpolated function is more
involved than a simple linear interpolation (table lookup). How-
ever, the benefit of these extra steps is the dramatically improved
accuracy of the evaluated function or, put another way, a substan-
tial decrease in the degree of grid fineness required to compute the
value function to the same level of accuracy. Table 1 compares the
accuracy of the shape-preserving interpolation versus a simple lin-
ear interpolation at an arbitrary collection of wealth vectors for the
representative utility function used in Figure 1.

Wealth vector Shape-preserving error Linear error Ratio
(2, 2) .0020 .14 72
(5, 1.1) .0026 .36 135
(20, 25) 1.2× 10−6 .0011 895
(50, 10) 1.0× 10−5 .0021 210

Table 1: Relative errors for shape-preserving interpolation ver-
sus linear interpolation on identical rectangles. At each wealth
vector, the interpolating rectangle is (w1 ± 1, w2 ± 1), i.e., a
square with side length 2 centered at the wealth vector.

The shape-preserving interpolation is between 72 and 895 times
more accurate than a linear grid at the example points. Perhaps un-
surprisingly, we found that the inverse of this relation also appeared
to hold—to achieve the same level of accuracy as shape-preserving
interpolation, the grid used in linear interpolation would need to be
roughly one thousand times finer. We estimate that the running time
of our experiments on a commodity PC using linear interpolation
would take about a week; in contrast, solving the dynamic program
took about ten minutes using shape-preserving interpolation.

3.2 Extending the technique
We have described how shape-preserving interpolation works on

a single rectangle over which the function to be approximated is
finite. It is straightforward to extend this technique from a single
rectangle to a finite grid of rectangles over which the function to be
approximated is finite. (In this case, care must to be taken to ensure
that the function approximation is continuous at the boundaries of
the individual interpolating rectangles, but this can be accommo-

dated without too much additional complexity, see Constantini and
Fontanella [1990] for details.)

However, the value function we are approximating is not just a
finite function over a finite grid: it fails this in two separate ways.
First, since limx↓0 log x = −∞, we have that at the lower bound-
ary of the positive orthant (i.e., values close to zero along either
dimension) the value function goes to−∞. Second, the value func-
tion has no finite upper bound on its input—it is defined over the
entire positive orthant. Consequently, we must extend the inter-
polation technique from the literature to accommodate the specific
properties of a Kelly criterion market maker. Our solution is to
have a large finite grid of interpolating rectangles on which we can
apply the standard shape-preserving technique, and then to employ
custom extensions to approximate below the lower boundary and
above the upper boundary of the grid.

3.2.1 Beyond the lower boundary of the grid
We interpolate beyond the lower boundary of the grid as if the

value were given by setting the value of a state equal to its termi-
nation value plus a constant that ensures continuity at the boundary
of the grid. Formally, to approximate the value of state w, with
nearest point on the interpolating grid wg, we set

V (t,w) ≈ V (t̄,w) + (V (t,wg)− V (t̄,wg))

(Observe that as w → wg, V (t,w) → V (t,wg)). This approx-
imation ensures the monotonicity of the value function and that it
goes to negative infinity as the wealth of either state goes to zero,
but, it is only an exact approximation for the termination function
itself. To ensure that this extension does not change the overall
value function substantially, in our experiments we start the inter-
polating grid at a small value, so the additional interpolation is only
relevant over a small fraction of the state space. In our exploratory
data analysis, we experimented with different lower bounds for
the interpolating grid and found that different small values did not
noticeably affect calculated optimal policies. We attribute this to
states at the lower boundary of the grid having such low utility that
they will be avoided, and are therefore largely irrelevant to the op-
timization problem as a whole.

3.2.2 Beyond the upper boundary of the grid
Consider the market maker’s pricing problem at the upper bound-

ary of the grid at time t. If the size of the trader’s bet is bounded
(say, to be no larger than c), then the market maker can approxi-
mately compute the optimal pricing policy by using an interpolat-
ing grid at time step t+ 1 whose upper boundary is larger than the
grid at time t by at least c. Using this insight, we eliminate the
need to calculate a value beyond the upper boundary of the grid
by increasing the upper boundary of the grid as time proceeds. (In
fact, recalling that we solve the dynamic program through back-
ward induction, from an algorithmic perspective we are actually
reducing the upper boundary of the grid as we solve backwards
through time.) In contrast to our extension to compute values be-
low the lower boundary of the interpolating grid that we discussed
above, this extension uses the same mechanics as the rest of the
shape-preserving interpolation process and so suffers from no ad-
ditional loss of accuracy.

3.3 Alternative approaches
As an alternative to the gridded approach here, we also con-

sidered but rejected a global shape-preserving approximation tech-
nique along the lines of De Farias and Van Roy [2003]. This would
involve selecting basis functions φi that are each monotonic and
concave, and representing the value function in each time step as a
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conical combination of these functions:

V ∗(t,w) ≈
∑

i

γtiφi(w), γti ≥ 0.

Such a representation retains the monotonicity and concavity
properties of the value function and is concise. We rejected this
approach for two reasons. First, the heuristic selection of the basis
provides little guidance. Which set of functions is a good choice,
and why? Observe that many standard basis function selections,
such as radial basis functions, will not in general preserve the mono-
tonicity or concavity of the value function and so could lead to non-
sensical policies.

The second reason we chose to reject this technique is the diffi-
cult optimization to select the weights γt. In particular, a standard
linear regression that maximizes the deviation from sum of squares
at a set of relevant nodes can create aberrant behavior and an ap-
proximation that deviates significantly from the actual value func-
tion [Gordon, 1995, Guestrin et al., 2001, Stachurski, 2008]. The
correct optimization to use to determine the weights is to minimize
the sup norm (that is, L∞, rather than L2), which is a significantly
more challenging problem to solve numerically [Judd, 1998].

4. EXPERIMENTS
With only two possible events, it is possible to characterize bets

in terms of a single event. In particular, setting p to be the proba-
bility that the first event occurs implies 1− p is the probability that
the second event occurs. Applying this logic to the market maker’s
policy, we can without loss of generality have the market maker buy
and sell contracts on the first event only, because buying (selling) a
contract on the first event implicitly yields the sale (purchase) of a
contract on the second.

The ask is the price at which the market maker will sell a con-
tract, and the bid is the price at which the market maker will buy
a contract. For non-degenerate settings, ask prices will always be
higher than bid prices. In this section, we describe the optimal ask
and bid prices for two different settings.

4.1 Parameterization
Following Das [2008], in our experiments, traders have a belief

drawn from a Gaussian with a mean belief of p = 0.5 and standard
deviation 0.05. The traders are zero-intelligence agents; a trader
visits the market maker exactly once and behaves myopically. They
purchase a unit contract if they see an ask price lower than their
belief, sell a unit contract if they see a bid price higher than their
belief, and do not transact with the market maker otherwise.

In our experiments, we set 50 trading periods (that is, δ(t =
51) = 1, δ(t < 50) = 0), although we found our results hold
qualitatively for other distributions of traders. Recalling from Sec-
tion 3.2 that the upper boundary of the interpolating grid increases
in each trading period, we set the interpolating grid for trader t to
[1, 1.5, 2, 3, . . . , 250, 250 + t]2.

In our experiments with Kelly criterion market makers, we con-
sider only relatively small levels of wealth (alternatively, large bets
relative to the amount of wealth). This is because for bets with large
levels of wealth, a market maker maximizing the expected log of
wealth can be well-approximated by a risk-neutral, linear utility
agent. To see why, consider the Taylor expansion of log utility at
wealth x:

log(x+ ε) = log(x) +
ε

x
− ε2

x2
+ Θ

(
ε3
)

If x is large enough that x2 � x, then 1/x2 � 1/x. Con-

sequently, at large wealths, the impact of small bets on the utility
function can be well-approximated by the linear function log(x) +(
1
x

)
ε, with negligible higher-order effects.

We now turn our attention to how to calculate the optimal policy
for a risk-neutral market maker, and the qualitative properties of
that policy.

4.2 Optimal risk-neutral policy
For this setting, a risk-neutral market maker’s optimization prob-

lem is significantly simpler than the general case. Recall that in the
two-event case, the market maker’s knowledge of the future, the
vector p̂, can be represented by a single scalar p̂ (e.g., “Team A has
a 50 percent chance of winning the game"). Then the termination
state V (t̄,w) is

V (t̄,w) ≡ p̂w1 + (1− p̂)w2

Let the agents have beliefs on the first event distributed accord-
ing to the cumulative density function F with probability density
function f . In the penultimate step t̄ − 1, a risk-neutral market
maker sets their bid and ask price to maximize their utility in the
termination state, conditioning on three cases: the bid being taken,
the ask being taken, and neither offer being taken. Formally,

V ∗(t̄− 1,w) = max
b,a

F (b)V (t̄, (w1 − b+ 1, w2 − b))

+(1− F (a))V (t̄, (w1 + a− 1, w2 + a))

+(F (a)− F (b))V (t̄,w)

and since V (t̄,w) = p̂w1 + (1− p̂)w2 the right-hand side opti-
mization simplifies to

max
b,a

F (b)(p̂(w1 − b+ 1) + (1− p̂)(w2 − b))

+(1− F (a))(p̂(w1 + a− 1) + (1− p̂)(w2 + a))

+(F (a)− F (b))(p̂w1 + (1− p̂)w2)

which further simplifies to

max
b,a

V (t̄,w) + F (b)(p̂− b) + (1− F (a))(a− p̂) (1)

which implies

V ∗(t̄− 1,w) + C = V (t̄,w)

where C is a constant that does not depend on t or w. Conse-
quently, by inductive argument working back from the terminal
state the optimal policy for a risk-neutral market maker does not
depend on t or w. Equation 1 also makes it easy to see that the
optimal arguments (b∗, a∗) have b∗ ≤ p̂ ≤ a∗, because if not
changing to a policy satisfying that inequality would yield a higher
value. Thus, a globally optimal risk-neutral market maker is always
myopically rational.

This argument also applies to the general setting discussed in
Section 2.2 with more than two bets and events. In that case, by
similar reasoning, the result is that a risk-neutral market maker will
always price a bet x such that π(x) ≥ p̂ · x. In this more-advanced
case, however, traders’ demands could be a complex, combinatorial
function of the price vector offered by the market maker. If so,
computing the optimal policy could be infeasible.

We have shown that the optimal policy of a risk-neutral market
maker is constant and invariant to time and wealth. To actually
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Figure 4: When the market maker’s private beliefs align with
those of the traders, the optimal ask prices (top lines) and bid
prices (bottom lines) do not change significantly over the course
of the interaction period.

compute the optimal b∗ and a∗, in the simple two-event, unit-bet
case we can take the first-order condition of the optimization in
Equation 1 to get

F (b∗)(p̂− 1) + f(b∗)(p̂− b∗) = 0

(1− F (a∗))(1− p̂)− f(a∗)(a∗ − p̂) = 0

If p̂ ∈ (0, 1) and f(x) > 0 for all x ∈ (0, 1), the existence and
uniqueness of optimal b∗ < p̂ < a∗ are guaranteed. When F
and f are well-behaved smooth functions (as is the case for our
experiments where F is a normal distribution), the optimal values
can be solved quickly by numerical root-finding techniques.

4.3 Optimal log-utility policy
Following the procedure outlined in Section 3, we computed the

optimal value and policy functions for several different parame-
terizations of wealths and beliefs for both Kelly and risk-neutral
market makers.

We begin by considering the case where the market maker’s pri-
vate belief aligns with the beliefs of the traders. Figure 4 shows the
optimal bid and ask prices over the series of traders when the mar-
ket maker has wealth (100, 100) (thickest line), (50, 50) (medium
line), and (25, 25) (thinnest line). That is, the plot shows π(t, (w,w))
for t ∈ {1, . . . , 50} and w ∈ (25, 50, 100).

Here, prices throughout the interaction are very close to the my-
opic optimization for the last trader, and the prices are very similar
for all of the sampled wealths. In this scenario, the prices are also
essentially equivalent to the optimal policy of a risk-neutral market
maker.

In contrast, Figure 5 shows the optimal policies when the mar-
ket maker’s belief is p = 0.6 (shown by the cross-hatched line).
This value is two standard deviations higher than the mean of the
traders’ beliefs. The policies are calculated at the same wealths as
in Figure 4, that is, the policy of a market maker with wealth of 25,
50, and 100 in both states at every time step.

Unlike in the previous figure, the optimal policies change over
time and are wealth-dependent. In this scenario, the optimal risk-
neutral policy is a bid of 0.52 and an ask of 0.62. Because with
large wealth a logarithmic utility market maker making small bets
can be approximated well by linear utility, we know that as wealth
increases, the market maker’s optimal policy throughout the trading
period will converge to be the optimal linear utility policy. How-
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Figure 5: When the market maker’s private beliefs do not align
with those of the traders, the optimal policy is highly time and
wealth dependent.
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Figure 6: The probability of a trader taking each offered bet
from a market maker with 25 wealth in each state over the en-
tire trading period.

ever, at the smaller levels of wealth in our experiments, for all ex-
cept the last few traders, the asking price for a unit contract is below
the market maker’s belief that the event will occur. Thus, for much
of the trading period, from a myopic perspective the Kelly criterion
market maker offers irrational bets.1

On the surface, this result seems confusing and even paradoxi-
cal. To see why it is the optimal policy, consider Figure 6, which
displays the probability of each trader taking the bets offered by
a market maker with a (constant) wealth of 25 in both states. It
shows how the probability of a trader selling at the bid price rises
over time, while the probability of a trader buying at the ask price
falls. The first trader is about twice as likely to sell at the bid price
than to buy at the ask price, while the last trader is about 87 times
more likely to sell than to buy.

For early traders, the market maker’s bid and ask prices are roughly
centered around 0.5, just like the distribution of agent beliefs. Con-
1One might think that this phenomenon could be explained by the
market makers accumulating wealth from spread profits, and there-
fore becoming absolutely less risk-averse over time. However, even
market makers with considerably larger endowments than could
possibly be made through spread profits still display the same qual-
itative behavior.
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Figure 7: Simulating the prices (left axis; thin lines) and net
inventory (right axis; thick black line) that result from the in-
teraction of an optimal log-utility market maker starting with
25 wealth in both states. In this figure, both the inventory and
prices change over time.

sequently, the market maker has a reasonable chance of matching
traders’ bids and asks and thus profiting off the bid/ask spread.
A market maker that successfully matches the bids and asks of
traders books a profit regardless of the personal beliefs of the mar-
ket maker, even if those beliefs are, as in this scenario, very dif-
ferent from the prices in question. Of course, as fewer traders re-
main the setting more and more resembles a myopic optimization
where, with equivalent wealths in both states, the market maker
will employ a myopically rational strategy. This sophisticated pol-
icy emerges solely from the introduction of risk-aversion to the ter-
mination state, because a risk-neutral market maker in an identical
setting displays none of this behavior.

Once the optimal policy is computed, we can simulate the behav-
ior of the market maker against the pool of traders. Figure 7 shows
the simulated prices of wealth 25 market maker in a sample inter-
action for the case where the the market maker has belief 0.6 and
agents have belief mean of 0.5 (i.e., the setting for Figures 5 and 6).
The thin lines, with values marked by the left axis, show the ask
(upper line) and bid (lower line) prices of the market maker. The
thick black line, with values market by the right axis, shows the
market maker’s net inventory, i.e., the market maker’s payoff if the
event occurs. The values on Figure 7 show the prices faced by
trader i but the inventory after the participation of the trader. (The
inventory line starts at 1 in this case because the first trader took
the market maker’s bid.) In this simulation, the market maker’s ex-
pected utility from their wealth vector increases from 3.22 before
any traders participate to 3.27 after all 50 traders participate.

Recall that in this setting the market maker has a significantly
higher belief that the event will occur than does the pool of agents,
so it is natural for the market maker to accumulate inventory. As
the market maker accumulates inventory, its prices fall. This is be-
cause a risk-averse market maker prefers to take a small sure profit
(the bid/ask spread from matching orders) over a somewhat larger
speculative gain (from holding inventory). Consequently, the prices
from the simulation are very different than the prices in Figure 5,
because the prices in Figure 5 captured the prices of a market maker
with constant wealth in both states over time. If the market maker
were not taking on inventory, its prices would rise, as in Figure 5,
but because the market maker in our simulation takes on inventory,
that price rise is effectively dampened. Observe that in this simula-

tion, because the price rise is dampened, the market maker’s asking
price is always less than 0.6 and therefore is myopically irrational
for the entire trading period!

5. CONCLUSIONS
We initiated the study of rational market making where the mar-

ket maker has knowledge about the probabilities of future events
transpiring and of traders accepting bets that the market maker
could offer them. We gave a general description of the optimiza-
tion problem faced by a monopolistic market maker trying to max-
imize their expected utility. We investigated two cases in detail:
a risk-neutral market maker (linear utility), that yields the highest
expected wealth, and a Kelly criterion market maker (logarithmic
utility) that yields the highest expected median and mode of wealth.

We showed that for a two-event setting, computing the optimal
policy of a risk-neutral market maker is trivial, but computing the
optimal policy of a log-utility market maker is not straightforward.
Because there is no closed-form expression for the value function,
we approximated it using Constantini shape-preserving interpola-
tion. This interpolation technique preserves the concavity, mono-
tonicity, and partial derivatives of the original function. Because it
retains the shape of the approximated function, it is much more ac-
curate than a simple grid interpolation. Since it is more accurate, to
preserve the same level of accuracy we were able to solve the prob-
lem using a grid that is orders of magnitude coarser. Consequently,
the time spent calculating the value function at each iteration of
the dynamic program is orders of magnitude faster using the more-
sophisticated shape-preserving interpolation technique than with a
simple linear interpolation. Because our problem is defined over
the whole positive orthant while the shape-preserving technique we
used works only over a finite grid, we had to develop an extension
of the technique at the lower and upper boundaries of the grid.

We showed that the optimal policy for a risk-neutral market maker
is always myopically rational. In contrast, our experiments showed
that the optimal policy for a Kelly criterion market maker is of-
ten myopically irrational, and that a Kelly criterion market maker
could have a myopically irrational policy for the entire trading pe-
riod. We showed evidence that a log-utility market maker would
begin the trading period pricing in order to capture the bid/ask
spread from agents. Recall that the traders’ response to the market
maker’s prices is a random variable, so that whether or not a mar-
ket maker acquires inventory is stochastic, not deterministic. If that
pricing resulted in the market maker not taking on inventory, our
results showed the market maker would gradually transition from
pricing to capture the bid/ask spread to myopically pricing based
on their beliefs. However, if the policy in early periods resulted in
the market maker taking on inventory, we showed that the optimal
pricing throughout the interaction need not deviate much from ini-
tial prices. Therefore, depending on how traders react to the market
maker’s policy, a Kelly criterion market maker could follow a my-
opically irrational policy for the entire trading period.

In sum, we can distill our results into three qualitative sugges-
tions for monopolistic Kelly criterion market makers with good
prior information facing a stream of anonymous traders, as in Inter-
net sports betting: (1) change odds as bets are received and wealth
changes, (2) begin pricing with the goal of matching orders and
procuring a bid/ask spread, and (3) gradually transition into pricing
to accumulate the market maker’s desired inventory position.

There are several extensions to consider to our framework. Our
model assumed the market maker was monopolistic, so that it could
maximize profit without fear of competition. One extension could
be to examine a competitive setting between several risk-averse
market makers.
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Another extension would be to incorporate informed traders into
the pool of trading agents. These agents could have correct knowl-
edge about the future, but, more importantly, the market maker
could know of and react to their existence. The presence of in-
formed traders that influence the market maker in this way would
make our setting much closer to the Bayesian market maker set-
ting explored in Das and Magdon-Ismail [2009], but would be even
more complex because of the risk aversion of the market maker.

While our framework applies to any number of events and bets,
our computational experiments focused on the binary case. An ex-
tension would be to develop algorithms to solve for optimal pol-
icy with multiple events. The Constantini shape-preserving tech-
nique used in this paper could presumably be applied to more than
two events, although it will suffer from the curse of dimensionality.
Perhaps an alternate approach to approximating the value function
could be used in this case, such as a spline of radial basis func-
tions, although this would be unlikely to preserve the monotonicity
and concavity of the value function and so could lead to poor or
unrealistic policies.
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ABSTRACT
Many agent-based models of financial markets have been
able to reproduce certain stylized facts that are observed in
actual empirical time series data by using “zero-intelligence”
agents whose behaviour is largely random in order to ascer-
tain whether certain phenomena arise from market micro-
structure as opposed to strategic behaviour. Although these
models have been highly successful, it is not surprising that
they are unable to explain every stylized fact, and indeed it
seems plausible that although some phenomena arise purely
from market micro-structure, other phenomena arise from
the behaviour of the participating agents, as suggested by
more complex agent-based models which use agents endowed
with various forms of strategic behaviour. Given that both
zero-intelligence and strategic models are each able to ex-
plain various phenomena, an interesting question is whether
there are hybrid, “zero-intelligence plus” models containing
a minimal amount of strategic behaviour that are simulta-
neously able to explain all of the stylized facts. We con-
jecture that as we gradually increase the level of strategic
behaviour in a zero-intelligence model of a financial mar-
ket we will obtain an increasingly good fit with the styl-
ized facts of empirical financial time-series data. We test
this hypothesis by systematically evaluating several differ-
ent experimental treatments in which we incrementally add
minimalist levels of strategic behaviour to our model, and
test the resulting time series of price returns for the follow-
ing statistical features: fat tails, volatility clustering, persis-
tence and non-Gaussianity. Surprisingly, the resulting“zero-
intelligence plus” models do not introduce more realism to
the time series, thus supporting other research which con-
jectures that some phenomena in the financial markets are
indeed the result of more sophisticated learning, interaction
and adaptation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
Many agent-based models of financial markets have made

use of zero-intelligence agents in order to explain various

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

phenomena in microeconomics and finance. In these mod-
els, market scenarios are simulated with agents whose be-
haviour is largely random. They are particularly useful in
attempting to attribute whether a particular phenomenon
is caused by the market mechanism or to the strategic be-
haviour of participating traders, since any non-random reg-
ularities that appear in the macroscopic behaviour of such a
model can be attributed to the mechanics of the underlying
market microstructure rather than to the behaviour of the
agents.

Zero-intelligence models have been applied to studying
phenomena in both economics and finance. The concept
was originally introduced in the field of microeconomics in
order to explain how traders were able to converge on equi-
librium prices in a continuous double-auction trading envi-
ronment: Gode and Sunder set out to determine whether
this phenomena could be ascribed to the intelligence of the
human traders, or alternatively whether the efficiency of the
market was due to the trading institution itself [7]. They
did so by introducing one of the first agent-based simulation
models in which agents with various levels of random price
setting behaviour were simulated under the same market
microstructure rules as used in the original experiment with
human traders. They found that they were able to repro-
duce convergence to equilibrium prices (under certain treat-
ments), suggesting that the efficiency of the market was due
to the “intelligence” of the market institution itself, rather
than intelligent behaviour on the part of the participants.

However, in later work Cliff and Bruten [4] showed that
under different treatments Gode and Sunder’s zero-intelli-
gence agents were not able reproduce the original conver-
gence results (“zero is not enough”), and that so called zero-
intelligence plus (ZIP) agents with a minimal level of condi-
tional bidding behaviour were required in order to converge
to equilibrium prices under a wider variety of initial condi-
tions.

Although zero-intelligence models originated in the field
of microeconomics, there have been considerable successes
in using them to explain the stylized facts of financial time
series data. For example, one such stylized fact is posi-
tive correlation in order flow: the probability of observing
a given type of order in the future is positively correlated
with its empirical frequency in the past. This phenomena
was originally documented by Bias et al. on the Paris Bourse
exchange [1]. [8] was able to reproduce this stylized fact us-
ing a zero-intelligence agent-based model, thus suggesting
that empirical regularities in order-flow arise from the op-
eration of the market mechanism rather than the behaviour
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of traders.
However, it would be naive to suppose that all phenom-

ena observed in financial time series data could be repro-
duced using models in which traders behave entirely ran-
domly, and indeed it seems apriori reasonable that although
some phenomena arise purely from market micro-structure,
other phenomena arise from the behaviour of the participat-
ing agents, as suggested by more complex agent-based mod-
els which use agents endowed with various forms of strategic
behaviour [3].

An interesting question then arises as to what is the mini-
mal level of intelligence required for an agent-based model to
reproduce statistically-realistic time series data. Analogous
to Cliff’s “zero is not enough” conjecture, we hypothesise
that by gradually increasing the level of strategic behaviour
in a zero-intelligence model we will obtain an increasingly
good fit with the empirical data of financial markets. We
test this hypothesis by systematically evaluating several dif-
ferent experimental treatments in which we incrementally
add minimal amounts of conditional behaviour to our model,
and test the resulting time series of returns for the following
stylized facts: fat tails, volatility clustering, high-frequency
persistence and non-Gaussianity [5][12].

Stylized facts are statistical regularities that are often
found in real market data across different markets and dif-
ferent periods of time [5]. By reproducing these empiri-
cally observed stylized facts we can validate our model and
by building a microscopic (trader-based) model of the mar-
ket attempt to understand what assumptions are consistent
with these properties. We test whether minimal strategic be-
haviour is sufficient to reproduce non-Gaussian distributions
(characterised by excess kurtosis), fat tailed distributions
(characterised by power law decay in the tail of the distri-
bution), high frequency persistence (characterised by super-
diffusive behaviour at short time scales) and volatility clus-
tering (characterised by nonstationarity in price changes).

We start with a simple zero-intelligence model in which
different types of order, as classified by the original Paris
Bourse study [1] are submitted to the exchange. In our
first experimental treatment order types are chosen from
a discrete uniform distribution. We then gradually intro-
duce additional complexity into the model by allowing the
probability with which an event type is chosen to change
in response to the state of the market – that is, we intro-
duce conditional or strategic behaviour into our model. We
do so systematically and in line with empirically-observed
phenomena in real financial markets.

The paper is structured as follows. In sections 2 and 3
we give an overview of empirically documented conditional
order flow phenomena in financial time series data. In sec-
tion 4 we give detailed description of our model, including
the event types and detailed descriptions of the seven exper-
imental treatments used in our investigation. In section 5
we describe our methodology. In sections 6 and 7 we show
and discuss our results, and finally we conclude in section 8.

2. ABSOLUTE AND CONDITIONAL
ORDER FLOW

[1] show that there is a “diagonal effect” in high-frequency
financial time-series data: viz., order flow is conditional on
past order flow. Both [1] and [2] show there is a “stimulated
refill” liquidity process: order flow is conditional on the state

of the book. Previous analysis by [13] equating effective
costs of market and limit orders, demonstrated that a nec-
essary condition for statistical arbitrage efficiency is a linear
relationship between impact, bid-ask spread and volatility.
[13] empirically found this relationship to hold true and pro-
pose this as a market law or stylized fact that has a theoret-
ical underpinning based on ecology between liquidity takers
and providers in pure order driven markets. They argue this
phenomenon emerges as liquidity in an order-driven market
self-organises toward statistical efficiency. Interestingly this
theoretical motivation occurs endogenously without any role
of information and does not espouse the traditional view
of efficient market theory: that of informationally-efficient
markets.

Using our model we investigate alternative treatments cor-
responding to both conditional and unconditional order flow.
In each case, we test for fat tails, volatility clustering, long-
memory and non-Gaussianity in returns. We do this by sim-
ulating the effects of adding the “diagonal effect” and “stim-
ulated refill” liquidity process to a zero-intelligence model,
thus gradually introducing strategic behaviour into the mo-
del.

Using nineteen days of data from the Paris Bourse in
November 1991, [1] calculated the frequencies of events clas-
sified depending on aggressiveness1, and our model builds on
this classification. On the buy-side orders can be categorised
into seven event types corresponding to differing levels of ag-
gressiveness as detailed below (and summarised in Table 1).

A Large Buy event represents market orders that take liq-
uidity through the best ask and through more than one price
level by walking up the book. A Market Buy removes all
orders at the best ask exactly. A Small Buy represents a
market order to buy a quantity lower than that offered at
the best ask. New Bid Within events are limit orders to
buy posted within the best bid and ask quotes inside the
spread. A New Bid At event posts a new bid limit order
at best quotes joining the queue at the best bid and a New

Bid Away posts a bid limit order at a price below the best
bid. Finally a Cancel Bid refers to cancellations of bid limit
orders irrespective of price level.

An additional seven event types can be defined analo-
gously on the sell side of the book (storing the asks). In-
cluding off-book trades, we therefore have a total of fifteen
different types of event. The results from the Paris Bourse
study are summarised in Table 1 which shows the empirical
probability distribution over the event types, with the prob-
abilities adjusted to exclude applications2. One important
aspect to note is that their analysis is based on data that
only gave the five best bid and ask price step levels of the
book.

Bias et al. went on to analyse the same empirical proba-
bilities over event types conditional on the previous event.
The rescaled conditional probabilities from [1] are given in
Table 2. Again we rescale their original results to exclude
applications3.

1By aggressiveness we mean the immediacy to which the
agent is willing to trade.
2We do this as we are not interested in off-book trades. The
probabilities are rescaled to sum up to 100%.
3The readjusting is again a simple rescaling to ex-
clude applications so that the column probability vec-
tors sum up to 100%. It does however ignore events
at t + 2 if an application occurred at t + 1 e.g. the
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Conditional frequencies of limit order book events

t-1 Large Market Small New Bid New Bid New Bid Cancel Large Market Small New Ask New Ask New Ask Cancel

Buy Buy Buy Within At Away Bid Sell Sell Sell Within At Away Ask

Large Buy 7.51 3.51 15.80 13.45 5.16 6.08 5.37 1.85 1.14 14.83 7.48 4.79 7.04 5.99

Market Buy 3.26 2.52 17.45 2.18 7.02 11.55 8.08 3.42 6.28 23.95 2.83 2.50 4.94 4.02

Small Buy 3.80 2.96 21.00 9.91 5.40 6.49 4.12 2.41 1.79 20.26 6.03 4.65 6.35 4.84

New Bid Within 3.27 2.19 13.43 13.94 7.03 9.43 5.34 3.08 2.03 19.02 8.48 2.99 5.55 4.21

New Bid At 2.27 2.45 14.29 16.85 7.02 7.50 5.03 1.64 0.92 23.09 6.17 3.92 5.40 3.47

New Bid Away 1.94 1.63 11.72 7.65 8.14 18.59 4.54 3.29 2.46 20.38 7.05 3.44 5.69 3.49

Cancel Bid 2.33 1.76 10.85 12.79 5.35 8.27 9.97 3.90 2.32 20.08 8.94 3.67 5.95 3.82

Large Sell 0.94 0.95 6.62 9.05 4.66 6.70 6.12 10.09 3.42 24.52 12.89 3.42 5.12 5.51

Market Sell 2.93 6.41 16.37 2.31 2.96 4.34 3.65 4.88 3.08 29.73 2.24 5.04 9.62 6.45

Small Sell 1.62 1.63 10.49 7.07 4.88 5.93 4.47 4.93 3.02 34.61 8.05 4.09 5.41 3.79

New Ask Within 2.05 1.91 10.08 9.64 4.12 6.17 4.15 4.54 2.66 23.17 12.89 5.65 7.93 5.05

New Ask At 1.44 0.99 13.04 6.54 4.91 5.76 3.91 3.06 2.53 23.56 15.03 6.78 7.44 5.02

New Ask Away 2.29 2.2 11.04 7.39 4.21 5.98 3.43 2.87 2.14 21.80 5.97 7.22 19.77 3.68

Cancel Ask 2.08 1.90 10.20 8.95 4.50 6.25 4.62 4.16 2.18 19.67 14.19 4.05 7.76 9.47

Table 2: Conditional order and trade event frequencies rescaled from empirical results in [1, p. 1673]. Each
entry in the main body represents a probability of an order book event (columns) conditioned by the previous
event (rows). The three highest values in a given column are emphasised to illustrate the “diagonal effect”.

Book Side Event Type Probability(%)

Buy Side

Large Buy 2.4
Market Buy 2.1
Small Buy 12.7
New Bid Within 9.2
New Bid At 5.4
New Bid Away 7.6
Cancel Bid 4.8

Sell Side

Large Sell 3.9
Market Sell 2.4
Small Sell 24.5
New Ask Within 8.5
New Ask At 4.4
New Ask Away 7.1
Cancel Ask 4.9

Table 1: Absolute Frequencies of Limit Order Book
Events rescaled from empirical results from the
Paris Bourse [1, p. 1670].

As was noted in [1] the numbers on the diagonal tend to
be larger than others in the same column. This “diagonal
effect” suggests an event type is more likely to be preceded
by the same event type than any other. Table 2 illustrates
this along with the three most likely preceding events for
each event highlighted in bold to show this diagonal effect.

3. STIMULATED REFILL
Along with the “diagonal effect” another interesting fea-

ture of order flow is the “stimulated refill” process ([2]) in
order-driven markets where liquidity amongst liquidity pro-
viders and takers is self-organised to eliminate statistical
arbitrage. In [1] they found most limit order activity being
at or within quotes despite there being least depth at the
best quotes when looking at the average profile of the order-
book over time. They showed this to be a result of a cycle
of transient depth whereby when spreads were tight, trades
were more frequent thus widening the spread, followed by
more within and at-quote limit order activity when spreads
and depth at best bid or offer (BBO) were large. [1] and [2]

event chain: Large Market Buy (t) �Application (t+1)
�Small Sell (t+2) is not rescaled as Large Market Buy
(t) �Small Sell (t+1). Similarly it ignores any event
sequence chains with a block of intermediary applications
e.g. Event (t) �Application (t+1) ...�Application
(T-1) �Event(T) etc. However we find this makes neg-
ligible differences to the probabilities.

argue that this behaviour is due to the liquidity replenishing
and under-cutting/out-bidding activities of market-makers.

Table 3 below shows a stylised example set of probability
vectors that show this effect of dynamic liquidity switching
between regimes of submitting more trades and less orders
versus a regime of submitting more orders and less trades de-
pendant on the bid-ask spread. The probabilities are based
on the empirical probabilities that [1] found when classify-
ing the state of the book in a high or low spread regime in
relation to the median value for the bid-ask spread.

In order to use these results in the context of a simulation
model, several modifications are required. First all probabil-
ity vectors are again rescaled to exclude applications which
are non-order book events. Secondly when doing this par-
ticular analysis [1] grouped all their previous trade events
classifications as just one trade event (e.g. all Large Buy,

Market Buy, Small Buy events become classified just as a
buy trade event). So in Table 3 we split the probabilities
back into the more granular trade classifications by assum-
ing they have the same relational proportions (amongst the
three trade classifications on the relevant side of the book) as
in the absolute case from Table 1. This maintains a probabil-
ity for all fourteen events that will be needed for the model
we develop in the next section. The last transformation av-
erages their results that were based on further classifying the
book as in a high or low depth regime as well as a high or
low spread regime. This results in reducing their four prob-
ability vectors to two based simply on a high or low spread.
As the fourteen order book event classifications from [1] only
affect traded prices by shifting price levels of the order book,
the volume depth at particular levels is not meaningful in
the context of the model we will develop; therefore the issue
of volumes of order book events is simplified in our analysis
for now.

Thus in Tables 1, 2 and 3 we have three types of dynamics
of order books that can be investigated by simulation of
events based on the probability vectors.

4. THE MODEL
Our model is based on the event classification of the Bias

et al. study [1] described in Section 2. Trading occurs over a
series of discrete simulation steps. During each step an event
type is chosen from Table 3, and we then simulate its effect
on the order-book. We note any resulting trades and record
the time series of transaction prices for later analysis. The
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Event Type Small Spread Large Spread
Probability (%) Probability (%)

Large Buy 3.0 2.0
Market Buy 2.6 1.7
Small Buy 15.7 10.3
New Bid Within 5.1 13.9
New Bid At 4.4 6.2
New Bid Away 7.0 8.5
Cancel Bid 4.9 5.0
Large Sell 4.5 2.9
Market Sell 2.8 1.8
Small Sell 28.5 18.1
New Ask Within 4.6 13.0
New Ask At 4.3 4.8
New Ask Away 7.2 7.4
Cancel Ask 4.7 4.5

Table 3: Dynamic frequencies of limit order book
events (rescaled and modified from empirical results
from [1, p. 1677] on the Paris Bourse in 1991).

event types are classified according to their liquidity-taking
or liquidity-providing nature.

Our goal is to simulate this model under different exper-
imental treatments, starting with a zero-intelligence treat-
ment in which the type of event is chosen unconditionally
at random from a discrete uniform distribution, followed by
treatments which simulate more complex behaviour by al-
lowing the probability with which a particular event is gen-
erated to be conditional on the current state of the market.
This enables us to test the affect of conditional order flow
adapting to either previous order flow or the state of the
book; that is, to analyse the effect of strategic behaviour.
ha Similarly to other models in the literature ([3, 9]), we
use a volume size of 1 for all events except for the follow-
ing: Large Buy, Large Sell, Market Buy, Market Sell.
This is because these events are defined by removing a price
step level of the order book at the best opposite quote and
therefore need to have a volume corresponding to the avail-
able liquidity at best quotes. Prices of orders are rounded
to a tick size of ∆Tick and if the book is empty (e.g. at the
start) and there is no best bid and offer (BBO) limit orders
are posted with proximity to a reference fundamental price
of Pf .

4.1 Market Events
In this section we detail how the simulated events intro-

duced in Section 2 specifically affect the limit order book in
our simulation model. We call bt the best bid and at the
best ask in the book at the current time of the simulation.
All the event types can be classified as either market orders
(Large Buy, Large Sell, Market Buy, Market Sell, Small
Buy, Small Sell) or as limit orders (New Bid Within, New
Ask Within, New Bid At, New Ask At, New Bid Away, New

Ask Away, Cancel Bid, Cancel Ask)4. We now go through
both of these two main order types detailing the model’s
market mechanics for all event types when simulated in our
model:

4.1.1 Market Order Events
Whenever a Market Buy event occurs, the volume at the

best ask price is cleared out: all sell orders currently queued

4There are no marketable limit orders as limit order event
types aren’t defined this way. In the original [1] analysis
marketable limit orders would be counted as market orders.

on the order-book at this price step are removed (and vice-
versa for Market Sell events at the best bid). This could
still be a volume of 1 (similar to Small Buy and Small Sell

events) if there is not a queue at the BBO. Trade events
(Large Buy, Market Buy, Small Buy, Large Sell, Market

Sell and Small Sell) occur if and only if there is available
liquidity on the relevant book side. If not, the book remains
unchanged and the simulation moves on to the next time
tick.

For a Large Buy, a market order is submitted with vol-
ume equal to the total volume at the best ask +1 so that it
removes liquidity at the best ask (at) and then trades at the
next price level (a2t ) above the best ask. A Large Sell event
can be defined analogously taking liquidity on the bid-side
of the book.

4.1.2 Limit Order Events
For limit orders submitted within the spread we assume

they are posited randomly in between the spread i.e. uni-
formly deposited in the interval [bt, at]. Limit orders posted
at best quotes enter orders with a size of 1 at the end of
the queue at BBO (bt for New Bid At events, at for New Ask

At events). Limit orders posted away from the spread are
submitted uniformly anywhere between [b5t , bt] for New Bid

Away events and [at, a
5
t ] for New Ask Away events where b5t

and a5t represent the 5th best bid and 5th best ask level
in the book. We do this as the probabilities are based on
the empirical results of [1] who used order book data up to
five price levels. If in the simulation there aren’t at least
five price levels of liquidity in the book, the limit orders
are posted uniformly in [bt-D, bt] for bids and [at, at+D]
for asks where D represents a maximum offset parameter in
the model. Limit order cancellations (Cancel Bid, Cancel

Ask) remove at random an existing limit order in the book
on the relevant side of the book. All limit orders on the
relevant book side have equal probability of being deleted.

4.2 Experimental Treatments
We simulate our model under seven different experimen-

tal treatments. Each treatment is described in detail in
the sections below and summarised in Table 4. The pur-
pose of simulating the model under these different experi-
mental treatments is to systematically evaluate whether in-
crementally introducing conditional behaviour into a zero-
intelligence model produces more realistic time series data.

4.2.1 Equal treatment (“equal”)
Under this treatment, the event types are chosen ran-

domly from a discrete uniform distribution over all fourteen
event types. That is, the probability of generating any given
type of event is 1

14
. This is the simplest treatment and cor-

responds to a pure “zero-intelligence” model.

4.2.2 Absolute treatment (“abs”)
Under this treatment the underlying distribution used to

generate events remains static, but is calibrated with prob-
abilities based on empirical data: that is, the probability
of each event is given by the unconditional frequencies in
the empirical analysis of Bias et al. on the Paris Bourse
[1]. Thus the order book events are simulated with an un-
conditional discrete empirical probability distribution using
the probability vector from Table 1. This corresponds to a
calibrated “zero-intelligence” (ZI) treatment.

656



Section Treatment Name Experiment Conditions
4.2.1 “equal” Equal Event Probabilities
4.2.2 “abs” Absolute Event Probabilities
4.2.3 “cond” Conditional Event Probabilities
4.2.4 “symmetric” Symmetric Unconditional Event Probabilities
4.2.5 “dynamic” Regime Probabilities based on fixed spread
4.2.6 “dynamicAlt” Regime Probabilities based on localised window
4.2.7 “cluster” Regime Probabilities alternating after random horizons

Table 4: Summary of experimental treatments

4.2.3 Conditional treatment (“cond”)
Under this treatment events are generated from a condi-

tional discrete empirical probability distribution in which
probabilities are conditioned on the previous event type.
The probability vectors used are those in Table 2 and allows
switching between 14 different probability distributions. For
example if the last event simulated in the book was a New

Bid Within the probability vector used to simulate the next
event would be the 4th row in Table 2. The conditional order
book event frequencies are rescaled from empirical results in
[1, p. 1673]. This enables us to test the effects of adding
the “diagonal effect” from [1]. Since behaviour in this model
is conditional on previous order flow, we can ascribe to it a
minimal level of strategic behaviour.

4.2.4 Symmetric treatment (“symmetric”)
Under this treatment events are generated from a static

probability distribution, but with symmetric probabilities
by averaging the unconditional empirical probability distri-
bution to be symmetric on both buy and sell sides of the
book. For example from Table 1 we can see in the “abs”
case the probability for a Large Buy is 2.4% and for a Large

Sell is 3.9%. In the “symmetric” case the probability of a
Large Buy would equal the probability of a Large Sell with
the value being 2.4%+3.9%

2
= 3.15%. This is done with all

7 pairs of events that occur on the buy and sell side of the
book.

4.2.5 Dynamic treatment (“dynamic”)
This treatment has probabilities conditioned on the state

of the book choosing from the two spread regimes in Ta-
ble 3. These dynamic frequencies are rescaled and modified
from empirical results from [1, p. 1677]. It allows us to
test adding the “stimulated refill” liquidity process to the
unconditional ZI framework of the “abs” treatment whereby
more liquidity taking occurs when spreads are low and more
liquidity providing activity when spreads become high. We
run this treatment after the “abs” treatment and use the
average median spread value from that case as a fixed en-
dogenous comparison value to switch between the high and
low spread probability vectors depending if the spread at
the current time tick is more or less than this comparison
spread value respectively.

4.2.6 Alternative Dynamic treatment
(“dynamicALT”)

This treatment is a variant of the “dynamic” treatment in
which the comparison spread value alters and is calculated
locally (from within the “dynamicALT” simulation run) as
the median value from a localised rolling window of spreads
in the last 100 simulation steps. Again, the probability dis-
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Figure 1: A sample price path for 1,000 time steps
for the “abs” treatment

tributions are given by Table 3.

4.2.7 Cluster treatment (“cluster”)
In this treatment the dynamic switching between the two

liquidity regimes is introduced exogenously in the simulation
as the model simulates alternating between the two proba-
bility regimes (low to high to low etc..) from Table 3 with
each regime lasting a L number of simulation steps where L
is initialised at the start of each new regime by drawing a
uniform random number between 1 and 100.

5. METHODOLOGY
For each of the above treatments we simulate the outcome

on the order book of the events generated by the model.
At the start of the simulation there is no best bid or offer

(BBO), therefore the initial market price at time t = 0 was
set to the fundamental price Pf = 103. The tick size ∆Tick

was set to 10−1 and the maximum offset parameter D = 5
(which corresponds to 50 ticks). Each simulation was run for
1.1× 104 time steps. We recorded prices only from t > 103

onwards in order to wash out any initial effects.
We used the Mersenne Twister ([10]) algorithm to draw all

random variates in the simulation. We ran a total of seven
experimental treatments which are summarised in Table 4.
For each treatment we ran 104 independent simulations, thus
producing a total of 7 × 104 different time series of prices
and returns, which were then analysed for the stylized facts.

Figure 1 shows a typical section of the time series of prices
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Figure 2: Box-Whisker plot for the Mean, Standard
Deviation, Skewness and Kurtosis of returns from
the “abs” treatment.

produced over the course of 103 simulation steps. From the
price time series we calculated the time series of returns rt
according to the following equation:

rt1 = log(pt1)− log(pt0), (1)

where pt is the market price (defined as the last trade
price) at time t as measured in discrete “event time”: that
is, the time value is incremented by 1 each time an order
book event occurs and represents the number of simulation
steps that have elapsed since the start of the simulation.
Prices are sampled at regular time intervals t1 − t0.

We then tested for the presence of the following statisti-
cal features in the simulated time series of returns as given
by equation 1: fat tails, volatility clustering, persistence
and non-Gaussianity. For each treatment we computed the
(a) Hill-estimator, (b) Hurst exponent, (c) p-values for the
ARCH-LM test and (d) p-values for the Jarque-Bera test.
For the Hill-estimator the 0.025, 0.05, 0.95 and 0.975 quan-
tiles were chosen. Because the return calculation depends
on the frequency with which prices are sampled (t1 - t0),
the tests were calculated for each sampling frequency in the
set {5, 10, . . . , 95} as measured in simulation steps. A distri-
bution of stylised fact test results is obtained from the 104

simulation runs which allows us to run t-tests comparing
treatments.

6. RESULTS
We first show some basic statistical results from the re-

turns on the “abs” treatment in Figure 2. We can see the
mean returns are negative, as one might expect given the
asymmetry in the empirical probability distribution: as can
be seen from Table 1 sell side of the book events have higher
probabilities than the corresponding buy side of the book
events reflecting the empirical data collected in [1]. Again, as
one might expect, as the sampling interval increases the re-
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Figure 3: Box-Whisker plot for the Hill Estimator
of returns from the “abs” treatment at the lower
(0.025, 0.05) and upper (0.95, 0.975) quantiles.

turns exhibit higher standard deviations. We observe slight
negative skewness and significant kurtosis suggesting that
the“abs” treatment reproduces non-Gausianity and fat tails.

This is confirmed when looking at the Hill estimator in
Figure 3 which tends to around 3 in the upper and lower
tail. In Figure 4 we can see we get a Hurst exponent ≈ 0.6
which [9] and [12] argue to be realistic on short to medium
timescales. From Figure 4 we can see the ARCH-LM test
shows no evidence of volatility clustering (p-values much
higher than a 5% significance level) but the Jarque-Bera
test shows significant deviance from Gaussian returns (p-
value close to 0).

We now turn to the results of performing the same sta-
tistical tests on the other treatments. Figure 5 compares
the sample means of summary statistics run on the returns
of the seven treatments described in Section 4.2 and sum-
marised in Table 4. We can see in Figure 5 that apart from
the “equal” and “symmetric” treatments all other treatments
have a negative return due to asymmetry with higher prob-
abilities for events on the sell side of the order book.

With the exception of the “equal” treatment all the treat-
ments show significant kurtosis and reproduce non-Gausia-
nity in returns. Figure 6 shows the sample means of the
Hill estimator tests on the 7 treatments and again shows
with the exception of the “equal treatments” all other treat-
ments show similar behaviour reproducing fat tails in the
returns. Figure 7 compares the Hurst Exponent, ARCH-
LM test p-values and Jarque-Bera test p-values of returns
for the 7 treatments and show all models reproduce realis-
tic high frequency Hurst exponents ranging from 0.4 to 0.6.
The ARCH-LM test shows like the “abs” treatment none
of the treatments reproduce volatility clustering in returns.
The Jarque-Bera test p-values confirm that with the excep-
tion of the “equal” treatment the other treatments exhibit
non-Gaussian returns.
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Figure 4: Box-Whisker plot for the Hurst Exponent,
ARCH-LM test p-values and Jacques-Bera test p-
values of returns from the “abs” treatment.

7. DISCUSSION
In all experiments other than the “equal” treatment, we

observe realistic Hurst exponents, fat tails and non-Gaussia-
nity in return behaviour. Thus our results show that uncon-
ditional zero-intelligence order flow is sufficient to reproduce
these phenomena, provided that the probability distribution
used to drive the zero-intelligence behaviour is calibrated
against empirical frequencies (as per the “abs” treatment).

In the treatments “cond”, “dynamic”, “dynamicAlt” and
“cluster” we have simulated conditional order flow (a proxy
for strategic behaviour) and found similar results to the un-
conditional order flow treatments. None of our experiments
reproduced volatility clustering. This suggests that a more
complex correlated and organisation in order flow occurs in
real markets.

8. CONCLUSION AND FUTURE WORK
In this paper we developed a zero-intelligence model of fi-

nancial markets based on an empirical analysis of the Paris
Bourse exchange [1]. We used this model to test whether a
“zero-intelligence plus” model could simultaneously explain
several of the stylized facts of financial time series data by
systematically evaluating seven different experimental treat-
ments in which we incrementally added minimalist levels of
strategic (conditional) behaviour to our model. We tested
the resulting time series of returns for the following statisti-
cal features: fat tails, volatility clustering, high-frequency
persistence and non-Gaussianity. Surprisingly, the “zero-
intelligence plus” treatments do not introduce more realism
to the time series.

Our new zero-intelligence model therefore highlights the
fact there are many ways to simulate random order flow
and within each structure there is implicit intelligence. In
our model agents specifically remove or add liquidity to the
market as the random order book events are classified with
implicit knowledge about price levels in the order book. In
the [9], [11], [8] ZI models, it is left to the matching of the
double auction to determine whether liquidity is removed or

Figure 5: Sample means for mean, standard devia-
tion, skewness and kurtosis of returns for the seven
treatments.

added changing price levels in the book despite the fact in a
continuous double auction market with a visible order book
this would be known to all agents. This motivates setting up
a simulation model which takes into account more knowledge
of the state of the book known in real time.

Using the decomposed microstructural events of [1] in our
model, a new framework can be used to investigate adaptive
order flow. Specifically it allows a more detailed understand-
ing of the level of organised order flow amongst liquidity
providers and takers is needed to understand real markets.
We find changing the model parameters alters the degree of
reality and introducing calibrated vectors improves results
of stylised facts in terms of realism. Similar to other ZI mod-
els in the literature, the model manages to reproduce some
realistic stylised facts, thus supporting the claim they are
due to the microstructure and not strategic behaviour. In
this case we manage to reproduce realistic Hurst exponents,
fat tails and non-Gaussianity of returns. The model how-
ever in all treatments did not produce volatility clustering
suggesting there is a more complex and correlated interplay
of orderflow required for this phenomena. In the “cluster”
treatment of our model a simple clustering of transactions
was not sufficient to reproduce volatility clustering. Our re-
sults thus support the claim by [6] and [2] that along with
ordering of transactions, there are also subtle fluctuations
in the balance between liquidity taking and provision that
acts as important factors in determining clustered volatility.
This they argue would need to incorporate long-memory of
supply and demand incorporating both order splitting and
“stimulated refresh” liquidity provision. [14] discuss non-ZI
explanations of volatility clustering suggesting social inter-
actions amongst agents which employ herding behaviour (ei-
ther by direct or indirect imitation) and/or order splitting
of large trades are related to this phenomena.

The model could be extended with more complex dynam-
ics, for example by using a reinforcement learning algorithm
in which the propensity to choose a particular type of event
adapts over time according to a profit signal such as the ef-
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Figure 6: Sample means for the Hill Estimator of
returns for all 7 treatments at the lower (0.025, 0.05)
and upper (0.95, 0.975) quantiles.

fective cost of an order type. Such a learning model could
possibly induce a more realistic “stimulated refresh” effect
whereby clustered buying (selling) market order activity is
followed by clustered selling (buying) limit order liquidity
replenishing. Investigating this effect could provide an in-
teresting avenue for future research to see its effect in repro-
ducing realistic heavy tail and volatility clustering phenom-
ena.

Our results provide further evidence that some phenom-
ena in financial markets can be attributed soley to the mar-
ket design, and do not require strategic behaviour. However,
our findings also highlight the importance of time correla-
tion of order flow; markets exhibit a complex interplay of
latent supply and demand arising from strategic behaviour
in which agents adapt their liquidity-taking and liquidity-
providing behaviour depending on other agents’ actions.
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ABSTRACT
This paper presents a novel scoring rule-based strictly domi-
nant incentive compatible mechanism that encourages agents
to produce costly estimates of future events and report them
truthfully to a centre. Whereas prior work has assumed a
fixed budget for payment towards agents, this work makes
use of prior information held by the centre and assumes a
budget that is determined by the savings made through the
use of the agents’ information over the centre’s own prior in-
formation. This mechanism is compared to a simple bench-
mark mechanism wherein the savings are divided equally
among all home agents, and a cooperative solution wherein
agents act to maximise social welfare. Empirical analysis is
performed in which the mechanism is applied to a simula-
tion of the smart grid whereby an aggregator agent must use
home agents’ information to optimally purchase electricity.
It is shown that this mechanism achieves up to 77% of the
social welfare achieved by the cooperative solution.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Theory

Keywords
Mechanism Design, Smart Grid, Information Aggregation,
Scoring Rules

1. INTRODUCTION
There are numerous scenarios in which, in order for a cen-
tre to optimally perform a task, it must gather predictive
information from other, potentially non-cooperative experts
such that the centre can optimally plan for future events. In
such situations, the centre often incurs a cost related to the
imprecision of its predictions, and consequently, the ability
to produce precise estimates results in a reduction of these
costs. In non-cooperative situations, it becomes necessary
for the centre to make payments to the experts in order to
encourage them to report any relevant information that they

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

have. When these experts are self-interested rational agents,
the payments must be carefully designed in order to elicit
the behaviour that the centre requires.

As an example, consider the instance of the above set-
ting on which this paper focuses; information aggregation
within the smart grid. In this scenario, an aggregator agent
must purchase electricity for a set of homes, each of which
is represented by its own home agent. Based on historical
evidence, the aggregator has some belief of what each house
will consume at a given future time, but each house has a
wealth of information within it that can, at a cost, be col-
lected and processed by the home agent in order to be used
to make more precise estimates. It is the home agents’ jobs
to gather this information on behalf of the home owners and
transmit it to the aggregator agent in the form of a prob-
ability distribution over the houses’ possible consumptions
at the specified time. The aggregator must pay a penalty
for any difference between the amount it purchases and the
amount its customers consume. Thus, with more precise
information, the aggregator will in expectation make some
savings. The aggregator then distributes a portion of these
savings to the home agents as a reward for their information.

The truthful elicitation of information from self-interested
agents has already been the subject of much attention in
the literature. It has been shown that in scenarios where a
number of expert agents can be called upon to make prob-
abilistic estimates of some value, peer prediction techniques
can be employed to ensure those agents report truthfully [4,
6]. Peer prediction rewards experts by fusing reports from
a reference agent and the agent being scored; both of whom
are making estimates of the same variable. After the value
of the variable becomes known, the agent whose report is
being evaluated is rewarded according to how its report af-
fected the estimated likelihood of the realised event. This
evaluation makes use of proper scoring rules – functions of
probabilistic reports and outcomes that return a score that
is only maximised in expectation when the agent reports
truthfully. Indeed, scoring rules have also been the focus of
much attention, since their original use in meteorology [1],
through more general applications of evaluating predictors
[8], and their more recent application in the field of predic-
tion markets [7] wherein experts are asked by a centre to
give a probabilistic response to some question, and also in
the fair division of rewards among agents performing a task
[2]. Moreover, strictly proper scoring rules have been gener-
alised to take into account a prior distribution representing
knowledge held by the centre [5].

However, there are four main limitations to these works
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that limit their applicability to the problem discussed in
this paper. Firstly, the works assume there exists multiple
experts from which the centre can elicit information. In do-
ing this, the experts’ reports can be compared to each other,
and the experts’ payments based upon how correlated theirs
and the other agents’ reports were. This results in payments
that are Nash incentive compatible, whereas a preferable so-
lution concept would be dominant strategy incentive compat-
ible, whereby truth telling is a dominant strategy regardless
of the other agents’ behaviour. Furthermore, in the sce-
nario above, only a single agent exists per home, and agents
are unable to measure their neighbours’ demand. Conse-
quently, agents’ reports cannot be directly compared as the
events they are predicting are unique to themselves. Sec-
ondly, in prior work, the reports from the experts are fused
with one-another, whereas in the scenario above, the centre
is interested in the cumulative demand of agents, and there-
fore must take the convolution of the reports. Thirdly, the
solutions do not take into account prior knowledge held by
the centre, with the exception of [5]. In the scenario above,
the centre has prior information about each home, and will
make savings based upon the precision of the information
he uses. The mechanism should take this into account such
that the aggregator does not pay for information less precise
than his own, and does not run a deficit in paying for said
information. The scoring rules in [5] have been adapted to
take into account prior information. However, the compu-
tation of the scores can be problematic and are unbounded
in the continuous domain. Finally, the solutions assume
that the budget for payment to the agents is somehow fixed,
whereas we propose to make use of the fact the centre has
prior information, and base agents’ rewards on the savings
made by the centre in using the agents’ reports over his own
prior information.

Against this background, we develop a novel, scoring rule-
based mechanism named the sum of others’ plus max mech-
anism, which distributes payments to agents from a budget
that is determined by their own reports in a way that is
incentive compatible, and ex ante weakly budget balanced
(i.e. the expected sum of payments to the agents is less than
or equal to the budget allocated for rewards by the centre).

In more detail, this paper makes the following contribu-
tions to the state of the art:

• We present a new scoring rule-based mechanism named
sum of others’ plus max (SOM), which we apply to the
scenario of information aggregation in the smart grid.
The mechanism rewards agents using a budget deter-
mined by their own reports, and takes into account the
agents’ reports and the centre’s prior information.

• We prove this mechanism to be dominant strategy in-
centive compatible and ex ante weakly budget balanced.

• We compare this mechanism using a computational ap-
proach to find equilibrium states to a benchmark mech-
anism in which rewards are divided uniformly between
agents, and the cooperative social-welfare maximising
solution. In doing so, we show that this mechanism is
much more efficient than the benchmark, and obtains
a social welfare that is up to 77% of that of the optimal
cooperative solution.

• We show that SOM reduces the risk of the aggregator
making a loss compared to the uniform mechanism.

The remainder of the paper is structured as follows: Sec-
tion 2 presents a formal model of the information aggrega-
tion problem applied to the smart grid. Section 3 discusses
two mechanisms to reward agents and their theoretical prop-
erties – the uniform mechanism, and the sum of others plus
max mechanism. Section 4 then discusses a cooperative so-
lution whereby all agents try to maximise the social welfare
of the system. Section 5 uses empirical analysis to compare
the two mechanisms and the social welfare solution. Finally,
the paper concludes in Section 6.

2. THE INFORMATION AGGREGATION
PROBLEM

This section presents a formulation of the information ag-
gregation problem for demand prediction within the smart
grid. In this scenario there are two types of agents – a sin-
gle aggregator agent, and n home agents, i ∈ N , where
N = {1, · · · , n}. The aggregator’s job is to gather infor-
mation about the future electricity consumption of a set of
homes and then buy electricity for those homes. The homes
each have their own agent, whose job it is to collect specific,
detailed consumption information about the home for which
it is responsible and then to report it to the aggregator. The
aggregator can then use this information to make better pre-
dictions of the future aggregate consumptions, which, due to
the design of the electricity markets, reduces the total cost
of the electricity consumed for all the homes.

In more detail, each day, D, is divided into a number of
time periods, which, for simplicity and without loss of gener-
ality, we assume to be one. For each time period, the aggre-
gator must purchase the amount of electricity it expects its
agents to consume. The aggregator can purchase electricity
in one of two markets, dependent on the time of purchase.
Electricity can be bought one day ahead of its consumption
in the forward market, in which case it costs f per unit of
electricity. At the end of each day, the aggregator is charged
for any imbalance between the amount it purchased in the
forward market for consumption and the amount it actually
consumed. We say these transactions are performed in the
balancing market in which the prices are designed by the
market regulator to penalise suppliers and consumers who
do not generate or consume as they predicted. The price at
which the grid buys back excess electricity, the system buy
price, is f − δb per unit, and the cost per unit of electricity
bought from the grid to fill any deficit, the system sell price,
is f + δs. Therefore, the total cost of consuming ω units of
electricity when χ units are initially bought is given by:

κ (ω |χ ) = f · χ+ (ω − χ) ·
{(
f − δb

)
, χ > ω

(f + δs) , χ < ω
(1)

Each agent, i, can generate at a cost an estimate, xi, of
its future consumption, represented by a Gaussian distribu-
tion1 with mean, µi, and precision, θi = 1/σ2

i , such that
xi = 〈µi, θi〉. However, it is important to note that the
mechanisms generalise to any probability distribution. The
cost incurred by agent i when generating an estimate of pre-

1Gaussian distributions were chosen as the estimates pro-
duced by the agents are likely to be dependent on numerous
noisy sources of information, and by the central limit theo-
rem, the sum of noisy data results in a Gaussian error.
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cision θi is:

C (αi, θi) = αi · θi (2)

where αi is some positive, real-valued constant. The aggre-
gator also maintains its own belief about what each agent
i, will consume, xa,i = 〈µa,i, θa,i〉. However, the aggregator
does not incur a cost in maintaining its belief.

The day before the electricity is required, the aggregator
asks each agent to report its estimate of tomorrow’s con-
sumption, x̂i = 〈µ̂i, θ̂i〉, as a Gaussian distribution with

mean, µ̂i, and precision, θ̂i. The home agents are assumed to
be strategic and they will try to maximise the benefit they
receive; defined broadly as some payment for their report
minus the cost of generating that report. As such, agents
strategise over the precision of the estimate that they actu-
ally generate, xi = 〈µi, θi〉, and also the mean and precision

that they report to the aggregator, x̂i = 〈µ̂i, θ̂i〉. Conse-
quently, an agent will misreport (i.e. x̂i 6= xi) if it believes
doing so will gain it a greater utility.

Once received, the estimates reported by the home agents
are compared by the aggregator to its own information. The
aggregator does not know the correlation between the re-
ports of the agents and its own. Thus it takes the conser-
vative action of assuming they are perfectly correlated, and
simply takes the most precise estimate of its own and the
agent’s. In so doing, the aggregator produces the following
aggregate belief vector:

x = 〈x∗1, · · · , x∗n〉 (3)

where,

x∗i =

{
x̂i, if θ̂i > θa,i

xa,i, otherwise
(4)

The result of Equation 4 is that the aggregator will only
use the home agent’s reported estimate, x̂i, if said estimate
is more precise than the estimate the aggregator already
has, xa,i. Therefore, the aggregator will never use infor-
mation that is less precise than its own belief. In certain
situations, this can result in the aggregator losing informa-
tion. However, in general this behaviour is a necessary con-
sequence of the aggregator being unaware of the correlation
of the information sources being received, although domain-
specific knowledge might be applied to overcome this limi-
tation. Since the aggregator is interested in the cumulative
predicted demand of all homes, it convolves x to calculate
a distribution that represents the expected total demand.

In order to make notation less verbose, let the expected
total demand according to x be µ =

∑
x∗i ∈x

µ∗i , and its pre-

cision θ = 1/(
∑
x∗i ∈x

1/θ∗i ). Similarly, for the aggregator’s

beliefs, xa = 〈xa,1, · · · , xa,n〉, let the mean and precision be
µa =

∑
xa,i∈xa µa,i and θa = 1/(

∑
xa,i∈x 1/θa,i).

Once the aggregator has collected estimates from all agents,
it performs an optimisation to determine the amount of elec-
tricity it must purchase in the forward market such that its
total expected cost is minimised. Essentially, the aggregator
tries to minimise its expected loss in the balancing markets,
which it does by solving the following equation:

χ (x) = arg min
z ∈Ω

f · z −
∫ z

0

(z − y)(f − δb)N (y;µ, θ) dy+

∫ ∞

z

(y − z)(f + δs)N (y;µ, θ) dy

(5)

At the end of each day, the actual amount consumed by
each agent, defined by ω = 〈ω1, · · · , ωn〉, becomes known
to the aggregator. The total consumption is defined as
ω =

∑
ωi∈ω ωi. Each agent then pays the aggregator for the

electricity their home consumed, at a rate of fr per unit.
The aggregator can also calculate the total cost it incurred
through utilising the agents’ estimates, κ (ω |χ (x) ), and the
cost it would have incurred had it simply used its own prior
information, κ (ω |χ (xa) ).

The aggregator must then decide an amount to pay each
home agent, Pi. Agent i’s utility is then defined as follows:

Ui (x,xa,ω) = Pi (x,xa,ω)− C (αi, θi)− ωi · fr
and the aggregator’s utility is defined as:

Ua (x,xa,ω) = ω · fr − κ (ω|χ (x))−
∑

i∈N
Pi (x,xa,ω) (6)

Given that the agents are rational, they are able to strategise
over their space of reports in order to determine how pre-
cisely that they generate their estimate and then, whether
or not to truthfully report that estimate to the aggregator.
Indeed, even after an agent has paid to produce an estimate,
it might still gain a greater reward by misreporting. How-
ever, the aggregator is able to incentivise agents to behave
in certain ways by carefully designing the reward function,
Pi. In so doing, it wants to achieve two main goals: to
incentivise home agents to make precise estimates and to
incentivise agents to report those estimates truthfully. This
is a problem that is discussed in the next section.

3. NON-COOPERATIVE MECHANISMS
This section presents two mechanisms that allocate rewards
to agents for their information. A mechanism specifies a
transfer function, which defines the reward an agent receives
for a given reported estimate, x̂i, when an outcome, ωi, is
realised. Specifically, we consider three properties that are
desirable in the scenario presented earlier. First, the mecha-
nism should exhibit individual rationality. That is, in expec-
tation, all agents gain a positive utility from participating
in the mechanism. This is an essential requirement of any
mechanism designed for use within an aggregation service to
which customers may opt out – people will simply not use
the service if they expect to be worse off by so doing. Sec-
ond, the mechanism should be incentive compatible, which
means that an agent maximises its expected utility by truth-
fully reporting its estimate. This has obvious advantages in
the aggregation scenario described earlier – the aggregator
needs to know the real estimates the agents hold in order to
generate an accurate estimate of their aggregate future con-
sumption. Third, it should be budget balanced, which states
that the aggregator does not run into deficit after paying
the agents for their estimates. We consider a mechanism to
be budget balanced if the aggregator spends equal to or less
than it would have, had it only used its own estimates and
not elicited estimates from the home agents.

Given this, the next section discusses how the savings are
calculated in order to determine the aggregator’s budget.
Afterwards, the mechanisms that distribute this budget are
discussed. First to be discussed is the uniform mechanism;
a simple mechanism whereby the savings made by the aggre-
gator are equally divided amongst the home agents. Next,
a further mechanism named sum of others’ plus max is dis-

663



cussed, which uses the spherical scoring rule in order to de-
fine the proportion of the savings distributed to each agent.

3.1 Calculation of Savings
The budget the aggregator uses to reward the home agents
in the mechanisms presented here is a function of the total
savings made by the aggregator buying electricity using the
home agents’ information over its own (if the home agents’
information is more precise than the aggregator’s). For-
mally, when the agents consume ω, their aggregated reports
are x, and the aggregator’s aggregated prior information is
xa, the savings made by the aggregator are:

∆ (x,xa,ω) = κ (ω |χ (xa) )− κ (ω |χ (x) ) (7)

The aggregator may not necessarily decide to allocate the
whole amount of savings to the agents’ reward budget. In-
stead, it allocates a fraction 0 ≤ λ ≤ 1 to distribute, thereby
guaranteeing the aggregator a certain fraction of the savings.
However, the aggregator is still left with the problem of allo-
cating the λ savings to the agents such they are incentivised
to report precise estimates truthfully. The next sections are
devoted to describing two mechanisms. First, their formal
properties are discussed, then further examination of their
properties is performed using empirical evaluation.

3.2 Uniform Mechanism
The simplest mechanism presented in this paper simply di-
vides the savings made by the aggregator equally amongst
the agents. In this case, the reward given to each agent is:

PU
i (x,xa,ω, n) =

1

n
· λ ·∆ (x,xa,ω)

It is clear to see that the uniform mechanism is budget bal-
anced (i.e. it always distributes 100% of it’s allocated bud-
get) – the budget is equally split into n amounts, which are
then awarded to n agents, thus always distributing 100% of
the allocated budget. Further to this, Theorem 3.1 provides
a proof that shows the uniform mechanism to be Nash in-
centive compatible (that is, reporting truthfully is a Nash
equilibrium). Thus, under this mechanism, when all agents
are truthful, no single agent has incentive to misreport.

Theorem 3.1. The uniform mechanism is Nash incen-
tive compatible, i.e. truth telling is a Nash equilibrium.

Proof. The aggregator buys an amount of electricity for
the agents that minimises the total expected cost based on
the agents’ reported estimate. Clearly if all agents report
truthfully, one agent deviating will only cause a larger error
between the amount consumed and purchased, resulting in
less savings to be distributed to the agents and therefore
a lower utility for that agent. Therefore, when all agents
report truthfully, a single agent is unable to improve its ex-
pected utility by misreporting. However, note that truth
telling is not a dominant strategy; if an agent knows its
neighbour will misreport, the agent can obtain a better ex-
pected reward by also misreporting such that its error can-
cels out the error made by the neighbour.

Using this mechanism, all agents are rewarded equally ir-
respective of their actual contribution. An ideal mechanism
would reward the agents more fairly, by making greater pay-
ments to those agents whose estimates made the most signif-
icant increase in the aggregator’s savings. Furthermore, the

fact that truth telling is only a Nash equilibrium means that
agents can potentially expect to benefit from misreporting
their estimates if they believe other agents will do the same.
Therefore, a better solution is a mechanism that is dominant
strategy incentive compatible. That is, a mechanism where
an agent’s utility is maximised when reporting truthfully
regardless of its belief of the other agents’ actions. With
this in mind, we discuss next the sum of others’ plus max
mechanism (SOM), which uses strictly proper scoring rules
in order to achieve dominant strategy incentive compatibil-
ity. Strictly proper scoring rules are functions that take a
probabilistic estimate reported by an agent, and an outcome.
Their expected value is maximised only when an agent truth-
fully reports their estimates. SOM uses the spherical scoring
rule, which is discussed in the next section.

3.3 Spherical Scoring Rule
The mechanism in the next section is based on the spherical
scoring rule. For a given prediction of an event with mean
µ̂i, and precision θ̂i, and a realisation of that event, ωi, the
spherical rule is defined as follows:

S
(
ωi; µ̂i, θ̂i

)
=

N
(
ωi; µ̂i, θ̂i

)

√∫∞
−∞N

(
x; µ̂i, θ̂i

)2

dx

(8)

The spherical rule is one of three strictly proper scoring
rules often studied in literature – the other two being the
logarithmic, and quadratic scoring rules. The term strictly
proper means that the expected score awarded by the func-
tion is maximised exclusively when the agent truthfully re-
ports its estimate. The spherical rule was chosen over the
much simpler logarithmic rule because it has a strict lower
bound of 0, whereas the logarithmic rule is unbounded. As a
result, the use of the logarithmic scoring rule could theoret-
ically end with a customer becoming forever in debt to the
aggregation company after having received a score of −∞.
This is clearly unsatisfactory, and it could be argued that
this fact, no matter how rare its occurrence, could dissuade
users from ever joining the aggregation service.

Using scoring rules to distribute payments to agents in
continuous domains is non-trivial. This arises from the fact
that N (µ, θ) is unbounded as θ → ∞. Clearly, if a home
agent were to know exactly what it would consume in the
next time period, paying it an infinite amount is not ac-
ceptable to the aggregator. Therefore, the score must be
scaled in order to apply bounds. The next section discusses
two methods for achieving this, and introduces the main
contribution of this paper – the sum of others’ plus max
mechanism.

3.4 Sum of Others’ plus Max
As has been discussed, scoring rules are used to assign scores
to agents based on the accuracy and the precision of the esti-
mates the agents report to the centre. Naturally, agents who
report more precise estimates expect to get a higher score,
and remembering that the cost agents incur when generat-
ing their estimates is proportional to the precision of their
generated estimates, rewarding agents based on the score
they achieve seems to be a natural development. Consider-
ing that we would also like to fairly distribute the savings
to the agents in a way that is budget balanced, one method
of distributing the savings to the home agents might be to
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scale the total savings by the fraction of the sum of all agents’
scores that the agent had contributed. We call this mecha-
nism the percentage contribution mechanism, where the re-
ward each agent receives is given by:

PP
i (x,xa,ω) =

S
(
ωi; µ̂i, θ̂i

)

∑
xj∈x S

(
ωj ; µ̂j , θ̂j

)λ ·∆ (x,xa,ω)

However, despite the fact that this might be intuitively
correct, the resulting payments are not incentive compati-
ble. Agents are in fact able to misreport the precision of
their belief in order to gain a higher reward by making their
belief seem more precise. In this section, the percentage con-
tribution mechanism is adapted to make the sum of others’
plus max (SOM) mechanism, which is incentive compatible,
but is only ex ante weakly budget balanced. That is, in
expectation, SOM distributes at most 100% of its budget.

This mechanism takes into account not only the spheri-
cal score (defined in Equation 8) achieved by the agent, but
also those achieved by the other agents in the system. Pay-
ments are then determined by multiplying those scores by
the savings made by the aggregator when using the reports
from the other agents in the system, and the aggregator’s
prior knowledge in place of the report from the agent who is
being rewarded. This is necessary in order to preserve incen-
tive compatibility. Furthermore, to ensure agent’s payments
never outweigh the savings made by the aggregator, it is nec-
essary to provide an upper bound on the precision of reports
accepted from agents, θmax. If any agent reports a precision
θ̂i > θmax, their spherical score will be calculated as though
θ̂i = θmax. Formally, the payment agent i obtains, given all
agents’ estimates is given by:

PS
i (x,xa,ω) =

S
(
ωi; µ̂i, θ̂i

)
· λ ·∆ (x−i ∪ {xa,i} ,xa,ω)

S (ωi;ωi, θmax) +
∑
xj∈x−i S

(
ωj ; µ̂j , θ̂j

)

where x−i = x \ {x∗i }, and the term, S (ωi;ωi, θmax), repre-
sents the maximum score that can be achieved by an agent
– the score achieved when reporting the maximum possi-
ble precision, θmax, and reporting an estimate with mean
ωi when ωi actually does occur. It can be seen that by
using only the savings made by the other agents, the only
term that is dependent on the report from the agent being
rewarded is the scoring rule. Moreover, the spherical scor-
ing rule was specifically chosen due to it’s strict propriety,
and therefore these payments are incentive compatible, as is
shown in Theorem 3.2.

Theorem 3.2. SOM is dominant strategy incentive com-
patible, i.e. truth telling is a strictly dominant strategy.

Proof. The maximum score is a constant value set by
the mechanism designer. Furthermore, the agent’s report
is excluded from the calculation of the savings made. Ergo
the agent is unable to affect the savings used to calculate its
payment. Thus, the savings made by the other agents are
in effect a constant. Given that, SOM is simply an affine
transformation of the spherical scoring rule, which maintains
strict propriety and therefore incentive compatibility. The
fact that the score is strictly proper means that the expected
score is a unique maximum when an agent reports truthfully.
Thus, the expected reward an agent receives is also a unique
maximum when it reports truthfully. Therefore, the mech-
anism is strictly dominant incentive compatible.

In addition to truth-telling being a strictly dominant strat-
egy, the rewards to agents made by this rule are fairer than
those of the uniform mechanism in that the agents are di-
rectly compared with each other based upon their score.
The reward is simply a scaled fraction of the agents’ spher-
ical score over the sum of all other agents’ scores. Thus,
if an agent scores highly because it reported a precise esti-
mate, and the other agents score lower because of imprecise
reports, the first agent will receive a greater share of the
savings made. It is essential to divide the agent’s spherical
score by the sum of the other agents’ prescaled scores plus
the maximum score in order to maintain weak budget bal-
ance. Theorem 3.3 provides a proof of the fact that SOM is
ex ante weakly budget balanced.

Theorem 3.3. SOM is ex ante weakly budget balanced.

Proof. Let each agent, i, obtain the score Si, and ∆̄ (θ)
be the expected savings made when the agents’ reports pro-
duce an aggregate precision of θ. In SOM when each agent,
i’s, report has precision θi, the total expected payout is:

∑

∀i∈N

Si
Smax +

∑
∀j∈N\{i} Sj

· ∆̄




 ∑

∀j∈N\{i}

1

θj
+

1

θa,i



−1


and the aggregator’s total expected savings is

∆̄

((∑

∀i∈N

1

θi

)−1)

The sum of the fraction of scores is ≤ 1, and ∆̄(θ) is
strictly increasing with θ. Therefore, it is sufficient to prove:


 ∑

∀j∈N\{i}

1

θj
+

1

θa,i



−1

≤
(∑

∀i∈N

1

θi

)−1

∀i ∈ N

We start with the axiom,

θa,i ≤ θi

Adding θiθa,iγ > 0 to both sides gives:

θa,i + θiθa,iγ ≤ θi + θiθa,iγ

Which factorises to give:

θa,i (θiγ + 1) ≤ θi (θa,iγ + 1)

The bracketed expressions are strictly positive. Therefore,
it can be simplified to give:

(
γ +

1

θa,i

)−1

≤
(
γ +

1

θi

)−1

Substituting γ for
∑
∀j∈N\{i}

1
θj

, we are left with


 ∑

∀j∈N\{i}

1

θj
+

1

θa,i



−1

≤
(∑

∀i∈N

1

θi

)−1

That is, the precision of the aggregate report made by the
aggregator when using its own information in place of agent
i’s is less than the precision of using all agents reports, when
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each agent reports a precision greater than or equal to the
aggregator’s precision. Combined with the fact that the ex-
pected savings are strictly increasing with precision, and the
sum of fractions of the budget allocated to each agent is less
than or equal to one, this shows the sum of others plus max
mechanism is ex ante weakly budget balanced.

There are numerous advantages to using SOM over the
simple uniform mechanism presented earlier. Firstly, truth
telling strictly dominates all other strategies. As a result, re-
porting truthfully will always maximise the agent’s expected
reward, regardless of the other agents’ actions. This is not
the case in the uniform mechanism wherein truth telling is
only a Nash equilibrium. For example, if an agent were to
learn that its neighbour were to misreport its estimate, it too
could misreport in order to offset the other agent. However,
a disadvantage of SOM compared to the uniform mechanism
is that it is only ex ante weakly budget balanced – a weaker
concept than the strict budget balance exhibited by the uni-
form mechanism. The home agents might make small losses
when the other agents’ predictions are poor. However, in
expectation, home agents’ utilities will always be positive as
they are able to strategise over the precision the generate
in order to maximise their utility. This is further explained
with the aid of empirical evidence in Section 5.3.

4. THE SOCIAL WELFARE SOLUTION
While the design of the two previous mechanisms assumes
that the agents are non-cooperative – that is, they seek only
to maximise their own profit – the social welfare solution
assumes cooperation between the agents. In the social wel-
fare solution, agents ignore their own reward and instead
maximise the sum of all agents’ utilities within the system.
In the case shown in this paper, when maximising social
welfare, each agent maximises the following function:

U∗ (x) =

∫
· · ·
∫ ∞

0

∆ (x,xa,ω)

−
∑

∀i∈N
C (αi, θi) dω1, · · · , dωn

(9)

The social welfare solution is significant as it provides an
upper bound for the social welfare that can be achieved
within the system. This result can then be used in order
to ascertain the efficiency of any mechanism that works in
the scenario, where more efficient mechanisms are deemed
to be those whose social welfare is closer to that of the max-
imum social welfare. We use the social welfare result in the
next section in order to analyse the efficiency of the sum of
others plus max, and uniform mechanisms, and to discover
the properties that arise in a cooperative model.

The previous sections have introduced two new mecha-
nisms – the uniform mechanism and sum of others’ plus max
– and in doing so have discussed and proved some of the for-
mal properties of said mechanisms. The solution whereby
agents act cooperatively to maximise social welfare has also
been introduced. The next section uses empirical analysis
to further analyse emergent behaviour under equilibrium.

5. EMPIRICAL EVALUATION OF THE
MECHANISMS

Given the theoretical properties of the mechanisms discussed
in the previous sections, it is clear that agents will truth-
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Figure 1: The aggregated precision of the agents’
reports, versus the fraction of the savings to be dis-
tributed by the aggregator, λ.

fully report their information to the aggregator. However,
although rational agents will be truthful, they will strategise
over the actual generated precision of their estimate. There-
fore, to further analyse the properties of the mechanisms, we
must solve for the equilibrium precision of the agents.

Unfortunately, this equilibrium cannot be calculated, and
thus, iterated best response is used to computationally find
the home agents’ equilibrium strategies (the precisions of
their generated reports). To aid convergence to an equilib-
rium, a dynamic named partial best response is used [3].
Equilibrium is detected by measuring the variance of the
agents’ chosen strategies, and the algorithm is deemed to
have reached an equilibrium point when the variance of the
last 10 strategies chosen by each agent falls below a prede-
termined threshold (10−8 in our experiments).

Once the equilibria are found, the expected savings and
the agents’ expected rewards and utilities are analytically
calculated. Market values are set to f = 100, δb = 50,
and δs = 70. Agents’ costs are set to 0.01, 0.02, . . . , 0.1, and
kept constant throughout each simulation. The aggregator
is assumed to have prior information that allows it to make
estimates of each houses’ demand with precision θa = 2.

The remainder of this section discusses the results from
these simulations. In Section 5.1, the aggregate precision
of all agents’ reports are compared for the two mechanisms
and the social welfare solution. Next, Section 5.2 discusses
the efficiency of each mechanism, where efficiency is defined
in terms of a percentage of the social welfare achieved in the
cooperative solution. Finally, Section 5.3 discusses the risks
to the aggregator in using each mechanism.

5.1 Precision
In this section, the aggregated precisions of the agents’ re-
ports under the two mechanisms and the social welfare max-
imising case are analysed. Figure 1 shows the aggregated
precision of all agents’ reports against the fraction of the
savings the aggregator allocates for distribution. The fact
that the agents are playing unique equilibrium strategies
that maximise their utility functions means that there is
no error in the agents’ chosen strategies, and consequently
no error in the aggregated precision of the agents’ reports.
Thus, error bars have been omitted from the plot in Figure 1.

It can be seen from Figure 1 that in terms of aggregated
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precision, SOM vastly outperforms the uniform mechanism
for values of λ > 0.425, obtaining an aggregated precision
which is up to four times the aggregated precision obtained
by the uniform mechanism. The step change in the SOM
precisions between λ = 0.4 and λ = 0.5 occurs because
lower values of λ are not incentivising the agents’ to pro-
duce estimates as their additional reward is outweighed by
their costs. Furthermore, steps can be seen in the uniform
plot as each agent becomes incentivised to produce a report.
The baseline at θ = 0.2 occurs when no agents are incen-
tivised to produce a report with θi > θa,i. Consequently,
the aggregated belief consists only of the aggregator’s prior
knowledge, thus θ = θa/n assuming θa = θa,i, ∀i ∈ N .

Figure 1 also shows the aggregated precision of the reports
made by the home agents under a cooperative, social welfare
maximising setting. In this setting, each agent’s strategy is
constant with respect to λ as the agents do not take into
account their own reward, as is shown in Equation 9.

Furthermore, note that it is not the absolute value of the
reward that is important in determining the strategy to be
adopted by the agents, but the gradient of the reward func-
tion with respect to the agents’ precision, θi. The absolute
value only becomes relevant if the agent has the choice be-
tween the mechanism that is in use. Agents will choose
a precision at which the gradient of the reward function,
dP/dθi equals the gradient of their cost function dCi/dθi, or
αi. Therefore, it may well be possible to construct a reward
function that encourages agents to generate yet more precise
estimates than they do with SOM. However, as we discuss
in the next section, SOM is already up to 77% efficient, and
therefore any increase in the precision generated by agents
will only produce marginally improved social welfare.

5.2 Efficiency
The mechanisms discussed in this paper do not ‘burn’ any
unallocated savings. That is, savings that are not distributed
to the home agents as payment are not simply discarded. In-
stead, any unallocated savings are returned to the aggrega-
tor to add to its profit. In this way, the mechanisms always
allocate 100% of their budget. However, under this model,
the budget for each mechanism is itself dependent on the
actions of the home agents. Consequently, each mechanism
will still result in a different social welfare. With this in
mind, in this paper, efficiency is defined as the social wel-
fare achieved by the mechanism expressed as a percentage
of the social welfare that is achieved when agents act coop-
eratively to maximise additional social welfare.

Figure 2 shows the sum of the home agents’ additional
utilities against the additional utility gained by the aggre-
gator in using each mechanism compared to using no mech-
anism for values of λ between 0.0 and 1.0. As before, the
agents’ behaviour in the social welfare solution is indepen-
dent of λ. It can be seen that SOM is more efficient than
the uniform mechanism in that it has points closer to the so-
cial welfare maximising solution. Furthermore, for any util-
ity received by the home agents, the aggregator’s additional
utility is greater under SOM than the uniform mechanism.

Having discussed the expected utilities that are obtained
by the agents and aggregator, we see that the aggregator
always expects to receive a greater utility when using SOM
over the uniform mechanism. However, observing samples of
individual rounds shows that there are occasions wherein the
aggregator makes a loss. The next section analyses the risk
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Figure 2: The additional utility of the aggregator
when using a mechanism as opposed to using no
mechanism against the sum of agents’ additional
utilities.

to the aggregator in using SOM compared to the benchmark.

5.3 Risk for the Aggregator
This section discusses the risk to the aggregator when us-
ing SOM and the uniform mechanism compared to using
no mechanism at all – i.e. the aggregator simply using its
own beliefs. There is always an element of risk for the ag-
gregator, which arises due to errors made when predicting
the demand of the home agents. It should be noted that
this work assumes that the agents’ beliefs are on average
accurate. Thus, on average, the savings made in using the
agents’ more precise information is positive. Nevertheless,
it is possible for savings on occasion to be negative, when
an agent is confident in its belief, but is incorrect.

However, there are a number of ways the aggregator can
mitigate such risk. For one, simply increasing the number of
agents being aggregated over decreases the risk to the aggre-
gator, as can be seen by the ‘no mechanism’ line in Figure 3.
The use of mechanisms further reduces the aggregator’s risk
by encouraging agents to produce more precise estimates.

The results shown in this section use the same experimen-
tal setup as above, with the retail price, arbitrarily set to
fr = f (note in a real situation, the aggregator would set
fr > f in order to gain some profit). In addition, the value
at risk is calculated through repeated simulation. In more
detail, once the agents’ strategies have been determined, the
simulation of the aggregator purchasing electricity using the
agents’ reports runs in full for 1000 rounds. In each round,
each house, i, is assigned a total consumption, ωi, sampled
from a uniform distribution over the range [30, 50]. The
agent’s own estimate of its consumption is then sampled
from a normal distribution around its consumption such that
µi ∼ N (ωi, θi), where θi is the precision chosen by agent i
in the equilibrium found through iterated best response as
described earlier. The same procedure is used to generate
the aggregator’s belief using θa. The aggregator pays each
agent their reward in accordance with the model in Section 2
and mechanisms in Section 3. After each round, the aggre-
gator’s utility is calculated (Equation 6). The value of the
aggregator’s utility at 5% risk is calculated by taking the ag-
gregator’s fifth percentile utility from the 1000 rounds. This
process is repeated 20 times, and the mean and standard
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error of the value at 5% risk are taken.
Risk can be further mitigated by the aggregator by ad-

justing λ, as shown in Figure 4. It can be seen that SOM
results in a greatly reduced risk to the aggregator for val-
ues of λ > 0.425 resulting from the high precision estimates
that SOM encourages agents to produce. For higher values
of λ, although the agents are still producing high precision
estimates, as shown in Figure 1, the aggregator is giving
away a larger portion of the savings to the agents, thereby
decreasing its utility. For values of λ < 0.425, as shown in
Figure 1, agents are not incentivised to produce reports, and
thus the risk to the aggregator is equal to the risk when no
mechanism is employed. The step changes in the ‘uniform’
line of Figure 4 arise due to agents individually becoming
incentivised to produce estimates for the aggregator.

An additional source of risk comes from the ex ante weakly
budget balanced nature of SOM; the mechanism is budget
balanced in expectation, but there may be instances wherein
the aggregator makes a loss. Furthermore, in situations
whereby the savings made by the aggregator are negative
– i.e. the agent’s estimates were less accurate than the ag-
gregator’s prior estimate – the fact that the mechanism is
ex ante, weakly budget balanced, means the aggregator will,
in expectation, regain at most λ of the loss made.

However, it is worth noting that at no point in Figures 3
and 4, is the aggregator worse off by using either mechanism
compared to using no mechanism at all. Furthermore, SOM,
for λ > 0.425, maximises the utility of the aggregator. Thus
a risk neutral aggregator, who is able to strategise over the
mechanism used, will always choose SOM, with λ > 0.425.

6. CONCLUSIONS
This paper discussed mechanism design in scenarios wherein
a centre has some imprecise information regarding a set of
values that, when aggregated, provide information it must
use to optimally procure goods at a cost. Each variable
has a single expert agent that is able, at a cost, to report
to the centre more precise information regarding the value.
Additionally, the expected cost incurred by the centre in-
creases with the precision of the information it uses to pro-
cure said goods. A dominant strategy incentive compatible
scoring rule-based mechanism named sum of others’ plus
max (SOM) was developed, which rewards agents from a
budget that is equal to the savings made by the centre in
using the agents’ information over its own.

SOM was compared to a simple mechanism whereby the
agents are paid by dividing the savings made equally among
the agents. It was shown that the sum of others plus max
mechanism increased social welfare compared to the uniform
mechanism, and that the social welfare achieved by the sum
of others plus max mechanism was 77% that of the optimal
solution. Empirical evidence was provided that shows that
SOM reduces the risk to the aggregator compared to using
a simple uniform mechanism or no mechanism at all.

Future work will investigate the combination of the sum of
others plus max mechanism with additional incentives. For
example, in the smart grid, demand smoothing is desirable
as it reduces the need for extraneous and costly standby
generation capacity on the grid. An additional incentive to
build into this mechanism would therefore be to reduce the
variance of the realised consumptions of each house, ωi, as
agents can potentially gain better payoffs by making their
consumptions unpredictable to the aggregator.
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ABSTRACT
We introduce a novel online mechanism that schedules the allo-
cation of an expiring and continuously-produced resource to self-
interested agents with private preferences. A key application of our
mechanism is the charging of pure electric vehicles, where owners
arrive dynamically over time, and each owner requires a minimum
amount of charge by its departure to complete its next trip. To truth-
fully elicit the agents’ preferences in this setting, we introduce the
new concept of pre-commitment: Whenever an agent is selected,
our mechanism pre-commits to charging the vehicle by its reported
departure time, but maintains flexibility aboutwhenthe charging
takes place and atwhat rate. Furthermore, to make effective alloca-
tion decisions we use a model-based approach by modifying Con-
sensus, a well-known online optimisation algorithm. We show that
our pre-commitment mechanism with modified Consensus incen-
tivises truthful reporting. Furthermore, through simulations based
on real-world data, we show empirically that the average utility
achieved by our mechanism is 93% or more of the offline optimal.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
multiagent systems

General Terms
Algorithms, Design, Economics

Keywords
electric vehicles, mechanism design, pricing

1. INTRODUCTION
Recent years have seen a proliferation of interest in electric vehicles
(EVs), generally perceived as a key technology for achieving sus-
tainable mass transportation with low carbon emissions [7]. While
EVs are a promising technology, their widespread use is also ex-
pected to place considerable strains on existing electricity distribu-
tion networks. EVs typically require high charging rates, up to 3
times the maximum demand of a typical home. This means that
if all vehicle owners plug in at peak times (typically in the early
evening), the transformers involved in distributing electricity to lo-
cal neighbourhoods may be overloaded by the additional demand

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

[7]. To this end, the charging of vehicles needs to be scheduled in
order to balance the load. However, different consumers may have
different time constraints and willingness to pay, which the sched-
ule needs to take into consideration. To address this challenge, in
this paper, we apply and extend techniques from mechanism design
and the stochastic optimisation literature to ensure incentive com-
patibility (i.e., to incentivisestrategicagents to reveal their prefer-
ences truthfully), and produce effective schedules for EV charging.

Dealing with the limitation of local distribution networks has
been discussed in a range of recent works. For example, [2] and
[12] provide a thorough descriptive analysis of this problem, al-
though they only discuss the problem at a high level and do not
propose specific scheduling heuristics. Moreover, these and most
other papers assume that information about the EVs is known and
they do not consider the elicitation problem, where strategic agents
may misreport their preferences if this is in their best interest.

Framed in more general terms, the problem involves the real-
time scheduling of jobs released over time (in our case, electric
vehicles that require a certain amount of charge by their depar-
ture) sharing a scarce resource (in our case, electricity that is lim-
ited by the maximum transformer capacity), and given uncertainty
about future arrivals. Such problems are addressed in the impor-
tant and growing field of stochastic optimisation [6]. However, it
has been shown that solving these problems optimally is NP-hard
(see [10] for an overview) and many heuristics have been devel-
oped. The approach in our paper is based on one of the most widely
used such heuristics, the Consensus approach introduced in [1]. In
their approach, a number of future scenarios are sampled, and then
the scheduling is solved for each of these scenarios (which can be
solved using an offline algorithm). Then, the decision whether to
schedule a particular job (in our case, an EV) is made based on
a Consensus vote between these scenarios. However, unlike our
work, [1] only applies to settings with a single machine (corre-
sponding to a setting where only a single EV can be charged at
any time) and agents are assumed to be non-strategic.

A number of papers have considered scheduling with strategic
agents. Specifically, [11] examines the scheduling of jobs on a sin-
gle machine and proposes an incentive compatible mechanism for
this setting. However, their work assumes a computational setting
where the results of a job are released to the agents only on comple-
tion or by the agent’s reported deadline. This approach cannot be
used for electricity distribution, since electricity must be allocated
instantly when available. More recently, [5] proposes a mecha-
nism that deals with multi-dimensional, marginally decreasing val-
uations, showing how this setting naturally applies to the charging
of hybrid EVs (where any shortfall in electricity can be supple-
mented by fuel). However, that approach does not readily extend to
the case of pure EVs, which is better characterised by complemen-

669



tary preferences (since agents only receive value when the battery
is sufficiently charged), and it assumes both discrete time and sup-
ply. Furthermore, all of these approaches aremodel-free, i.e., they
do not consider possible future arrivals in the allocations. This can
be especially inefficient in case of complementary preferences.

There are a few online mechanism design papers which also ac-
count for future arrivals [8, 3]. Like our paper, these are based on
a version of the Consensus algorithm, but their approach results in
allocations which are not necessarilymonotonic(a necessary con-
dition for incentive compatibility). As a result, they require an addi-
tional ironing procedure which cancels allocations that violate the
monotonicity property. This approach has two drawbacks. First,
ironing is computationally prohibitive and thus impractical for the
EV domain, since it needs to consider all possible misreports in or-
der to establish whether cancelling an allocation is required. Sec-
ond, it causes inefficiencies in the allocation, since ironed resources
are lost and cannot be allocated to any other agents. Furthermore,
unlike our setting, both [8] and [3] assume discrete time and indi-
visible resources.

In this work, we address these limitations by proposing the first
incentive-compatible, model-based mechanism for a real-time set-
ting with a continuously divisible resource. This achieves incen-
tive compatibility by ensuring monotonicity for all allocations, thus
avoiding the need for expensive ironing. In more detail, we make
the following contributions to the state of the art:

1) We introduce, for the first time, the notion ofpre-commitment
in online mechanism design. When the mechanism decides to pre-
commit to an agent, it ensures that sufficient resources are reserved
for the agent, but, importantly, retains flexibility over when and
how the resource is allocated. This leaves considerable flexibility
for accommodating other, potentially less patient agents in the fu-
ture.

2) To ensure incentive compatibility, we furthermore modify the
existing Consensus algorithm. Specifically, we introduce aserial-
isation of agents, ensuring that an unallocated agent cannot influ-
ence future pre-commitment decisions. Second, we ensure agents
do not have an incentive to delay their arrival in the system by iden-
tifying re-evaluation points, at which scheduling and pre-commit-
ment decisions may change, and by usingpartly-fixedschedules,
whereby the schedule for committed agents is fixed until the next
re-evaluation point.

3) We evaluate our mechanism using real-world data from the
largest trial of EVs in the UK and show that the average perfor-
mance obtained by our mechanism is 93% or more of an offline
optimal, and that it significantly outperforms a mechanism that al-
locates electricity without knowledge of the agents’ preferences.

The remainder of the paper is organised as follows. In Section 2,
we describe our model. In Section 3, we solve the online schedul-
ing problem for a setting with cooperative agents, while in Section
4 we consider how to ensure truthful reporting by strategic agents.
Finally, an experimental evaluation is presented in Section 5.

2. MODEL
We consider a setting where a limited and expiring resource (e.g.,
electricity) is continuously being produced and must be allocated to
consumers immediately or is otherwise lost. Formally, theproduc-
tion rate(e.g., in kW) of the resource at timet ∈ R is given bys(t).
We assume future supply is known. Furthermore, we model supply
using a step function defined by a set of ratesS = {s0, s1, . . . , sm}
and transition pointsT = {t1, t2, . . . , tm}, such that the supply
rate transitions fromsi−1 to si at timeti.

We letI = {1, 2, . . . , n} denote the set of potential consumers,

henceforth calledagents, who arrive over time. Each agenti ∈ I is
interested in arequired amount, qi, of the resource and has avalue,
vi, for this amount. The agent has no additional value for receiving
more, and has a value of0 for getting less thanqi. Additionally,
agents can only receive the resource during theiractive interval,
[ai, di], whereai anddi are the agent’s arrival and departure times.
Finally, each agent has amaximum consumption rateri, such that,
in a given time interval∆t, agenti can consume at mostri · ∆t
of the resource. Note that agents are indifferent about when they
receive the resource as long as it is within the active interval. To-
gether these form agenti’s type, θi = 〈qi, vi, ri, ai, di〉, and we de-
note the type profile for agents inI by θI = {θ1, θ2, . . . , θn}. This
generic model maps nicely into our EV charging scenario, where
ri is the maximum charging speed (in kW) and[ai, di] represents
the time interval during which the car is at home and available for
charging. Furthermore, this model can be readily applied to a wide
range of other domains where expiring resources become available
continuously over time, such as the allocation of computational re-
sources in cloud settings, the allocation of bandwidth in networks,
or even allocating human resources to projects.

Given this model, we are interested in designing a mechanism
for finding a real-time schedule,ρ, whereρ(i, t) ∈ R determines
theconsumption rateat which agenti receives the resource at time
t. Clearly, such a schedule must satisfy the various constraints
outlined above (i.e., total consumption at any timet may not ex-
ceed the production rates(t), agents cannot receive resources out-
side their active intervals, and they must not exceed their individ-
ual maximum consumption rates). Throughout this paper, we are
interested in finding a schedule that maximises the overallsocial
welfare, i.e., the sum of all agents’ values, as this maximises the
overall benefit to all agents.

3. SCHEDULING COOPERATIVE AGENTS
In this section, we begin by assuming that agents are completely
cooperative and reveal their respective types truthfully to the mech-
anism on arrival. This allows us to develop a number of scheduling
mechanisms which we will later (in Section 4) adapt for settings
with strategic agents.

We start by discussing how to solve theoffline version of the
scheduling problem, where the scheduling mechanism has full in-
formation about all types inθI , including future arrivals. This will
form the basis for the more realisticonlinemechanisms we propose
later.

3.1 Offline Scheduling
To solve the offline problem, we are simply interested in finding
a scheduleρ that maximises the overall social welfare. Formally,
we define the social welfare asW (ρ, θI) =

∑
i∈I δi(ρ, θi) · vi,

whereδi(ρ, θi) is an indicator function withδi(ρ, θi) = 1 if agent
i receives at least its required amountqi under scheduleρ and
δi(ρ, θi) = 0 otherwise.

Unfortunately, finding such an optimal scheduleρ is NP-hard.1

However, we will describe how to find the optimal solution and
then discuss a more tractable heuristic procedure. In both cases,
we simplify the scheduling problem by partitioning time into non-
overlapping intervals within which neither the set of active agents
nor the production rate changes. This can be done by using all ar-
rival times,ai, departure times,di, and supply transition times,ti,
to define the partition. Since agents are indifferent about when they

1Briefly, this is because it is a generalisation of the NP-hard
1 || ∑

wjUj scheduling problem, i.e., minimising the weighted
number of tardy jobs [10].

670



receive the resource within each interval, this allows us to restrict
our attention to finding the appropriate consumption rate for each
agent within each interval.

3.1.1 Optimal Offline Scheduling
We can solve this problem optimally by formulating it as a non-
linear programming problem. Here, the objective function is the
overall social welfare, the decision variables are the (constant) con-
sumption rates for each agent within each interval, and the con-
straints are given by the problem domain, as described in Section 2.
This problem can be solved using standard optimisation tools — we
use ILOG CPLEX in our implementation and denote this mecha-
nism by OPTIMAL . However, due to the inherent complexity of
the problem, finding a solution may be time-intensive, and so we
propose a faster heuristic in the next section.

3.1.2 Greedy Offline Scheduling
To solve the offline scheduling problem more quickly, we first note
that it is possible to find afeasibleschedule for a given set of agents
in polynomial time by formulating it as a maximum flow problem
(similar to the technique used in [4]) and then using a standard algo-
rithm to solve it. In our implementation, we employ the Edmonds-
Karp algorithm and denote this by FINDFEASIBLE (which returns
an empty schedule if no feasible schedule exists).

With this, we can apply a greedy approach and iteratively add
agents to an overall solution. In more detail, our heuristic greedy
algorithm first orders all agents inI in decreasing order of their
value densities, i.e., vi/qi. This order is important, because it is
a heuristic indicator of the agent’s potential value to the final so-
lution (other indicators such asvi could be chosen, but we found
vi/qi to perform particularly well). Then, the algorithm iteratively
considers each agent, adding it to a set of selected agents if a fea-
sible schedule can still be found after including that agent (using
FINDFEASIBLE). This continues until all agents have been consid-
ered and the final feasible schedule including all selected agents is
adopted. We refer to this heuristic algorithm as GREEDY.

3.2 Online Scheduling
In an online setting, the scheduling mechanism may only have prob-
abilistic information about future arrivals (e.g., historical data or
domain knowledge). The agents’ actual types are only revealed to
the mechanism at their respective arrival times. Formally, the type
profile at timet is given byθ〈t〉

I = {θi | i ∈ I∧ai ≤ t}. To address
this setting, we compare two approaches: model-free scheduling,
where no model of future arrivals is available, and model-based
scheduling, where the mechanism has access to some statistical
information about future arrivals. While this paper focuses on a
model-based approach, we use the model-free solutions as a bench-
mark and to see if having a model of future arrivals provides any
additional benefits.

3.2.1 Model-Free Online Scheduling
The most straight-forward model-free approach is to simply apply
our offline algorithms toθ〈t〉

I . This is done by following the sched-
ule provided by the OPTIMAL or GREEDY offline algorithms, and
repeating the algorithm every time a new agent arrives (while up-
dating the required amount of resource for those agents that have
been partially satisfied). This allows the algorithm to take advan-
tage of higher-value agents as they arrive, possibly abandoning
agents that were previously included in the schedule. Due to the
complexity of solving OPTIMAL , we will focus on the heuristic
version of this algorithm and denote this by ONLINEGREEDY.

Note that the schedules produced by the offline algorithm, and

the FINDFEASIBLE algorithm in particular, may not necessarily re-
sult in a high utilisation of the resource in the short-term. This is
becauseany feasible schedule is found, which may allocate the re-
source at any time in the future or at a lower rate than the supply
would allow. However, in the online setting, it is desirable to fully
utilise the available resources early, so that more agents can be sat-
isfied when they arrive in the future. For this reason, we modify
FINDFEASIBLE to use simple heuristic rules that shift all alloca-
tions to the earliest possible times, within the problem constraints.

So far, we have concentrated on model-free settings, where the
scheduling mechanism does not anticipate future arrivals of agents.
However, in many realistic settings, it is reasonable for the mech-
anism to have some model of the future, for example derived from
historical data or the algorithm designer’s own knowledge of the
system. We explore this in the following section.

3.2.2 Model-Based Scheduling with Consensus
Using a model of the future is useful, because it allows the mech-
anism to adapt its scheduling decisions for likely future events. In
particular, it can anticipate the arrival of future high-value agents
and accordingly allocate less of the resource to the currently active
set of agents when this is likely to be beneficial. Thus, we now as-
sume that our mechanism has some probabilistic knowledge about
future arrivals.

As discussed in Section 1, an optimal online scheduling mech-
anism in these settings is intractable, and so we design a model-
based online mechanism based on the Consensus algorithm. This
algorithm samples a number of possible future scenarios, solves
these using an offline scheduling algorithm, and then uses the ma-
jority vote to select which immediate action to take. In addition to
being computationally tractable, this approach has the advantage of
not requiring a precise model of the future, and so it can be used
even in settings where only imprecise statistical information about
future arrivals is available. However, adopting Consensus in our
setting raises a number of challenges. First, given the continuous-
time nature of our setting, it is not clear when to make each online
decision. An obvious choice here, and one that we verified experi-
mentally to work well, is to do this every time a new agent arrives
in the system.

Second, and more critically, since the resource is continuously
divisible, there are an infinite number of possible actions to take.
This problem is made even worse if the next action consists of a
schedule until the next decision point. To address this problem,
instead of voting on schedules, we modify Consensus to vote only
on the agents that should be included in the online schedule (and
receive their required amount of the resource) and then introduce
a second phase in which we produce a feasible schedule with the
selected agents. Selecting the set of agents is done iteratively by
considering each potential agent in turn, using the greedy heuristic
ordering discussed earlier — if the majority of offline solutions
include this agent in their schedules, we accept the agent, otherwise
we reject it (for the time being). As soon as an agent is accepted, all
other candidate agents are tested again, this time enforcing that the
accepted agent is part of the solution. This repeats until no more
agents are selected, and a final feasible schedule with all accepted
agents is calculated and adopted.

This procedure separates the decision of which agents to sched-
ule (as a binary choice for each agent) from the low-level task of
finding an overall schedule for all agents. Note that a valid alterna-
tive here might be to present all agents to the Consensus scenarios
at once, as is done in [8], but this raises several issues. First, the
offline algorithms now vote on subsets of agents to include rather
than individual agents, which leads to a large decision space that
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is voted upon. Moreover, a high-value agent may appear in many
distinct subsets, but it may not get voted into the solution, due to
its votes being divided across these subsets. This issue presents
a problem not only for allocation efficiency, but also for incentive
compatibility (discussed in Section 4). Serial consideration of the
agents avoids these issues.

The full details are given in Algorithm 1. This algorithm keeps in
its statek scenarios that are sampled from a suitable model (line 1),
where each̃θj

I is a set of sampledvirtual agents. For efficiency,
we sample these once and re-use them every time Consensus is
called. The algorithm also keeps scheduleρ (line 2), which is con-
structed gradually over time as more agents arrive. Specifically,
we assume the function SIGNAL ARRIVAL (θ〈t〉

I , t) is used to no-

tify the algorithm whenever the set of currently known types,θ
〈t〉
I ,

changes. When called, it executes the RUNCONSENSUSfunction
to re-schedule the known agents, but keeps the previous schedule
fixed to satisfy the online property (ρ(−∞,t) is the original schedule
ρ, truncated to the time interval(−∞, t)).

RUNCONSENSUSfirst updates the set of known agent types with
the amount of the resource they have received so far following
scheduleρ, using an appropriate APPLYSCHEDULE function. All
arrival times are also set tot here, to reflect the fact that no past
allocations can be altered. Next, the algorithm retains only those
virtual agents in the scenarios that arrive in the future. Now, the
main loop (lines 11–23) iteratively builds a set of selected agents,
C, which is initially empty. To do this, it considers the agents in
the same order as our greedy heuristic (to reflect their likely value
to the solution), and then solves each of thek scenarios using the
offline GREEDY algorithm. If an agent is included in at least half
the scenarios, we add it toC. Finally, a feasible schedule for only
the agents inC is returned.

Note here that in addition to the set of candidate agents, we add
two further parameters to the GREEDY offline algorithm called in
line 17. Specifically,C is a subset of the types that must be included
in the solution (to reflect the choice of selected agents so far), while
the parameterρc will become important in the setting with strategic
agents and denotes part of a schedule that has been fixed up to the
next decision point. However, here, it is always empty, and, simi-
larly, the setC, holding the set of selected agents, is re-initialised to
the empty set at every invocation (line 5). This gives the algorithm
full flexibility to change its schedule without having to make any
binding pre-commitment choices (a feature that becomes necessary
in Section 4).

So far, we have assumed that agents are cooperative and reveal
their private types truthfully to the scheduling mechanism. In the
next section, we investigate what happens when this is not the case.

4. SCHEDULING STRATEGIC AGENTS
In many realistic settings, agents are self-interested and cannot be
assumed to provide truthful information when this is not in their
best interest. To examine such settings, we will first introduce some
additional terminology from the area of mechanism design (Sec-
tion 4.1), then we will show why our current Consensus implemen-
tation is vulnerable to manipulation (Section 4.2) and finally show
how it can be modified to incentivise truthfulness (Section 4.3).

4.1 Model
In this section, we assume that agents canmisreporttheir private
types to the scheduling mechanism. Specifically, in the EV set-
ting, vehicle owners may plug in their vehicles later than their true
arrival times, unplug them earlier, or report needing more charge
than is actually the case. We denote byθ̂i = 〈ĉi, v̂i, r̂i, âi, d̂i〉

Algorithm 1 CONSENSUSAlgorithm.

1: θ̃1
I , θ̃2

I , . . . , θ̃k
I ⊲ Consensus scenarios

2: ρ← ∅ ⊲ Keep track of schedule
3: s ⊲ Supply

4: procedure SIGNAL ARRIVAL (θ〈t〉
I , t)

5: ρ′ ← RUNCONSENSUS(θ
〈t〉
I , ∅, ∅, t) ⊲ Future schedule

6: ρ← ρ(−∞,t) ∪ ρ′
[t,∞)

7: procedure RUNCONSENSUS(θ〈t〉
I , C, ρc, t)

8: θ′
I ← APPLYSCHEDULE(θ

〈t〉
I , ρ, t) ⊲ Update agents

9: for all j ∈ {1, . . . , k} do
10: θ̃j

I ← {θi|θi ∈ θ̃j
I ∧ aj > t} ⊲ Update scenarios

11: repeat
12: added← false
13: for all θi ← GREEDYORDER(θ′

I \ C) do
14: if added= falsethen
15: votes← 0 ⊲ Initialise votes
16: for all j ∈ {1, . . . , k} do ⊲ Scenarios
17: ρ′ ← GREEDY(θ̃j

I ∪ {θi}, C, ρc) ⊲ Solve
18: if δi(ρ

′, θi) then ⊲ In?
19: votes← votes+ 1 ⊲ Vote yes
20: if votes≥ k/2 then
21: added← true ⊲ Include it
22: C ← C ∪ {θi}
23: until added= false
24: return FINDFEASIBLE(C, ρc, s) ⊲ Return final schedule

the type agenti reveals at itsreported arrival timeâi, whereθ̂i

may not be equal toθi. However, we make a number of reasonable
assumptions about the misreports an agent may make, which typi-
cally hold in practice. First, it may not report earlier arrivals and it
may not report later departures, i.e., it must hold thatâi ≥ ai and
d̂i ≤ di. This is reasonable, because the agent must typically be
physically present during its active interval to receive the resource,
and so its presence can be verified (in the EV setting, a car cannot
be plugged in before it physically arrives and, similarly, unplug-
ging earlier than the reported departure could be detected). How-
ever, delaying the agent’s arrival in the system or departing earlier
than necessary are possible manipulations. Second, we assume that
agents cannot overstate their maximum consumption rate, i.e., it
must hold that̂ri ≤ ri.2

Since a scheduling mechanism now uses the reports of all agents
as input, denoted bŷθI , we write the schedule produced by it as
π(θ̂I , s). Furthermore, to examine and engineer the agents’ indi-
vidual incentives, we also define apayment functionxi(θ̂I), which
determines how much agenti should pay the mechanism on its de-
parture, given the reports of all agents. As is common in mecha-
nism design, we use this payment function to ensure truthfulness.
Given this notation, theutility of an agenti is ui(π, x, θi, θ̂I , s) =

δi(π(θ̂I , s), θi) · vi − xi(θ̂I), where we note thatδi here depends
on the real typeθi.

Now, to address potential manipulation by the agents, we are
interested in a property calleddominant strategy incentive com-
patibility (DSIC). Briefly, if a mechanismπ and payment func-
tion x are DSIC, this means that it is best for every agent to re-
port their true type, i.e.,̂θi = θi, regardless of what everyone
else reports. Formally, DSIC holds forπ andx if and only if it is

2This is justified in settings where receiving the resource at a higher
rate thanri either carries a high intrinsic penalty (as is the case in
the EV charging setting, where it may damage the expensive bat-
tery) or can be detected by the mechanism, for example if not all
of the allocated resource is consumed. In these settings, schedules
can be constructed in such a way that every agent receives the re-
source at its maximum rate for some time. However, to simplify the
exposition, we do not include such a scheduling mechanism here.
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true thatui(π, x, θi, θ̂−i ∪ {θi}, s) ≥ ui(π, x, θi, θ̂−i ∪ {θ̂i}, s),
∀θi, θ̂i, θ̂−i, s, where we usêθ−i to denote the reports of all agents
apart fromi. Additionally, to ensure participation, we also want
π andx to beindividually rational(IR), which means agents never
make a loss when participating. Formally, it must hold thatui(π, x,

θi, θ̂−i ∪ {θi}, s) ≥ 0, ∀θi, θ̂−i, s.
To achieve DSIC and IR, there are a number of results we can

draw upon [9]. Specifically, in single-valued domains like ours, the
mechanismπ must bemonotonicfor DSIC and IR to hold, pro-
vided unallocated agents are not paid. To define monotonicity in
the context of our work, let� be a partial order over the types
with θi � θj ≡ (ai ≥ aj) ∧ (di ≤ dj) ∧ (ri ≤ rj) ∧ (qi ≥
qj) ∧ (vi ≤ vj). Then, we sayπ is monotonic if and only if
δi(π({θi} ∪ θ−i, s), θi) = 1 ⇒ δi(π({θ′

i} ∪ θ−i, s), θ
′
i) = 1,

∀θi � θ′
i, θ−i, s. This means if an agentθi is allocated by an allo-

cation mechanismπ, it would remain allocated byπ if its type was
θ′

i, whereθi � θ′
i.

Furthermore, [9] shows that, for a mechanism to satisfy DSIC
and IR, the payment for each allocated agent must be equal to its
critical value. Essentially, this is the lowest value an agent could
report to the mechanism and still remain allocated. More formally,
the payment of agenti must bexi({θ̂i} ∪ θ̂−i) = min v′

i, such
that δi(π({θ′

i} ∪ θ−i, s), θ
′
i) = 1, with θ′

i = 〈qi, v
′
i, ri, ai, di〉

(xi({θ̂i} ∪ θ̂−i) = ∞ if there is no suchv′
i). Unfortunately, we

now show that Consensus, as presented in the previous section, is
not monotonic.

4.2 Failure of Monotonicity
The key problem with Consensus (and the other algorithms pre-
sented in Section 3) is that it does not preserve monotonicity for
agents with regard to their departure time. Often, more patient
agents are delayed in favour of more constrained agents, but new
arrivals may mean they are no longer allocated in the future. As
a concrete example, assume there are two agents with typesθ1 =
〈1, 1, 1, 0, 1〉 andθ2 = 〈1, 100, 1, 0, 2〉, and the supply iss(t) = 1.
For sake of argument, assume that none of the scenarios sampled
by Consensus expect more arrivals before time 2, so that, when re-
porting truthfully, both agents 1 and 2 are included in the set of
selected agents,C. However, due to its tighter time constraints, the
less valuable but also less patient agent 1 is scheduled first in the
interval[0, 1].

Now assume that a new agent arrives at time 1 withθ3 = 〈1, 200,
1, 1, 2〉 (which may possibly represent an extremely rare event that
was not anticipated by Consensus). Due to its higher value, this
is now included inC and scheduled in the interval[1, 2], prevent-
ing agent 2 from being allocated. Given this outcome, had agent
2 lied about its patience by misreporting its own type asθ̂2 =
〈1, 100, 1, 0, 1〉, it would have been allocated. This breaks mono-
tonicity, asθ̂2 ≺ θ2, and it is also clear that it does not satisfy DSIC.
In more detail, using critical value payments, the utility for agent 2
when misreportinĝθ2 is u2(π, x, θ2, {θ1, θ̂2, θ3}, s) = 100 − 1 =
99, while a truthful report would result in being unallocated, with
u2(π, x, θ2, {θ1, θ2, θ3}, s) = 0.

To address this issue, we now proceed to introduce a number of
modifications to Consensus that achieve monotonicity.

4.3 Truthful Allocation
As discussed in Section 1, one approach to making the allocation
policy π monotonic is to apply ironing. This involves identifying
cases where an allocation is made, but where the allocated agent’s
type might have been a misreport that violates monotonicity. In
this case, the agent remains unallocated and the resource is dis-

carded. For example, if agent 2 from the example above had re-
portedd̂2 = 1, it would be left unallocated and no resource would
be allocated in the interval[0, 1]. Clearly, this can be highly ineffi-
cient, especially since it means that had agent 2’s type really been
θ2 = 〈1, 100, 1, 0, 1〉, it would still remain unallocated. A second
disadvantage of ironing is that testing for monotonicity violations
is computationally expensive, as a large set of possible misreports
has to be considered.

For this reason, we adopt a different approach. Specifically, we
ensure that our Consensus algorithm,π, is monotonic in the first
place, avoiding the need for ironing. We achieve this through the
following modifications.

4.3.1 Pre-Commitments
First, to address the intrinsic disadvantage for patient agents in the
current algorithm, we propose the notion ofpre-commitments. To
this end, we modify Consensus to make a firm commitment to
schedule agents if they, at any point, receive a majority vote in the
offline scenarios. Once this happens, the agent is pre-committed,
which means that it is now guaranteed to receive its required re-
source (specifically, this is added as an additional constraint to all
future scheduling decisions). We achieve this by moving the set
of selected agents,C, into the state of the Consensus algorithm,
instead of re-initialising it at every invocation of Consensus.

In a sense, while ironing punishes impatient agents, using pre-
commitments rewards patient agents instead, because their larger
flexibility means they are more likely to be included in the sampled
scenarios. However, it is important to note that the commitment
decisions still depend on the sampled scenarios, and so even a very
patient agent may not receive a pre-commitment until it is highly
likely that no better agents will arrive in the future. Furthermore,
while a commitment to satisfy the agent is made, the time of when
to schedule the agent is initially left open. This allows Consensus to
flexibly interrupt or re-schedule the agent as necessary, e.g., when
an impatient agent with a high value arrives, as long as the pre-
committed agent is still satisfied eventually.

4.3.2 Re-evaluation Points
While pre-commitments ensure monotonicity with regard to de-
parture times, agents may still strategically misreport their arrival
times to be allocated (thus breaking monotonicity with regard to ar-
rival times). This is because the decision of Consensus is sensitive
to the time it is invoked. Whenever a virtual agent is removed from
an offline scenario (line 10 of Algorithm 1), this may change the
votes of that particular scenario. As a result, an agent might benefit
from misreporting its arrival time to exactly the time where the ma-
jority of offline solutions would vote in its favour. To address this,
we need to re-run the Consensus decision at every possible time
where the solution might change for any unallocated agents. As
just discussed, this can happen any time a virtual agent is removed
from the scenarios, and, for this reason, we introduce additional
re-evaluation pointswhenever this happens. More specifically, we
re-run Consensus for every arrival time of a virtual agent acrossall
scenarios.3

4.3.3 Partly-Fixed Schedules
However, simply re-evaluating Consensus regularly is not sufficient
for monotonicity. Since the scheduleρ′ produced by FINDFEA-
SIBLE does not necessarily correspond to the schedules produced

3In fact, the set of pre-committed agents cannot change at all re-
evaluation points, since more than one vote change is required in
most cases. However, for space reasons, we do not discuss this in
more detail.
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Algorithm 2 CONSENSUS-PC with Pre-Commitments.
1: C ← ∅ ⊲ Pre-committed agents
2: tnext← min{ai | θi ∈ θj

I , ∀j} ⊲ Re-evaluation time

3: procedure SIGNAL ARRIVAL (θ〈t〉
I , t)

4: ρ← MODIFIEDCONSENSUS(θ
〈t〉
I , C, ρ[t,tnext), t)

5: procedure REEVALUATE (θ〈t〉
I , t) ⊲ Called at timet = tnext

6: tnext← min{ai | θi ∈ θj
I , ∀j}

7: ρ← MODIFIEDCONSENSUS(θ
〈t〉
I , C, ∅, t)

8: procedure RUNMODIFIEDCONSENSUS(θ〈t〉
I , ρc, t)

9: repeat
10: ρ′

c ← ρc ⊲ Old partly-fixed schedule

11: ρ′ ← RUNCONSENSUS(θ
〈t〉
I , C, ρc, t)

12: ρc ← ρ′
[t,tnext)

13: until ρc = ρ′
c ⊲ No more changes

14: ρ← ρ(−∞,t) ∪ ρc

15: return ρ

by the offline scenarios, following it may cause some of the of-
fline solutions to change even before the re-evaluation point. To
address this, we force Consensus to nowpartly fix the schedule
over the next interval,ρ[t,tnext), wheretnext is the next re-evaluation
point, and then immediately re-run Consensus, this time forcing
any scheduling solution to allocate at least as much of the resource
to the agents as dictated byρ[t,tnext) (this is the additional inputρc

to the GREEDY function). This continues until no more changes
are made to the set of pre-committed agents. In effect, this gives
each offline scenario foresight over what will happen over the next
time interval and thereby forces them to make any changes in their
votes immediately rather than during the interval. For this reason,
ρ′
[t,tnext)

needs to remain fixed over this interval, although any spare
resource may still be allocated, e.g., to new agents that arrive dur-
ing [t, tnext). While this restricts the flexibility of the scheduling
algorithm slightly, it is possible to add arbitrary new re-evaluation
points, which lead to higher flexibility, but also require more eval-
uations of the Consensus algorithm.

A sketch of our modified Consensus algorithm is given in Al-
gorithm 2, which only shows the main differences to Algorithm 1.
Here, an additional function REEVALUATE is called for every re-
evaluation pointtnext. Note, also, when the scenarios contain no
agents, this algorithm constitutes a truthful version of the model-
free algorithm from Section 3.2.1. We will now show that our
new Consensus mechanism (along with critical value payments) is
DSIC and IR.

THEOREM 1. Consensus with pre-commitments, re-evaluation
points and partly-fixed schedules is DSIC and IR with critical value
payments.

PROOF. We prove this by using the results from [9] and showing
that the modified Consensus is monotonic. To this end, we need to
show that if an agent with typeθi is allocated, it would also be
allocated if it had a higher typeθ′

i ≻ θi. We do this by assumingθ′
i

differs fromθi in exactly one dimension:
Required amount (q′

i < qi): Consider the timet that typeθi

is pre-committed. Ifθ′
i is not yet pre-committed beforet, we will

show that it will also be pre-committed att. In more detail, this is
because it is always considered at the same time or earlier thanθi

in the order given by GREEDYORDER (both within Consensus and
the Greedy algorithm). Since an active uncommitted agent’s pres-
ence has no effect on other scheduling decisions up to the point it
is pre-committed (due to the serial voting procedure we use, which
considers active agents independently of each other), each time fea-
sibility is tested in the offline greedy algorithm,θ′

i will be tested
with the same set or a subset of the agents thatθi was tested with.

As θ′
i requires a lower amount of the resource, it will therefore ap-

pear in at least as many feasible schedules asθi, thus receiving at
least the same amount of votes in Consensus.

Value (v′
i > vi): The same argument as above applies.

Rate (r′
i > ri): This follows a similar argument as above. Here,

feasibility forθ′
i is tested against the same set of constraints when-

everθi is tested (as their position given by the greedy order is the
same). Thus, whenθi is pre-committed by being selected by the
majority of offline scenarios, so willθ′

i (at the latest), because any
schedule that is feasible forθi will also be feasible forθ′

i.
Arrival time ( a′

i < ai): Consider the timet at whichθi arrives.
If it is not pre-committed immediately, it will be at some future re-
evaluation pointt′. Since future re-evaluation points are indepen-
dent ofai or a′

i, θ′
i would also be pre-committed at the same time

t′. On the other hand, ifθi is pre-committed immediately, we can
show thatθ′

i would have been pre-committed earlier. To show this,
we note thatθi arrives between two re-evaluation points,α andβ,
for which the schedule will have been partly fixed. Now, assumeθ′

i

was present at re-evaluation pointα and is still not pre-committed.
At the latest, it will now be pre-committed once the schedule over
ρ[α,β) has been partly-fixed. This is because it competes against
exactly the same set of virtual agents asθi does at timet (by defini-
tion of the re-evaluation points), with the same constraints, and so
any time an offline solution containsθi at timet, it will also con-
tain θ′

i at timeα. A similar argument can be made whenθ′
i arrives

betweenα andt, where the same conditions hold.
Departure time (d′

i > di): This follows a similar argument as
for the maximum rate.θ′

i is considered at the same position asθi

within the greedy solution of each offline scenario. As any feasible
schedule forθi is feasible forθ′

i, it will be pre-committed at the
same time asθi at the latest.

We can now show that monotonicity holds also across several di-
mensions. For this, consider anyθi � θ′

i that vary inx dimensions.
Then, we can find a set of intermediate typesθi � θ1

i � . . . �
θx−1

i � θ′
i, where each type varies in at most one dimension with

its predecessor. Using the reasoning above, ifθi is allocated, so
mustθ′

i.

4.4 Practical Considerations
For space reasons, we do not give a detailed algorithm for calculat-
ing the critical payments here. However, this is relatively straight-
forward to implement and can be done using similar techniques
as in [5, 8]. To give the reader an intuition,xi can be calculated
by simulating the system without agenti’s presence in the interval
[t, d̂i], wheret is the time agenti is first pre-committed. At each
iteration of Consensus in the simulated system, we then first find
the minimum valuev′

i agenti would need to report to be included
by the majority of offline scenarios (this can be done using a binary
search on the greedily ordered virtual agents). Then, we calculate
the minimum valuev′′

i the agent would need to report to be consid-
ered before the agentj that is pre-committed during that iteration
(v′′

i = 0 if none is pre-committed). The critical value for this par-
ticular iteration of Consensus is thenmax(v′

i, v
′′
i ). This is repeated

for every iteration and every re-evaluation point and the final pay-
mentxi is then simply the minimum of these critical values.

An attractive feature of calculating the payments in this way is
that they can be used also when agents depart earlier than antici-
pated. Rather than charge them arbitrary penalties,xi can be cal-
culated for the actual interval the agent was present and for the
actual resource received. This allows agents to leave the system
when necessary (e.g., in case of an unforeseen emergency), with-
out imposing heavy fines.
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5. EXPERIMENTAL EVALUATION
In this section, we apply our mechanism to scheduling the charg-
ing of EVs, using data from the first large-scale real-world trial of
EVs in the UK. The purpose of this is two-fold. First, we are inter-
ested in quantifying the benefit of using a model of future arrivals
in these settings. Second, we wish to determine how an incentive-
compatible mechanism compares to one that assumes cooperative
agents.

5.1 Experimental Setup
To evaluate our mechanisms in a realistic setting, we utilise data
gathered during the CABLED (Coventry And Birmingham Low
Emissions Demonstration) project.4 As part of this project, EVs
fitted with data loggers were given to the public, in order to study
their daily travel and charging patterns. In our experiments, we
sample actual recorded journeys from this data set to yield realis-
tic agent arrival and departure times, and we use the actual battery
charges consumed during journeys to determine an agent’s required
amount of electricity. We also use these distributions to (indepen-
dently) sample scenarios for the Consensus-based mechanisms. Fi-
nally, we set all maximum charging rates to 3kW to reflect the ca-
pabilities of the EVs used in the trial.

Regarding an agent’s value, we distinguish between two types
of agents. The first,low-valueagents, are willing to pay between
£0.05 and £0.15 per kWh in their required amount (determined uni-
formly at random). These would rather remain uncharged by their
departure time than pay much more than the usual price of electric-
ity. The second,high-valueagents, are willing to pay up to £1.50 –
£2.50 per mile that they are planning to travel (as given by the sam-
pled CABLED data). These constitute agents that have to travel
at their departure time, for example to reach their place of work,
and so their valuation represents the approximate cost of having to
take a taxi instead. We will vary the relative proportions between
the groups to represent varying levels of heterogeneity in the agent
population.

Finally, to simulate the production rates(t), we use the average
electricity consumption profile of a small neighbourhood consist-
ing of 50 households, and allow any spare electricity to be used
for EV charging whenever consumption drops to below 80% of the
peak consumption. This simulates the constraints of the local trans-
former (with an additional safety margin to account for unexpected
fluctuations in consumption), and means that no electricity is avail-
able during the peak hours of the early evening, but considerable
spare capacity is available during the night.5

5.2 Benchmarks
To evaluate our mechanism, we use several benchmarks:

• FAIRCONTENTION: This mechanism divides the available
electricity equally between all present uncharged agents. We
assume agents unplug as soon as their required amountqi is
reached. As such, this represents a naïve scheduling mecha-
nism that can be easily implemented without requiring agents
to report their types.

• ONLINEGREEDY: This model-free, non-truthfulmechanism
uses the heuristic greedy algorithm to schedule the present
agents (as described in Section 3.2.1).

• CONSENSUS: Thismodel-based, non-truthfulmechanism uses

4Seehttp://cabled.org.uk
5We use real consumption data of domestic households published
by SCE for June 2010 (http://www.sce.com/).

Consensus, as given by Algorithm 1. We generate 20 scenar-
ios, as this obtains good results in practice.

• ONLINEGREEDY-PC: Thismodel-free, truthfulmechanism
uses the ONLINEGREEDY algorithm to schedule the present
agents, along with pre-commitments to ensure DSIC.

• CONSENSUS-PC: Thismodel-based, truthfulmechanism uses
our modified Consensus algorithm (Algorithm 2).

5.3 Results
The full results of our experiments are shown in Figure 1. Here, we
vary the number of EVs within the neighbourhood from 0 to 100 to
represent different levels of demand,6 and we show the results for
different proportions of high-value agents,ν = 0.0, ν = 0.25 and
ν = 0.75. For statistical significance, we repeat all experiments
1000 times and plot 95% confidence intervals. We chose average
social welfare (excluding payments) as the key performance met-
ric, as this is the overall utility generated by each mechanism, and
we normalise it to the performance of the offline OPTIMAL .7 As
this uses full information about future arrivals, it serves as a useful
upper bound of any mechanism.

First, we consider the performance of FAIRCONTENTION (in
green). Clearly, this achieves a very poor performance as soon as
demand increases within the neighbourhood. When there are only
25 EVs, its performance drops to around 50% of OPTIMAL , eventu-
ally reaching an overall performance of only 5%–10%, depending
on the setting. This is because the mechanism considers neither
the deadlines nor the charging requirements of the users and so this
highlights the need to schedule EVs in a more informed manner.

The simple non-truthful mechanisms, GREEDY and CONSEN-
SUS (both shown in blue), achieve a significantly better perfor-
mance, because they greedily select a promising set of agents to
charge (guided by their value densities) and produce a feasible
schedule that considers the deadlines and charging requirements
of the agents. By doing this, they consistently achieve around 93%
of OPTIMAL . Surprisingly, there is no significant difference be-
tween the two mechanisms, implying that the use of a model is not
necessary in these settings. This is because the strategies have con-
siderable flexibility in responding to new arrivals in the system by
adapting their schedules and so there is little benefit in anticipating
these beforehand.

Finally, we consider the two truthful mechanisms, GREEDY-PC
and CONSENSUS-PC (both shown in red), which are the main fo-
cus on this paper. Here, we note that GREEDY-PC initially per-
forms well, but its performance decreases quickly in settings with
high demand. This is particularly pronounced when there are only
a few high-value agents, i.e.,ν = 0.25, where it achieves less than
35% of the optimal. This is because this strategy does not use a
model of the future when making pre-commitments. Thus, in the
setting withν = 0.25, it will pre-commit even to low-value agents,
which may then prevent it from accepting high-value agents in the
future.

6Beyond 50, this means that some households own more than one
EV. This allows us to evaluate the mechanism in settings with very
high demand, and we assume that there is no collusion between the
EVs within a household.
7As OPTIMAL is too computationally intensive in larger settings,
we also applied the offline GREEDY approach. For consistency, the
data shown in the graphs uses the GREEDY data throughout as an
approximation of the optimal, but we verified experimentally that
there is no statistically significant difference in those settings where
we ran both algorithms.
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Figure 1: Average social welfare as number of EVs is increased and for various levels of heterogeneity.

In contrast, the model-based truthful mechanism we propose,
CONSENSUS-PC, performs significantly better, consistently achiev-
ing 92–97% of OPTIMAL . This implies that using a model is criti-
cal, in order to make the use of pre-commitments viable in realistic
settings. This is because pre-commitments are irrevocable deci-
sions and so the mechanism must be confident that they are unlikely
to have a detrimental impact on future scheduling decisions. While
we do not consider the runtime performance of our mechanism in
detail in this paper, we note that simulating a 24-hour day with 100
cars takes only a few seconds on a standard PC, indicating that it is
feasible even in larger settings.

To conclude, we note also that CONSENSUS-PC sometimes out-
performs the non-truthful benchmarks, implying that the use of pre-
commitment can be beneficial even when DSIC is not a require-
ment. This is because it forces the algorithm to choose and con-
centrate on a set of agents, ensuring that these are fully charged. In
contrast, the more flexible GREEDY and CONSENSUSre-evaluate
their chosen set of agents each time. This means they can initially
start charging some vehicles, which are later displaced by others
with a higher value density (but not necessarily higher value). Thus,
some amount of electricity is wasted, as no value is derived from
partially charged vehicles.

6. CONCLUSIONS
In this paper, we considered an online setting where self-interested
agents compete for a limited, expiring resource that is continuously
being produced. To address shortcomings in existing work, we
modified the well-known Consensus algorithm and introduced the
novel concept of pre-commitments to ensure incentive compatibil-
ity.

Furthermore, we showed how our mechanism can be applied to
the challenging problem of scheduling the charging of electric ve-
hicles, a key bottleneck for the widespread adoption of EVs. In
experiments using real data, we demonstrated that our mechanism
considerably outperforms approaches that divide electricity equally
between cars (without considering the owners’ individual prefer-
ences), and we showed that the cost of ensuring incentive com-
patibility is small when coupled with a probabilistic model of the
future.

However, our work has implications beyond the domain of elec-
tric vehicle charging. It can be applied in many application areas
with expiring resources, including the scheduling of computational
jobs in cloud settings, the allocation of bandwidth in networks or
even allocating employees’ time to projects within a business.

In future work, we plan to deploy our mechanism in real-world
trials, which will focus particularly on the design of appropriate

interfaces to allow car owners to express their preferences and in-
teract with the mechanism in a non-obtrusive manner. Other rel-
evant extensions include dealing with multi-value domains, where
the utility an agent derives depends on the amount of resource re-
ceived, and we will explicitly explore other application areas for
our mechanism.
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ABSTRACT
A principal seeks production of a good within a limited time-
frame with a hard deadline, after which any good procured
has no value. There is inherent uncertainty in the produc-
tion process, which in light of the deadline may warrant
simultaneous production of multiple goods by multiple pro-
ducers despite there being no marginal value for extra goods
beyond the maximum quality good produced. This moti-
vates a crowdsourcing model of procurement. We address ef-
ficient execution of such procurement from a social planner’s
perspective, taking account of and optimally balancing the
value to the principal with the costs to producers (modeled
as effort expenditure) while, crucially, contending with self-
interest on the part of all players. A solution to this problem
involves both an algorithmic aspect that determines an opti-
mal effort level for each producer given the principal’s value,
and also an incentive mechanism that achieves equilibrium
implementation of the socially optimal policy despite the
principal privately observing his value, producers privately
observing their skill levels and effort expenditure, and all
acting selfishly to maximize their own individual welfare. In
contrast to popular “winner take all” contests, the efficient
mechanism we propose involves a payment to every producer
that expends non-zero effort in the efficient policy.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Algorithms, Human Factors

Keywords
mechanism design, crowdsourcing, contests, social welfare

1. INTRODUCTION
An increasingly common model of procurement has multi-

ple agents simultaneously produce versions of a desired good
at the behest of a principal who seeks the highest-quality ver-
sion. This model’s popularity has soared as part of the Inter-
net phenomenon known as crowdsourcing. In recent years,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the number of websites making and facilitating open calls
for solutions to tasks such as logo design, software develop-
ment, and image labeling has grown tremendously; exam-
ples include Amazon Mechanical Turk, Taskcn, Topcoder,
99designs, Innocentive, CrowdCloud, and CrowdFlower, to
name a few. These developments have reinvigorated a line
of research in the field of microeconomics known as contest
design. The model of a contest matches the standard ap-
proach to crowdsourcing: many agents simultaneously exert
effort to submit a solution in competitive pursuit of a reward,
where the “winner” is dependent on the relative submission
qualities.1 To date, most previous research has focused on
maximizing the principal’s utility: the goal is to to procure
the best submission for the lowest possible price. In con-
trast, we here consider the crowdsourcing problem from an
efficiency standpoint, adopting the perspective of a social
planner that seeks to maximize social welfare. And in con-
trast with the standard “winner take all” contest methods,
the efficient scheme we derive involves a payment for every
agent that expends non-zero effort in the efficient policy.

To motivate the crowdsourcing paradigm from an effi-
ciency standpoint, assuming rational players,2 uncertainty
and deadlines must play a central role. If these factors were
not present then the redundant production inherent to the
paradigm would be purely wasteful; one could (and should)
alternatively order production sequentially rather than si-
multaneously, stopping further production when the costs
are no longer outweighed by the expected gains given the
“quality in hand”. So we adopt a model in which the princi-
pal seeks production of a good within a single unit of time
(corresponding to the span required for production of a sin-
gle good), after which any goods obtained are of no value.
There is inherent uncertainty in production, which may war-
rant simultaneous production of multiple goods. However,
if multiple goods are produced there is no marginal value
beyond that of the maximum quality good produced. Pro-
ducers (henceforth, “agents”) may have varying skill and also
make a choice about how much costly effort to expend on
production: higher effort and skill leads to production of a
good with greater expected quality, all else equal.

The principal and all agents are presumed to be self-

1All-pay auctions are also highly related, with the key dif-
ference being that each agent’s cost there is a payment that
generates “revenue” enjoyed by the seller, whereas in a typi-
cal contest only the highest-quality-producing agent directly
benefits the principal.
2While we make this assumption, we do not deny that in
practice“irrational”behavioral factors may contribute to the
success of many crowdsourcing marketplaces.
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interested, which gives rise to a problem of incentives.
Achieving efficiency thus has two components: determining
an optimal effort policy for the agents, given the value of the
principal and the various agent skill levels; and designing a
payment mechanism in which no individual can improve his
expected utility by misreporting private information (or ex-
erting effort other than what the efficient policy prescribes,
in the case of the agents). For a setting where agents have
no private information about skill, we derive an efficient, in-
dividually rational, and budget-balanced solution—a novel
achievement to the best of our knowledge. When skill is
private we prove that extending this result is impossible,
but we show how a result from the recent mechanism design
literature can be applied to yield success if agents can be
forced to make commitment decisions prior to learning their
skill levels, i.e., if ex ante individual rationality suffices.

1.1 Related Work
There has recently been work explicitly addressing the

theory of crowdsourcing in a model, like ours, where agents
have private skill information and choose an effort level.
DiPalantino and Vojnovic [2009] make the connection to
all-pay auctions and model a market with multiple con-
tests, considering the principal’s optimization problem in
the limit-case as the number of agents and contests goes to
infinity. Archak and Sundararajan [2009] and Chawla, Hart-
line, and Sivan [2011] focus on the design of a single contest;
the problem consists of determining how many prizes should
be awarded, and of what value. Chawla et al. make the con-
nection between crowdsourcing contests and optimal auction
design, finding that the optimal crowdsourcing contest is a
virtual valuation maximizer.

However, these papers consider a deterministic model of
quality as a function of effort and skill, under which, if the
principal’s value is proportional to the maximum quality
over the produced goods, the crowdsourcing paradigm it-
self is not well-motivated from an efficiency standpoint. And
while in this paper we are concerned with social welfare, this
prior work is geared towards maximizing utility of the prin-
cipal alone and is unconcerned with the cost to the agents.
This focus is characteristic of the broader literature: in both
computer science and economics prior work has, for the most
part, focused on maximizing submission quality, whether it
be the total sum of submission qualities [Moldovanu and
Sela, 2001; 2006; Minor, 2011], the top k submissions less the
monetary reward [Archak and Sundararajan, 2009], or only
the highest quality submission [Moldovanu and Sela, 2006;
Chawla et al., 2011].

This ties in with the extensive literature in economics de-
voted to the design of optimal contests. Many of these works
consider a contest model where the prize value is known to
all players [Tullock, 1980; Moulin, 1986; Baye et al., 1996],
while others adopt a model of incomplete information with
respect to the prize [Weber, 1985; Hilman and Riley, 1989;
Krishna and Morgan, 1997]. There has also been work on
research tournaments that award a single prize. For in-
stance in [Fullerton and McAfee, 1999] agents have a cost
of production—drawn from a known distribution—that be-
comes common knowledge after a first round in which agents
simultaneously decide whether to participate; then in a sec-
ond round agents decide how much effort to exert given the
common-knowledge costs.

A related line of work uses contests to extract effort under
a hidden action [Lazear and Rosen, 1981; Green and Stokey,

1983; Nalebuff and Stiglitz, 1983]. Similar to our work, the
output is a stochastic function of the unobservable effort,
but the setting is different in that the principal obtains value
from the cumulative effort of the agents, rather than just the
maximum result.

Finally, this work overlaps with the broader agenda of
incentives in peer production systems, where there has been
work addressing incentives in question and answer forums,
human computation, etc. [Jain and Parkes, 2008; Jain et al.,
2009; Ghosh and McAfee, 2011; Ghosh and Hummel, 2011].

1.2 Preliminaries
In the crowdsourcing paradigm multiple units of a good

are simultaneously produced and submitted to a principal.
There is a set of agents I = {1, . . . , n} capable of producing
goods, where each i ∈ I has private skill level si ∈ [0, 1].
Agents can expend variable effort on production of the good.
If an agent attempts production, a good is produced with
quality that is a priori uncertain but is a function of the
agent’s skill and effort expended.

Quality is identified with value to the principal in dollar-
terms. The probability distribution over relative quality,
given any skill and effort levels, is publicly known, but the
absolute quality in terms of value to the principal is not. The
principal has private type v ∈ �+, a scale factor correspond-
ing to his value for the maximum quality good that could
possibly be produced, and this, given the known distribution
over relative qualities, defines the distribution over absolute
quality (henceforth just“quality”) corresponding to the prin-
cipal’s value.3 An effort level δi is identified with the dollar
value in costs ascribed to it by agent i. For simplicity we
assume that δi ∈ [0, 1], ∀i ∈ I .4 Then, given a v ∈ �+, skill
level si, and effort level δi ∈ [0, 1], we denote the p.d.f. and
c.d.f. over resulting quality as fv

si,δi
and F v

si,δi
, respectively.

We assume symmetry across bidders in the sense that skill
is the only differentiating factor; i.e., for two agents with
the same skill level applying the same effort, the distribu-
tion over quality is the same (though there is no presumed
correlation so the resulting quality may differ).

We will make the natural assumption that for an agent
with any given skill level, more effort has first-order stochas-
tic dominance over less effort with respect to quality, i.e.:

∀si, ∀0 ≤ δi < δ′
i ≤ 1, ∀x ∈ [0, v], F v

si,δi
(x) ≥ F v

si,δ′
i
(x), (1)

and also that, given any effort level, more skill has first-order
stochastic dominance over less skill with respect to quality:

∀δi, ∀0 ≤ si < s′
i ≤ 1, ∀x ∈ [0, v], F v

si,δi
(x) ≥ F v

s′
i
,δi

(x) (2)

Because agents are self-interested there is a problem of
incentives: v and si (for each i) are private information, and
expended effort is privately observed. We adopt a quasi-
linear utility model and assume all players are risk-neutral.
Given our identification of the quality of the good with the
dollar value ascribed to it by the principal, and effort level
δi with the dollar value in costs ascribed to it by agent i,
quasilinearity implies that the principal’s utility equals the
quality of the good procured minus any payments he must
make, and each agent’s utility equals any payment he re-
ceives minus the effort he expends.
3E.g., if quality q ranges in [0, 1], absolute quality is vq.
4The specific range of effort levels is not conceptually im-
portant; it is the relationship between the effort levels and
v that is relevant for determining an optimal policy.
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We are concerned with the socially optimal choice of effort
level for each agent, where in light of our utility model the
appropriate optimization is the maximum quality level of
the goods produced minus total effort expended; i.e., letting
Qi(v, si, δi) be a random variable representing the quality
level produced by i ∈ I who has skill level si and expends
effort δi (with v the principal’s value), we seek to maximize:

�[max
i∈I

Qi(v, si, δi)] −
∑

i∈I

δi (3)

An effort policy is a function of the principal’s value and
the agents’ skill levels. We let δ∗(v, s) denote an efficient pol-
icy, i.e., a vector of effort levels that maximizes Eq. (3) given
values of v and s = (s1, . . . , sn); when context is clear we
will write δ∗

i as shorthand for δ∗
i (v, s). Given our quasilinear

utility model, a policy δ∗ that maximizes Eq. (3) maximizes
the expected sum of utilities and is Pareto efficient.

At various points we will consider a restricted setting
where skill is constant (and publicly known) throughout the
population of agents; we call this the constant skill case.

2. EFFICIENT EFFORT POLICIES
In this section we address the problem of computing an

efficient policy given full knowledge of the principal’s value
v and agent skill levels s, and given that agents will ex-
ecute the effort policy that is prescribed. We defer to
Section 3 the question of how to implement such a pol-
icy in the context of a principal and agents that are self-
interested and strategic. We will make heavy use of the
following lemma, which demonstrates sufficient conditions
under which extreme-effort policies—those that involve only
total (1) or null (0) effort by each agent—are optimal. In this
section we make the technical assumption that the cumula-
tive distribution over quality, evaluated at any particular
quality level, is differentiable with respect to effort δi.

Lemma 1. For arbitrary i ∈ I with arbitrary skill si, for
arbitrary skill and effort levels of the other agents and value
v for the principal, fixing an arbitrary effort policy for agents
other than i, amongst effort levels within arbitrary interval
[a, b] ⊆ [0, 1] it is either optimal for i to expend effort δi = a
or optimal for i to expend effort δi = b if the following holds:
∀β ∈ [0, v], ∀ε ∈ [a, b),

− ∂

∂δi

(∫ v

β

F v
si,δi

(x) dx
)∣∣∣

δi=ε
≥ 1 (4)

⇒ − ∂

∂δi

(∫ v

β

F v
si,δi

(x) dx
)∣∣∣

δi=k
≥ 1, ∀k ∈ [ε, b] (5)

Proof. For arbitrary agent i ∈ I , consider arbitrary β
representing the maximum quality that is to be realized by
the production of the other agents—this is a priori unknown,
but a result for arbitrary β will demonstrate that regard-
less of its realization the result holds. Then the expected
marginal impact on efficiency from i exerting effort δi equals:

∫ v

β

fv
si,δi

(x)(x − β) dx − δi (6)

= (x − β)F v
si,δi

(x)
∣∣∣
x=v

x=β
−

∫ v

β

F v
si,δi

(x) dx − δi (7)

= v − β −
∫ v

β

F v
si,δi

(x) dx − δi (8)

The first step above is integration by parts. To find the
maximum with respect to effort, we consider the derivative
with respect to δi, i.e.,

∂

∂δi

(
v − β −

∫ v

β

F v
si,δi

(x) dx − δi

)
(9)

= − ∂

∂δi

( ∫ v

β

F v
si,δi

(x) dx
)

− 1 (10)

If as δi increases this derivative never changes from pos-
itive to negative (this is the condition of the Lemma, in
Eqs. (4) and (5)), then the maximum lies at one of the ex-
tremes, δi = a or δi = b, which completes the proof.

Corollary 1. For environments where the quality dis-
tribution functions satisfy the relationship of Eqs. (4–5) in
Lemma 1 over the full range of effort levels ([a, b] = [0, 1]),
an efficient effort policy consists of full-effort participation
by a subset of the agents and non-participation by the others.

Note that the lemma holding for the interval [0, 1] is suffi-
cient but not necessary for the optimal policy to involve only
extreme-effort (i.e., effort 0 or 1 by all agents). For instance
if the condition of the lemma (Eqs. (4) and (5)) does not
hold for some β, yet ∀δi the expected quality output for i
is less than β − δi, then the optimal policy would involve
non-participation (0 effort) by i when other agents achieve
quality β, and so it may still be the case that an optimal
policy never involves intermediate effort.

For any constant skill environment (say skill equals ŝ for
each agent) where we can establish that an extreme-effort
policy is optimal, fully determining an efficient policy is easy.
We simply need to compute:

m∗ = arg max
m∈{0,...,n}

[
m

∫ v

0

F v
ŝ,1(x)m−1fv

ŝ,1(x)x dx − m

]
(11)

m∗ agents will participate with full-effort and the other n −
m∗ will not participate (i.e., will apply 0 effort).

When skill is not constant, by Eq. (2) having an agent par-
ticipate who has less skill than one who does not participate
could never be optimal. So more generally, for any setting
where extreme-effort has been established as efficient we can
determine a precise optimal policy by iteratively consider-
ing each agent in decreasing order of skill, accepting agents
for (full-effort) participation until stopping and accepting no
more in the ordered list.

In the rest of the section we will show that extreme-effort
policies are optimal in important canonical settings, but we
first observe that this is not universally the case. Imagine
that effort δi ∈ [0, 0.05) yields quality 0 (with certainty), δi ∈
[0.05, 0.3) yields quality 0 with probability 0.8 and quality
0.9 with probability 0.2, and δi ∈ [0.3, 1] yields quality 0.6
with probability 0.8 and quality 0.9 with probability 0.2. An
optimal policy for two agents has one agent expend effort 0.3
and the other expend effort 0.05.

2.1 Uniformly distributed quality
We now look at specific distributional settings, starting

with one in which quality is uniformly distributed between
0 and the product of the principal’s value and the agent’s
skill and effort. That is, F v

si,δi
for each i ∈ I is the uniform

distribution over [0, δisiv], i.e.,

fv
si,δi

(x) =

{
1

δisiv
if x ∈ [0, δisiv]

0 otherwise
(12)
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We call this the uniformly distributed quality case. The range
of possible qualities (and the expected quality) increases lin-
early with skill and effort. We can use Lemma 1 to show that
an extreme-effort policy is optimal here.

Lemma 2. For the uniformly distributed quality case, for
arbitrary skill levels, there is an efficient policy in which each
agent i ∈ I exerts either no effort δi = 0 or full effort δi = 1.

Proof. Consider arbitrary agent i ∈ I and arbitrary
β ∈ [0, siv]. If we can show that effort δi = 0 or δ1 = 1 for i
would yield optimal expected marginal efficiency even if we
knew that the other agents would achieve quality β, then
the theorem follows. Note that in the case of uniformly dis-
tributed quality no effort level less than or equal to β

siv
could

possibly be optimal because there would be 0 probability of
improving the maximum quality over β (and so if β > siv
then 0 effort by i is clearly optimal). We will now prove the
result by using Lemma 1. For arbitrary δi ∈ [ β

siv
, 1]:

∫ v

β

F v
δi

(x) dx =

∫ δisiv

β

x

δisiv
dx +

∫ v

δisiv

1 dx (13)

=
x2

2δisiv

∣∣∣
x=δisiv

x=β
+ v − δisiv (14)

=
δ2

i s2
i v

2

2δisiv
− β2

2δisiv
+ v − δisiv (15)

= v − δisiv

2
− β2

2δisiv
(16)

Then:

− ∂

∂δi

( ∫ v

β

F v
si,δi

(x) dx
)

=
siv

2
− β2

2sivδ2
i

, (17)

and this is at least 1 if and only if:

δ2
i ≥ β2

2siv − (siv)2
(18)

If this holds for δi = ε ≥ β
siv

it holds for δi = k for all

k > ε. Therefore the distribution satisfies Lemma 1, which
tells us that the optimum over the range [ β

siv
, 1] occurs at

either β
siv

or 1. Since no effort level on the interval (0, β
siv

]

could yield positive expected utility and thus be better than
effort level 0, the global optimum lies at either δi = 0 or
δi = 1, which completes the proof.

Then in the constant skill case (with skill normalized to
1) we can compute the optimal number of participants as
follows.

Theorem 1. For the constant skill, uniformly distributed
quality case, a mechanism that elicits maximum-effort par-
ticipation by m∗ arbitrary agents (and 0-effort participation
by others) is efficient, where:

m∗ =

{
	√v� − 1 if 	√v�2 + 	√v� > v

	√v� otherwise
(19)

Proof. By Lemma 2 an optimal policy will involve full
effort by some number m ∈ {0, . . . , n} agents and 0 effort
by the other n−m agents. If m agents participate with full-
effort the expected efficiency equals the expected maximum
of m draws from U [0, v] minus m, i.e.:

∫ v

0

1

v
mx

(x

v

)m−1

dx − m =
m

m + 1
v − m (20)

Though m is discrete, imagining it as a continuous variable
yields a parabola with a single maximum. Taking the deriva-
tive with respect to m, we get v

(m+1)2
−1, which has a single

positive root at m =
√

v − 1. But since m can only take in-
teger values, when

√
v is not an integer we have to consider

both 	√v−1� and �√v−1 (i.e., 	√v�). The expected value
increase of adding a 	√v�th agent to a group of 	√v − 1�
equals, considering Eq. (20):
( 	√v�

	√v� + 1
v − 	√v�

)
−

( 	√v� − 1

	√v� v − (	√v� − 1)

)
(21)

=
1

	√v�(	√v� + 1)
v − 1 (22)

This is at least 0 if and only if 	√v�2 + 	√v� ≤ v, and so
the maximum is as characterized by Eq. (19).

Figure 1 provides a graphic depiction of how the optimal
number of agents that should participate relates to the prin-
cipal’s value, for v ∈ [0, 100].
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Figure 1: Optimal number of agents to produce a
good (with full effort) in the uniformly distributed
quality case, as a function of the principal’s value v.

2.2 Normally distributed quality
While for more complex distributions beyond the uni-

form case we would have difficulty demonstrating similar
results analytically, we can query whether Lemma 1 holds
experimentally. We now consider quality that is normally
distributed, over a bounded interval, with mean increasing
proportional to effort and skill. Specifically, consider the
truncated normal distribution over the interval [0, v], with
location parameter µ equal to δisiv and scale parameter σ
equal to v/8; this distribution is illustrated in Figure 2 for
various effort levels.

For arbitrary v, β, and δi (assuming a fixed si = 1)
we can computationally approximate

∫ v

β
F v

si,δi
(x) dx and ac-

cordingly evaluate whether the conditions of Lemma 1 are
satisfied. But a more direct approach is equally tractable
here: we can simply compute the expected marginal effi-
ciency, given any β, of effort for arbitrarily fine discretiza-
tions of the effort space δi ∈ [0, 1]. Then, the next step is
to use this approach to check whether extreme-effort is op-
timal for all β in the range [0, v], as this would imply that
regardless of the quality obtained by agents other than ar-
bitrary i ∈ I , for i extreme-effort (0 or 1) is optimal. We
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Figure 2: Probability densities over quality for vary-
ing degrees of effort, for an agent with skill level 1.
Truncated normal with µ = δiv and σ = v/8.

checked this by again discretizing the search space; this time
the space in question is that of possible (v, β) pairs where β
is constrained to fall within [0, v]. The results suggest that
for all values of v above a very low threshold (2.8), there is
no possibility that anything other than extreme effort could
be optimal. And we emphasize that with this approach we
are only checking certain sufficient conditions for optimal-
ity of extreme-effort. Finally, given that an extreme-effort
policy is optimal, we can easily compute an optimal set of
full-effort participants. For the constant skill case this is
done according to Eq. (11); see Figure 3 for the results.
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Figure 3: Optimal number of agents that should
produce a good (with full effort) as a function of
the principal’s value v. For the constant skill (equal
to 1), truncated ([0, v]) normally distributed quality
case with µ = δiv and σ = v/8.

3. INCENTIVES
We now consider the problem of implementing an effi-

cient policy in a context of selfish players. Since utility in
our setting is quasilinear and thus transferable, we can use
monetary payments as a tool. Through payments we seek to
establish an equilibrium where no agent can gain by doing
anything other than what the mechanism asks, as follows:

Definition 1 (incentive compatibility). A mecha-
nism is incentive compatible if and only if for each player
i, given that all other players abide by the mechanism’s pre-
scriptions, i’s expected utility can never be improved by doing
other than what the mechanism prescribes.

This definition is a generalization of the standard“truthful
reporting” definition that is sufficient for mechanisms that
only involve sharing of private information. In our setting,
one player (the principal) must share private information
truthfully, while others (the agents) must behave faithfully
according to what the mechanism prescribes and will also
have to share private information truthfully if skill is vari-
able and private knowledge.5 An incentive compatible mech-
anism gives us reason to believe that the outcome the mech-
anism prescribes will occur, given rational agents. But for a
mechanism that makes payments there are additional con-
straints: the mechanism should be weakly budget-balanced,
in expectation never paying out more than it takes in, since
otherwise external subsidies would be required for its im-
plementation. The mechanism should also be individually
rational, meaning no agent should have negative expected
utility in equilibrium from truthfully participating.

3.1 Constant skill
We first consider a context of constant skill, where two

agents exerting the same effort produce quality according
to the same (known) distribution. Recall that an efficient
effort policy δ∗ = (δ∗

1 , . . . , δ∗
n) is a function of the principal’s

value and the vector of agents’ skill levels s; so in constant
skill settings the only “variable” relevant to computation of
δ∗ is v, and we omit s from all notation. The mechanism
we propose is efficient and incentive compatible in such set-
tings, without running a deficit or violating individual ra-
tionality. It defines payments that, in some cases, depend
on a priori expected quality for a given effort level. Recall
notation Qi(v, δi) for the random variable representing the
quality produced when agent i expends effort δi, given the
principal’s value v; Qi(v) denotes an actual quality level
realized by i. Q(v) denotes the vector (Q1(v), . . . , Qn(v))
and Q−i(v) denotes (Q1(v), . . . , Qn(v)) with Qi(v) excluded;
analogously Q(v, δ) denotes (Q1(v, δ1), . . . , Qn(v, δn)) and
Q−i(v, δ−i) denotes the same excluding Qi(v, δi). For any

vector x we let x(k) denote the kth highest element of x.

Definition 2. (Constant skill efficient crowd-
sourcing (CSEC) mechanism) The principal reports v
and then efficient effort levels δ∗

1 , . . . , δ∗
n are computed.

Each agent i is instructed to expend effort δ∗
i on produc-

tion, and goods are produced with quality levels Q(v) =
(Q1(v), . . . , Qn(v)). The principal is charged:

∑

i∈I

δ∗
i , (23)

agent h = arg maxi∈I Qi(v) is paid:

δ∗
h + Qh(v) − Q(2)(v) − �[Q(1)(v, δ∗) − Q(1)

−h(v, δ∗
−h)],

(24)
and each other agent i ∈ I \ {h} is paid:

δ∗
i − �[Q(1)(v, δ∗) − Q(1)

−i (v, δ∗
−i)] (25)

5This dual-nature incentive situation appears in many other
scenarios; see [Shneidman and Parkes, 2004] and [Cavallo
and Parkes, 2008] for precedents in the literature.
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The principal pays the sum of the prescribed effort levels;
each agent is paid his prescribed effort minus the expected
difference between the highest quality level overall and the
highest quality level achieved by the other agents; each agent
is also paid the difference between the actual highest quality
level produced overall and the highest quality level produced
by the other agents—this value is 0 for all agents except he
who produces the highest quality good, and thus that agent
(h) ends up with a “bonus” (Qh(v) − Q(2)(v)).

Since to compute payments actual quality must be known,
one can either assume the quality of a produced good given
any v is publicly observable or, alternatively, in settings
where this is unrealistic the mechanism can be slightly (and
harmlessly) modified to have the principal report the quality
level of each produced good.

Theorem 2. The CSEC mechanism is efficient, incen-
tive compatible, individually rational, and budget-balanced
in expectation for constant skill settings.

Proof. We start by showing incentive compatibility.
The expected utility of the principal, given that he an-
nounces v̂ and that the agents abide by the mechanism, is:

�[Q(1)(v, δ∗(v̂))] −
∑

i∈I

δ∗
i (v̂) (26)

By efficiency of the computed effort levels (see Eq. (3)), this
quantity is maximized with truthful report v̂ = v.

Now consider arbitrary agent i ∈ I , assume that the prin-
cipal is truthful and other agents abide by the mechanism
and expend effort δ∗

−i, and let δi denote i’s chosen effort
level. i is paid the aggregate utility of the other agents mi-
nus a quantity completely independent of his behavior; i.e.,
omitting v from the notation with truthful v understood:

[
Q(1) −

∑

j∈I\{i}
δ∗

j

]
− (27)

[
Q

(1)
−i −

∑

j∈I\{i}
δ∗

j − δ∗
i + �[Q(1)(δ∗) − Q(1)

−i (δ
∗
−i)]

]
(28)

Recall that δ∗
i is computed independent of the behavior of i

(or any other agent). Therefore i’s expected utility equals a
quantity independent of his control (−Eq. (28)), plus:

�

[
Q(1)(δi, δ

∗
−i)

]
−

∑

j∈I\{i}
δ∗

j − δi (29)

By efficiency of δ∗, this is maximized by exerting effort δi =
δ∗

i as prescribed by the mechanism.
Now we consider individual rationality. We now omit δ∗

from the Q notation as well since abiding by the mecha-
nism is understood. The principal’s expected utility in the
truthful equilibrium equals: �[Q(1)] − ∑

i∈I δ∗
i , and this is

non-negative by efficiency of the policy. Each agent i’s ex-
pected utility in the truthful equilibrium equals his expected
payment minus his expended effort, i.e.:

�

[
Q(1) −

∑

j∈I\{i}
δ∗

j

]
− (30)

�

[
Q(1)

−i −
∑

j∈I\{i}
δ∗

j − δ∗
i + �[Q(1) − Q(1)

−i ]
]

− δ∗
i (31)

= �

[
Q(1) − Q(1)

−i

]
− �

[
Q(1) − Q(1)

−i

]
= 0 (32)

Finally, consider the expected aggregate payments re-
ceived by the social planner. Noting that in the truthful
equilibrium Eq. (27) minus Eq. (28) reduces to δ∗

i + Q(1) −
Q

(1)
−i −�[Q(1) −Q(1)

−i ], incorporating payments received from
the principal in expectation this equals:

∑

i∈I

δ∗
i −

∑

i∈I

(
δ∗

i + �[Q(1) − Q(1)
−i ] − �[Q(1) − Q(1)

−i ]
)

= 0

(33)

And so the budget is exactly balanced in expectation.

Let us consider an example. Imagine there are three
agents (with constant skill equal to 1), a principal with value
v = 8, and uniformly distributed quality. We can use Theo-
rem 1 to determine an optimal policy: since 	√v�2+	√v� =
6 < v = 8, the optimal policy calls for 	√v� = 2 agents—say
agents 1 and 2—to expend effort δ1 = δ2 = 1 and the third
to expend effort δ3 = 0. Imagine that the realized quality
levels turn out to be Q1 = 3 and Q2 = 5. The mechanism
requires that the principal pay: δ1+δ2+δ3 = 2. Noting that
�[Q(1)(8, (1, 1, 0))] = 16/3 and �[Q(1)(8, (1, 0))] = 4, agent
1 is paid: 1 − (16/3 − 4) = −1/3, i.e., he is charged 1/3.
Agent 2, the maximum quality-producing agent, is paid:
1 + (5 − 3) − (16/3 − 4) = 5/3. Finally, agent 3 is paid:
0 − (0 − 0) = 0. Each agent’s utility equals his payment mi-
nus effort (−4/3 for agent 1, 2/3 for agent 2, and 0 for agent
3); the principal’s utility equals 5 − (1 + 1) = 3; and rev-
enue to the mechanism designer equals 2+ 1/3 − 5/3 = 2/3.
No agent could have gained in expectation from deviating
from the mechanism’s prescriptions, and although agent 1
was worse off for having participated, in expectation he was
not so participation is rational given risk-neutrality.

Perhaps it could be considered a flaw of the mechanism
that agents do not have strict incentive to participate: their
expected utility from doing so is 0. First of all we note
that the effort cost δi for an agent can be understood to
incorporate opportunity costs, and can thus be construed as
the difference in cost between the given effort level and the
value of the agent’s “outside option” (which will equal 0 if
the agent has no other options).

But we can go further. Note that the principal does ob-
tain positive surplus from the mechanism; in fact he is the
only player (including the social planner) that does so in
expectation. We can seek to distribute this more broadly.
Let v be the minimum value the principal could possibly
have, i.e., the greatest value that—independent of the prin-
cipal’s announcement—the mechanism designer knows is no
greater than the true v (in the worst case v = 0, but it may
be greater). Let:

G = �[Q(1)(v, δ∗(v))] −
∑

i∈I

δ∗
i (v) (34)

We can amend the CSEC mechanism by charging the prin-
cipal G and paying each agent G/n. Since G is completely
independent of the principal’s report, charging him thus will
not change his incentives. Because quality is monotonically
increasing in his value, G is a lower bound (guarantee) on
the expected surplus the principal obtains in equilibrium un-
der the CSEC mechanism, and so individual rationality will
still hold in the amended mechanism. For any v in the space
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of possible values, the principal’s expected utility will equal:

�[Q(1)(v, δ∗(v))] −
∑

i∈I

δ∗
i (v) − G (35)

≥ �[Q(1)(v, δ∗(v))] −
∑

i∈I

δ∗
i (v) − G (36)

≥ �[Q(1)(v, δ∗(v))] −
∑

i∈I

δ∗
i (v) − G = 0, (37)

where the first inequality holds by efficiency of δ∗. In expec-
tation the mechanism remains perfectly budget-balanced,
while now each agent may obtain positive utility and so will
the principal (assuming v �= v).

In using this approach we are essentially adopting the
technique of [Cavallo, 2006] in which revenue is “redis-
tributed”to the agents in an effort to maintain wealth within
the group rather than in the hands of the mechanism de-
signer, without distorting incentives. Here we are seeking
to redistribute surplus to the agents from the principal, but
the technique is identical to that of [Cavallo, 2006] except
instead of redistributing revenue we redistribute surplus.

3.2 Privately known skill
In the more general case where the principal has private

value information, the agents have privately observed effort,
and the agents have private skill information, the incentives
problem is significantly more challenging. In fact, we can use
the Myerson-Satterthwaite impossibility theorem [Myerson
and Satterthwaite, 1983] to demonstrate the impossibility
of achieving an efficient, incentive compatible, individually
rational, and budget-balanced mechanism.

Theorem 3. There exists no mechanism that—for unre-
stricted quality distributions, private value for the principal,
and private agent skill levels—is efficient, incentive compat-
ible, individually rational, and budget-balanced.

Proof. We can prove the result via a “reduction” to
efficient crowdsourcing from bilateral trade, for which we
know by [Myerson and Satterthwaite, 1983] that there is
no efficient, incentive compatible, individually rational, and
budget-balanced mechanism. Assume for contradiction that
the theorem fails. Then for any bilateral trade setting where
the seller has value θs ∈ [0, 1] and the buyer has value
θb ∈ [0, 1] consider the following crowdsourcing problem:
the principal has value v = θb, there is a single agent i who
has skill si = 1 − θs, and quality is (deterministically) dis-
tributed as follows:

Qi(v, si, δi) =

{
v if δi ≥ 1 − si

0 otherwise
(38)

Assume that if the social planner chooses a policy in which
quality v would be realized with certainty (given announced
skill), the agent can be compelled to exert effort until quality
v results (despite the planner not being able to observe the
actual effort level expended). This only makes solving the
crowdsourcing problem easier, and so a solution to the full
crowdsourcing problem implies a solution to this variant.

Note that in any efficient policy i exerts effort either 0 or
1 − si = 1 − (1 − θs) = θs. If the policy calls for production
then the principal gains utility θb and the agent loses utility
θs. Therefore in the efficient policy production occurs if and
only if θb ≥ θs. Moreover note that the strategic situations
of the principal and agent in this crowdsourcing problem are

identical to that of the buyer and seller in the bilateral trade
problem, in the sense that the expected utility of each, given
any strategy they play, for any strategy played by the other,
is identical in either problem. So a payment scheme that
is effective for the crowdsourcing problem would constitute
a solution for the bilateral trade problem, and this would
contradict the Myerson-Satterthwaite theorem.

This negative result notwithstanding, there is a way for-
ward with a weaker individual rationality concept. Though
skill is private, it is not implausible to imagine that agents
only learn their skill levels after the nature of the project
is announced, in which case ex ante individual rationality
would be sufficient to achieve participation if we force agents
to make participation decisions before announcing the na-
ture of the task. And [Cavallo, 2011] provides an efficient
mechanism—which here we will call the ex-ante-commitment
mechanism—that is incentive compatible for arbitrary pri-
vate values settings and achieves individual rationality ex
post of type realization for one player, while achieving in-
dividual rationality (and budget-balance) ex ante of type
realizations for all others. This fits our setting perfectly,
since the principal will know his value from the outset, but
commitment by the agents may potentially be arranged to
occur prior to realization of their types. Our setting has pri-
vate action (effort) as well as private information, but the
incentives provided by the mechanism extend.

The ex-ante-commitment mechanism makes payments
based on expectations with respect to a prior distribution
over agent types, assumed to be shared (a priori) by the
mechanism designer and all agents. We use notation �s̃[·] to
denote the expected value of a quantity with respect to the
prior distribution over agents’ skill levels, with s̃ a random
variable representing the skill vector. Again letting v denote
the lowest value in the principal’s value space, let:

G(s) = �[Q(1)(v, s, δ∗(v, s))] −
∑

i∈I

δ∗
i (v, s) (39)

A derivative of the ex-ante-commitment mechanism for our
setting takes the following form:

Definition 3. (Private skill efficient crowd-
sourcing (PSEC) mechanism) The principal reports v,
each agent i ∈ I reports si, and then the efficient effort
levels δ∗

1 , . . . , δ∗
n are computed. Each i ∈ I is instructed to

expend effort δ∗
i , and goods are produced with quality levels

Q(v) = (Q1(v), . . . , Qn(v)). The principal is charged:
∑

i∈I

δ∗
i + G(s), (40)

and each agent i ∈ I is paid:

Q(1)(v) −
∑

j∈I\{i}
δ∗

j − (41)

�s̃

[
Q(1)(v, s̃, δ∗(v, s̃)) −

∑

j∈I

δ∗
j (v, s̃) − 1

n
G(s̃)

]
(42)

The following theorem is essentially a consequence of the
main theorem of [Cavallo, 2011], although in that work the
strategic element is solely related to private information,
while for us there is also a hidden action (effort). But the
basic logic extends: Groves mechanisms achieve straightfor-
ward behavior, which typically consists of truthful reporting
but can also encompass other actions, e.g., production effort.
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Theorem 4. The PSEC mechanism is incentive compat-
ible, individually rational for the principal, individually ra-
tional for each agent ex ante of skill level realizations, and
budget-balanced in expectation ex ante of skill realizations.

We demonstrate the workings of the mechanism on the
following uniformly distributed quality example: there are
two agents, where the prior distribution over each’s skill level
assigns probability 0.5 to skill 0 and probability 0.5 to skill
1; assume the realized skills are s1 = 0 and s2 = 1. Assume
the principal’s value space is [5, 50] (so v = 5), and that
the principal’s actual value is v = 10. In the optimal policy
agent 2 participates with full effort and agent 1 does not
participate. G(s) = 2.5−1 = 1.5 and �s̃

[
Q(1)(v, s̃, δ∗(v, s̃))−∑

i∈I δ∗
i (v, s̃) − 1

n
G(s̃)

]
≈ 2.6. Imagine that quality 6 is

realized. Then the principal pays 1 + 1.5 = 2.5, obtaining a
net utility of 3.5. Agent 1 is paid 6− 1− 2.6 = 2.4, for a net
utility of 2.4. Agent 2 is paid 6 − 0 − 2.6 = 3.4, for a net
utility of 2.4. Revenue equals 2.5 − 2.4 − 3.4 = −3.3.

While the social planner or some agent may end up worse
off ex post, as in the example, in expectation given the dis-
tribution over types each will gain from participation.

4. CONCLUSION
While most prior work seeks to maximize the utility of

the principal alone, in this paper we pursue a crowdsourcing
scheme that is socially optimal, maximizing the aggregate
efficiency to all stakeholders in the system; we believe this
holds the potential to bring significant added value to crowd-
sourcing marketplaces. Our findings and proposals may be
of interest from both a theoretical and practical standpoint.
From a theoretical perspective, we provide an efficient, in-
dividually rational, budget-balanced mechanism in the con-
stant skill case; while we show that this is not possible in the
general case, there we describe a mechanism that is efficient,
budget-balanced, IR for the principal, and ex-ante IR for the
producers. The results inform a designer of a crowdsourcing
contest how to compute the optimal number of participants,
given the principal’s value and the agents’ distribution over
quality, and also tell the designer how to award the pay-
ments or prizes. An interesting facet of the mechanism we
propose is that if the optimal number of participants is k,
then the mechanism should award k payments (or more in
the private skill case). This is in contrast with the winner-
take-all schemes currently prevalent in crowdsourcing, where
the participant who submits the highest quality good is the
sole recipient of a lump sum prize.
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ABSTRACT
The question of how to influence people in a large social system is a
perennial problem in marketing, politics, and publishing. It differs
from more personal inter-agent interactions that occur in negotia-
tion and argumentation since network structure and group member-
ship often pay a more significant role than the content of what is be-
ing said, making the messenger more important than the message.
In this paper, we propose a new method for propagating informa-
tion through a social system and demonstrate how it can be used
to develop a product advertisement strategy in a simulated market.
We consider the desire of agents toward purchasing an item as a
random variable and solve the influence maximization problem in
steady state using an optimization method to assign the advertise-
ment of available products to appropriate messenger agents. Our
market simulation accounts for the 1) effects of group membership
on agent attitudes 2) has a network structure that is similar to realis-
tic human systems 3) models inter-product preference correlations
that can be learned from market data. The results show that our
method is significantly better than network analysis methods based
on centrality measures.

Categories and Subject Descriptors
I.2.11 [Distributed artificial intelligence]: Multi-agent systems

General Terms
Algorithms

Keywords
Marketing, Optimization, Multi-agent social simulations

1. INTRODUCTION
The gift of persuasion is a powerful and highly-sought after skill,

as evidenced by the fact that individual self-help books in this area,
the most famous being How to Win Friends and Influence People
published in 1936, remain popular. The rise of social media out-
lets and click-through advertisement opened the door for relatively
small groups to influence large numbers of people. Combined with
modern data analysis techniques, it is possible to create a detailed
social simulation of the population of interest, but the problem of

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

whom to influence remains as an open research question. Partic-
ularly in advertisement, indiscriminate mass marketing techniques
can lead to negative information cascades about product quality,
even if cost efficiency is not an issue. This problem can be framed
as a network influence propagation problem; previous work in this
area has looked at diverse domains such as information propagation
in the Flickr social network [7] and identifying important blogs for
marketing [3].

In this paper we present a mathematical analysis of how influ-
ence propagation occurs over time and propose a new optimization
technique for identifying effective messenger agents in the network
that outperforms other network analysis methods while accounting
for realistic factors such as group membership and product pref-
erence correlation. Following the work of Hung et al. [12, 13],
optimization is used along with an analysis of the expected long-
term system behavior to assign the advertisement of the available
products to appropriate agents in the network. In contrast with pre-
vious work on identifying influential nodes for marketing purposes
(e.g., [11] and [4]), in this work we model the effects of realistic
social factors such as group membership on product adoption. In
the analysis presented in [12, 13] for counterinsurgency messaging
tactics, there exists a single random variable representing the atti-
tude of agents toward counterinsurgency, but in our work, we use
a vector of random variables which represents the desire of each
agent toward any single product. This consideration combined with
product demand correlations in the market make the analysis and
optimization more complicated, but ultimately our approach has the
promise of being applicable to a wider variety of social systems.

The paper is organized as follows. Section 2 describes the agent-
based model and how it can be used for influencing propagation.
Section 3 presents our network generation model that is designed to
account for social influence factors present in real human societies
such as homophily and group membership. The subsequent section
presents our analysis of the system dynamics, and our proposed
optimization technique is described in Section 5. We evaluate our
method vs. a set of centrality based network analysis techniques in
Section 6. We end the paper with an overview of related work in
this area and a discussion of future work.

2. MARKET MODEL
To explore the efficiency of the proposed marketing method, we

have extended a multi-agent system model, inspired by [12] and
[13], to simulate a social system of potential customers. In this
model, there is a population of N agents, represented by the set
A = {a1, . . . , aN}, that consists of two types of agents (A =
AR ∪ AP ). The first type of agent, defined as: AR = {ar |
ar is Mutable and 1 ≤ r ≤ R}, are the Regular agents, who
are the potential customers. These agents have a changing atti-
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Figure 1: The model of the social system. There exist two types
of agents, Regular agents (AR) and Product agents (AP ). A
static network exists among Regular agents, and our problem
is to find effective connections between the Product (sellers) and
Regular agents (customers) in order to influence the customers
to buy products. Regular agents also can belong to different
groups in their society (Gm), which modifies the local influence
propagation properties.

tude on purchasing products and can be influenced by the Prod-
uct agents who represent salespeople offering one specific product.
These agents have an immutable attitude toward a specific product
and are defined as: AP = {ap | ai is Immutable and 1 ≤ p ≤ P}.
Figure 1 provides an illustration of the market model.

Each Regular agent can be considered as a unique node in the
social network, connected by directed weighted links based on the
underlying interactions with other agents. The connection between
the Regular agents is modeled by an adjacency matrix, E, where
eij = 1 is the weight of a directed edge from agent ai to agent aj .
The in-node and out-node degrees of agent ai are the sum of all
in-node and out-node weights, respectively (di

in =
∑

aj⊆AR
eji

and di
out =

∑
aj⊆AR

eij). This network is assumed to follow a
power law degree distribution like many human networks, and is
generated synthetically as explained in Section 3.

We model the desire of an agent, ai, to buy an item or consume a
specific product, p, as a random variable denoted by xip ∈ [−1 1].
As there exist P items in the environment, each agent is assigned a
vector of random variables,

−→
Xi, representing the attitude or desire

of the agent toward all of the products in the market.
Within the social network there are different groups of Regular

agents; these groups could represent demographic groups or other
types of subcultures. Agents from the same group are more ef-
fective at influencing each other. To model this, the social system
contains m different long-lasting groups, G1, . . . , Gm, and each
agent i is designated with a group membership, Gi.

Here, we do not attempt to capture a rich social-cultural behav-
ior model of these interactions, but rather view the model sim-
ply as a function F : Gi −→ Si, mapping the group label of
agents, Gi, to a social impression, Si, that affects link formation
and influence propagation, which we designate as the group value
judgment. This value represents the agents’ judgments on other
groups and is based on observable group label of the agent rather
than real characteristics of the person. We assume that the impres-
sion of different groups has been learnt by agents beforehand there-
fore each agent has a unique vector of judgment values, noted as−→
Si = S1, S2, . . . , Sm, to indicate the judgment of each agent on
different groups in the simulated society.

Moreover, in real life there is a correlation between the user de-

mand of different products in the market. The desire of customers
for a specific product is related to his/her desire toward other simi-
lar products. To model this correlation and consider its effect in our
formulation, we designate a matrix M that identifies the relation-
ship between demands among advertised items and can be shown
as:

M =




m11 . . . m1P

...
. . .

...
mP1 . . . mPP




where mij indicates the probability of having desire toward item
j assuming the agent already has a desire for item i. We assume
that this matrix is known beforehand and has been modeled by the
advertisement companies by tracking the users and applying user
modeling.

In the market, the companies are trying to select a set of con-
nections between the AP agents and AR agents, in such a way to
maximize the long term desire of the agents for the products. We
define a simple decision variable uji, where

uji =

{
1 Product j connects to Regular agent i,

0 otherwise.
(1)

Note that the links between Product agents and Regular agents
are directed links from products to agents and not in the opposite di-
rection, and that Product agents will never connect to other Product
agents. In the social simulation, each agent interacts with another
agent in a pair-wise fashion that is modeled as a Poisson process
with rate 1, independent of all other agents. By assuming a Pois-
son process of interaction, we are claiming that there is at most one
interaction at any given time. Here, the probability of interaction
between agents ai and aj is shown by pij and is defined as a frac-
tion of the connection weight between these agents over the total
connections that agent i makes with the other agents. Therefore,

pij =





eij

di
out

i, j ∈ AR

uji

Threshold
i ∈ AR, j ∈ AP

0 otherwise

(2)

where di
out is the out-node degree of a Regular agent i and the

Threshold parameter is the total number of links that Product agent
can make with Regular agents. The bounds on Threshold are a nat-
ural consequence of the limited budget of companies in advertising
their products.

At each interaction there is a chance for agents to influence each
other and change their desire vector for purchasing or consuming
a product. In all these interactions Product agents, the immutable
agents, are the only agents who do not change their attitude and
have a fixed desire vector. The probability that agent j influences
agent i is denoted as αij and is calculated based on the out-node
degree of agent j as:

αij =

{ eji

d
j
out

i, j ∈ AR

cte i ∈ AR, j ∈ AP

(3)

Figure 2 shows a simple example of how to calculate pij and αij .
The other important parameter in the agent influence process is

εij , which determines how much agent j will influence agent i.
This parameter is derived from a Gaussian distribution assigned to
the membership group of agent j based on the experience of agent
i with this group. Therefore, this value can easily be extracted from
the previously defined vector

−→
Si .

As a final note, in this model the agents can access the following
information:
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Figure 2: An illustration of how the probability of interaction
(p) and the probability of influencing others (α) is calculated
between the Regular agents.

1. the links connecting agents that possess a history of past in-
teractions. Each agent is aware of its connections with neigh-
bors and their weights;

2. the group membership of neighboring agents and other select
members of the community.

The ultimate goal of our marketing problem is to recognize the in-
fluential agents in the graph and define ujis in a way to get the
maximum benefit of the product advertising.

3. NETWORK GENERATION
To evaluate the performance of our proposed optimization method

on identifying influential agents in a variety of networks, we simu-
late the creation of agent networks formed by the combined forces
of homophily and group membership. Since social communities
often form a scale-free network, whose degree distribution follows
a power law [5], we model our agent networks using the network
generation method described in [25]. Note that this network only
connects the regular agents (ai ∈ AR). The connection between
the Product and Regular agents is identified later in a way to opti-
mize the efficiency of the product marketing.

Following the network data generation method in [23], we con-
trol the link density of the network using a parameter, ld, and value
homophily between agents using a parameter, dh. The effects of
value homophily are simulated as follows:

1. At each step, a link is either added between two existing
nodes or a new node is created based on the link density pa-
rameter (ld). In general, linking existing nodes results in a
higher average degree than adding a new node.

2. To add a new link, first, we randomly select a node as the
source node, ai, and a sink node, aj (ai, aj ∈ AR), based
on the homophily value (dh), which governs the propensity
of nodes with similar group memberships to link. Node aj is
selected among all the candidate nodes in the correct group,
based on the degree of the node. Nodes with higher degree
have a higher chance to be selected.

3. If a prior link exists between agent ai and aj , selecting them
for link formation will increase the weight of their link by
one.

Group membership also governs the process of reciprocal link
formation. Once the link generation process starts and the source
and sink nodes have been selected, we add a directed link from
node ai to node aj by default, under the assumption that the first
selected agent initiated the interaction. The group value judgment

Table 1: Agent Network Generator
Agent Network Generator (numNodes, numLabels,
ld, dh)
i = 0
E = NULL
while i < numNodes do

sample r from uniform distribution U(0, 1)
if r ≤ ld then

connectNode(E,numLabels,dh)
else

addNodes(E,numLabels,dh)
i = i + 1

end if
end while
return E

of the second node governs whether a reciprocal link is formed
or not. We use an evaluation function Fa(S) to map an observed
group value S to a binary evaluation of interaction (positive or neg-
ative). We assume that all agents use the same evaluation function,
which is:

Fa(S) =

{
1 : S ≥ 0.5

−1 : S < 0.5

The result of this process is to create clusters of agents with the
same group labels within the network, since group membership af-
fects both the probability of the initial interaction (through the ho-
mophily parameter) and also the reciprocal link formation.

To generate a new node, we first select a group label based on a
uniform group distribution and assign that group label to the node.
Then we add links between the new node and one of the existing
nodes as we described above. The algorithm for generating the
static network is outlined in Table 1.

4. ANALYSIS OF SYSTEM DYNAMICS
As explained in Section 2, the agent i’s desire toward product

p, is modeled as a random variable that assumes a scalar value af-
ter each interaction (xip ∈ [−1 1]) . Therefore, since there exist
P different products, each agent has a vector of random variables,−→
Xi, which indicates the desire of the agent toward all the available
products in market. Following Hung et al. [12, 13], we model the
desire dynamic of all agents as a Markov chain where the state of
the system is a matrix of all agents’ desire vectors at a particular
iteration k and the state transitions are calculated probabilistically
from the pair-wise interaction between agents connected in a net-
work. The state of the system at the kth iteration is a vector of
random variables, denoted as X(k) ∈ RNP×1 (created through a
concatenation of N vectors of size P ) and expressed as:

X(k) =




[
−→
X1(k)]

...
[
−−→
XN (k)]




4.1 Interaction and Influence
In this work, we define interactions as any kind of information

or belief sharing between two agents about the available products
in the market. During these interactions, there is a possibility for
one agent to influence the desire of the other one. As explained in
Section 2, this possibility is modeled by parameter αij when agent
i initiates the interaction with agent j. Also, in this interaction,
we assume that the influenced agent will retain some fraction of
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its existing desire. This fraction is different for any single agent i
while interacting with agent j, but remains fixed, and is denoted as
εij ∈ [0 1]. The dynamics of the model at each iteration k proceed
as described in [13]:

1. Agent i initiates the interaction on a uniform probability dis-
tribution over all agents. Then agent i selects another agent
among its neighbors with probability pij . Note that the desire
dynamic can occur with probability 1

N
(pij + pji) as agent

i’s attitude can change whether it initiates the interaction or
is selected by agent j.

2. Conditioned on the interaction of i and j:

• With propagability αij , agent i will change its desire:
{−→

Xi (k + 1) = εij M
−→
Xi (k) + (1 − εij)M

−→
Xj(k)

−→
Xj(k + 1) =

−→
Xj(k)

(4)
Recall that M is the pre-defined matrix indicating the
correlation between the demands of different products.

• With probability of (1 − αij), agent i is not influenced
by the other agent:

{−→
Xi (k + 1) =

−→
Xi (k)

−→
Xj(k + 1) =

−→
Xj(k)

(5)

To analyze Equation 4 in detail, we rewrite the matrix calculation
for agent i as follows:

−→
Xi(k + 1) =




∑P
f=1 m1f (εijxif + (1 − εij) xjf )

...∑P
f=1 mPf (εijxif + (1 − εij) xjf )


 (6)

A closer look at each row of (
−→
Xi(k+1)) reveals that the desire of

agent i toward a product depends on own previous desire, a fraction
of the other agent’s desire toward that product, and the desire of
both agents toward other available products in the market. This is
an interesting result showing how our proposed model can express
the complexity of real-world markets and capture the dependency
of demand for different products [20].

4.2 Expected Long-term Desire
In this work, we determine the long-term desire of the agents for

products in the system to find the optimized connection between the
Product agents and Regular agents. In other words, we hypothesize
that by examining the expected value of the steady state system
(X(k)), we are able to optimize the marketing strategy and identify
the most influential nodes in the network. Therefore our goal in
this section is to calculate the expectation vector of the system state
since it captures all the interactions and the dependencies between
the demand of the products.

The conditional expected value of the desire vector of agent i
in a single pair-wise interaction between agents i and j, when the
current state of the system is observed:

E[
−→
Xi(k + 1)|X(k), j] = (1 − αij)

−→
Xi(k)

+ αij

[
εijM

−→
Xi(k) + (1 − εij)M

−→
Xj(k)

]

= [αijεijM + (1 − αij)I]
−→
Xi(k)

+ αij(1 − εij)M
−→
Xj(k) (7)

By defining matrix W(i, j) = αij(1−εij) M, we rewrite Equa-
tion 7 in the form of:

E[
−→
Xi(k + 1)|X(k), j] =

−→
Xi(k) + W(i, j)

−→
Xj(k)

− [W(i, j) + αij(I − M)]
−→
Xi(k) (8)

Therefore, based on the probability of interaction between two
agents ( 1

N
(pij + pji)), the desire of Regular agents dynamically

changes as specified in Equation 7. It is worthwhile to mention that
matrix W is a factor of matrix M, and it has the same dimensions
of P × P . Rewriting the dynamics of

−→
Xi in this way indicates that

the desire vector of agent i at iteration (k + 1) is equivalent to its
own desire plus the weighted desire of agent j at iteration k, minus
its own weighted desire at that iteration. This finding shows that, in
spite of having the extra matrix M, extracted from the marketing
situation, and a complicated notion of the agents’ desire vector, the
computation model simply follows [12], although the optimization
approach must account for multiple product interactions.

We substitute W(i, j) + αij(I − M) = S(i, j), where S(i, j)
again is dimension P × P . Then, Equation 8 simplified as follows:

E[
−→
Xi(k + 1)|X(k), j] =

−→
Xi(k) − S(i, j)

−→
Xi(k) + W(i, j)

−→
Xj(k)

(9)
Next, we write the expected value of agent i’s desire vector at

iteration (k + 1) over all the possible interactions it initiates or is
subject to by other agents’ actions, conditioned on the state of the
system at k. Recall that the interaction between i and j occurs with
probability 1

N
(pij + pji).

E[
−→
Xi(k + 1)|X(k)] =

−→
Xi(k)

−
∑

j

1

N
(pij + pji) S(i, j)

−→
Xi(k)

+
∑

j

1

N
(pij + pji) W(i, j)

−→
Xj(k)

(10)

Now, we want to express the expected desire of all agents at
iteration (k + 1) conditioned on all agents’ previous desire. This
step relies on both the laws of interacting expectations and linearity
of expectations. Assembling a vector of all entries for each i results
in:

E[X(k + 1)|X(k)] = X(k) + QX(k) (11)

where Q is a block matrix and each component of Q ∈ RN×N ,
considering Equation 10, is:

Qij =





1
N

(pij + pji)W(i, j) i ∈ AR, j ∈ A and i ̸= j

− 1
N

∑
j(pij + pji)S(i, j) i ∈ AR, j ∈ A and i = j

+ 1
N

(pij + pji)W(i, j)

0 i ∈ AP , j ∈ A
(12)

Finally, by calculating the expected value of Equation 11 and
using the linearity of expectations, we have:

E[E[X(k +1)|X(k)]] = E[X(k +1)] = E[X(k)]+Q E[X(k)]
(13)

We define −→µ X(k) ∈ RNP×1 as the expected value vector of
X(k). Therefore, the above equation is simplified as:

−→µ X(k + 1) = −→µ X(k) + Q −→µ X(k) (14)
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Figure 3: Q matrix is a block matrix with size N × N where
N is the total number of agents (R + P ) and each block has
the size of P × P . Matrices A and B are the non-zero part
of this matrix which represent the interactions among Regular
agents and interactions between Regular agents and Products,
respectively.

Since we are seeking the expected value of X(k) at steady state,
the above equation when k → ∞ reduces to:

−→µ X(∞) = −→µ X(∞) + Q −→µ X(∞) ⇒ Q −→µ X(∞) = 0 (15)

In order to solve this system of equations efficiently, we decompose
the matrices:

Q =

(
A B
0 0

)
and −→µ X(∞) =

(−→µ R−→µ P

)
(16)

Here A ∈ RRP×RP is the sub-matrix representing the expected
interactions among Regular agents while B ∈ RRP×P2

represents
the the expected interactions between Regular agents and Product
agents. Figure 3 shows the breakdown of matrix Q.

Moreover, −→µ R and −→µ P are vectors representing the expected
long-term desire of Regular agents and Product agents, respec-
tively, at iteration k → ∞. Note that vector −→µ P is known since
the Product agents, the advertisers, are the immutable agents, who
never change their desire. Solving for −→µ R yields the vector of
expected long-term desire for all regular agents, for a given set of
influence-probabilities on a deterministic social network.

A −→µ R + B −→µ P = 0 ⇒ −→µ R = A−1(−B −→µ P) (17)

Now based on this analytical view of the system, we define an
optimization method in following section to maximize the product
sales through intelligent selection of the Product agent linkages.

5. NODE SELECTION METHOD
Using the analysis from the previous section, we can identify

the influential nodes in the network and connect the products to
those agents in a way that maximizes the long-term desire of the
agents in the social system. Here, we define the objective function
as the maximization of the weighted average of the expected long-
term desire of all the Regular agents in the network toward all the
products as:

maxu

∑

1≤k≤P

∑

i∈AR

(ρi.
−→µ R,i) (18)

−→µ R,i is the part of −→µ R that belongs to agent i, and ρi parameter is
simply a weight we can assign to agents based on their importance
in the network. In the case of equivalent ρi = 1 for all the agents,
the above function reduces to the arithmetic mean of the expected
long-term desire vectors for all agents.

The goal of our proposed method is to assign a fixed number of
Product agents with limited number of connections to a network
of Regular agents in a way to optimize the objective function pre-
sented above. In Equation 17, matrix A and vector −→µ P are known
since the static network among the Regular agents and the fixed
desire vector of the products are both known. We define the matrix
B based on parameters of uijs. We substitute the probability of
interaction, pij , occurring between agents i and j in matrix Q, by
Equation 2 of the model.

The partitioning of matrix Q in Equation 16 and the size of ma-
trices A and B (Figure 3), indicates that the elements of matrix
B are all off the diagonal. Therefore substituting the values of pij

and pji of Equation 2 into Equation 12, Bij = 1
N

ujiW(i, j) =
û⊗M. Here, û contains all the variables and influence parameters
and ⊗ indicates the Kronecker product [21].

Therefore, by rewriting Equation 17 as:

−→µ R = A−1[û ⊗ M]V ec(µ̂P) (19)

and using the following identity

[û ⊗ M] V ec(µ̂P) = V ec(M µ̂P û),

Equation 17 becomes −→µ R = A−1V ec(M µ̂P û), which is solved
using convex optimization methods. Therefore the optimal assign-
ment of Product agents to Regular agents is obtained through the
following optimization problem:

maximize
û

∥A−1V ec(M µ̂P û)∥1

subject to xip ∈ [−1 1], ∀i ∈ AR,
∑

j∈AR

uij = cte.

(20)

To solve this optimization problem we used the CVX toolbox of
Matlab which is useful for convex programming and minimized
the dual of our objective function.

6. EVALUATION

6.1 Experimental Setup
We conducted a set of simulation experiments to evaluate the

effectiveness of our proposed node selection method on market-
ing the items in a simulated social system with a static network.
The parameters of the model for all the runs are summarized in Ta-
ble 2(a). All the results are computed over an average of 30 runs
with 100 Regular agents and 10 Product agents.

In this work, we model four long-lasting groups, (G1, . . . , G4),
with different feature vector distributions in our social simulation.
Moreover, a group value judgment, (Si), assigned to each group,
is drawn from Gaussian distribution. We assumed that the group
model has been learned by agents based on their previous experi-
ences, each agent has its own fixed value judgment toward each
group of agents and that value has been selected based on the as-
signed Gaussian distribution of the model. Consequently, this group
value judgment affects the connection of agents during the net-
work generation phase, as we described before. Table 2(b) shows
the mean and standard deviations of the Gaussian distributions as-
signed to each group. Note that the membership in each group is
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Table 2: Parameter settings
(a) Experimental parameters

Parameter Value Descriptions

R 100 Number of Regular agents
P 10 Number of Product agents

Threshold 2 Number of links between P and R agents
ε 0.4 Influence factor between P and R agents
α 0.6 Probability of influence between P and R agents

NIterations 10000 Number of iterations
NRun 30 Number of runs

(b) Group model

Group Mean Value StDev

G1 0.9 0.05
G2 0.6 0.15
G3 0.4 0.15
G4 0.3 0.1

permanent for all agents and cannot be changed during the course
of one simulation.

In the Regular and Product agent interaction, parameters α and
ε are fixed for any interaction and are presented in Table 2(a). We
assume that these parameters can be calculated by advertising com-
panies based on user modeling. The pij values for this type of in-
teraction are calculated using Equation 2 and are parametric.

Finally, the remaining part of the social system setup is matrix
M, which models the correlation between the demand for different
products. This matrix is generated uniformly with random numbers
between [0 1] and, as it has a probabilistic interpretation, the sum
of the values in each row, showing the total demand for one item,
is equal to one.

6.2 Results
We compare our optimization-based algorithm with a set of centrality-

based measures commonly used in social network analysis for iden-
tifying influential nodes based on network structure [15]. The com-
parison methods are:

Degree Assuming that high-degree nodes are influential nodes in
the network is a standard approach for social network analy-
sis. Here, we calculated the probability of joining a Regular
agent based on the out-degree of the agents and attached the
Product agents according to preferential attachment. There-
fore, nodes with higher degree had an increased chance of
being selected as an advertising target.

Closeness This is another commonly used influence measure in
sociology, based on the assumption that a node with short
paths to other nodes has a higher chance to influence them.
Here, we averaged the shortest paths of a node to all the
other nodes in the network and sorted the nodes according to
this measure. Nodes with shorter average path had a higher
chance of being selected as a target.

Betweenness This centrality metric measures the number of times
a node appears on the geodesics connecting all the other
nodes in the network. Nodes with the highest value of be-
tweenness had the greatest probability of being selected.

Random Finally, we consider selecting the nodes uniformly at
random as a baseline.

To evaluate these methods, we started the simulation with an ini-
tial desire vector set to 0.02 for all agents, and simulated 10000
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Figure 4: The average of agents’ expected desire vs. the itera-
tions. The average is across all the products and over 30 dif-
ferent runs. Our proposed method has the highest average in
comparison to other methods which shows its capability as a
method for targeted advertisement in a social system.
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Figure 5: The average of agents’ expected desire vs. iterations.
In this simulation, the negative effect of advertising products
against other products has been increased. This result demon-
strates that our proposed method is more robust to the com-
monly occurring condition where increasing the desire toward
one item has a higher negative effect on the desire of agent to-
ward other products.

iterations of agent interactions. The entire process of interaction
and influence is governed based on the previous formulas given
in Section 4 and extracted parameters from the network. At each
iteration, we calculated the average of the expected desire value
of agents toward all products. Figure 4 shows this result for 100
agents and 10 advertisements. As explained before, the desire vec-
tor of Product agents are fixed for all products; in our simulation
is was set to 1 for the product itself and −0.05 for all other prod-
ucts (e.g., µ2 = [−0.05 1 − 0.05 . . . − 0.05]). The results for
this condition show that the proposed method creates a higher to-
tal product desire in the social system and is more successful than
other methods at selecting influential nodes. To test the robustness
of our algorithm we modified the desire vector of Product agents
and increased the negative effect of advertisements over other prod-
ucts by factor of three (e.g., µ2 = [−0.15 1 − 0.15 . . . − 0.15]).
The result of this simulation is shown in Figure 5. We can see that
in this case the average desire of agents has dropped dramatically
for all methods except the proposed algorithm. Even in the cases
of having high negative effect toward other products, this algorithm
can adapt the node selection in a way to keep the desire of agents
high and sell more products.
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Figure 6: The number of sold items vs. different advertising
methods. The assumption is that an agent with expected desire
greater than 0.01 will purchase the product. Different colors
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tised products. As there exist ten different products, the bar is
divided into ten parts.

To estimate the performance of algorithms in selling the products
to Regular agents, we assumed that agents with expected desire
higher than a threshold will purchase the product. Figure 6 shows
the average of total purchased items by agents with the purchasing
threshold as 0.01. Again, we see that our proposed algorithm is the
most successful method in advertising and selling products.

7. RELATED WORK
Social ties between users play an important role in dictating their

behavior. One of the ways this can occur is through social influ-
ence where a behavior or idea can propagate between friends. In
[1], the authors examine the statistical correlation between the ac-
tions of friends in a social network by considering factors such as
homophily and possible unobserved confounding variables. Hence
it follows that it is not only important to advertise to your customer
but also to your potential customer’s friends.

One theory about influential nodes is that they can be character-
ized as a set of initial nodes that trigger behavior cascades. This
set of nodes can then be identified either using probabilistic ap-
proaches [2, 18] or optimization-based techniques. For example,
in [16] the behavior spreads in a cascading fashion according to a
probabilistic rule, beginning with a set of initially active nodes. To
identify influential agents, they select a set of individuals to target
for initial activation, such that the cascade beginning with this ac-
tive set is as large as possible in expectation. [18] find influential
nodes in a complex social network by formulating the likelihood
for information diffusion data, the activation time sequence data
over all nodes; they propose an iterative method to search for the
probabilities that maximize this likelihood.

Apolloni et al. [2] examine the spread of information through
personal conversations by proposing a probabilistic model to de-
termine whether two people will converse about a particular topic
based on their similarity and familiarity. Similarity is modeled by
matching selected demographic characteristics, while familiarity is
modeled by the amount of contact required to convey information.
On the other hand, [22] propose a learning method for ranking in-
fluential nodes and perform behavioral analysis of topic propaga-
tion; they compare the results with conventional heuristics that do
not consider diffusion phenomena.

In this paper, we present one approach for framing and solving
the optimization problem using convex programming. The opti-

mization problem can also be solved using greedy algorithms (e.g.,
[19, 17]) that find approximate solutions using graph theory. [15]
also utilized greedy algorithms to identify the influential nodes. In-
telligent heuristics can be used to improve the scalability of in-
fluence maximization [8]. [9] made improvements upon existing
greedy algorithms to further reduce run-time and proposed new de-
gree discount heuristics that improve influence spread.

The effects of network topology on influence propagation have
been studied in several domains, including technology diffusion,
strategy adaption in game-theoretic settings, and the admission of
new products in the market [15]. It has been demonstrated that the
way information spreads is affected by the topology of the interac-
tion network [26] and also that there exists a relationship between
a person’s social group and his/her personal behavior [24].

Social network analysis has been used as a tool for implementing
effective viral marketing; influential nodes are identified either by
following interaction data or probabilistic strategies. For example,
Hartline et al. [11] solve a revenue maximization problem to inves-
tigate effective marketing strategies. The assumption is that a set
of influential nodes can propagate the information about the items
to other nodes, and therefore the objective is to find influential buy-
ers in a social network. [27] presented a targeted marketing method
based on the interaction of subgroups in social network. Moreover,
[4], similar to this work, considered the existing homophily in so-
cial networks. But instead of finding influential nodes, they base
their advertising strategy on the profile information of users and
user-only models.

Our work differs from related work in that, our model not only
considers homophily and group membership but also incorporates
other important factors such as the positive and negative effect of
competing product advertisements and the correlation among de-
mand for different products. Our optimization approach is largely
unaffected by the additional complexity since these factors only af-
fect the long-term expected value and not the actual solution method.
Outside of social network marketing approaches, there exist many
marketing methods based on personalization techniques for deliv-
ering advertisements [14] or news [3].

8. CONCLUSION AND FUTURE WORK
Agent-based simulation is an important tool for understanding

the behavior of social systems, enabling the analysis of population-
level effects over long time horizons that are not easily studied
within the confines of the lab. In this paper, we present a model
for researching techniques of large-scale persuasion; rather than
focusing on the content of the message, we address the problem of
identifying agents that have a high probability of indirectly influ-
encing a large number of additional agents. In popular parlance,
these influential agents can be considered to be some mixture of
Gladwell’s connectors, mavens, and salesman who affect the long-
term beliefs of other agents through their actions or communica-
tions [10]. Although this problem generalizes to domains such as
politics and social media distribution, we demonstrate our method
in a market scenario in which product representatives are attempt-
ing to maximize their sales through effective advertisement place-
ment. To solve this influence maximization problem, we compute
the steady-state expectation of the system and introduce a new op-
timization approach for selecting influential nodes. Contrary to
previous work, our approach is suitable for computing an optimal
solution across multiple products and handling the interactions of
multiple influencing agents. Our results show that our technique
conclusively outperforms a set of centrality-based techniques at se-
lecting influential agents and maximizing total product sales. Our
social model accurately reflects many of the complexities of real-
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world human systems, such as group membership effects, product
preference dependencies, and a network structure driven by mul-
tiple conflicting forces. Moreover, in our model, an regular agent
need not represent an individual person but can be thought of as
an abstraction over communities of people. Then larger systems
can simply be solved in a hierarchical, but non-exact, fashion. In
our future work, we plan to mathematically analyze the short time
behavior of the system. This analysis will allow us to generalized
our solution technique to a dynamic network whose structure varies
over time [6] which is a characteristic possessed by certain real-
world social systems.
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ABSTRACT
We consider a setting in which a worker and a manager may
each have information about the likely completion time of
a task, and the worker also affects the completion time by
choosing a level of effort. The task itself may further be
composed of a set of subtasks, and the worker can also de-
cide how many of these subtasks to split out into an explicit
prediction task. In addition, the worker can learn about
the likely completion time of a task as work on subtasks
completes. We characterize a family of scoring rules for the
worker and manager that provide three properties: infor-
mation is truthfully reported; best effort is exerted by the
worker in completing tasks as quickly as possible; and col-
lusion is not possible. We also study the factors influencing
when a worker will split a task into subtasks, each forming
a separate prediction target.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Information Elicitation, Proper Scoring Rule, Principal-Agent

1. INTRODUCTION
Software engineering is one of many domains with com-

plex and modular tasks. There are often information asym-
metries, both between the worker performing a task and the
manager supervising and between the two of them and the
rest of the organization or company. In such environments,
it is important for the organization to be able to elicit ac-
curate predictions from worker-manager teams in regard to
when individual tasks are expected to complete. By eliciting
accurate predictions, this enables good decision-making in
regard to scheduling resources to projects (such as bug fixes
or new features), and in regard to coordination of projects.

A particular challenge is that a worker with information
relevant to the prediction task also controls the completion

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

time through the amount of effort exerted on the task. In
modeling this, we consider a single worker and a single man-
ager. The worker works on a sequence of tasks and both the
worker and the manager receive a score based on predictions
and completion times for each task completed. We assume
that the organization (or company) couples the score re-
ceived by the worker or manager with incentives, be they
social-psychological such as praise or visibility, or material
rewards through prizes or the payment of bonuses. Based
on this, we assume that the worker and the manager each
seek to maximize total expected score.

The role of the worker is to share information relevant to
the expected completion time of the task with the manager,
in order to enable accurate predictions, and also to decide
on whether to work at “best effort” or less than best effort.
The role of the manager is to combine information received
from the worker with her own information (if any), and make
accurate predictions to the organization regarding the com-
pletion time of tasks. We tackle the issue of how to elicit
truthful information and thus accurate predictions from the
worker and manager, as well as how to elicit best effort from
the worker.1

In essence, our problem is a combination of a repeated
principal-agent problem and a prediction problem. In a
principal-agent setting, a principal wishes to elicit a desired
effort level from an agent but does not require the agent to
make any predictions. On the other hand in a prediction
problem, accurate predictions of the outcome of an event
are sought but without considering that the distribution on
outcomes might be something that can be controlled by the
agent doing the prediction. In contrast we seek to establish
both accuracy and the investment of best effort.

Our main technical result is a characterization of a class
of scoring rules that are able to align incentives with both
accurate prediction and the investment of best effort. In
addition, the scoring rules inherently preclude the possibil-
ity of collusion between the worker and manager in their
participation in the scoring system. For example, it is not
useful for a manager and worker to agree that the worker
will deliberately slow down in return for a prediction task
with lower variance and thus the potential for higher total
score to the worker-manager pair.

1We assume that existing incentive schemes within the or-
ganization (e.g., pay, promotion, etc.) encourage best effort
work, all things being equal. For this reason, it is sufficient
for our purposes that the incremental incentives provided by
the scoring scheme, work with (not against) best effort. In
particular, we want to preclude working at less than best
effort leading to a higher expected score.
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In addition, we consider the effect of a scoring system on
whether or not a worker will choose to split a task into multi-
ple prediction targets. For this purpose, we model a task as
a sequence of subtasks, where a subtask is conceptualized as
a unit of work with a well-defined end point, and for which
the time to complete the unit of work may be informative as
to the time to complete other subtasks that comprise a task.
With this in mind, we study the incentives for a worker to
“split-out” a subtask for the purpose of a separate predic-
tion target.2 The qualitative result we obtain is that there
is a greater propensity to split subtasks for which the com-
pletion times are positively correlated than those for which
the completion times are independent. A simulation study
completes the paper, providing a quantitative analysis of
the trade-off between the frequency of “splitting” prediction
into subtasks, the degree to which the distribution on sub-
task completion time is correlated, and a parameterization
of the scoring rule that affects how much payment is made
per subtask target vs how much payment must be made in
catch-up upon the completion of a task.

1.1 Related Work
Scoring rules have been developed to measure the per-

formance of experts who are solicited to reveal their prob-
ability assessments regarding uncertain events. They have
been used in a variety of scenarios, from weather forecast-
ing to prediction markets [3, 5, 4, 7]. Proper scoring rules
incentivize truthful reporting of likelihood estimates. An
overview of the theory behind proper scoring rules can be
found in Gneiting and Raftery [3].

Proper scoring rules typically require that the outcome of
the uncertain event will be revealed and the agent whose
assessment is elicited can not influence the outcome. In our
setting, the prediction of effort required to complete a task
and the outcome or realized effort are not independent; both
are influenced by the worker. Shi et al. [11] consider situa-
tions where agents may be able to take actions that influence
the outcome. They propose principal-aligned mechanisms
that do not incentivize agents to take actions that reduce
the utility of the principal. Their setting considers eliciting
a probability distribution and the outcome space is discrete.
Our setting allows for continuous effort level and we seek
to elicit the expectation as well as incentivize best effort.
The result of Shi et al. [11] can be generalized to the set-
ting of eliciting the expectation for a random variable over a
continuous outcome space using the characterization of Sav-
age [10], which is also used to derive our characterization in
Section 3. With this generalization, it is possible to derive
our Theorem 7 by assigning a particular utility function to
the principal and applying the result of Shi et al. [11]. How-
ever, this approach seems unnecessarily complicated in our
setting, and we derive our results by directly considering
desirable properties of the incentive mechanism.

There is a vast literature on principal-agent models [2,
6]. In a classical principal-agent model with hidden action,
an agent chooses an action to take that is costly for him

2Our viewpoint is that it is the worker, not the manager,
who is privy to information in regard to subtasks. Moreover,
we can imagine situations in which predictions in regard to
subtasks rather than in regard to the aggregate time for a
task is useful; e.g., for sharing information with other work-
ers, for re-planning, and in order to collect data to enable
the training of predictive models in order to enable better
organizational efficiency going forward.
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Figure 1: Timeline of the worker-manager game.

but beneficial for the principal in exchange for a promise of
payment. The principal cannot directly observe the agent’s
action, but the stochastic correlation between actions and
outcomes (that is, the probability of observing an outcome
given that the agent takes an action), is common knowledge.
For example, the agent’s action can be a level of effort ex-
erted with the probability of success for a project an increas-
ing function of the level of effort. Knowing the stochastic
correlation, the principal seeks to incentivize the agent to
take a desirable action using contracts with payments based
on the outcome.

Radner [9] considers an infinitely repeated setting for the
principal-agent problem. In Radner’s setting, the game is
composed of sequences of review and penalty periods. By
allowing the players’ actions in one period to depend on the
history of previous periods, the principal can observe the
results of the agent’s actions and punish the agent if the
agent’s performance fails some statistical test of efficiency.
Radner shows that for high enough discount factors, there
exist equilibria, consisting of reward-decision pairs, of the
infinitely repeated game that are strictly more efficient than
the short-term equilibrium. Our setting is different in that
it combines the challenge of eliciting desirable actions with
that of eliciting information from an agent. Our setting
introduces information asymmetry about the stochastic cor-
relation between the action and the outcome, allowing the
agent to have private information about this stochastic cor-
relation. The principal would like to elicit the information
from the agent so as to obtain a better prediction, which is
then used by the principal to set the reward for the agent.
Because the reward of the agent now depends on the re-
ported information, this introduces incentives to lie about
the information or act in a suboptimal way. Given this ten-
sion, we aim to achieve truthful elicitation of private infor-
mation as well as elicitation of the desirable action.

2. THE BASIC MODEL
We consider the incentive design problem for a company

(the principal), whose goal is to truthfully elicit information
from its employees as well as incentivize them to exert opti-
mal level of effort. The basic model considers a single task
with two agents, a worker and a manager, each with private
information in regard to likely completion time of the task.
The worker shares information with the manager, who then
combines this information with his own private information
and makes a prediction. The worker then exerts effort, and
at some subsequent time the task completes and the worker
informs the system (and the manager) of this event. We
assume that only a truly completed task can be claimed as
complete, but allow a worker to reduce effort below best
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effort, including to pretend a task is not complete when it
has been completed. Eventually, a score is assigned to both
the worker and the manager. Later, we extend the basic
model to include structure in regard to subtasks and also to
consider a sequence of tasks.

Let X denote the random variable for the time the task
takes to complete under the best effort by the worker. As-
sume that the realized value of X is nonnegative and upper
bounded, i.e. x ∈ (0, xmax). Neither the manager nor the
worker knows the realization of X. But they each have some
private information, denoted as random variables Im and
Iw respectively, on the completion time under best effort.
The joint distribution Π(X, Im, Iw) is common knowledge
to them, but not known to the company. Assuming Π is
not known to the company ensures a broad range of priors
are considered possible. In particular, this allows E[X|Im],
E[X|Iw], and E[X|Im, Iw] all take on all values in (0, xmax).
This ensures that rules we derive work for a broad range
of beliefs, similar to proper scoring rules requiring truthful
reporting be optimal for all probability distributions. If the
company believes that only a significantly restricted set of
priors is possible, there may be additional rules that our re-
sults do not characterize. Note also that these expectations
are well defined because X is bounded.

The manager and the worker play a three-stage game as
shown in Figure 1. In stage 1, the worker can communicate
with the manager and share information. In stage 2, the
manager makes a prediction x̂ about the completion time
of the task under the worker’s best effort. In stage 3, the
worker exerts some effort and completes the task in time
x′. While the worker cannot exert more than his best effort
and complete the task in time less than x, he can work at a
more slack pace and take time x′ > x to complete the task.
However, we require that x′ ≤ xmax because otherwise it
will be clear to both the manager and company that he is
not working efficiently.

We assume that both the manager and the worker are
risk neutral. We further assume that the worker, all things
being equal, is indifferent between working at best effort or
“slacking.” In other words, if the worker can get a higher ex-
pected score through a best-effort strategy rather than slow-
ing down, then this is the approach the worker will take. Our
results also hold when there is an existing, strict incentive
for best effort over slacking, for example because of existing
incentives in the company.

We consider incentive mechanisms (we refer to them as
scoring systems) that reward the manager and the worker
based on the manager’s prediction of the completion time
and the worker’s actual completion time. At the end of stage
3, a manager is rewarded according to the score Sm(x′, x̂)
and the worker according to the score Sw(x′, x̂). We require
Sm and Sw to be differentiable with respect to x′ and x̂.
The goal of a scoring system is to incentivize the report of
an accurate prediction at best effort and the exertion of the
best effort.

2.1 Desirable Properties of Scoring Systems
Our model is a simple two-player three-stage game. We

hence consider the perfect Bayesian equilibrium of the game
and desire good behavior of the manager and the worker at
the equilibrium. The following are four properties we would
like a scoring system to achieve at the equilibrium:

1. Information sharing. For all Π, the worker shares

his private information Iw honestly with the manager
in stage 1.

2. Report the mean. For all Π, when estimating the
time required to complete a task under best effort of
the worker, the manager’s optimal report in stage 2 is
x̂ = E[X|I] where I is all information available to the
manager at the time, given equilibrium beliefs.

3. Best effort. For all x̂, it is optimal for the worker to
exert his best effort and choose x′ = x for all realiza-
tions x in stage 3.

4. Collusion-proofness. For all Π, the total expected
score of the manager and the worker is maximized by
reporting x̂ = E[X|Iw, Im] and exerting best effort
such that x′ = x for all realizations x.

If the above four properties are satisfied, we will have
a perfect Bayesian equilibrium where the worker shares all
his information with the manager, the manager truthfully
reports his expectation of the completion time under best
effort given both pieces of information, and the worker com-
pletes the task as quickly as possible. Moreover, this equilib-
rium is collusion-free, such that no joint deviation can lead
to an increase in the total expected score.

3. CHARACTERIZATION OF SCORING SYS-
TEMS

We proceed to characterize scoring systems that satisfy
our desirable properties. The main technical challenge is to
simultaneously address the need for accurate prediction and
retain incentives for the worker to adopt best effort.

First, we consider the best effort property. It’s easy to see
that if choosing x′ = x is optimal for the worker given any
x and prediction x̂, the worker’s score Sw(x′, x̂) must be a
decreasing function of x′.

Observation 1. A scoring system satisfies best effort if

and only if ∂Sw(x′,x̂)
∂x′ ≤ 0.

For example, a simple scoring rule Sw(x′, x̂) = 2x̂−x′ can
incentivize the worker to exert his best effort.

Given the best effort property, we know that x′ is set to x
at the equilibrium. The report the mean property requires
a scoring system to incentivize the manager to honestly re-
port her expected completion time given all available infor-
mation. This is exactly the problem addressed by proper
scoring rules for eliciting the mean of a random variable.
Proper scoring rules for eliciting the mean of a random vari-
able satisfy the property that reporting the mean maximizes
expected score. Hence, we have an immediate solution based
on the definition of proper scoring rules.

Observation 2. If the best effort property is satisfied, the
scoring system satisfies the report the mean property if and
only if E(X|I) ∈ argmaxx̂E(Sm(X, x̂)|I).

We can use any proper scoring rule as the manager scoring
rule, in conjunction with a worker scoring rule that incen-
tivizes best effort, to achieve the report the mean property.
For example, Sm(x′, x̂) = b− (x̂− x′)2 for an arbitrary pa-
rameter b uses a quadratic scoring rule.

While it is easy to achieve both best effort and report the
mean properties at an equilibrium, satisfying information
sharing and collusion-proofness is less straightforward.
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Consider the pair of the worker and manager scoring rules
mentioned above, Sw(x′, x̂) = 2x̂ − x′ and Sm(x′, x̂) = b −
(x̂ − x′)2. The worker may not want to share his informa-
tion with the manager if his information will lead to a lower
prediction x̂ by the manager. In addition, the total score
can be increased if the worker and the manager collude.
To see this, note that the manager can report a larger pre-
diction and the worker can work slowly to perfectly match
the manager’s prediction, which increases the worker’s score
while maximizing the manager’s score. Below, we charac-
terize the conditions for achieving all four desired properties
simultaneously.

3.1 A Family of Scoring Rules
We first consider how to satisfy the information sharing

property. This will require that the worker is also rewarded
for a more accurate prediction.

Lemma 3. If the best effort and report the mean proper-
ties are satisfied, the information sharing property is satis-
fied if and only if E(X|I) ∈ argmaxx̂E(Sw(X, x̂)|I).

Proof. The worker can influence the prediction x̂. In an
extreme case, when all relevant information is possessed by
the worker, the prediction is effectively made by the worker.
In order for the worker to predict the mean, the worker
scoring rule needs to be a proper scoring rule for the random
variable X. Because E(X|I) maximizes a worker’s score
given any information set I, for any Im and Iw, E(X|Iw, Im)
maximizes the worker’s expected score E(Sw(X, x̂)|Iw, Im).
Hence, the worker is better off sharing the information with
the manager to have the manager report E(X|Iw, Im).

Next, we consider achieving collusion-proofness. Let
ST (x′, x̂) denote the sum of the worker and manager scores.
If the manager and the worker collude to report a predic-
tion x̂ and complete the task in time x′, collusion-proofness
requires that the manager-worker pair is incentivized to re-
port the mean and exert best effort. These are analogous
to achieving information sharing and best effort when the
worker has all information and the manager has no infor-
mation. Let ST (x′, x̂) = Sw(x′, x̂) + Sm(x′, x̂) be the total
scoring rule. The following result follows immediately.

Lemma 4. Collusion-proofness is satisfied if and only if
∂ST (x′,x̂)

∂x′ ≤ 0 and E(X|I) ∈ argmaxx̂E(ST (X, x̂)|I).

This means that if a scoring system satisfies best effort,
report the mean, and information sharing we essentially get
collusion-proofness for free with the mild additional condi-
tion that the total scoring rule also satisfies best effort (a
sufficient condition for which is that the manager’s scoring
rule satisfies best effort). Combining the results character-
izes scoring systems that satisfy all four desirable properties.

Lemma 5. A manager-worker scoring system satisfies
information sharing, report the mean, best effort, and
collusion-proofness at a perfect Bayesian equilibrium if and
only if the following conditions are satisfied:

• ∂Sw(x′,x̂)
∂x′ ≤ 0.

• ∂ST (x′,x̂)
∂x′ ≤ 0.

• E(X|I) ∈ argmaxx̂E(Sm(X, x̂)|I).

• E(X|I) ∈ argmaxx̂E(Sw(X, x̂)|I).

for all information sets I.

Intuitively, Lemma 5 requires that the worker score and
the manager score are all given by a proper scoring rule for
eliciting the mean (it is immediate that the total score must
also be given by a proper scoring rule), in addition to the
worker and total scores being a decreasing function of the ac-
tual completion time. For example, Sw(x′, x̂) = Sm(x′, x̂) =
f(x′) + 2cx′x̂ − cx̂2, where f ′(x′) + 2cx̂ < 0 and c > 0 is
a family of scoring systems that satisfy all four desirable
properties. A theorem due to Savage [10] characterizes all
(differentiable) proper scoring rules for eliciting the mean.

Theorem 6 (Savage [10]). For S differentiable in x̂,
E(X|I) ∈ argmaxx̂E(S(X, x̂)|I) if and only if S(x′, x̂) =
f(x′) + G(x̂) + (x′ − x̂)G′(x̂) where E[f(X)|I] is finite for
all Π and G is a differentiable convex function.

Note that a sufficient condition for E[f(X)|I] to be finite
for all Π is that f is bounded on (0, xmax). Combining Theo-
rem 6 with Lemma 5 yields a more precise characterization.

Theorem 7. A manager-worker scoring system satis-
fies information sharing, report the mean, best effort, and
collusion-proofness at a perfect Bayesian equilibrium if and
only if the following conditions are satisfied:

• Sw(x′, x̂) = fw(x′) + Gw(x̂) + (x′ − x̂)G′w(x̂) where
fw is a differentiable function such that E[fw(X)|Iw]
is finite for all Π and Gw is a differentiable convex
function.

• Sm(x′, x̂) = fm(x′)+Gm(x̂)+(x′− x̂)G′m(x̂) where fm
is a differentiable function such that E[fm(X)|Im, Iw]
is finite for all Π and Gm is a differentiable convex
function.

• f ′w(x′) +G′w(x̂) ≤ 0 for all x′,x̂ ∈ (0, xmax).

• f ′w(x′) + f ′m(x′) + G′w(x̂) + G′m(x̂) ≤ 0 for all x′,x̂ ∈
(0, xmax).

Finally, note that this means we can derive a scoring sys-
tem from a differentiable convex pair of Gs whose derivatives
we can upper bound by taking f ′w(x′) = −| supx̂G

′
w(x̂)| and

similarly for fm.

4. TASK DECOMPOSITION
Continuing, we now consider that a task has substruc-

ture, with a task represented as a series of subtasks. Based
on this, we allow a worker-manager team to elect to split-
off individual subtasks (or contiguous subtasks) to become
identified prediction tasks in their own right; i.e., essentially
partitioning the task into a distinct set of pieces, each of
which has an associated prediction problem.

In increasing the realism of the model, we also situate the
prediction task for a single task in the context of a repeated
version of the problem, in which a worker has a sequence of
tasks. In this context, the following property is useful:

5. Always non-negative. The score of the worker and
the manager is always non-negative for all realizations
of x and all reports x̂.
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If the score is always non-negative, then our best effort
property immediately guarantees that best effort is also op-
timal for a worker facing a sequence of tasks, in that this
will maximize both the total score for sequence of tasks and
the score per unit time.3

This noted, we can focus back on a single task and in-
troduce formalism to make precise what is intended by a
subtask. Let X = X1 + . . .+Xk denote a task X composed
of k subtasks X1, . . . , Xk. The worker decides which sets of
subtasks are to become targets of the scoring system. For
example, the worker might prefer to make a single predic-
tion, thereby being scored just once after completing the
task in its entirety. Another option is that the worker may
prefer to make k predictions (hence receiving k scores), one
for each subtask. Alternately, the worker select subtask X1

as a target, then subtask X2, and then subtasks X3, . . . , Xk
aggregated into one chunk of work for the purpose of pre-
diction. We assume that the degree to which the prediction
problem associated with a task may be split-out into sub-
tasks is knowledge that is private to the worker and a priori
not known to the manager.

We allow the worker to make online decisions about which
subtasks to split-out as separate prediction targets. That is,
if the worker initially decides to get scored for X1, after this
is done he can then choose whether to next get scored for X2

or instead to combine X2 with some number of subsequent
subtasks (we assume subtasks must be completed in order).
As we are focusing on decisions made by the worker, we
will only discuss Sw. The report the mean and collusion
proofness properties can be retained through an appropriate
choice of Sm. To be able to make concrete statements, we
focus on the special case Sw(x, x̂) = f(x′) + 2cx′x̂− cx̂2.

4.1 Independent Subtasks
For a simple model, consider a worker with two subtasks,

denoted by random variables X1 and X2, and each with
discrete support {a, b}, with 0 < a < b ≤ 1 and xmax = b.

For this setting with two subtasks, the choice of the worker
in regard to prediction targets is as follows:

• Adopt the complete task as a prediction target, share
information in regard to X = X1 +X2 (with the man-
ager making a prediction), work on them both, and
then receive a score.

• Split-out X1 as the first prediction target, share infor-
mation with the manager (with the manager making
a prediction), work on X1 and receive a score, then
share information in regard to X2, work and receive a
score.

Lemma 8. Let Sw(x, x̂) = f(x′) + 2cx′x̂− cx̂2 satisfy best
effort and always non-negative. Then for a task with two
subtasks, it is always optimal for the worker to split inde-
pendent subtasks into separate prediction targets.

Proof. For any distribution of effort X the worker’s ex-
pected score from truthful reporting (which is optimal) is

E[Sw(X,E[X])] = E[f(X)] + cE[X]2.
3In contrast, suppose the score assigned for the completion
of a task is negative. In this case, a worker may prefer to
spend 10 hours and earn a score of −2 than to spend 1 hour
and earn a score of −1, because in those additional 9 hours
the worker would be completing additional tasks for more
negative scores.

To deal with E[f(X)], we make use of two bounds regard-
ing f(x). First, we know that f ′(x′) < −2cx̂ for all x̂, so
in particular this is true for x̂ = xmax. By always non-
negative, f(xmax) ≥ 0. Thus, f(x) ≥ (xmax − x)2cxmax.
Second, for a < b, f(a) − f(b) ≥ (b − a)2cxmax. We
now show that E[Sw(X1, E[X1])] + E[Sw(X2, E[X2])] >
E[Sw(X1 + X2, E[X1 + X2])]. Note that we use the un-
conditional expectation over X2 here because X1 and X2

are independent.

E[Sw(X1, E[X1])] + E[Sw(X2, E[X2])]

− E[Sw(X1 +X2, E[X1 +X2])]

= E[f(X1)] + cE[X1]2 + E[f(X2)] + cE[X2]2

− E[f(X1 +X2)]− cE[X1 +X2]2

= E[f(X1) + f(X2)− f(X1 +X2)]− 2cE[X1]E[X2]

≥ E[(xmax −X1)2cxmax + ((X1 +X2)−X2)2cxmax]

− 2cE[X1]E[X2] = 2c(x2max − E[X1]E[X2]) > 0.

We take this as a negative observation, because there is
no learning effect when splitting out independent subtasks—
it is not the case that additional accuracy can be achieved
through separate predictions in the absence of correlations.

On the other hand, if we are willing to accept a scoring
rule that may be negative, it is easy to obtain a different
result. For example, take f(x′) = −kx′ (k > 2xmax) and
c = 1. Some algebra shows that not splitting results in an
increase in utility of 2E[X1]E[X2] > 0, and so independent
subtasks are not split out as separate prediction targets.

For this reason, the following is a very helpful observa-
tion. If the distinction between the completion of a task
and the completion of a subtask is observable by the com-
pany, then the scoring system can provide a large enough
bonus score B > 0 upon the completion of a task (but not
a subtask), in order to remove the broader implications of
a stream of negative scores. We adopt this approach going
forward, allowing for scoring rules that may be negative but
correcting for this with a large enough catch-up bonus B on
the completion of a complete task.4

Parameter B can be calculated as the negation of the low-
est possible score (the most negative score) that a worker
who exerts best effort can possibly get for completing the
task. For a given chunk of work (a set of subtasks chosen as
a prediction target), the lowest score is achieved when the
time to complete it under best effort is maximized while the
prediction of the completion time is minimized.

4.2 Correlated Subtasks
To gain a qualitative understanding of the effect of our

scoring rules on the propensity to split-out subtasks as
separate targets, we adopt a simple model of correlation.
The joint distribution on (X1, X2) is parameterized with
q ∈ (1/2, 1] and r ∈ [0, 1]. The distribution on time to
complete task 1 under best effort is a with probability q and
b with probability 1 − q. With probability r, the time to
complete task 2 is the same as for task 1 (i.e. X2 = X1).
Otherwise, with probability 1− r the time to complete task
2 is independently sampled according to probability q.

We use the scoring rule Sw(x, x̂) = f(x′) + 2cx′x̂ − cx̂2
with f(x′) = C − kx′ and c = 1, where k > 2xmax and C is
4This bonus is invariant to any aspect of the prediction or
effort and does not change the rest of the analysis.
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a constant. We show that, for appropriate choice of C, the
incentive to split-out subtasks increases as r increases, and
thus as there is more positive correlation between the time
to complete the subtasks under best effort.

In particular, the choice of C sets a threshold for r. If r
is below this threshold then the subtasks are independent
enough that the worker does not want to split them. If
r is above this threshold then the substasks are correlated
enough that splitting them to learn is worthwhile. Increasing
C decreases this threshold, but increases the cost to the
scoring rule. Thus the choice of C allows a trade-off between
encouraging the accurate sharing of predictions on subtasks
and cost. However, past a certain point, the worker will
want to split-out all subtasks regardless, and increasing C
will simply increase the cost.

Lemma 9. Consider a task with two sub-tasks. Let Sw be

as above with C < 2E[X1]E[X2]. Let r∗ =
√

2E[X1]E[X2]−C
q(1−q)(a−b)2 .

If r ≥ r∗ then it is optimal for the worker to split-out sub-
tasks. If r ≤ r∗ then it is optimal for the worker to not do
so.

Proof. Unlike in Lemma 8, X1 and X2 are no longer
independent. In particular, this means that the expected
score for task two if they are split is no longer simply
E[Sw(X2, E[X2])]. Instead, the worker learns something af-
ter completing the first task so, a priori, the expected score
is EX1 [E[Sw(X2, E[X2|X1 = x])|X1 = x]]. Hence we can
write the expected gain from splitting as follows:

E[Sw(X1, E[X1])] + EX1 [E[Sw(X2, E[X2|X1 = x])|X1 = x]]

− E[Sw(X1 +X2, E[X1 +X2])]

= E[C − kX1 + E[X1]2]

+ EX1 [E[C − kX2 + EX1 [(E[X2|X1 = x])2]|X1 = x]]

− E[C − k(X1 +X2) + E[X1 +X2]2]

= C + E[X1]2 + EX1 [(E[X2|X1 = x])2]− E[X1 +X2]2

= C + E[X1]2 + E[X2]2 − E[X1 +X2]2

+ EX1 [(E[X2|X1 = x])2]− E[X2]2

= C − 2E[X1]E[X2] + EX1 [(E[X2|X1 = x])2]− E[X2]2.

For the particularly simple distribution we have chosen, we
can expand the last two terms as

EX1 [(E[X2|X1 = x])2]− E[X2]2

= q(ra+ (1− r)E[X2])2 + (1− q)(rb+ (1− r)E[X2])2 − E[X2]2

= (1− r)2E[X2]2 + qr2a2 + (1− q)r2b2 + 2qar(1− r)E[X2]

+ 2(1− q)br(1− r)E[X2]− E[X2]2

= (1− r)2E[X2]2 + qr2a2 + (1− q)r2b2 + 2r(1− r)E[X2]2

− E[X2]2

= qr2a2 + (1− q)r2b2 − r2E[X2]2

= r2(qa2 + (1− q)b2 − (qa+ (1− q)b)2)

= r2(qa2 + (1− q)b2 − q2a2 − (1− q)2b2 − 2q(1− q)ab)
= r2((1− q)qa2 + q(1− q)b2 − 2q(1− q)ab)
= r2q(1− q)(a− b)2

Thus, splitting is optimal if and only if C−2E[X1]E[X2]+
r2q(1 − q)(a − b)2 ≥ 0. Solving for r yields the desired
inequalities.

In a situation where it is important that the cumulative
score for each task is non-negative, then a mitigating aspect
of this trade-off is that for smaller values of C the scoring
system must assign a larger bonus B upon task completion
to correct for the possibility of an accumulation of negative
scores on subtasks.

Remark: One might also wonder whether it is possible to
modify our scoring rules to allow a worker-manager team to
“push” new predictions in regard to a particular prediction
target over time, and without leading to new strategic con-
siderations. For example, suppose the worker elects not to
split-off any subtasks and have as the target the entire task.
But now as work is completed on each subtask, perhaps the
worker has updated information in regard to when the task
will likely be completed. Perhaps surprisingly, the effect of
allowing this turns out to be quite subtle.

For example, associating the score with the average of the
score from m predictions fails, because the worker-manager
team could maximize its realized score by simply pushing a
lot of predictions just before completing a task when there is
high confidence about how long the task will take. Insisting
that predictions are made at fixed intervals of time could
lead to a preference for slacking in order to be able to make
an additional prediction. Adopting a time-averaged score,
integrated over the different predictions made over time in
regard to a prediction target, could lead to a preference to
work more slowly on subtasks about which the prediction is
higher quality. We leave a full reconciliation of this problem
to future work.

5. SIMULATIONS
Our simulation study is designed to validate the three

qualitative observations in our theoretical analysis: (a) for
subtasks with more correlation the worker will tend to split
out more subtasks as targets, (b) for a higher value of C the
worker will tend to split out more subtasks into targets, and
(c) for a higher value of C the average score received by the
worker will tend to increase.

For this purpose, we consider a task X with 3 subtasks
X1, X2, and X3. With probability q the task is low difficulty,
and with probability 1− q the task is high difficulty. Given
that the task is low difficulty, then a subtask takes time
a = 0.5 under best effort with probability p ∈ [0.5, 1], and
b = 1 under best effort otherwise. For a high difficulty task,
a subtask takes time b = 1 with probability p, and a = 0.5
otherwise (both under best effort.) In this way, p controls
the correlation between effort on subtasks. High p yields
high correlation.

We simulate each possible policy a worker might adopt in
deciding which subtasks to split-off into separate prediction
targets. Altogether, there are six possible policies:

1. Policy 1: Work on each subtask separately. First tar-
get is subtask X1, then X2, followed by X3.

2. Policy 2: First target is X1. If completion time of X1 is
observed to be a then the second target is X2, followed
by X3. If completion time of X1 is b then the second
target is X2 +X3 as a chunk.

3. Policy 3: First target is X1. If completion time of X1 is
observed to be b then the second target is X2, followed
by X3. If completion time of X1 is a then the second
target is X2 +X3 as a chunk.
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Figure 2: Average score and average number of
prediction targets under the best policy, varying
p ∈ [0.5, 1] for C = −1.9 and q = 0.5.

4. Policy 4: First target is X1. The second target is X2 +
X3 as a chunk.

5. Policy 5: First target is X1 + X2 as a chunk. The
second target is X3.

6. Policy 6: The first and only target is the entire task
X = X1 +X2 +X3 as a single chunk.

For concreteness, the scoring rule that we adopt is

Sw(x, x̂) = C − 2x′xmax + 2x′x̂− x̂2

In considering the score, we also allocate a bonus B upon
completion of the entire task, set to the minimal value such
that the score is guaranteed to be positive for all contin-
gencies. To determine this value, we first compute all the
possible different scores that could be obtained for each pol-
icy, selecting the lowest score as that policy’s worst score.
The (negated) lowest score amongst the 6 worst scores of
the 6 policies provides the bonus.

Given this setup, we compare the average score and the av-
erage number of prediction targets as the amount of positive
correlation (reflected by p) and the parameter in the scoring
rule C varies. For each policy, and for different values of C,
p and q, we run at least 10,000 trials and determine the aver-
age score. The policy that we assume the worker adopts for
a triple (C, p, q) is that which maximizes the average score.

Figure 2 is obtained by varying p ∈ [0.5, 1] for C = −1.9
and q = 0.5, and shows for each value of p the average score
and the average number of targets for the optimal policy for
that value of p. As p increases there is greater correlation
which results in more splitting and a higher score. Figure 3
corroborates this by showing that as p approaches a value
of 0.7, the optimal policy changes from Policy 4 to Policy
3. Since Policy 3 varies between 2 and 3 splits, we get an
average number of targets equal to 2.5. We have omitted
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Figure 3: Average score for policies 1 through 5,
varying p ∈ [0.5, 1] for C = −1.9 and q = 0.5.

Policy 6 in Figure 3; its average score remained in the range
[2.8, 2.9] throughout.

Figure 4 is obtained by varying C ∈ [−5, 1] for p = 0.8
and q = 0.5, and shows for each value of C the average score
and the average number of targets for the optimal policy for
that value of C. It shows that as C increases there is more
splitting. while the average score also increases. Figure 5
shows the average score of the different policies. The optimal
policy is initially Policy 6 (no splitting), and hence there is
only 1 prediction target. With increasing C the optimal
policy changes to those with greater splitting, finally ending
up at Policy 1 (full splitting). We have omitted policies
2 and 5 in Figure 5, as their scores were very close to the
scores of policies 3 and 4 respectively (policies 2 and 5 scored
slightly less than policies 3 and 4 respectively for all values
of C). For C < −3.75, the value of B was determined by
policy 1, which is why the curve for policy 1 is initially flat
and the others are decreasing. For larger values of C, B is
determined by policy 6 so it is flat while the others increase.

The basic trends we see in these plots are consistent with
the theory, which allows for a tradeoff between the degree
to which tasks are split and the cost to the mechanism.

6. CONCLUSIONS
We have introduced the problem of incentivizing a worker-

manager team to commit best effort to a task and make ac-
curate predictions in regard to completion time. In studying
this question, we have characterized a family of scoring rules
with natural properties, and considered the effect of the rules
on decisions in regard to which subtasks to split-out into ex-
plicit prediction targets.

The problem was motivated by an extant outcomes-based
incentive system currently applied to IBM’s internal IT ini-
tiatives. In this system, software professionals (developers,
software designers, testers, etc.) execute tasks assigned by
their project managers to produce project deliverables. Each
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Figure 4: Average score and average number of
prediction targets under the best policy, varying
C ∈ [−5, 1] for p = 0.8 and q = 0.5.

task is associated with a “Blue Sheet” that records the man-
ager’s prediction of required effort for the task, along with
its actual completion time. Blue Sheet data are used to
compute scores for both ‘workers’ and ‘managers,’ and top
scorers are recognized for their achievement.

The Blue Sheet system has been in place since 2009 and
has provided some useful initial insights on process differ-
ences across internal groups. However, the current Blue
Sheet scoring system does not satisfy any of the four prop-
erties outlined in Section 2.1. It is difficult to derive any
strong conclusions about the impact of these missing prop-
erties from existing Blue Sheet data (much of the informa-
tion is self-reported), but the data suggests some evidence
of collusion between ‘workers’ and ‘managers.’

We are aiming to pilot a new scoring system based on
the current work, comparing to the existing system, both
by comparing scores and outcomes and by surveying the
participants regarding which system they prefer. It will be
interesting to consider, as a next step, additional factors
that might be important in a practical deployment. These
factors include the impact of a scoring system on the kinds
of tasks that worker-manager teams choose to take on, for
instance in regard to their inherent predictiveness.

The current Blue Sheet system includes some additional
aspects that are outside of our model. These include a self-
assessment of the deliverable quality against specified stan-
dards, and also an assessment of the extent that re-use of
pre-existing assets was leveraged to complete the deliver-
able. From this perspective, we are interested to understand
the impact of a scoring system on how to decompose work
into subtasks in the first place, that is on the modulariza-
tion of tasks. A key goal of the Blue Sheet system is to
incentivize the creation and application of reusable software
components, thereby making the development process more
efficient. Devising incentive schemes that directly encourage
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Figure 5: Average score for policies 1, 3, 4, and 6,
varying C ∈ [−5, 1] for p = 0.8 and q = 0.5.

creating reusable components, e.g., by rewarding the com-
ponent author when others reuse the component, remains as
future work.
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ABSTRACT
We consider the problem of devising incentive strategies for
viral marketing of a product. In particular, we assume that
the seller can influence penetration of the product by offer-
ing two incentive programs: a) direct incentives to poten-
tial buyers (influence) and b) referral rewards for customers
who influence potential buyers to make the purchase (ex-
ploit connections). The problem is to determine the optimal
timing of these programs over a finite time horizon. In con-
trast to algorithmic perspective popular in the literature, we
take a mean-field approach and formulate the problem as a
continuous-time deterministic optimal control problem. We
show that the optimal strategy for the seller has a simple
structure and can take both forms, namely, influence-and-
exploit and exploit-and-influence. We also show that in some
cases it may optimal for the seller to deploy incentive pro-
grams mostly for low degree nodes. We support our theoret-
ical results through numerical studies and provide practical
insights by analyzing various scenarios.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory, Performance

Keywords
Incentive Strategies, Social Networks, Viral Marketing

1. INTRODUCTION
A key research topic in multi-agent systems is to un-

derstand the effect of microdynamics/interactions between
agents on macroscopic properties. Often the agents are a
part of a social structure such as a social network. A com-
mon example is that of a social network that consists of
potential buyers of a particular new product offering in the
market. These buyers interact with each other and influ-
ence each others’ purchase decisions through word-of-mouth
and/or behavior. This so-called social influence exerted by

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

agents on their neighboring agents in the network have a
significant role to play in generating a network effect on the
sales of the product. The idea of viral marketing is to essen-
tially exploit the (macroscopic) network effects that result
due to the microdynamics between the agents in the net-
work.

Viral marketing is receiving much attention by practicing
marketers and academics alike. While not a new idea, it has
come to the forefront because of multiple effects - products
have become more complex, making buyers to increasingly
rely on opinions of their peers; consumers have evolved to
distrust advertising; and Web2.0 has revolutionized the way
people can connect, communicate and share. With power
shifting to consumers, it has become important for sellers
to devise effective viral marketing strategies (Godes et al.,
2005). This work is motivated by this urgent need.

For social influence to work, there must be seeds, i.e.,
product advocates to start with. The sellers, therefore, em-
ploy two basic strategies. The first is to create advocates, by
providing incentives to potential buyers to make an actual
purchase. These incentives are typically in the form of dis-
counts, free goodies, etc. The second is to reward product
advocates who ‘put in a good word’ and influence poten-
tial buyers to make the purchase. Thus, the latter program
helps to exploit the impact of social influence while making
a purchasing decision whereas the former program helps to
directly influence the buying behavior by offering discounts.

Since incentives come at a cost, a seller must balance the
revenue she generates through these strategies and the ex-
penditure she incurs in doing so. This poses some non-trivial
challenges. The first is determining incentives themselves,
since response of an individual is contingent on them (too
low a referral reward may not elicit recommendation from
an individual since personal reputation is usually at stake).
Secondly, the two programs are not necessarily causally con-
nected. The reputation of a firm or a brand might create
product advocates without incentives, thereby, requiring a
seller to launch a referral program directly. This necessitates
careful ‘timing’ of these programs.

The objective of this paper is to shed some light on this
practically important and theoretically interesting problem.
In particular, we seek to determine an optimal timing of
these programs over a finite time horizon.

1.1 Related Work
In recent years, problems such as these have attracted

much attention. Several papers investigate ‘influence maxi-
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mization’ (see, for example, Domingos and Richardson (2001);
Kempe, Kleinberg, and Tardos (2003); Bharathi, Kempe,
and Salek (2007); Chen, Yaun, and Zhang (2010)), where
the problem is to determine the set of initial adopters who,
through an influence process, can maximize the future adop-
tions of the product. Auriol and Benaim (2000) discuss a dy-
namic model of how standards and norms emerge in decen-
tralized economies. Hartline, Mirrokni, and Sundararajan
(2008); Arthur, Motwani, Sharma, and Xu (2009) consider
the problem of ‘revenue maximization’ for viral marketing
and are close in spirit to the problem we consider in this
paper.

In Hartline et al. (2008) a model is proposed in which
the purchase decision of a buyer is influenced by individuals
who own the product and the price at which the product
is offered. An optimal pricing policy is derived using dy-
namic programming in a symmetric setting (i.e., identical
buyers). In a general setting, finding an optimal strategy
is shown to be NP-hard and approximation algorithms are
considered. The authors suggest influence-and-exploit strat-
egy where selected buyers are given the product for free, and
the seller extracts revenue by making a random sequence of
offers and a greedy pricing strategy for the remaining buyers
to compensate for the initial loss.

Arthur et al. (2009) also considers a model in which a
buyer’s decision is influenced by friends who own the prod-
uct and price at which the product is offered. Sales are
assumed to cascade through the social network. The seller
offers cashback to recommenders and also sets price for each
buyer. The authors show that determining an optimal strat-
egy to maximize expected revenue is NP-hard and propose a
non-adaptive influence-and-exploit policy, which offers prod-
uct to the interior nodes of the max-leaf spanning tree of the
network for free and later exploits their influence by extract-
ing more revenue from the leaf nodes of the tree. They show
that the expected revenue generated from the non-adaptive
strategy is within a constant factor of the optimal revenue
from an adaptive strategy.

1.2 Our Contributions
We consider a seller interested in selling a product to a

population of N agents. The product is assumed to be
durable and free from network externalities. From the seller’s
perspective, each agent assumes one of the following types
at any point in time: potential buyer (one who is yet to make
a purchase), customer (one who has purchased the seller’s
product) and competitor’s customer (one who has purchased
a competing product1). A potential buyer makes a purchase
decision of her own volition (essentially under external in-
fluence) or under social influence. This decision-making is
modeled probabilistically, by specifying for both products
(the seller’s and the competitor’s), probabilities of purchase
under external influence and social influence. The seller can
influence the former through direct incentives (which affect
the price) and the latter through referral rewards. The prob-
lem she faces is to roll out these programs so as to maximize
the profit, which is equal to the revenue obtained by cus-
tomer acquisition minus the expenditure on direct incentives
and referral rewards, over a given time horizon T .

In practice sellers have limited knowledge about the social
network underlying the population, typically, in the form of

1All competitors are aggregated into one single virtual com-
petitor.

a class-level statistical description of it. A class comprises
agents who are considered essentially identical on a variety
of factors (chosen by the seller), such as demographic, eco-
nomic level, number of social contacts and so on. In this
paper we consider this set-up. However to keep it simple,
we assume heterogeneity only in terms of network connec-
tions (in particular, probabilities of purchase under either
external or social influence are assumed to be the same for
all agents); hence classes are based only on the number of
social contacts (degrees). The seller thus knows only the de-
gree distribution and degree-degree correlation of the social
network.

This class-level statistical description of the agent popula-
tion allows us to approximate the stochastic evolution of the
purchase dynamics by a deterministic process described by
ordinary differential equations (ODEs). This is formally es-
tablished as a mean-field limit, taking the number of agents
N → ∞ Benaim and Boudec (2008). With an ODE limit,
we pose the problem as a continuous time optimal control
problem and employ the well known Pontryagin’s Maximum
principle Kirk (1970) to characterize an optimal control. An
optimal control specifies for each class the times at which
direct incentives and referral rewards programs are to be
executed. The following are our main results.

1. We show that an optimal control has a simple struc-
ture: the seller needs to run each of the programs at
most twice for a certain duration. Moreover, it is non-
adaptive (or open-loop). This simplifies the implemen-
tation and practically can help a seller pre-allocate the
budget for her campaign.

2. While influence-and-exploit strategy turns out to be
optimal when social influence is strong in the popu-
lation, exploit-and-influence strategy can be optimal
when the seller has a good reputation.

3. In some settings, the seller may be better off incentiviz-
ing low degree nodes as against the popular approach
of targeting the influentials (high degree nodes). This,
we believe, provides some support to the findings re-
ported in Watts and Dodds (2007) in reference to the
influentials hypothesis.

The approach we have taken to address the problem is
entirely different from the ones in the literature. While a
large size of the population presents a challenge to the ear-
lier approaches, it, in fact, aids us in migrating to a simpler
deterministic description of the dynamics. The assumption
that agents of a class are indistinguishable also fits in natu-
rally with the popular marketing approach of customer seg-
mentation and allows a seller to customize incentives and
referral rewards as per these segments.

In contrast to earlier papers, we have also modeled com-
petition. This is not only close to reality but interestingly it
allows to address some problems in completely different con-
texts. For example, in limiting the spread of misinformation
about an entity or an Internet virus, the objective is to max-
imize nodes with correct information or security patches by
immunizing them (akin to direct incentives) and/or incen-
tivizing them to spread the information they have to their
neighbors (akin to referrals). Our results are, thus, appli-
cable to these problems as well (see Budak et al. (2011) for
discussion of the influence limitation problem).
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2. PROBLEM FORMULATION
Consider a population of N agents, indexed by i = 1, 2,

. . . , N . The underlying social network is specified by an
undirected graph G = (V, E). Each agent is identified with
a node in V and (i, j) ∈ E means that i and j are social
contacts and they influence each other in decision-making.
si denotes the state of agent i. si can take three values: 0

(indicates potential buyer), 1 (indicates customer) and −1
(indicates competitor’s customer). Let s := (s1, s2, . . . , sN ).

Each agent makes the purchase decision at a random time
point, independent of all others. It suffices to assume that
time is discrete (denoted by n = 1, 2, . . .) and at each time
step, an agent is chosen uniformly randomly from the popu-
lation for a potential state change. Since there are no repeat
purchases, 1 and −1 are absorbing states. Therefore, the
state change occurs only if the chosen agent is a potential
buyer. Suppose agent i is chosen at a time n. Then one of
the following happens if i is a potential buyer.

1. i buys the seller’s product on her own with proba-
bility α (For example, α = 0.08 means that there is
8% chance that a potential buyer will buy the seller’s
product on her own).

2. i buys the competitor’s product on her own with prob-
ability δ.

3. i selects one of her social contacts at random. If the se-
lected contact is a customer, i buys the seller’s product
under social influence with probability β (For example,
β = 0.1 means that there is 10% chance that a poten-
tial buyer will buy the seller’s product if she interacts
with someone who has already bought the product).

4. i selects one of her social contacts at random. If the
selected contact is a competitor’s customer, i buys the
competitor’s product under social influence with prob-
ability γ.

Clearly, the state process {s(n), n ≥ 1} is a Markov chain.
Now from the seller’s perspective, agents having the same

degree are indistinguishable and the network G is known
only statistically, i.e., G is drawn from an ensemble of ran-
dom undirected graphs of size N , a given degree distribution
P (k) (1 ≤ k ≤ K) and degree-degree correlation function
P (k′|k), which denotes the probability that a given link from
a node of degree k is to a node of degree k′. Note that a
number of well-known graphs such as homogeneous random
graphs, exponential random graphs (e.g., G(n, p) and Watts-
Strogatz network), scale-free networks can be represented
in this framework. We assume that K remains uniformly
bounded as N → ∞.

Denote by ik, rk and θk the fraction of degree-k agents who
are potential buyers, customers and competitor’s customers
respectively (note that normalization is with respect to the
number of class-k agents; hence ik + rk + θk = 1). Let
xk := (ik, rk, θk) and x := (x1, . . . , xK). From the above
assumption, it follows that {x(n), n ≥ 1} is a Markov chain
(as seen by the seller).

The drift of x can be computed considering the four cases
described above. Table 1 shows the corresponding probabil-
ities and the change in xk for degree class-k. Consider as
an example Case 3. The probability of a randomly selected
agent being a potential customer of degree k is P (k)ik. This
agent randomly chooses one of her k social contacts. The

probability that this chosen one is an existing customer is
1
k

∑k
j=1

∑
k′∈K P (k′|k)rk′ =

∑
k′∈K P (k′|k)rk′ . The selected

agent buys the seller’s product under the social influence
from her contact with probability β. Thus the probability
of Case 3 is βP (k)ik

∑
k′∈K P (k′|k)rk′ . One agent changes

her state from 0 (potential customer) to 1 (customer). Hence
the effect on xk is 1

NPk
(−1, 1, 0).

We now make the dependence on the population size N
explicit and denote by FN(x) := [FN

k (x)]Kk=1 the drift of x.
FN

k (x) is as follows.

1

N




−βik
∑

k′∈K P (k′|k)rk′ −γik
∑

k′∈K P (k′|k)θk′ −(α+δ)ik

βik
∑

k′∈K P (k′|k)rk′+αik

γik
∑

k′∈K P (k′|k)θk′ +δik




Observe that (i) the number of transitions per agent per
time slot is of the order of 1

N
(ii) the second moment of

number of agent transitions per time slot is bounded and
(iii) FN (x) is a smooth function of 1

N
and x. Let F (x) =

limN→∞
F N (x)
1/N

. It then follows from Theorem 1 of Benaim

and Boudec (2008) that the time evolution of x(n) can be
approximated by the following system of ODEs (with the
same initial conditions).

ẋ = F (x) (1)

More explicitly, for 1 ≤ k ≤ K

i̇k = −βikRk − γikΘk − (α+ δ)ik

ṙk = βikRk + αik

θ̇k = γikΘk + δik

where, Rk :=
∑

k′∈K P (k′|k)rk′ and Θk :=
∑

k′∈K P (k′|k)θk′ .
The seller offers direct incentives and referral rewards to

increase α and β respectively. We model this as follows. A
referral reward of c results in an increase of ǫ1 in β and a
direct incentive of c′ causes α to increase by ǫ2. Thus, for
the duration of the referral reward program, social influence
rate of (β + ǫ1) is operational and the seller incurs a cost of
c for every successful referral. Similarly, if the direct incen-
tive program is executed for some duration, the take-rate
for seller’s product increases to (α + ǫ2) for that duration,
incurring her a cost of c′ for every sale. We normalize c and
c′ with respect to the product price. Thus the price is fixed
to 1. The seller’s problem of maximizing her profit (revenue
minus cost) over a fixed time horizon T by optimally timing
the two program can now be stated formally as follows.

Let uk(t) (resp. vk(t)) denote the control variable indicat-
ing whether or not the referral reward program (resp. direct
incentive program) is offered to class-k at time t. The cost

Case Probability Effect on xk

1 αP (k)ik
1

NPk
(−1, 1, 0)

2 δP (k)ik
1

NPk
(−1, 0, 1)

3 βP (k)ik
∑

k′∈K P (k′|k)rk′ 1
NPk

(−1, 1, 0)

4 γP (k)ik
∑

k′∈K P (k′|k)θk′ 1
NPk

(−1, 0, 1)

Table 1: Probability and effect on xk for different
cases
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incurred in running the referral reward program is

∫ T

0

K∑

k=1

P (k)uk(t)c(β + ǫ1)ik(t)Rk(t)dt (2)

Recall that the conversion rate of potential buyers under
the program is c(β+ ǫ1)ik(t)Rk(t). The cost incurred in the
direct incentives program is

∫ T

0

K∑

k=1

P (k)vk(t)c′(α+ ǫ2)ik(t)dt (3)

Since the product price is unity, the revenue obtained is pro-
portional to the number of customers at the end of horizon,∑K

k=1 P (k)rk(T ). Denoting the total cost (2)+(3) by C(T )
the problem is

Maximize
K∑

k=1

P (k)rk(T ) − C(T )

subject to

i̇k = −(β + ukǫ1)ikRk − (α+ vkǫ2)ik − γikΘk − δik

ṙk = (β + ukǫ1)ikRk + (α+ vkǫ2)ik

θ̇k = γikΘk + δik

for 1 ≤ k ≤ K and a given initial condition x(0).
Three remarks are in order. The assumption of hetero-

geneity only in the number of social contacts is mainly to
keep the formulation simple and highlight the impact of net-
work structure. Extending this formulation to a general set-
ting is straightforward and will be taken up in a longer ver-
sion of the paper. Our random interaction model essentially
means that the social influence on a potential buyer is the
average influence from her neighbors. This, we believe, is
reasonable since we have also assumed presence of external
influence (through α) on agents2. In the above formulation
we consider fixed rewards and incentives pay-outs (c and c′).
This simplifies implementation in practice. Calibration of c
and c′ can be carried out through numerical studies.

3. STRUCTURE OF OPTIMAL CONTROL
In this section we mathematically prove the structural

properties of an optimal control. To keep the proof sim-
ple, we will assume that the network G is drawn randomly
from a set of regular networks of size N and degree k. This
is without loss of generality.

Let i(t), r(t) and θ(t) denote the fraction of population
in states {0, 1,−1} at time t respectively. Let u(t) ∈ {0, 1}
denote whether or not the referral reward program is offered
at time t and let v(t) ∈ {0, 1} denote whether or not the
direct incentive program is offered at time t. The purchase
dynamics under the influence of these programs are given as
follows:

i̇ = −(β + uǫ1)ir − (α+ vǫ2)i− γiθ − δi (4)

ṙ = (β + uǫ1)ir + (α+ vǫ2)i (5)

θ̇ = γiθ + δi (6)

From (4), (5), and (6), observe that i̇+ ṙ+ θ̇ = 0. There-
fore, it suffices to consider any two equations. Let Ω :=

2For the lack of clear empirical evidence, one may also con-
sider total influence from the neighbors. Mathematically, it
is a simple modification to our formulation.

{(i, r)|i + r ≤ 1, i ≥ 0, r ≥ 0}. Let x(t) := (i(t), r(t)) ∈ Ω
denote the state variable.

The optimal control problem in this simpler setting is as
follows.

Maximize r(T ) −
∫ T

0

cu(t)(β + ǫ1)i(t)r(t)dt

−
∫ T

0

c′v(t)(α+ ǫ2)i(t))dt (7)

subject to (4), (5) and the following constraints on state and
control variables: for all 0 ≤ t ≤ T , x(t) ∈ Ω, u(t) ∈ {0, 1}
and v(t) ∈ {0, 1}.

Our main result is given in Proposition 1. It shows that an
optimal strategy for the seller is to deploy the two incentive
programs for at most two distinct time periods.

Proposition 1. 1. There exist τ1, τ2 (0 ≤ τ1 ≤ τ2 ≤
T ) such that u∗(t) = 0 for τ1 < t ≤ τ2 and u∗(t) = 1
else.

2. There exist τ3, τ4 (0 ≤ τ3 ≤ τ4 ≤ T ) such that v∗(t) =
0 for τ3 < t ≤ τ4 and v∗(t) = 1 else.

Proof. i(0) > 0 otherwise there is no problem to solve.
Observe that Ω is positively invariant. Therefore a solution
starting from any initial point x(0) ∈ Ω remains confined
to Ω. This allows us to disregard state constraints from the
control formulation.

Let u(t), v(t) ∈ [0, 1] for all t ∈ [0, T ] (This relaxation
allows us to establish existence of an optimal control. We
show that the optimal controls are indeed ‘bang-bang’, i.e.,
u∗(t), v∗(t) ∈ {0, 1} for all t). Writing the problem in Mayer
form, it can be seen that the state space (appropriately ex-
panded with additional variables) is bounded and positively
invariant (thus, state trajectories remain bounded for all ad-
missible pairs); and the system is affine in controls (see (7),
(4) and (5)). Existence of an optimal control is now estab-
lished by Filippov-Cesari theorem.

From (4), (5), and (7), the Hamiltonian is written as fol-
lows.

H(x,p, u, v) = −cu(β + ǫ1)ir − c′v(α+ ǫ2)i

−p1[(β + uǫ1)ir + (α+ vǫ2)i+ γiθ + δi]

+p2[(β + uǫ1)ir + (α+ vǫ2)i] (8)

p := (p1, p2) denotes co-state variables. Then according
to Pontryagin’s Maximum Principle, there exist continuous
and piecewise continuously differentiable co-state functions
p1 and p2 that satisfy

ṗ1 = −∂H

∂i

= [cβ − (p2 − p1 − c)ǫ1]ru+ [c′α− (p2 − p1 − c′)ǫ2]v

+(p1 − p2)(βr + α) + p1(γ(1 − 2i− r) + δ) (9)

ṗ2 = −∂H

∂r
= [cβ − (p2 − p1 − c)ǫ1)]ui+ (p1 − p2)βi− p1γi, (10)

at all t ∈ [0, T ] where u and v are continuous and satisfy
the following transversality condition

p∗
1(T ) = 0, p∗

2(T ) = 1. (11)

and also satisfy, for all t ∈ [0, T ], u(t) ∈ [0, 1] and v(t) ∈
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[0, 1],

H(x∗(t), p∗(t), u∗(t), v(t)) ≥ H(x∗(t), p∗(t), u(t), v(t))
H(x∗(t), p∗(t), u(t), v∗(t)) ≥ H(x∗(t), p∗(t), u(t), v(t)).

(12)

From (8) and (12), we get the following form for controls.

u∗(t) =

{
1 if (p∗

2(t) − p∗
1(t) − c)ǫ1 > cβ

0 if (p∗
2(t) − p∗

1(t) − c)ǫ1 < cβ
(13)

v∗(t) =

{
1 if (p∗

2(t) − p∗
1(t) − c′)ǫ2 > c′α

0 if (p∗
2(t) − p∗

1(t) − c′)ǫ2 < c′α
(14)

In case of equality in the conditions specified in equations
(13) and (14), u∗(t) and v∗(t) may take any arbitrary values
in [0, 1].

Let φ(t) := (p∗
2(t) − p∗

1(t) − c)ǫ1 − cβ and ψ(t) := (p∗
2(t) −

p∗
1(t) − c′)ǫ2 − c′α.
We denote by H∗

t the Hamiltonian along optimal state-
control trajectory at time t. The following lemma proves
that Hamiltonian will always remain positive.

Lemma 1. H∗
t > 0 ∀ t ∈ [0, T ].

Proof. From (8) and (11), we have

H∗
T = [(1 − c)ǫ1 − cβ]i∗(T )r∗(T )u∗(T )

+[(1 − c′)ǫ2 − c′α]i∗(T )v∗(T )

+(βi∗(T )r∗(T ) + αi∗(T ))

r(t) is non-decreasing whereas i(t) ↓ 0 and i(t) > 0 for all t
since i(0) > 0. Therefore, H∗

T > 0. The conclusion follows
by noting that the Hamiltonian is constant for autonomous
systems.

The lemma below shows that the co-state variables remain
positive for the whole duration.

Lemma 2. p∗
1(t), p

∗
2(t) > 0 ∀ t ∈ [0, T ).

Proof. Suppose p∗
1(t) ≤ 0 for all t and let p∗

1(t) = 0 at
t = τ (at least one τ exists since p∗

1(T ) = 0). Then p∗
2(τ ) > 0

otherwise H∗
τ < 0 since u∗(τ ) = 0. Observe from (9) that

ṗ1 < 0 if p1 = 0. Strict inequality in (13) implies that at τ ,
u∗(·) is continuous. Therefore, ṗ1 < 0 in the neighborhood
of 0. Thus p∗

1(t1) ≤ 0 implies p∗
1(t) < 0 for all t > t1 and

p∗
1(T ) 6= 0 which violates (11). It follows that p∗

1(t) > 0 for
all t ∈ [0, T ). This in turn implies that p∗

2(t) > 0 for all t
otherwise H∗

t < 0.

Lemma 3. p∗
2(t) > p∗

1(t) ∀ t ∈ [0, T ].

Proof. Suppose not. Let p∗
2(t) < p∗

1(t) at t = τ . Then
φ(τ ) < 0 and, therefore, u∗(τ ) = 0. (8) then yields H∗

τ < 0,
a contradiction.

Let ζ(t) := (p∗
2(t) − p∗

1(t))i
∗(t). The lemma that follows

shows that ζ(t) is a decreasing function.

Lemma 4. ζ̇(t) < 0 ∀ t ∈ [0, T ].

Proof. From (4), (9), and (10) we get

ζ̇(t) = −[c(ǫ1 + β)u∗(t)r∗(t) + φ(t)u∗(t)i∗(t)

+c′(ǫ2 + α)v∗(t)

+p∗
2(t)(γ(1 − i∗(t) − r∗(t)) + δ)]i∗(t)

Lemma follows by noting that all terms inside the bracket
are non-negative.

Now consider φ̇(t). From (9), (10), and (8) we get

φ̇(t) = [
H∗

t

i∗(t)
− φ(t)i∗(t)u∗(t) − (p∗

2(t) − p∗
1(t))βi

∗(t)]ǫ1

(p∗
2(t) − p∗

1(t))i
∗(t) is monotonically decreasing (Lemma 4).

From (4) i∗(t) ↓ 0 exponentially (i∗(t) < i∗(0)e−(α+δ)t). H∗
t

is a positive constant (Lemma 1).
Assume that φ(t) = 0 at three points in time τ1, τ2, τ3.

Therefore, φ̇(τ ) > 0 for either τ = τ1 or τ = τ2. Without

loss of generality, let us say φ̇(τ2) > 0. From the above

equation it follows that φ̇(τ3) > 0 which is not feasible as
φ(τ−

3 ) > 0. It follows that φ(t) = 0 at at most two points
in time. Therefore, there exist 0 ≤ τ1 ≤ τ2 ≤ T such that
u∗(t) = 1 for 0 ≤ t ≤ τ1 and τ2 < t ≤ T , and 0 elsewhere.

Similarly, one can show that there exist 0 ≤ τ3 ≤ τ4 ≤ T
such that v∗(t) = 0 for τ3 < t ≤ τ4 and v∗(t) = 1 otherwise.
The proposition is, thus, established.

Proposition 1 implies that both the referral reward and
direct incentives programs are to be deployed at most twice
for certain durations, one in the beginning and the other at
the end. It may happen that both the durations are of length
0 which means that a program is not deployed at all. On
the other hand, it could also get deployed over the complete
time horizon T . This gives a simple and elegant marketing
strategy which is easy to implement for the seller.

The structure of the above optimal control is quite intu-
itive. In the case of the referral reward program, the cost
is proportional to the product of number of potential buy-
ers and customers. Hence to keep the cost low, rewards are
declared in the initial stage (when the number of customers
is less) to motivate product advocates and may also be paid
at the end (when the number of potential buyers is less) to
acquire some additional customers.

In the case of direct incentives, the cost is proportional to
the number of potential buyers. If the initial take rate for
the product is less, this program may get executed at initial
stages to quickly acquire customers whose social influence
can be exploited in the later stages; otherwise more agents
may buy competitor’s product and attract other potential
buyers. Towards the end of the campaign, the number of po-
tential buyers is less; hence direct incentives may be offered
to attract additional customers.

4. NUMERICAL RESULTS
The simple structure of optimal controls given by Propo-

sition 1 allows one to devise incentives programs quite easily
by numerical optimization of τ ’s. Here we obtain an inde-
pendent validation of optimal controls by discretizing (7),
casting it as a nonlinear constrained optimization problem
and using a gradient descent approach to find an optimal
solution. (For discussion on various numerical solution tech-
niques for such problems refer to Kirk (1970)). For all our
experiments, the time horizon T and discretization step-size
are fixed at 10 and 0.1 respectively. The NLP formulation
is not convex. Therefore, we use a multi-start mechanism to
determine an optimal solution. Results are also verified us-
ing the commercial package PROPT which uses pseudospec-
tral methods for solving such problems.

In this paper, we will primarily investigate the initial con-
dition i(0) = 1. This captures the case when the seller and
the competitor(s) enter the market with substitutable prod-
ucts at around the same time (e.g., gaming technologies)
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Figure 1: Optimal marketing strategy for the base
scenario

or when the seller introduces an independent product into
the market (e.g., a book). Of course, similar results can
be obtained for the case where seller and/or competitor al-
ready have some presence in the market (r(0) > 0 and/or
θ(0) > 0).

We fix ǫ1 = ǫ2 = 0.05, γ = 0.1, δ = 0.1 for all numer-
ical studies, and consider β = 0.1, α = 0.08, c = 0.25 and
c′ = 0.3 as the base scenario (These parameter values are
arbitrary and only roughly based on some available data).
The optimal marketing strategy is shown in Figure 1. It
is optimal for the seller to run both the incentive programs
initially for some duration, stop and then run the programs
again towards the end. Note that the optimal strategy is
open loop; hence estimates of i and r are not required for
implementation.

It is, thus, possible for the seller to determine the timing of
her incentives programs numerically. Experimentation with
different values of pay-outs c and c′ (which essentially fix ǫ1
and ǫ2) can be used to understand trade-offs and optimize
these pay-outs.

In the following we undertake an investigation of two im-
portant questions pertaining to the interplay between the
two incentives programs and the impact of network struc-
ture on the them. The former question is important because
influence-and-exploit strategy has received much attention
in the literature. As we show below, exploit-and-influence
strategy can also come into play for some parameter settings.
The second question is linked to the so-called influentials hy-
pothesis which informally says that high degree agents (hubs)
play significant role in product diffusion, and, therefore, are
natural targets for incentives (direct or referral rewards). We
show that in some cases the seller is better off incentivizing
low degree agents (more than high-degree ones). Thus, our
results highlight the need for a careful consideration of the
network structure while making incentive decisions.

4.1 Interplay between Referral and Direct In-
centive Programs

When social influence is strong in the population, i.e., β
is higher, the seller needs to employ only direct incentives
initially. For example, if β is set to 0.13 in the base scenario
then it is optimal to offer referral rewards only at the end
and that too for a short period as shown in Figure 2. This
can be seen as a manifestation of the influence-and-exploit
strategy. On the other hand, if the seller has established
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Figure 2: Influence-and-exploit strategy is optimal
when β is increased to 0.13
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Figure 3: Exploit-and-influence strategy is optimal
when α is increased to 0.09

a good reputation in the market, translating into a higher
value of α, an initial influence step through direct incentives
may not even be required. See from Figure 3 that when
α = 0.09 in the base scenario, it is optimal for the seller
to offer direct incentives only at the end. In this case, for
most portion of the time horizon, the seller must exploit
connections of existing customers and only at the end must
she impart direct influence on potential buyers. We call it
the exploit-and-influence strategy for the seller.

We also observe from Figures 4 and 5 that influence-and-
exploit and exploit-and-influence are optimal strategies for
the seller if she incurs high per conversion pay-outs for re-
ferral and incentive programs respectively.

4.2 Impact of Network Structure on Incentive
Programs

Real-world networks show strong degree correlation amongst
connected nodes. Some networks show assortative mixing
of nodes by degrees where high-degree nodes have most of
their connections to other high-degree nodes. Others show
disassortative mixing where high-degree nodes have most of
their connections to low-degree nodes (Newman (2002)). In
this section, we examine the impact of network structure on
incentives programs.

We consider an undirected correlated network with nodes
belonging to either of two classes A and B with probability
P (A) and P (B) respectively. Class A nodes are of high
degree, say kA and class B nodes are of low degree, say kB.
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Figure 4: Influence-and-exploit strategy is optimal
with pay-outs: c = 0.3, c′ = 0.3
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Figure 5: Exploit-and-influence strategy is optimal
with pay-outs: c = 0.25, c′ = 0.35

P (A|B) is the probability that a given link from class B
node points to a class A node. P (B|A) can be computed
from the following balance equation:

kAP (B|A)P (A) = kBP (A|B)P (B) (15)

We consider two types of network structures. One struc-
ture represents assortative mixing whereas the other one
represents disassortative mixing. To keep things simple and
derive key insights, we assume that the seller is optimizing
implementation of only one incentives program, namely, re-
ferral rewards program. The seller can offer referral rewards
to class A and/or class B nodes to increase their social in-
fluence rate (β) by ǫ. As earlier, she incurs a per conversion
cost of c after normalizing with respect to product price.

We fix α = 0.1, δ = 0.1, β = 0.1, γ = 0.15, ǫ = 0.08, kA =
10, kB = 2, P (A) = 0.1, P (B) = 0.9 for our numerical stud-
ies. For disassortative network, we set P (B|A) = 0.9 whereas
for assortative network, we set P (B|A) = 0.1.

The optimal timing of referral reward program for disas-
sortative network is shown in Figure 6. The seller’s optimal
strategy is to offer referral rewards to class B nodes for the
complete duration whereas rewards to class A nodes are of-
fered initially for a short duration and then again towards
the end for a short duration. In this case, class B nodes
have almost half of their connections going to class A nodes.
Also, major fraction of the population is from class B. So,
referral rewards are offered to class B nodes for entire dura-
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Figure 6: Optimal marketing strategy on a network
with disassortative mixing
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Figure 7: Optimal marketing strategy on a network
with assortative mixing

tion as it increases influence not only on class B nodes but
also on class A nodes. Class A nodes are not rewarded for
the entire duration in order to control the cost.

In the case of assortative network, the optimal strategy
changes completely (see Figure 7). The seller offers referral
rewards to class A nodes for the complete duration whereas
rewards to class B nodes are offered initially for some du-
ration and then again towards the end. In this case, nodes
from both the classes are well connected amongst themselves
with very few connections going across the classes. So, the
optimal reward strategies for both the classes are essentially
independent. For this particular scenario, it turns out that
it is optimal to offer rewards to class A nodes for the en-
tire duration as the cost incurred is not much. Whereas in
the case of class B nodes, referral rewards are discontinued
for some duration in the middle as the cost overshoots the
potential revenue.

The results show that networks with different structures
can result in different optimal strategies for the seller. In
some scenarios, the seller may be better off incentivizing
low degree nodes as against the popular approach of tar-
geting the influentials (high degree nodes), thus, providing
some support to the finding in Watts and Dodds (2007).
In some scenarios, the seller may be better off targeting in-
fluentials thus supporting the results in Goldenberg et al.
(2009). Thus, our results highlight the need for a careful
consideration of the network structure while making incen-
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tive decisions.

5. CONCLUSION
In this paper we have addressed the problem of optimal

timing of two incentive programs, namely, direct incentives
and referral rewards, for product diffusion through social
networks. Taking a deviation from the existing approaches,
we formulate the problem as a continuous-time determin-
istic optimal control problem. The optimal strategy for
the seller is to deploy these programs in at most two dis-
tinct time periods. The simplicity of this structure and
non-adaptive nature makes them ideal for implementation
in practice. We further show that if the seller has good rep-
utation in the market, exploit-and-influence strategy can be
optimal whereas if social influence is strong in the popula-
tion, influence-and-exploit strategy can be optimal for the
seller. In the case of correlated networks, our numerical
studies show that the seller need not necessarily offer more
frequent referral reward programs to high degree nodes to
maximize her profit.

There are two immediate directions for future work: (i)
extend heterogeneity of agents to include their external and
social influence probabilities and (ii) devise procedures to
estimate model parameters.
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ABSTRACT
Kidney exchange, where needy patients swap incompatible donors
with each other, offers a lifesaving alternative to waitingfor an
organ from the deceased-donor waiting list. Recently,chains—
sequences of transplants initiated by an altruistic kidneydonor—
have shown marked success in practice, yet remain poorly under-
stood. We provide a theoretical analysis of the efficacy of chains
in the most widely used kidney exchange model, proving that long
chains do not help beyond chains of length of 3 in the large. This
completely contradicts our real-world results gathered from the bud-
ding nationwide kidney exchange in the United States; there, solu-
tion quality improves by increasing the chain length cap to 13 or
beyond. We analyze reasons for this gulf between theory and prac-
tice, motivated by our experiences running the only nationwide kid-
ney exchange. We augment the standard kidney exchange modelto
include a variety of real-world features. Experiments in the static
setting support the theory and help determine how large is really
“in the large". Experiments in the dynamic setting cannot becon-
ducted in the large due to computational limitations, but with up to
460 candidates, a chain cap of 4 was best (in fact, better than5).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems;
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory, Experimentation

Keywords
Kidney exchange

1. INTRODUCTION
The role of kidneys is to filter waste from blood. Kidney fail-

ure results in accumulation of this waste, which leads to death in
months. One treatment option is dialysis, in which the patient goes
to a hospital to have his/her blood filtered by an external machine.
Several visits are required per week, and each takes severalhours.
The quality of life on dialysis can be extremely low, and in fact
many patients opt to withdraw from dialysis, leading to a natural
death. Only 12% of dialysis patients survive 10 years [18].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
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Instead, the preferred treatment is a kidney transplant. Kidneys
are by far the most common organ to transplant—more prevalent
than all other organ transplants combined. Unfortunately,the de-
mand for kidneys far outstrips supply. In the United States alone, in
2010, 4,654 people died waiting for a life-saving kidney transplant.
During this time, 34,418 people were added to the national waiting
list, while only 10,600 people left the list by receiving a deceased-
donor kidney. The waiting list has 89,808 people, and the median
waiting time is between 2 to 5 years, depending on blood type [16].

For many patients with kidney disease, the best option is to find
a living donor, that is, a healthy person willing to donate one of
his/her two kidneys. Although there are marketplaces for buying
and selling living-donor kidneys, the commercialization of human
organs is almost universally regarded as unethical, and thepractice
is explicitly illegal in most countries. However, in most countries,
live donation is legal, provided it occurs as a gift with no financial
compensation. In 2010, there were 5,467 live donations in the US.

The number of live donations would have been much higher if
it were not for the fact that, in most cases, a potential donorand
his intended recipient are blood-type or tissue-type incompatible.
In the past, the incompatible donor was sent home, leaving the pa-
tient to wait for a deceased-donor kidney. This is where kidney
exchanges come into play, in which patients can swap their incom-
patible donors with each other, in order to each obtain a compatible
donor. While still in their infancy, kidney exchanges have now been
fielded at the regional and national level.

In this paper, we consider altruistic chains, a recent innovation
for barter exchanges that has been widely adopted for kidneys,
but is poorly understood. Section 2 describes the formal exchange
clearing problemand why chains exacerbate the already computa-
tionally intractable problem. Section 3 reports results from the first
(and only) nationwide kidney exchange, using our fielded technol-
ogy; these real-world results clearly show the benefit of integrating
chains into the clearing process. Section 4 formalizes the theoreti-
cal benefit of chains as a kidney exchange scales to the large,and
Section 5 experimentally determines exactly what “large” means.
Section 6 studies the dynamics of kidney exchange over time,us-
ing an extension over the state-of-the-art model to more accurately
represent the realities of modern kidney exchange.

2. THE CLEARING PROBLEM
One can encode ann-patient kidney exchange (and almost any

n-agent barter exchange, such as Netcycler for used goods, Read-
It-Swap-It for used books, the National Odd Shoe Exchange, and
Intervac for exchanging time in holiday homes) as a directedgraph
G(n) as follows. Construct one vertex for each patient. Add a
weighted edgee from one patientvi to anothervj , if vj wants the
item of vi. In the context of kidney exchange, the item is a kidney
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from a donor thatvi brings with him into the exchange; the donor
is willing to give a kidney if and only ifvi receives a kidney. The
weight we of edgee represents the utility tovj of obtainingvi’s
item. In kidney exchange, the methodology for setting weights is
decided by the exchange design committee. The weights take into
account such considerations as age, degree of compatibility, wait
time, and geographic proximity. A cyclec in this graph represents
a possible swap, with each agent in the cycle obtaining the item of
the next agent. The weightwc of a cyclec is the sum of its edge
weights. Anexchangeis a collection of disjoint cycles. (They have
to be disjoint because no donor can give more than one kidney.)

The vanilla version of theclearing problemis to find a maximum-
weight exchange consisting of cycles with length at most some
small constantL (typically, 2 ≤ L ≤ 5). This cycle-length con-
straint is crucial. For one, all operations in a cycle have tobe per-
formed simultaneously; otherwise a donor might back out after his
incompatible partner has received a kidney.1 The availability of
operating rooms, doctors, and staff thus constrains cycle length.

The clearing problem withL > 2 is NP-complete [1]. Yet sig-
nificantly better solutions can be obtained by just allowingcycles
of length 3 instead of allowing 2-cycles only [12]; in practice, a cy-
cle length cap of 3 is typically used. Using a mixed integer program
(MIP) where there is a decision variable for each cycle no longer
than L and constraints that state that accepted cycles are vertex
disjoint, combined with specialized branch-and-price MIPsolving
software, the (3-cycle) problem is solvable to optimality in practice
at the projected steady-state nationwide scale of 10,000 patients [1].
In all our experiments, we use that algorithm as a subroutine.

A recent innovation in kidney exchange ischains [13, 9, 10].
Each chain starts with analtruistic donor—that is, a donor who
enters the pool, without a candidate, offering to donate a kidney
to any needy candidate in the pool. Chains start with an altruist
donating a kidney to a candidate, whose paired donor donatesa
kidney to another candidate, and so on. Chains can be longer than
cycles in practice because it is not necessary (although desirable)
to carry out all the transplants in a chain simultaneously.2 Already,
chains of length ten or more have been reported in practice [10].
To our knowledge, all kidney exchanges in the US now use chains
(in fact, the National Kidney Registry is using chains only and no
cycles). In our experience, roughly 5% of the pool is altruistic.

There are many more feasible chains in a network than cycles—
because one does not have to find a way to close a chain into a
cycle. The straightforward way to incorporate chains into the op-
timizer is to add from the end of each potential chain a fake edge
of weight 0 to every vertex that represents an altruist. Thisway,
chains look exactly like cycles to the solver and are handledcor-
rectly. Unfortunately, due to the removal of the cap of 3 on cycle
length, this approach does not scale even remotely to the nation-
wide level. Rather, it currently scale only to around 200 patients,
depending on the cap on chain length. (Of course, if the chain
length cap is lower than the cycle length cap, then chains do not
significantly increase the complexity.)

3. NATIONWIDE KIDNEY EXCHANGE
Starting around 2003, several regional kidney exchanges have

gone live in the US. Two examples include those run by the Al-
liance for Paired Donation and the Paired Donation Network.How-

1Such backing out cannot be prevented by legal means because it
is illegal to contract for an organ in most countries.
2Unlike in a cycle, if a chain breaks by some donor backing out,
the chain merely stops, but no patient-donor pair is out their “bar-
gaining chip" (donor kidney).

ever, in 2008, the United Network for Organ Sharing (UNOS)—
which controls all organ transplantation in the US—initiated the
formation of anationwidekidney exchange. The benefits of such a
large-scale exchange are numerous (see, for instance, [5]), and it is
ubiquitously accepted that one centralized exchange is better than
fragmenting the market into separate exchanges. The UNOS na-
tionwide kidney exchange pilot went live with 77 transplantcenters
in October 2010, and uses our algorithms and software to conduct
a match run every month. Starting in May 2011, chains were incor-
porated into the UNOS pilot program. Currently, the cycle cap is 3,
while the chain cap was 20 and is now being increased to infinity if
it turns out to be computationally feasible.
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Figure 1: Real data from the June/July 2011 UNOS match
runs, optimized for maximum cardinality.
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Figure 2: Real data from the June/July 2011 UNOS match
runs, optimized for maximum total weight.

Figures 1 and 2 show results for two real matches, for June and
July 2011. To show the efficacy of chains, we varied the chain cap
from 1 (i.e., the altruistic donor donates directly to the deceased
waiting list) to 20. In Figure 1, we maximize the cardinalityof
the final matching. That is, we ignore edge weights and assume
all compatible matches are equally good, and determine the match-
ing that allocates kidneys to the most candidates. The size of the
matching increases significantly with chains up to length 9 (June)
or 10 (July). Critically, with long chains we match 1.77 (June) and
2.55 (July) times the number of candidates than would have been
matched with 3-cycles alone. We note that Ashlagi et al. [3] inde-
pendently report similar findings from real-world data sets.

The improvement from long chains is even more drastic when
the edge weights are taken into account, as is the case in the real
UNOS match run. Figure 2 shows that in June, chains of length
up to 13 increase the objective value, while chains of lengthup to
12 increase the objective of the matching in July. Overall, incorpo-
rating chains increases the objective value to 2.98 (June) and 6.00
(July) times that of chains only (with a cycle cap of 3).

It is important to note that the structure of the compatibility

712



graph,G(n) in this early pilot program is special and, in many
ways, computationally fortuitous. The current UNOS pool consists
mainly of highly sensitizedpatients—that is, patients that are diffi-
cult to match based on their tissue type. Intuitively, thesepatients
were too hard to match regionally and in prior runs of the national
exchange—so the input graph is very sparse. Our other experi-
ments have shown that with a less sensitized pool, we often cannot
even solve the current problem size (with long chains) because the
input graphG(n) is not as sparse. Luckily, in the next section,
we show theoretical results stating that in large kidney pools drawn
from the full set of candidates (i.e., not just highly sensitized ones),
long chains will have negligible effect on the overall cardinality of
the matching with high probability. Therefore, one may not need
to consider long chains in the clearing. This would be desirable in
practice because short chains are (1) computationally dramatically
more tractable for the clearing algorithm (there are fewer of them),
(2) logistically easier to administer, and (3) less likely to fail due
to a positive crossmatch or some non-simultaneous donor backing
out (these two issues will be discussed later).

4. THEORETICAL BOUNDS ON CHAINS
In this section, we prove that using chains of length more than 3

provides no benefit in large, random, unweighted candidate pools.
We will prove this result in the most common model of kidney
exchange. We begin by describing the model.

4.1 Necessary background & model
The need for kidney exchange exists due to the myriad of im-

munological incompatibilities that can be present betweena can-
didate and any potential donor. For instance, theblood typeof
a donor kidney can result in acceptance or outright rejection in a
possible candidate. At a high level, human blood is split into four
types—O, A, B, and AB—based on the presence or absence of the
A and B proteins. While other complications may arise, a typeO
kidney can be transplanted into any candidate; type A and B kid-
neys can be transplanted into A and B candidates respectively, or
an AB candidate; and type AB kidneys are limited to only type AB
candidates. Therefore, some candidates are more difficult to match
with a random donor than others. O-candidates are the hardest to
match because only O-type kidneys can be given to them. Simi-
larly, O-donors are the easiest to match.

With this in mind, candidate-donor pairs in the matching pool
can be labeled based on their blood types using theABO model; it
is thede factomodel for theoretical market design work on kidney
exchange (see, e.g., [2, 5, 7, 15, 17]). Anunder-demandedpair is
any pair such that the donor is not ABO-compatible with the can-
didate. Furthermore, if these pairs contain only type A and Bblood
(e.g., the candidate is type A and the donor is type B), the pair is
calledreciprocal. Any pair in the pool such that the donor is ABO-
compatible with the candidate is calledover-demanded. Further-
more, if a donor and candidate share the same blood type, theyare
a self-demandedpair. Intuitively, under-demanded and reciprocal
pairs are “harder” to match than over-demanded and self-demanded
pairs. In the ABO model, all compatible transplants are considered
to be equally good (i.e., those edges have weight 1 each) and typ-
ically results in the ABO model are derived in the limit, whenthe
number of pairs of each kind approaches infinity.

If blood type compatibility were the only requirement for a suc-
cessful kidney donation, over-demanded and self-demandedpairs
would have no need to enter the exchange pool because they could
simply conduct the transplant within the pair. However, further
complications force their hand: the people in a pair are usually
incompatible due to tissue type. Tissue type, in particularwhat

is known as HLA type, is measured as a combination of six pro-
teins. Each potential candidate and potential donor must betested
for preformed antibodies against these six proteins; this needs to be
done at least once a month because the antibody state of a person
changes over time. An increase in the mismatches between donor
and candidate HLA types decreases the likelihood of a successful
kidney transplant, and can render a donor and candidate incom-
patible. These kinds of blood tests where measurements are taken
separately from the donors and the patients are calledvirtual cross-
matchfor reasons that will become obvious in the next paragraph.

An important challenge is that medical knowledge is incomplete:
even if a patient and donor are compatible based on the virtual
crossmatch (so there is an edge in the input graph), in reality they
might not be compatible (i.e., the edge might not be usable).This is
determined days before the operation by conducting a test called a
crossmatch: blood from the patient and blood from his/her planned
donor are mixed together and if the mixture coagulates, theyare in-
compatible. Such an unfortunate, but very common, occurrence is
called apositive crossmatch. Positive crossmatch-sensitive models
have only recently begun to appear in the literature, and have not
included a study of chains [5, 15].

We will say that if an altruist donates directly to the deceased-
donor waiting list, that constitutes a chain of length 1. If an altruist
donates to a pair, whose donor donates to the deceased-donorwait-
ing list, that constitutes a chain of length 2. If an altruistdonates to
a pair, whose donor donates to a pair, whose donor donates to the
waiting list, that constitutes a chain of length 3, and so on.We are
now ready to prove the main theoretical result of this paper.

4.2 Short chains suffice (in theory)
In this section, we use the canonical model for generating kid-

ney exchange data [5]. It works as follows. We start withG(n),
a large compatibility graph representing a kidney exchangeas de-
scribed above. The set ofn incompatible patient-donor pairs is
partitioned into subsetsVX-Y of typeX-Y , for each combination
of blood typesX andY of the patient and donor respectively. For
each blood typeX we denote the set of altruistic donors with that
blood type byVX , but make no assumptions about the size of these
sets. We assume that a donor and a patient who are blood type
compatible are tissue type incompatible with constant probability
γ̄, corresponding to the virtual crossmatch described above.The
frequency of each blood typeX is denoted byµX .

We are now ready to state our main theoretical result. It extends
the recent results of Ashlagi and Roth [5] to the setting withchains.

THEOREM 1. Assume that̄γ < 2/5, µO < 3µA/2, andµO >
µA > µB > µAB. Then with high probabilityG(n) has an efficient
allocation (i.e., one that saves as many patients as possible) that
uses only cycles of length at most 3 and chains of length at most 3.

The proof follows from three lemmas. The first lemma is a trivial
simplification and extension of Lemma 9.5 of Ashlagi and Roth[5],
which is a generalization of a classic theorem by Erdös and Rényi.
To understand the lemma, denote byG(n, p) a random graph with
n vertices where an edge exists between two vertices with proba-
bility at leastp. For a vector~α = (α1, . . . , αr) whereαi ≥ 0 for
i = 1, . . . , r let G(~α, n, p) be anr-partite graph withr sets of ver-
ticesV1, . . . , Vr where|Vi| = αi ·n for i = 1, . . . , r, and a directed
edge betweenv ∈ Vi andv′ ∈ Vi+1 for i = 1, . . . , r − 1, or be-
tweenv ∈ Vr andv′ ∈ V1, exists with probability at leastp. A per-
fect allocationin a graphG(n, p) matches all the vertices; a perfect
allocation inG(~α, n, p) (consisting of cycles of lengthr) matches
all the vertices in the smallest vertex setVi for i = argminj |Vj |.

Deviating from [5], defineG′(~α, n, p) similarly to G(~α, n, p),
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except that there are no edges betweenVr andV1. An allocation in
G′(~α, n, p) consists of chains of lengthr that originate in a vertex
in V1. As before, a perfect allocation inG′(~α, n, p) matches all the
vertices in the smallest vertex setVi for i = argminj |Vj |.

LEMMA 1 (ASHLAGI & ROTH [5]). Letp > 0. ThenG(n, p)
admits a perfect allocation that uses cycles of length at most 3 with
high probability. In addition, for any vector~α as above, the ran-
dom graphsG(~α, n, p) andG′(~α, n, p) admit a perfect allocation
with high probability.

Using Lemma 1, we can assume that if we single out several
large groups of vertices (in a large random compatibility graph) that
correspond to blood type compatible pairs, there will be sufficiently
many edges to admit a perfect matching. For example, if thereare
large sets of AB-O pairs, O-A pairs, and A-AB pairs, then with
high probability we can find an allocation that consists of 3-cycles
that matches all the vertices in the smallest set. Even if we consider
several such allocations sequentially, by applying the union bound
we can see that they all exist with high probability. This essentially
allows us to assume in the proof of the next lemma that any two
vertices that are blood type-compatible are connected by anedge.

LEMMA 2. Let G(n) be a random graph that admits the fol-
lowing allocation:

1. Every self-demanded pair is matched in 2-way or 3-way cy-
cles with other self-demanded pairs.

2. Every B-A pair is matched in a 2-way cycle with an A-B pair.
3. Every A-B pair that is not matched to a B-A pair is matched

in a 3-way cycle with an O-A pair and an A-AB pair.
4. ForX ∈ {A, B}, every over-demanded pairX-O is matched

in a 2-way cycle with an O-X pair.

Then with high probabilityG(n) admits an efficient allocation that
uses cycles of length at most 3 and chains of length at most 3.

PROOF SKETCH. We complete the allocation described in the
lemma’s statement to an efficient allocation. Figure 3 visualizes the
augmented allocation; regular edges are assumed by the lemma’s
formulation while dashed edges are added during this proof.Let
V 1 be the set of vertices not matched by the initial allocation.First,
as many A-donors as possible donate to A-AB pairs and as many
B-donors as possible donate to B-AB pairs (shown in Figure 3 by
dashed edges from A-altruists to A-AB pairs and from B-altruists
to B-AB pairs). In both cases, one of the two vertex sets will be
exhausted. More formally, using Lemma 1 we find a perfect allo-
cation for the subgraph induced byV 1

A andV 1
A-AB , and similarly we

find a perfect allocation for the subgraph induced byV 1
B andV 1

B-AB .
Let V 2 be the vertices not matched by previous allocations. We

find as many 3-way(AB-O, O-A, A-AB) cycles as possible, that
is, we find a perfect allocation for the subgraph induced byV 2

AB-O,
V 2

O-A, andV 2
A-AB . It may be the case thatV 2

A-AB = ∅. Let V 3 be the
set of vertices not matched by previous allocations. Next wefind a
perfect allocation with 3-way(AB-O, O-B, B-AB) cycles. It may
be the case thatV 3

AB-O = ∅ or V 3
B-AB = ∅.

Let V 4 be the vertices not matched by previous allocations. The
next component in the constructed allocation matches as many O-
donors as possible in chains of length 3 of the form(O, O-A, A-AB)
and then(O, O-B, B-AB). This is done sequentially as above. Fi-
nally, we match the remaining O-donors and AB-O pairs with re-
maining under-demanded pairs via chains of length 2 or 2-waycy-
cles (not shown in Figure 3).

Each of the allocations constructed above exists with high prob-
ability; thus (by applying the union bound) they all exist with high

B-AB O-B

B

AB-B

O AB-O B-O

A-AB O-A A-B B-A

AB-A

A

A-O

Figure 3: Accompanying figure to Lemma 2. Altruists are
shown as rectangles; candidate-donor pairs as ovals. Over-
demanded pairs are gray, under-demanded are white, and re-
ciprocal pairs are black. Regular edges appear in the lemma’s
formulation and dashed edges are constructed in the proof.

probability. To complete the proof, we argue that our construction
gives rise to an efficient allocation. Since under our construction all
over-demanded, self-demanded, and reciprocally demandedpairs
are matched, it is sufficient to show that no allocation can match
more under-demanded pairs.

Following Ashlagi and Roth [5], when vertexv participates in
an exchange with under-demanded vertexv′ we say thatv helpsv′.
Self-demanded and reciprocally demanded pairs cannot helpunder-
demanded pairs without involving donors or over-demanded pairs.
Similarly, AB-donors cannot help under-demanded pairs. Inaddi-
tion, only two types of vertices can help two under-demandedpairs:
AB-O pairs can participate in cycles with one of O-A and O-B and
one of A-AB and B-AB, and O-donors can start a chain with the
same types. Any other vertex can help at most one under-demanded
pair, and in particular over-demanded pairs of typeX-Y 6= AB-O
can only help under-demanded vertices of typeY -X.

Now, A-donors can only help A-AB pairs, and B-donors can only
help B-AB pairs. Therefore, it is optimal to match these donors
with their respective under-demanded pairs. Finally, in our con-
structed allocation as many AB-O pairs and O-donors as possible
are helping two under-demanded pairs each, while the rest are help-
ing one under-demanded pair each.

The following lemma directly follows from Proposition 5.2 of [5],
and holds under the assumptions of Theorem 1.

LEMMA 3 (ASHLAGI & ROTH [5]). G(n) has an allocation
as in Lemma 2, up to symmetries between A-B pairs and B-A pairs,
with high probability.

4.3 Discussion
Theorem 1 follows from the proofs of the three lemmas in Sec-

tion 4.2. The theorem itself is motivated by the recent work of
Ashlagi and Roth [5]. One has to be careful, though, not to use
the exact allocation constructed in Proposition 5.2 of their paper
as a starting point for the efficient allocation that involves altruistic
donors. Indeed, given that|VA-B | ≥ |VB-A |, Ashlagi and Roth match
AB-O pairs in cycles(AB-O, O-A, A-AB). However, because we
are essentially making no assumptions regarding|VA| and|VB |, it
may be the (admittedly extreme) case that there are many (sayan
infinite supply) of A-donors, few B-donors, few O-donors, and a
large number of unmatched under-demanded pairs of type O-B and
B-AB. In that case we would rather have the A-donors donate to
A-AB pairs while creating cycles(AB-O, O-B, B-AB). Therefore,
we must match AB-O pairs onlyafter matching altruistic donors.
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The presence of (even short) chains allows us to avoid a nega-
tive property of the efficient allocation constructed by Ashlagi and
Roth [5]: that it never matches O-AB pairs. These are, in a sense,
the “most” under-demanded pairs in that their candidates are hard-
est to match, while their donors are least capable of finding amatch.
In our allocation, AB-O pairs and O-donors that cannot participate
in 3-cycles can donate to O-AB pairs without affecting the size of
the matching. More precisely, if there are sufficiently manydonors
to fully match one of the setsVO-A andVA-AB , and one of the sets
VO-B andVB-AB , then an efficient allocation can match O-AB pairs.

Independent work by Ashlagi et al. [3] attempts to explain the
observed benefit of longer chains by considering a theoretical model
with highly sensitized patients. Specifically, the probability of tis-
sue type compatibility is allowed to decrease with the size of the
graphn. Among other results, it is shown that for anyk there ex-
ists a small enough probability of compatibility such that chains of
lengthk +1 are strictly better than chains of lengthk. However, to
even derive such a statement for chains of length 5 versus chains of
length 3, the probability must be as small asc/n for some constant
c, whereas intuitively this probability should be a constantthat does
not depend onn. Hence, despite the elegance of their results, the
assumptions underlying their model may be hard to justify.

5. EXPERIMENTAL VALIDATION
The theoretical results from Theorem 1 are strong in that they

limit the utility of chains to those of length 3 or fewer—as the graph
grows to infinity. In this section we study the disconnect between
that theorem and the real-world results from the recent UNOSkid-
ney match runs (Figures 1 and 2).

There are three potential reasons for this disconnect: (1) the the-
ory applies in the large, and the UNOS exchange is not yet large
enough for the theory to have taken hold, (2) the model that each
blood type compatible edge fails tissue type compatibilityindepen-
dently and with equal probability is a poor model of the (highly
sensitized) UNOS pool, and (3) the theory assumes all edges have
equal weight, while in the UNOS exchange, edges are weighted.

The discrepancy between the theory and the fielded results can-
not be explained solely by the fact that the theory model usesun-
weighted edges while the real UNOS data has edge weights. If that
were the main difference, we would see the curves in Figure 1 reach
their maxima at a chain cap of 3. This is not the case. So, we see
that even if all the weights were binary, long chains would produce
a significant benefit in practice. The difference can, in part, be at-
tributed to the highly structured and very small UNOS pool. This
is the product of the newness of the UNOS pilot program; as the
exchange grows, we expect the compatibility graph’s structure to
converge to one similar to our theoretical model.

In reality, the input graphG(n) cannot grow infinitely; specifi-
cally, in kidney paired donation, it has been estimated thatin steady
state the fully fielded nationwide exchange will have around10,000
pairs at any one time. In this section, we experimentally determine
just how large the candidate pool needs to be for the chain cappre-
scribed by Theorem 1 to apply.

The minimum size of this compatibility graph needed for the
theory to take hold depends on the probability distributionof blood
and HLA types in the candidate and altruist pools, the numberof
candidates in the graph, and the number of altruists. We willvary
both the number of candidates and altruists, but choose to focus
only on blood and HLA types representative of the US population
(which serves the current nationwide kidney exchange).

Here we generate candidate-donor pairs and altruists via the most
advanced and commonly used data generator for kidney exchange
today, by Saidman et al. [14]. This generator incorporates the blood

types from the ABO model discussed earlier. It also incorporates an
abstract model of tissue types to compute a type of score thatquan-
tifies the likelihood of a specific candidate being tissue type com-
patible with a random donor. In other words, this tissue typemodel
is more refined than assuming all blood type compatible edgesare
tissue type incompatible with equal probability.

5.1 Increasing the candidate pool size
In the first set of experiments, we explore the effect of a large

number ofcandidateson the efficacy of long chains. We hold the
number ofaltruistsconstant at 1, 5, or 10 for each experiment.

Figures 4, 5, and 6 show that larger pools match a higher per-
centage of candidates, leveling out at roughly 62% in compatibility
graphs with a couple hundred candidates. At a high level, this is a
strong argument for a national kidney exchange to replace the set of
smaller regional exchanges; see [11] for similar arguments. These
figures also make a case for the inclusion of chains in pools atboth
the regional and national level. Figure 5 shows that, for generated
pools of size 256, the optimal matching with a chain cap of 1 (i.e.,
altruists donating directly to the deceased waiting list, avoiding the
paired candidate pool entirely) matches nearly 4% fewer candidates
overall than matching with a chain cap of 3. The case is more dras-
tic as the number of altruists increases; for instance, Figure 6 shows
a 5% decrease on compatibility graphs of the same size. The effect
of altruists on the pool is discussed further in the next section.

From above, we can now ignore matchings that only include
chains of length 1 and 2; capping chains at either of these lev-
els would result in fewer candidates being matched. Figures7, 8,
and 9 show the expected number of extra transplants resulting from
matches incorporating chains of length 4 and 5, compared to only
considering chains of up to length 3. Clearly, the maximum number
of additional transplants offered by increasing the chain cap by 1 is
proportional to the number of altruists present in the graph. For
example, for a graph witha altruists, incorporating 5-chains can
provide a benefit of at most2a matches over incorporating at most
3-chains; similarly, increasing the cap from 3 to 4 results in at most
a extra matches. Figures 7 and 8 show that at pool sizes of 256 with
a = 1 anda = 5, the expected number of additional transplants
for either 4- or 5-chains is nil (over 100 generated compatibility
graphs). Figure 9 shows similar results while exemplifyinganother
behavior: as the number of altruists increases, the size of the pool
required so that limiting the mechanism to 3-chains is satisfactory
increases. This behavior is explored further in the next section.

Figures 8 and 9 initially show anincreasein the utility of longer
chains as the graph size moves from very small (e.g., 16 candidates)
to slightly larger (e.g., 32–64 candidates).3 This is a side effect of
the number of altruists present relative to the size of the pool. With
a high enough ratio of altruists to candidates, altruists can “flood”
the matching, an idea explored further in the next section.

All of the experiments validate the theory: there seems to clearly
be a pool size beyond which long chains do not help.

5.2 Increasing the number of altruists
In the previous subsection, we held the number of altruists con-

stant while increasing the size of the candidate pool. We nowex-
plore the opposite, allowing ever increasing numbers of altruists to
enter candidate pools of constant size.

As the number of altruists increases relative to the size of the
candidate pool, the expected number of candidates matched rises
to 100%, as shown in Figures 10, 11, and 12. This full flooding
of the pool to create a complete matching, while interesting, is not

3In Figure 9, the computational demands of this experiment pre-
cluded us from extending the dotted line past 128 candidates.
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Figure 4: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=1.
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Figure 5: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=5.
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Figure 6: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=10.
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Figure 7: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=1.
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Figure 8: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=5.
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Figure 9: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=10.

presently a realistic scenario; all three tested compatibility graph
sizes would require around 50% as many altruists as candidates in
the pool (Figure 12 has the x-axis cut short). In our experience with
UNOS, the number of altruists is typically around 5% the sizeof
the candidate pool. Increasing this number could feasibly change
as the exchange grows in size and publicity, paying special notice
to the ethical issues that arise in coercion of possible donors.

6. DYNAMIC KIDNEY EXCHANGE
In the paper so far, we have studied static models. We now dis-

cuss the dynamics of a kidney exchange running month to month.

6.1 Augmenting the model
We augment the model in several ways to make it capture the

nuances that have arisen in practice.
Dynamics. Most of the work in kidney exchange has focused on a
single-shot optimization on a static pool. This deviates from reality
in that matching should occurdynamically. In reality, candidates
arrive and depart from the pool. Even with dialysis, only 12%of
patients survive 10 years [18]; this gives us the monthly death rate
we use in our experiments. Timeliness in matching is clearlyim-
portant. Our experimental results, discussed later, perform match-
ing over 24 months using a changing kidney pool.

Some work in this area has been done already. Ünver [17] de-
rives an efficient mechanism in the dynamic setting for a simplified
model of kidney exchange that can be solved analytically. Awasthi
and Sandholm [6] apply the model discussed above to the dynamic
setting, using trajectory-based optimization to look intothe pos-
sible futures and then use optimization technology to determine
transplants for the current period, including chains.

Work by Gentry et al. [8] on simulated data and Ashlagi et al. [4]
on real-world data explores the trade-offs between two types of
chain execution polices. The first chain type is executed in its en-
tirety in one time period, with the leftover donor donating to the

waiting list. An alternative is to split long chains into segments
with intra-segment simultaneous transplants, but the segments exe-
cute one after another. The left over donor (akabridge donor) from
one segment then serves as a virtual altruist for the next segment.
These two types of chains perform differently under the presence
of renege rates—that is, when a bridge donor decides to leave the
pool before donating a kidney. However, no reliable quantification
of a renege rate exists due to the infancy of kidney exchanges.

While Gentry et al. [8] do not explicitly consider chain caps,
Ashlagi et al. [4] do; they experimentally show that longer (up to
length 6) chains can, in fact, help. Our work uses a similar model
with single-shot execution chains and, importantly, takesinto ac-
count the policies of the UNOS nationwide kidney exchange. As
we will show, this addition results in different matching behavior.
We now discuss these UNOS-specific additions to the model.
Individual crossmatch sensitivity. As exemplified in the real,
highly-sensitized UNOS candidate pool, candidates can have widely
varying susceptibility to incompatibilities in kidney donation. The
Saidman et al. model from the previous section has a rather realistic
view of virtual crossmatch failures, and we use that model here.

In addition, here we do (non-virtual) crossmatches for all the
planned transplants just before the transplant takes place, as in re-
ality. This is again done using the Saidman et al. [14] generator. It
provides for each candidate a probability that the candidate is tissue
type compatible with a random person. We use that probability to
draw crossmatch success versus failure. If the crossmatch fails, the
transplant cannot proceed. If it is part of a cycle, the cycledoes not
execute; the pairs in the cycle go back in the pool. The failededge
is permanently removed from the compatibility graphG(n).

Crossmatching has a significant effect on the size of the “real”
matching. Assume an optimal matching (pre-crossmatch) yields a
3-cycle. If any crossmatch fails between a candidate and poten-
tial donor, theentirecycle must be thrown away—since we cannot
force a donor to give a kidney if his accompany candidate doesnot
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Figure 10: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=32.
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Figure 11: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=64.
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Figure 12: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=128.

receive one. Even more drastic is the case of chains: if, for exam-
ple, a pre-crossmatch matching yields a 20-chain, any transplants
after the first crossmatch failure cannot be performed.

Because of this special case for chains, real-world exchanges
have enacted policies for the acceptance or rejection of chains based
on their length and the quality of the altruistic donor. O-type altru-
ists are highly valued, as they can (potentially) donate to any blood
type, so short chains enabled by O-type altruists should (poten-
tially) be rejected in favor of longer chains in the future. Our exper-
iments follow current UNOS policy which, along with some special
cases discussed below, states that (i) chains started by non-O-type
altruists are always executed, while (ii) chains triggeredby an O-
type altruist are executed only if they can be executed to length at
least 5 (before there is a crossmatch failure). We will experiment
with varying the value away from 5; we will call this parameter k.
Altruists are allowed choices.In the event that an O-type chain is
shorter than length 5, the UNOS policy allows for the altruist to de-
cide that the chain be executed anyway. This is due to the factthat
altruists do not want to stay in the candidate pool indefinitely, but
rather want to move on with their lives and other plans. In UNOS’s
experience running kidney exchange, altruists typically do not wish
to stay active in the pool for more than three months—insteadopt-
ing to donate directly to the deceased donor waiting list. While
exact data on this phenomenon are too sparse at the moment, our
experiments use the anecdotal rates (received through UNOS): 75%
probability of an altruist requesting execution of a short chain, and a
monthly altruist exit rate that corresponds to an expected presence
of two months in the pool for each altruist. Our model executes
each chain in a single time segment.

6.2 Experimental Results
We now present preliminary results simulating dynamic kidney

exchange under the model described above. Figure 13 shows the
expected increase in transplants when including chains over the
cycles-only approach. The x-axis describes the total number of
candidates available during at least one time period over the entire
simulation; between 15 and 20 candidates arrive every time period
and between 1 and 2 altruists arrive every time period. The initial
pool (i.e., the pool at timet = 0) is seeded with between 50 and
100 candidates and 5 altruists. These settings roughly mimic the
current state of the nationwide UNOS pilot program.

The results both remain true and (appear to) deviate from the
theory in a number of ways. The benefit of using chains is imme-
diately obvious; in all cases, even using only 2-chains increases the
total number of transplants by 20 or more. However, in this new
setting, chains of length at most 3 (at least for the tested pool sizes,
number of altruists, etc) donotprovide equivalent benefit to longer
chains. While 3-chains do provide a net gain over 2-chains, con-
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Figure 13: Expected improvement ofn-chains over 1-chains
(over 24 months).

sidering longer chains helps—sometimes by nearly 10 additional
transplants. This increase is surprising because, intuitively, longer
chains are less likely to be executed in full (and thus likelyto be
canceled by the UNOS policy) due to low crossmatch probability.
Not executing a chain is dangerous because altruists leave the pool
entirely if they remain unmatched for more than a few months.

The results above can be explained by considering the effectof
time on an evolving small-scale pool of candidates. Over time,
highly sensitized candidates will build up in the pool, since they are
often significantly harder to match—both because they have fewer
connected edges in the generated compatibility graph and because
they are more likely to fail during the crossmatch. Through the real-
world results detailed in Section 3, we have seen that the utility of
(long) chains increases tremendously in the presence of a small,
highly sensitized pool. In Figure 13, chains of length greater than
3 are able to serve highly sensitized candidates because they do not
need to “close” the chain, as is the case with a cycle.

Surprisingly, allowing the optimizer to use chains of up to length
5 is strictly worse than constraining it to chains of length at most
4 (while a cap of 4 is better than 3). This suggests that there is di-
minishing benefit to longer and longer chains, and at the sametime
there is increasing risk of crossmatch failure (and therebyaltruists
leaving and candidates dying) with increasing chain cap. The ex-
periments here suggest that in the dynamic setting with these pool
sizes (i.e., not in the very large), a chain cap of 4 is best.

We now expand our preliminary experiments to include the chain
execution policy from UNOS (see Section 6.1), and we will vary k
(between 1 and the chain cap). Intuitively, a higherk will prevent
“wasting” a valuable O-altruist on short chains, favoring waiting
for a longer, higher-scoring chain instead. Figure 14 showsthe
effect of varyingk as we increase the chain length cap. When con-
sidering only short chains, a higherk increases the total number of
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transplants. In contrast, when chains of length 4 and 5 are consid-
ered, it appears better to reducek. The drop in overall utility from
allowing only long chains to execute is due to altruists’ propensity
to leave the pool; if an altruist is not used in an executed chain
within a few time period, he/she is likely to leave the pool (and
thus be “wasted” by going straight to the deceased donor waiting
list instead of saving some lives in the pool first).4
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Figure 14: Expected percentage of candidates matched with 1-
to 5-chains, varyingk in the UNOS chain execution policy.

7. CONCLUSIONS & FUTURE RESEARCH
In this paper, we considered altruist-initiated chains, a recent in-

novation in barter exchanges that has seen wide adoption in re-
gional and national kidney exchange, but has not been well un-
derstood. We described results gathered from the first nationwide
kidney exchange in the US that show, for relatively small, highly-
sensitized pools of candidates, the benefit of long chains. We then
showed that, in the large, the benefit from chains longer than3 be-
comes negligible (with high probability) on random compatibility
graphs drawn from distributions that mimic the real world popu-
lation. We supported these theoretical results by extensive experi-
ments using the state-of-the-art instance generator to allow us to ex-
periment on larger instances than exist in current kidney exchanges.
The theoretical results take hold in exchanges orders of magnitude
smaller than the expected steady-state of the nationwide kidney ex-
change; this provides evidence for considering only short chains in
the large, real-world exchanges we expect to see.

Finally, we experimented in the dynamic setting where the ex-
change clears every month. We included in the simulations all
the known (to us) considerations that have arisen through our work
with real kidney exchanges. Computational complexity precluded
experiments in the large for the dynamic setting, but in medium-
sized pools a chain cap of 4 was best (and strictly better than5). At
any given point in our largest dynamic simulations, 100–150candi-
dates were present in the pool—others had already been matched,
had died, or had not entered the simulation yet. We showed in
Section 5 that, at such a small size and with so many altruists, we
cannot expect 3-chains to suffice. We believe that, were the pool in-
creased to hundreds of new candidates per month (as is projected to
be the case in a fully fielded nationwide exchange), experiments in
a dynamic setting would yield results similar to the static setting—
with chains of length 3 sufficing.

Many avenues for future research arise from this work. Theo-
retical results in less abstract models would provide further insight

4Following the acceptance of this paper, UNOS removed the rule
that chains triggered by an O-type altruist are executed only if they
can be executed to length at least 5. Our experimental results were
the reason for this change in policy.

into the efficacy of chains in real world exchanges. Ongoing work
by Ashlagi et al. [3] is, to our knowledge, the only other pushin
this direction; they analyze chains in highly sensitized pools, but
under arguable assumptions. Furthermore, advances in clearing al-
gorithms are necessary to handle chains at even the moderatescale;
the current state of the art can clear only small candidate pools
with just a few altruists. Scaling to the expected size of thenation-
wide kidney exchange will require algorithmic and computational
advances that allow clearing pools orders of magnitude larger than
what can be solved today. Restricting attention to short chains may
be a promising avenue for tackling that complexity.
Acknowledgments. This work is supported by the National Sci-
ence Foundation under grants IIS-0905390, IIS-0964579, and CCF-
1101668. We acknowledge Intel Corporation and IBM for gifts.
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ABSTRACT
We consider the age-old problem of allocating items among dif-
ferent agents in a way that is efficient and fair. Two papers, by
Dolev et al. and Ghodsi et al., have recently studied this problem in
the context of computer systems. Both papers had similar models
for agent preferences, but advocated different notions of fairness.
We formalize both fairness notions in economic terms, extending
them to apply to a larger family of utilities. Noting that in settings
with such utilities efficiency is easily achieved in multiple ways, we
study notions of fairness as criteria for choosing between different
efficient allocations. Our technical results are algorithms for find-
ing fair allocations corresponding to two fairness notions: Regard-
ing the notion suggested by Ghodsi et al., we present a polynomial-
time algorithm that computes an allocation for a general class of
fairness notions, in which their notion is included. For the other,
suggested by Dolev et al., we show that a competitive market equi-
librium achieves the desired notion of fairness, thereby obtaining a
polynomial-time algorithm that computes such a fair allocation and
solving the main open problem raised by Dolev et al.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Algorithms, Economics, Performance

Keywords
Fisher Market, Fair Allocation, Leontief, Perfect Complementarity

1. INTRODUCTION
This paper deals with the classic question of allocating resources

among different potential agents. Specifically, we are interested
in this question in the context of computer systems that need to
share their computational resources among different agents. Re-
sources in this context can be CPU time, main memory, disk space,
∗Supported by a grant from the Israeli Science Foundation (ISF),
and by the Google Inter-university center for Electronic Markets
and Auctions.
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communication links, etc. The agents may be jobs, computers, or
software agents representing them, and the allocation may be im-
plemented at the level of the network routers, the operating system,
or by higher level software, whether centralized or distributed.

The departure point of this work is several recent attempts to look
at the allocation problem in computer systems in abstract principled
terms; by Dolev et al.[6] and Ghodsi et al.[9]. In these papers, the
basic model assumed that each agent desires a well-defined bundle
of resources, and the allocation problem is to decide which fraction
of his bundle each agent gets. While the treatment is abstract, it is
very clear that the motivation came directly from actual computer
systems. We wish to explicitly point out a key difference between
the literature on allocating resources in computer systems and the
general economic literature on resource allocation, a difference we
believe explains the near complete separation between the two: The
computing literature almost always assumes that each agent desires
a well-defined bundle of resources, while the economic literature
almost always considers the trade off that agents have between dif-
ferent resources.

The standard example of resource allocation by an operating sys-
tem has each job requesting a well-specified set of resources (e.g.
1000 CPUs with 1TB of main memory and 1GB/sec of communi-
cation bandwidth), and allocates among such requests. We do not
often see systems that can handle requests like “either 1000 CPUs
with 2TB main memory or 2000 CPUs with 1TB main memory”. In
fact, even when the underlying problem allows a trade-off between
several possible bundles of resources, the allocation system usually
first decides on a bundle for each agent and then attempts to allo-
cate these chosen bundles to all agents. An example is routing in a
network, where the routing decision of choosing a path to the des-
tination is in practice completely decoupled from the bandwidth-
allocation decision for the links on the chosen path.

On the other hand, the economics literature on resource alloca-
tion usually focuses on the trade-offs between different resources
that are captured by agent preferences. The fact that for some agent
an apple may be a substitute to an orange results in a flexibility in
preferences that allows sophisticated trade that can be beneficial to
all parties (Figure 1a).

The case where consumers’ preferences do not allow any substi-
tution between different goods is called the case of “perfect com-
plements” (Figure 1b), with the basic example being Leontief util-
ities: For any quantity vector (x1, ..., xm) of m resources, u is de-
fined as u(x1...xm)=minj(xj/rj), where the rjs are the relative
proportions needed of the different goods [4]. These are the utilities
used (implicitly) by [6, 9] to capture the preferences in computer
systems, and are the focus of attention of this paper. However, the
relations between resources are not necessary linear. It could be
that some agents’ demand of bandwidth would be in quadratic re-
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lation to number of CPUs, and that RAM would be proportional to
log(DISK). The generalization to perfectly complementary func-
tions is required to capture such relations.

(a) (b)

Figure 1: Figure 1a shows an indifference map for a utility function with some degree
of substitution between goods. Figure 1b shows the indifference map of a perfectly
complementary utility. Each indifference curve is the set of all allocations resulting in
the same utility.

It is important to state that throughout this work, we do not as-
sume or make any interpersonal comparisons of utility [10] - we
use utility functions solely as a way to define agents’ preferences
over bundles.

Our first contribution in this paper is putting the question of al-
location of computer resources studied in [6, 9] into an economic
framework, obtaining a general economic perspective that we be-
lieve is useful. We observe that when agents have perfectly comple-
mentary preferences, the requirement of Pareto-efficiency turns out
to be quite weak and simple: it suffices that the allocation is (what
we term) non-wasteful: no agent receives resources that he has no
use for, and no useful resources are left on the table. As a result,
efficiency does not require any form of trade between agents, and
there is no need for “money” as a mechanism of ensuring efficiency.
This underlying lack of trade may explain the applicability to com-
puter systems, which usually lack the infrastructure for enabling
trade. It may also suggest potential applicability in other scenarios
where trade is impossible due to technical, administrative, legal, or
ethical reasons.

However, this requirement alone leaves us with multiple possible
allocations (as seen in Figure 2b as opposed to Figure 2a). There-
fore, the question of choosing between the efficient allocations be-
comes the central one, as indeed was done by [6, 9] in different
ways, using different terminology and definitions of fairness.

(a) With Substitutes (b) Perfect Complements

Figure 2: Figure 2a is an Edgeworth box of continuous indifference curves with sub-
stitutes. In this case, if two curves are tangent to each other, there is a single point of
tangency. As a result, the Pareto set is single dimensional.
Figure 2b is an Edgeworth box with curves corresponding to the perfectly comple-
mentary case. Here, two curves may have many points of tangency, corresponding to
allocations of the under-demanded goods. As a result, the Pareto efficient allocations
are in the whole shaded area.

After formalizing our notions, which generalize those in [6, 9]
to the framework of perfectly complementary utilities, we embark
on the study of these fairness notions “Bottleneck Based Fairness”
(BBF), advocated by [6], and “Dominant Resource Fairness” (DRF),
used as the fairness property of the mechanism in [9].

Behind BBF there is the notion that when each agent is entitled to

some percent of all resources, he has a “justified complaint” against
an allocation if he gets less than that percentage on all “bottleneck”
resources. An allocation is called BBF if no agent has a justified
complaint against it. Regarding DRF, we view the notion as com-
posed of two elements: The first element is a norm-like mecha-
nism that quantifies and allows comparing bundles of resources al-
located to a single agent. The second element dictates that fairness
is defined according to Rawlsian [12] max-min fairness of these
quantities. Meaning, fairness should be decided by the agent that
received the least according to the quantification of bundles. DRF
uses the L∞ norm (i.e. looking at the highest allocated share over
all resources); we note any norm is equally viable. This general
norm-like mechanism defines a class of fairness notions that we
call “Generalized Resource Fairness” (GRF) (see examples in Fig-
ure 3). A somewhat related generalization of DRF can be found in
[11].

At this point come our main technical results - both quite sim-
ple given the wider context which we have built. We present two
algorithms for finding fair allocations according to each of these
fairness notions. Our first algorithm finds an allocation satisfying
any given fairness notion from the GRF class. It is similar, in con-
cept, to the family of “water-filling” algorithms [5, 2]. We extend
the observation of [9] that greedily allocating the resources to the
“poorest” agent at each stage produces a fair allocation. In [9] this
was done in a pseudo-polynomial way (allocating δ-by-δ fractions
of the goods1) for DRF and Leontief utilities. We give an algorithm
which is polynomial for a wide subclass of perfectly complemen-
tary utilities and any GRF notion of fairness (given minimal access
to an oracle describing the utilities and desired fairness-norm), and
becomes strongly polynomial for Leontief utilities.

Our second algorithmic result solves the main problem left open
by [6]: obtaining a polynomial-time algorithm for computing a
BBF allocation. Our contribution here is a direct corollary of phras-
ing the problem in a market context, in which each agent enters the
market with some quantity of each good (his endowment), or with
a budget (some amount of money). We recast the entitlements of
[6] in terms of budgets in a Fisher market2 (see e.g. [4]), and look
at competitive market equilibria of this market. Our main observa-
tion is then that any market equilibrium in this context will be BBF.
This both proves the existence of a BBF allocation for all perfectly
complementary utilities, and solves the main problem of [6] for
Leontief utilities, for which an equilibrium in a Fisher market can
be found in polynomial-time using convex programming [3]. Note
that Ghodsi et al. [9] already compared their results with a market
equilibrium.

The structure of the rest of the paper is as follows: Section 2
sets our notions, notations, and basic facts about efficiency with
perfectly complementary preferences. In Section 3 we define and
discuss various notions of fairness of allocation in this context, in
Section 4 we present the algorithm for GRF fairness and in Section
5 we develop the market context which implies the algorithm for
BBF.

2. THE MODEL

2.1 Some Notation
We use the following notation: For ~x, ~z∈<m -

• We write ~x 6 ~z if ∀j, xj 6 zj .
1[9] also suggest a polynomial-time algorithm which provides DRF
for a discrete setup, a case which we do not study here.
2In terms of an Arrow-Debreu market [1], this is the scenario in
which agents have equal endowments of all goods.
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• We write ~x < ~z if ~x 6 ~z and for some j we have strict
inequality: xj < zj .

• We write ~x� ~z if for all j, xj < zj .

• Throughout the paper, i ∈ [n], j ∈ [m]. ~xi denotes the ith
column vector of a matrix X .

• Given a matrixX=(xij) ∈ <n×m,X+~z=(~x1+~z, ..., ~xn+~z)

2.2 Basic Setup
We study a setup with m infinitely divisible resources, wanted

by n agents.

DEFINITION 1. Given quantities for goods ~q ∈<m+ , an alloca-
tion is a matrix X∈<n×m+ with

∑
i x

i
j6qj for all j.

Unless stated otherwise, we assume without loss of generality that
qj =1 for all j, in which case xij denotes the fraction of good j that
bidder i gets.

Each bidder i has a utility function ui(xi1, ..., xim) that denotes
his utility from receiving the bundle composed of xij fraction of
each resource j. Our definitions and results are insensitive to the
cardinal properties of ui and only depend on ordinal ones, so we
could have equivalently modeled agent preferences using a pref-
erence relation ≺i. Specifically, it means that we do not make any
interpersonal comparisons of utility [10]. We make the standard as-
sumption that utility functions are non-decreasing, that is - if ~x≥~y,
then u(~x) > u(~y). Additionally, each agent has an entitlement
ei, with

∑
i ei = 1 , intuitively stating how much he brought into

the system or “deserves” of the system. It is useful to think of an
agent’s entitlement as 1/n, when n is the number of agents, but,
following [6], we also allow any pre-defined entitlements ei such
that

∑
i ei = 1, where the general intention is that an agent with

twice the entitlement of another one “deserves” twice the alloca-
tion.

DEFINITION 2. x is called maximal for u if for all y, u(x) >
u(y).

DEFINITION 3. A utility function u is called strictly monotonic
if for every non-maximal ~x, and all ~y >> ~x. We say it is non-
satiable3 if it is strictly monotonic and has no maximal ~x.

If u is not non-satiable, we say that it is satiable, and u is satiated
at ~x if u(~x)>u(~y) for all ~y∈<m+ .

2.3 Parsimonious Allocations
For the utilities in question, it is often the case that an agent

can relinquish some of his bundle without reducing his utility. For
clarity, and without losing generality, we will focus on allocations
where this is not true. We use ~x ⇓ ~z to denote a pointwise-
minimum, that is ~x ⇓ ~z = (min(x1, z1), ...,min(xm, zm)).

DEFINITION 4. A bundle ~x is a parsimonious bundle for u if
for all ~z < ~x we have that u(~z) < u(~x). An allocation is called
parsimonious w.r.t utility functions u1, ..., un if each ~xi is a parsi-
monious bundle w.r.t to ui.

PROPOSITION 1. If u is continuous, then for every bundle ~x
there exists a parsimonious bundle ~y such that ~y 6 ~x and u(~x) =
u(~y).
3One can verify that strictly monotonic and non-satiable is equiv-
alent to the standard economic term “locally non-satiable for all
x”.

PROOF. Let L = {~z ∈ <m+ |u(~x)=u(~z) and ~z 6 ~x}. This set
is compact (it is closed by the continuity of u and bounded since
~z 6 ~x), so a ~y ∈ L that minimizes

∑
j yj over all ~z ∈ L exists.

Since ~y ∈ L, we must have ~y 6 ~x and u(~x) = u(~y). For any
bundle such that ~z < ~y, it holds that ~z 6 ~x and

∑
j zj <

∑
j yj .

Hence, it must be the case that u(~z) < u(~x), otherwise z ∈ L and
~y does not minimize

∑
j zj in L .

2.4 Perfect Complementarity
Perfectly Complementary utility functions could be defined in

several ways.

DEFINITION 5. A utility function u is perfectly complementary
if for all ~x, ~y we have that u(~x ⇓ ~y)=min (u(~x), u(~y)).

PROPOSITION 2. The following are equivalent if u is continu-
ous:

1. u is perfectly complementary.

2. For all parsimonious bundles ~x, ~y, either ~x 6 ~y or ~y 6 ~x.

3. There exists a function w : <+ → (<+ ∪ {∞})m, called
the parsimonious bundle representation of u, such that for
all t > 0 we have that u(~x) > t if and only if ~x > w(t).
That is, u obtains utility level at least t exactly when it gets
at least wj(t) amount of every good j.

PROOF. Assume u is continuous.
1⇒ 2 (¬2⇒ ¬1): Let ~x, ~y ∈ <m+ be two parsimonious bundles

such that neither ~x > ~y nor ~y > ~x. Let ~z=~x ⇓ ~y. This means that
there is some j for which xj < yj and some l such that xl > yl.
Clearly, ~z < ~x and ~z < ~y. Since they are both parsimonious
bundles, u(~z) < u(~x) and u(~z) < u(~y), and therefore u(~z) <
min (u(~x), u(~y)).

2 ⇒ 3: Define w(t) for all t > 0 to be a parsimonious bundle
achieving utility level t (and∞ if such a bundle does not exist). We
need to show that u(~x) > t if and only if ~x > w(t).

(⇐) Take a bundle ~y > w(t). Then, from the monotonicity of u,
u(~y) > u(w(t))= t.

(⇒) Let ~y be some bundle such that u(~y) > t and let ~z 6 ~y be
a parsimonious bundle with u(~z) = u(~y) (which exists by Propo-
sition 1). Since ~z and w(t) are both parsimonious, by assumption,
either ~z > w(t) or ~z 6 w(t). If it is the latter, u(~z) 6 u(w(t))= t
which means u(~z)= t resulting in ~z=w(t) (otherwise, w(t) is not
parsimonious). Either way, ~y > ~z > w(t), as required.

3 ⇒ 1: We trivially have that u(~x ⇓ ~y) 6 min (u(~x), u(~y)) so
we only need to show the opposite inequality. Let t=min(u(~x), u(~y)).
From (3) it follows that ~x > w(t) and ~y > w(t), and so ~x ⇓ ~y >
w(t) so u(~x ⇓ ~y) > t as required.

This concludes the proof that the three definitions are equivalent
for a continuous utility function u.

LEMMA 1. If ~x is a parsimonious bundle and u is a perfectly
complementary utility function, then ~x = w(u(~x))

PROOF. Since u is perfectly complementary, by Proposition 2,
~x > w(u(~x)). Since ~x is a parsimonious bundle, for all ~z < ~x,
u(~z) < u(~x). Let ~z = w(u(~x)). By definition, u(~z) = u(~x).
However, if there exists some j such that xj > zj , it contradicts ~x
being parsimonious.

Note that Proposition 2 implies thatw(t) must be non-decreasing.
However, the parsimonious bundle representation w of a continu-
ous perfectly complementary utility u is not always continuous it-
self. It turns out that u being strictly monotonic is equivalent to the
continuity of w (for all t ∈ [0,max~xu(~x)]).
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LEMMA 2. A continuous perfectly complementary utility u is
strictly monotonic if and only if its parsimonious bundle represen-
tation w is continuous on the domain {t|0 6 t 6 max~xu(~x)}.

PROOF. (If): Take a point ~x for which u is not satiated, u(~x) =
tx, and some ~y such that ~y � ~x. Consider w(tx)+ε) for some
ε > 0, which is a parsimonious bundle with utility tx+ε > tx.
(Since u is not satiated at ~x,∞ � w(tx)+ε) for a small enough
ε). Since ~y � ~x = w(tx) (by Lemma 1 ), by continuity of w, for
sufficiently small ε we still have ~y � w(tx)+ε), and so u(~y) >
tx+ε > tx, as needed.

(Only if): Let (α, z−j) be the vector obtained from replacing
~z’s jth coordinate by α. By definition, each coordinate of w is
non-decreasing, so to prove continuity it suffices to prove for every
coordinate j that there are no gaps in the values that wj(t) attains.
Assume that a certain value β = wj(t) is achieved. We need to
show that for all 0 6 α < β, there exists a parsimonious bundle
w(t′) such that wj(t′)=α.

Take some bundle ~z � w(t). Let t′ = u(α, z−j), and consider
w(t′). From the monotonicity of u, and Proposition 1, it follows
that ~z � w(t) > w(t′). Since w(t′) is parsimonious, by defi-
nition, wj(t′) ≤ α. It must be, therefore, that wj(t′) = α, since
otherwise, w(t′) � (α, z−j), which contradicts u being strictly
monotonic.

In addition, perfectly complementary utilities are inherently quasi-
concave.

DEFINITION 6. u is quasi-concave if u(~x) > u(~y) implies that
u(λ~x+(1 − λ)~y) > u(~y) for all 0 < λ < 1. It is strictly quasi-
concave if u(~x) > u(~y) implies that u(λ~x+(1− λ)~y) > u(~y) for
all 0 < λ < 1.

LEMMA 3. Every perfectly complementary utility u is quasi-
concave.

Proof is omitted, as it is similar to that of lemma 4.
If the utility function u is also strictly monotonic, we can make

the following stronger statement:

LEMMA 4. Every perfectly complementary and strictly mono-
tonic utility function u is strictly quasi-concave.

PROOF. Let ~x, ~y be two bundles such that u(~x) > u(~y). Let
u(~x) = t1, u(~y) = t2, and ~z = λ~x+(1 − λ)~y. Given j, if yj >
xj , then yj > zj > xj > wj(t1). Otherwise, xj > zj > yj ,
there is some t̂j > t2 such that wj(t̂j) = zj (Lemma 2). For
t̂=min(minj(t̂j), t1), t̂ > t2 and therefore ~z > w(t̂). Hence, by
definition u(~z) > t̂ > t2 =u(~y) as required.

Example: Leontief Functions
Leontief utilities are one example of perfectly complementary

utility functions. These utility functions express an interest in a
certain fixed proportion of resources.
u is Leontief if u(~x) = minj∈S(xj/rj) for some constants ~r >

0, where S = {j|rj > 0}. This means that in order to obtain
utility level t > 0, the agent needs at least rjt fraction of each
good j. Thus, the parsimonious bundle for each utility level t is
w(t)=(r1t, ..., rmt).

Leontief utilities are non-satiable. The utilities considered in [6]
are satiable versions of Leontief utilities:
u(~x) = min(1,minj∈S(xj/rj)), where 0 6 rj 6 1; i.e. the
maximum utility of 1 is obtained at the minimal saturation bundle
(r1...rm). We call these satiable Leontief utilities.

Note that a parsimonious bundle ~x for an agent with a Leontief
utility needs to obtain the minimum on all coordinates, and there-
fore maintains ~x = α~r for some constant α.

2.5 Efficiency
The first requirement from an allocation is obviously to be effi-

cient. We start with a very weak notion of efficiency that intuitively
does not assume the possibility of trade. Though in general this no-
tion of efficiency is significantly weaker than Pareto efficiency, we
show that for perfectly complementary utilities it implies Pareto
efficiency.

DEFINITION 7. An allocation is non-wasteful if :

1. For all i, the bundle ~xi is parsimonious for ui.

2. ∀i ui(~xi+~z)=ui(~x
i) where zj =1−∑i x

i
j .

Intuitively, these are allocations where no agent gets more unless
it improves his utility, and goods are left on the table only if they
cannot improve the agents’ utilities.

Our interest is in economies where trade does not promote effi-
ciency (the opposite of what is usual in economic theory).

Let ~u(X)=(u1(~x1), ..., un(~xn)).

DEFINITION 8. An allocation X is Pareto efficient if there is
no other allocation Z such that ~u(Z) > ~u(X).

Pareto-efficiency is stronger than being non-wasteful as it also
requires that no bilateral (and multi-lateral) trade that is mutually
beneficial is possible, while non-wasteful only requires goods not
to be left on the table if they can be of any use to anyone. How-
ever, for perfectly complementary utilities, non-wastefulness is a
sufficient condition for Pareto-efficiency. To obtain equivalence we
must add the requirement of parsimony to Pareto-efficiency. We
can add it without loss of generality as we can replace any Pareto
efficient allocation X by a parsimonious allocation Y 6 X that
provides all agents with the same utilities.

DEFINITION 9. An economy u1, ..., un is called a no-trade econ-
omy if every non-wasteful allocation is also Pareto efficient.

PROPOSITION 3. An economy composed of perfectly comple-
mentary utilities is a no-trade economy.

PROOF. Let X be some non-wasteful allocation for n perfectly
complementary bidders. Let zj = 1 −∑i x

i
j . Since X is non-

wasteful, for all i, ui(~xi) = ui(~x
i+~z). Assume, by way of con-

tradiction, that there is an allocation Y such that ~u(Y ) > ~u(X) =

~u(X+~z). Therefore, there is some i for which ui(~yi) > ui(~xi).
We can assume, w.l.o.g, that Y is a parsimonious allocation. By
Proposition 2, ~yi > ~xi. Since Y is an allocation, it must hold
that yi − xi 6 1 − ∑k x

k, but that contradicts X being non-
wasteful.

3. FAIRNESS NOTIONS
Fairness of an allocation is an elusive concept. There are many

opinions on what counts as fair, which sometimes vary depending
on the application. As a result, there are many fairness notions
for allocations in various models. Some recent papers dealing with
the same motivation suggested different fairness notions. One was
introduced by Dolev et al. [6] and the other by Ghodsi et al. [9]. In
this section, we rephrase the definitions of [6] and [9], generalize,
and compare them.4

4In the case of Ghodsi et al., since the paper has a systems flavor,
we use our understanding of their somewhat informal definitions.
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3.1 Dominant / Generalized Resource Fairness
The notion of “Dominant Resource Fairness” was advocated in

[9]. Conceptually, we view this notion as combining two elements:
the first is the choice of defining fairness between the agents in
the Rawlsian [12] sense of maximizing the welfare of the poorest
agent, and the second is the choice of quantifying the allocation of
an agent according to the maximum share of any resource he got.
We generalize this notion of fairness by sticking to the first element
of fairness and allowing a variety of choices for the second.

Let || · || be a norm on <m. We think of ||~xi|| as our measure
of “how much” i obtains - a scalar that quantifies the bundle ~xi. In
fact, we don’t really need all the properties of a norm, just mono-
tonicity and continuity.

DEFINITION 10. Given a norm || · || on <m and two parsimo-
nious allocations X,Y ∈ <n×m+ (where ~xi, ~yi are column vectors
in X,Y respectively). We say that X is fairer than Y (according
to || · ||) if

min
i:||~xi||6=||~yi||

(||~xi||) > min
i:||~xi||6=||~yi||

(||~yi||)

That is, if we look at the agent with the minimal allocation that
differs between X and Y , then that agent gets (weakly) more in
X . Generalizing to the case that agents come with pre-defined en-
titlements, we also say that X is fairer than Y under entitlements
e1, ..., en if

min
i:||~xi||6=||~yi||

(||~xi/ei||) > min
i:||~xi||6=||~yi||

(||~yi/ei||)

We say that an allocationX is || · ||-fair if for every other allocation
Y , we have that X is fairer than Y (And similarly for fairness
under entitlements.).

In [9], theL∞ norm was used, and the fairness notion was termed
“Dominant Resource Fairness” (DRF). Other natural choices would
be the L1 norm, referred to as “Asset Fairness” in [9], which counts
total resource use, and intermediate norms such as L2. The fol-
lowing example shows the different fair allocations for these three
choices of norm:

(a) Request Matrix

(b) L∞ (c) L1 (d) L2

Figure 3: Figure 3a depicts the agents’ interest in the resources and their respective
entitlements. Figures (b)-(d) show the different allocations corresponding to three
different norms. 0.41.. is the solution to the equation 2x2 = (1− x)2.

As seen in Figure 3, it is hard to tell which norm provides an
intuitively fairer allocation, and each may be appropriate in some
cases. One may argue that L∞ is unfair since agent C receives too
much in total resources, while L1 is unfair as C receives too little
of any specific resource. L2 gives an intermediate allocation, but
then again, it may be argued that C still receives too much in total.

3.2 No Justified Complaints
This fairness notion was originally stated using Leontief utili-

ties. We suggest a generalization of this fairness notion to perfectly
complementary utilities:

DEFINITION 11. No Justified Complaints for PC utilities An
allocation X has the property of “No Justified Complaints” (NJC)
if for all agents i:

1. ~xi is a parsimonious bundle.

2. Either there is some “bottleneck” good j such that
∑
i x

i
j =

1 with xij > ei, or ui is satiated at ~xi: ui(~xi) > ui(~z) for
all ~z ∈ <m.

If an allocation has the NJC property, we will say it is “Bottleneck-
Based Fair” (BBF).

Restricting the above definition to satiable Leontief utilities re-
duces to the original definition in [6].

One can easily verify that the examples of || · ||-fair allocations
above are all BBF. Of course, all criticism of these allocations ap-
plies to BBF as well. However, not all || · ||-fair allocations are
BBF. The examples in Figure 4 show that BBF and norm-fairness
are unrelated notions.

(a) Request Matrix

(b) L∞ (c) L1 (d) L2 (e) BBF

Figure 4: In the setup above, none of the || · ||-Fair allocations is BBF, since agent A
does not have his entitlement of a bottleneck resource. (4e) shows a BBF allocation of
this setup, that does not satisfy any of the aforementioned norm-fairness notions.

4. COMPUTING A NORM-FAIR ALLOCA-
TION

The basic idea of [9] is that a greedy allocation rule approaches
dominant resource fairness: at each stage the “poorest” agent gets
another ε of his required bundle. We observe that the same is true
in general for all || · ||-fairness notions, and show how the pseudo-
polynomial algorithm presented in [9] may be converted into a fully
polynomial-time allocation algorithm. We will present the algo-
rithm in general terms and assume the following minimal type of
oracle access to the underlying utilities and norm.

Our algorithm applies to continuous, strictly monotonic, per-
fectly complementary utilities with the following additional prop-
erty:

DEFINITION 12. Let u be a perfectly complementary function,
and ~x, ~y ∈ <m+ be two parsimonious bundles with respect to u.
We call u compatible with a norm || · || if u(~x) > u(~y) implies
||~x|| > ||~y||.

LEMMA 5. Every perfectly complementary utility is compatible
with Lp for every 1 6 p < ∞. Leontief and satiable Leontief
utilities are also compatible with L∞.
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PROOF. Let u be a perfectly complementary utility function,
and let ~x, ~y be two parsimonious bundles such that u(~x) > u(~y).
Let u(~x) = t and u(~y) = t′. Since ~x, ~y are parsimonious, and u is
monotonic, it follows that ~x ≥ ~y (Proposition 2). It cannot be the
case that ~x=~y since t > t′, so ~x > ~y.
~x > ~y, so xj > yj for all j, with at least one inequality strict.

Therefore,
∑
j xj

p >
∑
j yj

p and from the monotonicity of p
√,

we obtain that ||~x||p > ||~y||p as required.
For Leontief utilities, these parsimonious bundles are t · ~r and

t′ ·~r, so in the case ofL∞: ||t·~r||∞= t·maxj(~r) > t′ ·maxj(~r)=
||t′ · ~r||∞, as required.

The above applies trivially to satiable utilities as well, since for
bundles at which u is satiated, there will not exist a bundle that
gives a higher utility.

Lemma 5 implies that if a perfectly complementary utility func-
tion is compatible with a norm, every || · ||-fair value corresponds
to a single parsimonious allocation.

We need to describe how a utility function ui and a norm || · ||
are accessed. We assume that is provided by the following type of
oracle query:

Given a fairness level h, return the parsimonious bundle ~xi for i
with ||~xi||=h.

Notice that this type of oracle access is no stronger than direct
access to ui or its corresponding parsimonious representation wi,
as given access to wi(t) one can use binary search over t to find a
bundle with ||wi(t)|| = h, and given only direct access to ui one
can recoverwi(t) by binary search on every index (i.e.,wi1(t) is the
smallest α such that ui(α, 1, ..., 1) = t). We prefer this formaliza-
tion of access since it does not directly use the cardinal utilities but
only their ordinal properties, and so will often be more natural. For
example, for Leontief utilities, where ui(~x) = minj(xj/rj), the
reply for query h would be ~x=h · ~r/||~r||.

We use this oracle in the following basic step of the algorithm:

Allocation Step(S,q) (For a given || · ||) :
Input:
A set S of agents and a vector of remaining quantities q=(q1...qm).
Output: Returns the maximum h such that each i ∈ S can be given
a parsimonious ~xi with ||~xi||=h · ei and yet stay within the given
quantities: for all j,

∑
i x

i
j 6 qj . It also returns the parsimonious

allocation (X) with ||~xi||=h.
Algorithm: To find h, one may use binary search given the access
to the utility functions specified above.

Note that this algorithm allows us to get arbitrarily close to h,
but cannot guarantee that h is accurate. This step is therefore, in
general, pseudo-polynomial.

For the special case of Leontief utilities where for each agent
i, ui(~x) = minj(xj/r

i
j), the following is a direct solution: h =

minj(qj · ||~ri||/
∑
i eir

i
j).

There are two possible reasons that may limit h: either one of
the agents gets satiated at the parsimonious bundle corresponding
to h or (at least) one of the items got exhausted.

LEMMA 6. If all utilities are perfectly complementary, contin-
uous, strictly monotonic and compatible with || · || then Allocation-
Step returns an allocation where either for some i ∈ S, ui(~xi) >
ui(~y) for all ~y or for some j for which qj > 0,

∑
i x

i
j =qj .

PROOF. Let ti = ui(~x
i). Assume by way of contradiction that

there is some ε > 0 small enough such that for all j,
∑
i∈S w

i
j(ti+

ε) 6 qj (note that if ti is the maximal value of ui, thenwij(ti+ε)=

∞ for all j). By Lemma 2, it must be the case that wi(ti+ε) >
wi(ti). Since ui is compatible with || · || for all i, ||wi(ti+ε)|| >
||wi(ti)||=h for all i, which contradicts h’s maximality under the
constraints.

Now we have the following algorithm:

Initialize S to be all agents and q to be initial quantities.
while S 6= ∅ do
h, (X)=AllocationStep(S, q).
G← {j|∑i x

i
j =qj} // Exhausted items

Let F be the set of agents i such that for all parsimonious
bundles ~y with ||~y|| > h we have yj > xij for some j ∈ G.
q=q −∑i∈F ~x

i

S=S \ F
end while

THEOREM 1. This algorithm outputs the || · ||-fair allocation
under entitlements e1, ..., en for all continuous, strictly monotonic
and perfectly complementary utility functions compatible with ||· ||.

PROOF. First we notice that this algorithm terminates, since at
every allocation step either some agent is satiated at the parsimo-
nious allocation corresponding to h (and then leaves S) or some
good is exhausted (and enters G), and since S never increases and
G never decreases, we can have at most n+m allocation steps.

We now prove correctness, by induction over the number of iter-
ations of the main loop. Let Y be a parsimonious || · ||-fair alloca-
tion, and X be the allocation of the current step of the algorithm,
and let X ′ be the allocation of the previous step. Similarly, let S′

be the set of non-exhausted agents in the end of the previous step,
and S be the set at the end of the current step. Note that for all
i, ~xi > ~x′i, since the algorithm never diminishes allocations. We
prove the following invariants by induction. The theorem follows
directly.

1. If i ∈ S then ||~xi|| 6 ||~yi||.
2. If i 6∈ S then ||~xi||= ||~yi||.

Basis: Right after the initialization phase, ~xi=~0 for all i (which
means ||~xi||= 0) and S = [n]) so (1) holds trivially and (2) holds
vacuously.

Step: Assume that the above is true for X ′. For all i 6∈ S′

||~yi||= ||~x′i||= ||~xi||, from the assumption and the fact that the al-
gorithm does not change allocations of agents not in S′. Since we
assumed Y is ||·||-fair, for all i ∈ S′, ||~yi|| ≥ ||~xi||=h since other-
wise min{i:||~xi||6=||~yi||} ||~x

i|| > min{i:||~xi||6=||~yi||} ||~y
i|| and Y ’s

fairness is contradicted. Since S ( S′, (1) is proven. Now, let’s
look at i ∈ S′ \ S. It can’t be that ||~yi|| > h since AllocationStep
chooses the maximal h for which the allocation is both parsimo-
nious and valid, so ||~yi|| = h for each i ∈ S′ \ S. We obtain
therefore that for all i 6∈ S, ||~yi||= ||~xi|| as required.

Observe that these two invariants imply that at the end of the
algorithm, X = Y for any || · ||-fair allocation, which not only
proves the correctness of the algorithm, but also the uniqueness of
the fair allocation.

5. COMPETITIVE EQUILIBRIA AND BOT-
TLENECK BASED FAIRNESS
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In this section we develop a close connection between the prob-
lem of finding a BBF allocation and the problem of finding an equi-
librium in a Fisher Market, a special case of an Arrow-Debreu mar-
ket that is often more computationally tractable. As corollaries of
this connection and known results, we get both a general existence
result, generalizing that of [6], and a polynomial-time algorithm for
agents with Leontief utilities.

A Fisher Market is a market model where n unrelated agents are
interested in m different, infinitely divisible goods, each available
in some quantity qj . Each agent has a preference over bundles,
given by a utility function ui, and a budget (“money”) that he will
use to trade with the other agents towards a better bundle. The ques-
tion of the existence and computation of equilibria in this setup has
been well studied in mathematical economics, and more recently in
computational economics (to state just a few references: [1, 7, 8],
see [4] for a recent survey).

5.1 Fisher Market Equilibrium: Definition and
Existence

A market equilibrium is a state where all agents are no longer
interested in trading with their peers. In a Fisher Market, an equi-
librium state is defined by the following two conditions (see [4]).

DEFINITION 13. In a market setting with n agents interested in
m infinitely divisible goods, where agents’ preferences over bun-
dles are given by a utility function ui, and each agent has a budget
ei > 0, an equilibrium is defined as a pair of price vector π ∈ <m+
and an allocation X ∈ <n×m+ with the following two properties:

1. The vector ~xi maximizes ui(~xi) under the constraints
∑
j πjx

i
j 6

ei and ~xi ∈ <m+ .

2. For each good j ∈ [m],
∑
i x

i
j =qj

It is imperative to understand that the two conditions are in some
sense independent. When an agent calculates the bundle satisfying
condition 1, he does not take into account the availability of goods
in the market. If agents demand more than the available goods, the
prices must go up - until an equilibrium is reached.

Fisher Market is a special case of the market studied by Arrow
and Debreu, where all agents arrive to the market with the same
proportions of all goods ([4]). Thus, as a corollary of the Arrow and
Debreu Theorem ([1]), given a Fisher market as described above,
an equilibrium exists if the following conditions hold:

• ui is continuous

• ui is strictly quasi-concave (Definition 6).

• ui is non-satiable:5 For all ~x ∈ <m+ , there is an ~x′ ∈ <m+
such that ui(~x′) > ui(~x)

From Lemma 4, every perfectly complementary and strictly mono-
tonic utility function is strictly quasi-concave, so we obtain the fol-
lowing corollary:

COROLLARY 1. For a setup with continuous, strictly mono-
tonic, non-satiable and perfectly complementary utility functions
ui, there exists a Fisher market equilibrium.

5Note that if u is strictly monotonic (Definition 3) and there is no
~x in which u is satiated, then it is non-satiable.

5.2 The Non-Satiable Case
The main point of this subsection is that market equilibrium for

continuous perfectly complementary and non-satiable utilities is
BBF. The next subsection will observe that the non-satiability is
not really required for strictly monotonic utilities.

THEOREM 2. Let u1, ..., un be perfectly complementary, con-
tinuous, strictly monotonic and non-satiable utility functions. Let
e1, ..., en be the agents’ budgets, let (π,X) be a Fisher Market
equilibrium in a market where qj = 1 for all j, and let Y 6 X
be the parsimonious allocation such that for all i, ui(~yi)=ui(~x

i).
Then Y is BBF.

PROOF. Let F = {j|πj = 0} be the “free” goods. First no-
tice that since the uis are strictly monotonic, continuous and non-
satiable, we must have that all agents exhaust their budget, that is∑
j πjx

i
j = ei for all i, as otherwise the remaining money could

then be used to buy a little bit extra of each good, thereby in-
creasing i’s utility, contradicting the requirement that ~xi maximizes
i’s utility within budget. As

∑
i x

i
j = qj = 1, it follows that∑

j πj =
∑
j

∑
i x

i
jπj =

∑
i

∑
j x

i
jπj =

∑
i ei = 1. Now no-

tice that for j 6∈ F we must have xij = yij for all i, since other-
wise agent i could demand only yij of good j saving (xij − yij)πj
money, which could then be used to buy a little bit extra of each
good. Thus, ei =

∑
j πjx

i
j =

∑
j 6∈F πjx

i
j =

∑
j 6∈F πjy

i
j . But

since
∑
j 6∈F πj =

∑
j πj = 1 we have a convex combination of

yij over all j 6∈ F that sums to ei, and it follows that for some
j 6∈ F , yij > ei. The proof is concluded by noting that all j 6∈ F
are bottleneck resources in the allocation Y , since for all j /∈ F ,
1=
∑
i x

i
j =
∑
i y
i
j .

5.3 The Satiable Case
Theorem 2 applies to almost all continuous, strictly monotonic

and perfectly complementary utilities. The crux lies in the non-
satiability assumption. In this subsection, we show that this as-
sumption is, in fact, without loss of generality. Starting with a sa-
tiable, strictly monotonic, continuous and perfectly complementary
function, we can convert it to a similarly characterized non-satiable
function by adding a resource that only the agent whose utility is
satiable is interested in.

Given a parsimonious bundle representationwi of a strictly mono-
tonic, perfectly complementary and satiable utility function ui, and
assuming, w.l.o.g, that the maximal value of ui is 1 (otherwise, we
normalize the function, without affecting any of its other proper-
ties), we define the parsimonious representation w′i of a continu-
ous, perfectly complementary, strictly monotonic and non-satiable
utility as follows:

w′i(t)=

{ (
wi1(t), ..., wim(t), t

)
t 6 1

t ·
(
wi1(1), ..., wim(1), 1

)
t > 1

Let u′i be the perfectly complementary utility function defined by
w′i.

PROPOSITION 4. If ui is continuous, strictly monotonic, and
perfectly complementary, then u′i is continuous, strictly monotonic,
perfectly complementary and non-satiable. Moreover, if ui is sa-
tiable Leontief, then u′i is Leontief.

PROOF. Since we defined u′i using the parsimonious bundle rep-
resentationwi, it is perfectly complementary by definition. It’s also
trivial to see that u is non-satiable. It remains to show it is contin-
uous and strictly monotonic. Both are true for t < 1 as witu′i
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coincides with ui there; both are true for t > 1 as u′i is just a Leon-
tief utility in that range; and at t= 1 we get the same value from
the two parts, thereby maintaining both continuity and consistency.

If ui is satiable Leontief, then u′i could be otherwise written as:
u′′i =minj∈[m+1](x

i
j/r

i
j), where rim+1 =1, and the remaining con-

stants are unchanged. This is clearly a standard Leontief function,
and it is trivially equivalent to the function constructed above.

LEMMA 7. Let u′i be the extension of the satiable perfectly com-
plementary utility ui for all i. Then if an allocation is BBF with
respect to the u′is it is also BBF with respect to the uis.

PROOF. Given an allocation X = (~x1, ..., ~xn) that is an equi-
librium with respect to (u′1, ..., u

′
n), we need to show that the con-

ditions of BBF hold with respect to (u1, ..., un). We know that for
each agent i, there exists some j ∈ J such that xij > ei, where
J=

{
j|∑i x

i
j =1

}
(since u′i has no maximum, the other option is

irrelevant).
To show that with respect to the original utilities and setup the

very same allocation is BBF, we have to discard all “virtual re-
sources” added when extending the utilities.

Let J = {j|∑i x
i
j = 1} be the set of bottleneck resources in

the given allocation. Let J ′ ⊆ J be the set of bottleneck resources
after the virtual ones have been discarded. Given an agent i, if J
does not include the “virtual resource?âĆňâĎć?âĆňâĎć added for
i, then after the discard there still exists j ∈ J ′ such that xij > ei as
required. If J does include i’s “virtual resource?âĆňâĎć?âĆňâĎć,
then it is a bottleneck. This means that agent i got everything avail-
able of that resource and therefore, by construction of the utility
function u′i, x

i
j =wij(max(ui(~x))) for all j ∈ J (meaning, agent i

got all he asked for).

5.4 The Bottom Line
Looking at what we have constructed so far, we now have the

tools to generalize [6].

THEOREM 3. In every setup with perfectly complementary, con-
tinuous, and strictly monotonic utility functions u1, ..., un there ex-
ists an allocation that satisfies “No Justified Complaints”.

PROOF. If needed, we extend the uis to be non-satiable as shown
in the previous section. Then take a competitive equilibrium of the
u′is, guaranteed to exist by Corollary 1, and then by Theorem 2 the
parsimonious bundles derived from that allocation are BBF for the
u′is, and thus by Lemma 7 also for the uis.

THEOREM 4. There exists a polynomial-time algorithm that com-
putes a “Bottleneck-Based Fair allocation for every setup with Leon-
tief or satiable Leontief utilities.

PROOF. Codenotti and Varadarajan [3] introduces an algorithm
based on convex programming that finds a competitive equilibrium
in a Fisher Market for Leontief utilities. In fact, the solution to
their convex program provides the relevant parsimonious bundles.
For the case of satiable Leontief utilities, the process of converting
them to Leontief utilities described in the previous section is algo-
rithmically trivial. Thus, we obtain a polynomial-time algorithm
that finds a BBF allocation in every setup with Leontief or satiable
Leontief utilities.

6. DISCUSSION
As computer systems become larger and more pervasive, servic-

ing more and more agents, the question of fair resource allocation
becomes more relevant. The classic requirements of an operating
system’s scheduler will no longer do.

We have studied two notions of fairness: DRF [9] and BBF [6].
The fact that both used the same family of utility function seems
to indicate something about the nature of utility functions in such
systems. Therefore, we have extended it to a larger family of utility
functions - which may apply to other scenarios as well. The gener-
alization of DRF to GRF stresses how vague the concept of fairness
is, as it requires a few independent decisions, none of which comes
with a strict sense of what is right and what is wrong. Establish-
ing the connection between the question of BBF and Fisher Market
equilibrium shows that answers can sometimes be found in unex-
pected places. It also implies that any solution to the market equi-
librium problem for continuous, strictly monotonic and perfectly
complementary utilities automatically produces a BBF allocation
(for example, [8]). An important issue for further research is the
question of incentive. For example, [9] have shown that their al-
gorithm for DRF is strategy proof and envy-free. In addition, the
polynomial-time algorithm suggested here for BBF may allow us
to prove or disprove the existence of similar properties for this fair-
ness notion.
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ABSTRACT
Revenue maximization in multi-item settings is notoriously elusive.
This paper studies a class of two-item auctions which we call a
mixed-bundling auction with reserve prices (MBARP). It calls VCG
on an enlarged set of agents by adding the seller—who has reserve
valuations for each bundle of items—and a fake agent who receives
nothing nor has valuations for any item or bundle, but has a valu-
ation for pure bundling allocations, i.e., allocations where the two
items are allocated to a single agent. This is a strict subclass of
several known classes of auctions, including the affine maximizer
auction (AMA), λ-aution, and the virtual valuations combinatorial
auction (VVCA). As we show, a striking feature of MBARP is that
its revenue can be represented in a simple closed form as a function
of the parameters. Thus, we can solve first-order conditions on the
parameters and obtain the optimal MBARP. The optimal MBARP
yields significantly higher revenue than prior auctions for which the
revenue-maximizing parameters could be solved for in closed form:
separate Myerson auctions, pure-bundling Myerson auction, VCG,
and mixed-bundling auction without reserve prices. Its revenue
even exceeds that obtained via simulation within broader classes:
VVCA and AMA.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
— Multi agent system; J.4 [Social and Behavior Science]: Eco-
nomics

General Terms
Theory, Economics

Keywords
Auction, optimal auction, combinatorial auction, revenue maxi-
mization, bundling, reserve price

1. INTRODUCTION
Perhaps one of the most important open problem in combinato-

rial auctions (CAs), and mechanism design at large, is to design
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Science Foundation under grants IIS-0905390, IIS-0964579, and
CCF-1101668.

Appears in: Proceedings of the 11th International Con-
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revenue-maximizing (aka optimal) auctions. Specifically, the prob-
lem is, for the seller, to design an auction that maximizes her ex-
pected revenue, subjected to the incentive compatibility (IC) and
individual rationality (IR) constraints, given the information about
bidders’ valuation distributions but not the actual values. There
has been a significant amount of research on this topic, but even
the 2-item case with additive valuations is open. In fact, the prob-
lem of designing an optimal CAs (even in a one-bidder setting) is
NP-hard [3], so a general concise characterization cannot exist (un-
less P=NP). This is in contrast to the one-item setting, where the
problem was elegantly solved, by Myerson [11]. This was later
generalized to multiple identical units of one item [10].

In this paper, we consider a setting with two items, where each
bidder’s valuation functions are additive, that is, a bidder’s valu-
ation for the bundle of the two items is the sum of his valuations
for the individual items. Thus, each bidder has a two-dimensional
type: he has a valuation for the first item and a valuation for the
second item. We consider the revenue optimization problem within
a general symmetric class of auction: mixed-bundling auction with
reserve price (MBARP). It is a subclass of existing classes of auc-
tions such as affine maximizer auctions (AMAs) [14], λ-autions [6],
and virtual valuations combinatorial auctions (VVCAs) [8, 9, 15].
The dominant-strategy IC of MBARPs follows from the fact that
each of the above three classes are also dominant-strategy IC.

While MBARPs are a narrower class than the three others, it
is general enough to incorporate the ideas of reserve pricing and
bundling, which are known to increase revenue in many settings.
Specifically, MBARP calls VCG on an enlarged set of agents by
adding the seller—who has a reserve valuation for each bundle—
and a fake agent who receives nothing and has no valuation for any
item or bundle, but has a valuation for pure bundling allocations
(i.e., ones where both items are allocated to the same (any) bidder).

As we show, one striking feature of MBARP is that its revenue
can be represented in a simple closed form as a function of its pa-
rameters. Thus, we can solve first-order conditions on the parame-
ters and obtain the optimal MBARP. We give a system of equations
of the optimal parameters in general and solve it for some simple
yet common settings: for instance, in the most trivial setting, where
there are two agents and each agent’s valuation for each item is
drawn uniformly on [0,1], our optimal auction yields expected rev-
enue 0.871, which significantly outperforms VCG (0.667), separate
Myerson auctions (0.833) (i.e, selling the two items via a sequence
of separate optimal single-item auctions), pure-bundling Myerson
auction (0.800) and mixed bundling auction without reserve prices
(0.786). More surprisingly, it even outperforms the optimal empiri-
cal results returned by sampling and approximation on its supersets
AMA (0.860) and VVCA (0.838) [15].

We wish to emphasize the generality of our approach to analyz-
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ing the problem. We start from one bidder’s (say i’s) perspective,
find critical values of the other bidder’s (say j’s) valuations such
that these critical values completely partition j’s type spaces while
within each partition, the expected revenue of i can be represented
with the same function of the auction parameters. The expected
revenue from i is then the sum/integration of revenues from all
parts of that partition. Another aspect of the generality of our ap-
proach is that we reduce the revenue maximization problem of an
N-agent auction to that of a 2-agent auction. This can be achieved
by, again from one bidder’s perspective, using a fake agent to sim-
ulate the maximal values of other bidders’ valuations. This extends
and generalizes Riley and Samuelson’s analysis of optimal 1-item
auctions [13] to CAs.

2. RELATED RESEARCH
This section reviews in more detail well-known classes of auc-

tions related to this paper.

2.1 The VCG mechanism and reserve prices
The most famous mechanism in CAs is the Vickrey-Clarke-Groves

mechanism (VCG) [17, 2, 4], where the welfare maximizing allo-
cation is chosen and each bidder i pays the sum of the others’ val-
uations had i not participated minus the sum of the others’ actual
valuations. It is not hard to see that the VCG can yield revenue
arbitrarily far from optimal:

EXAMPLE 2.1. This can be seen even in one-item one-bidder
setting where the bidder’s valuation for the item is uniform on
[0,1]. The second-price auction (aka Vickrey auction) would give
the item to the bidder and obtain 0 revenue since there is no compe-
tition. The optimal auction (aka Myerson auction) would offer the
item at price of 0.5 and obtain expected revenue of 1

2
×0.5 = 0.25.

The VCG can be complemented with reserve prices to increase
revenue. There are several definitions of reserve prices in CAs.
We consider one that is most commonly seen: the seller pretends
to have some reserve valuations for the different bundles, and the
VCG with reserve prices is simply to apply the VCG on the set of
all agents including the seller.

2.2 λ-auction
Another well-known technique to increase revenue in CAs is via

bundling of items [12]. One notable example of bundling in CAs
is the λ-auction [6]. It is the VCG, but with a fake bidder who
does not receive any items, but has valuations towards allocations
(instead of bundles).

In this paper, we consider one special subset of λ-auctions where
the fake bidder is only interested in the allocations where the entire
set of items is allocated to (any) one bidder. The resulting auction
works as if it gave a discount for the bidders who are interested in
the whole bundle. This auction is called a mixed-bundling auction
(MBA). Mixed-bundling auctions can also be complemented with
reserve prices, which are defined by further including the seller into
consideration. This class is called mixed-bundling auction with re-
serve prices (MBARP). We will give a formal definition later in
Section 4.

Jehiel et. al. used certain local arguments to show that some
mixed bundling auction must yield higher revenue than any pure-
bundling auction (where the only valid allocations are those that
give the whole bundle to one agent) and any welfare-maximization
auction [6]. We operate in a different direction, by directly cal-
culating the closed-form expression of the expected revenue and
obtaining the optimal revenue within MBARPs. As we shall see,
our analysis and evaluations confirm the arguments of Jehiel et. al.

2.3 Myerson’s auction, affine maximizer auc-
tions (AMAs), and virtual valuations com-
binatorial auctions (VVCAs)

The third intuition to improve revenue in CAs is via virtual val-
uation [11]. The idea is to transform bidder’s valuation by some
function and then cast the welfare maximization on the virtual val-
uations; each bidder pays the lowest valuations he could have re-
ported and still won his current bundle. In principle, the function
can be anything, as long as it preserves the IC constraint. For exam-
ple, for Bayes-Nash IC, Myerson’s virtual transformation is defined
as ṽi = v − 1−Fi(vi)

F ′i (vi)
, where vi is agent i’s valuation and Fi is the

cumulative distribution function of vi.
However, for dominant-strategy IC, it turns out that affine trans-

formations of the valuation are the only ones that satisfy the IC con-
straint for an unrestricted valuation space [14]. Affine maximizer
auctions (AMAs) apply some affine transformation to get the vir-
tual valuations, and then use the VCG on those virtual valuations
(a fake bidder with valuations for the allocations is also included
in the bidder set). Formally, the allocation rule in an AMA is to
maximize

∑n
i=0 µivi(a)+λ(a), where µ’s are constants and λ(a)

are the fake bidder’s valuation for allocation a. Clearly, λ-auctions
are AMAs where the affine transformation is the identity function
f(v) = v, i.e., µi = 1 for all i.

Virtual valuations combinatorial auctions (VVCAs) [8, 9, 15] are
AMAs with the restriction λ(a) =

∑
i λi(ai), where λi(ai) only

depends on what bidder i receives.
In summary, MBARPs are a subset of VVCAs and of λ-auctions,

which, in turn, are subsets of AMAs.

2.4 Approximation results
An optimal auction may involve reserve pricing, bundling, and

virtual valuations. How much revenue can one obtain with auctions
that are simpler in form? This question motivated a recent line of
research that focuses on designing simple auctions that yield rev-
enue within a factor of optimal. Likhodedov and Sandholm [9, 15]
give a logarithmic approximation of optimal multi-item auctions
with a variation of the VCG, for two classes of settings: (1) ad-
ditive valuations (where each bidder’s valuation for a bundle is the
sum of his valuations for the items in the bundle), and (2) unlimited
supply (such as in digital music stores).

Recall that, in symmetric settings (settings where valuation dis-
tributions are identical across bidders), Myerson’s auction coin-
cides with a Vickrey auction [17] with the so-called monopoly re-
serve (i.e., a reserve valuation at which Myerson’s virtual valua-
tion function equals 0). Hartline and Roughgarden show that in
the asymmetric single-parameter environment, the optimal auction,
which is Myerson’s auction, can be 2-approximated by a Vickrey
auction with monopoly reserve prices [5]. Tang and Sandholm [16]
study Levin’s setting for complements [7] and prove that optimal
revenue can be 2-approximated by using monopoly reserve price
to curtail the allocation set, followed by welfare-maximizing allo-
cation and Levin’s payment rule. They also show that the optimal
revenue can be 6-approximated even if the “reserve pricing" is re-
quired to be symmetric across bidders. Chawla et. al. prove sev-
eral constant bounds of approximating optimal auctions in multi-
dimensional type space (even though the optimal auction is un-
known) using sequential posted prices [1].

3. THE SETTING
We consider a setting with one seller who has two indivisible

distinguishable items for sale. There are a set N = {1, 2, . . . , n}
of bidders. Each bidder i ∈ N has a valuation vi1 for the first item,
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vi2 for the second item, and valuation vi1 +vi2 for the bundle of both
items. The seller has zero valuation for any bundle. (However, she
can pretend she has reserve valuations to obtain a higher revenue.)

An allocation is denoted by a vector ~xi = (xi1, x
i
2) for each

bidder i, where xij ∈ {0, 1} is the amount of item j allocated to i.
The payment from bidder i to the seller is denoted by pi. Given a
~xi and pi, bidder i’s utility function is

ui(~x
i, pi) = vi1x

i
1 + vi2x

i
2 − pi

This means that the bidders have quasi-linear, additive utility func-
tions and no externalities.

As usual, each vib is treated by all but i as a random variable
distributed on [0, 1] according to a cumulative distribution function
F ib , which admits a non-negative and bounded density function f ib .
We assume that F ib = F jb for all i, j ∈ N and all the v′s are
independent. Our approach also applies to settings where vi1 and
vi2 are dependent and F ib 6= F jb . That is, vi1 and vi2 are distributed
according to some joint cumulative distribution F i(vi1, vi2). We
make these assumptions only for the ease of presentation. We also
use the standard information model where each bidder i knows his
own type vi = (vi1, v

i
2) but others do not. The distribution over

types is common knowledge.
By the revelation principle, it suffices to consider the set of direct-

revelation auctions, which begin by soliciting a type from each bid-
der and then specify an allocation and payment for each bidder.
We shall consider the direct-revelation auctions that are dominant-
strategy IC and ex-post IR. A mechanism is (weakly) dominant-
strategy IC if misreporting one’s type cannot yield a higher utility
for the bidder, no matter what other bidders report. A mechanism
is ex-post IR if participation yields a non-negative utility, no matter
what other bidders report.

4. MIXED-BUNDLING AUCTION WITH
RESERVE PRICES

In this section, we describe the mixed-bundling auction with re-
serve prices (MBARP). As mentioned, it is a subclass of AMA, λ-
auction and VVCA. One remarkable feature of MBARP is that its
expected revenue can be written in closed form as a function of its
parameters, and we can optimize its revenue over the parameters.

Treat the seller as a special bidder, indexed 0, with reserve value
a for item 1, b for item 2, and a + b for both. Define another fake
bidder, indexed n+1, who is never allocated any item, but has value
c if some bidder i ∈ N is allocated both items. MBARP is VCG
executed on this extended set of agents N = {0, 1, . . . , n+ 1}.

DEFINITION 4.1. Given a type profile~v = (~v1, . . . , ~vn), MBARP
is defined by its allocation rule ~x = (~x1, . . . , ~xn) and payment rule
~p = (p1, . . . , pn).

• The allocation rule ~x is,

~x(~v) = arg max~x = {
n∑

j=0

(vj1x
j
1 + vj2x

j
2) + vn+1(~x)}.

By definition, vn+1(~x) = c if xi1 = xi2 = 1 for some 1 ≤
i ≤ n and vn+1(~x) = 0 otherwise.

• The payment rule ~p is,

pi(~v) = − (

n∑

j 6=i
(vj1x

j
1 + vj2x

j
2) + vn+1(~x))

+
n∑

j 6=i
(vj1x̃

j
1 + vj2x̃

j
2) + vn+1(~̃x),

where ~̃x(~v) = ~x−i(~v−i). In other words, ~̃x is the welfare-
maximizing allocation without the participation of i.

LEMMA 4.1.

1. MBARP is dominant-strategy IC and ex post IR.

2. A bidder with the lowest type (that is, vi1 = vi2 = 0) gets 0
utility.

3. Given the allocation rule of MBARP, this particular payment
rule, ~p, yields the highest revenue among all the payment
rules that satisfy 1 and 2.

Proof: The proof of 1 and 2 mirror those of the VCG. The proof of
3 follows from [6, Lemma 1].

5. OPTIMAL PARAMETERS FOR THIS AUC-
TION CLASS

In this section, we develop a systematic approach to calculating
the revenue of MBARP. This approach is general and can be applied
to other strategy-proof two-item auctions.

In what follows, we first analyze the case with two bidders and
then reduce those with more than two bidders to the two-bidder
case.

5.1 Two-bidder setting
Suppose there are two bidder, i and j. Given the values of a,

b, and c, as well as j’s report (vj1, v
j
2), we compute the formula

for i’s expected payment. For this purpose, let us first look at i’s
allocation space. The definition of MBARP (the allocation rule and
the payment rule) implies that i’s allocation space must be of the
shape in Figure 1. Formally:

Figure 1: Bidder i’s allocation space.

LEMMA 5.1.

• The allocation space of bidder i is of exactly the shape as
in Figure 1, i.e., lines are either vertical, horizontal or of -1
slope, with x, y, z being undecided variables.

• Bidder i gets item 1 for the price of x when his type is in
Zone 1, gets item 2 for the price of y when his type is in Zone
2 and gets both items for the price of z when his type is in
Zone 3.
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• The expected payment of i is

R(x, y, z) = x ·
∫

(vi1,v
i
2)∈1

f i1(vi1)f i2(vi2)dvi1dv
i
2

+ y ·
∫

(vi1,v
i
2)∈2

f i1(vi1)f i2(vi2)dvi1dv
i
2

+ z ·
∫

(vi1,v
i
2)∈3

f i1(vi1)f i2(vi2)dvi1dv
i
2.

Proof: The first two claims follow from an exhaustive case analysis
immediately following this lemma. Given the first two claims, the
third one is straightforward.

5.1.1 First part of the analysis: a ≥ c and b ≥ c
In this section we consider those parameter values that satisfy

a ≥ c and b ≥ c. We will consider the other parameter values in
the next section.

We now determine the values of x, y, and z case by case.
Case 1. vj1 ≥ a, vj2 ≥ b. By the allocation rule of MBARP,

bidder i gets the bundle iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + vj2 ≤ vi1 + vi2 + c and

vi2 + vj1 ≤ vi1 + vi2 + c.

The first equation ensures that bidder j does not get the bundle and
the second (third) is to ensure that bidder i does not end up with
item 1(2) only. These constraints give Zone 3 in Figure 2. By the

Figure 2: Case 1.

definition of MBARP, bidder i pays z = vj1 + vj2 in this region.
Similarly, bidder i gets item 1 only iff

vi1 + vj2 ≥ vj1 + vj2 + c and

vi1 + vj2 > vi1 + vi2 + c.

The first equation ensures that bidder j does not get the bundle and
the second ensures that i does not get the bundle. These constraints
give Zone 1 in Figure 2. Bidder i pays x = vj1 + c.

Similarly, we can derive Zone 2 and y = vj2 + c.
To sum up, the allocation space of bidder i in this case is given

by Figure 2. We have x = vj1 + c, y = vj2 + c and z = vj1 + vj2.
Case 2. vj1 < a, vj2 < b.

Figure 3: Case 2a.

• Subcase a. vj1 + vj2 + c ≥ a + b. By the allocation rule of
MBARP, bidder i gets the bundle iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + b ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = vj1 + vj2.

Bidder i gets item 1 only iff

vi1 + b ≥ vj1 + vj2 + c and

vi1 + b > vi1 + vi2 + c.

Thus, x = vj1 + vj2 + c − b. Symmetrically, we have y =

vj1 + vj2 + c− a.

To sum up, the allocation space is given in Figure 3. We have
x = vj1 + vj2 + c− b, y = vj1 + vj2 + c−a and z = vj1 + vj2.

• Subcase b. vj1 + vj2 + c < a+ b. Bidder i gets the bundle iff

vi1 + vi2 + c ≥ a+ b and

vi1 + b ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = a+ b− c.
Bidder i gets item 1 only iff

vi1 + b ≥ a+ b and

vi1 + b > vi1 + vi2 + c.

Thus, x = a. Symmetrically, y = b. The allocation space is
given in Figure 4.

We have x = a, y = b and z = a+ b− c.
Case 3. vj1 < a, vj2 ≥ b.
• Subcase a. vj1 + vj2 + c ≥ a+ vj2. Bidder i gets the bundle

iff

vi1 + vi2 + c ≥ vj1 + vj2 + c and

vi1 + vj2 ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.
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Figure 4: Case 2b.

Thus, z = vj1 + vj2.

Similarly, x = vj1 + c and y = vj1 + vj2 + c− a.

The allocation space is given in Figure 5.

Figure 5: Case 3a.

We have x = vj1 + c, y = vj1 + vj2 + c− a and z = vj1 + vj2.

• Subcase b. vj1 + vj2 + c < a+ vj2. Bidder i gets the bundle
iff

vi1 + vi2 + c ≥ a+ vj2 and

vi1 + vj2 ≤ vi1 + vi2 + c and

vi2 + a ≤ vi1 + vi2 + c.

Thus, z = a+ vj2 − c.
Similarly, x = a and y = vj2.

The allocation space is given in Figure 6.

We have x = a, y = vj2 and z = a+ vj2 − c.

Case 4. vj1 ≥ a, vj2 < b. This case is symmetric to Case 3.

• Subcase a. vj1 + vj2 + c ≥ b + vj1. We have y = vj2 + c,
x = vj1 + vj2 + c− b and z = vj1 + vj2.

Figure 6: Case 3b.

• Subcase b. vj1 + vj2 + c < b + vj1. We have y = b, x = vj1
and z = b+ vj1 − c.

The above case-by-case analysis forms a complete partition of
bidder j’s type space, as shown in Figure 7, with Case 1 corre-
sponding to Zone P1, Case 2, Subcase a corresponding to Zone
P2a, and so on.

Figure 7: Partition of bidder j’s type space.

We are now ready to give a closed form expression for bidder i’s
expected payment ri0(a, b, c).

ri0(a, b, c) =
∫

(v
j
1,v

j
2)∈P1

f j1 (vj1)f j2 (vj2)R(vj1 + c, vj2 + c, vj1 + vj2)dvj1dv
j
2

+

∫

(v
j
1,v

j
2)∈P2a

f j1 (vj1)f j2 (vj2)R(vj1 + vj2 + c− b,

vj1 + vj2 + c− a, vj1 + vj2)dvj1dv
j
2

+ . . .

+

∫

(v
j
1,v

j
2)∈P4b

f j1 (vj1)f j2 (vj2)R(vj1, b, b+ vj1 − c)dvj1dvj2.

In the symmetric setting (where f i = f j), bidder j’s expected
payment also equals ri0(a, b, c). This leads to the following theo-
rem.
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THEOREM 1. For a ≥ c, b ≥ c,

• The expected revenue of MBARB is 2ri0(a, b, c);

• The optimal parameters a, b, c are given by1

∂ri0(a, b, c)

∂a
=
∂ri0(a, b, c)

∂b
=
∂ri0(a, b, c)

∂c
= 0.

In the asymmetric 2-bidder setting, rj0(a, b, c) can be obtained
by swapping the role of i and j in ri0(a, b, c). Then the expected
revenue of MBARP is ri0(a, b, c) + rj0(a, b, c).

5.1.2 The remaining parts of the analysis:
(a < c, b ≥ c) or (a ≥ c, b < c) or (a < c, b < c)

Now let us reexamine Figure 7. The existence ofP3b relies on the
fact that a−c ≥ 0. The underlying explanation is that when a < c,
the condition of Case 3, Subcase b, which is vj1 + vj2 + c < a+ vj2,
never holds. In other words, the condition of Case 3, Subcase a
holds trivially. This reasoning leads to the reduction of Figure 7
into Figure 8 when a < c and b ≥ c.

Figure 8: Partition of bidder j’s type space when a < c and
b ≥ c.

The corresponding x’s y’s and z’s in each case are still the same
as those when a ≥ c and b ≥ c, except that Case 3b does not exist.
We denote the expected revenue from i in this case by ri1(a, b, c).

For the same reason, we can get revenue ri2(a, b, c) when a ≥ c
and b < c.

When a < c and b < c, we need to further distinguish two
subcases: a+b−c ≥ 0 and a+b−c < 0, since when a+b−c < 0,
P2b also diminishes.

We denote the revenues for the two subcases above by ri3(a, b, c)
and ri4(a, b, c).

So, the maximal revenue is given by maxk=0,...,4{rik(a, b, c)}.
This completes the analysis of the two-bidder case.

5.2 More than two bidders
The allocation space grows rapidly as the number of bidders

increases. The case-by-case enumeration becomes unmanageable
even with 3 bidders. However, by applying order statistics, we are
able to calculate bidder i’s expected revenue, by treating all the
1In general, the revenue expression is not necessarily convex and
the equations have multiple roots. Therefore, it is necessary to eval-
uate at each root as well as boundaries to determine the optimal
set of parameters. These can be easily done in Mathematica 7, as
shown in our simulation in Section 6.

other bidders simply as one bidder whose valuation for items is
distributed according to the (N − 1)th-order statistic of the valu-
ations from these bidders. In other words, what really matters to
bidder i is the greatest valuation of the remaining bidders on each
bundle.

In what follows, we shall consider the symmetric setting only.
That is, bidders’ values are drawn from the same distributions:
F1(v1) for the first item and F2(v2) for the second item. We de-
note by F k1 (vk1 ) the (k)th (with (N−1)th being the greatest) order
statistic of N − 1 i.i.d variables drawn from F1(v1). Analogously,
we denote by F k2 (vk2 ) the (k)th order statistic of N − 1 i.i.d vari-
ables drawn from F2(v2). We denote by F ksum(vksum) the (k)th
order statistic of N − 1 i.i.d variables which are sums of N − 1
pairs of variables, one drawn fromF1(v1) and the other drawn from
F2(v2).

Fixing realized valuations vN−1
1 and vN−1

1 , and treating them as
valuations of a fake bidder j for the two items respectively, we have
two cases to consider:

• Case 1. vN−1
1 and vN−1

2 are realized by the same actual bid-
der. This happens with probability p1 = 1

N−1
since all the

bidders are symmetric. In this case, we can completely re-
duce the analysis to our previous 2-bidder case, with vj1 =

vN−1
1 and vj2 = vN−1

2 . We denote the expected revenue
from bidder i for this realization byRi1(a, b, c)|(vN−1

1 , vN−1
2 ).

• Case 2. vN−1
1 and vN−1

2 are realized by different actual bid-
ders. This happens with probability p2 = N−2

N−1
. There are

two subcases.

– Subcase 1. vN−1
sum + c ≤ vN−1

1 + vN−1
2 . This happens

with probability p21 = FN−1
sum (vN−1

1 + vN−1
2 − c).

We can reduce the analysis to the 2-bidder case, with
a slight modification where the bundling parameter c
for bidder j is 0 if he gets both items and bidder i
remains unchanged. We can still go though a simi-
lar case-by-case analysis of bidder i’s expected revenue
since Lemma 5.1 still holds. (For example, (x, y, z) in
Case 1 should now be changed to (vN−1

1 , vN−1
2 , vN−1

1 +
vN−1
1 −c). Similarly, one can derive x’s, y’s, and z’s in

other cases.) We denote the expected revenue from bid-
der i for this part by Ri21(a, b, c)|(vN−1

1 , vN−1
2 ). This

is an expectation over vN−1
sum as well as over i’s own

valuations.

– Subcase 2. vN−1
sum + c > vN−1

1 + vN−1
2 but vN−1

sum <
vN−1
1 + vN−1

2 . This happens with probability p22 =
FN−1
sum (vN−1

1 + vN−1
2 )− FN−1

sum (vN−1
1 + vN−1

2 − c).
This case means that to get the bundle, i must have a
valuation no less than vN−1

sum + c (instead of vN−1
1 +

vN−1
2 ). This reduces the analysis to a 2-bidder auction

where the seller’s valuations are given by (a, b,max{a+
b, vN−1

sum + c}). The analysis is also similar to that in
Section 5. Denote the expected revenue from bidder i
for this part by Ri22(a, b, c)|(vN−1

1 , vN−1
2 ).

Therefore, the expected revenue from bidder i is
∫

(vN−1
1 ,vN−1

2 )

fN−1
1 (vN−1

1 )fN−1
2 (vN−1

2 )

(p1R
i
1(a, b, c)|(vN−1

1 , vN−1
2 )+

p2R
i
21(a, b, c)|(vN−1

1 , vN−1
2 )+

p2R
i
22(a, b, c)|(vN−1

1 , vN−1
2 ))dvN−1

1 dvN−1
2 .
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To evaluate the integration above (like in the two-bidder case),
we partition j’s valuation space and integrate each part separately,
since Ri1(a, b, c), Ri21(a, b, c) and Ri22(a, b, c) take different form
for different (vN−1

1 , vN−1
2 ). However, each case above (Case 1,

Case 2a, and Case 2b) will give us a different partition. Thus, we
actually partition j’s valuation space into the coarsest common re-
finement of all the partitions generated by the cases above.

The optimal auction parameters a, b, and c then follow from the
same first-order conditions as given in Theorem 1.

6. COMPARISON OF AUCTIONS
This section compares the revenues of various auction classes in

three different settings, all of which have two bidders and symmet-
ric valuations:

Setting 1: f1(v1) = f2(v2) = 1 on [0,1].
Setting 2: f1(v1) = 2v1, f2(v2) = 1 on [0,1].
Setting 3: f1(v1) = 2− 2v1, f2(v2) = 1 on [0,1].
While our analysis carries over for all (a, b, c), we restricted our-

selves to 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 in this section. This is without
loss of generality as shown in Section 7.

Auction Optimal a, b, c Revenue

r0 0.577, 0.577, 0.265 0.871

r1 0.561, 0.791, 0.561 0.848

r2 0.791, 0.561, 0.561 0.848

r3 0.770, 0.770, 0.770 0.843

r4 0.257, 0.257, 1.063 0.833

VCG 0.000, 0.000, 0.000 0.667

Separate Myerson auctions 0.500, 0.500, 0.000 0.833

Pure-bundling Myerson rBundle = 0.816 0.839

Mixed-bundling auction 0.000, 0.000, 0.333 0.786

AMA* N/A 0.860

VVCA* N/A 0.838

Table 1: Expected revenues in Setting 1.

For Setting 1, the expected revenues are listed in Table 1. r0 to r4
have the same meaning as in Section 5: they are the revenues of the
different cases of MBARP, and the first case (ro, which corresponds
to a ≥ c, b ≥ c) yields the highest revenue in this setting. The VCG
mechanism is an instance of MBARP with a = b = c = 0. The
8th row, separate Myerson auctions, denotes the auction where two
items are sold sequentially through optimal single-item auctions
(Myerson auctions). The 9th row, pure-bundling Myerson auction,
denotes the optimal auction that sells both items to one agent. The
10th and 11th row, AMA* and VVCA*, denote approximated re-
sults returned by experiments [15], because there is no known an-
alytical way to optimize the parameters of AMA and VVCA. All
other revenue numbers in this section are calculated analytically
(by Mathematica 7.0) and are thus (rounded) exact solutions.

We have the following conclusions:

• MBARP yields the highest revenue, even compared to ex-
perimentally “optimized" parameter settings for its supersets:
AMA and VVCA.

• The reserve prices a and b play more important roles than
the bundling parameter c: separate Myerson auctions yield
revenue 0.833 while the mixed-bundling auction without re-
serve prices yields only 0.786.

• Separate Myerson auctions are inferior to the pure-bundling
Myerson auction in this setting. (In fact, this is the case for all
the three settings.) This is analogous to a milestone result by
Palfrey [12] from the bundling literature stating that the pure-
bundling Vickrey auction yields more revenue than separate
Vickrey auctions in the two-bidder, N-object setting. This re-
sult also suggests an interesting general question: Does Pal-
frey’s theorem hold for Myerson auctions as well?

For Settings 2 and 3, the expected revenues are listed in Ta-
bles 2 and 3, respectively. Again, MBARP outperforms the other
auctions. Optimal expected revenues for VVCA and AMA are un-
known.

Auction a,b,c Revenue

MBARP(r0) 0.641, 0.581, 0.225 1.037

VCG 0.000, 0.000, 0.000 0.867

Separate Myerson auctions 0.577, 0.500, 0.000 1.001

Pure-bundling Myerson rBundle = 0.908 1.002

Table 2: Expected revenues in Setting 2.

Auction a,b,c Revenue

MBARP(r0) 0.415, 0.575, 0.266 0.709

VCG 0.000, 0.000, 0.000 0.533

Separate Myerson auctions 0.333, 0.500, 0.000 0.672

Pure-bundling Myerson rBundle = 0.694 0.688

Table 3: Expected revenues in Setting 3.

7. DISCUSSION
In this section we discuss three additional issues.

7.1 Better starting point for automated mech-
anism design

Sandholm et al. show that, by starting from the VCG and then us-
ing hill-climbing algorithms to search through the parameter spaces
of AMA or VVCA, the auction ends up with high-revenue (locally
optimal) parameters [15, 8, 9]. Using that approach, as shown
in Section 6, they obtained expected revenue 0.860 for AMA and
0.838 for VVCA in Setting 1. An easy way to improve their results
is to start from the optimal MBARP instead of VCG, since opti-
mal MBARP is also an instance of VVCA and AMA, and yields
higher revenue than VCG. In fact, we implement one of the algo-
rithms named BLAMA from [15] and improve the optimal revenue
in Setting 1 to 0.872.

7.2 What if a < 0 or a > 1?
Although our theoretical analysis applies for all tuples of (a, b, c),

our Mathematica program (Section 6) was based on the assumption
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that a and b are both within [0,1]. We now show that our assump-
tion is without loss of generality. First, consider a < 0. This case
is equivalent to the one where a = 0. (Going through the case-
by-case analysis, we have only Case 1 and Case 4 left, and both of
those cases yield x’s, y’s and z’s that do not depend on a.) Intu-
itively, this means there is no reserve price on item 1.

Now consider a > 1. This case is equivalent to the one where
we have revised auction parameters a′ and c′ as follows: a′ = 1
and c′ = c − (a − 1). (Going through the case-by-case analysis,
we have only Case 2 and Case 3, and both cases yield x’s, y’s and
z’s that either do not depend on a, or depend only on c−a, or have
x > 1. Each of these three cases will remain the same after we
switch to a′ and c′.) This means that no bidder can win exactly one
item.

7.3 Simple versus optimal mechanisms
A direction that might further improve revenue is to introduce

asymmetry into the allocation rule, as Myerson did in the optimal
one-item auction [11]. However, there are two concerns. First,
we depart from Myerson’s framework in the sense that we stick to
the paradigm of dominant-strategy IC, while Myerson relaxed it to
Bayes-Nash IC.

The second concern is related to the simplicity of the auction.
This is part of the reason that Riley and Samuelson [13] restrict
themselves on symmetric one-item auctions. (Fortunately, they
ended up with Myerson’s auction in symmetric settings. By anal-
ogy, this suggests that the optimal two-item additive-valuations auc-
tions might lie within the MBARP family.) This is also the major
motivation why revenue lower bounds from VCG-like mechanisms
have been studied [5, 16].

Because we have a closed-form expression for revenue, we can
explicitly trade off revenue for simplicity. For instance, for Set-
ting 1 we may like the simplicity of the MBARP with (a, b, c) =
(0.6, 0.6, 0.3). We can calculate that the revenue for this configura-
tion is 0.8696, which is very close to the optimal MBARP. That set
of parameters are also noted by Jehiel et. al. [6]. Another nice set
of parameters is (a, b, c) = ( 1

2
, 1
2
, 1
4
), and it yields revenue 0.8609.

8. CONCLUSIONS AND FUTURE WORK
Revenue-maximizing multi-item auctions are perhaps the most

important open topic in auction design and mechanism design at
large. It is open even in the 2-item additive case. We studied a
class of two-item auctions called mixed-bundling auctions with re-
serve prices (MBARP). The idea is that the allocation rule is biased
towards the bids for the whole bundle to increase the probability of
selling the bundle together. It also includes reserve pricing to fur-
ther increase revenue. In fact, it is general enough to include auc-
tions such as the VCG and separate Myerson auctions. A remark-
able feature of MBARPs is that the expected revenue can be rep-
resented in a simple closed-form expression, and can be optimized
easily. We gave a system of equations of the optimal parameters
in general and solved it for some canonical settings. The optimal
MBARP yields significantly higher revenue than the known auc-
tion classes with closed-form revenue expressions. Furthermore,
its revenue even exceeds the optimal empirical results returned by
sampling and approximation on much broader classes, where the
truly optimal expected revenues are difficult to obtain.

There are several directions for future research. We considered
the case where the bidders’ valuations are additive. It is not hard
to see that, with appropriate rotations of the lines in Lemma 5.1,
our current approach carries over to calculating the expected rev-
enue when bidders’ valuations for the bundle are linear combi-
nation of their valuations for the items in that bundle (formally,

λ1v
i
1 + λ2v

i
1 + λ3, where λ1, λ2, λ3 are constants). Perhaps our

approach can be generalized even further.
Second, can the bundling parameter, c, be optimized separate

from the reserve prices a and b?
Third, can we extend this approach to more than two items? For

example, when there are 3 items, we need at least 4 bundling pa-
rameters: 3 for each pair of items and 1 for the whole bundle. Does
there exist a simple derivation from the optimal 2-item parameters
to the optimal 3-item parameter? More generally, can we reduce
the analysis of three items to that of two items?

Future work also includes introducing asymmetry into the allo-
cations rule. This might increase revenue even when bidders’ val-
uations are symmetrical. Or, does the revenue-maximizing mecha-
nism lie within the MBARP family?
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ABSTRACT
Scoring rules for eliciting expert predictions of random variables are usually
developed assuming that experts derive utility only from the quality of their
predictions. We study more realistic settings in which (a) the principal is a
decision maker who takes a decision based on the expert’s prediction; and
(b) the expert has an inherent interest in the decision. Not surprisingly, in
such situations, the expert usually has an incentive to misreport her forecast
to influence the choice of the decision maker. We develop a general model
for this setting and introduce the concept of a compensation rule. When
combined with the expert’s inherent utility for decisions, a compensation
rule induces a net scoring rule that behaves like a traditional scoring rule.
Assuming full knowledge of expert utility, we provide a complete charac-
terization of all (strictly) proper compensation rules. We then analyze the
case when the expert’s utility function is not fully known to the decision
maker. We show bounds on: (a) expert incentive to misreport; (b) the de-
gree to which an expert will misreport; and (c) decision maker loss in utility
due to such uncertainty. These bounds depend in natural ways on the de-
gree of uncertainty, the local degree of convexity of net scoring function,
and properties of the decision maker’s utility function. Finally, we briefly
discuss the use of compensation rules in prediction markets.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Economics, Theory

Keywords
prediction markets, mechanism design, incentives, decision theory

1. INTRODUCTION
Eliciting predictions of uncertain events from knowledgeable ex-

perts is a fundamental problem in statistics, economics, operations
research, artificial intelligence and a variety of other areas [18,
4]. Increasingly, robust mechanisms for prediction are being de-
veloped, proposed and/or applied in real-world domains ranging
from elections and sporting events, to events of public interest (e.g.,
disease spread or terrorist action), to corporate decision making.
Indeed, the very idea of crowd-sourcing and information (or pre-
diction) markets is predicated on the existence of practical mecha-
nisms for information elicitation and aggregation.

Prediction mechanisms must provide an expert agent with incen-
tives to reveal a forecast they believe to be accurate. Many forms of
“outcome-based” scoring rules, either individual or market-based,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

provide experts with incentives to: (a) provide sincere forecasts;
(b) invest effort to improve the accuracy of their personal forecasts;
and (c) participate in the mechanism if they believe they can im-
prove the quality of the principal’s forecast. However, with just a
few exceptions (see, e.g., [14, 12, 17, 15, 2, 6, 8, 5]), most work
fails to account for the ultimate use to which the forecast will be
put. Furthermore, even these models assume that the experts who
provide their forecasts derive no utility from the final forecast, or
how it will be used, except insofar as they will be rewarded by the
prediction mechanism itself.

In many settings, this assumption is patently false: the principal
is will often exploit the elicited forecast in order to make a deci-
sion [10, 12, 15, 2, 5]. In corporate prediction markets, the prin-
cipal may base strategic business decisions on internal predictions
of uncertain events. In a hiring committee, the estimated proba-
bility of candidates accepting offers influences the order in which
(and whether) offers are made. Providing appropriate incentives in
the form of scoring rules is often difficult in such cases [15, 2, 6].
However, just as critically, experts often have their own interests
in specific decisions. For example, in corporate settings, an expert
from a certain division may have an incentive to misreport demand
for specific products, thus influencing R&D decisions that favor her
unit. In a hiring committee, a member may misreport the odds that
a candidate will accept a competing position in order to bias the
“offer strategy” in a way that favors her preferred candidate.

In this work, we develop a formal model of scoring rules that
incentivize truthful forecasts even when experts have an interest
in the decisions taken by the principal. Naturally such rules must
compensate experts for “sacrificing their own interests.” One might
respond by ignoring forecasts from experts with such conflicts. Un-
fortunately, decision makers often must rely on the advice and pre-
dictions of experts who have some stake in their decisions. This
is especially true in organizations (e.g., corporate R&D decisions,
faculty hiring, etc.), when advice from employees or group mem-
bers is solicited; but it also holds in any case where the principal
is uncertain about an expert’s true interests. Our model and analy-
sis, rather than ignoring the issue and hoping for the best, provides
insight into how best to reward experts for their forecasts. Other
work has studied both decision making and incentive issues in pre-
diction markets [14, 10, 15, 2, 8, 7, 17], but only rarely addresses
the natural question of expert self-interest in decisions [12, 5].

Our basic building block is a scoring rule for a single expert
who knows the principal’s policy—i.e., mapping from forecasts to
decisions—and where the principal knows the expert’s utility for
decisions. We show that the scoring rule must compensate the ex-
pert in a simple, intuitive way based on her utility function: we use
a compensation function that induces a proper scoring rule. We pro-
vide a complete characterization of proper compensation functions,
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as well those which, in addition, satisfy participation constraints.
We then analyze expert uncertainty in the principal’s policy, and

principal uncertainty in the expert’s utility. First, we note that the
expert need not know the principal’s policy prior to providing her
forecast as long as she can verify which decision has been taken af-
ter the fact. Second, we observe that, in general, the principal can-
not ensure truthful reporting without full knowledge of the expert’s
utility function. However, principals will almost always have some
partial knowledge of expert utility. We show that bounds on this un-
certainty give rise bounds on each of the following: (i) the expert’s
incentive to misreport; (ii) the deviation of the expert’s misreported
forecast from her true beliefs; and (iii) the loss in utility the prin-
cipal will realize due to this uncertainty. The first two bounds rely
on the notion of strong convexity of the net scoring function. The
third uses natural properties of the principal’s utility function. We
show that these bounds can be significantly tightened using local
strong convexity, requiring only sufficient (and differential) con-
vexity near the decision boundaries of the principal’s policy. We
conclude by briefly discussing a market scoring rule (MSR) based
on our one-shot compensation rule.

2. BACKGROUND: SCORING RULES
We first review scoring rules and prediction markets (see [18,

4] for more details). We assume an agent—the principal—must
assess the distribution of a discrete random variableX with domain
X = {x1, . . . , xm}. Let ∆(X) denote the set of distributions
over X , where p ∈ ∆(X) is a nonnegative vector 〈p1, . . . , pm〉
s.t.
∑
i pi = 1. The principle can engage one or more experts to

provide a forecast p ∈ ∆(X). We first assume a single expert
E. Consider a running example: the chief strategy officer (CSO)
of a company asks a division head to estimate demand for a new
product prior to committing R&D efforts to that product.

We assume E has beliefs p about X . To incentivize E to report
p faithfully (and devote reasonable effort to developing accurate
beliefs), a variety of scoring rules have been proposed [16, 13, 9].
A scoring rule is a function S : ∆(X) × X → R that provides
a score (or payoff) S(r, xi) to E if she reports forecast r and the
realized outcome of X is xi, essentially rewarding E for her pre-
dictive “performance” [13]. If E has beliefs p and reports r, her
expected score is S(r,p) =

∑
i S(r, xi)pi. We say S is a proper

scoring rule iff a truthful report is optimal for E:

S(p,p) ≥ S(r,p), ∀p, r ∈ ∆(X) (1)

We say S is strictly proper if inequality (1) is strict for r 6= p. A
popular strictly proper scoring rule is the log scoring rule, where
S(p, xi) = a log pi+ bi (for arbitrary constants a > 0 and bi) [13,
16]. In what follows, we restrict attention to regular scoring rules
in which payment S(r, xi) is bounded whenever ri > 0.

Proper scoring rules can be fully characterized in terms of convex
cost functions [13, 16]; here we review the formulation of Gneiting
and Raftery [9]. Let G : ∆(X) → R be any convex function
over distributions—we refer to G as a cost function. We denote by
G∗ : ∆(X)→ Rm some subgradient of G, satisfying

G(q) ≥ G(p) +G∗(p) · (q− p)

for all p,q ∈ ∆(X).1 Such cost functions and associated subgra-
dients can be used to derive any proper scoring rule.

THEOREM 1. [13, 16, 9] A regular scoring rule S is proper iff

S(p, xi) = G(p)−G∗(p) · (p) +G∗i (p) (2)

1If G is differentiable at p then the subgradient at that point is
unique, namely, the gradient∇G(p).

G

Hp

Hq

p q0 1

S(q,0)

S(p,0)

S(q,1)

S(p,1)

S(p,p)

S(q,p)

Figure 1: Illustration of a proper scoring rule. If the expert re-
ports p, her expected score (relative to her true beliefs) is given
by the subtangent hyperplane Hp. For any report q different
from p, the expected score S(q, p) = Hq · p must be less than
the expected score S(p, p) = Hp · p of truthful reporting.

for some convex G and subgradient G∗. S is strictly proper iff G
is strictly convex.

Intuitively, Eq. 2 defines a hyperplane

Hp = 〈S(p, x1), . . . , S(p, xm)〉,
for each point p, that is subtangent to G at p. This defines a linear
function, for any fixed report p, giving the expected score of that
report given beliefs q: S(p,q) = Hp · q. An illustration is given
in Fig. 1 for a simple one-dimensional (two-outcome) scenario.

Several prediction market mechanisms allow the principal to ex-
tract information from multiple experts [18, 4]. Market scoring
rules (MSRs) [11] allow experts to (sequentially) change the fore-
casted p using any proper S. An expert can change a forecast p′ to
p if she is willing to pay according to S(p′, ·) and receive payment
S(p, ·). If her true beliefs p differ from p′ and the rule is strictly
proper, then she has incentive to participate and report truthfully.
Under certain conditions, MSRs can be interpreted as automated
market makers [3]. Since each expert pays the amount due to the
previous expert for her prediction, the net payment of the principal
is the score associated with the final prediction.

Some prior work has studied incentives when prediction markets
are used for decision making. Hanson [10] introduced the term
decision markets to refer to the broad notion of prediction mar-
kets where experts offer forecasts for events conditional on some
policy being adopted or a decision being taken. Osband [14] de-
scribes an interesting model for optimally incentivizing experts to
“put effort” into deriving their forecasts. Othman and Sandholm
[15] provide the first explicit, formal treatment of a principal who
makes decisions based on expert forecasts. They address several
key difficulties that arise due to the conditional nature of forecasts,
but assume that the experts themselves have no direct interest in
the decision that is taken. Chen and Kash [2, 6] extend this model
to a wider class of informational settings and decision policies.
Dimitrov and Sami [8] consider strategic behavior across multiple
markets, where an expert may misreport her beliefs in one market
to manipulate prices (and gain advantage) in another. Similarly,
Conitzer [7] explores strategic aspects of prediction markets via
connections to mechanism design, but again assumes that expert
utility is derived solely from the mechanism’s payoff. Shi et al. [17]
consider experts that, once they report their forecasts, can take ac-
tion to alter the probabilities of the outcomes in question. Unlike
our model, they do not consider expert utility apart from the payoff
offered by the mechanism (though, as in our model, the principal’s
utility function dictates the value of an expert report).

Hanson and Oprea [12] explicitly consider a single expert who
has an interest in the final forecast of a prediction market and show
that attempts to manipulate can in fact increase market accuracy (by
incentivizing others to participate). Chen et al. [5] consider perfect
Bayesian equilibria in a two-stage game with two participants pre-
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dicting a boolean variable, one of whom has an interest in the final
forecast. Both models, like ours, are motivated by expert interest in
the principal’s decision, but there are many important distinctions.
Unlike our framework, neither approach explicitly models the prin-
cipal’s policy, utility, or loss due to manipulation. Both represent
expert utility for the principal’s decision indirectly through (very
restrictive) payoff functions over the final forecast (either quadratic
payoffs [12] or increasing payoffs [5]). Finally, neither model at-
tempts to incentivize truthful reports by the manipulator.

3. SELF-INTERESTED EXPERTS
We now consider an expert who has a direct interest in the de-

cision induced by her forecast. We devise a class of scoring rules
that incentive self-interested agents to report their true beliefs. Such
models are especially relevant in settings where expert opinions are
sought from members internal to an organization. Rather than re-
jecting the forecasts of such experts, our model quantifies the im-
pact of this self-interest and admits rules to circumvent it.

3.1 Model Formulation
A principal, or decision maker (DM), elicits a forecast of X

from expert E, and makes a decision based on this forecast. Let
D = {d1, . . . , dn} be the set of possible decisions, and uij be
DM’s utility should he take decision di with xj (j ≤ m) being
the realization of X . Letting ui = 〈ui1, · · · , uim〉, the expected
utility of decision di given distribution p is Ui(p) = ui · p. For
any beliefs p, DM takes the decision that maximizes expected util-
ity, giving DM the utility function U(p) = maxi≤n Ui(p). Since
each Ui is a linear function of p, U is piecewise linear and convex
(PWLC). Furthermore, each di is optimal in a (possibly empty)
convex region of belief space Di = {p : ui · p ≥ uj · p, ∀j}. We
assume DM acts optimally and that he has a policy π : ∆(X)→ D
that selects some optimal decision π(p) for any expert forecast p.
In what follows, we take Di = π−1(di). We denote by Dij the
(possibly empty) boundary betweenDi andDj . Notice that for any
p ∈ Dij we must have Ui(p) = Uj(p). In our running example,
the CSO is given a forecast probability p of high product demand
from the division head: he will authorize R&D if p is above some
threshold τ , and abandon development if p falls below τ (here τ is
the indifference probability: Udevelop(τ) = Uabandon(τ)).

Our model of DM utility is slightly more restricted than that of
[15, 2], who allow the utility of each decision to depend on a dif-
ferent random variable, and assume that a variable will be observed
only if the corresponding decision is taken. We also focus on prin-
cipals that maximize expected utility given E’s report (i.e., DM
uses the max decision rule [15]), though we discuss stochastic DM
policies in Sec. 4.2.

Suppose expert E is asked by DM to provide a forecast of X .
Assume that E knows DM’s policy π—knowledge of DM’s util-
ity function is sufficient but not required, see Sec. 4.1—and that
E has her own utility function or bias b, where bi,j is E’s utility
should DM take decision di and xj is the realization of X . Define
bi = 〈bi,1, · · · , bi,m〉; and let E’s expected utility for di given p
be Bi(p) = bi · p. For example, the division head (expert) may
see increased corporate influence if R& D is authorized, but see her
power wane if the product fails to materialize.

As with DM, E’s optimal utility function B∗ is PWLC:

B∗(p) = max
i

bi · p. (3)

Denote by D∗(p) the decision di that maximizes Eq. 3, i.e., E’s
preferred decision given beliefs p (see Fig. 2).2

2We assume that D includes no dominated decisions; i.e., for any

d3

d1

d2

0 1
R1 R3R2
D3 D1 D2

Figure 2: Expert utility function. E’s utility for each decision
di is given by the corresponding hyperplane (here, thin black
line). E’s “optimal” utility B∗ is the PWLC function shown
by the dotted green line (i.e., the upper surface), with each Ri
denoting the regions of belief space whereD∗(p) = di. Regions
Di represent DM’s policy, where π(p) = di for p ∈ Di. The
thick red lines denote the (discontinuous) utility Bπ that E will
receive from (truthfully) reporting her belief.

Since DM is pursuing his own policy π, E’s actual utility for a
specific report r under beliefs p is given by

Bπ(r,p) = bπ(r) · p; (4)

that is, if she reports r, DM will take decision π(r) = dk for some
k, and she will derive benefit Bk(p). We refer to Bπ(r,p) as E’s
inherent utility for reporting r. Similarly, B(r, xi) = bi,π(r) is E’s
inherent utility for report r under realization xi. This is the inherent
benefit she derives from the decision she induces DM to take. This
is illustrated in Fig. 2. Note that E’s utility for reports, given any
fixed beliefs p, is not generally continuous, with potential (jump)
discontinuities at DM’s decision boundaries.

Without some scoring rule, there is a clear incentive for E to
misreport her true beliefs to induce DM to take a decision that E
prefers, thereby causing DM to take a suboptimal decision. For
instance, in Fig. 2, if E’s true beliefs p lie in R1, her preferred de-
cision is d1; but truthful reporting will induce DM to take decision
d3. E has greater inherent utility for reporting (any) r ∈ D1. In-
deed, her gain from the misreport is p · (b1 − b3). Equivalently,
E stands to lose p · (b1 − b3) by reporting truthfully. Intuitively,
a proper scoring rule would remove this incentive to misreport.

3.2 Compensation Rules
If DM knows E utility function, he could reason about E’s in-

centive to misreport and revise his decision policy accordingly. Of
course, this would naturally lead to a Bayesian game requiring anal-
ysis of its Bayes-Nash equilibria, and generally leaving DM with
uncertainty about E’s true beliefs.3 Instead, we wish to derive a
scoring rule that DM can use to incentivize E to report truthfully.

Unsurprisingly, such rules must compensate E for the utility she
foregoes by reporting her beliefs truthfully rather than influencing
DM to act in a way that furthersE’s own interests. A compensation
function C : ∆(X) × X → R maps reports and outcomes into
payoffs, like a standard scoring rule. However, C does not fully
determine E’s utility for a report; we must also account for the
inherent utility E derives from the decision she brings about. A
compensation function C induces a net scoring function:

S(p, xi) = C(p, xi) +Bπ(p, xi) (5)

d ∈ D, we have π−1(d) 6= ∅. If not, the subset of D with only
nondominated decisions should be used, since DM never needs to
compensate E for a decision he would never take.
3See Dimitrov and Sami [8] and Conitzer [7] for such a game-
theoretic treatment of prediction markets (without decisions).
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E’s expected net score for report r under beliefs p is S(r,p) =
C(r,p) + Bπ(r,p), where C(r,p) =

∑
i piC(r, xi) is E’s ex-

pected compensation.
We adapt the definition of proper scoring rules to the case of

compensation rules, recognizing that compensation is in full con-
trol of DM, while the net score is not:

DEFINITION 2. A compensation function C is proper iff the ex-
pected net score function S satisfies S(p,p) ≥ S(q,p) for all
p,q ∈ ∆(X). C is strictly proper if the inequality is strict.

One natural way to structure the compensation function is to use
C to compensate E for the loss in inherent utility incurred by re-
porting her true beliefs p (relative to her best report), thus removing
incentive for E to misreport. This gives rise to a very specific com-
pensation function Cb that accounts for this loss:

Cb(p, xi) = bi,D∗(p) − bi,π(p). (6)

Cb(p, xi) is simply the difference between E’s realized utility for
her optimal decision (relative to her report p) and the actual deci-
sion she induced. Cb gives rise to the specific net scoring function:

Sb(p, xi) = Cb(p, xi) +Bπ(p, xi) (7)
= (bi,D∗(p) − bi,π(p)) + bi,π(p)) = bi,D∗(p) (8)

Since E’s expected net score under beliefs p is identical to her
expected utility for the optimal decision D∗(p), truthful reporting
results, showing Cb to be a proper compensation rule.
Cb is just one straightforward mechanism for proper scoring with

self-interested experts. We can generalize the approach to provide
a complete characterization of all proper (and strictly proper) com-
pensation functions. We derivedCb by compensatingE for her loss
due to truthful reporting. This is more “generous” than necessary:
we need only remove the potential gain from misreporting. The
key element of Cb is not the “compensation term” bi,D∗(p), but the
penalty term−bi,π(p), which preventsE from benefiting by chang-
ing DM’s decision. Any such gain is subtracted from her compen-
sation via the penalty term −bi,π(p). We require only that the pos-
itive compensation term is convex: it need bear no connection to
E’s actual utility function to incentivize truthfulness. Indeed, we
can fully characterize the space of proper and strictly proper com-
pensation functions:

THEOREM 3. A compensation rule C is proper for E iff

C(p, xi) = G(p)−G∗(p) · p +G∗i (p)− bi,π(p) (9)

for some convex functionG, and subgradientG∗ ofG. C is strictly
proper iff G is strictly convex.4

An illustration of a cost function G(p) that gives rise to a proper
compensation function is shown in Fig. 3(a).

The fact that the specific rule Cb is proper follows directly by
observing that the net score Sb can be derived from Eq. 2 by letting
G(p) = B∗(p) = maxi≤nBi(p) be E’s optimal utility func-
tion (which is PWLC, hence convex), and using the subgradient
G∗(p) given by the hyperplane corresponding to the optimal deci-
sionD∗(p) at that point.5 Of course,Cb is not strictly proper, since
it is induced by a non-strictly convex cost functionG = B∗. In par-
ticular, for any region R(d) of belief space where a single decision
d is optimal for E, every report p ∈ R(d) has the same expected
net score, hence there is no “positive” incentive for truthtelling.
4All proofs are available in working paper arXiv:1106.2489.
5At interior points of E’s decision regions, the hyperplane is the
unique subgradient. At E’s decision boundaries, an arbitrary sub-
gradient can be used.

Bπ Bπ Bπ

B*
B*

B*
G

G G

p q

Figure 3: Illustration of cost functions G for strictly proper
compensation rules. E’s optimal utility B∗ is the PWLC func-
tion shown in green, and E’s inherent utility Bπ is the dis-
continuous function in red. The net scoring function G(p) =
S(p,p), the convex curve, induces an expected compensation
function C(p,p) by subtracting Bπ . (a) A strictly proper rule
that violates weak participation at point p. (b) A rule that satis-
fies weak participation but violates strong participation at point
q. (c) A rule that satisfies strong participation.

The characterization of Thm. 3 ensures truthful reporting, but
may not provide incentives for participation. Indeed, the expert
may be forced to pay DM in expectation for certain beliefs. Specif-
ically, if G(p) < Bπ(p), E’s expected compensation C(p,p) is
negative. Unless the DM can “force” E to participate, this will
cause E to avoid providing a forecast if her beliefs are p (e.g., see
point p is Fig. 3(a)). In general, we’d like to provide E with non-
negative expected compensation. We can do this by insisting the
compensation rule weakly incentives participation:

DEFINITION 4. A compensation function C satisfies weak par-
ticipation iff for any beliefs p,E’s expected compensation for truth-
ful reporting C(p,p) is non-negative.

(Fig. 3(b) illustrates a cost function G that induces a compensation
rule C satisfying weak participation.)

THEOREM 5. A proper compensation ruleC satisfies weak par-
ticipation iff it meets the conditions of Thm. 3 and G(p) ≥ Bπ(p)
for all p ∈ ∆(X).

While desirable, weak participation does not ensure participa-
tion in general. Consider a compensation function defined with a
convex cost function G(p). If E participates, she maximizes her
net payoff by reporting her true beliefs p. But suppose G(p) <
B∗(p). While E may not be certain how DM will act without her
input (e.g., she may not know DM’s “default beliefs” precisely), she
may nevertheless have beliefs about DM’s default policy. And, ifE
believes DM will take decision D∗(p) if she provides no forecast,
then she is better off taking the expected payoff B∗(p) based on
her inherent utility and not participating (which has a lower pay-
off of G(p)). (See point q in Fig. 3(b).) To prevent this, we say
C strongly incentivizes participation if, no matter what E believes
about DM’s default policy (i.e., his action given no reporting), she
will not sacrifice expected utility by participating in the mechanism.

DEFINITION 6. A compensation functionC satisfies strong par-
ticipation iff, for any decision di ∈ D, for any beliefs p, E’s net
score for truthful reporting is no less than Bi(p).

Strong participation means that E has no incentive to abstain from
participation (and need not “take her chances” that DM will make
a decision she likes). This definition is equivalent to requiring that
E’s expected utility for truthful reporting, as a function of p, is at
least as great as her optimal utility function, i.e., S(p,p) ≥ B∗(p)
for all p ∈ ∆(X). Fig. 3(c) illustrates such a compensation rule.

THEOREM 7. Proper compensation ruleC satisfies strong par-
ticipation iff it meets the conditions of Thm. 3 and G(p) ≥ B∗(p)
for all p ∈ ∆(X).
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OBSERVATION 8. Compensation rule Cb is the unique mini-
mal (non-strictly) proper rule satisfying strong participation. That
is, no compensation rule offers lower compensation for any report
without violating strong participation.

In general, if we insist on strong participation, DM must provide
potential compensation up to the level ofE’s maximum utility gap:

g(B) = max
i≤m,j,k≤n

bi,k − bi,j .

However, this degree of compensation is needed only if DM and
E have “directly conflicting” interests (i.e., DM takes a decision
whose realized utility is as far from optimal as possible from E’s
perspective). In such cases, one would expect E’s utility to be sig-
nificantly less than DM’s. If not, this compensation is not worth-
while for DM. Conversely, if E’s interests are well aligned with
those of DM, the total compensation required will be small. The
most extreme case of well-aligned utility is one where functions π
and D∗ coincide, i.e., π(p) = D∗(p) for all beliefs p, in which
case, no compensation is required. Specifically, compensation func-
tion Cb(p) = 0 for all p; and while Cb is not strictly proper, the
only misreports thatE will contemplate (i.e., that do not reduce her
net score) are those that cannot change DM’s decision (i.e., cannot
impact DM’s utility). As a consequence, DM should elicit fore-
casts from an expert who either (a) has well-aligned interests in the
decisions being contemplated; (b) has interest whose magnitude is
small (hence requires modest compensation) relative to DM’s own
utility; or (c) can be “forced” to make a prediction (possibly at neg-
ative net cost). Fortunately, these conditions often obtain in many
settings, especially organizational or corporate settings. Employee
incentives are usually reasonably well-aligned with those of corpo-
rate decision makers; and when external consultants are used, while
their interests are not aligned with those of the principal, their stake
in specific decisions is usually minimal.

4. POLICY AND UTILITY UNCERTAINTY
We now relax two key assumptions from Section 3.1: that E

knows DM’s policy, and that DM knows E’s utility.

4.1 Policy Uncertainty
We first consider the case where DM does not want to disclose

his policy toE. For example, suppose DM wanted to forego a truth-
ful compensation ruleC and simply rely on a proper scoring rule of
the usual form that ignores the E’s inherent utility. Thm. 3 shows
that DM cannot prevent misreporting in general if he ignores E’s
inherent utility; hence he can suffer a loss in his own utility. How-
ever, by refusing to disclose his policy π, DM could reduce the
incentive for E to misreport. Without accurate knowledge of π, E
would be forced to rely on uncertain beliefs about π to determine
the utility of a misreport, generally lowering her incentive. How-
ever, this will not remove the misreporting incentive completely.
For instance, referring to Fig. 2, suppose DM does not disclose π.
If E believes with sufficient probability that the decision boundary
between d3 and d1 is located at the point indicated, she will misre-
port any forecast p in region D3 sufficiently close to that boundary
should DM use a scoring rule rather than a compensation rule. As
such, refusing to disclose his policy can be used by DM to reduce,
but not eliminate, the incentive to misreport.6

Our analysis in the previous section assumed that E used her
knowledge of π to determine the report that maximizes her net
6A similar argument shows that a stochastic policy can be used to
reduce misreporting incentive, e.g., the soft max policy that sees
DM take decision di with probability proportional to eλui(p). .

score. However, DM does not need to disclose π to make good
use of a compensation rule. He can specify a compensation rule
implicitly by announcing his net scoring function S(p, xi) (or the
cost functionG and subgradientG∗) and promising to deductBd ·p
from this score for whatever decision d he ultimately takes. E need
not know in advance what decision will be taken to be incentivized
to offer a truthful forecast. Nor does E ever need to know what
decisions would have been taken had she reported differently. Thus
the only information E needs to learn about π is the value of π(p)
at her reported forecast p; and even this need not be revealed until
after the decision is taken (and its outcome realized).7

4.2 Uncertainty in Expert Utility
We now consider the more interesting issues that arise when DM

is uncertain about the parameters b of E’s utility function. If the
DM has a distribution over b, one obvious technique is to spec-
ify a proper compensation rule using the expectation of b. This
may work reasonably well in practice, depending on the nature of
the distribution; but it follows immediately from Thm. 3 that this
approach will not induce truthful reporting in general.

Rather than probabilistic beliefs, we suppose that DM has con-
straints on b that define a bounded feasible region B ⊆ Rmn in
which E’s utility parameters must lie. We will confine our analysis
to a simple, but natural class of constraints, specifically, upper and
lower bounds on each utility parameter; i.e., assume DM has upper
and lower bounds bi,j↑ and bi,j↓, respectively, on each bi,j . This in-
duces a hyper-rectangular feasible region B. If B is a more general
region (e.g., a polytope defined by more general linear constraints),
our analysis below can be applied to the tightest “bounding box”
of the feasible region.8 Again by Thm. 3, DM cannot define a
proper compensation rule in general: without certain knowledge of
E’s utility, any proposed “deduction” of inherent utility from E’s
compensation could mistaken, leading to an incentive to misreport.
However, we show this incentive is bounded.

Requiring that DM have some information about E’s utility for
DM’s decisions may, at first glance, seem like too stringent a re-
quirement. However, in many contexts, including organizational
settings like those discussed above, it would, in fact, be highly un-
usual for this not to be the case. For instance, it would be unheard
of for a CSO not to have some rough, albeit imprecise, idea of the
benefit a division head would derive from undertaking R&D for
a new product. More to the point, ignoring E’s potential biases
makes it impossible for DM to have any confidence in her forecast.
Our analysis sheds light on how much, and what type of, effort DM
should invest in assessing E’s biases.

Under conditions of utility uncertainty, it is natural for DM to
restrict his attention to “consistent” compensation rules:

DEFINITION 9. Let B be the set of feasible expert utility func-
tions. A compensation rule is consistent with B iff it has the form,
for some (strictly) convex G and b̃ ∈ B:

C(p, xi) = G(p)−G∗(p) · p +G∗i (p)− b̃i,π(p). (10)

Notice that consistent compensation rules are naturally linear: in-
tuitively, we select a single consistent estimate of each parameter
˜bi,j ∈ [bi,j↓, bi,j↑], treat E as if this were her true (linear) utility

function, and define C using this estimate. We say DM is δ-certain
of E’s utility iff bi,j↑ − bi,j↓ ≤ δ for all i, j. Then we can bound
the incentive for E to misreport as follows:

7Some mechanism to verify the decision post hoc may be needed.
8General linear constraints on E’s parameters could be could be
inferred, for example, from observed behavior.
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THEOREM 10. If DM is δ-certain ofE’s utility, thenE’s incen-
tive to misreport under any consistent compensation rule is bounded
by 2δ. That is, S(r,p)− S(p,p) ≤ 2δ.

We can limit the misreporting incentive further by using a uniform
compensation rule.

DEFINITION 11. A consistent compensation rule is uniform if
each parameter is estimated by b̃i,π(p) = λbi,j↓+ (1− λ)bi,j↑ for
some fixed λ ∈ [0, 1].

For example, if DM uses the lower bound (or midpoint, or upper
bound, etc.) of each parameter interval uniformly, we call the com-
pensation rule uniform.

COROLLARY 12. If DM is δ-certain of E’s utility, then E’s in-
centive to misreport under any uniform compensation rule is bounded
by δ. That is, S(r,p)− S(p,p) ≤ δ.

While bounding the incentive to misreport is useful, it is more
important to understand the impact such misreporting can have on
DM. Fortunately, this too can be bounded. The (strict) convexity of
G means that the greatest incentive to misreport occurs at the deci-
sion boundaries of DM’s policy π in Thm. 10. Since, by definition,
DM is indifferent between the adjacent decisions at any decision
boundary, misreports in a bounded region around decision bound-
aries have limited impact on DM’s utility; the amount by which E
will misreport is bounded using the “degree of convexity” of the
cost function G, which in turn bounds DM’s utility loss.

DEFINITION 13. Let G be a convex cost function with subgra-
dient G∗. We say G is robust relative to G∗ with factor m > 0 iff,
for all p,q ∈ ∆(X):9

G(q) ≥ G(p) +G∗(p) · (q− p) +m||q− p||2 (11)

It is not hard to see that m-robustness of the pair G,G∗ imposes
a minimum “penalty” on any expert misreport, as a function of its
distance from her true beliefs:

OBSERVATION 14. LetC be a proper compensation rule based
on an m-robust cost function G and subgradient G∗. Let S be the
induced net scoring function. Then

S(p,p)− S(q,p) ≥ m||q− p||2.
Together with Thm. 10, this gives a bound on the degree to which
an expert will misreport when an uncertain DM uses a consistent
compensation rule.

COROLLARY 15. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-robust cost function
and subgradient. Let p be E’s true beliefs. Then the report q
that maximizes E’s net score satisfies ||q − p||2 ≤ 2δ

m
. If the

compensation rule is uniform, then ||q− p||2 ≤ δ
m

.

In other words, E’s utility-maximizing report must be within a
bounded distance of her true beliefs if DM uses an m-robust cost
function to define the compensation rule.

The notion of m-robustness is a slight variant of the notion of
strong convexity [1] in which we use the specific subgradient G∗

to measure the “degree of convexity.” In the specific case of twice
differentiable cost function G, we say G is strongly convex with
factor m iff ∇2G(p) � mI for all p ∈ ∆(X); i.e., if the matrix
∇2G(p) −mI is positive definite [1]. m-convexity is a sufficient
condition for the robustness we seek.
9The definition ofm-robustness can be recast using any reasonable
metric, e.g., L1-norm or KL-divergence; but the L2-norm is most
convenient below when we relate robustness to strong convexity.

COROLLARY 16. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-convex, twice differ-
entiable cost function G. Let p be E’s true beliefs. Then the report

q that maximizes E’s net score satisfies ||q − p||2 ≤
√

4δ
m

. If the

compensation rule is uniform, then ||q− p||2 ≤
√

2δ
m

.

Robustness (or strong convexity) allows us to globally bound the
maximum degree to which E will misreport. This allows us to give
a simple, global bound on the loss in DM utility that results from
his uncertainty about the expert’s utility function. Recall that DM’s
utility function Ui for any decision di is linear, hence has a con-
stant gradient ∇Ui. (We abuse notation and simply write ∇Ui for
∇Ui(p).) The function Ui − Uj is also linear, given by parameter
vector (ui−uj). Let ek denote the n-dimensional unit vector with
a 1 in component k and zeros elsewhere.

THEOREM 17. Let DM be δ-certain of E’s utility and use a
consistent compensation rule based on an m-robust cost function
and subgradient. Assume E reports to maximize her net score.
Then DM’s loss in utility relative to a truthful report by E is at
most maxk[eTk maxi,j ∇(Ui − Uj)]

√
n 2δ
m

. If the compensation
rule is uniform, then the bound is tightened by a factor of two.

The same proof applies to strongly convex cost functions, with
√
n 2δ
m

replacing the term
√
n 4δ
m

in the bound above.
The results above all rely on the global robustness or global

strong convexity of the cost function G. Designing a specific cost
function (and if not differentiable, choosing its subgradients) can
be challenging if we try to ensure uniform m-robustness or m-
convexity across the entire probability space ∆(X). But recall
that E can only impact DM’s utility if her misreport causes DM
to change his decision. This means that the cost function need only
induce strong penalties for misreporting near decision boundaries.
Furthermore, the strength of these penalties should be related to
the rate at which DM’s utility is negatively impacted. For example,
suppose p lies on the decision boundary between region Di and
Dj . If |∇(Ui−Uj)| is large, then a misreport in the region around
p will cause a greater loss in utility than if |∇(Ui − Uj)| is small.
This suggests that the cost function should be more strongly convex
(or more robust) near decision boundaries whose corresponding de-
cisions differ significantly in utility, and can be less strong when the
decisions are “similar.” See Fig. 4 for an illustration of this point.
Furthermore, the cost function need only be robust or strongly con-
vex in a local region around these decision boundaries. In particu-
lar, supposeG ism-robust in some local region around the decision
boundary betweenDi andDj . The degree of robustness bounds the
maximum deviation from truth that E will contemplate. If the re-
gion of m-robustness includes these maximal deviations, that will
be sufficient to bound DM’s utility loss for any true beliefsE has in
that region. Outside of these regions, no misreport by E will cause
DM to change his decisions (relative to a truthful report).

We can summarize this as follows:

DEFINITION 18. G is locally robust relative to G∗ in the ε-
neighborhood around p with factor m > 0 iff, for all q ∈ ∆(X)
s.t. ||q− p||2 ≤ ε:

G(q) ≥ G(p) +G∗(p) · (q− p) +m||q− p||2 (12)

Local strong convexity is defined similarly.

Now suppose DM wishes to bound his loss due to misreporting
by E by some factor σ > 0. This can be accomplished using a
locally robust cost function:
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d1

d2

d3

G

Figure 4: A locally strongly convex cost functionG. HereG has
is more strongly convex in the neighborhood of decision bound-
ary D12 than the boundary D23. This means an expert willing
to sacrifice compensation (e.g., to gain inherent utility due to
DM uncertainty) can offer a report that deviates more from her
true beliefs in the neighborhood around D23 and than it can in
the neighborhood around D12 for the same loss in compensa-
tion. However, since d2 and d3 are more similar than d1 and d2
(w.r.t. DM utility), i.e., the gradient |∇(U2 − U3)| is less than
|∇(U1 − U2)|, DM will lose less utility “per unit” of misreport
in the neighborhood ofD23. Note: the cost functionG is drawn
above DM’s utility function U for illustration only—in general,
it will lie below U .

THEOREM 19. Let DM be δ-certain of E’s utility and fix σ >
0. For any pair of decisions di, dj with non-empty decision bound-
ary Dij , define

mij =
maxk(e

T
k∇[Ui−Uj ])

√
n2δ

σ
; εij =

σ

maxk(e
T
k∇[Ui−Uj ])

√
n
.

LetG be a convex cost function with subgradientG∗ such that, for
all i, j and any p ∈ Dij , (a) G is locally robust with factor mij

in the εij-neighborhood around p; (b) no other decision boundary
lies within the εij-neighborhood around p. Let DM use a consis-
tent compensation rule based onG,G∗. Assume E reports to max-
imize her net score. Then DM’s loss in utility relative to a truthful
report by E is at most σ. If the compensation rule is uniform, the
result holds with mij and εij decreased by a factor of two.

This result can be generalized to the case where the degree of ro-
bustness around one decision boundary is relaxed sufficiently so
that the neighborhood within which E can profitably misreport
crosses more than one decision boundary (i.e., when another deci-
sion boundary overlaps the εij-neighborhood around Dij). Utility
loss will increase, but it can be bounded using the maximum gra-
dient ∇(Ui − Uj) over decisions that can be swapped. The result
can also be adapted to locally strongly convex cost functions.

These results quantify the “cost” to the decision maker of his
imprecise knowledge of the expert’s utility function, i.e., his worst-
case expected utility relative to what he could have achieved if he
had full knowledge of E’s utility (i.e., with truthful reporting by
E). This analysis, however, does more than merely bound the risk
facing a principal who solicits forecasts from self-interested ex-
perts. It also suggests: (a) ways in which the principal might ex-
pend effort to refine his knowledge of expert utility or bias; and (b)
procedures for optimizing compensation rules when dealing with
such experts. Regarding the first issue, while it goes beyond the
scope of this paper, a more fine-grained analysis in the style of that
used here—based on DM uncertainty regarding E’s specific utility
parameters—can be used to justify and focus DM efforts when as-
sessingE’s utility. On issue (b), the characterization of DM loss us-
ing local robustness or convexity has operational significance in the
design of compensation rules. Indeed, it suggests an procedure for
designing cost function G (and induced compensation rule C) so
as to minimize DM utility loss. Intuitively, G should optimize two

conflicting objectives: minimizing the bound σ on utility loss (re-
quiring an increase the degree of convexity at decision boundaries);
and minimizing expected compensation c (requiring a decrease in
convexity). We believe specific classes of spline functions should
prove useful for addressing this tradeoff.

Finally, note that if we relax the constraint that DM choose the
decision di with maximum expected utility, we can exploit local
robustness to induce truthful forecasts. Suppose DM uses the soft-
max decision policy (see footnote 6): this stochastic policy makes
E’s utilityBπ(r,p) continuous in her report r. An similar analysis
similar using local convexity shows that DM induces truthtelling if
the degree of convexity compensates for the gradient ofBπ at deci-
sion boundaries (since policy randomness removes the discontinu-
ities in Bπ). Of course, this comes at a cost: the DM is committed
to taking suboptimal actions with some probability, leading to inter-
esting tradeoffs between “acting optimally” but risking misleading
reports vs. “acting suboptimally” given a truthful report.

5. MARKET SCORING RULES
We provide a brief sketch how to exploit compensation functions

when DM aggregates the forecasts of multiple experts. One natural
means of doing so is to use a market scoring rule (MSR) [11] that
sequentially applies a scoring rule based on how an expert alters the
prior forecast (see Sec. 2). An MSR based on a scoring rule S has
the kth expert pay the k−1st expert for her forecast according to S,
and have the principal pay only final expert for her forecast using
S. Thus, the principal’s total payment is bounded by the maximal
payment to a single expert [11]. When experts are self-interested,
however, difficulties emerge; e.g., Shi et al. [17] show that experts
who can alter the outcome distribution after making a forecast each
require compensation to prevent them from manipulating the distri-
bution to the detriment to the principal. A related form of subsidy
arises in our decision setting.

Following [17], we assume a collection of n experts, each of
whom can provide alter the forecast p exactly once.10 An “obvi-
ous” MSR in our model would simply adopt a proper compensation
rule, and have each expert pay the either the compensation or the
net score due to the expert who provided the incumbent forecast,
and receive her payment from the next expert. If we use compensa-
tion, we run into strategic issues. With a proper compensation rule,
an expert k reports truthfully based on her net score (total utility),
consisting of both compensation and the inherent utility of the de-
cision she induces. In a market setting, k’s proposed decision may
be changed by the next expert’s forecast. This (depending on her
beliefs about other expert opinions) may incentivize k to misreport
in order to maximize her compensation rather than her net score.
Overcoming such strategic issues seems challenging.

Alternatively, each expert might pay the net score due her prede-
cessor. Unfortunately, an arbitrary proper compensation rule may
not pay expert k enough score to “cover her costs” (e.g., if k−1’s
inherent utility is much higher than k’s). However, if we set aside
issues associated with incentive for participation for the moment,
the usual MSR approach can be adapted as follows: we fix a sin-
gle (strictly) convex cost function G for all experts, and define the
compensation rule Ck for expert k using G in the usual way:

Ck(p, xi) = G(p)−G∗(p) · p +G∗i (p)− bki,π(p),

where bk is k’s utility function (bias). If G satisfies strong partic-
ipation for all experts (i.e., if G(xi) ≥ B∗(xi) for all i), then any

10This means we need not explicitly reason about how experts up-
date their beliefs given the forecasts of others.
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expert k whose beliefs p[k] differ from the forecast p[k−1] pro-
vided by k−1 will have an expected net score (given p[k]) greater
than her expected payment to k−1 and will maximize her utility
by providing a truthful forecast. In particular, denote k’s expected
payment to k−1 by ρ(k, k−1); then we have:

ρ(k, k−1) = (Hp[k−1] − bk−1π(p[k−1])) · p[k] + bk−1π(p[k−1]) · p[k]

= Hp[k−1] · p[k]

≤ Hp[k] · p[k].

Hence k’s expected payment ρ(k, k−1) is less than her expected net
utility, leaving her with a (positive) net gain of (Hp[k] −Hp[k−1]) ·
p[k]. However, this gain may be smaller than the inherent utility
she derives from the decision induced by k−1, namely, bkπ(p[k−1]) ·
p[k]. Hence this scheme may not incentivize participation. In cases
where DM can force participation, such a scheme can be used; but
in general, the self-subsidizing nature of standard MSRs cannot be
exploited with self-interested experts.

To incentivize participation, DM can subsidize these payments.
In the most extreme case, DM simply pays each displaced expert
her net utility, which removes any incentives to misreport, but at
potentially high cost. In certain circumstances, we can reduce the
DM subsidy to the market by having him pay only the inherent util-
ity bk−1i,π(p[k−1]) (given realized outcome xi) of the displaced expert
k−1, and requiring the displacing expert k to pay the compensa-
tion Hi,p[k−1]. Under certain conditions on the relative utility of
different experts for different decisions, this is sufficient to induce
participation; that is, k’s net gain for participating exceeds her in-
herent utility for the incumbent decision.

For instance, suppose all experts have the same utility function
b (e.g., consider experts in the same division of a company who
are asked to predict the outcome of some event, and have different
estimates, but have aligned interests in other respects). In this case,
k’s net gain for reporting her true beliefs is:

(Hp[k] − (Hp[k−1] − bπ(p[k−1]))) · p[k]

= (Hp[k] −Hp[k−1]) · p[k] + bπ(p[k−1]) · p[k]

≥ bπ(p[k−1]) · p[k].

Hence k’s expected net gain is at least as great as her inherent ex-
pected utility for the decision induced by k−1, and strictly greater if
her beliefs differ from those of k−1. Thus participation is assured.

Indeed, the argument holds even if the utility functions are not
identical: we require only that k’s expected utility for the decision
she displaces is less than the expected utility (given k’s beliefs) to
be offered to her predecessor k−1. A sufficient condition for this is
that bk ≤ bk−1 (pointwise). This suggests that if the DM can elicit
predictions of the experts in a particular order, he should do so by
eliciting forecasts of those with the greatest utility first. Even with
identical expert utility functions, there seems to be no escape from
the requirement that DM subsidize the market at a level that grows
linearly with the number of agents (as in [17]). Further develop-
ment of MSRs in this setting should prove to be quite interesting.

6. CONCLUDING REMARKS
We have presented a model for the analysis of the incentives fac-

ing experts who have a vested interest in the decision taken by the
principal, defining compensation rules that are necessary and suf-
ficient to induce truthful forecasts and ensure participation. The
analysis allows for uncertainty in the knowledge of both parties,
exploiting various forms of robustness or convexity. We also pro-
vided some initial steps toward MSRs based on compensation rules.

Rather than rejecting self-interested experts outright, our model al-
lows the principal to assess the risks of using such experts, and
design compensation to mitigates these risks.

Of course, our model and analysis are just first steps toward a
comprehensive treatment of self-interested experts. Many interest-
ing directions remain, including: the development of effective pro-
cedures for the design of cost functions that minimize utility loss
and compensation when expert utility is unknown; the design and
analysis of more refined market-scoring rules; finer-grained mod-
eling of DM utility loss to guide DM’s elicitation or assessment
effort of expert utility/interests; and analyzing the tradeoffs when
DM accepts restrictions on his possible decisions (potentially act-
ing suboptimally) to reduce expert misreporting.
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ABSTRACT
Many important problems in multiagent systems involve the allo-
cation of multiple resources among the agents. For resource allo-
cation problems, the well-known VCG mechanism satisfies a list
of desired properties, including efficiency, strategy-proofness, in-
dividual rationality, and the non-deficit property. However, VCG is
generally not budget-balanced. Under VCG, agents pay the VCG
payments, which reduces social welfare. To offset the loss of social
welfare due to the VCG payments, VCG redistribution mechanisms
were introduced. These mechanisms aim to redistribute as much
VCG payments back to the agents as possible, while maintaining
the aforementioned desired properties of the VCG mechanism.

We continue the search for worst-case optimal VCG redistri-
bution mechanisms – mechanisms that maximize the fraction of
total VCG payment redistributed in the worst case. Previously,
a worst-case optimal VCG redistribution mechanism (denoted by
WCO) was characterized for multi-unit auctions with nonincreas-
ing marginal values [7]. Later, WCO was generalized to settings
involving heterogeneous items [4], resulting in the HETERO mech-
anism. [4]conjecturedthat HETERO is feasible and worst-case op-
timal for heterogeneous-item auctions with unit demand. In this pa-
per, we propose a more natural way to generalize the WCO mech-
anism. We prove that our generalized mechanism, though rep-
resented differently, actually coincides with HETERO. Based on
this new representation of HETERO, we prove that HETERO is
indeed feasible and worst-case optimal in heterogeneous-item auc-
tions with unit demand. Finally, we conjecture that HETERO re-
mains feasible and worst-case optimal in the even more general
setting of combinatorial auctions with gross substitutes.
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1. INTRODUCTION

1.1 VCG Redistribution Mechanisms
Many important problems in multiagent systems involve the al-

location of multiple resources among the agents. For resource al-
location problems, the well-known VCG mechanism satisfies the
following list of desired properties:

• Efficiency: the allocation maximizes the agents’ total valua-
tion (without considering payments).

• Strategy-proofness: for any agent, reporting truthfully is a
dominant strategy, regardless of the other agents’ types.

• (Ex post) individual rationality: Every agent’s final utility
(after deducting her payment) is always nonnegative.

• Non-deficit: the total paymentfromthe agents is nonnegative.

However, VCG is generally not budget-balanced. Under VCG,
agents pay the VCG payments, which reduces social welfare. To
offset the loss of social welfare due to the VCG payments, VCG re-
distribution mechanisms were introduced. These mechanisms still
allocate the resources using VCG. On top of VCG, these mecha-
nisms try to redistribute as much VCG payments back to the agents
as possible. We require thatan agent’s redistribution be indepen-
dent of her own type. This is sufficient for maintaining strategy-
proofness and efficiency (an agent has no control over her own
redistribution). For smoothly connected domains (including multi-
unit auctions with nonincreasing marginal values and heterogeneous-
item auctions with unit demand), the above requirement is also
necessary for maintaining strategy-proofness and efficiency [8]. A
VCG redistribution mechanism isfeasibleif it maintains all the de-
sired properties of the VCG mechanism. That is, we also require
that the redistribution process maintains individual rationality and
the non-deficit property.

Let n be the number of agents. Since all VCG redistribution
mechanisms start by allocating according to the VCG mechanism,
a VCG redistribution mechanism is characterized by its redistri-
bution scheme~r = (r1, r2, . . . , rn). Under VCG redistribution
mechanism~r, agenti’s redistribution equalsri(θ1, . . . , θi−1, θi+1,
. . . , θn), whereθj is agentj’s type. (We do not have to differen-
tiate between an agent’s true type and her reported type, since all
VCG redistribution mechanisms are strategy-proof.) For the mech-
anism design objective studied in this paper, it is without loss of
generality to only consider VCG redistribution mechanisms that are
anonymous (we defer the proof of this claim to the appendix). An
anonymous VCG redistribution mechanism is characterized by a
single functionr. Under (anonymous) VCG redistribution mech-
anismr, agenti’s redistribution equalsr(θ−i), whereθ−i is the
multisetof the types of the agents other thani.
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We use~θ to denote the type profile. LetV CG(~θ) be the total
VCG payment for this type profile. A VCG redistribution mech-
anismr satisfies the non-deficit property if the total redistribution
never exceeds the total VCG payment. That is, for any type pro-
file ~θ,

∑
i r(θ−i) ≤ V CG(~θ). A VCG redistribution mechanism

r is (ex post) individually rational if every agent’s final utility is
always nonnegative. Since VCG is individually rational, we have
that a sufficient condition forr to be individually rational is for any
~θ and anyi, r(θ−i) ≥ 0 (on top of VCG, every agent also receives
a redistribution amount that is always nonnegative). On the other
hand, when agenti is not interested in any item (her valuation on
any item bundle equals0), under VCG,i’s utility always equals
0. After redistribution, agenti’s utility is exactly her redistribution
r(θ−i). That is,r(θ−i) ≥ 0 for all θ−i (hence for all~θ and alli) is
also necessary for individual rationality.

We want to find VCG redistribution mechanisms that maximize
the fraction of total VCG payment redistributed in the worst-case.
This mechanism design problem is equivalent to the following func-
tional optimization model:

Variable function: r
Maximize: α (worst-case redistribution fraction)
Subject to:
Non-deficit:∀~θ,

∑
i r(θ−i) ≤ V CG(~θ)

Individual rationality:∀θ−i, r(θ−i) ≥ 0

Worst-case guarantee:∀~θ,
∑

i r(θ−i) ≥ α V CG(~θ)

In this paper, we will analytically characterize one worst-case
optimal VCG redistribution mechanism for heterogeneous-item auc-
tions with unit demand.1

We conclude this subsection with an example VCG redistribu-
tion mechanism in the simplest setting of single-item auctions. In
a single-item auction, an agent’s type is a nonnegative real number
representing her utility for winning the item. Without loss of gen-
erality, we assume thatθ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0. In single-item
auctions, the Bailey-Cavallo VCG redistribution mechanism [2, 3]
works as follows:

• Allocate the item according to VCG: Agent1 wins the item
and paysθ2. The other agents win nothing and do not pay.

• Every agent receives a redistribution that equals1
n

times the
second highestothertype: Agent1 and2 each receives1

n
θ3.

The other agents each receives1
n
θ2.

The above mechanism obviously maintains strategy-proofness
and efficiency (an agent’s redistribution does not depend on her
own type). It also maintains individual rationality because all re-
distributions are nonnegative. The total redistribution equals2

n
θ3+

n−2
n

θ2. This is never more than the total VCG paymentθ2. That is,
the above mechanism maintains the non-deficit property. Finally,
the total redistribution2

n
θ3 + n−2

n
θ2 ≥ n−2

n
θ2. That is, for single-

item auctions, this example mechanism’s worst-case redistribution
fraction is n−2

n
(the worst-case is reached whenθ3 = 0).

1.2 Previous Research on Worst-Case Optimal
VCG Redistribution Mechanisms

In this subsection, we review existing results on worst-case op-
timal VCG redistribution mechanisms. Besides high-level discus-
sions, we also choose to include a certain level of technical details,
as they are needed for later sections.
1The problem of assigning heterogeneous items to unit demand
agents is also often called the assignment problem.

We organize existing results by their settings.

Worst-Case Optimal Redistribution in Multi-Unit Auctions with
Unit Demand [7, 12]: In multi-unit auctions with unit demand, the
items for sale are identical. Each agent wants at most one copy of
the item. (Single-item auctions are special cases of multi-unit auc-
tions with unit demand.) Letm be the number of items.Through-
out this paper, we only consider cases wherem ≤ n − 2.2 Here,
an agent’s type is a nonnegative real number representing her val-
uation for winning one copy of the item. It is without loss of gen-
erality to assume thatθ1 ≥ θ2 ≥ . . . ≥ θn ≥ 0. [7] showed that
for multi-unit auctions with unit demand, any VCG redistribution
mechanism’s worst-case redistribution fraction is at most

α∗ = 1 −
(

n−1
m

)
∑n−1

j=m

(
n−1

j

)

If we switch to a more general setting, thenα∗ is still an up-
per bound: if there exists a VCG redistribution mechanism whose
worst-case redistribution fraction is strictly larger thanα∗ in a more
general setting, then this mechanism, when applied to multi-unit
auctions with unit demand, has a worst-case redistribution fraction
that is strictly larger thanα∗, which contradicts with the meaning
of α∗.

[7] also characterized a VCG redistribution mechanism for multi-
unit auctions with unit demand, called the WCO mechanism.3

WCO’s worst-case redistribution fraction is exactlyα∗. That is, it
is worst-case optimal.

WCO was obtained by optimizing within the family oflinear
VCG redistribution mechanisms. A linear VCG redistribution mech-
anismr takes the following form:

r(θ−i) =

n−1∑

j=1

cj [θ−i]j

Here, theci are constants. (We only consider theci that corre-
spond to feasible VCG redistribution mechanisms.)[θ−i]j is the
j-th highest type amongθ−i. Linear mechanismr is characterized
by the values of theci. The optimal values theci are as follows:

c∗
i =

(−1)i+m−1(n − m)
(

n−1
m−1

)

i
∑n−1

j=m

(
n−1

j

) 1(
n−1

i

)
n−1∑

j=i

(
n − 1

j

)

for i = m + 1, . . . , n − 1, andc∗
i = 0 for i = 1, 2, . . . , m.

The characterization of WCO then follows:

r(θ−i) =

n−1∑

j=1

c∗
j [θ−i]j =

n−1∑

j=m+1

c∗
j [θ−i]j

Worst-Case Optimal Redistribution in Multi-Unit Auctions with
Nonincreasing Marginal Values [7]: Multi-unit auctions with non-

2[7] showed that for multi-unit auctions with unit demand, when
m = n − 1, the worst-case redistribution fraction (of any feasi-
ble VCG redistribution mechanism) is at most0. Since the setting
studied in this paper is more general (heterogeneous-item auctions
with unit demand), we also have that the worst-case redistribution
fraction is at most0 whenm = n − 1. Since heterogeneous-item
auctions withx units are special cases of heterogeneous-item auc-
tions withx + 1 units, we have that for our setting the worst-case
redistribution fraction is at most0 whenm ≥ n − 1. That is, not
redistributing anything is worst-case optimal whenm ≥ n − 1.
3WCO has also been independently derived in [12], under a slightly
different objective of maximizing worst-case efficiency ratio. Also,
for [12]’s objective, the optimal mechanism coincides with WCO
only when the individual rationality constraint is enforced.
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increasing marginal values are more general than multi-unit auc-
tions with unit demand. In this more general setting, the items are
still identical, but an agent may demand more than one copy of the
item. An agent’s valuation for winning the first copy of the item
is called her initial/first marginal value. Similarly, an agent’s addi-
tional valuation for winning thei-th copy of the item is called her
i-th marginal value. An agent’s type containsm nonnegative real
numbers (i-th marginal value fori = 1, . . . , m). In this setting, it
is further assumed that the marginal values are nonincreasing.

As discussed earlier, in this more general setting, any VCG re-
distribution mechanism’s worst-case redistribution fraction is still
bounded above byα∗. [7] generalized WCO to this setting, and
proved that its worst-case redistribution fraction remains the same.
Therefore, WCO (after generalization) is also worst-case optimal
for multi-unit auctions with nonincreasing marginal values.

The original definition of WCO does not directly generalize to
multi-unit auctions with nonincreasing marginal values. When it
comes to multi-unit auctions with nonincreasing marginal values,
an agent’s type is no longer a single value, which means that there is
no such thing as “thej-th highest type amongθ−i”. To address this,
[7] replaced[θ−i]j by 1

m
R(θ−i, j−m−1) for j = m+1, . . . , n−

1. Basically,R(θ−i, j − m − 1) is the generalization of[θ−i]j :
it is identical to[θ−i]j in the unit demand setting, and it remains
well-defined for multi-unit auctions with nonincreasing marginal
values. We abuse notation by not differentiating the agents and
their types. For example,θ−i is equivalent to the set of agents
other thani. Let S be a set of agents.R(S, i) is formally defined
as follows (this definition is included for completeness; we will not
use it anywhere):

• R(S, 0) = V CG(S) (the total VCG payment when only
those inS participate in the auction).

• Fori = 1, . . . , |S|−m−1, R(S, i) = 1
m+i

∑m+i
j=1 R(U(S, j),

i − 1). Here,U(S, j) is the new set of agents, after remov-
ing the agent with thej-th highest initial marginal value inS
from S.

The general form of WCO is as follows:

r(θ−i) =
1

m

n−1∑

j=m+1

c∗
j R(θ−i, j − m − 1)

Worst-Case Optimal Redistribution in Heterogeneous-Item Auc-
tions with Unit Demand [4]: In heterogeneous-item auctions with
unit demand, the items for sale are different. Each agent demands
at most one item. Here, an agent’s type consists ofm nonnegative
real numbers (her valuation for winning itemi for i = 1, . . . , m).
Heterogeneous-item auctions with unit demand is the main focus
of this paper.

Since heterogeneous-item auctions with unit demand is more
general than multi-unit auctions with unit demand,α∗ is still an
upper bound on the worst-case redistribution fraction. [4] proposed
the HETERO mechanism, by generalizing WCO. The authorscon-
jecturedthat HETERO is feasible and has a worst-case redistribu-
tion fraction that equalsα∗. That is, the authors conjectured that
HETERO is worst-case optimal in this setting. The main contribu-
tion of this paper is a proof of this conjecture.

Redistribution in Combinatorial Auctions with Gross Substi-
tutes [6]: The gross substitutes condition was first proposed in [9].
Like unit demand, the gross substitutes condition is a condition on
an agent’s type (does not depend on the mechanism under discus-
sion). In words, an agent’s type satisfies the gross substitutes con-
dition if her demand for an item does not decrease when the prices

of the other items increase. Both multi-unit auctions with non-
increasing marginal values and heterogeneous-item auctions with
unit demand are special cases of combinatorial auctions with gross
substitutes [5, 9]. [6] showed that for this setting, the worst-case
redistribution fraction of the Bailey-Cavallo mechanism [2, 3] is
exactly n−m−1

n
(whenn ≥ m + 1), and it is possible to construct

mechanisms with even higher worst-case redistribution fractions.
The authors did not find a worst-case optimal mechanism for this
setting. At the end of this paper, we conjecture that HETERO is
optimal for combinatorial auctions with gross substitutes.

Finally, Naroditskiyet al. [13] proposed a numerical technique for
designing worst-case optimal redistribution mechanisms. The pro-
posed technique only works for single-parameter domains. It does
not apply to our setting (multi-parameter domain).

1.3 Our contribution
We generalize WCO to heterogeneous-item auctions with unit

demand. We prove that the generalized mechanism, though rep-
resented differently, coincides with the HETERO mechanism pro-
posed in [4]. That is, what we proposed is not a new mechanism,
but a new representation of an existing mechanism. Based on our
new representation of HETERO, we prove that HETERO is indeed
feasible and worst-case optimal when applied to heterogeneous-
item auctions with unit demand, thus confirming the conjecture
raised in [4]. We conclude with a new conjecture that HETERO
remains feasible and worst-case optimal in the even more general
setting of combinatorial auctions with gross substitutes.

2. NEW REPRESENTATION OF HETERO
We recall that WCO was obtained by optimizing within the fam-

ily of linear VCG redistribution mechanisms. The original repre-
sentation of HETERO was obtained using a similar approach [4].
The authors focused on the following family of mechanisms:

r(θ−i) =

n−m−1∑

j=1

βjt(θ−i, j − 1)

Here, theβi are constants.t(S, j) is the expectedtotal VCG
payment when we removej agents uniformly at random fromS,
and allocate all the items to the remaining agents. It is easy to see
that all member mechanisms of the above family are well-defined
for general combinatorial auctions. Not every member mechanism
is feasible though.

[4] did not attempt optimizing over the family. Instead, theβi

are chosen so that the corresponding mechanism coincides with
WCO when it comes to multi-unit auctions with unit demand. It
turns out that the choice isunique, and the corresponding mecha-
nism is called HETERO. [4]conjecturedthat HETERO is feasible
and worst-case optimal for heterogeneous-item auctions with unit
demand.

In this section, we propose another way to generalize WCO. We
will show that the generalized WCO actually coincides with HET-
ERO. That is, what we derive is a new representation of HETERO.
This new representation will prove itself useful in later discussions.

We recall that the characterization of WCO for multi-unit auc-
tions with nonincreasing marginal values is based on a series of
functionsR(S, i). These functions do not directly generalize to set-
tings involving heterogeneous items, because, fori > 0, R(S, i) is
defined explicitly based on the agents’ initial marginal values. For-
tunately, there is an easy way to rewriteR(S, i), so that it becomes
well-defined for settings involving heterogeneous items.
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[7] proved that for0 ≤ j ≤ |S| − m − 2,
∑

a∈S

R(S−a, j) = (|S|−m−1−j)R(S, j)+(m+1+j)R(S, j+1)

(1)
Based on Equation 1, WCO can be rewritten into the following

form (the only changes are that fori > 0, R(S, i)’s definition no
longer mentions “initial marginal values”):

Definition 1. Heterogeneous WCO (new representation of HET-
ERO):

r(θ−i) =
1

m

n−1∑

j=m+1

c∗
j R(θ−i, j − m − 1)

• R(S, 0) = V CG(S)

• For i = 1, . . . , |S| − m − 1, R(S, i) equals:

1

m + i

(∑

a∈S

R(S − a, i − 1) − (|S| − m − i)R(S, i − 1)

)

Heterogeneous WCO is well-defined for general combinatorial
auctions, so we can directly apply it to heterogeneous-item auctions
with unit demand. Of course, we still have the burden to prove that
it remains feasible and worst-case optimal. We will do so in the
next section.

Heterogeneous WCO is not a new mechanism. It turns out that it
coincides with HETERO for general combinatorial auctions. That
is, Definition 1 is a new representation of the existing mechanism
HETERO.

PROPOSITION 1. Heterogeneous WCO coincides with HETERO
for general combinatorial auctions.

Proof omitted since it is based on pure algebraic manipulation.

3. FEASIBILITY AND WORST-CASE
OPTIMALITY OF HETERO

In this section, we prove that HETERO, as represented in Defi-
nition 1, is feasible and worst-case optimal for heterogeneous-item
auctions with unit demand.

We first define theredistribution monotonicitycondition:

Definition 2. An auction setting satisfiesredistribution mono-
tonicity if for any set of agentsS, we have that

R(S, 0) ≥ R(S, 1) ≥ . . . ≥ R(S, |S| − m − 1) ≥ 0

R was defined in Definition 1. That is,R(S, 0) = V CG(S),
and fori = 1, . . . , |S| − m − 1, R(S, i) equals

1

m + i

(∑

a∈S

R(S − a, i − 1) − (|S| − m − i)R(S, i − 1)

)
.

For example, the setting of single-item auctions satisfies redistri-
bution monotonicity. In a single-item auction,R(S, 0) = V CG(S) =
[S]2 ([S]i is thei-th highest type from the agents inS).

R(S, 1) =
1

2

(∑

a∈S

R(S − a, 0) − (|S| − 2)R(S, 0)

)

=
1

2
(2[S]3 + (|S| − 2)[S]2 − (|S| − 2)[S]2) = [S]3.

Similarly,R(S, 2) = [S]4, R(S, 3) = [S]5, . . . , and finallyR(S, |S|−
m − 1) = R(S, |S| − 2) = [S]|S| (lowest type from the agents in
S). It is clear that redistribution monotonicity holds here.

More generally, redistribution monotonicity holds for multi-unit
auctions with nonincreasing marginal values: Claim17 of [7] proved
thatR(S, i) is nonincreasing ini for multi-unit auctions with non-
increasing marginal values;R(S, i)’s original definition as described
in Subsection 1.2 makes it clear that theR(S, i) are nonnegative.

The following proposition greatly simplifies our task:

PROPOSITION 2. If the setting satisfies redistribution monotonic-
ity, then HETERO is feasible (strategy-proof, efficient, individually
rational, and non-deficit), and its worst-case redistribution fraction
is at leastα∗. If the setting is also more general than multi-unit
auctions with unit demand, then HETERO is worst-case optimal.

PROOF. We first prove that HETERO is feasible given redistri-
bution monotonicity. According to Definition 1, under HETERO,
an agent’s redistribution does not depend on her own type. That
is, HETERO is strategy-proof and efficient in all settings. We only
need to prove that HETERO is individually rational and non-deficit
given redistribution monotonicity.

Individual rationality: As discussed in Subsection 1.1, individ-
ual rationality is equivalent to redistributions being nonnegative.
We recall that for multi-unit auctions with unit demand, under WCO,
agenti’s redistribution equals

r(θ−i) =

n−1∑

j=m+1

c∗
j [θ−i]j

WCO is known to be individually rational. That is, for allθ−i,

n−1∑

j=m+1

c∗
j [θ−i]j ≥ 0

This is equivalent to for allx0 ≥ . . . ≥ xn−m−2 ≥ 0,

n−1∑

j=m+1

c∗
j xj−m−1 ≥ 0 (2)

Under HETERO, agenti’s redistribution equals

1

m

n−1∑

j=m+1

c∗
j R(θ−i, j − m − 1) (3)

Redistribution monotonicity implies that

R(θ−i, 0) ≥ R(θ−i, 1) ≥ . . . ≥ R(θ−i, n − m − 2) ≥ 0 (4)

Based on (2) and (4) (substitutingR(θ−i, j) for xj for all j), we
have that (3) is nonnegative. Therefore, redistribution monotonicity
implies individual rationality.

Non-deficit and worst-case optimality:For multi-unit auctions
with unit demand, under WCO, the total VCG payment ismθm+1.
The total redistribution is

n∑

i=1

n−1∑

j=m+1

c∗
j [θ−i]j =

n−1∑

j=m+1

c∗
j

n∑

i=1

[θ−i]j

=

n−1∑

j=m+1

c∗
j (jθj+1 + (n − j)θj)

WCO is known to be non-deficit and have worst-case redistribu-
tion fractionα∗. That is, for allθm+1 ≥ . . . ≥ θn ≥ 0,

α∗mθm+1 ≤
n−1∑

j=m+1

c∗
j (jθj+1 + (n − j)θj) ≤ mθm+1
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That is, for allx0 ≥ x1 ≥ . . . ≥ xn−m−1 ≥ 0,

α∗mx0 ≤
n−1∑

j=m+1

c∗
j (jxj−m + (n − j)xj−m−1) ≤ mx0 (5)

Under HETERO, the total redistribution is

1

m

n∑

i=1

n−1∑

j=m+1

c∗
j R(θ−i, j − m − 1)

=
1

m

n−1∑

j=m+1

c∗
j (jR(~θ, j − m) + (n − j)R(~θ, j − m − 1)) (6)

The total VCG payment equalsV CG(~θ) = R(~θ, 0).
Redistribution monotonicity implies that

R(~θ, 0) ≥ R(~θ, 1) ≥ . . . ≥ R(~θ, n − m − 1) ≥ 0 (7)

Given (5) and (7) (substitutingR(~θ, j) for xj for all j), we have
that (6) is betweenα∗ times the total VCG payment and the total
VCG payment. Therefore, redistribution monotonicity implies the
non-deficit property and also worst-case optimality.

In the remaining of this section, we prove that heterogeneous-
item auctions with unit demand satisfies redistribution monotonic-
ity, which would then imply that HETERO is feasible and worst-
case optimal for heterogeneous-item auctions with unit demand.

We defineRj(S, i) by modifying the definition ofR(S, i) in
Definition 1.

• Rj(S, 0) = V CGj(S). V CGj(S) is the VCG price of item
j (the VCG payment from the agent winning itemj) when
we allocate all the items to the agents inS using VCG.

• For i = 1, . . . , |S| − m − 1, Rj(S, i) equals

1

m + i

(∑

a∈S

Rj(S − a, i − 1) − (|S| − m − i)Rj(S, i − 1)

)
.

PROPOSITION 3. For any set of agentsS, for i = 0, . . . , |S| −
m − 1, we have

m∑

j=1

Rj(S, i) = R(S, i)

PROOF. We prove by induction. Wheni = 0, by definition, for
anyS,

m∑

j=1

Rj(S, 0) = R(S, 0)

Now let us assume that for0 ≤ k < |S| − m − 1,

m∑

j=1

Rj(S, k) = R(S, k)

We have that
m∑

j=1

Rj(S, k + 1)

=
m∑

j=1

1

m + k + 1
(
∑

a∈S

Rj(S−a, k)−(|S|−m−k−1)Rj(S, k))

=
1

m + k + 1
(
∑

a∈S

R(S − a, k) − (|S| − m − k − 1)R(S, k))

= R(S, k + 1)

We want to prove that for heterogeneous-item auctions with unit
demand, the following redistribution monotonicity condition holds.

R(S, 0) ≥ R(S, 1) ≥ . . . ≥ R(S, |S| − m − 1) ≥ 0

By Proposition 3, it suffices to prove that for allj,

Rj(S, 0) ≥ Rj(S, 1) ≥ . . . ≥ Rj(S, |S| − m − 1) ≥ 0.

Without loss of generality, we will prove

R1(S, 0) ≥ R1(S, 1) ≥ . . . ≥ R1(S, |S| − m − 1) ≥ 0.

To prove the above inequality, we need the following definitions
and propositions.From now on to the end of this section, the setting
by default is heterogeneous-item auctions with unit demand, unless
specified.

We useE(T, S) to denote the efficient total valuation when we
allocate all the items inT to the agents inS.

PROPOSITION 4. Submodularity in both items and agents [14]:
For anyT1, T2, S, we have

E(T1, S) + E(T2, S) ≥ E(T1 ∪ T2, S) + E(T1 ∩ T2, S).

For anyT, S1, S2, we have

E(T, S1) + E(T, S2) ≥ E(T, S1 ∪ S2) + E(T, S2 ∩ S2).

[14] showed that the proposition is true when gross substitutes
condition holds. Heterogeneous-item auctions with unit demand
satisfies gross substitutes.

We use{1} ⊕ {1, . . . , m} to denote the item set that contains
not only item1 to m, but also an additional duplicate of item1.

PROPOSITION 5. LetS be any set of agents. Leta be the agent
who wins item1 when we allocate the items{1, . . . , m} to the
agents inS. We have thatE({1}⊕{1, . . . , m}, S) = E({1}, a)+
E({1, . . . , m}, S − a). That is, after we add an additional dupli-
cate of item1 to the auction, there exists an efficient allocation
under which agenta still wins item1.

The above proposition was proved in [11].

PROPOSITION 6. For any set of agentsS, for anya ∈ S, we
haveV CG1(S) ≥ V CG1(S − a). That is, the VCG price of item
1 is nondecreasing as the set of agents expands.

PROOF. Let w1 be the winner of item1 when we allocate the
items {1, . . . , m} to the agents inS using VCG.V CG1(S) =
E({1, . . . , m}, S − w1) − E({2, . . . , m}, S − w1). a could be
eitherw1 or some other agent. We discuss case by case.

Casea = w1: Let w′
1 be the new winner of item1 when we

allocate the items{1, . . . , m} to the agents inS − w1 using VCG.
V CG1(S−w1) = E({1, . . . , m}, S−w1−w′

1)−E({2, . . . , m},
S − w1 − w′

1). We need to prove thatE({1, . . . , m}, S − w1) −
E({2, . . . , m}, S − w1) ≥ E({1, . . . , m}, S − w1 − w′

1)
− E({2, . . . , m}, S − w1 − w′

1). We construct a new agentx. Let
x’s valuation for item1 be extremely high so that she wins item
1. The above inequality can be rewritten asE({1, . . . , m}, S −
w1)−E({2, . . . , m}, S−w1)−E({1}, x) ≥ E({1, . . . , m}, S−
w1 − w′

1) − E({2, . . . , m}, S − w1 − w′
1) − E({1}, x). This
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is, E({1, . . . , m}, S − w1) − E({1, . . . , m}, S − w1 + x) ≥
E({1, . . . , m}, S − w1 − w′

1) − E({1, . . . , m}, S − w1 − w′
1 +

x). We rearrange the terms, and getE({1, . . . , m}, S − w1) +
E({1, . . . , m}, S − w1 − w′

1 + x) ≥ E({1, . . . , m}, S − w1 +
x) + E({1, . . . , m}, S − w1 − w′

1). This inequality can be proved
based on Proposition 4.

Casea 6= w1: Let w′
1 be the new winner of item1 when we al-

locate all the items{1, . . . , m} to the agents inS − a using VCG.
V CG1(S−a) = E({1, . . . , m}, S−a−w′

1)−E({2, . . . , m}, S−
a − w′

1). We need to prove thatE({1, . . . , m}, S − w1)
− E({2, . . . , m}, S − w1) ≥ E({1, . . . , m}, S − a − w′

1) −
E({2, . . . , m}, S−a−w′

1). That is, we need to proveE({1, . . . , m},
S−w1)−E({2, . . . , m}, S−w1)−E({1}, w1)−E({1}, w′

1) ≥
E({1, . . . , m}, S − a − w′

1) − E({2, . . . , m}, S − a − w′
1) −

E({1}, w1) − E({1}, w′
1). We simplify and rearrange terms, and

getE({1, . . . , m}, S−w1)+E({1, . . . , m}, S−a)+E({1}, w1) ≥
E({1, . . . , m}, S) + E({1, . . . , m}, S − a − w′

1) + E({1}, w′
1).

Proposition 4 says thatE({1, . . . , m}, S−a)+E({1, . . . , m}, S−
w′

1) ≥ E({1, . . . , m}, S−a−w′
1)+E({1, . . . , m}, S). So it suf-

fices to proveE({1, . . . , m}, S−w1)+E({1}, w1) ≥ E({1, . . . , m},
S − w′

1) + E({1}, w′
1). By Proposition 5, the left-hand side is

E({1} ⊕ {1, . . . , m}, S). The right-hand side is at most this.

PROPOSITION 7. Winners still win after we remove some other
agents [4, 6]:4 For any set of agentsS and any set of itemsT , we
useW to denote the set of winners when we allocate the items in
T to the agents inS using VCG. After we remove some agents in
S, those inW that have not been removed remain to be winners,
provided that a consistent tie-breaking rule exists.

It should be noted that there may not exist a consistent tie-breaking
rule that satisfies the above proposition. Fortunately, we are able to
prove that tie-breaking is irrelevant for the goal of proving redistri-
bution monotonicity.

We say that a type profile istie-free if it satisfies the following:
Let T1 = {1} ⊕ {1, . . . , m}. Let T2 = {1, . . . , m}. Basically,
T1 andT2 are the only item sets that we will ever mention. A type
profile is tie-free if for any set of agentsS, when we allocate the
items in T1 (or T2) to S, the set of VCG winners is unique. If
we only consider tie-free type profiles, then we do not need to be
bothered by tie-breaking. We notice that the set of tie-free type
profiles is adensesubset of the set of all type profiles – any type
profile can be perturbed infinitesimally to become a tie-free type
profile.

Our ultimate goal is to prove that for any set of agentsS,

R(S, 0) ≥ R(S, 1) ≥ . . . ≥ R(S, |S| − m − 1) ≥ 0

We notice that theR(S, j) are continuous in the agents’ types.
Therefore, it suffices to prove the above inequality for tie-free type
profiles only.

From now on, we simply assume that the set of VCG winners is
always unique.

Definition 3. For any set of agentsS with |S| ≥ m+1, letD(S)
be the set ofm + 1 winners when we allocate{1} ⊕ {1, . . . , m}
to the agents inS. D(S) is called thedetermination setof S.

PROPOSITION 8. For any set of agentsS and anya ∈ S −
D(S), we haveV CG1(S) = V CG1(S −a) andD(S) = D(S −
a).

The above proposition says that for the purpose of calculating
item1’s VCG price, only those agents inD(S) are relevant.
4The proposition was originally introduced in [4]. A more rigorous
proof of a more general claim was also given in [6].

PROOF. D(S) is the set of VCG winners when we allocate{1}⊕
{1, . . . , m} to the agents inS. By Proposition 7, after removing
a ∈ S − D(S), every agent inD(S) should still win. That is,
D(S − a) = D(S).

Let w1 be the winner of item1 when we allocate{1, . . . , m}
to the agents inS. V CG1(S) = E({1, . . . , m}, S − w1) −
E({2, . . . , m}, S−w1) = E({1, . . . , m}, S−w1)+E({1}, w1)−
E({1, . . . , m}, S) = E({1}⊕{1, . . . , m}, S)−E({1, . . . , m}, S)
(the last step is due to Proposition 5). The first term only depends
on those inD(S). The second term also only depends on those in
D(S) for the following reason: LetS′ be the set of VCG winners
when we allocate{1, . . . , m} to the agents inS. The second term
only depends on those inS′. We introduce an agentx whose val-
uation for item1 is extremely high so that she wins item1. When
we allocate{1} ⊕ {1, . . . , m} to the agents inS + x, the set of
VCG winners are thenx + S′. D(S) are the new set of VCG win-
ners after we removex. By Proposition 7, those inS′ must still
remain inD(S). Overall,V CG1(S) only depends on those agents
in D(S). Similarly, V CG1(S − a) only depends on those agents
in D(S − a). Fora ∈ S − D(S), D(S) = D(S − a). Therefore,
we must haveV CG1(S) = V CG1(S − a).

Definition 4. Let S be any set of agents. Letk be any integer
from 1 to |S|. Let a1 ≺ a2 ≺ . . . ≺ ak be a sequence ofk distinct
agents inS. We say thesek agents form awinner sequence with
respect toS if

a1 ∈ D(S); a2 ∈ D(S − a1); a3 ∈ D(S − a1 − a2);

. . . ; ak ∈ D(S − a1 − . . . − ak−1).

Let S′ be a subset ofS of sizek. We say thatS′ forms a winner
sequence with respect toS if there exists an ordering of the agents
in S′ that forms a winner sequence with respect toS. WhenS′

forms a winner sequence with respect toS, we callS′ a size-|S′|
winner sequence setwith respect toS.

Let H(S′, S) = 1 if S′ forms a winner sequence with respect
to S, and letH(S′, S) = 0 otherwise. For presentation purpose,
we say that the empty set forms a winner sequence (of size0) with
respect to any setS. That is,H(∅, S) = 1.

Now we are ready to prove that heterogeneous-item auctions
with unit demand satisfies redistribution monotonicity. We recall
that it suffices to prove that for any set of agentsS,

R1(S, 0) ≥ R1(S, 1) ≥ . . . ≥ R1(S, |S| − m − 1) ≥ 0.

Here,R1(S, 0) = V CG1(S), and fori = 1, . . . , |S| − m − 1,
R1(S, i) equals

1

m + i

(∑

a∈S

R1(S − a, i − 1) − (|S| − m − i)R1(S, i − 1)

)
.

PROPOSITION 9. For any set of agentsS, R1(S, k) equals

1(
m+k

m

)
∑

S′⊂S
|S′|=k

H(S′,S)=1

V CG1(S − S′).

We have that

|{S′|S′ ⊂ S; |S′| = k; H(S′, S) = 1}| =

(
m + k

m

)
.

That is,R1(S, k) is the average ofV CG1(S − S′) for all S′ that
is a size-k winner sequence set with respect toS. For any set of
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agentsS (it should be noted that forR1(S, k) to be well-defined,
we need|S| ≥ k + m + 1), the total number of size-k winner
sequence sets with respect toS is

(
m+k

m

)
.

The following lemmas are needed for the proof of the above
proposition. All these lemmas are implications of “winners still
win after we remove some other agents”. The proofs are omitted
due to space constraints.

LEMMA 1. Let S be any set of agents. LetS′ be a subset ofS
that forms a winner sequence with respect toS. Leta be an arbi-
trary agent inS − S′. Then,S′ must also form a winner sequence
with respect toS − a.

LEMMA 2. Let S be any set of agents. Leta be an agent in
S. LetS′ be a subset ofS − a that forms a winner sequence with
respect toS − a. If we have thata /∈ D(S − S′), thenS′ also
forms a winner sequence with respect toS.

LEMMA 3. Let S be any set of agents. Leta be an agent in
S. LetS′ be a subset ofS − a that forms a winner sequence with
respect toS −a. We have that ifa ∈ D(S −S′), thenS′ +a forms
a (longer) winner sequence with respect toS.

LEMMA 4. Let S be any set of agents. LetS′ + a be a subset
of S that forms a winner sequence with respect toS. We must
have thatS′ forms a winner sequence with respect toS − a and
a ∈ D(S − S′).

Now we are ready to prove the proposition.

PROOF. We prove by induction.
Initial step: We haveR1(S, 0) = V CG1(S). Whenk = 0,

1(
m
m

)
∑

S′⊂S
|S′|=0

H(S′,S)=1

V CG1(S − S′) = V CG1(S − ∅) = V CG1(S)

Also, whenk = 0,

|{S′|S′ ⊂ S; |S′| = 0; H(S′, S) = 1}| = |{∅}| = 1 =

(
m + 0

m

)

Induction assumption:We assume that fork ≥ 0, for any S
(|S| ≥ k + m + 1), we have

R1(S, k) =
1(

m+k
m

)
∑

S′⊂S
|S′|=k

H(S′,S)=1

V CG1(S − S′)

Also, |{S′|S′ ⊂ S; |S′| = k; H(S′, S) = 1}| =
(

m+k
m

)
.

We need to prove that the results hold fork + 1. That is, for any
S (|S| ≥ k + m + 2),

R1(S, k + 1) =
1(

m+k+1
m

)
∑

S′⊂S
|S′|=k+1

H(S′,S)=1

V CG1(S − S′)

and|{S′|S′ ⊂ S; |S′| = k + 1; H(S′, S) = 1}| =
(

m+k+1
m

)
.

Induction proof:By definition,R1(S, k + 1) equals

1

m + k + 1

(∑

a∈S

R1(S − a, k) − (|S| − m − k − 1)R1(S, k)

)

(8)

Now let us analyze the expression
∑

a∈S R1(S − a, k). By in-
duction assumption, it can be rewritten as

1(
m+k

m

)
∑

a∈S

∑

S′⊂S−a
|S′|=k

H(S′,S−a)=1

V CG1(S − a − S′).

By induction assumption, the above expression is the sum of
|S|
(

m+k
m

)
terms. Each term corresponds to one choice ofa among

S and one choice ofS′ amongS − a. We divide these|S|
(

m+k
m

)

terms into two groups:
Group A, terms witha /∈ D(S − S′): By Lemma 2,S′ must

also form a winner sequence with respect toS. That is, there are
at most

(
m+k

k

)
choices ofS′. For each choice ofS′, there are at

most |S − S′ − D(S − S′)| = |S| − k − m − 1 choices ofa.
Overall, there are at most

(
m+k

k

)
(|S|−k −m− 1) terms in Group

A. On the other hand, for anyS′ that forms a winner sequence with
respect toS, S′ must also form a winner sequence with respect to
S − a by Lemma 1. For anya /∈ D(S − S′), there must be a
term in Group A that is characterized bya andS′. That is, there
are at least

(
m+k

k

)
(|S| − k − m − 1) terms in Group A. Hence,

there are exactly
(

m+k
k

)
(|S|−k −m−1) terms in Group A. Since

a /∈ D(S−S′), we have thatV CG1(S−a−S′) = V CG1(S−S′)
by Proposition 8. Therefore, the sum of all the terms in Group A
equals

1(
m+k

m

) (|S| − k − m − 1)
∑

S′⊂S
|S′|=k

H(S′,S)=1

V CG1(S − S′)

This is exactly|S| − k − m − 1 timesR1(S, k).
Group B, terms witha ∈ D(S−S′): There are exactly|S|

(
m+k

m

)
−

(|S|−k−m−1)
(

m+k
m

)
= (k+m+1)

(
m+k

m

)
= (k+m+1)!(k+1)

m!(k+1)!
=

(k + 1)
(

m+k+1
m

)
terms in Group B. LetX be the set of all size-

(k + 1) winner sequence sets with respect toS. According to
Lemma 3 and Lemma 4, every term in Group B must corresponds
to an element inX, and every element inX must correspond to ex-
actlyk + 1 terms in Group B (e.g.,a size-(k + 1) winner sequence
setY = {x1, . . . , xk+1} corresponds to the followingk+1 terms:
a = xi andS′ = Y − xi for all i). Therefore, the total number of
elements inX must be

(
m+k+1

m

)
.

The sum of the terms in Group B equals

k + 1(
m+k

m

)
∑

S′⊂S
|S′|=k+1

H(S′,S)=1

V CG1(S − S′)

Equation 8 can then be simplified as

1

m + k + 1

(∑

a∈S

R1(S − a, k) − (|S| − m − k − 1)R1(S, k)

)

=
1

m + k + 1




k + 1(
m+k

m

)
∑

S′⊂S
|S′|=k+1

H(S′,S)=1

V CG1(S − S′)
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=
1(

m+k+1
m

)
∑

S′⊂S
|S′|=k+1

H(S′,S)=1

V CG1(S − S′)

Proposition 9 implies that functionR1 is always nonnegative.
We still need to prove that

R1(S, 0) ≥ R1(S, 1) ≥ . . . ≥ R1(S, |S| − m − 1).

Due to space constraint, we only present an outline of the proof
of R1(S, 3) ≥ R1(S, 4), which highlights the main idea behind
the full proof.

PROPOSITION 10. R1(S, 3) ≥ R1(S, 4) for anyS. (We need
4 ≤ |S| − m − 1 for R1(S, 4) to be well-defined.)

Proof sketch:By definition,R1(S, 4) = 1
m+4

(
∑

a∈S R1(S −
a, 3)−(|S|−m−4)R1(S, 3)). To prove thatR1(S, 4) ≤ R1(S, 3),
it suffices to prove thatR1(S, 3) ≥ R1(S − a, 3) for anya ∈ S.

Let a be an arbitrary agent inS. According to Proposition 9, we
need to prove
∑

S′⊂S
|S′|=3

H(S′,S)=1

V CG1(S − S′) ≥
∑

S′⊂S−a
|S′|=3

H(S′,S−a)=1

V CG1(S − a − S′).

The proof is outlined as follows:

• On both sides of the inequality, there are
(

m+3
m

)
terms (Propo-

sition 9). Every term is characterized by a size-3 winner se-
quence setS′.

• For every term on the right-hand side, we map it to a corre-
sponding term on the left-hand side. The corresponding term
on the left-hand side is larger or the same.

• We prove that the mapping is injective. That is, different
terms on the right-hand side are mapped to different terms
on the left-hand side.

• Therefore, the left-hand side must be greater than or equal to
the right-hand side.

4. CONCLUSION
We conclude our paper with the following conjecture:

CONJECTURE 1. Gross substitutes implies redistribution mono-
tonicity. That is, HETERO remains feasible and worst-case optimal
in combinatorial auctions with gross substitutes.

The idea is that both multi-unit auctions with nonincreasing marginal
values and heterogeneous-item auctions with unit demand satisfy
redistribution monotonicity. A natural conjecture is that the “most
restrictive joint” of these two settings also satisfies redistribution
monotonicity. There are many well-studied auction settings that
contain both multi-unit auctions with nonincreasing marginal val-
ues and heterogeneous-item auctions with unit demand (a list of
which can be found in [10]). Among these well-studied settings,
combinatorial auctions with gross substitutes is the most restric-
tive. To prove the conjecture, we need to prove that gross substi-
tutes implies that for any set of agentsS, R(S, 0) ≥ R(S, 1) ≥
. . . ≥ R(S, |S| − m − 1) ≥ 0. So far, we have only proved
R(S, 0) ≥ R(S, 1) ≥ 0.
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APPENDIX
PROPOSITION 11. LetM be a feasible VCG redistribution mech-

anism that is possibly not anonymous. LetαM be the worst-case re-
distribution fraction ofM . If the agents’ type spaces are identical,
then there exists an anonymous feasible VCG redistribution mech-
anism, whose worst-case redistribution fraction is at leastαM .

Proof sketch: M can be anonymized using the technique de-
scribed in Section3 of [1]. The resulting mechanism is anonymous,
feasible, and its worst-case redistribution fraction is at leastαM .
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ABSTRACT
In real electronic markets, each bidder arrives and departs
over time. Thus, such a mechanism that must make deci-
sions dynamically without knowledge of the future is called
an online mechanism. In an online mechanism, it is very
unlikely that the mechanism designer knows the number
of bidders beforehand or can verify the identity of all of
them. Thus, a bidder can easily submit multiple bids (false-
name bids) using different identifiers (e.g., different e-mail
addresses). In this paper, we formalize false-name manipu-
lations in online mechanisms and identify a simple property
called (value, time, identifier)-monotonicity that character-
izes the allocation rules of false-name-proof online auction
mechanisms. To the best of our knowledge, this is the first
work on false-name-proof online mechanisms. Furthermore,
we develop a new false-name-proof online auction mecha-
nism for k identical items. When k = 1, this mechanism
corresponds to the optimal stopping rule of the secretary
problem where the number of candidates is unknown. We
show that the competitive ratio of this mechanism for effi-
ciency is 4 and independent from k by assuming that only
the distribution of bidders’ arrival times is known and that
the bidders are impatient.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multi-agent systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Auctions, mechanism design, game theory, online algorithms

1. INTRODUCTION
Auctions have become an integral part of electronic com-

merce and a promising application field of game theory and
mechanism design theory. Traditionally, mechanism design

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of auctions has mainly considered static (offline) environ-
ments where all bidders arrive and depart simultaneously
and the mechanism makes a decision only one time. In
real electronic markets, however, each bidder may arrive
and depart over time, so a mechanism must make deci-
sions dynamically without knowledge of the future. This
uncertainty often makes traditional works inapplicable to
such online environments. Therefore, designing mechanisms
for dynamic environments (i.e., online mechanism design)
has lately attracted considerable attention in the algorith-
mic game-theory field [14].

One desirable characteristic of a mechanism is strategy-
proofness. A mechanism is strategy-proof if for each bid-
der, truthfully reporting her type (private information) is a
dominant strategy. Unlike traditional mechanism design en-
vironments, in online mechanisms, the private information
of each bidder consists not only of his valuation but also
of her arrival/departure times, and bidders can misreport
them to maximize their utility. For these reasons, design-
ing a strategy-proof mechanism is much more challenging in
online environments than in traditional static environments.

Designing a strategy-proof online mechanism is strongly
connected to the optimal stopping theory, in particular, the
secretary problem. In fact, from the perspective of this the-
ory, Hajiaghayi et al. [9] developed an online mechanism for
a single item where an auction with a single item is held
in finite periods. Hereafter, we refer to it as Mechanism 1.
Consider there are n bidders. Each bidder i ∈ N values the
item at ri and stays in the auction at interval [ai, di].

Mechanism 1. Let n denote the number of bidders and
a∗ be the arrival time of bn/ec-th bidder, where e is the base
of the natural logarithm.

1. (learning phase): At period a∗, let r(1), r(2) be the first
and second highest bidding values received so far.

2. (transition): If a bidder whose bidding value is r(1)

remains present at period a∗, then sell an item to that
bidder (breaking ties deterministically, e.g., based on
the lexicographic order of the identifiers) at price r(2).

3. (accepting phase): Otherwise, sell an item to the next
bidder whose bidding value is at least r(1) (breaking ties
deterministically) at price r(1).

Mechanism 1 is strategy-proof assuming no bidder can be
present longer than her true stay. A winner cannot decrease
her payment by making her stay shorter or by misreporting
her valuation. A loser cannot win unless she pays more than
her true valuation or stays longer.
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Table 1: False-name-proofness fails in Mechanism 1.
ai, di, and ri indicate arrival period, departure pe-
riod, and the valuation of bidder i.

ai di ri ai di ri

bidder 1 1 3 6 bidder 4 (later) 7
bidder 2 4 5 2 bidder 5 (later) 4
bidder 3 4 4 8 bidder 6 (later) 1

However, untruthfully declaring private information is only
one way to manipulate the outcome. Another way is for one
bidder to pretend to be multiple bidders. Such false-name
bids [16], i.e., bids submitted under fictitious names such
as multiple e-mail addresses, are especially feasible in Inter-
net auctions due to their relative anonymity. Unfortunately,
Mechanism 1 is not false-name-proof; a bidder can profit by
pretending to be multiple bidders.

Example 1. Consider a single item online auction with
six bidders, each of whom has a preference, as shown in Ta-
ble 1. Since n = 6, the mechanism waits for the second
bidder (b6/ec = 2). When each bidder reports truthfully,
the item is not sold until arrival period 4 of bidder 2. In
this case, bidder 1 cannot win even if her bidding value is
very high, because she is not present when the winner is de-
termined. Next, consider the case when bidder 1 uses two
identifiers, 1′ and 1′′. Identifier 1′ keeps her bid, and iden-
tifier 1′′ reports (2, 2, ε). In this case, the transition to the
accepting phase occurs after b7/ec = 2 bids. Bidder 1 wins
at period 2 and pays ε.

The example shows that false-name bids are profitable for
bidder 1. In fact, bidder 1 can also win if she once departs
from the auction at period 2 and arrives again at period 3
using another identifier 1′′.

Furthermore, in such environments where bidders can use
multiple identifiers, the number of participating bidders (iden-
tifiers) n depends on the strategies of the bidders. This
means that a mechanism cannot observe correct informa-
tion about the number of participating bidders; it can only
observe the number of identifiers used by the bidders. Thus,
it is impractical to design an online mechanism that is based
on the fact that the mechanism knows the number of par-
ticipating identifiers n in advance. This difficulty was also
pointed out by [10].

Readers might think that if a market can use some per-
sonal identification method (e.g., checking the participant’s
credit card number or social security number), the problem
resulting from false-name bids disappears. Introducing such
a method can indeed slightly increase the cost of using false-
name bids, but it cannot completely solve the problem. A
person can ask his/her family, friends, or employers to sub-
mit bids on her/his behalf. False-name manipulations can be
considered as a very restricted subclass of collusions, where
a person can only collude with other participants when they
were initially not interested in participating in the mecha-
nism, but they agree to work on behalf of the person by
obtaining a small side-payment. Such manipulations cannot
be prevented by a simple personal identification method.
Conitzer and Yokoo [4] provided a more detailed discussion
why false-name-proof mechanisms matter.

Our Results.
To the best of our knowledge, this is the first work that

deals with false-name manipulations in online mechanisms.
This paper formalizes false-name manipulations in online
mechanisms and proposes a simple property called (value,
time, identifier)-monotonicity, which characterizes false-name-
proof online auction mechanisms in single-valued domains.
Then it introduces two non-trivial false-name-proof mecha-
nisms for k identical items. Furthermore, the competitive
analysis revealed that for sufficiently large k, one of them is
4-competitive for efficiency by introducing a different adver-
sarial model from the traditional one under the assumption
that all bidders are impatient. We assume here that a mech-
anism has no information about the number of bidders; it
does know the distribution of their arrival times, since it is
quite natural that their real number is unknown and unpre-
dictable in situations where false-name bids are possible.

Related Work.
Lavi and Nisan [12] was the first work on mechanism

design of auctions in dynamic environments. Hajiaghayi
et al. [9] proposed a strategy-proof online mechanism in
limited-supply environments, based on the optimal stopping
rule of the secretary problem. Hajiaghayi et al. [8] proposed
a strategy-proof online mechanism for selling expiring items.
In Hajiaghayi et al. [10], a technique called automated mech-
anism design was applied to construct online auction mecha-
nisms. Furthermore, Parkes [14] showed that the revelation
principle can fail in online mechanisms when the no-early
arrival, no-late departure property does not hold. Gerding
et al. [5] introduced two procedures for item burning into
online mechanisms to achieve truthfulness.

Yokoo et al. [16] pointed out the effects of false-name
manipulations in combinatorial auctions and showed that
even the Vickrey-Clarke-Groves (VCG) mechanism is vul-
nerable against false-name manipulations. Besides combi-
natorial auctions, the notion of false-name-proofness have
been discussed in other application fields of game theory,
such as resource allocation [7] and coalitional games [1].

Myerson [13] proposed the monotonicity property of al-
location rules, which characterizes strategy-proof auction
mechanisms in single-parameter settings. Bikhchandani et
al. [2] extended the property to such multi-dimensional set-
tings as combinatorial auctions and proposed a property
called weak-monotonicity that characterizes strategy-proof
mechanisms. Todo et al. [15] proposed the sub-additivity
property as a full characterization of false-name-proof com-
binatorial auction mechanisms. For online auction mech-
anisms, Hajiaghayi et al. [8] and Parkes [14] introduced a
property called monotonicity 1 and showed that it charac-
terizes strategy-proof online auction mechanisms.

2. PRELIMINARIES
Let N = {1, 2, . . . n} denote a set of bidders and T =

{1, . . . , T} a set of finite and discrete time periods in which
an auction is held. Each bidder i ∈ N has private informa-
tion, or a type, θi = (ai, di, ri) drawn from Θi. The type of
bidder defines its value for the allocations of an online mech-
anism. Θi is a type space, or a domain of types, defined as

1To distinguish this property from the original monotonicity
introduced by Myerson [13], we refer to it as (value, time)-
monotonicity.
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Θi = T × T × R≥0. Let ai and di be arrival and departure
times. In the interval of ai and di, a bidder has a valuation
ri on the auctioned item. Define x = (x1, . . . , xT ) ∈ X as a
possible allocation in a mechanism. Each xt = (xt

1, . . . , x
t
n)

represents the allocation at period t ∈ T, where xt
i is the

allocation to bidder i at period t; if bidder i is allocated an
item at period t, then xt

i = 1 holds; otherwise xt
i = 0. We

represent the gross utility of bidder i whose type is θi for an
allocation x as v(θi, x).

We restrict the domain of types Θi to single-valued do-
mains [14], in which each θi ∈ Θi is defined as a triple
(ai, di, ri), where the gross utility of bidder i whose type
is θi is defined as follows:

v(θi, x) =



ri if xt
i = 1 holds for some t ∈ [ai, di]

0 otherwise.

We also assume a quasi-linear utility; the net utility of bidder
i who obtains at least one item during her stay and pays p
is represented as v(θi, x) − p = ri − p.

An online mechanism M(f, p) consists of an allocation
rule f and a payment rule p. An allocation rule f is defined
as f = {f t|t ∈ T}. Here, θ = (θ1, . . . , θn) denotes a type
profile reported by a set of bidders N , and Θ = ×i∈NΘi

denotes a set of possible type profiles. Each f t : Θ → {0, 1}n

is a mapping from a set of reported type profiles to a set of
possible allocations. Let fi(θi, θ−i) denote the allocation to
bidder i where θi is the declared type of bidder i and θ−i is
the declared type profile of other bidders. A payment rule
p is defined as p = (p1, . . . , pn). Each pi : Θ → R≥0 is a
mapping from a set of type profiles to a set of non-negative
real numbers. Notice that bidder i’s reported type θ′

i =
(a′

i.d
′
i, r

′
i) is not necessarily the same as her true type θi =

(ai, di, ri). However, we assume no bidder can be present
longer than her true stay, i.e., the no-early arrival, no-late
departure property holds; a reported type θ′

i satisfies a′
i ≥ ai

and d′
i ≤ di.

In this paper, we restrict our attention to direct-revelation,
deterministic online mechanisms. Also, we assume that a
mechanism is almost anonymous and individually rational.
A mechanism is almost anonymous if the obtained results
are invariant under the permutation of identifiers, except
for ties where several bidders have an identical type but
their allocations are different (e.g., only one winner). We
assume the net utilities of bidders involved in tie-breaking
must be the same. Individual rationality means that no
participant suffers any loss in a dominant strategy equilib-
rium; i.e., the payment never exceeds the gross utility of the
allocated items. Thus, a mechanism does not collect any
payment from losers.

Now, let us define strategy-proofness.

Definition 1 (Strategy-proofness). An online mech-
anism M(f, p) is strategy-proof if ∀i, θ−i, θi, θ

′
i,

v(θi, fi(θi, θ−i))−pi(θi, θ−i) ≥ v(θi, fi(θ
′
i, θ−i))−pi(θ

′
i, θ−i).

A strategy-proof allocation rule is fully characterized by
a simple property called (value, time)-monotonicity in the
single-valued domain [8]. To define the monotonicity prop-
erty, let us first introduce a concept of critical value, which
plays an important role for guaranteeing strategy-proofness.
In words, a critical value cv is the minimal (threshold) value
for a bidder to be a winner.

cv(ai, di, θ−i) =



inf ri s.t. fi((ai, di, ri), θ−i) = 1
∞, if no such ri exists.

(1)

Definition 2 ((value, time)-monotonicity). An al-
location rule f is (value, time)-monotonic if ∀i, θ−i, θi =
(ai, di, ri), θ′

i = (a′
i, d

′
i, r

′
i), the following condition holds:

if fi(θ
′
i, θ−i) = 1 ∧ r′

i > cv(a′
i, d

′
i, θ−i)

∧ ai ≤ a′
i ≤ d′

i ≤ di ∧ ri ≥ r′
i

then fi(θi, θ−i) = 1.

Note that the condition r′
i > cv(a′

i, d
′
i, θ−i) is necessary to

prevent inconsistent allocations due to tie-breaking, e.g.,
bidder i and j have the same type. If valuation ri is strictly
greater than r′

i, we do not need this condition.
Hajiaghayi et al. [8] proved that if and only if an allocation

rule is (value, time)-monotonic, we can find an appropriate
payment rule that truthfully implements it in a dominant
strategy equilibrium. In addition, it is straightforward to
derive such an appropriate payment rule so that an online
mechanism M(f, p) is strategy-proof:

pi(θi, θ−i) =



cv(ai, di, θ−i), if fi(θi, θ−i) = 1
0, otherwise.

When bidder i reports a shorter stay, her payment does not
decrease, since bidder i’s critical value does not decrease if
an allocation rule is (value, time)-monotonic.

In this paper, we focus on a worst-case analysis (compet-
itive analysis) to consider the performance of mechanisms.
Such analysis is commonly used in recent mechanism de-
sign literature, especially by computer scientists. Let us de-
fine the competitive ratios for efficiency and revenue. Here,
z ∈ Z denotes the set of inputs available to the adversary
and θz the corresponding type profile.

Definition 3 (Competitive Ratio for Efficiency).
An online mechanism M(f, p) is c-competitive for efficiency
if for some constant c,

min
z∈Z

E{Val(f(θz))/V ∗(θz)} ≥ 1/c.

For efficiency, Val(f(θz)) indicates the social surplus of the
decision made by an allocation rule f given input θz. V ∗(θz)
indicates the surplus of the best possible allocation obtained
by an offline mechanism. This expectation is taken with
respect to the random choice derived from the model of an
adversary.

Definition 4 (Competitive Ratio for Revenue). An
online mechanism M(X, p) is c-competitive for revenue if
for some constant c,

min
z∈Z

E{Rev(p(θz))/R∗(θz)} ≥ 1/c.

For revenue, R∗(θz) indicates the revenue achieved by F (2,k)

auction with k items [6]. The revenue as a benchmark is used
in [8]. Here, if k ≥ 2, R∗(θz) = max2≤m≤k m · r(m), where
r(m) denotes the m-th highest value among all bidders. If
k = 1, we use VCG revenue of r(2) as the benchmark.

Next, we introduce several notations for discussing false-
name-proofness in online auction mechanisms. Let φi denote
the set of identifiers owned by bidder i. Let N denote a set
of identifiers, i.e., N =

S

i∈N φi, where N denotes a set of
real bidders. Let us re-define θ as the type profile reported
by all identifiers. Here, 0 indicates that the identifier is
not used by its owner. Furthermore, let θφi denote a type
profile reported by a set of identifiers φi and θ−φi a type
profile reported by identifiers except for φi. Using these
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notations, the allocation to an identifier j when the set of
identifiers φi reports θφi and the other identifiers reports
θ−φi is represented as fj(θφi , θ−φi).

Definition 5 (False-name-proofness). An online mech-
anism M(f, p) is false-name-proof if ∀i, φi, θ−φi , θi, θφi ,
the following inequality holds:

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
≥ v(θi,

P

j∈φi
fj(θφi , θ−φi)) − P

j∈φi
pj(θφi , θ−φi)

A mechanism is false-name-proof if it is a dominant strat-
egy for each bidder to report her true type using a single
identifier (although the bidder can use multiple identifiers).
When |φi| = 1, this definition is identical to Definition 1.

3. CHARACTERIZATION OF FALSE-NAME-
PROOFNESS

In this section, we propose a simple property called (value,
time, identifier)-monotonicity that characterizes false-name-
proof allocation rules in online auction mechanisms.

Definition 6 ((value, time, identifier)-monotonicity).
An allocation rule f is (value, time, identifier)-monotonic if
for any i, φi, θi, θ−φi , θφi , the following holds:

if ∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥ P

j′∈φi:j′ wins rj′

then fi((θi,0, . . . ,0), θ−φi) = 1.
(2)

Note that θφi\{j′} denote the type profile by the set of
identifiers φi \ {j′}. Thus, cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi) indi-
cates the critical value of a bidder that stays [aj′ , dj′ ] when
the other identifiers reports θφi\{j′} ∪ θ−φi .

Now let us provide an illustrative example of an allocation
rule that satisfies Def. 6. Assume that the set of identifiers φi

surrounded by the dashed rectangle in Fig. 1 (a) is owned by
bidder i and that the identifier j′ with value rj′ wins an item.
If θφi in Fig. 1 (a) is replaced by one type θi = (ai, di, rj′ +ε)
in Fig. 1 (b), then the allocation rule that satisfies (value,
time, identifier)-monotonicity must choose θi as a winner, as
long as θi satisfies the following conditions: (i) the interval
[ai, di] includes [aj , dj ] for all j ∈ φi, (ii) the value rj′ + ε
exceeds the winner’s value rj′ .

Intuitively, in the inequality ri ≥ P

j′∈φi:j′ wins rj′ in Def. 6,
each term rj′ on the right-hand side corresponds to a pay-
ment of each winning identifier j′ that may be owned by i.
To avoid false-name manipulations, bidder i with value ri

that exceeds the sum of rj′ must win an item. Otherwise,
bidder i has an incentive to manipulate using the set of iden-
tifiers φi. We remark that this property is inspired by two
characterizations: (value, time)-monotonicity by Hajiaghayi
et al. and sub-additivity by Todo et al. In fact, the prop-
erty becomes equivalent to (value, time)-monotonicity when
|φi| = 1 for all i and to sub-additivity when T = 1, i.e., in
offline auction settings.

Before showing our characterization theorem, let us pro-
vide the following lemma:

Lemma 1. Given an allocation rule that satisfies (value,
time, identifier)-monotonicity, the critical value of bidder i
is independent of her valuation ri and weakly increasing in
shorter stay and more identifiers.

Proof. In Parkes [14], it was shown that the critical
value is weakly increasing in shorter stay. Then we can show
that the critical value is weakly increasing in a larger number
of rivals. Now assume that there exists an additional iden-
tifier θi′ = (ai′ , di′ , ri′) such that ai ≤ ai′ ≤ di′ ≤ di and
cv(ai, di, θ−i) > cv(ai, di, θ−i∪θi′) to derive a contradiction.

Here, modify the valuation of type θi such that ri =
cv(ai, di, θ−i ∪θi′). Then, from the definition of cv when the
other bidders (identifiers) report θ−i ∪ θi′ , fi(θi, θ−i ∪ θi′) =
1. Also, from the definition of cv when the other bidders
(identifiers) report θ−i, fi(θi, θ−i) = 0. Thus, by setting
θφi = {θi, θi′}, θ−φi = θ−i and θj′ = θi, we have

∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥ P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0,

which violates (value, time, identifier)-monotonicity.

Theorem 1. On a single-valued domain, there always ex-
ists an appropriate payment rule p so that an online mecha-
nism M(f, p) is false-name-proof if and only if the allocation
rule f satisfies (value, time, identifier)-monotonicity.

Proof. (only if part) We first prove that if an on-
line mechanism M(f, p) is false-name-proof, then the allo-
cation rule f satisfies (value, time, identifier)-monotonicity.
Parkes [14] proved that if M is strategy-proof, then f satis-
fies (value, time)-monotonicity. Since the definition of false-
name-proofness is a generalization of strategy-proofness, if
M is false-name-proof, then it is also strategy-proof. Thus,
we can assume that f satisfies (value, time)-monotonicity
and that p is determined based on the critical values in Eq. 1.

We derive a contradiction by assuming that the allocation
rule f does not satisfy (value, time, identifier)-monotonicity.
More specifically, we assume for bidder i (with type θi), who
owns the set of identifiers φi, the following condition holds:

∃j′ ∈ φi s.t.,
`

fj′(θφi , θ−φi) = 1 ∧ rj′ > cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi)
´

∧
`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥ P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0.
(3)

When Eq. 3 holds, bidder i with type θi cannot win the
item by truthfully reporting her type. Thus,

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi) = 0.

Also, Eq. 3 implies that if bidder i reports θφi using false
identifiers, she wins at least one item. Note that since
there exists at least one winning identifier j′ in φi such that
rj′ > cv(aj′ , dj′ , θφi\{j′}∪θ−φi), we have

P

j′∈φi:j′ wins rj′ >
P

j′∈φi:j′ wins pj′(θφi , θ−φi). Thus,

v(θi,
P

j∈φi
fj(θφi , θ−φi)) − P

j∈φi
pj(θφi , θ−φi)

> ri − P

j′∈φi:j′ wins rj′ ≥ 0.

This bidder can increase her utility by using false identifiers,
contradicting the assumption of false-name-proofness.

(if part) Next we prove that if an allocation rule f satis-
fies (value, time, identifier)-monotonicity, then there exists
an appropriate payment rule p such that M(f, p) is false-
name-proof. We derive a contradiction by assuming that

∀p, ∃θi, θφi ,
v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
< v(θi,

P

j∈φi
fj(θφi , θ−φi)) − P

j∈φi
pj(θφi , θ−φi)

(4)
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Figure 1: Example of allocation rule that satisfies
(value, time, identifier)-monotonicity

holds. More specifically, we show that if a payment rule p
is defined by a critical value (as Eq. 1), Eq. 4 does not hold
in the following two cases: (I) bidder i is winning when she
reports truthfully, and (II) bidder i is losing.

Case I: fi((θi,0, . . . ,0), θ−φi) = 1 holds. Since we as-
sume a single-valued domain, the two terms v(θi, ·) in Eq. 4
are equivalent. Thus, from Eq. 4, pi((θi,0, . . . ,0), θ−φi) >
P

j∈φi
pj(θφi , θ−φi). Furthermore, since we assume the mech-

anism does not collect payments from losers, we obtain

pi((θi,0, . . . ,0), θ−φi) >
X

j′∈φi:j′ wins

pj′(θφi , θ−φi). (5)

On the other hand, from Lemma 1, the critical value
of bidder i with stay [ai, di] weakly increases in shorter
stay and more identifiers. Thus, for all winners j′ ∈ φi,
cv(ai, di, θ−φi) ≤ cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi), and therefore

cv(ai, di, θ−φi) ≤
X

j′∈φi:j′ wins

cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi).

(6)
Thus, with a payment rule p defined by Eq. 1, we obtain

pi((θi,0, . . . ,0), θ−φi) ≤
X

j′∈φi:j′ wins

pj′(θφi , θ−φi), (7)

and this contradicts Eq. 5.
Case II: fi((θi,0, . . . ,0), θ−φi) = 0 holds. Assume that

bidder i, whose true type is θi = (ai, di, ri), cannot win
when she reports truthfully. That is, ri < cv(ai, di, θ−φi),
and when she reports truthfully her utility is zero.

Here, applying the same argument as in Eq. 6, we have

ri <
X

j′∈φi:j′ wins

cv(aj′ , dj′ , θφi\{j′} ∪ θ−φi).

The right-hand side corresponds to the total payment of
bidder i when she uses false identifiers θφi . This implies
that her utility with this manipulation is negative. Thus,

v(θi, fi((θi,0, . . . ,0), θ−φi)) − pi((θi,0, . . . ,0), θ−φi)
= 0 > v(θi,

P

j∈φi
fj(θφi , θ−φi)) − P

j∈φi
pj(θφi , θ−φi)

holds, which contradicts Eq. 5.

To show that the allocation rule of Mechanism 1 does
not satisfy (value, time, identifier)-monotonicity, consider
Example 1 again. When bidder 1 uses two identifiers, 1′

and 1′′, seven identifiers participate in the auction (n = 7).
Since Mechanism 1 waits for the second bidder, identifier
1′ with (1, 3, 6) obtains the item using identifier 1′′ with

(2, 2, ε). However, when bidder 1 uses only one identifier, six
identifiers participate in the auction (n = 6). In this case,
the situation becomes identical to Table 1 and bidder 1 no
longer obtains the item. Thus, this allocation rule does not
satisfy (value, time, identifier)-monotonicity.

Note that our characterization is constructed on a single-
valued domain and thus can be applied to any environ-
ment on the domain. For example, (value, time, identifier)-
monotonicity is applicable to expiring-item environments,
where a mechanism allocates a single indivisible item to a
bidder in each period, e.g., the right to use a shared com-
puter or a network resource. We then show a representative
strategy-proof mechanism for expiring-item environments,
called greedy auction, and verify whether the allocation rule
satisfies (value, time, identifier)-monotonicity.

Mechanism 2 (Greedy Auction [14]). In each period
t ∈ T, allocate the item to a bidder who has the highest value
at t and who has not been assigned an item yet (breaking ties
deterministically). Every allocated bidder pays its critical
value, which is collected upon its reported departure.

Claim 1. The allocation rule of Mechanism 2 satisfies
(value, time, identifier)-monotonicity.

Proof. Let us describe the allocation rule f t
i for bidder

i at period t when θ−i is fixed:

f t
i (θi, θ−i) =

8

>

>

<

>

>

:

1 if ai ≤ t ≤ di and unallocated in t′ < t
and ri ≥ rl ∀l(∈ N \ {i}) s.t.
al ≤ t ≤ dl and unallocated in t′ < t

0 otherwise.

We derive a contradiction by assuming that, when there
exist at least one winner j′ in φi for some φi, θ−φi , θφi , there
also exists type θi that satisfies Eq. (3).

Choose winner j′ ∈ φi whose arrival period aj′ is the
earliest among the identifiers in φi. Let tj′ denote the period
in which j′ wins. At period tj′ , θi is present, since ai ≤ aj′ ≤
dj′ ≤ di holds from Eq. (3). The bid rj′ is the highest one at
tj′ in the presence of φi. Consider the absence of φi. Since
φi is replaced with 0, the highest bid changes from rj′ to ri

at tj′ . ri ≥ rl for all l ∈ N \ φi such that bidder l is present
at tj′ (al ≤ tj′ ≤ dl) and is unallocated in t′ < tj′ . Thus,
bidder i with type θi is chosen as a winner at period tj′ (or
before tj′) if θφi is replaced with (θi,0, . . . ,0). Accordingly,
this contradicts the assumption.

We can easily verify that the payment rule of Mechanism 2
is defined appropriately such that the mechanism is false-
name-proof. We omit the proof due to space limitation.

4. NON-TRIVIAL FALSE-NAME-PROOF
MECHANISMS

In this section, we present two non-trivial false-name-
proof online mechanisms for k identical items. Before in-
troducing them, we recall the intuitive reason why Mech-
anism 1 is not false-name-proof. The number of bidders,
probably including false identifiers, determines when Mech-
anism 1 transits to the accepting phase. More precisely, a
bidder can manipulate the transition period a∗, since it is set
as the arrival period of the bn/ec-th bidder. To avoid such
a manipulation, we must determine the transition period
independently from the the number of bidders. The basic
idea of our mechanisms is that they transit in a predefined
constant period τ . The following is our first mechanism.
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Mechanism 3. Let k be the number of items for sale and
τ be a predefined period s.t. 0 ≤ τ ≤ T .

1. (learning phase): At period τ , sort the bidding values
observed so far in descending order and denote them
as r(1), r(2), . . . , r(k), r(k+1), . . .. If there exist only k′(<
k + 1) bids, we assume r(k′+1), . . . are 0.

2. (transition): If any bidder who bids r(1), . . . , r(k) is still
present at period τ , then sell to that bidder at price
r(k+1).

3. (accepting phase): As long as there exists a remaining
item, sell to the next bidder whose bid is at least r(k)

at price r(k).

When k = 1, Mechanism 3 can be considered an application
of the optimal stopping rule for a class of secretary problems,
where the number of candidates n is unknown [3].

Example 2. Now let us describe the behavior of Mecha-
nism 3 based on Table 1, assuming τ = 3 and k = 1. First,
consider the case where bidder 1 reports truthfully. From
the definition, Mechanism 3 does not allocate the item to
any bidder until period 3. At period 3, it allocates the item
to bidder 1 at price 0. Next, consider another case where
she uses two identifiers, 1′ and 1′′, and reports (1, 3, 6) and
(2, 2, ε), respectively. Again, the mechanism does not allo-
cate the item to any bidder until period 3. At period 3, it
allocates the item to identifier 1′ at price ε. Clearly that
bidder 1 cannot increase her utility even if she uses false
identifiers in Mechanism 3. Furthermore, losing bidders 2-6
cannot be winners even if they use false identifiers, since we
assume the no-early arrival, no-late departure property.

Although Mechanism 3 is false-name-proof, it requires a
predefined transition period. In general, it is difficult to
determine an appropriate transition period with respect to
efficiency and revenue. However, we show the competitive
ratio below in this section, assuming the mechanism knows
the distribution of bidder arrival times.

On the other hand, one might think that the bidders who
depart before the transition period do not have an incentive
to join the auction, since they know that they have no chance
to win. One possible remedy is to keep the information
about the transition period τ private by not announcing
it beforehand. Another remedy is to use a random timing
device to determine the transition period. It can ring with
small enough probability in each period before the default
transition period τ and must ring in τ at the latest.

Utilizing our characterization, we show the next theorem.

Theorem 2. Mechanism 3 is false-name-proof.

Proof. We first prove that the allocation rule of this
mechanism satisfies (value, time, identifier)-monotonicity and
then show that the payment rule is defined by critical val-
ues. When θ−i is fixed, the allocation rule fi for bidder i can
be described as follows. We denote the k-th highest value
observed until τ except i’s bid as r−i

(k).

fi(θi, θ−i) =

8

>

>

>

>

<

>

>

>

>

:

1 if either (i) ai ≤ τ ∧ di ≥ τ ∧ ri ≥ r−i
(k),

or (ii) ai > τ ∧ ri ≥ r−i
(k) ∧ |W | < k,

where W = {w | w 6= i ∧ aw ≤ ai

∧dw ≥ τ ∧ rw ≥ r−i
(k)}

0 otherwise.

We are going to derive a contradiction by assuming that
the allocation rule does not satisfy (value, time, identifier)-
monotonicity. More specifically, we assume that when at
least one winner l exists in φi, for some φi, θ−φi , θφi , there
exists type θi = (ai, di, ri) such that

`

∀j ∈ φi, ai ≤ aj ≤ dj ≤ di

´

∧ ri ≥ P

j′∈φi:j′ wins rj′

and fi((θi,0, . . . ,0), θ−φi) = 0.

Choose j′ as the winner in φi and its arrival period aj′ is
earliest. Note that j′ is a false identifier owned by i.

First, consider the case where ai ≤ τ . Since j′ is a winner,
regardless whether aj′ is before or after τ , dj′ ≥ τ and rj′ ≥
r−j′
(k) . Also, r−i

(k) ≤ r−j′
(k) . This is because r−i

(k) is the k-th

highest valuation observed until τ except the bid of i, and

r−j′
(k) is the k-th highest valuation observed until τ , including

φi except j′. >From the assumption, ai ≤ aj′ ≤ τ , di ≥
dj′ ≥ τ , and ri ≥ rj′ . Thus, we obtain ri ≥ r−j′

(k) ≥ r−i
(k), and

condition (i) of the allocation rule holds. This contradicts
the assumption that fi((θi,0, . . . ,0), θ−φi) = 0.

Next, consider the case where ai > τ . For all j ∈ φi,
ai ≤ aj holds; no bidder in φi arrives before τ . Thus,

r−i
(k) = r−j′

(k) holds. Since j′ is the winner, rj′ ≥ r−j′
(k) also

holds. From the assumption, ri ≥ rj′ holds. Thus, we ob-
tain ri ≥ r−i

(k). Also, since j′ is the winner in φi and its

arrival period is the earliest. Thus, for Wj′ = {w | w ∈
N \ {j′} and aw ≤ aj′ and dw ≥ τ and rw ≥ r−j′

(k) } and

Wi = {w | w ∈ N \ φi and aw ≤ ai and dw ≥ τ and rw ≥
r−i
(k)}, since ai ≤ aj′ , Wi ⊆ Wj′ holds. Thus, |Wi| ≤ |Wj′ |

holds. Since j′ is a winner, |Wj′ | < k holds. Thus, |Wi| < k
holds. Therefore, condition (ii) of the allocation rule holds,
but this contradicts the assumption.

Critical value cv of bidder i is defined as follows:

cv(ai, di, θ−i) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

r−i
(k) if either (i) ai ≤ τ ∧ di ≥ τ,

or (ii) ai > τ ∧ |W | < k,
where W = {w | w 6= i

∧ aw ≤ ai ∧ dw ≥ τ
∧ rw ≥ r−i

(k)}
∞ otherwise.

Also, the appropriate payment rule p is derived as follows:

pi(θi, θ−i) =



cv(ai, di, θ−i) if fi(θi, θ−i) = 1
0 otherwise.

This payment rule is identical to Mechanism 1.

Competitive analysis for online mechanisms requires to
assume an adversarial model as well as the optimal stop-
ping theory. A representative model is the random-ordering
model used in [9], which requires a mechanism to observe
the exact number of bidders beforehand. Therefore, we can-
not apply the model to our situation where a mechanism
can not certainly observe the number of real bidders. Thus,
we introduce another adversarial model from [3]. Unlike the
random-ordering model, the model requires mechanisms to
observe only the distribution of arrival times of bidders. It
is quite natural that a mechanism has knowledge about the
distribution of arrival times in such real-world economic en-
vironments as Internet auctions. For example, an auctioneer
can usually obtain trends about the density of bids, e.g., the
number of bids on weekends exceeds those in the daytime
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on weekdays. Focusing on the model where only the distri-
bution of bidder arrival times is known, we apply Bruss’s
adversarial model to our competitive analysis. Notice that
Hajiaghayi et al. [10] deal with a situation where the number
of bidders is unknown to a mechanism. Instead, although
they assume that the distribution of valuations of bidders is
known, we will investigate this model in future work.

In our model, the auction is performed within finite con-
tinuous interval [0, T ] and all bidders are impatient; ∀i ∈ N ,
ai = di. This continuous model makes the analysis much
simpler; in a discrete time interval model, there might be no
transition period τ s.t. G(τ) = 1

2
in Theorem 3. We assume

that for n bidders, an adversary specifies its valuations. We
also restrict our attention to cases where all valuations are
unique to ignore ties. In addition, we let a mechanism know
a distribution function G, from which bidder arrival times
are drawn i.i.d. However, the mechanism has neither infor-
mation about the number of bidders n nor their valuations.

For k = 1, our model becomes almost identical to that
of the secretary problem discussed in [3]. Thus, we can
easily see that for any distribution G, Mechanism 3 is e-
competitive for efficiency by defining τ = G−1(e−1). Al-
though we strongly believe this stopping rule is optimal for
efficiency, we cannot directly use the result in [3], since the
mechanism can observe richer information, i.e., the bids of
bidders, than for the secretary problem. However, as dis-
cussed in [9], it is very unlikely that a mechanism can cap-
italize on this numerical information, since we are making
absolutely no assumptions about the distribution of bids.

We now show a more general result for arbitrary k. The
next theorem shows that the competitive ratio of Mecha-
nism 3 for efficiency is independent of the number of items
k, if the transition period τ satisfies F (τ) = 1

2
.

Theorem 3. In our model, Mechanism 3 with constant
stopping time τ1/2 such that G(τ1/2) = 1

2
is 4-competitive

for efficiency as n → ∞ when k is sufficiently large and all
bidders are impatient in finite continuous interval [0, T ].

Proof (sketch). In the worst case, each of the top k
bidders has a high value (e.g., 1) and the others have a low
value (e.g., 0). The probability that k-th highest bidder, who
arrives before τ1/2, is k + s + 1-st highest overall, is given as
`

k+s
k−1

´

· ( 1
2
)k+s+1. Possible winners are bidders 1, . . . , k + s.

A winner must arrive after τ1/2 and before k items are sold
out. The actual value of efficiency (i.e., the expected number
of winners 1, . . . , k) is given as SS =

P∞
s=0 g(s) · min(s +

1, k), where g(s) =
`

k+s
k−1

´

· ( 1
2
)k+s+1 · k

k+s
. Clearly, this is

smaller than SS′ =
P∞

s=0 g(s) ·k, which equals k2

k−1
( 1
2

− 1
2k )

by multinomial coefficient. Thus, for sufficiently larger k,
SS′ > k/2 holds. Furthermore, we can prove that SS′ ≤
2SS holds; SS′ is an over-estimation of SS but SS′ is at
most twice as large as SS. More specifically, the amount
of over-estimation, i.e., SS′ − SS is given as

Pk−2
s=0 g(s) ·

(k − s − 1). We can show that this is smaller than SS, i.e.,
SS′ − SS ≤ SS holds, since g(s) is basically an increasing
function of s (where s is smaller than k−2). Thus, SS > k/4
holds. Since the optimal social surplus is k, we obtain the
competitive ratio of 4.

In contrast to efficiency, the competitive ratio of Mech-
anism 3 for revenue is 0, which occurs in the same valua-
tions above. To achieve better revenue, we introduce an-
other mechanism.

Mechanism 4. Let k be the number of items for sale and
τ1, . . . , τk (τ1 < . . . < τk) be a sequence of predefined periods.

1. (learning phase): At period τm (1 ≤ m ≤ k), sort
bidding values observed so far in descending order and
denote them as rm

(1), r
m
(2), . . .. If there exist no bids, we

assume rm
(1), r

m
(2), . . . are 0.

2. (transition): If the bidder of rm
(1) is still present at pe-

riod τm, then sell to him at price rm
(2).

3. (accepting phase): As long as the item remains and
current time t satisfies t < τm+1, sell to the next bidder
whose bid is at least rm

(1) at price rm
(1).

Intuitively, Mechanism 4 is false-name-proof, since the
prices at transition periods τ1, . . . , τk never decrease, and an
unsold item will not be carried forward to the next period.

Theorem 4. In our model, Mechanism 4 with a sequence
of stopping times τ1, . . . , τk s.t., G(τm) = mT

k+1
∀m ∈ {1, . . . , k}

is k
log k

-competitive for revenue as n → ∞ when k is suffi-
ciently large and all bidders are impatient in finite continu-
ous interval [0, T ].

Proof. An adversary chooses a set of valuations so that
all bidders i ∈ {1, . . . , k} have 1 − i · ε and all other n − k
bidders i ∈ k + 1, . . . , n have (n− i+1) · ε as the worst case.

The probability that a particular pair of bidders arrives
within the same period is 1

k
. For sufficiently large k, the

probability becomes small enough to be ignored. The prob-
ability that bidder 1 wins an item and pays a high value
is given by the summation of the probabilities that bidder
1 arrives (a) after bidder 2, (b) before bidder 2 and after
bidder 3, (c) before bidders 2 and 3 and after bidder 4,

. . ., i.e., 1
2

+ 1
3!

+ 2!
4!

+ · · · + (k−2)!
k!

= 1 − 1
k
. In general,

the probability that bidder i wins and pays a high value is
(i−1)!
(i+1)!

+ · · · + (k−2)!
k!

= 1
i

− 1
k
. Thus, the expected revenue

is calculated as
Pk−1

i=1
1
i

− k−1
k

. Since the first term
Pk−1

i=1
1
i

is a harmonic series, we have
Pk−1

i=1
1
i

− k−1
k

≥ log k − k−1
k

and for large k, Mechanism 4 is k
log k

-competitive.

Using a similar argument to the above proof, we can also
show that Mechanism 4 is k

log(k+1)
-competitive for efficiency.

The competitive ratios shown in Theorems 4 and 5 are
not tight since, we have not yet obtained theoretical lower
bounds. However, even in one-shot mechanisms, there have
been very few results on the competitive ratios of false-name-
proof mechanisms, except for those by [11, 7]. Thus, we
believe the results in this paper are an important first step
to clarify the bounds in online false-name-proof mechanisms.

5. EXPERIMENTAL ANALYSIS
In addition to the worst-case analysis in Section 4, we

experimentally evaluated Mechanism 3 when k = 1. We
set discrete time periods {1, . . . , 20} (T = 20), varying the
number of bidders from 10 to 100 by 10. Each bidder’s type
θi = (ai, di, ri) is generated as follows. The valuation ri is
drawn from a uniform distribution over [0, r̄]. The arrival
time ai is drawn from a uniform distribution over [0, T ], and
the departure time di is drawn from a uniform distribution
over [ai, T ]. Notice that, although we run our simulation
with a variety of values r̄, the performance does not depend
on r̄. Thus, we show the results in the case of r̄ = 100. We
set the stopping strategy τ of Mechanism 3 to bT/ec = 7.
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Figure 2: Efficiency ratios in average case with re-
spect to Offline Optimal Mechanism
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Figure 3: Revenue ratios in average case with re-
spect to Offline Optimal Mechanism

From Theorem 3, this is the stopping strategy to achieve a
competitive ratio of e for efficiency if the bidders are impa-
tient. We then averaged the ratios of efficiency and revenue,
generating 10000 instances for each number of bidders.

Figures 2 and 3 illustrate the average ratios of efficiency
and revenue, respectively, achieved by Mechanism 1 and
Mechanism 3, varying the number of bidders. Note that the
result of Mechanism 1 is provided to show an ideal ratio,
where the mechanism can set the optimal learning period
by knowing the number of bidders n beforehand, and bid-
ders do not use false-name bids. In Fig. 2, we can see that in
terms of efficiency, Mechanism 3 achieves 93% of the offline
optimal mechanism as the number of bidders grows and it
is slightly outperformed by Mechanism 1. Furthermore, in
terms of revenue, Fig. 3 shows that Mechanism 3 performs
almost equivalently to Mechanism 1.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, we characterized false-name-proof online

mechanisms and proposed two non-trivial ones for k identi-
cal items. When k = 1, Mechanism 3 corresponds to the op-
timal stopping rule of a class of secretary problems [3], where
the number of candidates n is unknown to the employer who
only knows the distribution of the candidate arrival times.
We further revealed that Mechanism 3 is 4-competitive for
efficiency, which is independent on the number of items k.
Also, Mechanism 4 is k

log k
-competitive for revenue.

One open problem is obtaining a lower bound of the com-
petitive ratio of false-name-proof online mechanisms for effi-
ciency and revenue. For efficiency, we strongly believe that
the lower bound is e when k = 1, although it remains un-

proved. We would like to relax several assumptions we intro-
duced for competitive analysis, e.g., impatient bidders. Fur-
thermore, we would like to extend our results beyond single-
valued domains (e.g., dynamic multi-unit auctions [5]). Con-
sidering the case that a bidder can only use a limited number
of fake identifiers might also be interesting. This restriction
would weaken bidders in the market, and help us design
false-name-proof mechanisms.
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ABSTRACT
In this paper, we examine hedonic coalition formation games
in which each player’s preferences over partitions of players
depend only on the members of his coalition. We present
three main results in which restrictions on the preferences
of the players guarantee the existence of stable partitions for
various notions of stability. The preference restrictions per-
tain to top responsiveness and bottom responsiveness which
model optimistic and pessimistic behavior of players respec-
tively. The existence results apply to natural subclasses of
additively separable hedonic games and hedonic games with
B-preferences. It is also shown that our existence results
cannot be strengthened to the case of stronger known sta-
bility concepts.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), teamwork,
coalition formation, and coordination

1. INTRODUCTION
In many models of multiagent interaction such as room-

mate matching and exchange of discrete goods, deviations
from one outcome to another can cycle and it may well be
possible that no stable outcome is guaranteed. This leads
to one of the most fundamental questions in game theory:
what are the necessary and sufficient conditions for the ex-
istence of stable outcomes? This question has been exam-
ined extensively by researchers working in market design,
multiagent systems, and operations research. We address
this question in the context of coalition formation games
in which outcomes are partitions of the players. We focus

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

on hedonic coalition formation games in which each player’s
preferences over partitions depend only on the members of
his coalition. Hedonic games are a rich and versatile class
of coalition formation games which also encapsulate various
stable matching scenarios [see e.g., 5, 6, 7, 14].

In game theory and multiagent systems, understanding
the conditions under which systems and social outcomes are
guaranteed to be in equilibrium is a fundamental research
problem. In this paper, we advance the state of the art on
existence results for hedonic games. We strengthen the re-
cently introduced stability concept strong Nash stability [15]
to strict strong Nash stability and show that top responsive-
ness and mutuality—conditions different from ones in [15]—
are sufficient for the existence of a strictly strong Nash sta-
ble partition in any hedonic game. The result applies to
natural subclasses of additively separable hedonic games [6].
It is also shown that top responsiveness and mutuality to-
gether do not guarantee the non-emptiness of the set of per-
fect partitions—a natural concept stronger than strict strong
Nash stability.

We then consider a recently introduced property of hedo-
nic games called bottom refuseness [17] which we will refer
to as bottom responsiveness. A new stability notion called
strong individual stability is formulated which is stronger
than both core stability and individual stability. It is shown
that bottom responsiveness guarantees the existence of a
strong individually stable partition. Also, the combination
of strong bottom responsiveness and mutuality guarantees
the existence of a strong Nash stable partition. Our results
concerning bottom responsive games cannot be strengthened
to any stronger known stability concept. They also apply to
‘aversion to enemies’ games introduced in [11].

Outline.
In Section 2, we present the backdrop of our results and

discuss related work. We then introduce hedonic games and
the stability concepts considered for these games in Sec-
tion 3. The relationships between the stability concepts are
expounded and clarified in Section 4. We then proceed to
Sections 5 and 6 in which the main results are presented.
Section 5 concerns hedonic games satisfying top responsive-
ness whereas in Section 6, existence results concerning bot-
tom responsive games are presented. In Section 7, well-
studied subclasses of hedonic games such as additively sepa-
rable hedonic games and hedonic games with B-preferences
are considered and it is shown how existence results apply
to these games. Finally, we conclude the discussion in Sec-
tion 8.
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2. RELATED WORK
Identifying sufficient and necessary conditions for the exis-

tence of stability in coalition formation has been active area
of research. Perhaps the most celebrated result in this field is
the existence of a (core) stable matching for the stable mar-
riage problem via the Gale-Shapley algorithm [13]. Later,
Banerjee et al. [5] proved that if a hedonic game satisfies a
condition called weak top coalition property, then the core is
non-empty. Banerjee et al. [5] also showed that for various
restrictions over preferences, stability is still not guaranteed.

In another important paper, Bogomolnaia and Jackson
[6] formalized Nash stability and individual stability in the
context of hedonic games and presented a number of suf-
ficient conditions for the existence of various stability con-
cepts. For instance, they showed that symmetric additively
separable preferences guarantee the existence of a Nash sta-
ble partition. A hedonic game is additively separable if each
player has a cardinal value for every other player and the
player’s utility in a partition is the sum of his values for
the players in his coalition. The strict core and core is also
non-empty for ‘appreciation of friends’ and ‘aversion to en-
emies’ games respectively—two simple classes of additively
separable games [11].

Alcalde and Revilla [1] proposed a natural preference re-
striction called top responsiveness which is based on the idea
that players value other players on how they could comple-
ment them in research teams. They showed that there exists
an algorithm called the Top Covering Algorithm which finds
a core stable partition for top responsive hedonic games.
The Top Covering Algorithm can be seen as a generaliza-
tion of Gale’s Top Trading Cycle algorithm [16]. Dimitrov
and Sung [9, 10] simplified the Top Covering Algorithm and
proved that top responsiveness implies non-emptiness of the
strict core and if mutuality is additionally satisfied, then a
Nash stable partition exists.

In a follow-up paper, Suzuki and Sung [17] introduced
bottom refuseness in an analogous way to top responsive-
ness. They showed that for hedonic games satisfying bot-
tom refuseness, the Bottom Avoiding Algorithm returns a
core stable partition. Suzuki and Sung [17] noted that ‘ap-
preciation of friends’ and ‘aversion to enemies’ games satisfy
top responsiveness and bottom responsiveness respectively,
thereby explaining the results in [11].

Very recently, Karakaya [15] proposed a new stability
concept called strong Nash stability which is stronger than
Nash stability and core stability combined. He showed that
strong-Nash is non-empty if the weak top choice property
(stronger than the weak top coalition property) is satisfied
or if preferences are ‘descending separable’. We will prove
three different results in which natural restrictions on the
player preferences guarantee the existence of stable parti-
tions where stability is strong Nash stability or its general-
ization or variant.

3. HEDONIC GAMES & STABILITY CON-
CEPTS

In this section, we review the terminology, notation, and
concepts related to hedonic games.

Hedonic games.
A hedonic coalition formation game is a pair (N,%) where

N is a set of players and % is a preference profile which

specifies for each player i ∈ N the preference relation %i,
a reflexive, complete and transitive binary relation on set
Ni = {S ⊆ N : i ∈ S}. S �i T denotes that i strictly
prefers S over T and S ∼i T that i is indifferent between
coalitions S and T . A partition π is a partition of players
N into disjoint coalitions. By π(i), we denote the coalition
in π which includes player i.

Stability Concepts.
We present the various stability concepts for hedonic

games. Nash stability, strict core stability, Pareto optimal-
ity, core stability, and individual rationality are classic sta-
bility concepts. Individual stability was formulated in [6].
Strong Nash stability was introduced by Karakaya [15] and
perfect partitions were considered in [2]. In this paper, we
also introduce strict strong Nash stability and strong indi-
vidual stability which imply strong Nash stability and core
stability respectively.

• A partition π is individually rational (IR) if no player
has an incentive to become alone, i.e., for all i ∈ N ,
π(i) %i {i}.
• A partition is perfect if each player is in one of his most

preferred coalition [2].

• A partition is Nash stable (NS) if no player can ben-
efit by moving from his coalition to another (possibly
empty) coalition T .

• A partition is individually stable (IS) if no player can
benefit by moving from his coalition to another exist-
ing (possibly empty) coalition T while not making the
members of T worse off.

• A coalition S ⊆ N blocks a partition π, if each player
i ∈ S strictly prefers S to his current coalition π(i) in
the partition π. A partition which admits no blocking
coalition is said to be in the core (C).

• A coalition S ⊆ N weakly blocks a partition π, if each
player i ∈ S weakly prefers S to π(i) and there exists
at least one player j ∈ S who strictly prefers S to his
current coalition π(j). A partition which admits no
weakly blocking coalition is in the strict core (SC).

• A partition π is Pareto optimal (PO) if there is no
partition π′ with π′(j)%j π(j) for all players j and
π′(i)�i π(i) for at least one player i.

• For partition π, π′ 6= π is called reachable from π by

movements of players H ⊆ N , denoted by π
H→π′, if

∀i, j ∈ N \H, i 6= j : π(i) = π(j)⇔ π′(i) = π′(j).

A subset of players H ⊆ N,H 6= ∅ strong Nash blocks

π if a partition π′ 6= π exists with π
H→ π′ and ∀i ∈ H :

π′(i) �i π(i).

If a partition π is not strong Nash blocked by any set
H ⊆ N , π is called strong Nash stable (SNS) [15].

• A subset of players H ⊆ N,H 6= ∅ weakly Nash blocks

π if a partition π′ 6= π exists with π
H→ π′, ∀i ∈ H :

π′(i) %i π(i) and ∃i ∈ H : π′(i) �i π(i).

A partition which admits no weakly Nash blocking
coalition is said to satisfy strict strong Nash stability
(SSNS).
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• A non-empty set of players H ⊆ N is strongly indi-
vidually blocking a partition π, if a partition π′ exists
such that:

1. π
H→ π′ (as for SNS),

2. ∀i ∈ H : π′(i) �i π(i), and

3. ∀j ∈ π′(i) for some i ∈ H : π′(j) %j π(j).

A partition for which no strongly individually blocking
set exists is strongly individually stable (SIS).1

Perfect

SSNS

SNS

NS SIS

SC

IS

PO

IR

C

Figure 1: Inclusion relationships between stability
concepts for hedonic games. For e.g, every NS par-
tition is also IS. NS, SC, PO, C and IR are classic
stability concepts. IS was formulated in [6]; SNS in
[15]; and perfect partitions in [2]. We also introduce
SSNS and SIS in this paper.

Depending on the context, we will utilize abbreviations
like SIS, SNS, SSNS, IS etc. either for adjectives (for e.g. IS
for individually stable) or for nouns (for e.g. IS for individual
stability).

4. RELATIONS BETWEEN STABILITY
CONCEPTS

In this section, we will explore and clarify the inclusion
relationships between the stability concepts. The inclusion
relationships between stability concepts are depicted in Fig-
ure 1.

Proposition 1. Strict core stability implies strong indi-
vidual stability which implies individual stability and also
core stability.

Proof. Strict core stability implies strong individual sta-
bility. Assume that a partition π is strict core stable but

1SIS is a natural intermediate stability concept which is im-
plied by strong Nash stability and strict core stability re-
spectively and it also implies individual stability and core
stability.

not strong individually stable. Then, there exists a coali-
tion S ⊆ N such that S /∈ π and each player in S is at least
as happy as in π and one player in S is strictly happier than
in π. But this means that π is not strict core stable.

Strong individual stability trivially implies individual sta-
bility.

Finally, we show that strong individual stability implies
core stability. Assume that a partition π is strong individu-
ally stable but not core stable. Then there is a core deviating
coalition S. But this would mean that each player i ∈ S is
strictly better off than in π(i). But this means that π is not
strong individually stable. This completes the proof.

Strong Nash stability as introduced by Karakaya [15] is
quite a strong stability notion as seen by the following simple
proposition.

Proposition 2. Strong Nash stability implies Nash sta-
bility and also core stability.

Furthermore, even if a partition is both strict core stable
and Nash stable, it is not necessarily strong Nash stable.

Proof. The first statement follows from the definitions
of the stability concepts and was already pointed out by
Karakaya [15]. In fact, it can also easily be shown that SNS
implies SIS. If a partition is SNS, then there is no strong
Nash blocking set. This implies that there does not exist
any strongly individually blocking set.

We now show that even if a partition is both strict core
stable and Nash stable, it is not necessarily strong Nash
stable. The following example shows a game, that admits
a strict core and Nash stable partition but no strong Nash
stable partition.

Let (N,%) be a game with N = {1, 2, 3, 4} and the pref-
erence profile specified as follows:

{1, 2} �1 {1, 4} �1 {1} �1 ...

{2, 3} �2 {1, 2} �2 {2} �2 ...

{3, 4} �3 {2, 3} �3 {3} �3 ...

{1, 4} �4 {3, 4} �4 {4} �4 ...

It is easy to check, that the partitions π = {{1, 2}, {3, 4}}
and π′ = {{1, 4}, {2, 3}} are both (even strictly) core stable
and Nash stable. But neither of them is strong Nash stable
since {2, 4} is blocking π and π′ is blocked by {1, 3}. Ob-
viously any partition containing a coalition with 3 or more
players is not even Nash stable, since each player prefers be-
ing alone to any coalition with more than 2 players. Also
{{1, 3}, {2, 4}} is not even Nash stable, since it is not indi-
vidually rational.

Nash and core stability prevent single players from mov-
ing to another (possibly empty) coalition or several players
forming a new coalition respectively. In the given partitions
π and π′, it is possible for a pair of players to improve by
switching coalitions and therefore prevent π and π′ from
being strong Nash stable.

In the next proposition, we show that although strong
Nash stability is a strong stability concept, it implies neither
strict core stability nor Pareto optimality.

Proposition 3. Strict strong Nash stability implies
strong Nash stability, strict core stability and Pareto opti-
mality.

On the other hand, strong Nash stability implies neither
strict core stability nor Pareto optimality.
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Proof. Strict strong Nash stability trivially implies
strong Nash stability. Strict strong Nash stability also im-
plies strict core stability. If a partition is strong Nash stable,
there exists no new coalition H, in which each player at least
as happy and one player is strictly better off. Therefore, the
partition is also strict core stable.

Now, we will show that strong Nash stability implies nei-
ther strict core stability nor Pareto optimality. Since, it is
well-known that strict core stability implies Pareto optimal-
ity, it is sufficient to show that strong Nash stability does
not imply Pareto optimality.

Strong Nash stability does not imply Pareto optimality.
Consider the following four-player hedonic game:

{1, 2} ∼1 {1, 3} ∼1 {1, 4} �1 · · ·
{1, 2} ∼2 {2, 3} ∼2 {2, 4} �2 · · ·
{2, 3} ∼3 {3, 4} �3 · · ·
{1, 4} ∼4 {2, 4} �4 {3, 4} �4 · · ·

Then, the partition {{1, 2}, {3, 4}} is strong Nash stable.
However it is Pareto dominated by {{2, 3}, {1, 4}}.

In the next sections, we will present the central results of
the paper.

5. TOP RESPONSIVENESS
Top responsiveness [1, 9, 10] and bottom responsive-

ness [17] are natural restrictions that are imposed on the
individual preferences and not on the whole preference pro-
file. The idea is that a player’s preference for a coalition
depends on the best and worst subcoalitions respectively.
In this section, we present a result that a partition fulfilling
SSNS exists for hedonic games satisfying top responsiveness
and an additional property called mutuality (with respect
to top responsiveness).

Top responsiveness.
Top responsiveness is based on choice sets—sets of play-

ers which each player wants to be with. Let Ch(i, S)—the
choice sets of player i in coalition S—be defined as follows:

Ch(i, S) = {S′ ⊆ S : (i ∈ S′) ∧ (S′ %i S′′ ∀S′′ ⊆ S)}.
A game satisfies top responsiveness if for each i ∈ N , the

following three conditions hold:

1. for each X ∈ Ni, |Ch(i,X)| = 1, (we denote by
ch(i,X) the unique maximal set of player i on X under
%i),

2. for each pair X,Y ∈ Ni, X �i Y if ch(i,X) �i
ch(i, Y );

3. for each pair X,Y ∈ Ni, X �i Y if ch(i,X) = ch(i, Y )
and X ⊂ Y .

A hedonic game satisfying top responsiveness additionally
satisfies mutuality if

∀i, j ∈ N,X ∈ Ni ∩Nj : i ∈ ch(j,X)⇔ j ∈ ch(i,X).

We will also specify similar notion of mutuality with respect
to hedonic games satisfying strong bottom responsiveness.
When the context is clear, we will refer to the condition
simply as mutuality.

Example 1. Let (N,%) be a game with N = {1, 2, 3} and
the preference profile specified as follows:

{1, 2} �1 {1, 2, 3} �1 {1} �1 {1, 3}
{1, 2, 3} �2 {1, 2} ∼2 {2, 3} �2 {2}
{2, 3} �3 {1, 2, 3} �3 {3} �3 {1, 3}

Then, (N,%) satisfies top responsiveness and mutuality.

We are now in a position to present our first result.

Theorem 1. Top responsiveness and mutuality together
guarantee the existence of an SSNS partition.

We prove Theorem 1 by showing that if a hedonic game
satisfies top responsiveness and mutuality, then the Top
Covering Algorithm of [1, 9, 10] returns an SSNS partition.
Therefore, we identify conditions different than the ones
identified by Karakaya [15] for which strong Nash stability
is guaranteed. Since SSNS is stronger than SNS (Proposi-
tion 3) which in turn is stronger than even the combination
of Nash stability and strict core stability (Proposition 2),
Theorem 1 simultaneously strengthens the result in [9] and
[10] in which it was shown that top responsiveness and mu-
tuality together guarantee the existence of a Nash stable and
strict core partition.

It can also be proved that Theorem 1 is optimal in the
sense that it does not extend to perfect partitions. To be
precise, we show that top responsiveness and mutuality to-
gether do not guarantee the existence of a perfect partition.

Proposition 4. Top responsiveness and mutuality to-
gether do not guarantee the existence of a perfect partition.

Proof. By counter example. In the game in Example 1,
top responsiveness and mutuality are satisfied but no perfect
partition exists.

Now that we have stated Theorem 1 and its complement-
ing Proposition 4, we will present the proof of Theorem 1.

Proof of Theorem 1.
Firstly, we need additional definitions and a description of

the Top Covering Algorithm. For each X ⊆ N , we denote
by vX the relation on X×X where i vX j if and only if j ∈
ch(i,X). In this case j is called a neighbor of i in X. Note
that in the preference profiles satisfies top responsiveness
mutuality, then vX is a symmetric relation.
The connected component CC(i,X) of i with respect to X
is defined as follows:

CC(i,X) = {k ∈ X:∃j1, . . . , jl ∈ X : i = j1 vX · · · vX jl = k}.

If j ∈ CC(i,X), j is called reachable from i in X. Also
note that CC(j,X) ⊆ CC(i,X) if j is reachable from i and
if mutuality is satisfied, then the following holds: ∀X ⊆ N ,
i, j ∈ X : i ∈ CC(j,X)⇔ j ∈ CC(i,X).

Now we are ready to present the simplified Top Covering
Algorithm provided by Dimitrov and Sung [9, 10], adapted
to the notation defined above. The algorithm is specified as
Algorithm 1.

The following lemma will be used in the proof to Theorem
1.
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Lemma 1. Let (N,%) be a game satisfying top respon-
siveness and mutuality and π be the partition resulting by
applying the simplified Top Covering Algorithm to it. Then

∀i ∈ N : ch(i,N) ⊆ π(i)

Proof. First we show by induction over the iterations
of the algorithm that ch(i, Rk) = ch(i,N) ∀i ∈ Rk, k =
1, 2, .... For k = 1, this is obviously true, because R1 = N .
Assume by induction, that ch(i, Rk) = ch(i,N) ∀i ∈ Rk.
Let i′ be the player selected in the k-th iteration of Step
3 and j ∈ Rk+1. Therefore j /∈ ch(i, Rk) ∀i ∈ CC(i′, Rk).
Because of mutuality i /∈ ch(j, Rk) ∀i ∈ CC(i′, Rk). So
ch(j, Rk) ⊆ Rk+1 and therefore ch(j, Rk+1) = ch(j, Rk) =
ch(j,N).

Now take an arbitrary player i ∈ N and denote by k
the iteration of the algorithm in which i was added to
his coalition, i.e. i ∈ Sk. Let i′ be the player selected
in the k-th iteration of Step 3, so i ∈ CC(i′, Rk). Be-
cause of mutuality, CC(i′, Rk) = CC(i, Rk) and clearly
ch(i, Rk) ⊆ CC(i, Rk). From above, we know that
ch(i,N) = ch(i, Rk) ⊆ CC(i, Rk) = Sk = π(i).

Algorithm 1 Top Covering Algorithm

Input: A hedonic game (N,%) satisfying top responsive-
ness.

1: R1 ← N ; π ← ∅.
2: for k = 1 to |N | do
3: Select i ∈ Rk such that |CC(i, Rk)| ≤ |CC(j, Rk)| for

each j ∈ Rk.
4: Sk ← CC(i, Rk); π ← π ∪{Sk}; and Rk+1 ← Rk \Sk
5: if Rk+1 = ∅ then
6: return π
7: end if
8: end for
9: return π

We note here that Lemma 1 may not hold, if mutuality is
violated.

As shown by Dimitrov and Sung [9, 10] the resulting par-
tition of the simplified Top Covering Algorithm is strict core
stable as well as Nash stable if preferences as mutual. We
are now ready to present the proof of Theorem 1.

Proof. Let π be the resulting partition and suppose it
is not strictly strong Nash stable. Then a pair (H,π′) exists
where H ⊆ N is the set of deviators and π′ is the par-

tition resulting after the deviation, i.e. π
H→ π′. Firstly,

by Lemma 1, ch(i,N) ⊆ CC(i,N) ∀i ∈ N . Since H is a
coalition blocking strict strong Nash stability, the following
holds:

∀i ∈ H : π′(i) %i π(i) and

∃j ∈ H : π′(j) �j π(j).

Now consider the player j, who is better off in his new
coalition π′(j). Assume that π(j) ∩ π′(j) ⊆ H, which
means only deviators in π(j) ∩ π′(j). For i ∈ π(j) ∩ π′(j):
ch(i, π′(i)) %i ch(i, π(i)), since i ∈ H by assumption. We
also know that ch(i, π(i)) = ch(i,N) by Lemma 1. There-
fore, for i ∈ π(j) ∩ π′(j): ch(i, π′(i)) %i ch(i, π(i)) =
ch(i,N). Because of uniqueness of choice sets in the def-
inition of top responsiveness, ch(i, π′(i)) = ch(i,N). So

ch(i,N) ⊆ π(i) ∩ π′(i) = π(j) ∩ π′(j).
=⇒ ∀i ∈ π(j) ∩ π′(j) : (π′(j) ∩ π(j)) %i π′(j).

Due to assumption π(j) ∩ π′(j) ⊆ H, the following holds:

∀i ∈ π(j) ∩ π′(j) : (π(j) ∩ π′(j)) %i π′(j) %i π(j) = π(i) &

(π(j) ∩ π′(j)) %j π′(j) �j π(j)

So π(j) ∩ π′(j) would be a coalition blocking strict core
stability, but Dimitrov and Sung [10] proved that π as pro-
duced by the simplified Top Covering Algorithm has to be
strict core stable. Therefore π′(j)∩π(j) * H and there is at
least one non-deviator in π(j)∩π′(j). Let us call this player
i′.

Now take a look at the players in π(j) \ π′(j). Note that
this is not an empty set, because otherwise π′(j) ⊃ π(j) =⇒
π′(j) -j π(j). If one of them is not in H, then he was in
the same coalition as i′ in π, namely π(j), and is now in a

different, which is not consistent with π
H→ π′. So (π(j) \

π′(j)) ⊆ H. Because π(j) is a connected component, at least
one player k in π(j) \ π′(j) has a friend l in π′(j), meaning
they are in each other’s choice sets and as mentioned l ∈
ch(k,N) ⊆ π(k). But now l /∈ π′(k) and therefore π′(k) ≺k
π(k) which contradicts k being a deviator.

6. BOTTOM RESPONSIVENESS
In this section, we present the central results concerning

hedonic games which satisfy bottom responsiveness.

Bottom responsiveness.
Bottom responsiveness is a restriction on the preferences

of each player in a hedonic game which models conservative
or pessimistic agents. In contrast to top responsiveness, bot-
tom responsiveness is based on avoid sets—sets of players
which each player wants to avoid having in his coalition.

For any player i ∈ N and S ∈ Ni, Av(i, S)—the set of
avoid sets of player i in coalition S—is defined as follows:

Av(i, S) = {S′ ⊆ S : (i ∈ S′) ∧ (S′ -i S′′ ∀S′′ ⊆ S)}.
A game satisfies bottom responsiveness if for each i ∈ N , the
following conditions hold:

1. for each pair X,Y ∈ Ni, X �i Y if X ′ �i Y ′ for each
X ′ ∈ Av(i,X) and each Y ′ ∈ Av(i, Y ); and

2. for each i ∈ N and X,Y ∈ Ni, Av(i,X)∩Av(i, Y ) 6= ∅
and |X| ≥ |Y | implies X %i Y .

A hedonic game (N,%) satisfies strong bottom responsive-
ness if it is bottom responsive and if for each i ∈ N and
X ∈ Ni, |Av(i,X)| = 1. By av(i,X), we denote the unique
minimal set of player i on X under %i. The strong part
of bottom responsiveness is analogous to Property 1 in the
definition of top responsiveness. A hedonic game (N,%)
satisfying strong bottom responsiveness additionally satis-
fies mutuality if for all i, j ∈ N , and X such that i, j ∈ X,
i ∈ av(j,X) if and only if j ∈ av(i,X).

Example 2. Let (N,%) be a game with N = {1, 2, 3} and
the preference profile specified as follows:

{1, 3} �1 {1} �1 {1, 2, 3} �1 {1, 2}
{2, 3} �2 {2} �2 {1, 2, 3} �2 {1, 2}
{1, 2, 3} �3 {1, 3} ∼3 {2, 3} �3 {3}
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Then, (N,%) satisfies strong bottom responsiveness and
also mutuality (with respect to strong bottom responsive-
ness).

For bottom responsive games, we prove that an SIS parti-
tion is guaranteed to exist even in the absence of mutuality.

Theorem 2. Bottom responsiveness guarantees the exis-
tence of an SIS partition.

As a corollary, a core stable partition and an individu-
ally stable partition is guaranteed to exist. Previously, it
was only known that the core is non-empty for bottom re-
sponsive games [17]. In contrast to the result by Suzuki
and Sung [17], the proof of Theorem 2 does not require the
Bottom Avoiding Algorithm. We associate with each IR
partition a vector of coalition sizes in decreasing order. It is
then shown via lexicographic comparisons between the cor-
responding vectors that arbitrary deviations between par-
titions are acyclic. With an additional natural constraint,
even SNS is guaranteed (Theorem 3).

Theorem 3. Strong bottom responsiveness and mutuality
together guarantee the existence of an SNS partition.

We point out that Theorem 2 cannot be extended any
further to take care of strict core stability and Theorem 3
cannot be extended to SSNS. The reason is that symmetric
‘aversion to enemies’ games—a subclass of strong bottom
responsive games which satisfy mutuality—may not admit
a strict core stable partition (Example 4, [11]).

Now that we have stated our results concerning hedo-
nic games satisfying bottom responsiveness, we sketch the
proofs.

Proof of Theorem 2.
For the use of further proofs, we introduce an ordering

relation on the partitions. The definition will also apply to
the proof of Theorem 3.

Definition 1. Let N = {1, ..., n} be a set of players and
π, π′ two partitions of N , where π = (S1, ..., Sk) and π′ =
(T1, ..., Tl) with |Si| ≥ |Si+1| ∀i ∈ {1, ..., k − 1} and |Tj | ≥
|Tj+1| ∀j ∈ {1, ..., l − 1} respectively. We say, that

π >̇ π′ ⇔ ∃i ≤ min{k, l} : |Si| > |Ti| and |Sj | = |Tj | ∀j < i

& π
.
= π′ ⇔ k = l and ∀i ≤ k : |Si| = |Ti|.

The relation >̇ is complete, transitive and asymmetric,
and places an ordering on the set of partitions. We now
present the proof of Theorem 2 in which we utilize the rela-
tion >̇.

Proof. To simplify the presentation, we prove that ev-
ery bottom responsive game admits an IS partition. The
same argument can also be used to show that every bottom
responsive game admits an SIS partition.

We show individual stability for each maximum element
according to >̇ of the set of individual rational coalitions.
Consider the set P = {π′ : π′ partitions N and ∀S ∈ π′, i ∈
S : {i} ∈ Av(i, S)}. Note that P 6= ∅, because the partition
consisting of only singletons is in P and that P is a finite
set because the number of partitions is finite. Denote by π
a maximal element of P according to >̇, i.e. π ≥̇π′ ∀π′ ∈ P .
By definition, π is individually rational.

Now assume π is not individually stable. Then, there
exists a player i ∈ N and a coalition S ∈ π ∪ {∅}, such that
S ∪ {i} �i π(i) and ∀j ∈ S : S ∪ {i} %j S. Now we show
that the partition π resulting after the deviation of i is still
individually rational and therefore an element of P . Clearly
S 6= ∅ because of individual rationality of π. Furthermore
{j} ∈ Av(j, S ∪ {i}) ∀j ∈ S, because if not S ∪ {i} ≺j S for
some j ∈ S.
Consider a player j ∈ π(i)\{i}. Due to individual rationality
of π, {j} ∈ Av(j, π(i)), which implies T %j {j} ∀T ⊆ π(i)
with j ∈ T . So π(i) \ {i} %j {j}. All other players j ∈
N \ (π(i)∪ S) are not affected by the deviation of i because
of the hedonic game setting. Therefore π′ is individually
rational and π′ ∈ P .

The last step is to show π′ >̇ π, which contradicts the max-
imality of π in P . Because player i improves by changing,
|S ∪ {i}| > |π(i)| follows from condition 2) of bottom re-
sponsiveness . So (S∪{i}, π(i)\{i}) >̇(S, π(i)) and all other
coalitions are identical in π and π′. This contradicts π ≥̇π′
and finishes the proof.

The proof also highlights a decentralized way to compute
an IS or SIS partition. Start from the partition of single-
tons and enable arbitrary deviations. For each partition πk,
the new partition πk+1 is such that πk+1 >̇ πk. Therefore,
in a finite number of deviations, an IS or SIS partition is
achieved.

Proof of Theorem 3.
We now present the proof of Theorem 3.

Proof. We show strong Nash stability for each maxi-
mal element according to ≥̇ of the set of individual rational
coalitions (please see Definition 1). Consider the set P =
{π′ : π′ partitions N and ∀S ∈ π′, i ∈ S : {i} = av(i, S)}.
Note that P 6= ∅, because the partition consisting of only
singletons is in P and P is a finite set, because the number
of partitions is finite. Denote by π a maximal element of P
according to ≥̇, i.e. π ≥̇π′ ∀π′ ∈ P .

Now assume π is not strong Nash stable. Then a set of
players H ⊆ N and a partition π′ exist, such that

(1) π
H−→ π′

(2) ∀i ∈ H : π′(i) �i π(i).

We show that the partition π′ resulting after the devia-
tion is still individually rational and therefore an element
of P . Clearly av(i, π′(i)) = {i} ∀i ∈ H, because otherwise
π′(i) �i π(i) would not hold. Now consider a player j such
that π′(j) ∩H 6= ∅. ∀i ∈ H ∩ π′(j) : j /∈ av(i, π′(j)). Mutu-
ality implies i /∈ av(j, π′(j)) and therefore av(j, π′(j)) =
av(j, π(j)) = {j}. All other players j ∈ N are either
not affected by any changes (π(j) = π′(j)) or they are
left by some players in H (π′(j) ⊂ π(j)). In both cases
av(j, π′(j)) = av(j, π(j)) = {j}, so π′ is an element of P .

The last step is to show π′ >̇ π, which contradicts the
maximality of π in P . Because each player i ∈ H improves,
|π′(i)| > |π(i)| ∀i ∈ H, which follows from condition (iii)
of bottom responsiveness. Take the largest coalition S ∈ π
such that S ∩ H 6= ∅. Obviously any coalition bigger than
S in π at least does not get smaller after the deviation,
because it contains no players from H. Then one of
following two cases holds:
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Case 1: at least one coalition T ∈ π with |T | > |S| gets
joined by some player i ∈ H. But then π′ >̇ π, since T
increases in size and any larger coalition in π does not get
smaller.

Case 2: If Case 1 does not hold, we know that no coalition
in π larger than S is joined by a player in H and therefore
stays the same. But one player i ∈ S∩H is part of a coalition
S′ ∈ π′ with |S′| > |S|. Since all coalitions in π, which are
larger than S also exist in π′, we can again conclude π′ >̇ π.

In both cases π′ >̇ π which contradicts the maximality of
π in P and finishes the proof.

7. EXISTENCE OF STABILITY FOR SPE-
CIFIC CLASSES OF GAMES

In this section, we highlight some natural subclasses of
additively separable hedonic games [see e.g., 3, 6, 12, 14]
and hedonic games with B-preferences [see e.g., 8, 14]
which guarantee top responsiveness or bottom responsive-
ness. Consequently, our existence results in Sections 5 and
6 and an existence result in the literature [10] applies to
these settings.

Additively separable hedonic games.
Additively separable hedonic games are one of the most

well-studied and natural class of hedonic games [see e.g., 3,
6, 12, 14]. In an additively separable hedonic game (ASHG)
(N,%), each player i ∈ N has value vi(j) for player j being in
the same coalition as i and if i is in coalition S ∈ Ni, then i
gets utility

∑
j∈S\{i} vi(j). For coalitions S, T ∈ Ni, S %i T

if and only if
∑
j∈S\{i} vi(j) ≥

∑
j∈T\{i} vi(j). Therefore an

ASHG can be represented as (N, v). An ASHG is symmetric
if vi(j) = vj(i) for any two players i, j ∈ N and is strict if
vi(j) 6= 0 for all i, j ∈ N .

We now formally introduce two classes of additively sep-
arable hedonic games which also satisfy top responsiveness
and bottom responsiveness respectively. Both classes were
introduced by Dimitrov et al. [11].

• An ASGH (N, v) is appreciation of friends if for all
i, j ∈ N such that i 6= j, the following holds: vi(j) ∈
{−1,+n}.

• An ASGH (N, v) is aversion to enemies if for all
i, j ∈ N such that i 6= j, the following holds: vi(j) ∈
{−n,+1}.

It is clear that ‘appreciation of friends’ and ‘aversion to
enemies’ games are ASHGs with strict preferences. Suzuki
and Sung [17] noted that ‘appreciation of friends’ and ‘aver-
sion to enemies’ games satisfy top responsiveness and bot-
tom responsiveness respectively. As a consequence, our main
results apply to these games.

Corollary 1. There exists an SSNS partition for each
symmetric ‘appreciation of friends’ game.

Proof. An ‘appreciation of friends’ game satisfies top re-
sponsiveness. Furthermore, if the game is (additively separa-
ble) symmetric, then it also satisfies mutuality with respect
to top responsiveness. Then, as a result of Theorem 1, we
get the corollary.

Corollary 2. There exists an SIS partition for each
‘aversion to enemies’ game.

Proof. The statement follows from Theorem 2 and the
fact that ‘aversion to enemies’ games satisfy bottom respon-
siveness.

Corollary 3. There exists an SNS partition for each
symmetric ‘aversion to enemies’ game.

Proof. It is already known that ‘aversion to enemies’
games satisfy bottom responsiveness. Since ‘aversion to en-
emies’ are additively separable hedonic games with strict
preferences, they not only satisfy bottom responsiveness
but also strong bottom responsiveness. If ‘aversion to ene-
mies’ have symmetric preferences, then they not only satisfy
strong bottom responsiveness but also (bottom responsive)
mutuality. Therefore, we can apply Theorem 3 to derive the
corollary.

B-hedonic games.
Finally, we show another important subclass of hedonic

games called B-hedonic games [8, 7] satisfies top responsive-
ness. In B-hedonic games, players express preferences over
players and these preferences over players are naturally ex-
tended to preferences over coalitions. We will assume that
maxi(∅) = {i}. In hedonic games with B-preferences (in
short B-hedonic games), for S, T ∈ Ni, S�i T if and only if
one of the following conditions hold:

1. for each s ∈ maxi(S\{i}) and t ∈ maxi(T \{i}), s �i t,
or

2. for each s ∈ maxi(S\{i}) and t ∈ maxi(T \{i}), s ∼i t
and |S| < |T |.

A B-hedonic has strict preferences for each i ∈ N and
j, k ∈ N , the following holds: j 6= k ⇒ j �i k. Then, we
have the following proposition.

Proposition 5. B-hedonic games with strict preferences
satisfy top responsiveness.

Proof. We show that B-hedonic games with strict pref-
erences satisfy all the three conditions of top responsiveness.

1. Firstly, for each X ∈ Ni, Ch(i,X) = {maxiX ∪ {i}}
and thus |Ch(i,X)| = 1.

2. For a pair X,Y ∈ Ni, assume that ch(i,X) �i
ch(i, Y ). This means that {maxi(X)} ∪ {i} �i
{maxi Y } ∪ {i}. Since the best player in X is more
preferred by i than the best player in Y , then by the
definition of B-hedonic games, X �i Y .

3. Finally, for each pair X,Y ∈ Ni, assume that
ch(i,X) = ch(i, Y ) and X ⊂ Y . Then, the player
most preferred by i in X is the same as the player
player most preferred by i in Y . Therefore, by the
definition of B-hedonic games, X �i Y .

This completes the proof.

Therefore, as a corollary we get the following statement
which was proved by Cechlárová and Romero-Medina [8].

Corollary 4. For each B-hedonic game with strict pref-
erences, a strict core stable partition is guaranteed to exist.
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Proof. Dimitrov and Sung [10] showed that for hedonic
games satisfying top responsiveness admit a strict core stable
partition. Since B-hedonic games satisfy top responsiveness,
they admit a strict core stable partition.

It will be interesting to see whether there are any natural
restrictions on B-hedonic games with strict preferences such
that not only top responsiveness is satisfied but also (top
responsive) mutuality is satisfied. In that case, we can apply
Theorem 1 concerning SSNS to B-hedonic games.

Our demonstrated connection between B-hedonic games
and top responsiveness goes deeper. The essential fact be-
hind previous results concerning B-hedonic games with strict
preferences is that they satisfy top responsiveness. It turns
out that the Top Covering Algorithm in [1] generalizes the
B-STABLE algorithm in [8] and in fact Theorems 4.4 and
5.2 in [1] imply Theorem 1 and Theorem 2 in [8] respec-
tively. This connection seems to have been unnoticed in the
literature.

8. CONCLUSIONS
To conclude, we tried to paint a clearer picture of the

landscape of stability concepts used in coalition formation
games. The concepts ranged from standard ones such as the
core to recently introduced concepts such as strong Nash sta-
bility. The core and strong Nash stability were generalized
to strong individual stability and strict strong Nash stabil-
ity respectively. The basic inclusion relationships between
the stability concepts are depicted in Figure 1. Since hedo-
nic games generalize various matching settings, the relations
between the stability concepts also hold in matching settings
such as two-sided matching, roommate matching etc.

We then examined restrictions on the preferences of agents
which guarantee stable outcomes for the new stability con-
cepts. Three main existence results (Theorems 1, 2 and 3)
pertaining to top responsiveness and bottom responsiveness
were presented. Our results strengthen or complement a
number of results in the literature. We also showed that
none of our existence results can be extended to a stronger
known stability concept. It was seen that the theorems ap-
ply to some natural subclasses of hedonic games which have
already been of interest among game-theorists. It will be
interesting to find further applications of our existence re-
sults.

Identifying the impact of preference restrictions on sta-
bility also has algorithmic consequences. Recently, hedo-
nic games have attracted research from an algorithmic and
computational complexity point of view. There are various
algorithmic questions such as checking the existence of and
computing stable partitions for different representations of
hedonic games (see e.g., [7, 14]). A general framework of
preference restrictions and their impact on stability of par-
titions promises to be useful in devising generic algorithmic
techniques to compute stable partitions. For example, we
noted that the Top Covering Algorithm in [1] generalizes
the B-STABLE algorithm in [8] by utilizing the insight that
B-hedonic games with strict preferences satisfy top respon-
siveness. We also mention the following interesting algorith-
mic questions. For hedonic games represented by individu-
ally rational lists of coalitions [4], what is the computational
complexity of testing whether the game satisfies top repon-
siveness or bottom responsiveness?

Our focus in the paper has been on sufficient conditions

which guarantee the existence of stable outcomes. It will be
interesting to see what additional conditions are required to
ensure uniqueness of stable partitions for different notions
of stability. Finally, characterizing the conditions for the
existence of stability remains an open problem.
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ABSTRACT
We introduce a measure for the level of stability against coalitional
deviations, calledstability scores, which generalizes widely used
notions of stability in non-cooperative games. We use the proposed
measure to compare various Nash equilibria in congestion games,
and to quantify the effect of game parameters on coalitional stabil-
ity. For our main results, we apply stability scores to analyze and
compare the Generalized Second Price (GSP) and Vickrey-Clarke-
Groves (VCG) ad auctions. We show that while a central result of
the ad auctions literature is that the GSP and VCG auctions imple-
ment the same outcome in one of the equilibria of GSP, the GSP
outcome is far more stable. Finally, a modified version of VCG is
introduced, which is group strategy-proof, and thereby achieves the
highest possible stability score.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent Systems;
J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics

General Terms
Algorithms, Theory, Economics

Keywords
Game theory, Auctions, Mechanism design, Solution concepts

1. INTRODUCTION
One of the most basic questions of game theory is: given a game

in strategic form, what is its solution? Bysolution we typically
mean a strategy profile that can be proposed to all agents, and no
rational agent would want to deviate from it. Thus a solution should
be stable. Many solution concepts for games have been studied;
these studies differ by the level and interpretation of stability, as
well as by the underlying assumptions that are required to achieve
it. The best known solution concept for games is the Nash equilib-
rium (NE), a strategy profile from which no agent has an incentive
to deviateunilaterally.
∗At the time of research the author was affiliated with Microsoft
Research in Herzlia, Israel.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
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A basic problem with the NE solution concept is that a NE does
not take into account joint deviations by coalitions of players. We
usually assume that an individual will deviate from a profile if she
has an available strategy that strictly increases her payoff. In some
settings it would be natural to assume also that a group of individ-
uals will deviate if they have an available joint strategy that strictly
increases the payoff of each group member. TheStrong Equilib-
rium (SE) concept by Aumann [2] deals with this problem. A pro-
file is a SE if no coalition of agents can jointly deviate in a way
that strictly increases the payoff of each coalition member. Inter-
mediate levels of coalitional stability have been suggested, such as
stability against deviations of small coalitions (see e.g. [1]), and in
particular pairs. An even more appealing solution concept than SE
is theSuper-Strong Equilibrium(SSE) that considers deviations in
which no member loses while at least one member makes a positive
gain (see, for example, [11]).

A major problem with these proposed solutions is that they sel-
dom exist. Indeed, SSE rarely exist even in cases where strong
equilibria do exist (e.g., in simple congestion games [13, 1]), and
even if only deviations by pairs are considered.

In this paper we relax the strong requirement that no coalition
will have an incentive to deviate, and suggest a quantitative mea-
sure to coalitional stability. Assuming we have a Nash equilibrium
profile of a game where some pairs of agents can still deviate, we
may still wish to measure its stability by referring to thenumberof
pairs that have beneficial deviations from that profile. More gener-
ally, given a game and a strategy profile, we can associate with it a
tuple in which ther-th entry in the tuple is the number of coalitions
of sizer that can gain by a deviation. This tuple determines the
stability scoreof the strategy profile.

Given two strategy profiles, we need a way to decide which one
is more stable. A common practice in game theory is to prefer
strategy profiles that arein equilibrium, i.e. in which there are no
unilateral deviations. Since small coalitions are more likely to form
and maintain cooperation, a natural extension is to compare stabil-
ity scores of games with associated strategy profiles using alexico-
graphicordering of the corresponding vectors.1 For example, given
two n-person games,G1 andG2, with respective Nash equilibria
s1 and s2, the stability score of the former will be higher if the
number of beneficial deviations by pairs froms1 in G1 is smaller
than the number of beneficial deviations by pairs froms2 in G2.

While the existence of, say,19 coalitions that can deviate rather
than15 does not have much significance, we usually care about the
behavior in some parameterized family of games where parameters

1There are many ways to compare stability score vectors. Choos-
ing the “right” one highly depends on the context and underlying
assumptions. However in this paper we avoid such complications
by only comparing deviations of coalitions of the same size.
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may include number of players, size of the strategy space, etc. If the
score ofa is asymptotically lowerthan the score ofa′ (w.r.t. one of
the parameters), then this may indicate thata′ is substantially more
prone to coalitional deviations.

Moreover, when studying such a parametrized family, stability
scores may assist us in understanding how the parameters of the
game affect coalitional stability. This holds even if there is a unique
or a prominent equilibrium.

Stability scores are particularly useful in the context ofmecha-
nism design, as they allow us to quantify the coalitional stability of
various mechanisms and to compare mechanisms that operate in a
specific domain. To illustrate this point, we consider two central
mechanisms in what is perhaps the most widely studied economic
setup in recent years: ad auctions. We analyze in detail the Gener-
alized Second Price (GSP) auction and the Vickrey-Clarke-Groves
(VCG) auction, and compare their stability scores.

1.1 Related work

Related solution concepts in games
In the context of non-cooperative games approximate stability is
typically measured by the strength of the incentive required to con-
vince an agent to deviate, captured for example by the concept of
ǫ-Nash equilibrium. As discussed above, stability against collusion
is captured by concepts such as SE and SSE, but these often do not
allow a fine distinction between various outcomes.

In addition, coalitions are the key component incooperativegame
theory, and many variations of coalitional stability have been stud-
ied. While we are unaware of solutions concepts that quantify sta-
bility by measuring coalitional deviations, models of restricted co-
operation capture social constraints that may prevent the formation
of some coalitions [18]. Thus a (cooperative) game may not be
stable against every coalitional deviation (i.e. have an empty core),
but still satisfy all the coalitions that can form in practice. Recently,
some papers studied how such social context affects the stability of
the game [7, 17]. Moreover, even if some coalitioncan gain by
deviation, it may or may not do so: Members of the coalition might
intentionally avoid cooperation based on far-sighted prediction (an
assumption underlyingcoalition-proofnessfor example [4]), or just
fail to recognize the benefit in deviating. This is especially true if
the coalition is large. Stability scores do not assume a particular
social context or incentive structure, but simply try and minimize
the number of coalitions with profitable deviations.

Collusion and equilibria in ad auctions
Major results of previous work on ad auctions, characterized a spe-
cial family of equilibria of GSP the auction (used in practice), termed
Symmetric Nash Equilibria, or SNE (see Section 4.1 for details) [20].
SNEs have many attractive properties which make them a natu-
ral choice as outcomes of the GSP auction. Moreover, it has been
shown that the SNE leading to the lowest revenue for the seller
(termedLower Equilibrium(LE)), coincides with the natural equi-
librium of VCG where all bidders report their true values.

The above results led to a surge of papers comparing VCG and
the various equilibrium outcomes of GSP, under both public infor-
mation and private information settings [14, 19, 9, 15]. However,
these comparisons focused mainly on revenue, rather than on coali-
tional stability. The VCG mechanism was shown to be vulnerable
to collusion in various domains (see, e.g., [6, 3] for relatively re-
cent work), compared to a simple first-price (pay-your-bid) auc-
tion. The formal literature on collusion in second-price auctions
goes back to Graham and Marshall [12], while the literature on the
more involved matter of collusion in first-price auctions goes back

to McAfree and McMillan [16].

1.2 Our contribution
Stability scores are formally defined in Section 2, where we show

how they generalize well known solution concepts. In Section 3
we study strict stability scores in a simple family of congestion
games. The main purpose of this study is to demonstrate how sta-
bility scores can be used in order to compare different Nash equilib-
ria, and to measure how stability is affected by game’s parameters.
Moreover, while the studied family itself is quite simple, it is often
used to model real world situations such as load balancing. Our
analysis can give some intuition as to the main factors affecting
coalitional stability in such games.

The main results are in Section 4, where we present the VCG
and GSP mechanisms for ad auctions (adopting the original model
advocated for that setting in the seminal work by Varian [20] and
by Edelman et al. [8]), and show bounds on stability scores in these
auctions. In particular, we study how the stability of GSP varies
as a function of the distributions of agents’ valuations and slots’
click-through rates, thereby showing that under certain reasonable
conditions GSP is far more stable than VCG.

In Section 5 we introduce a modification to the VCG auction that
can be used to overcome the observed instability of VCG. In partic-
ular, we show that a revised VCG, in which a random reserve price
is introduced, induces truth-telling as a super-strong equilibrium.

Omitted proofs are available in the full version of this paper [10].

2. PRELIMINARIES

Games and equilibria
Let G = 〈N, {Ai}i∈N , {ui}i∈N 〉 be a normal form game, where
N = {1, . . . , n} is the set of players,Ai is the set of actions
available to playeri, andui : A → R is playeri’s utility, where
A = A1 × · · · × An is the set of joint actions (profiles), and for
everya ∈ A, ui(a) denotes the utility of playeri under action
profilea. The vector of actions of all players except playeri in the
profile a is denoted bya−i. An action profilea ∈ A is a Nash
Equilibrium (NE) if ui(a) ≥ ui(bi, a−i) for every agenti ∈ N
and every alternative actionbi ∈ Ai.

When considering coalitions, given an action profilea, we de-
note byaS the profile of agents inS, and byAS the set of all such
joint actions. The profile of all agents inN \ S is denoted bya−S .

Given a profile of actionsa ∈ A, bS ∈ AS is astrict deviation
from a if ui(bS , a−S) > ui(aS , a−S) for everyi ∈ S. The profile
a is termed aStrong Equilibrium(SE) if there are noS ⊆ N and
bS ∈ AS , such thatbS is a strict deviation froma.

One can also consider the following weaker notion of deviation.
Given a profile of actionsa ∈ A, bS ∈ AS is adeviationfrom a if
ui(bS , a−S) ≥ ui(aS , a−S) for everyi ∈ S and there existsj ∈ S
such thatuj(bS , a−S) > uj(aS , a−S) . The profilea is termed a
Super-Strong Equilibrium(SSE) if there is noS ⊆ N, bS ∈ AS

that is a deviation froma. Since every strict deviation is clearly a
deviation, every SSE is also a SE.

SSE captures the natural requirement that we should resist even
situations in which a deviation only benefits some of the deviators
without hurting others. A strategy profile isr-SE (respectively,r-
SSE) if there are no coalitions of size at mostr that have strict
deviations (resp., deviations).

Stability scores
The stability score of the profilea in gameG is defined as a vector
with n entries. For every1 ≤ r ≤ n, letDr(G,a) ∈ N (respec-
tively, SDr(G,a) ∈ N) be thenumberof coalitions of sizer that
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have deviations (resp., strict deviations) froma in G. While there
are many ways to impose an order on equilibria based on these
vectors, we believe that the following lexicographic order is partic-
ularly natural.

Given twon-player gamesG andG′ and two profilesa anda′ in
the respective games, we say that the pair(G,a) is more resistant
to deviations(or more stable) than (G′,a′), if there exists some
r ≤ n such thatDr(G, a) < Dr(G

′,a′) and the terms are equal
for everyr′ < r. We can similarly compare strict stability scores
to one another.

Our definition of stability score generalizes some widely used
notions of stability. For example,a is a Nash equilibrium (NE) of
G iff D1(G,a) = SD1(G,a) = 0. This means that the score of
a NE (by either definition) is always strictly better than the score
of any profile that is not a NE. Further, any profile that isr-SE has
a better strict-stability score than any nonr-SE profile. A similar
property holds w.r.t.r-SSE. As a different example, a profilea is
Pareto efficientin G iff Dn(G,a) = 0.

3. RESOURCE SELECTION GAMES
In this section we demonstrate how stability scores can be used to

measure and compare the stability of different outcomes in a given
game. To this end we focus on a very simple parametrized family,
where games are known to posses at least one pure equilibrium. A
natural choice is the family ofresource selection games(RSG) with
identical resources.

In a RSG there is a set of resourcesF = {1, . . . , m}, and a non-
decreasing cost functionc : [n] → R+, where[n] = {1, . . . , n}.
Each agenti ∈ N can select exactly one resourcej, and suffers a
cost (negative utility) ofc(nj), wherenj is the number of agents
that selected resourcej. RSGs arepotential gamesand thus always
admit a pure Nash equilibrium. In fact, any NEa of a RSGG =
〈F, N, c〉 is astrong equilibrium[13], and thus all equilibria have
the same (strict) stability score. However, this is no longer true if
the games are concatenated in a sequence.

Formally, asequentialRSG (SRSG) is a RSG withk steps. Thus
a strategy of an agentai ∈ F k requires selecting one resource in
each step (actions may not depend on the previous steps).2 We
next show that the number of coalitional deviations significantly
depends on the played equilibrium. We consider games where
m, n, k ≥ 2, focusing mainly on games with2 steps.

3.1 Counting deviations: an example
Suppose thatm = 4, n = 6, k = 2 and thatc(t) = t for all

t ≤ n. Any profile in which there are exactly 1 or 2 agents on
each resource (in each step) is a Nash equilibrium. However, these
equilibria differ in their stability against strict deviation of pairs.
Suppose that in the first step agents are partitioned{1, 2}, {3, 4},
{5}, {6}, and repeat the same actions in the second step. Denote
this profile bya. In this case the pair{1, 2} can strictly gain as
follows: agent1 joins agent5 (or 6) in the first step, and agent2
joins5 in the second. Thus the cost for each of the two agents drops
from 4 to 3. The pair{3, 4} can do the same, thusSD2(G,a) = 2.

On the other hand, consider a profileb where players play in the
first step as ina, and in the second step are partitioned{1, 3}, {2, 4},
{5}, {6}; then no pair can strictly gain by deviating. Notice though,
that this is still not a strong equilibrium, as the coalition{1, 2, 3, 4}
can still gain (agents2, 3 deviate in the first step, and1, 4 in the sec-
ond), thusSD2(G,b) = 0 andSD4(G,b) = 1.

Finally, in profilec agents are partitioned{1, 5}, {2, 6}, {3}, {4}
2Equivalently, the game can be described as a routing game, with
k sequential parts andm parallel edges in each part.

(in the second step), and this is a strong equilibrium, i.e.SDr(G, c) =
0 for all r. It therefore follows that w.r.t strict stability scoresc is
more stablethanb, which is more stable thana.

Note however that none of these profiles is an SSE or even2-
SSE. More generally, inanyprofile in G there is at least one pair
(in fact two) that shares a resource and thus they have a (weak)
deviation where just one of them gains. Thus for every profilep in
G, we have thatD2(G,p) ≥ 2.

3.2 Bounding stability scores in two-step RSG
The example above shows that different NE profiles in a particu-

lar game may differ in their stability to deviations of pairs or larger
coalitions. We want to get a better picture of the gap between the
most and least stable NE profiles, focusing on pair deviations. For
the results in this section, we will restrict our cost function to be
convex.

A nondecreasing cost functionc : [n] → R is said to beconvex
if it has an increasing marginal loss; i.e.,c(i + 1) − c(i) ≤ c(j +
1) − c(j) for every i < j. Note that when facing a convex cost
function, agents in an RSG try to minimize the maximal number of
agents using a single resource. If the number of agents on every
resource is the same, we say that the partition isbalanced. If these
numbers differ by at most one, we say that the partition isnearly
balanced.

Let G be a two-step game with a convex cost function. Note that
whenn mod m = 0, any NE is a balanced partition of agents to
resources (in each step). In such partition, no coalition can gain by
deviating, as at least one deviating agent will end up paying more
in expectation. If, in addition, costs arestrictly convex, then even
weak deviations are impossible. Since in this setting every NE is
an SE (and even an SSE), stability scores are trivial. We therefore
assume thatn mod m = q > 0.

Let â be the profile with the highest number of pair deviations,
and leta∗ be the profile with the lowest number of pair deviations.

PROPOSITION 1. SD2(G, â) = Θ
(

qn2

m2

)
.

PROOF SKETCH OF LOWER BOUND. We note that in̂a agents
play some nearly balanced partition in the first step, and repeat the
same partition in the second step. Thus some resources (calledfull)
will have⌈n/m⌉ agents, and the others will have⌊n/m⌋ agents. A
crucial observation used in the proof (and in the proofs of the other
propositions in this section), is that a pair has a strict deviation if
and only if it shares a full resource in both steps. Then (similarly
to the example above) one agent switches to a non-full resource in
the first step, and the other does the same in the second step.

Note that whenq = Θ(m), which is a typical situation, there are

overΩ
(

n2

m

)
deviating pairs.

We find that the best NEa∗ is significantly better than̂a.

PROPOSITION 2. SD2(G,a∗) = O
(

n2

m2

)
. Further, if either

n < m2 or q ≤ m
2

, thenSD2(G,a∗) = 0, i.e. a∗ is 2-SE.

In order to achieve the upper bound asserted in the proposition we
define a profile that tries to scatter in the second step agents that
shared a resource in the first step. As a qualitative conclusion, we
see that in order to minimize possible deviations, agents should
form a partition in the second step that differs as much as possible
from the partition in the first step.

3.3 SRSGs with many steps
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The following proposition quantifies the stability score of a ran-
dom pure NE in a RSG withk steps. Note that the set of pure NEs
coincides with the set of profiles that are nearly balanced in each
step.

PROPOSITION 3. LetG be an SRSG withk steps and a convex
cost function, and leta be a random NE inG. The expected number
of deviating pairs inG is SD2(G,a) ∼=

(
n
2

) (
1− (1 + α)e−α

)
,

whereα = q(k−1)

m2 .

We can summarize how the parameters affect stability as follows.
If the number of stepsk is small, and the number of resourcesm
increases, thenα→ 0, and thusSD2(G,a)→ 0 as well (i.e. there
are very few pairs that can deviate). Conversely, when the number
of steps grows (in particular whenk ≫ m2

q
), then almost every

pair can deviate with a high probability.
As a corollary of Proposition 3 whenk = 2, we get the lower

bound of Proposition 1 for the caseq = Θ(m), as

SD2(G, â) ≥
(

n

2

)(
1−

(
1− 1

m

)(
1 +

1

m

))
= Ω

(
n2

m

)
.

4. STABILITY SCORES IN AD AUCTIONS
Having showed how stability scores can be used to analyze coali-

tional stability in simple games, we next turn to prove our main re-
sults. We compute the stability scores of the VCG and GSP ad auc-
tions, which are central to the recent literature on economic mecha-
nism design. Since both auctions admit strong equilibria, we do not
consider strict deviations, and instead focus our analysis on weak
deviations and the scores they induce.

4.1 Ad auctions: model and notations
An ad auction hass slots to allocate, andn ≥ 2s bidders,3 each

with valuationvi per click [20]. Every slot1 ≤ j ≤ s is associated
with a click-through rate (CTR)xj > 0, wherexj ≥ xj+1. For
mathematical convenience, we definexj = 0 for every j > s.
Throughout the paper we make the simplifying assumptions that
CTRs are strictly decreasing (i.e.,xj > xj+1), and thatvi 6= vj

for all i 6= j. We denote by bold letter the corresponding vectors of
valuations, CTRs, and bids (e.g.b = (b1, . . . , bn)).

A bidder i that has been allocated slotj gainsvi per click (re-
gardless of the slot), and is chargedpj per click. Thus, her total
utility is given byui = (vi − pj)xj .

VCG. In the VCG mechanism every bidderi submits a bidbi,
and the mechanism allocates thej’th slot, j = 1, . . . , s, to the
j’th highest bidder. Each bidderj is charged (per click) for the
“harm” she poses to the other bidders, i.e., the difference between
the welfare of biddersk 6= j if j is omitted and their welfare when
j exists.

It is well known that the VCG mechanism istruthful, meaning
that reporting true valuationsbj = vj is a (weakly) dominant strat-
egy for all bidders. In particular, it is a Nash equilibrium.

Suppose that bidders’ valuations are sorted in non-increasing or-
der. Assuming truthful bidding (i.e.bj = vj for all j), each bid-
deri ≤ s is allocated sloti, and pays

pV CG
i =

∑

s+1≥j≥i+1

xj−1 − xj

xi
· vj . (1)

3When discussing deviating pairs it is sufficient to assumen > s,
which is a typical situation. Also, all of our results can be easily
adjusted to cases with fewer bidders.

GSP. In the GSP auction, slotj is given to thej’th highest bidder
(as in the VCG auction). Denote byj the bidder who is getting slot
j. The charge of bidderj = 1, . . . , s equals to the bid of the next
bidder; i.e.,pj = bj+1. For mathematical convenience, we define
bj+1 = 0 for j ≥ n.

GSP equilibria. Varian [20] identifies a set of natural Nash
equilibria of the GSP auction, termedenvy free NEor Symmetric
NE (SNE), which are characterized by a set of recursive inequal-
ities. Varian shows that all SNE’s satisfy some very convenient
properties. First, in SNE no bidder wants to swap slots with any
other bidder.4 Second, SNEs are efficient in the sense that bidders
with higher valuations always bid higher (and thus get better slots).
This allows us to assume that valuations are also sorted in non-
decreasing orderv1 ≥ v2 ≥ · · · ≥ vn. Lastly, SNEs can be easily
computed by a recursive formula, which makes them especially at-
tractive for computerized and online settings.

The two equilibria that reside on the boundaries of the SNE
set, referred to asLower Equilibrium(LE) andUpper Equilibrium
(UE), are of particular interest. We denote the LE and UE profiles
by bL = (bL

i )i∈N andbU = (bU
i )i∈N , respectively. The bids in

the LE, for every2 ≤ i ≤ s + 1, are given by

bL
i xi−1 = vi(xi−1 − xi) + bL

i+1xi =
∑

s+1≥j≥i

vj(xj−1 − xj).

In particular, since CTRs are strictly decreasing, we get thatbi >
bi+1 for all i ≤ s. A central result by Varian [20] is that the LE
equilibrium induces payments, utilities, and revenue equal to those
of the truthful outcome in VCG. It is therefore of great interest to
compare the stability of these seemingly identical outcomes in both
mechanisms.

The bids in the UE, for every2 ≤ i ≤ s + 1, are given by

bU
i xi−1 = vi−1(xi−1−xi)+bU

i+1xi =
∑

s+1≥j≥i

vj−1(xj−1−xj).

In the remaining of this section we measure the stability of the
VCG and GSP mechanisms. Our results indicate that while the
mechanisms have seemingly identical outcomes, for many natural
valuation and CTR functions, GSP is far more stable than VCG.

4.2 Deviations in VCG
Recall that the payment for bidderi is a weighted average of

reported (and by truthfulness, the actual) values of biddersi + 1 ≤
j ≤ s + 1 (see Eq. (1)).

We next characterize the structure of a set of deviatorsR of size
r. We say that a coalitionR of r bidders has apotential to deviate
under VCG (or that it is apotential coalition), if either: (a) the
groupR contains exactlyr winners(i.e., bidders that are allocated
a slotj ≤ s); or (b) the setR is composed oft < r winners, the
first loser, and ther−t−1 bidders that directly follow (i.e., bidders
s + 1 throughs + r − t).

We denote the number of potential coalitions of sizer by Mr.
We argue that it only makes sense to count potential coalitions
when considering a deviation.

To see why, note first that all bidders rankeds + r or worse have
no effect on the payment of any other bidder, and can be ignored.
Second, the bidders rankeds + 2, . . . , s + r − 1 are only effective
if they allow the bidder allocated slots + 1 to lower her bid. Thus
non-potential coalitions must contain at least one bidder that has
no contribution at all to the deviation, and can therefore be ignored.

4When swapping with a bidder in a worse slot, this requirement
coincides with the one implied by NE. However when swapping
with a bidder in a better slot, envy-freeness is slightly stronger.
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Note for example that while adding dummy bidders (with valuation
0) increases the total number of coalitions, the number of potential
coalitions remains unchanged.

It is easy to verify that there are
(

s
r

)
coalitions of type (a), and∑r−1

t=1

(
s
t

)
coalitions of type (b). ThusMr =

∑r
t=1

(
s
t

)
. Interest-

ingly, in VCG every potential coalition can actually deviate.

PROPOSITION 4. Under the truthful equilibrium of VCG, de-
noted byT , any potential coalition has a deviation, i.e.,
Dr(V CG, T ) = Mr for all 2 ≤ r ≤ s.

PROOF. LetR be some potential coalition, andi∗ ∈ argmini∈R vi.
We call i∗ the indifferent bidder. Suppose that every agenti ∈ R
reportsv′

i so thatvi > v′
i > vi+1. Clearly, this has no effect

on slot allocation. In coalitions that include only winners, all the
agents except agenti∗ (which is indifferent) pay strictly less than
their original payments, as the payment monotonically depends on
the valuations of the other members ofR. In potential coalitions
other type, whereR includest winners andr − t losers, allt win-
ners strictly gain.

4.3 Deviations in GSP
Since LE is a Nash equilibrium, we have thatD1(GSP, LE) =
SD1(GSP, LE) = 0. In fact, as in the VCG mechanism, no coali-
tion has a strict deviation from the LE profile in GSP. This state-
ment is not as trivial in the GSP mechanism, but it follows from
Lemma 9 toward the end of this section. The same analysis holds
for the UE in GSP. We next turn to evaluate the resistance of GSP
to (non-strict) deviations, focusing on the lower equilibrium. As in
the previous section, we only count potential coalitions as all other
coalitions necessarily contain redundant participants.

Pair deviations: characterization
We begin by characterizing all deviations by pairs of agents.

Lower equilibrium. It is easy to see that for everyi ≤ s, the pair
of agents(i, i + 1) (calledneighbors) can always (weakly) gain as
a coalition, by having agenti + 1 lowering her bid tob′

i+1, so that
bi+1 > b′

i+1 > bi+2.5 In this case, agenti + 1 is not affected, but
agenti gains the differencexi(bi+1 − b′

i+1) > 0. It is also clear
that bidders rankeds + 2 or worse can never be part of a deviating
pair. In terms of the stability score, this means that

s ≤ D2(GSP, LE) ≤M2 =

(
s + 1

2

)
.

Consider the pair of agents(k, j), wherek < j ≤ s + 1. We
want to derive a sufficient and necessary condition under which the
pair(k, j) has a deviation. A simple observation is that given some
Nash equilibrium, for an agenti to strictly gain by being allocated
a new sloti′ 6= i, the bidbi′+1 must strictly decrease, since oth-
erwise this would also be a deviation fori as a single agent (in
contradiction to equilibrium). Therefore, either (1)k moves to a
worse slotk′ = j − 1, andb′

j < bj ; or (2) j moves to a better slot
j′ = k, k is pushed down tok′ = k + 1, andb′

k < bk. However, if
j gains in case (2), then this means she is envy in bidderk. This is
impossible, as we assumedb is an SNE. Thus, the only deviation
is wherek′ = j − 1; j′ = j. Further, this is a deviation only if
bj−1 > b′

k > b′
j ≥ bj+1. Note that: (i)b′

k can get any value in
this range without affecting the utility ofk or j, (ii) the utility of
j remains the same, and (iii) the most profitable deviation fork is
one in whichb′

j = bj+1 (breaking the tie in favor ofj).

5The assumption that CTRs are strictly decreasing is required here,
as otherwise bidderi + 1 may not be able to lower her bid.

The discussion above establishes a necessary condition for a pair
deviation, and asserts that in every pair deviation ofk, j only agentk
can strictly gain, wherek < j. We next complete the characteriza-
tion by establishing a sufficient condition for pair deviation.

For the following results, we denotea = xj−1 − xj (for our
fixed j), andwi =

xi−1−xi

xj
for all i ≤ s + 1.

LEMMA 5. Suppose that the pairk, j deviates from LE, by mov-
ing agentk to slot k′ = j − 1. Let u(k), u′(k) be the utility of
agentk before and after the deviation, then

u(k)−u′(k) ≥
j−1∑

t=k+1

(xt−1−xt)(vk−vt)−a·vj +a

s+1∑

i=j+1

wivi.

Moreover, in the optimal deviation for agentk the last inequality
holds with an equality.

PROOF. Suppose agentj lowers her bid tob′
j = bj+1 + ǫ where

ǫ ≥ 0 (so j keeps her slot). For anyx,v the utility of agentk
changes as follows:

u(k)− u′(k) = (vk − bk+1)xk − (vk − (bj+1 + ǫ))xj−1

= (xk − xj−1)vk −
s+1∑

t=k+1

(xt−1 − xt)vt

+

s+1∑

i=j+1

xj−1(xi−1 − xi)

xj
vi + ǫxj−1

=

j−1∑

l=k+1

(xl−1 − xl)vk −
j∑

t=k+1

(xt−1 − xt)vt

+

(
xj−1

xj
− 1

) s+1∑

i=j+1

(xi−1 − xi)vi + ǫxj−1

=

j−1∑

t=k+1

(xt−1 − xt)(vk − vt)− (xj−1 − xj)vj

+
xj−1 − xj

xj

s+1∑

i=j+1

(xi−1 − xi)vi + ǫxj−1

=

j−1∑

t=k+1

(xt−1 − xt)(vk − vt)− a · vj + a

s+1∑

i=j+1

wivi + ǫxj−1.

The inequality follows sinceǫ ≥ 0. In the optimal deviationǫ =
0 in which case we get an equality. Note that

∑s+1
i=j+1 wivi is a

weighted average of valuations. In particular, it is always between
vs+1 andvj+1.

As a direct corollary from Lemma 5, we get that in LE the pair
k, j (wherek < j − 1), has a deviationif and only if

j−1∑

t=k+1

(xt−1 − xt)(vk − vt) < a · vj − a

s+1∑

i=j+1

wivi. (2)

Upper equilibrium. It is easy to check that a similar characteri-
zation to Eq. (2) applies to the UE. However, the conditions differ
with respect to bidders that are two positions apart.

PROPOSITION 6. Given a UE, the pair of agentsi, i + 2 has a
deviation for everyi < s.

This result holds under all valuation and CTR functions; hence
D2(GSP, UE) ≥ 2s− 1. This means that the UE may be slightly
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❳❳❳❳❳❳❳❳❳Valuations
CTR ← concave→ ← convex→

β-concave Linear β-convex

concave 2-concave All
(

s+1
2

)
All
(

s+1
2

)
-

Linear Ω(s2) Θ(s
√

s) O(s · logβ(s))
convex 2-convex - s s

Table 1: The table summarizes the number of pairs that have
a deviation, i.e.,D2(GSP, LE). When one function is strictly
concave and the other is strictly convex, the score may depend
on the exact structure of both functions.

less stable than LE (whose stability is expressed in Theorem 7).
Yet, it is not too difficult to show that the number of pair deviations
from UE and LE are asymptotically the same. Therefore, in the
remainder of this section we focus on stability scores of LE.

Pair deviations: quantification
It turns out that the asymptotic number of pair deviations strongly
depends on the shape of both the CTR function and the valua-
tion function. In particular, convexity (as well as concavity and
β-convexity) will play a major role in our results. Letg1, . . . , gm

be a monotonicallynonincreasingvector.
Similarly to the way defined convex cost functions in Section 3,

we say thatg is convexif it has a decreasing marginal loss; i.e.,
gi − gi+1 ≥ gj − gj+1 for every i < j. Similarly, if g has an
increasingmarginal loss then it isconcave.

Note that linear functions are both convex and concave. A spe-
cial case of convexity (resp., concavity) is when the marginal loss
decreases (resp., increases) exponentially fast.

Letβ > 1. We say thatg isβ-convexif gi−1−gi ≥ β(gi−gi+1)
for everyi. Similarly, g is said to beβ-concaveif β(gi−1 − gi) ≤
gi − gi+1 for everyi. 6

Intuitively, as either valuations or CTRs are “more” convex,7 a
bidder who deviates by moving to a lower (i.e., worse) slot faces
a more significant drop in her utility. Thus we can hope that pairs
that are sufficiently distant from one another will not be able to
deviate jointly. This intuition is further formalized and quantified
in the remainder of this section. For convenience, the results are
summarized in Table 1.

The next proposition demonstrates that convexity induces greater
stability.

THEOREM 7. Suppose that both CTR and valuation functions
areconvex. The number of pairs with deviations in the Lower equi-
librium can be upper bounded as follows.

(A) D2(GSP, LE) = O(s
√

s).

(B) if CTRs areβ-convex thenD2(GSP, LE) = O(s logβ s).

(C) if valuations areβ-convex, for anyβ ≥ 2, then only neighbor
pairs can deviate. I.e.,D2(GSP, LE) = s.

We present the proof of the first statement, so as to demonstrate the
proof technique.

PROOF OF7(A). Recall thata = xj−1 − xj > 0. A crucial
observation is that

∑s+1
i=k+1 wivi is in fact a weighted average of

6Lucier et al. [15] studied GSP auctions withwell-separatedCTR
functions, which is a closely related term. In particular, a1

β
-well

separated function is alsoβ-convex.
7When referring to convexity of CTR/valuation functions, we only
consider the firsts + 1 values.

valuations, where the weightwi is proportional to the difference
xi−1−xi. Therefore this average is biased toward low values when
CTR is convex, and toward high values when it is concave.

Also, since CTRs are convex, we have that for alli < j, xi−1 −
xi ≥ a. Thus by Lemma 5,

u(k)−u′(k) ≥ a

j−1∑

t=k+1

(vk − vt)− a · vj + a

s+1∑

i=j+1

wivi

= a

(
j−1∑

t=k+1

(vk − vt) +

s+1∑

i=j+1

wivi − vj

)

≥ a

(
j−1∑

t=k+1

(vk − vt) + avg
s+1≥i≥j+1

(vi)− vj

)
. (3)

Therefore, in order to prove that the pairj, k can deviate, it is nec-
essary to show j−1∑

t=k+1

(vk − vt) < vj − avg
s+1≥i≥j+1

vi. (4)

We note that under linear CTRs, all inequalities become equalities
(in which case Equation (4) is also a sufficient condition). Observe
that closer pairs are more likely to deviate. E.g. for pairs s.t.j =
k+2, it is sufficient thatvk−vk+1 < vk+2− avg

s≥t′≥k+3

vt′ to have a

deviation. Leth = j−1−k ≥ 1, andz = vk−vj−1 = vk−vk+h.

From convexity ofv it holds that for allh′ < h,
vk−vk+h′

h′ ≥
vk−vk+h

h
= z

h
, thus for the LHS of Eq. (4),

j−1∑

t=k+1

(vk − vt) ≥
j−1∑

t=k+1

z
t− k

h
=

z

h

h(h + 1)

2
=

h + 1

2
z. (5)

Bounding the RHS of Eq. (4), we have

vj− avg
s+1≥i≥j+1

vi ≤ vj − vavg{s+1≥i≥j+1} (convexity ofv)

≤ vj − v⌈
j
2
+ s

2

⌉ = vj − v⌈j+ s−j
2 ⌉

≤
⌈(s−j)/2h⌉∑

i′=1

(vj+(i′−1)h − vj+i′h) ≤
⌈(s−j)/2h⌉∑

i′=1

(vk − vk+h), (6)

which is at most
⌈

s−j
2h

⌉
z. By using the bounds we showed on both

sides of the equation, condition (4) impliesh + 1 <
⌈

s−j
h

⌉
, which

must be false wheneverh + 1 = j − k >
√

s. Therefore each
winnerk ≤ s can deviate with at most

√
s other bidders, and there

can be at mosts
√

s such pairs.

It is evident from Theorem 7, that convexity can guarantee some
level of stability, and further, that “more” convexity can induce
more stability. Our next result complements this observation, by
showing thatconcavityof valuation and CTR functions affects sta-
bility in the opposite direction.

THEOREM 8. Suppose that both CTR and valuation functions
are concave. The number of pairs with deviations in the Lower
equilibrium can be lower bounded as follows.

(A) D2(GSP, LE) = Ω(s
√

s).

(B) if CTRs areβ-concave for anyβ > 1, thenD2(GSP, LE) =
Ω(s2) (i.e. a constant fraction of all pairs).

(C) if valuations areβ-concave, for anyβ ≥ 2, thenall pairs can
deviate. I.e.,D2(GSP, LE) =

(
s+1
2

)
= M2.
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A linear function is both convex and concave. Therefore, in the
special case where both CTRs and valuations are linear, we obtain
an asymptotically tight estimation ofD2(GSP, LE).

Deviations of more than two agents
We first characterize the structure of such deviations.

LEMMA 9. Suppose thatR ⊆ N is a coalition that gains by a
deviation, and letbj , b

′
j denote the bids ofj ∈ R before and after

the deviation, respectively. Then the following hold:

(a) There is at least one bidderi∗ ∈ R that does not gain anything
from the deviation; this bidder is called theindifferent bidder.

(b) There is at least one bidderf ∈ R s.t. R \ {f} still has a
deviation; this bidder is called afree rider.

(c) For all j ∈ R, eitherb′
j < bj , or the utilities of all agents inR

(includingj) are unaffected by the bid ofj.

In order to prove the Lemma, we must show that the bidder that
is ranked last among the deviators is an indifferent bidder (i∗). The
free rider (f ) is either the bidder that is ranked first among the de-
viators, or some bidder that is isolated of all other deviators. In
addition, it is shown that bidders that move to a better slot either
strictly lose, or cause some other deviator to strictly lose.

As a direct corollary of Lemma 9, given any coalitionR of size
≥ 3, the coalitionR \ {f} can also deviate. By induction, there-
fore, a coalitionR that can deviate always contains a pair that can
deviate. Moreover, by part (c) of Lemma 9, it follows that given
a deviating coalition of size≥ 2, it can be extended by adding a
bidder who does not change her bid. As a result, a setR can de-
viate if and only if it contains a pair that can deviate. This crucial
observation facilitates the computation of the number of deviations
by coalitions of sizer for anyr ≥ 3.

Recall thatMr denotes the number of potential coalitions of size
r, and that under VCG auction all of these coalitions actually have
a deviation. Clearly,Dr(GSP, LE) ≤ Mr. We next show how
the accurate number of coalitions asymptotically depends on the
size of the coalitionr and on the number of slotss.

PROPOSITION 10. If both CTRs and valuations are convex, then

Dr(GSP, LE) ≤Mr ·O
(

r2

√
s

)
.

In contrast, if both CTRs and valuations are concave, then

Dr(GSP, LE) ≥Mr · d ·
(
1− exp

(
−Ω

(
r
√

r√
s

)))

for any positive constantd < 1.

That is, at least in the convex case the number of potential devia-
tions under GSP is significantly smaller than under VCG.

This result also establishes an almost sharp threshold for the case
of linear CTRs and valuations. In particular, for everyr ≫ 3√s,
almost all coalitions of sizer can deviate, while the proportion of
coalitions of sizer ≪ 4√s that can deviate goes to 0 (whenr is
fixed and ass grows).

Proposition 10 confirms that the GSP auction is far more stable
than the VCG auction against collusions of relatively small coali-
tions (at least when CTR and valuations are convex).

5. ELIMINATING GROUP DEVIATIONS

5.1 VCG with a reserve price
Consider a variant of the VCG mechanism that adds a fixed re-

serve pricec. That is, only bidders that reports a value ofc or higher
get a slot, and payments are computed ignoring the other bidders
(i.e. replacing their values withc). It is easy to verify that truth-
telling remains a dominant strategy, and that Proposition 4 remains
valid if the values of all bidders are strictly abovec. However,
a bidder whose value is exactlyc will not join any coalition: by
lowering her reported value she will lose her current slot for sure,
whereas previously she enjoyed a positive utility.

Now, consider a VCG mechanism that chooses a reserve price as
follows. With probabilityq, the reserve price is chosen randomly
from a sufficiently large interval, and with probability1 − q, it is
set to 0. Crucially, the probability distribution of the reserve price
is common knowledge, but agents submit their reports before its
realization is revealed. Let us denote the proposed mechanism by
VCG∗. While the proposed adjustment seems small, it results in a
dramatic increase of stability.

THEOREM 11. If s ≥ n, then truth-telling is a SSE in VCG∗.

PROOF. First observe that VCG∗ is a lottery over strategyproof
mechanisms, thus no agent has an incentive to deviate unilaterally.
Suppose by way of contradiction that there exists a deviating coali-
tion, and letR be such a coalition of minimal size. SinceR is mini-
mal, the indifferent agenti∗ ∈ R (as defined in Prop. 4) must lower
her reported value, otherwise the coalitionR \ {i∗} can also devi-
ate. Assume, therefore, thatv′

i∗ = vi∗−ǫ for someǫ > 0. It is easy
to verify thati∗ cannot gain in any outcome of the mechanism. In
contrast, there is a non-zero probability thatc is chosen in the range
(v′

i∗ , vi∗), in which case the utility ofi∗ becomes 0, compared to
(vi∗ − c)xi∗ > 0 under truth-telling. Therefore, agenti∗ loses in
expectation, contradicting the existence of a coalitionR.

By the last theorem, VCG∗ guarantees stability whenevern ≤ s.8

However, if s < n the bidder rankeds + 1 can serve as the in-
different bidder of any coalition. Consequently, VCG∗ does not
posses a SSE. That is, since the utility of agents + 1 is always 0,
she will not be discouraged by the random reserve price, even when
her reported value falls below the reserve price.

In order to deal with the lack of slots (i.e., the case in which
s ≤ n), we introduce a modified VCG∗ mechanism, which always
induces truth-telling as a SSE.

Consider the following modification to VCG∗, termed VCG∗
λ.

Let 0 < λ < 1
n

. Given some slotj ≤ s with a CTR ofxj > 0, it is
allocated to the bidder that is rankedj with probability1−λ, and is
allocated to the bidder that is rankeds + 1 with probabilityλ. This
modification effectively creates a new slots + 1, whose expected
CTR is λxj , whereas the new (expected) CTR of slotj becomes
(1− λ)xj . This procedure can be applied to the desired additional
n− s slots. In particular, a possible instantiation is where the new
expected CTR of positions will be (1 − (n − s)λ)xs, and there
will be n − s new slots with an expected CTR ofλxs. Since the
new auction hasn slots, the mechanism VCG∗ can be performed
to eliminate all coalitional deviations.

The careful reader will notice that by changing the CTRs, the
equilibrium in the new auction may change. However, as long as
the order of the slots is preserved, the equilibrium allocation is not
affected, and this is ensured by satisfyingλ < 1

n
. Moreover, the

new payment differs from the original payment by at mostv1 ·n ·λ;
thus for a sufficiently smallλ the difference is negligible. As a
result, we get the following corollary.
8The proof in fact shows a stronger result: truth-telling is a SSE in
dominant strategies. Thus VCG∗ is group-strategyproof.
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COROLLARY 12. Truth-telling is a SSE in mechanism VCG∗
λ

for every0<λ< 1
n

. Moreover, the payments and revenue of VCG∗
λ

can be arbitrarily close to the payments and revenue of VCG.

5.2 GSP with a reserve price
As evident from the results in the last section, stability of the

VCG mechanism is significantly increased by augmenting the mech-
anism with a random reserve price and additional subtle random-
ization. It might be tempting to apply the same technique to the
GSP mechanism, in an attempt to increase its stability, while main-
taining the possibility to achieve a higher revenue than VCG. Un-
fortunately, this approach fails since (in contrast to VCG) adding a
reserve price does not preserve its original set of equilibria.

To see this, consider a GSP mechanism with a fixed reserve price
c. Bidderi is affected by the reserve price if either: (I)vi > c > bi,
in which case bidderi has an incentive to raise her bid, as other-
wise she will lose the slot; or (II)vi < c < bi, in which case
she has an incentive to lower her bid, as otherwise she will pay
more than the slot’s worth to her. In both cases it follows that the
modified GSP mechanism no longer preserves the SNE properties
characterized by Varian (even with respect to unilateral deviations).
The reason for the difference between VCG and GSP is that VCG
induces truthful revelation in equilibrium; hence cases (I) and (II)
suggested above cannot be realized.

6. DISCUSSION AND FUTURE WORK
Our main contribution in this paper is the introduction ofstability

scores— a new stability measure for game equilibria. We demon-
strated how stability scores can be used to compare equilibria in
congestion games and to draw qualitative results regarding proper-
ties of the game and the profiles that increase coalitional stability.

Auctions. Our results indicate that for a prominent class of CTR
and valuation functions, GSP is far more stable than VCG.9

It is known that the LE of GSP generates exactly the same rev-
enue as VCG, and any other SNE of GSP generates an even higher
revenue. This may suggest that GSP is better than VCG with re-
spect to both revenue and stability. However, a relatively simple
modification to the VCG mechanism induces a randomized mecha-
nism that eliminates all coalitional deviations, thus turning it into a
highly stable mechanism. An open question is whether our results
still hold when ads’ quality is also considered (see [20]).

Equilibria selection and mechanism design. Analysis of sta-
bility scores can be applied to various games and mechanisms. In
particular, in games that have multiple Nash equilibria such anal-
ysis can aid in selecting the an equilibrium. Understanding how
coalitional stability is affected by properties of the game will help
us to play better as players, and to create better games as designers.

Toward a realistic picture of coalitional stability. Solution con-
cepts such asǫ-NE (or ǫ-SE) quantify the benefit an agent or coali-
tion can get from a deviation. Therefore they offer stability un-
der a relaxed notion of self-interest (i.e. agents will only bother
to deviate for some substantial gain). In contrast, stability scores
still assume purely self-interested agents, but relax a different as-
pect of coalitional rationality. Practical limitations on information,
communication or trust may mean that a coalition of agents will
not collude even if they have a potentially high incentive to do so.
Other models such as Myerson’s [18] assume that limitations on
collusion are given in an explicit and structured form.

9Empirical studies indicate that CTRs on common platforms are
indeed convex, see [5].

In future research we may wish take a combined approach to
coalitional stability, considering both known and unknown limita-
tions on collusion, possibly attributing more importance to coali-
tions with a stronger incentive to deviate. Such models will enable
us to better predict realistic outcomes of games, and to improve the
mechanisms we design.
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ABSTRACT
In many real-world settings, the structure of the environment con-
strains the formation of coalitions among agents. Therefore, ex-
amining the stability of formed coalition structures in such set-
tings is of natural interest. We address this by considering core-
stability within various models of cooperative games with struc-
ture. First, we focus on characteristic function games defined on
graphs that determine feasible coalitions. In particular, a coalition
S can emerge only if S is a connected set in the graph. We study
the (now modified) core, in which it suffices to check only feasi-
ble deviations. Specifically, we investigate core non-emptiness as
well as the complexity of computing stable configurations. We then
move on to the more general class of (graph-restricted) partition
function games, where the value of a coalition depends on which
other coalitions are present, and provide the first stability results in
this domain. Finally, we propose a “Bayesian” extension of parti-
tion function games, in which information regarding the success of
a deviation is provided in the form of a probability distribution de-
scribing the possible reactions of non-deviating agents, and provide
the first core-stability results in this model also.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Economics

Keywords
cooperative game theory, coalition formation, core

1. INTRODUCTION
Cooperative game theory, providing as it does a rich framework
for the study of coalition formation among rational players, has in
recent years attracted much attention in multiagent systems as a
means of forming teams of autonomous agents. The vast major-
ity of work in cooperative game theory assumes that, given a set
of agents, any coalition among them is allowed to form. However,
in many circumstances the environment imposes restrictions on the
formation of coalitions: for reasons that might range from physi-
cal limitations and constraints to legal banishments, certain agents

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

might not be allowed to form coalitions with certain others. In
many multiagent coordination settings, agents might be restricted
to communicate or interact with only a subset of other agents in
the environment, due to limited resources or existing physical bar-
riers. In such settings, the environment can be seen to possess some
structure that forbids the formation of certain coalitions. This can
be captured by an undirected graph providing a path connecting
any two agents that can belong to the same coalition.

Specifically, sensor networks, communication networks, or trans-
portation networks, within which units are connected through bi-
lateral links, provide natural settings for cooperative games defined
over graphs. Another example is provided by hierarchies within an
enterprise, where the underlying graph corresponds to a tree.

In this paper we consider various models of cooperative games in
structured environments as above and study the stability of coali-
tion structures in such settings. Stability is one of the key issues
in cooperative game settings and examines whether agents have an
incentive to depart from an existing coalition structure. As an ex-
ample, airlines participating in a certain alliance may be willing
to move to an alliance that could guarantee them higher profits.
Here we focus on the celebrated cooperative stability concept of
the core [21], which is the set of outcomes that are stable against
deviations by any subset of agents. In our work, the definition of
the core has to be modified so that the only allowed deviations are
those by sets of connected coalitions.

Against this background, the rest of the paper is structured as fol-
lows. We start with the usual characteristic function games (CFGs)
setting, under the assumption, however, that the games are defined
over graphs. We introduce to the community recent results from
the economics literature, which establish the non-emptiness of the
core in games defined over a tree, and determine a procedure to find
a core element in such games [5]. We then focus on three natural
graph structures—lines, trees and cycles—and study the computa-
tional problems of (i) deciding the non-emptiness of the core; (ii)
finding an element in the core; and (iii) checking if a given outcome
belongs to the core. We show certain positive results when the un-
derlying graph is a line or a cycle, and when it is a tree and the game
is superadditive. These results are interesting from an applications
point of view, since many computer or sensor networks exhibit a
ring or tree topology. However, for non-superadditive games over
trees, certain negative complexity results are obtained.

Then, we move on to the more general class of partition func-
tion games (PFGs) over graphs, and initiate the study of stability in
that setting. In PFGs, the value of a coalition depends on the par-
tition currently in place [25]. Defining the core in the presence of
externalities is complicated and there is no unanimously accepted
solution as potential deviators in PFGs have to consider how non-
deviators—the “residual” players—would react to their deviation.
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Since residual players can form any structure among themselves,
the value of any deviation relies on the resulting partition across
the space of agents. A common treatment in the literature is for the
deviators to either pessimistically assume that non-deviators will
partition so as to hurt them the most, or to optimistically assume
that the partition of the non-deviators will be the best possible [23,
8].We adopt both those views in turn, and provide the first core non-
emptiness results in PFG settings with structure. Operating first un-
der the assumption of pessimism, we define the (pessimistic) core
and then show that for any PFG, there is a corresponding CFG, such
that the core of the CFG is contained in the core of the PFG (but the
opposite is not always true). Interestingly, this differs from what is
known to hold for the class of PFGs where the coalition of all agents
is the partition with maximum social welfare (in which case the two
cores coincide [8]). This correspondence enables us to generalize
the CFG-related results, and show that the core is non-empty for
PFGs defined over trees. Furthermore, the same process as before
can be used to obtain a core-stable configuration in a PFG defined
over a tree, however this will not generally run in polynomial time.
We then adopt an optimistic view regarding the behaviour of non-
deviators, and show that, unlike the pessimistic one, the optimistic
core may be empty in PFGs over trees and even over lines. It re-
mains an interesting future work topic to obtain efficient algorithms
for special cases of PFGs. As explained in Section 3.1, this seems
to be computationally much harder, since it typically involves enu-
meration over too many partitions. We are not aware of any other
work that has tackled stability in PFG settings with structure.

Finally, we propose a natural extension of PFGs, namely Bayesian
partition function games (BPFGs). In short, instead of resorting
to pessimism or optimism, a coalition S of potential deviators in
BPFGs assumes that the reaction of the residual players (i.e., what
partition they will form if S deviates) is determined by a probabil-
ity distribution—an assumption that is more realistic and arguably
more useful from an AI perspective. We then go on to define the
core and initiate its study in this setting as well.

2. CHARACTERISTIC FUNCTION GAMES
ON GRAPHS

In this section, we study the issue of stability in the context of char-
acteristic function games defined on graphs. Let N = {1, . . . , n}
be a set of agents, with |N | = n. A subset C ⊆ N is called a
coalition. A characteristic function game (CFG)—or coalitional
game with transferable utility (TU-game)—is defined by its func-
tion v : 2N 7→ < that specifies the value v(C) of each coalition
C [21]. Intuitively, v(C) represents the maximal payoff the mem-
bers of C can jointly receive by cooperating, and the agents can
distribute this payoff between themselves in any way. A payoff
vector x = 〈x1, . . . , xn〉 assigning some payoff to each i ∈ N is
called an allocation. We denote

∑
i∈C xi by x(C). Given a par-

tition Π = {C1, . . . , Ck}, of the agents (we will also refer to a
partition as a coalition structure interchangeably), an allocation x
is called an imputation of Π if x(Cj) = v(Cj) for j = 1, . . . , k
and xi ≥ v({i} for all i. Note that if x is an imputation for Π,∑
i∈N xi =

∑
C∈Π v(C). The set of imputations for Π is I(Π).

Assume now that there exists a graph G, which determines the
allowed cooperation structures as follows: each node of the graph
represents an agent and a coalition C is allowed to form if and only
if for every two agents in C there exists a path in the subgraph in-
duced by C that connects them—i.e., the subgraph that is induced
by C is a connected subgraph. A characteristic function game on
graph G is then simply a CFG where v is defined only for coali-
tions allowed by G. We denote the set of such feasible coalitions

by F(G). Similarly, we will refer to feasible partitions of feasi-
ble coalitions, and we denote the set of all feasible partitions by
P (G). Such games can arise naturally in many situations where
lack of communication between certain agents makes it impossible
for some coalitions to form. Note that when G is a clique then we
are back to the usual CFGs where all coalitions are feasible. We
also assume that our graph is connected. If not, our findings apply
separately to each connected component.

The main stability solution concept in cooperative game theory
is, arguably, the core—the set of (Π,x) tuples, where Π is a par-
tition and x an imputation, such that no coalition has an incentive
to deviate. However, in our setting it suffices to check only the
incentives of the feasible coalitions [17, 4, 5].

DEFINITION 1. The core of a game with characteristic function
v(·) on graph G is the set

C(v,G) = {(Π,x) : Π ∈ P (G),x ∈ I(Π)∧ x(S) ≥ v(S) ∀S ∈ F(G)}

The following observation is straightforward:

FACT 1. If (Π,x) ∈ core, Π attains maximum social welfare,
where the social welfare of Π is: SW (Π) =

∑
C∈Π v(C).

Though in many games the grand coalition of all players might be
impossible to form [1], the assumption that it is the one with the
highest total welfare—or even the stricter assumption of superad-
ditivity, i.e., v(S∪T ) ≥ v(S)+v(T ) for any disjoint sets S, T—is
some times justified. Indeed, the vast majority of work in game the-
ory examines stability in games where the grand coalition emerges.
The question of stability then reduces to pairing the grand coalition
with an imputation of N .1

DEFINITION 2. WhenN attains the highest possible social wel-
fare, the core is the set

C(v,G) = {x ∈ Rn : x(N) = v(N) and x(S) ≥ v(S) ∀S ∈ F(G)}

In most scenarios of interest to multiagent systems, however, it is
natural for agents to split into groups to simultaneously perform
distinct tasks. Thus, unless explicitly stated, it is not required in our
games that the grand coalition achieves the highest social welfare.

Network structures have long been recognized as a natural frame-
work for the study of stability. Nevertheless, following the defini-
tion of Myerson value2 in [20], research has focused on the question
of building stable and efficient networks: (mainly pairwise) stabil-
ity is discussed essentially from a non-cooperative point of view—
i.e., w.r.t. the creation of stable network structures, through adding
or removing links among nodes [14]. In non-cooperative settings,
the structural properties of equilibria and the development of al-
gorithms to compute equilibria in graphical games which restrict
payoff influences among players have also been examined [15].

Networks have also provided inspiration for new representation
schemes for coalitional games [13, 3, 2]. Cooperative games with
an underlying graph structure have also been considered in the
seminal work of [6]. However, they consider games defined on a
weighted graph, where the value of a coalition S is the sum of
weights of edges that are contained in the subgraph induced by S.
Hence, any coalition is allowed to form and values are determined
by weights, while in our work not all coalitions are feasible and
1The core of Definition 1, examining the stability of coalition struc-
tures is sometimes referred to as the CS-core, while the concept
examining the stability of N is referred to simply as the core [7].
2The Myerson value determines that, while building a network by
adding agents one at a time, each agent is assigned his marginal
contribution, taking into account all possible orderings of agents.
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the characteristic function can be arbitrary and not expressed via
weights. Thus, their results are unrelated to ours.

In contrast to the aforementioned approaches, here we care about
the stability of partition-imputation pairs given a fixed underlying
network structure that determines the allowed interactions. In par-
ticular, we study the complexity of three3 natural core-related algo-
rithmic questions (Table 1 summarizes our results):

1. CORE-NONEMPTINESS: Given a game on a graphG, de-
cide whether C(v,G) 6= ∅.

2. CORE-FIND: Given a game on a graph G, find an element
(Π, x) ∈ C(v,G) if C(v,G) 6= ∅ or output “C(v,G) = ∅”.

3. CORE-MEMBERSHIP: Given a game on a graph G and
an imputation (Π, x), decide whether (Π, x) ∈ C(v,G).

REMARK 1. We make the usual assumption that our games are
in compact form and are represented by the graph G and an oracle
that, for any S ∈ F(G), returns the value v(S) in time polynomial
in the size of G (e.g. see [9]).

Lines Trees Trees Cycles
(general) (superadd.) (general) (general)

NONEMPTINESS O(1) O(1) O(1) P
FIND P P NP-hard P
MEMBERSHIP P co-NP-complete co-NP-complete P

Table 1: Core-stability results for CFGs on graphs.

2.1 CORE-NONEMPTINESS and CORE-FIND
We start with the problems of determining whether the core is empty
or not and the complexity of finding elements in the core. Related
work on solution concepts in graph-restricted games [18, 26] has
not addressed issues from an algorithmic point of view, in most
cases. The work most relevant to ours is that of Le Breton et
al. [17], and Demange [4, 5]. In [17] and [4] it is shown that if a
game is superadditive and the graph is a tree, the core is non-empty.
However, their existential proof does not provide an efficient algo-
rithmic construction of a core element.

Later on, the follow up work of [5] showed that the core is non-
empty for trees, even for non-superadditive games. Moreover, De-
mange proposed a procedure that computes an element in the core.
We briefly recall this algorithm below as we will proceed to ana-
lyze its complexity, and will also use it in later sections. Originally
it was stated in the context of a slightly different model than ours,
involving directed graphs, but it is easy to reformulate as:

ALGORITHM 1. [5] Given a graph G which is a tree, and a
characteristic function v(·), first pick a vertex r as the root of the
tree. The algorithm consists of two steps.
Step 1: Starting from the leaves, compute the guarantee level ĝi of
each agent i, inductively: for leaves, ĝi is simply the reservation
value v({i}); for an agent that is not a leaf, let Ri be the set of
all subtrees that start at i, i.e., it is the set of all feasible coalitions
among i and the agents underneath i. Then: ĝi := max{v(T ) −∑
j∈T\{i} ĝj : T ∈ Ri}.

Step 2: Starting from the root r, pick the coalition T1 at which ĝr
was attained (breaking ties arbitrarily). Every agent in T1 receives
his guarantee level as a payoff, which is feasible by the definition
of ĝr . If T1 = N , we are done. Otherwise, pick a node i not in T1

whose father belongs to T1. Pick the coalition fromRi at which ĝi
3The first problem is included in the second one. However, we feel
it is important to study CORE-NONEMPTINESS separately from
CORE-FIND because their complexity varies significantly.

was attained, say T2. All agents in T2 receive their guarantee level
as well. If T1 ∪ T2 = N , we are done, otherwise we continue in
the same fashion until we cover N . This produces a partition Π in
which all agents receive their guarantee level as their payoff.

THEOREM 1 ([5]). The outcome produced by the above al-
gorithm belongs to the core.

To obtain more intuition, it is interesting to observe what the algo-
rithm does in some special cases:

REMARK 2. If the game is superadditive and the graph is a line
from 1 to n, the produced payoff allocation is simply the marginal
contribution: ĝi = v({1, . . . , i})− v({1, . . . , i− 1}).

The above theorem implies that CORE-NONEMPTINESS is triv-
ial when the graph is a tree (whether superadditive or not), since
the core is always non-empty. Regarding CORE-FIND however,
the computational complexity of Algorithm 1 was not addressed
in [5]. We therefore now proceed to analyze its complexity. In the
usual CFGs, where there is no restriction by a graph, the problem
of computing an element in the core, or deciding if the core is non-
empty has already been shown to be in co-NP, and co-NP-complete
for certain expressive representation schemes [11]. Here, the fact
that the graph may restrict the number of potential deviations gives
some hope that the problem may be easier. We show below that this
is indeed the case for graphs that are lines or superadditive trees.4

THEOREM 2. For a CFG where (i) the underlying graph is a
line or (ii) the game is superadditive and the graph is a tree, CORE-
FIND can be solved in polynomial time.

PROOF. (i) For finding an element in the core it is easy to see
that Algorithm 1 runs in polynomial time for lines. To prove this,
we need to see how many coalitions we need to check when we
compute the ĝi values for each agent i. Suppose wlog that the
agents are placed in a line starting from agent 1 up to agent n.
For agent 1, since it is a leaf, the only coalition we consider is the
singleton {1}. For player 2, to compute ĝ2, we need to consider
{2} and {1, 2}. Moving on this way we see that for agent n − 1
we need to consider {n− 1}, {n− 2, n− 1}, . . . , {1, . . . , n− 1}.
And finally for agent n, the allowed coalitions are {n}, {n−1, n},
. . . ,{1, . . . , n}. In total for all players we need to consider 1 + 2 +
· · · + (n − 1) + n = O(n2) coalitions. Hence it is a polynomial
time algorithm.
(ii) Suppose now that the game is superadditive and the graph is
a tree. The computational problem that may arise on a tree is the
following: if a node i has k children then computing its guaran-
tee level in step 1 of Algorithm 1 requires looking at exponen-
tially many subtrees starting at i, i.e. the set Ri contains at least
2k subtrees corresponding to all possible subsets of the children.
However, when the game is superadditive, this is not necessary, as
implied by the following:

LEMMA 1. For a node i, let Di be the tree that starts at i and
contains all nodes downwards from i. When the game is superad-
ditive, the guarantee level of every node in step 1 of Algorithm 1 is
achieved precisely at Di.

The proof of Lemma 1 follows by induction and we omit it here.
Given Lemma 1, we can conclude that Algorithm 1 can be imple-
mented in polynomial time in this case.
4Notice, however, that testing whether a game is indeed superaddi-
tive could still be a hard problem—e.g., it is coNP-complete in the
absence of structured environments [10].
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Given the results of the above theorem, and Fact 1, it is straightfor-
ward to obtain the following corollary:

COROLLARY 1. For a CFG where the underlying graph is a
line, or it is superadditive and the graph is a tree, a partition with
maximum social welfare can be found in poly-time.

When the game is not superadditive, however, CORE-FIND be-
comes intractable for trees. To see this, we first define:
The social welfare maximization (SW) problem: Given a game
on a graph G, and a rational number k, is there a partition Π with
SW (Π) ≥ k?

THEOREM 3. The SW problem when the underlying graph is a
tree is NP-complete.

PROOF. That SW is in NP is trivial. Just guess a partition and
calculate its social welfare. To show that it is NP-hard, we reduce
from the PARTITION problem, which is the following: given n
positive numbers a1, . . . , an is there a subset S of these numbers
such that

∑
j∈S aj =

∑
j 6∈S aj?

Consider an arbitrary instance of the PARTITION problem with
numbers a1, . . . , an. We construct a CFG on a graph which is a
tree. In particular, we define a graph with n + 1 vertices, namely
the vertices {0, 1, . . . , n}. The only edges are the edges (0, i) for
i = 1, . . . , n. Hence the graph is a tree rooted at vertex 0. To de-
termine the game’s characteristic function, notice first that feasible
coalitions of size at least 2 are forced to contain the root, otherwise
they are not connected. Therefore the only allowable coalitions are
singletons and sets that contain vertex 0. For the singleton {0},
set v({0}) = 0. For the rest of the singletons, set v({i}) = ai.
Finally, the value of coalitions S that contain the root is:

v(S) =

{ ∑
j∈S\{0} aj if

∑
j∈S\{0} aj 6=

∑
j 6∈S aj ,

1 +
∑
j∈S\{0} aj otherwise

By the definition of v(S), it is easily seen that given a1, . . . , an,
a polynomial time oracle for v(S) can be constructed. Set now k =
1 +

∑n
j=1 aj . This completes the description of the SW instance.

We can now prove that there exists a set S such that
∑
j∈S aj =∑

j 6∈S aj in the PARTITION problem if and only if there exists a
feasible partition with social welfare at least k. Suppose there exists
such a set S. Then for the coalition S ∪ {0} the value is exactly
1 +

∑
j∈S\{0} aj . Hence with the remaining nodes as singletons,

we get a partition with social welfare at least k. For the reverse,
suppose that there exists a partition with social welfare at least 1 +∑
j aj . If there is no set S that solves the PARTITION problem,

then by construction the values of all coalitions are just the sum
of the corresponding numbers, and hence the social welfare of any
feasible partition is at most

∑n
j=1 aj , a contradiction.

Now, we can see why our problem of finding an element in the
core is unlikely to have a polynomial time algorithm5:

THEOREM 4. For a general CFG where the underlying graph
is a tree, CORE-FIND is NP-hard.

PROOF. Given Fact 1, any algorithm that finds an element (Π,x)
in the core can solve the SW problem, by just calculating the social
welfare of the returned Π.

We now focus on games where the underlying graph is a cycle.
These are interesting, as ring topologies are common in networks
5Since our problem is a search problem, it will not belong to NP.
Our proof essentially shows that our problem is at least as hard as
solving an NP-complete problem.

of many kinds. It can be shown through examples that trees (and
forests, if G is disconnected) are the only graphs that guarantee
stability irrespective of the function v(·). The presence of cycles
can create instances with empty core, even in superadditive games.

THEOREM 5. For any n ≥ 3, there exist games on n players,
where the underlying graph is a cycle and C(v,G) = ∅.
For n = 3, Theorem 5 follows by the abundance of regular unre-
stricted CFG’s with empty core (since a cycle is a clique for n = 3,
and hence all coalitions are allowed). For n ≥ 4 we can con-
struct simple examples of superadditive characteristic functions on
cycles, which we omit here.

Hence, the problem CORE-NONEMPTINESS for cycles is not
as trivial as in the case of trees. We will show however that we can
still have a polynomial time algorithm. We start with superadditive
games on cycles. The crucial observation is the following Lemma:

LEMMA 2. For lines and cycles, the number of feasible coali-
tions is O(n2).

PROOF. A feasible coalition has to be connected and it corre-
sponds to an interval from an agent i to some agent j. This implies
a total of O(n2) since we have at most n choices for i and after
fixing i, there can be at most n − 1 choices for j (multiplied by 2
for cycles, since we then have two paths connecting i and j).

THEOREM 6. CORE-NONEMPTINESS and CORE-FIND are
in P for superadditive games on cycles.

PROOF. From superadditivity, we know that we are looking for
an imputation x of the grand coalition. Hence we can check if the
following system of linear inequalities has a solution:

∑

i∈N
xi = v(N) and

∑

i∈S
xi ≥ v(S) ∀S ∈ F(G)

By Lemma 2, we know that this system has polynomially many
constraints and hence can be solved in polynomial time.

Note that we could have applied the same argument for superad-
ditive games on lines. However, for lines we prefer to use Algo-
rithm 1, since it works for non-superadditive games as well, and it
provides a more direct and intuitive way of finding a core element.

One cannot directly use the arguments in Theorem 6 for non-
superadditive games on cycles, as an optimal partition is not known
a priori, and there are exponentially many candidate partitions.
However, if one has access to an algorithm that computes an opti-
mal partition Π, then an allocation vector x so that (Π,x) is in the
core, if such an x exists, can be computed via linear programming,
by the arguments above. Hence, we need to address the question
of whether an optimal partition can be computed in poly-time over
cycles. Let C be a cycle over n nodes, and let L1, ..., Ln be the n
lines that can be obtained by removing exactly one edge. Then, it
is easy to see that the optimal partition of C is either C itself, or
the best partition over the optimal partitions of L1, ..., Ln. Thus,
one can just run Alg. 1 on L1, ..., Ln and compare the various solu-
tions with the value of the grand coalition. This proves that CORE-
NONEMPTINESS and CORE-FIND are in P for general games on
cycles. Credit for this proof (provided to us in personal correspon-
dence) goes to G. Greco, E. Malizia, L. Palopoli and F. Scarcello.

Finally, we conclude this subsection with an observation on how
to identify more core elements if one has access to algorithms that
identify alternative optimal partitions (a result also shown in [10]).

THEOREM 7. For any game on G, if (Π,x) ∈ C(v,G), then
(Π′,x) ∈ C(v,G), for any social welfare maximizing Π′.
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2.2 CORE-MEMBERSHIP
In this section we deal with the membership problem. First we
show that it can be solved efficiently for lines or cycles.

THEOREM 8. For a CFG where the underlying graph is a line
or a cycle, CORE-MEMBERSHIP can be resolved in P.

PROOF. Given (Π,x), it is trivial to check if x is an imputation
of Π. To check for a successful deviation, we can check all feasible
coalitions. By Lemma 2 the proof is complete.

Concerning trees, the problem is not as easy. We first show that
the reduction we used in the proof of Theorem 3 yields a hardness
result for general games on trees.

THEOREM 9. CORE-MEMBERSHIP is co-NP-complete for gen-
eral CFGs on trees.

PROOF. To check that a (Π,x) does not belong to the core,
it suffices to exhibit a coalition with an incentive to deviate, or
check that x is not an imputation of Π. Hence there is a poly-
nomially sized certificate to verify this, which implies that CORE-
MEMBERSHIP belongs to co-NP(also follows from a result in [10]).

We now show that checking whether (Π,x) does not belong to
the core is NP-hard. We use the reduction from the proof of Theo-
rem 3. Given an instance of the PARTITION problem (a1, . . . , an),
we construct the game described in Theorem 3 and we consider as a
candidate core element the tuple (Π,x) = (N, 〈0, a1, . . . , an〉)—
i.e., we look at the grand coalition with the imputation where the
root receives nothing and every other node receives its correspond-
ing number. We claim that (Π,x) does not belong to the core if
and only if there exists a set S that is a solution to the PARTITION
problem. To see this, suppose first that there exists a set S such that∑
j∈S aj =

∑
j 6∈S aj . Then, by construction and the definition of

the characteristic function, the grand coalition is not welfare maxi-
mizing, and thus cannot belong to the core (there exists a partition
with social welfare at least 1 +

∑n
j=1 aj).

For the other direction suppose that there is no set S for which∑
j∈S aj =

∑
j 6∈S aj . This implies that the grand coalition is a

welfare maximizing partition and it is also easy to see that every
coalition achieves its value v(S) under the imputation x. Hence
(Π,x) belongs to the core.

The reduction above does not imply anything for superadditive
trees since it produces non-superadditive instances as well. One
could hope that superadditivity makes things easier as was the case
for CORE-FIND. The following theorem however reveals that CORE-
MEMBERSHIP is hard even for superadditive trees. The proof is
based on a simple adaptation of a reduction used for unrestricted
games in [10][Theorem 4.1].

THEOREM 10. CORE-MEMBERSHIP is co-NP-complete even
for superadditive CFGs on trees.

PROOF. (Sketch.) Checking that the problem is in co-NP is as
in Theorem 9. We now give a reduction from SAT. Consider a SAT
formula φ on n boolean variables X1, . . . , Xn. Let L denote the
set of literals, L = {X1,¬X1, X2,¬X2, . . . }. Given S ⊆ L, with
|S| = n, we say that S is consistent if ∀Xi |S ∩ {Xi,¬Xi}| = 1.
For a consistent S, let also σ(S) be the truth assignment where all
variables that belong to S are set to true and the rest to false.

Given φ, we construct a tree with 2n+ 1 nodes. The root is de-
noted by node 0 and it is connected to 2n nodes corresponding toL.
This is a star where the only allowable coalitions are either single-
tons or coalitions containing the root. For any singleton coalition
{i} we set v({i}) = 0. All remaining coalitions are of the form

{0} ∪ S for some S ⊆ L. The value of v({0} ∪ S) is set to the
value of the set S in the proof of [10][Theorem 4.1]. Namely:

v({0} ∪ S) =





|S|/n, if |S| > n,
1 + 1/2n if |S| = n, S is consistent,

and σ(S) satisfies φ
0, otherwise

It can be easily proved that this game is superadditive. Furthermore,
one can also prove that the allocation where node 0 receives 0 and
every other node 1/n belongs to the core if and only if the formula
φ is not satisfiable. We omit the details from this version.

3. PARTITION FUNCTION GAMES
As mentioned in the introduction, in many circumstances the value
of a coalition S does not depend solely on S but is affected by
externalities—i.e., v(S) depends on the coalition structure formed
by the rest of the agents. To capture such requirements, one is then
obliged to move to the more general setting of partition function
games. Naturally, therefore, it is of interest to extend the results
of Section 2 to partition function games with structure. As dis-
cussed, the core of PFGs has been studied in economics under spe-
cific assumptions. Moreover, recent work has focused on efficient
PFG representations and coalition structure generation in PFG set-
tings (Michalak et al. [19]; Rahwan et al. [22]). However, to date
there has been no work on the stability of PFGs defined on graphs.

We begin with some definitions. A PFG is determined by a func-
tion V (·, ·), specifying the value of a coalition in a certain partition.
For S ∈ Π, V (S,Π) is the value of S when Π forms. In our setting,
to define a PFG on a graph G, we further impose that the function
V (·, ·) is defined only for feasible partitions Π ∈ P (G). We let
V (N) denote V (N,N).

Extending the notion of the core to PFGs is not straightforward.
This is because, in the presence of externalities, a potential set of
deviators S needs to make an assumption on how the rest of the
agents behave (i.e., what is the partition that will form in N \ S)
once they deviate. In this section, we focus on the two most com-
mon approaches found in the literature, a pessimistic and an opti-
mistic one (see [16] for an overview of PFG solution concepts).

3.1 The Pessimistic Core
We start by defining the core in the case that deviators have a pes-
simistic view regarding the reaction of the remaining players. For
this we need a notion of dominance.

For a given coalition structure Π = (S1, . . . , Sk) ∈ P (G), a
payoff allocation x = (x1, . . . , xn) is feasible for Π if :

∑

j∈Si

xj ≤ V (Si,Π), i = 1, . . . , k

Let Φ(Π) denote the set of feasible payoff vectors of a partition Π
and let Φ =

⋃
Π∈P (G) Φ(Π). We also define the pessimistic value

of a set S ∈ F(G) to be v̂(S) = minΠ∈P (G),S∈ΠV (S,Π).
Consider two payoff vectors x and x′ of Φ and a coalition S. We

say that x′ dominates x via S if (i)
∑
j∈S x

′
j ≤ v̂(S) and (ii) x′j >

xj for all j ∈ S. The idea behind this type of dominance is that
the agents of S are not content with x because there exists another
allocation (possibly on a different partition), by which they all get
better off without exceeding the total payoff that is guaranteed to S
in the worst case partition (which is v̂(S)).

We will say that x′ pessimistically dominates x and will write
x′dompesx simply if there exists S such that x′ dominates x via
S. We define the pessimistic core (p-core) to be the set of vectors
of Φ that are not (pessimistically) dominated by any other member
of Φ. This is an extension of the pessimistic core of [8], which was
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defined for domains without structure and with the grand coalition
as the social welfare-maximizing partition.

p-core = {(Π,x) : Π ∈ P (G),x ∈ Φ(Π), 6 ∃x′ ∈ Φ s.t.x′ dompes x}

Given a PFG on a graph G, we will associate with it the following
CFG: the set of players and the graph is the same and the charac-
teristic function is v̂(S). The core of this CFG is denoted by:

C(v̂, G) = {(Π,x) : Π ∈ P (G), x(S) ≥ v̂(S)∀S ∈ F(G) ∧ x ∈ I(Π)}

where I(Π) denotes the set of imputations in Π. We now provide
a relationship between p-core and C(v̂, G).

THEOREM 11. For any PFG on a graph G, let (N, v̂,G) be the
corresponding (pessimistic) CFG. Then C(v̂, G) ⊆ p-core.

PROOF. Consider a tuple (Π,x) that belongs to C(v̂, G). Sup-
pose that (Π,x) 6∈ p-core. Then either x is not feasible for Π
or x is dominated by some other feasible vector y. But since
(Π,x) ∈ C(v̂), then x ∈ Φ(Π), therefore the only possibility is
that x is dominated by some other feasible vector. Hence, by defi-
nition, there exists a vector y ∈ Φ and a set S ∈ F(G) s.t. y domi-
natesx via S. That is, yj > xj for all j ∈ S and

∑
j∈S yj ≤ v̂(S).

Hence
∑
j∈S xj <

∑
j∈S yj ≤ v̂(S), which is a contradiction

with (Π,x) ∈ C(v̂, G).

However, the reverse direction is not generally true, as the follow-
ing example demonstrates:

EXAMPLE 1. Consider 4 players placed on a line starting from
1 up to agent 4. The idea is to setup the numbers so that the socially
optimal partition is Π∗ = {{12}, {34}}, with V ({12},Π∗) =
V ({34},Π∗) = 10 and v̂({12}) < 10, v̂({34}) < 10. Then one
can check that (Π∗,x) with x = (5, 5, 5, 5) belongs to the p-core
but not to C(v̂, G). In some detail, x = (5, 5, 5, 5) cannot belong
to C(v̂, G), as x is not a valid imputation of partition Π∗ in the
CFG described by v̂, because v̂({12}) < 10 and v̂({34}) < 10
(in a PFG setting, every S may have a different partition where
its pessimistic value v̂(S) is achieved). On the other hand, x is
feasible for Π∗ in this specific PFG game (and belongs to p-core).

Note that Theorem 11 does not depend on the structure of the graph
and holds for any PFG. This result is interesting for two reasons.
First, it demonstrates the differences between domains where the
maximum social welfare is achieved by the grand coalition (and
by no other partition) and domains where this does not hold. Un-
like [8], where they show that, in the former case, the pessimistic
core coincides with the core of the CFG, here this is no longer true.
Second, Theorem 11, combined with Theorem 1, allows us to es-
tablish the non-emptiness of the core in PFGs on trees.

THEOREM 12. For PFGs where the underlying graph is a tree,
the p-core is non-empty.

For PFGs on trees, the problem of finding an element in the core
is NP-hard and the membership problem is co-NP-complete, since
the class of PFGs contains the class of CFGs. Theorem 12 allows
us to use Alg. 1 to find an element of the p-core. But even for lines,
the algorithm cannot be implemented in polynomial time, unlike
CFGs. The problem arises as we need to compute the function v̂(·)
to run Alg. 1, because of the exponentially many partitions.

THEOREM 13. For a PFG on a line and a singleton S, it is
NP-hard to compute v̂(S).

The same holds whenever |S| = O(1). We omit the proof, which
is based on viewing a partition in a line as what is known in com-
binatorics as an “integer composition” [24]. Algorithmic problems

on PFGs are, naturally, computationally more demanding, as the
value of a coalition varies across the exponentially many partitions.
It would be interesting to identify special classes of PFGs on trees
or lines for which a p-core element can be computed in polynomial
time. Finally, because of Theorem 5, p-core non-emptiness cannot
be guaranteed for PFGs where the underlying graph is a cycle.

3.2 The Optimistic Core
We now consider the opposite approach. Although it is perhaps less
intuitive to be optimistic about the reaction of non-deviators, opti-
mism is a well established concept in game theory and economics,
as the assumption can be quite natural in certain application do-
mains. For instance, in security games, where players in computer
networks attempt to fend off attackers, optimistic players may in-
vest only in self-protection, hoping that the other players will con-
tribute to the overall network protection.6 As we will see, having
optimistic deviators results in higher expectations on their part, and
thus the optimistic core may be empty, unlike what was established
for the p-core in Theorem 12.

To begin, we need to define a modified notion of dominance,
which we denote by domopt. Consider two payoff vectors x and
x′ of Φ and a coalition S. We say that x′ domopt x (via S) if there
exists a partition Π with S ∈ Π such that (i)

∑
j∈S x

′
j ≤ V (S,Π)

and (ii) x′j > xj for all j ∈ S. The idea here is that since members
of S are optimistic, it suffices that they find some partition Π and
an allocation, feasible for Π, in which they are all better-off.

The optimistic core (o-core) is then the set of tuples (Π, x) such
that x is not (optimistically) dominated by any other member of Φ.

o-core = {(Π,x) : Π ∈ P (G),x ∈ Φ(Π), 6 ∃x′ ∈ Φ s.t.x′ domopt x}

The following fact is easy to verify:

FACT 2. o-core ⊆ p-core.

We will see shortly that the reverse is not true. First we will identify
a necessary condition for the o-core to be non-empty. This will be
done by establishing a connection of the o-core with the following
CFG: the set of players and the graph structure is the same, and, in
analogy to Section 3.1, we define now the optimistic value of a set
S ⊆ N to be v∗(S) = maxΠ∈P (G),S∈ΠV (S,Π). The resulting
CFG is (N, v∗, G), and its core is denoted by:

C(v
∗
, G) = {(Π,x) : Π ∈ P (G), x(S) ≥ v

∗
(S)∀S ∈ F(G)∧x ∈ I(Π)}

Then, for a tuple (Π,x) to belong to the o-core, a necessary con-
dition is that for every S,

∑
i∈S xi ≥ v∗(S), as implied by the

following theorem.

THEOREM 14. For any PFG on a graph G, let (N, v∗, G) be
the corresponding (optimistic) CFG. Then o-core ⊆ C(v∗, G).

PROOF. Consider a tuple (Π,x) that belongs to the o-core. Sup-
pose that (Π,x) 6∈ C(v∗, G). Then by definition, either

∑
i∈N xi 6=∑

Sj∈Π v
∗(Sj) or there exists a set S such that

∑
i∈S xi < v∗(S).

In the first case, since x ∈ Φ(Π), it follows that
∑
i∈N xi <∑

Sj∈Π v
∗(Sj), which implies that there exists some set Sj ∈ Π

for which
∑
i∈Sj xi < v∗(Sj). Hence we can conclude that in

both cases there is some set S for which
∑
i∈S xi < v∗(S). But

then we can construct the following vector y: Let Π′ be the par-
tition where v∗(S) is achieved. We can have a payoff allocation
to S so that

∑
j∈S yj ≤ v∗(S) and yj > xj ∀ i ∈ S. Fur-

thermore, for the remaining players, we can simply allocate pay-
off to them so as to ensure that for every S′ ∈ Π′, other than S,
6Harikrishna et al. [12] have recently introduced a cooperative
model against security attacks, but without explicitly examining
how the network structure influences agent cooperation decisions.
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∑
j∈S′ yj ≤ V (S′,Π′). This results in a vector y ∈ Φ(Π′) (and

hence y ∈ Φ) such that y domopt x via S, which is a contradiction
with the fact that (Π,x) ∈ o-core.

However, the reverse direction is not generally true, as demon-
strated below for games defined on lines.

THEOREM 15. There exist PFGs, where the underlying graph
is a line, for which the o-core is empty.

PROOF. We consider a graph that forms a line from agent 1 to
agent 4 (in a similar manner one can generalize the example to
lines with a larger number of agents). This gives rise to 8 feasible
partitions, with corresponding coalitional values as follows.

Partition Value Value of coalitions
{1}, {2}, {3}, {4} 12 (3, 3, 3, 3)
{1}, {2}, {3, 4} 11 (2, 2, 7)
{1}, {2, 3}, {4} 11 (2, 7, 2)
{1}, {2, 3, 4} 11 (2, 9)
{1, 2}, {3}, {4} 19 (11, 4, 4)
{1, 2}, {3, 4} 20 (10, 10)
{1, 2, 3}, {4} 18 (15, 3)
{1, 2, 3, 4} 19 19

We can show that for any of these feasible partitions, there can
be no vector x with x ∈ Φ(Π) such that (Π,x) ∈ o-core. To see
this, consider for example the welfare maximizing partition Π =
({1, 2}, {3, 4}). For any x ∈ Φ(Π), we know that x1 + x2 ≤
10. But then we can construct a vector y, feasible for the partition
({1, 2}, {3}, {4}), in which y1 + y2 ≤ 11 and y1 > x1, y2 > x2.
This means that y domopt x and (Π,x) cannot belong to the o-
core. If we consider the partition Π′ = ({1, 2}, {3}, {4}), then
we know that for any x ∈ Φ(Π′), x3 + x4 ≤ 8. But then we can
construct in a similar manner a vector y that is feasible for Π and
dominates x via the set {3, 4}. By using similar arguments, we can
also conclude that for the remaining 6 partitions, we cannot find a
vector that would be feasible for them and undominated.

On the contrary, C(v∗, G) is non-empty on trees by Theorem 1.
This shows that unlike the p-core, which is guaranteed to exist in
PFGs over trees, the o-core is a stricter concept and cannot exist for
all such games. Intuitively, this is because optimistic expectations
lead to a larger set of potential deviations and eventually to the
absence of stable configurations.

4. BAYESIAN PARTITION FUNCTION GAMES
In this section, we initiate the study of a model that is even more
general than the usual partition function games. As mentioned, the
PFG literature has mostly focused on scenarios where deviators
are assumed to be either pessimistic or optimistic with respect to
others’ behaviour. Even in approaches that attempt to move away
from these extremes, definitions of dominance rely on some degree
of optimism or pessimism—as, e.g., in the recursive core model
of [16]. In many realistic scenarios, however, information regard-
ing the behaviour of the residual agents, when a set S decides to
work on its own, might be available to the deviators in the form
of a probability distribution. Such a distribution could be derived
from market data available, observation of historical evidence and
trends, domain knowledge and so on. Arguably, it is far more use-
ful to multiagent systems research and practice to assume that agent
uncertainty is described by a probability distribution, rather than
restrict attention to just one or two possible scenarios. Apart from
better reflecting real life situations, such an extension could poten-
tially allow for Bayesian inference and learning in PFGs; some-
thing that has not been discussed in the PFG literature.

We thus proceed to define Bayesian partition function games as
normal PFGs equipped with probability distributions specifying the
likelihood of a partition emerging when a specific coalition forms.

DEFINITION 3. A Bayesian partition function game (BPFG) is
a tuple B = 〈P, P rS(·)〉, where P is a PFG and for every S,
PrS(·) is a probability mass function, specifying the probability
PrS(Π) that Π ∈ P (G) emerges given that S ∈ Π forms.

For each S, it should hold that
∑

Π3S PrS(Π) = 1. Also for the
grand coalition, it holds thatPrN ({N}) = 1. For a set S, the prob-
abilities PrS(·) reflect the beliefs of S on the reaction of the resid-
ual agents, when S is considering to deviate. Then, the expected
value that a coalition S would receive in a potential deviation in a
BPFG is: ṽ(S) = EΠ[V (S,Π)] =

∑
Π3S PrS(Π)V (S,Π).

It is now reasonably straightforward to define the Bayesian PFG-
core as the set of partition-allocation pairs with efficient alloca-
tions that are weakly preferable in expectation to any potential de-
viation by some coalition S.

DEFINITION 4 (BPFG-CORE). The BPFG-core is the set of
(Π,x) pairs where

∑
i∈C xi = V (C,Π), ∀C ∈ Π and for any

feasible coalition, S ∈ F(G), it holds that x(S) ≥ ṽ(S).

We note here that, interestingly, even if (Π,x) belongs to the
BPFG-core, Π may not necessarily be a welfare maximizing parti-
tion. This is because coalitions only judge whether the payoff they
receive is good in expectation—i.e., at least ṽ(S). If an optimal
partition exists that is better than Π but occurs only with a small
probability, then this does not necessarily prevent the stability of
Π. Though this is a departure from the usual models where the
core is defined, it is very natural in a Bayesian setting.

Finding necessary and sufficient conditions for characterizing
the elements of the BPFG-core is naturally of interest. Here, we
provide one sufficient condition for a (Π,x) element to be in the
BPFG-core. First, consider the maximum attainable value v∗(S)
of a feasible coalition S (i.e., its best possible value under any po-
tential partition containing S). Then, the following fact holds:

FACT 3. v∗(S) ≥ ṽ(S) ∀ S ∈ F(G).

By Fact 3, we have:

THEOREM 16. Let (Π,x) be a Bayesian partition function game
outcome with

∑
i∈C xi = V (C,Π), ∀C ∈ Π. (Π,x) is in the

BPFG-core if the following condition holds:

x(S) ≥ v∗(S), ∀S ∈ F(G)

Note that this a sufficient condition for an element to be in the
BPFG-core, without the need to take into account probability dis-
tribution estimates, even though the setting is probabilistic. Hence,
if there is information available about the maximum values v∗(S),
then one may not need to go through computing all expectations.

This however is not a necessary condition: it may occur that
an element (Π,x) is in the core and there is an S with v∗(S) >∑
i∈S xi. This is demonstrated in the following example.

EXAMPLE 2. ConsiderN = {1, 2, 3, 4}, and suppose V (N) =
120 and x = {30, 30, 30, 30}. We will argue about the tuple
(N,x). Consider the coalition S = {1, 2} of agents considering to
deviate, with beliefs specifying that for the two possible partitions
to emerge if S breaks away, say Π1,Π2, PrS(Π1) = PrS(Π2) =
0.5. Let V (S,Π1) = 100, V (S,Π2) = 10. Let also the value of
any other feasible coalition in this game be zero in any partition.
Then, since ṽ(S = {1, 2}) = 55 while x(S) = 60, and given that
all non-mentioned coalitions have zero value, it holds that for any
feasible C in this setting, x(C) ≥ ṽ(C), therefore (N,x) is in the
BPFG-core. However, for the given S, v∗(S) = 100 > x(S).
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In analogy to the definition of the core in superadditive CFGs,
we can also define here the core with respect to the grand coalition
(BPFG-core-grand), as the set of efficient allocations dividing up
the value of N that make the deviation of a set of agents unprof-
itable in expectation.

DEFINITION 5 (BPFG-CORE-GRAND). The BPFG-core-grand
is the set x of allocations such that x(N) = V (N), and ∀S ∈
F(G), x(S) ≥ ṽ(S).

Since ṽ(N) = V (N), it is easy to verify from Def. 2 and Def. 5
that the BPFG-core-grand and the core of the CFG with character-
istic function ṽ(·) coincide.

FACT 4. Let B be a BPFG. Consider the CFG defined by the
function ṽ(·). Then, BPFG-core-grand(B) = C(ṽ, G).

Using Fact 4 and Theorem 1 we can now establish:

THEOREM 17. If B is a BPFG defined on a tree G, then its
BPFG-core-grand is non-empty.

The discussion right after Theorem 12, including Theorem 13, ap-
plies for ṽ(·) as well. Hence, even though one could use Algorithm
1 to find an element of BPFG-core-grand, this cannot be done in
polynomial time. It would be interesting to identify special cases
of BPFGs that admit polynomial time algorithms.

We believe that BPFGs are a natural setting that deserves fur-
ther exploration. Clearly, it would be interesting to obtain a corre-
spondence between the CFG core with coalition structures and the
general BPFG-core. However Theorem 17 does not hold for the
general BPFG-core because the analog of Fact 4 is not always true.
Namely, an element (Π,x) ∈ C(ṽ, G) satisfies x(C) = ṽ(C) for
every C ∈ Π. But this may not be a valid allocation for the BPFG
since it may not hold that x(C) = V (C,Π) (i.e., the feasibility of
an allocation x would have to be assessed w.r.t. Π). Hence the task
of mapping the CFG core to the BPFG-core is considerably more
challenging when coalition structures are involved.

5. CONCLUSIONS AND FUTURE WORK
In this paper we studied core-stability in several models of coop-
erative games defined on graphs that constrain the formation of
coalitions. First, we obtained complexity results in the usual CFG
setting, several of which are positive for certain graph structures of
interest, such as trees and cycles which form the backbone of net-
works found in the real world. We then initiated the study of core-
stability in PFGs defined over graphs, examining it both from a pes-
simistic and an optimistic viewpoint. Furthermore, we proposed a
Bayesian model for PFGs, which we believe is more realistic than
the usual models in economics, and suits better the coalition for-
mation paradigms of interest to multiagent systems. We took some
steps towards the study of the core in this model as well.

Regarding future work, we are particularly interested in explor-
ing the PFG and Bayesian PFG domains further, as outlined above.
We also envisage linking theoretical results in these domains to
real-world applications. For instance, tractable algorithms to iden-
tify ε-stable coalitions could be used to inform planning decisions
and optimize task execution in structured multiagent settings.
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ABSTRACT
Cooperative games with overlapping coalitions (OCF games) [3,
23] model scenarios where agents can distribute their resources
among several tasks; each task generates a profit which may be
freely divided among the agents participating in the task. The goal
of this work is to initiate a systematic investigation of algorithmic
aspects of OCF games. We propose a discretized model of over-
lapping coalition formation, where each agent i ∈ N has a weight
wi ∈ N and may allocate an integer amount of weight to any task.
Within this framework, we focus on the computation of outcomes
that are socially optimal and/or stable. We discover that the al-
gorithmic complexity of the associated problems crucially depends
on the amount of resources that each agent possesses, the maximum
coalition size, and the pattern of interaction among the agents. We
identify several constraints that lead to tractable subclasses of OCF
games, and provide efficient algorithms for games that belong to
these subclasses. We supplement our tractability results by hard-
ness proofs, which clarify the role of our constraints.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Theory

Keywords
Overlapping Coalition Formation, Complexity, Bounded Treewidth

1. INTRODUCTION
In many multiagent systems, agents split into teams in order to

complete tasks or solve problems [14]. Typically, the collective
efforts of a team are rewarded with a payoff, which then needs to
be shared among the team members. When agents are selfish, i.e.,
aim to maximize their own payoff, such settings are modeled using
the tools of cooperative game theory, which suggests a variety of
approaches to team formation and payoff division [2].

The usual framework of cooperative games assumes that agents
are divided into disjoint sets in order to perform tasks. However,
sometimes the agents may benefit from splitting their resources

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

among several jobs and forming overlapping coalitions. The study
of such scenarios was initiated by Shehory and Kraus [21] (see also
Dang et al. [6]), who assumed that agents are fully cooperative.
More recently, Chalkiadakis et al. [3] proposed a formal model
for cooperative games with overlapping coalition structures (OCF
games), which, in contrast to the previous work, takes agent incen-
tives into account. More specifically, Chalkiadakis et al. [3] define
games in which agents can form partial coalitions, and an agent
can participate in multiple (overlapping) coalitions. Such coali-
tions correspond to vectors in [0, 1]n: the i-th coordinate of the
vector identifies the fraction of the i-th agent’s resources devoted
to this coalition.

The main focus of [3] is coalitional stability in OCF games.
In such games, identifying outcomes that are stable, i.e., resistant
to group deviations, is more difficult than in the standard model.
This is because in OCF games one needs to take into account the
non-deviators’ reaction to deviation. Indeed, when no overlapping
coalitions are allowed, the deviators do not care about the reac-
tion of other agents to their actions: all of their resources are now
devoted to maximizing their own welfare and they have no stake
in what other agents do. In contrast, when agents are allowed to
divide their resources among several tasks, group reaction to devia-
tion must be taken into consideration: the deviating agents may re-
main involved in one or more partial coalitions with non-deviators,
and they need to reason about the payoff they expect to get from
such collaborations. These issues were raised in [3] and subse-
quently studied in detail by Zick and Elkind [23], who proposed a
general framework for handling coalitional reaction to group devi-
ations under a number of solution concepts.

While Chalkiadakis et al. [3] and Zick and Elkind [23] provide
a rich framework for reasoning about OCF games, they give short
shrift to computational aspects of such games. Indeed, Zick and
Elkind [23] ignore the algorithmic efficiency issues altogether, and
in [3] the algorithmic results are limited to a special class of OCF
games known as Threshold Task Games; while these games sup-
ply a useful testing ground for comparing different stability con-
cepts, they are clearly not expressive enough to capture all OCF
games. We remark that, in general, designing efficient algorithms
for coalitional games, even in the absence of overlapping coali-
tions, is a challenging task. Indeed, the sheer number of such
games precludes the existence of a representation scheme that can
describe any coalitional game in poly(n) bits (where n is the num-
ber of players). For this reason, a number of different representa-
tion languages for coalitional games have been proposed, with each
language capturing a specific family of application scenarios and
requiring purpose-built algorithms for computing various solution
concepts (see, e.g., Chalkiadakis et al. [4] for a literature review).
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For games with overlapping coalitions, the situation is even more
dire: even identifying a finitary representation for OCF games is
non-trivial, as we need to be able to specify the payoff of each par-
tial coalition, and there are infinitely many such coalitions.

The aim of this paper is to initiate a systematic investigation of
algorithmic aspects of OCF games. We propose a discretized model
of overlapping coalition formation, where each agent i ∈ N has a
weight wi ∈ N and may allocate an integer amount of resources
to any partial coalition. This simplification ensures the existence
of a finitary representation, and can be justified by observing that
in practice, agents’ resources have certain granularity and there-
fore cannot be divided with arbitrary precision. We then focus
on the computation of outcomes that are socially optimal and/or
stable. We discover that the complexity of the associated prob-
lems crucially depends on the amount of resources that each agent
possesses, the maximum coalition size, the pattern of interaction
among the agents, and the properties of the arbitration function.
We identify the constraints that lead to tractable subclasses of OCF
games, and provide efficient algorithms for games that belong to
these subclasses. We supplement our tractability results by hard-
ness proofs, showing that the constraints that we impose are, in a
sense, necessary. Our results suggest a number of future research
directions; we hope that they will serve as a starting point for a
comprehensive algorithmic analysis of OCF games, which is a nec-
essary precondition for the practical applicability of such games.

2. PRELIMINARIES
Throughout the paper, we use boldface lowercase letters to de-

note vectors and uppercase letters to denote sets. Given two vectors
x,y ∈ Rn, we write x ≤ y when xi ≤ yi for all i = 1, . . . , n.

Cooperative Games with Overlapping Coalitions We briefly de-
scribe the model as presented in [3]. A cooperative game with over-
lapping coalitions, also referred to as an overlapping coalition for-
mation (OCF) game, is given by a set of agents N = {1, . . . , n}
and a characteristic function v : [0, 1]n → R+; we write G =
(N, v). Each agent has one unit of resource (time, money, etc.);
using their resources, agents may form partial coalitions: a partial
coalition is described by a vector c = (c1, . . . , cn), where ci is
the fraction of i’s resource dedicated to this coalition. The value of
the partial coalition c is given by v(c), and its support is given by
supp(c) = {i ∈ N | ci > 0}. A coalition structure over a subset
S ofN is a collection CS = (c1, . . . , cm) of partial coalitions that
satisfies

∑m
j=1 c

j ≤ eS , where eS ∈ {0, 1}n is the indicator vec-
tor of the set S ⊆ N . We denote by CS(S) the set of all coalition
structures over S. Given a coalition structure CS = (c1, . . . , cm),
we overload notation and write v(CS) =

∑m
j=1 v(cj); we refer to

v(CS) as the value of CS . The superadditive cover of a character-
istic function v is the mapping

v∗(c) = sup
CS∈CS(N)

{v(CS) |
∑

c′∈CS

c′ ≤ c},

which computes the most that the agents can earn if their resources
are given by c.

The payoff v(cj) needs to be divided among agents who con-
tribute to cj , i.e., members of supp(cj); a division of payoffs of a
partial coalition cj is a vector xj ∈ Rn+ that satisfies

∑n
i=1 x

j
i =

v(cj), xji = 0 for any i 6∈ supp(cj). A pre-imputation for a coali-
tion structure CS = (c1, . . . , cm) is a collection of vectors x =
(x1, . . . ,xm), where for each j = 1, . . . ,m the vector xj is a di-
vision of payoffs of coalition cj . The set of all pre-imputations for
a coalition structure CS is denoted by I(CS). The pair (CS ,x),
where x ∈ I(CS), is called a feasible outcome. The total payoff

of a player i under a feasible outcome (CS ,x) with coalition struc-
ture CS = (c1, . . . , cm) and a payoff vector x = (x1, . . . ,xm) is
defined as pi(CS ,x) =

∑m
j=1 x

j
i ; we extend this notation to sets

of agents by setting pS(CS ,x) =
∑
i∈S pi(CS ,x) for S ⊆ N .

Stability and Arbitration Functions in Cooperative Games with
Overlapping Coalitions Subsets of agents can deviate from an
outcome by withdrawing some or all of their resources from some
or all of the partial coalitions they participate in. The arbitration
function [23] is a mapping A that receives as its input (a) a fea-
sible outcome (CS ,x), (b) a deviating set S ⊆ N and (c) S’s
proposed deviation, i.e., a list of resources that members of S in-
tend to withdraw from each coalition in CS . Given this data, A
returns a number for each coalition c with supp(c) ∩ S 6= ∅,
supp(c) ∩ (N \ S) 6= ∅; this number represents how much of
c’s payoffs the agents in S ∩ supp(c) will be allowed to keep if
they deviate. In general, this number may depend on S’s behavior
outside of c: for instance, c may be unwilling to pay S if S hurts
some players in supp(c) ∩ (N \ S) in some other coalition, or
it may withhold the payment completely if S deviates in any way
whatsoever. We assume that A is normalized: if a set withdraws
all of its resources from some partial coalition, it receives nothing
from it. We also assume that A is deviation-monotone: the devia-
tors cannot increase the payoff they receive from a partial coalition
by withdrawing more resources from it.

We denote by A∗(CS ,x, S) the most that a set S ⊆ N can
get when deviating from (CS ,x) under the arbitration function A
(including the payoff from the partial coalitions that the deviators
form among themselves). An outcome (CS ,x) is said to be in the
A-core, orA-stable, if no set S can deviate (and then share payoffs
from the deviation) so that each i ∈ S gets more than pi(CS ,x),
when payoffs to deviators from coalitions with non-deviators are
given byA. Zick and Elkind [23] show that an outcome isA-stable
if and only if pS(CS ,x) ≥ A∗(CS ,x, S) for all S ⊆ N .

Three types of reactions to set deviations are described in [3];
in the terminology of [23], these are arbitration functions. First,
under the conservative arbitration function, any coalition c with
supp(c)∩ (N \S) 6= ∅ pays nothing to S; this notion of deviation
is the most restrictive, and allows a deviating set only the payoff
from whatever coalitions it forms on its own. Second, under the
refined arbitration function, c allows S to keep its payoff as long
as no member of S changes his contribution to c. Third, under the
optimistic arbitration function, the deviators may keep some of c’s
payoff even if they withdraw some resources from c; specifically,
if they can ensure that each agent in supp(c) ∩ (N \ S) receives
as much from the reduced coalition as it did before the deviation,
they can keep the remaining payoff. Under the assumptions on ar-
bitration functions given in [23], the payoff given by the optimistic
arbitration function is the most that any arbitration function may
give. This means that if an outcome is stable w.r.t. the optimistic
arbitration function, it is stable under any arbitration function.

3. OUR MODEL
In the model of [3, 23], each agent may divide his resources

in any way he chooses. This leads to a variety of conceptual and
algorithmic complications: for instance, there is no apriori bound
on the size of the coalition structure, and it is not clear how to
represent the characteristic function and the arbitration function.

To circumvent these difficulties, we assume that agents may only
divide their resources in a discrete manner: each agent i ∈ N has
a positive integer weight wi, and may allocate an integer part of
it to a partial coalition. This is a reasonable assumption in most
multiagent settings, where agents allocate hours, money or memory
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space to tasks. We will refer to such games as discrete OCF games.
We set Ψ = maxi∈N{wi}; note that the case Ψ = 1 corresponds
to the standard model of characteristic function games, i.e., one that
does not admit overlapping coalitions. For our asymptotic bounds,
we will assume Ψ > 1. Let w = (w1, . . . , wn) andW = [0, w1]×
· · · × [0, wn].

We can interpret the characteristic function v of a discrete OCF
game as a mapping fromW to R and modify the definition of the
superadditive cover and other notions introduced in Section 2 in a
similar manner. Given a subset S ⊆ N and some q ∈ W , we let
qS be the vector q with all coordinates i /∈ S set to 0. Also, we
define W(S) = {q ∈ W | q ≤ wS}. We will assume that the
value of each partial coalition is a non-negative rational number that
can be encoded using poly(n, log Ψ) bits. Under this assumption
for any fixed value of Ψ there are finitely many discrete n-player
OCF games where the weight of each player is bounded by Ψ, and
any such game can be represented by a vector of length (Ψ + 1)n.

The size of this vector representation is exponential in n, which
is unacceptable for most applications. We will therefore limit our
attention to games where there is an apriori bound on the admis-
sible coalition size. Namely, we say that a game with overlapping
coalitions is a k-OCF game if v(q) = 0 for any q ∈ W with
|supp(q)| > k. Clearly, a discrete k-OCF game can be repre-
sented using

(
n
k

)
(Ψ + 1)k values; this number is polynomial in Ψ

and n if k is bounded by a constant. In the rest of the paper, we will
assume that a k-OCF game is represented by a list that consists of
all partial coalitions q with |supp(q)| ≤ k, together with their val-
ues. We will write va1,...,ak (q1, . . . , qk) to denote the value of the
partial coalition with support {a1, . . . , ak} that receives qi units of
weight from agent ai, i = 1, . . . , k.

An important advantage of this model is that it makes it rela-
tively easy to deal with arbitration functions. Indeed, in a discrete
OCF game each coalition structure consists of at most n(Ψ + 1)
partial coalitions. This means, in particular, that the input to the ar-
bitration function can be represented using poly(n,Ψ, ||x||) bits,
where ||x|| is the bitsize of the payoff vector x. We will assume
that our algorithms have oracle access to the arbitration function;
the observation above means that in our model querying this oracle
takes time polynomial in the game representation size.

REMARK 3.1. If the characteristic function of a discrete OCF
game is efficiently computable, it can be encoded more succinctly
by a circuit that takes the vector of agents’ resources as its input
and outputs the value of the corresponding partial coalition. More
formally, this circuit would have ndlog(Ψ + 1)e inputs: the i-th
dlog(Ψ + 1)e-bit block of inputs would encode the contribution
of agent i. Any discrete OCF game with a polynomial-time com-
putable characteristic function v : W → Q+ can be represented
by a circuit of size poly(n, log Ψ). This representation is succinct
even if we do not limit the coalition sizes. However, it has two
important disadvantages. First computing v∗, which is the most
basic computational problem associated with an OCF game, be-
comes NP-hard even for n = 1; this follows by a straightforward
reduction from the UNBOUNDED KNAPSACK problem [15] (a sim-
ilar reduction, albeit in a slightly different context, can be found
in [3]). Second, since the agents may form a coalition structure
of size Ω(nΨ), querying the arbitration function may be exponen-
tially expensive in this model. Therefore, in what follows, we will
not consider this representation.

4. K-OCF GAMES: FIRST OBSERVATIONS
The representation of a k-OCF game explicitly provides the value

of each partial coalition q. However, if we are interested in comput-

ing the total profit that can be earned by agents whose resources are
given by w, we need to take into account that these agents may split
their resources among several partial coalitions. Thus, we need to
compute the value of the superadditive cover v∗ on w. This com-
putational problem is formalized as follows.

Name: OPTVAL
Input: A discrete k-OCF game over n players with maximum weight

Ψ, a coalition q ∈ W , and a value r.
Question: Is v∗(q) ≥ r?

It is not hard to show that this problem is tractable if we additionally
require that |supp(q)| is bounded by a constant.

PROPOSITION 4.1. Given a discrete OCF game and a partial
coalition q with |supp(q)| ≤ t, one can compute v∗(q) in time
poly(Ψt).

PROOF. We have v∗(q) = max{v∗(q− r) + v(r) | r ≤ q}.
Thus, if we have computed v∗(q′) for all q′ < q, we can compute
v∗(q) inO((Ψ + 1)t) time. Hence, we can compute v∗(q) in time
O(t(Ψ + 1)t+1) by dynamic programming.

However, in general OPTVAL is computationally difficult, even
if the maximum coalition size and the maximum weight are bounded
by small constants.

THEOREM 4.2. OPTVAL is NP-complete even if k≤2, Ψ≤3.

PROOF. To see that this problem is in NP, observe that is suffices
to guess a coalition structure CS = (q1, . . . ,qm) with

∑m
j=1 q

j
i ≤

wi and v(CS) ≥ r; note that the size of this coalition structure is
at most n(Ψ + 1), which is polynomial in the input size.

For the hardness proof, we provide a reduction from EXACT
COVER BY 3-SETS (X3C) [10]. Recall that an instance of X3C
is given by a finite set A, |A| = 3`, and a collection of subsets
S = {S1, . . . , St} ⊆ 2A such that |Sj | = 3 for all j = 1, . . . , t.
It is a “yes”-instance if A can be covered by exactly ` sets from
S. Given an instance (A,S) of X3C, we construct a discrete OCF
game with k = 2, Ψ = 3 as follows. We have an agent ai of
weight 1 for every element i ∈ A and an agent aS with weight 3
for every S ∈ S. The characteristic function is defined as follows:
vai,aS (1, 1) = 2 if i ∈ S, vaS (3) = 5, and the value of every
other partial coalition is 0.

Let S = {x, y, z} and considerGS = {aS , ax, ay, az}. Collec-
tively, the agents in GS can earn 6 if aS forms a partial coalition
with each of ax, ay , and az , and contributes one unit of weight to
each of these coalitions; in any other coalition structure GS earns
at most 5. Hence, (A,S) admits an exact cover if and only if
v∗(q) ≥ 6`+ 5(t− `) = 5t+ `.

Thus, discrete OCF games present a challenge from the com-
putational perspective even if we severely restrict the maximum
weight and coalition size. This means that in order to find tractable
classes of such games, we must place further constraints on the
coalitions that the agents are allowed to form. To identify the ap-
propriate constraints, let us first consider 2-OCF games. Any such
game can be naturally identified with a graph: the vertex set of this
graph is N ; there is an edge between i and j if there exists a par-
tial coalition q such that supp(q) = {i, j} and v(q) > 0. We
will refer to this graph as the interaction graph of the game (N, v).
Given this perspective, one may wonder if placing constraints on
the interaction graph leads to tractable OCF games. In Section 5,
we show that this is indeed the case: many computational problems
for discrete 2-OCF games become tractable if the interaction graph
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is a tree. In Section 6, we extend these results to k-OCF games:
such games can be associated with hypergraphs, and we show that
many—though not all—of the results of Section 5 hold for k-OCF
games whose interaction hypergraph has bounded treewidth.

All hardness results for OCF games derived so far stem from the
complexity of computing the superadditive cover; therefore, to cir-
cumvent them, we place constraints on the characteristic function
v. We now show that if we are interested in stability-related ques-
tions, we have to place constraints on the arbitration function A
as well. Specifically, recall that A∗(CS ,x, S) computes the most
that a set S ⊆ N can earn when deviating from (CS ,x) under
the arbitration function A. In other words, when a set of agents
S decides whether to deviate from (CS ,x), it needs to compute
A∗(CS ,x, S). In the non-overlapping case, a given coalition S
can easily decide whether it should deviate: it suffices to compute
v(S) and compare it with the payoff that S receives under (CS ,x).
In contrast, A∗ can be hard to compute even if n = 2 and both v
and A are poly-time computable.

THEOREM 4.3. If there exists a poly-time algorithm that for
any discrete OCF game (N, v) any CS ∈ CS(N), any x ∈ I(CS)
and any S ⊆ N can compute A∗(CS ,x, S) given oracle access
to A, then P=NP. This remains true even if the algorithm is only
required to work when |N | = 2 and both v and A are poly-time
computable.

PROOF. We will show that if such an algorithm exists, it can be
used to solve instances of SET COVER [10]. Recall that an instance
of SET COVER is given by a set of elements A, a collection of
subsets S = {S1, . . . , St} ⊆ 2A and ` ∈ N; it is a “yes”-instance
if A can be covered by at most ` sets from S.

Given an instance of SET COVER, consider a 2-player discrete
OCF game where w1 = w2 = t + 2. The valuation function v
is defined as follows. Each player gets payoff 1 for each unit of
effort he invests in working on his own, i.e., v(0, x) = v(x, 0) = x
for x = 0, . . . , t + 2. Further, we have v(1, 1) = 2, v(2, 2) =
10(t+ 2); the value of v on other partial coalitions can be defined
arbitrarily. Let CS = (q1, . . . ,qt,qt+1), where qi = (1, 1) for
i = 1, . . . , t and qt+1 = (2, 2). Let x = (x1, . . . ,xt+1) be
a payoff vector that allocates all payoff from q1, . . . ,qt to 2 and
splits the payoff from qt+1 equally between 1 and 2.

Now, recall that the input to the arbitration function A is an
outcome (CS ,x) and a resource withdrawal pattern for the de-
viating coalition S. Let (CS ,x) be as constructed above, S =
{1}, and suppose that player 1 withdraws from partial coalitions
qi1 , . . . ,qis , where {i1, . . . , is} ⊆ {1, . . . , t}. We define A so
that on this input player 1 receives nothing from q1, . . . ,qt; more-
over, player 1 keeps his payoff from qt+1 if and only if the collec-
tion {Si | i 6= i1, . . . , is} is a cover for A; otherwise, player 1 gets
nothing from qt+1. We can defineA arbitrarily on other inputs; for
concreteness, let us say that it coincides with the refined arbitrator.
Note that A is normalized, deviation-monotone and polynomial-
time computable.

If player 1 withdraws x units of resources from q1, . . . ,qt, he
can use them to earn x by working on his own. Thus, under A
player 1 maximizes his payoff by withdrawing resources from as
many coalitions among q1, . . . ,qt as possible, subject to the con-
straint that the coalitions he still contributes to correspond to a
cover of A. Thus, A∗(CS ,x, {1}) ≥ 5(t + 2) + (t − `) if and
only if the input instance of SET COVER admits a cover of size at
most `.

Intuitively, the hardness of computing A∗ stems from the fact that,
when determining whether player 1 gets to keep his payoff from

qt+1, the arbitration function bases its decision on player 1’s global
behavior. This motivates the following definition.

DEFINITION 4.4. An arbitration function A for an OCF game
(N, v) is said to be local if the payoff to a deviating set S from a
coalition q is determined by the resources that S takes from q.

It is easy to see that the conservative, refined and optimistic ar-
bitration functions that were defined in [3] are local. In contrast,
the arbitration function used the proof of Theorem 4.3 is non-local.
Another example of a non-local arbitration function is the sensitive
arbitrator defined in [23]: under this arbitration function, the devi-
ating set S keeps its payoff from a partial coalition q if none of the
players in supp(q) ∩ (N \ S) are hurt by the deviation.

Local arbitration functions are easier to work with, as they do
not need to receive the entire coalition structure as their input; thus,
a local arbitrator can be queried in polynomial time even assum-
ing the circuit representation discussed in Remark 3.1. Even more
importantly, they can be used to circumvent the hardness result of
Theorem 4.3.

THEOREM 4.5. For any discrete OCF game (N, v), given a lo-
cal arbitration function A, an outcome (CS ,x) and a set S ⊆ N ,
one can compute A∗(CS ,x, S) in time poly(Ψ|S|).

PROOF. We first observe that a coalition structure CS has at
most (Ψ+1)|S| coalitions that involve players in S. Given a coali-
tion structure CS , let q1, . . . ,qm be the list of partial coalitions
that receive contributions from both S and N \S. Suppose that for
` = 1, . . . ,m, S’s contribution to q` is given by resource vector
r` ∈ W(S), such that r` ≤ q`; w.l.o.g., we assume that for each
` the vector r` has at least one strictly positive coordinate. Now,
suppose that players in S invest s ∈ W(S) units of resources in
partial coalitions among themselves and want to withdraw an ad-
ditional t ∈ W(S) from CS . They would get v∗(s + t) from
working on their own, plus the most that S can get from the arbi-
tration function, which depends on the coalitions affected by this
deviation. Let us denote by A(y; `) the most that the arbitration
function will give S if they withdraw y resources from the first `
coalitions, where 1 ≤ ` ≤ m. We also denote by A(z; `) the pay-
off to S from coalition q` if it withdraws z ≤ r` from q`. We
obtain

A(z; `) = max{A(y; `− 1) +A(z− y; `) | 0 ≤ y ≤ z}.

This shows that we can compute A(z;m) in O(m(Ψ + 1)|S|) =
poly(Ψ|S|) steps. Now, the A∗(CS ,x, S) can be computed as
max{v∗(s + t) +A(t;m) | 0 ≤ t ≤ wS − s}.

Theorem 4.5 implies that A∗ can be computed in time polyno-
mial in Ψ if |S| is bounded by a constant. From this point onwards,
we assume that A is local, unless explicitly stated otherwise.

5. 2-OCF GAMES ON TREES
In this section, we focus on discrete 2-OCF games where the

interaction graph is a tree (all of our results generalize immediately
to the case where this graph is a forest). We can root this tree at an
arbitrary node; if r ∈ N is chosen as the root, we denote by Ci(r)
the children of player i and by Ti(r) the nodes of the subtree rooted
at i. We omit r from the notation when it is clear from the context.

We can efficiently compute v∗ for such games.

THEOREM 5.1. If the interaction graph is a tree, v∗(w) can be
computed in time poly(n,Ψ).
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PROOF. We will show how to compute v∗(w). To extend the
algorithm to arbitrary q, we can consider the game with the set of
players supp(q) and weights given by q.

We arbitrarily choose some player r ∈ N to be the root, and
process the players starting from the leaves and moving towards
the root. For each node i and each w = 0, . . . , wi, let ui(w) de-
note the most that the players in Ti could earn if i had weight w.
When processing i, we compute the quantities ui(0), . . . , ui(wi)
based on the results of similar computations at each of i’s children.
v∗(w) = ur(wr), so once we reach the root, we output ur(wr)
and stop.

Consider first a leaf i. We have ui(w) = v∗i (w), so, by Proposi-
tion 4.1, we can compute all ui(w), 0 ≤ w ≤ wi, in time O(Ψ2).

Now consider an internal node i. Suppose thatCi = {i1, . . . , i`}
and for each ij ∈ Ci the quantities uij (w) for w = 0, . . . , wij
have been computed. For j = 0, . . . , `, let Ti,j be the tree ob-
tained from Ti by removing subtrees rooted at ij+1, . . . , i`, and
let ui(z; j) be the most that the players in Ti,j could earn if i had
weight z, 0 ≤ z ≤ wi. We have ui(z; 0) = v∗i (z). Further, having
computed ui(z′; j − 1) for all z′ = 0, . . . , wi, we can compute
ui(z; j) for all z = 0, . . . , wi as

ui(z; j) = max
0≤x≤z

0≤y≤wij

{v∗i,ij (x, y)+ui(z−x; j−1)+uij (wij−y)}.

Indeed, players i and ij need to decide how much weight to al-
locate to working together. Given this decision, they should opti-
mally allocate their remaining weight to collaboration with, respec-
tively, i1, . . . , ij−1 and Tij . The expression above optimizes over
all choices available to i and ij .

By Proposition 4.1, v∗i,ij (x, y) can be computed in timeO(Ψ3),
and ui(z−x; j−1), uij (wij −y) have been pre-computed. Thus,
for any fixed z this computation takesO(Ψ5) steps, and computing
all ui(z; j), z = 0, . . . , wj , for a fixed value of k takes O(Ψ6)
steps. We clearly have ui(w) = ui(w; `); hence, i can compute
ui(0), . . . , ui(wi) in O(|Ci|Ψ6) steps. As this computation has to
performed at every internal node, the overall running time of our
algorithm is

∑n
i=1O(|Ci|Ψ6) = O(nΨ6).

We now move on to the study of stability-related questions. The
first problem we consider is computing A∗, i.e., deciding whether
a given coalition can profitably deviate under A. In general, this
problem is NP-hard even for discrete 2-OCF games and local arbi-
trators: this follows from Theorem 4.2, combined with the obser-
vation that A∗(CS ,x, N) = v∗(w) for any outcome (CS ,x) and
any arbitration functionA. However, computingA∗ becomes easy
when the interaction graph is a tree.

THEOREM 5.2. Given a discrete 2-OCF n-player game and a
local arbitration function A, if the interaction graph is a tree, we
can compute A∗(CS ,x, S) for any S ⊆ N and any outcome
(CS ,x) in time poly(n,Ψ).

PROOF SKETCH. We use the algorithm given in the proof of
Theorem 5.1, with the modification that each of the deviators also
has to decide how much weight to keep in his collaboration with
non-deviators; this decision is not too difficult since the interactions
are between pairs of agents, and the arbitration function is local. In
more detail, given an outcome (CS ,x) and a deviating set S, we
construct a new discrete 2-OCF game where the set of players is
S, and the characteristic function v̄ is defined so that v̄i,j ≡ vi,j
for i, j ∈ S and v̄∗i (w) outputs the most that player i can make by
allocating w units of weight to working on his own and with his
neighbors from N \ S (this quantity depends on A and (CS ,x)).

It can be shown that v̄∗(S) can be computed by dynamic program-
ming in time poly(n,Ψ) andA∗(CS ,x, S) = v̄∗(S); we omit the
full proof due to space constraints.

We are now ready to present an algorithm for checking whether
a given outcome is in the A-core. This problem is closely related
to that of computing A∗: an outcome (CS ,x) is in the A-core if
and only if the excess e(CS ,x, S) = A∗(CS ,x, S)− pS(CS ,x)
is non-positive for all coalitions S ⊆ N . Thus, we need to check
whether there exists a subset S ⊆ N with e(CS ,x, S) > 0. Note
that it suffices to limit our attention to connected subsets of N : if
e(CS ,x, S) > 0 and S is not connected, then some connected
component S′ of S also satisfies e(CS ,x, S′) > 0.

THEOREM 5.3. If the interaction graph is a tree, we can verify
whether a given outcome (CS ,x) is A-stable in time poly(n,Ψ).

PROOF. Fix an outcome (CS ,x) and set pi = pi(CS ,x) for all
i ∈ N .

Again, we pick an arbitrary r ∈ N as a root. We say that S ⊆ N
is rooted at i ∈ N if i ∈ S and the members of S form a subtree of
Ti. We observe that every set S ⊆ N is rooted at a unique i ∈ N .
Given a vertex i, let Ei denote the maximum excess of a set rooted
at i. Clearly, (CS ,x) is not A-stable if and only if Ei > 0 for
some i ∈ N . We will now show how to compute Ei for all i ∈ N .
We proceed from the leaves to the root, and terminate (and report
that (CS ,x) is notA-stable) if we discover a vertex i withEi > 0.
If Ei ≤ 0 for all i ∈ N , we report that (CS ,x) is A-stable.

Given two agents i, j ∈ N , let wi,j denote the weight that i as-
signs to interacting with j.We will now define two auxiliary values.
First, given a neighbor j of i, we define αi,j(w) to be the most that
A will give i if he keeps a total weight of w ≤ wi,j in the coali-
tions that he formed with j in (CS ,x); by Theorem 4.5, αi,j(w) is
computable in time poly(Ψ). Second, we define Di(w) to be the
maximum excess of a subset rooted at i if i were to contribute w to
Ti and nothing to his parent p(i). In this notation,

Ei = max{Di(w)+αi,p(i)(y) | w+y = wi, w ≥ wi−wi,p(i)};
the condition w ≥ wi − wi,p(i) ensures that p(i) is not among
the deviators. It remains to show how to compute Di(w) in time
poly(n,Ψ) for all i ∈ N and wi − wi,p(i) ≤ w ≤ wi.

Consider an agent i with children Ci = {i1, . . . , i`}, and sup-
pose that we have computed Dij (z) for each ij ∈ Ci and each
z, wij − wij ,i ≤ z ≤ wij (this encompasses the possibility
that i is a leaf, as Ci = ∅ in that case). For j = 0, . . . , `, let
Ti,j be the tree obtained from Ti by removing subtrees rooted at
ij+1, . . . , i`. Let Di(w; j) be the maximum excess of a set rooted
at i that is fully contained in Ti,j , assuming that i contributes w to
Ti,j and nothing to his parent or his children ij+1, . . . , i`; we have
Di(w) = Di(w; `). We will compute Di(w; j) by induction on j.

We haveDi(w; 0) = v∗i (w)−pi for allw = wi−wi,p(i), . . . , wi.
Now, consider j > 0. Agent i can either include ij in the deviating
set or deviate (partially or fully) from the coalitions that it forms
with ij in (CS ,x). Thus, Di(w; j) = max{D1, D2}, where

D1 = max
y=0,...,w
z=0,...,wij

{Di(y; j− 1) + v∗i,ij (w− y, z) +Dj(wij − z)}.

and

D2 = max
z=0,...,wi,ij

{Di(w − z; j − 1) + αi,ij (z)}.

Thus, we can efficiently compute Di(w; j), and hence also Di(w)
and Ei.
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We have shown how to check whether a specific outcome is in
the A-core. We can use this algorithm as a subroutine to check
whether the A-core is non-empty. Specifically, we can go over all
coalition structures in CS, and, for each CS ∈ CS, check if there
exists a payoff vector x ∈ I(CS) such that (CS ,x) is A-stable:
the conditions on x can be encoded by a linear program that, despite
being exponential in size, admits a polynomial-time separation or-
acle, namely, the one constructed in Theorem 5.3. This implies
that this linear program can be solved in polynomial time [19]; we
omit the details of this argument due to space constraints. However,
enumerating all candidate coalition structures is prohibitively ex-
pensive. We will now argue that, at least for the conservative core,
this is not necessary: we will show how to explicitly construct an
outcome in the conservative core of a discrete 2-OCF game on a
tree.

Consider a coalition structure CS such that v(CS) = v∗(w).
For any i, j ∈ N that are connected by an edge, we denote by
wi,j the amount of weight that i devotes to interacting with j under
CS ; note that wj,i need not be equal to wi,j . If we remove the
edge (i, j), our tree splits into two trees: we will denote the vertex
sets of these trees by Vi,j and Vj,i, respectively (where i ∈ Vi,j ,
j ∈ Vj,i). We have

v∗(w) = v∗i,j(wi,j , wj,i) + v∗(wVi,j − wi,je{i})
+ v∗(wVj,i − wj,ie{j}). (1)

We observe that i and j can divide the value v∗i,j(wi,j , wj,i) be-
tween themselves in any way they wish. Indeed, there is a coali-
tion structure CS i,j ∈ CS({i, j}) such that v∗i,j(wi,j , wj,i) =
v(CS i,j), and every coalition in CS i,j receives contributions from
both i and j.

We will now derive some constraints on the outcomes in the con-
servative core.

PROPOSITION 5.4. If (CS ,x) is in the conservative core, then
the total payoff to i from interacting with j is at least v∗(wVi,j )−
v∗(wVi,j − wi,je{i}) and at most v∗i,j(wi,j , wj,i)− v∗(wVi,j ) +

v∗(wVi,j − wi,je{i}).

PROOF. Since v∗(wVi,j ) + v∗(wVj,i) ≤ v∗(w), from (1) we
obtain v∗(wVi,j ) − v∗(wVi,j − wi,je

{i}) ≤ v∗i,j(wi,j , wj,i) −
v∗(wVj,i) + v∗(wVj,i − wj,ie{j}).

If i gets less than v∗(wVi,j )− v∗(wVi,j −wi,je{i}) from inter-
acting with j, then the total payoff to Vi,j is less than v∗(wVi,j ), a
contradiction with (CS ,x) being in the conservative core.

Similarly, if i gets more than v∗i,j(wi,j , wj,i) − v∗(wVj,i) +

v∗(wVj,i −wj,ie{j}) from interacting with j, then j gets less than
v∗(wVj,i) − v∗(wVj,i − wj,ie{j}) from their interaction, which
implies that the total payoff to Vj,i is less than v∗(wVj,i), a contra-
diction.

Now, consider a coalition structure CS with v∗(w) = v(CS).
We now show how to assign payoffs to agents so that the resulting
outcome is in the conservative core; in doing so, we are guided by
Proposition 5.4. Note that we do not construct a pre-imputation
x ∈ I(CS) explicitly. Rather, we simply indicate the cumulative
payments to the agents: this is sufficient as long as we are only
interested in the conservative core.

THEOREM 5.5. For any discrete 2-OCF game G = (N, v)
whose interaction graph is a tree and any coalition structure CS ∈
CS(N) such that v∗(w) = v(CS), there is a payoff vector x ∈
I(CS) such that (CS ,x) is in the conservative core.

PROOF. Let CS be a coalition structure such that v∗(w) =
v(CS). Let r ∈ N be the root. Recall that Ti is the set of vertices
of the tree rooted in i, i.e., if p is the parent of i then Ti = Vi,p. We
allocate to agent i ∈ N :

• all payoff from coalitions he forms on his own;
• v∗(wTi)−v∗(wTi−wi,pe{i}) from the interaction with his

parent p (assuming i 6= r);
• v∗i,j(wi,j , wj,i)− v∗(wTi) + v∗(wTi − wi,je{i}) from the

interaction with each of his children j ∈ Ci.

This payoff division is feasible and efficient: the payoff from ev-
ery edge (i, j) is split between i and j. Thus, there exists a pre-
imputation x ∈ I(CS) supporting these payoffs. It remains to
show that the resulting outcome (CS ,x) is stable with respect to
the conservative arbitrator. We will require the following lemma.

LEMMA 5.6. Under the outcome (CS ,x), the total payoff to
agents in Vi,j is exactly v∗(wVi,j ), for any i ∈ N .

PROOF. The lemma is clearly true if i = r. If i 6= r, let
p be the parent of i. Agent i contributes weight wi − wi,p to
Ti. Since CS is an optimal coalition structure, agents in Ti earn
v∗(wTi −wi,pe{i}), which they share among themselves. Further,
i also receives v∗(wTi) − v∗(wTi − wi,pe{p}) from his parent.
Together, this adds up to v∗(wTi).

Now, suppose that a subset of agents S can profitably deviate
from (CS ,x) by forming some CS ′ ∈ CS(S); assume that S is
rooted at i. Let R consist of all vertices in Ti \ S whose parents
belong to S. Note that we have Ti = S ∪ (∪j∈RTj). Now, con-
sider a coalition structure over Ti where for each j ∈ R the agents
in Tj form the optimal coalition structure among themselves, and
agents in S form CS ′. By Lemma 5.6, in this new coalition struc-
ture the value of each Tj , j ∈ R, is the same as its payoff in
(CS ,x). On the other hand, since S can profitably deviate us-
ing CS ′, v(CS ′) > pS(CS ,x). We conclude that in this coalition
structure the agents in Ti earn more than in (CS ,x). However, by
Lemma 5.6 their total payoff in (CS ,x) is exactly v∗(wTi), which
is a contradiction.

Theorem 5.5 does not hold for other arbitration functions, as the
following example shows.

EXAMPLE 5.7. Consider a 3 player game wherew1 = 2, w2 =
2, w3 = 1. Also, v1(1) = 5, v1,2(1, 1) = 10, v2,3(1, 1) = 9. The
rest of the valuations are set to 0. One can verify that the refined
core of this game is empty.

Note also that the payoff division proposed in Theorem 5.5 de-
pends of the choice of the root, with nodes that are closer to the
root reaping the benefits from the collaboration with their chil-
dren. As a result, this payoff division scheme is not particularly
“fair”, as players who contribute equally to an interaction may not
be paid equally. Consider for example a two-agent setting where
both agents have a weight 1 and the value of their interaction is 1.
While, intuitively, both players have equal claim to the profit, only
one of them will get the payoff, while the other receives nothing.

6. INTERACTION HYPERGRAPHS WITH
BOUNDED TREEWIDTH

While 2-OCF games correspond to graphs, k-OCF games with
k > 2 can be modeled as hypergraphs, whose hyperedges are of
size at most k: the vertex set of this hypergraph in N and there is
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an edge E ⊆ N if and only if v(q) > 0 for some q ∈ W with
supp(q) = E. The resulting hypergraph is called the interaction
hypergraph of the corresponding k-OCF game.

Several NP-hard combinatorial optimization problems on hyper-
graphs become tractable for hypergraphs whose treewidth is known
to be bounded by a constant [18]. Problems in cooperative game
theory are no exception: Ieong and Shoham [13] and Greco et.
al [12] show that when a certain graphical representation of a coop-
erative game has bounded treewidth, several computational prob-
lems (e.g. deciding if the core is not empty) become tractable.
Thus, it is only natural to ask whether our previous tractability re-
sults for 2-OCF games on trees can be extended to cases where the
treewidth of the interaction hypergraphs in question is bounded by
a constant. The answer appears to be mostly positive.

We begin by formally introducing the notion of treewidth of a
hypergraph H = (V, E) as given by Gottlob et al. [11]; this def-
inition is based on the original notion of treewidth given in [18].
Given a hypergraph H , a tree decomposition of H is a tree T with
node set V (T ) and edge set E(T ) such that each node X ∈ V (T )
is a non-empty subset X ⊆ V of vertices of H . We require that if
E ∈ E , then there is some X ∈ V (T ) such that E ⊆ X . More-
over, the nodes are required to have the running intersection prop-
erty: if z ∈ X ∩ Y , then all nodes Z that are on the path between
X and Y contain z as well. The width of a tree decomposition T ,
denoted ω(T ), equals maxX∈V (T ){|X| − 1}. The treewidth of
H , tw(H), is the minimum of ω(T ) over all tree decompositions
of H . If tw(H) = d, then a tree decomposition of H with width d
can be found in O(|H|d) time.

Given a tree decomposition T of H with node set V (T ) and
two nodes X,Y ∈ V (T ), we can associate the edge between
X and Y with the set X ∩ Y . Note that X ∩ Y is not empty if
(X,Y ) ∈ E(T ). Given a subtree T ′ of T , we define N(T ′) to be⋃
X∈V (T ′ X . We will now show how to adapt the proofs of Theo-

rems 5.1, 5.2, and 5.3 for hypergraphs with bounded treewidth.

THEOREM 6.1. Given a k-OCF game (N, v) whose interaction
hypergraph admits a tree decomposition T of width d and a partial
coalition q ∈ W , we can compute v∗(q) in time poly(n,Ψd+1).

PROOF. We will give the proof for the case q = w; the general
case can be handled similarly (see the proof of Theorem 5.1). We
pick one of the sets R ∈ V (T ) to be the root of T . Given a node
X ∈ V (T ), we denote by TX the subtree of T that is rooted at
X and by p(X) the parent of X in T (if X = R, we assume
p(X) = X). For every vector q ∈ W(X ∩ p(X)), we denote by
TX(r) the tree TX with X ∩ p(X) devoting r to interacting with
TX ; note that |X ∩ p(X)| ≤ d. Let uX(r) denote the most that
N(TX(r)) can make; clearly, we have v∗(w) = uR(w).

We will now show how to compute uX(q) for each node X and
each q ∈ W(X ∩ p(X)). As in the proof of Theorem 5.1, we pro-
ceed by dynamic programming, starting from the leaves and termi-
nating at R. Fix a node X , and let CX = {C1, . . . , C`} be the set
of X’s children; we denote by uX(q; j) the most that N(TX) can
make if X devotes q to interacting with C1, . . . , Cj and none to
the rest of its children. We have uX(q; 0) = v∗(q); this quantity
can be computed in time O((Ψ + 1)d) by Theorem 4.1. Further,
uX(q; j) is given by

max{uX(q− y; j − 1) + uCj (y) | y ∈ W(Cj ∩X);y ≤ q}.
The requirement that y ≤ q is necessary, as Cj ∩ p(X) may be
non-empty, in which case the amount that Cj ∩X can give to TCj
is limited by its previous commitment to the parent of X . Hence,
we can compute uX(q) = uX(q; `) in time linear in |CX | and
polynomial in Ψd+1; summing over all nodes of T , we obtain the

desired bound on the running time.

We can use similar techniques to compute the most that a set can
get by A-deviating from some outcome (CS ,x).

THEOREM 6.2. Given a k-OCF game, an outcome (CS ,x) and
a set S ⊆ N such that the interaction graph induced by S has
treewidth d, we can computeA∗(CS ,x, S) in poly(n,Ψd+1) time.

PROOF SKETCH. We denote by αL(w) the most that A will
give a subset L ⊆ S of size at most d + 1 if it decides to leave
q ∈ W(L) of its weight allocated to non-S members. Since the
support of any coalition contains at most d + 1 players, comput-
ing αL(w) can be done in a similar manner to Theorem 5.2. Now,
given a tree decomposition of S with width d, we again replace the
most that any subset L ⊆ S with |L| ≤ d + 1 can make with the
value v̄∗(q) = max{v∗(x + y) + αi(q − y) | 0 ≤ y ≤ q}
and repeat the computation described in Theorem 6.1. Correctness
holds for similar reasons to those described in Theorem 5.2.

We can also provide an analogue to Theorem 5.3; we omit the
proof due to space constraints.

THEOREM 6.3. Given a k-OCF game whose interaction hyper-
graph H has treewidth at most d, we can check if an outcome
(CS ,x) is in the A-core in time poly(n,Ψd+1).

Using Theorem 6.3, we obtain the following corollary.

COROLLARY 6.4. Suppose that the treewidth of the interaction
hypergraph of a discrete k-OCF game is at most d. Then, given
a coalition structure CS and an arbitration function A, we can
check in time poly(n,Ψd+1) if there exists an imputation x such
that (CS ,x) is A-stable (and output x if it exists).

Briefly, this problem can be encoded as a linear program. Even
though this program has exponentially many constraints, it can be
solved in time poly(n,Ψd+1) using the algorithm described in the
proof of Theorem 6.3 as a separation oracle.

Finally, we remark that even the conservative core of OCF games
with bounded treewidth may be empty. Thus, an analogue of The-
orem 5.5 does not hold.

EXAMPLE 6.5. Consider a 2-OCF game with N = {1, 2, 3}
and wi = 1 for all i ∈ N . Set vi,j(1, 1) = 1 for any i 6= j ∈
N , and suppose that v ≡ 0 for all other partial coalitions; this is
essentially the classic 3-player majority game [2], which is known
to have an empty core. The argument for the classic case can be
adapted to show that the conservative core of our game is empty.

7. RELATED WORK
Our work builds directly on the overlapping coalition formation

framework of [3, 23]. The main difference between our model and
that of [3, 23] is the assumption that the agents’ resources are dis-
crete; however, all theoretical results proven in these papers can be
shown to hold for the discretized setting.

Restricting the size of admissible coalitions to ensure tractability
is a fairly standard approach, see, e.g., the classic work of She-
hory and Kraus [20]. More recently, Shrot et al. [22] and Chit-
nis et al. [5] investigated the parameterized complexity of (non-
overlapping) coalitional games, with the maximum coalition size
as a parameter. They show that, in the absence of additional con-
straints on the characteristic function, restricting the coalition size
is insufficient for tractability; this is consistent with our results
(Theorem 4.2).
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Many of our tractability results rely on restricting the interac-
tion between the agents to trees and tree-like structures. This bears
close similarity to models in classic cooperative game theory that
limit agent interaction. The first such model, proposed by Myer-
son [17], describes cooperative games where agent interaction is
limited by an underlying graph structure; in this model, a coalition
may form only if it corresponds to a connected subgraph. Coopera-
tive games on graphs have been subsequently studied by a number
of authors; see, e.g., [7, 9, 16, 17]. In particular, Demange [7]
describes cooperative games where agents form a hierarchical tree
structure and proposes an algorithm that computes a core allocation
in this setting; our analysis of 2-OCF games on trees is somewhat
similar to this work. However, deriving results in the OCF model is
significantly more complicated than in the non-overlapping setting,
and the algorithm of [7] cannot be applied directly to our model.
Section 6 is inspired by the work of Ieong and Shoham [13] and
Greco et al. [12], who analyze the complexity of core-related solu-
tion concepts for interaction graphs with bounded treewidth in the
non-overlapping setting.

Recently, Anshelevitz and Hoefer [1] introduced network con-
tribution games: in these games, each agent has a weight that he
may divide among his neighbors, and the value of an interaction
depends on the weight each agent devotes to the edge. Their anal-
ysis differs from ours in that they assume that the payoff from an
edge is divided equally between the agents and study the resulting
non-cooperative game.

Finally, we remark that the study of computational aspects of
coalitional games is a well-established research topic, which re-
ceived a significant amount of attention in recent years; see, e.g.,
[4]. Our work makes the first step towards extending this analysis
to OCF games.

8. CONCLUSIONS AND FUTURE WORK
Finding optimal coalition structures and stable outcomes are key

issues in the analysis of OCF games; we show that these problems
are hard in general, but formulate several conditions that make them
tractable. We mostly focus on 2-OCF games and acyclic agent in-
teraction graphs; however, we show that our results extend to k-
OCF games with constant k and interaction (hyper-)graphs with
bounded treewidth.

While our work focuses on achieving computational efficiency
by restricting agent interaction, one can also obtain tractability re-
sults for OCF games by other means. A natural way of doing so
is to extend existing representation languages for non-overlapping
coalitional games, such as, e.g., MC-nets [13]—and the algorithms
for them—to the OCF setting; the analysis of threshold task games
in [3] can be viewed as an example of this approach.

Another way of dealing with hardness results is by designing
approximation algorithms, i.e., procedures that output a coalition
structure that is almost optimal and/or stable. Designing such algo-
rithms (or proving hardness of approximation results) is a fruitful
direction for future research.

We have focused mostly on one solution concept: the arbitrated
core. Other solution concepts, such as the arbitrated nucleolus,
have been proposed and analyzed in [23]. It would be interesting to
analyze the computational complexity of finding a nucleolus out-
come, or the Shapley value of an agent in cooperative games with
overlapping coalitions.
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ABSTRACT
A Coalition Structure Generation (CSG) problem involves
partitioning a set of agents into coalitions so that the social
surplus is maximized. Recently, Ohta et al. developed an
efficient algorithm for solving CSG assuming that a char-
acteristic function is represented by a set of rules, such as
marginal contribution networks (MC-nets).

In this paper, we extend the formalization of CSG in Ohta
et al. so that it can handle negative value rules. Here, we
assume that a characteristic function is represented by either
MC-nets (without externalities) or embedded MC-nets (with
externalities). Allowing negative value rules is important
since it can reduce the efforts for describing a characteristic
function. In particular, in many realistic situations, it is
natural to assume that a coalition has negative externalities
to other coalitions.

To handle negative value rules, we examine the following
three algorithms: (i) a full transformation algorithm, (ii) a
partial transformation algorithm, and (iii) a direct encoding
algorithm. We show that the full transformation algorithm
is not scalable in MC-nets (the worst-case representation
size is Ω(n2), where n is the number of agents), and does
not seem to be tractable in embedded MC-nets (representa-
tion size would be Ω(2n)). In contrast, by using the partial
transformation or direct encoding algorithms, an exponen-
tial blow-up never occurs even for embedded MC-nets. For
embedded MC-nets, the direct encoding algorithm creates
less rules than the partial transformation algorithm.

Experimental evaluations show that the direct encoding
algorithm is scalable, i.e., an off-the-shelf optimization pack-
age (CPLEX) can solve problem instances with 100 agents
and rules within 10 seconds.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence – Multiagent systems

General Terms
Algorithms, Theory

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
coalition structure generation, constraint optimization, co-
operative games

1. INTRODUCTION
Coalition formation is an important capability in auto-

mated negotiation among self-interested agents. Coalition
Structure Generation (CSG) involves partitioning a set of
agents so that social surplus is maximized. This problem
has become a popular research topic in AI and multi-agent
systems. Solving CSG is equivalent to the complete set parti-
tioning problem [17], and various algorithms for solving CSG
have been developed [2, 9, 11, 12, 13, 15, 17]. Also, the com-
putational complexity of CSG in various domains has been
analyzed [1, 16].

Another active research area in the agent research com-
munity is compact representation schemes of a characteristic
function. If we naively represent a characteristic function as
a table, we require Θ(2n) numbers, where n is the number of
agents. When the number of agents becomes large, we need
a compact method to represent a characteristic function.
The main idea of compact representation schemes is to use
a set of rules to represent a characteristic function. These
compact representation schemes include marginal contribu-
tion networks (MC-nets) [5, 7], Synergy Coalition Groups
(SCG) [4], etc. The computational complexity for finding
various solution concepts when a characteristic function is
represented by these compact representation schemes is an-
alyzed in [6].

Recently, Ohta et al. [10] introduces an innovative direc-
tion for solving CSG by utilizing these compact representa-
tion schemes. More specifically, they show that a CSG prob-
lem can be formalized as a problem of finding the subset of
rules that maximizes the sum of rule values under certain
constraints. They also develop mixed integer programming
(MIP) formulations of the above optimization problem and
experimentally showed that this approach is far more scal-
able than traditional approaches, e.g., it can solve instances
with 120 agents/rules in less than 20 seconds.

In this paper, we extend the formalization of CSG in [10]
to handle negative value rules. We concentrate on MC-
net-based representations since this representation scheme is
more compact and natural than other representation schemes.
Also, it can be easily extended to handle externalities among
coalitions, i.e., a coalition can affect the performance of other
coalitions. This extended representation scheme is called
embedded MC-nets [8]. Although a rule may have a neg-
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ative value in the original definition of [7], rule values are
restricted to be positive to make the optimization problem
simpler in [10].

Although any characteristic function can be represented
without using negative value rules (as long as no coalition
has a negative value), this restriction can make the represen-
tation size of a problem significantly larger. Also, allowing
negative value rules can reduce the efforts for describing a
characteristic function. Assume the president of a company
is trying to reorganize the grouping of workers to maximize
the productivity of the company. To utilize CSG techniques,
the president needs to represent her knowledge about the
characteristic function. When using MC-nets, we can as-
sume most of default situations can be concisely represented
by using positive value rules only. Negative value rules would
be useful for describing some exceptional situations. Fur-
thermore, to represent externalities among coalitions, the
externalities can be either positive or negative.

However, handling negative value rules is a challenging
task. If we simply add negative value rules, the MIP for-
mulation in [10] cannot properly find an optimal coalition
structure. When all rules have positive values, choosing a
rule never hurts. Thus, in the MIP formulation, we con-
struct a solver so that it tries to choose as many rules as
possible. The constraints only specify the conditions where
rules cannot be selected at the same time. Thus, if we sim-
ply include a negative value rule, the solver just ignores this
rule, since choosing it hurts. We must describe the condition
where the solver is forced to choose this negative value rule
as a result of choosing other positive rules. Such a condition
involves interaction among multiple rules, which is difficult
to handle efficiently.

In this paper, we develop following three alternative al-
gorithms to handle negative value rules: (i) a full transfor-
mation algorithm, which transforms all negative value rules
into positive value rules, (ii) a partial transformation algo-
rithm, which transforms all negative value rules into positive
value rules and some negative rules that have a special form,
and (iii) a direct encoding algorithm. which creates a set of
dummy rules so that negative value rules are handled appro-
priately.

We show that the full transformation algorithm is not scal-
able in MC-nets, i.e., there exists an instance where the
number of newly generated rules becomes Ω(n2). Here, n
is the number of agents. Furthermore, we show that when
this transformation algorithm is applied to embedded MC-
nets, there exists an instance where the number of newly
generated rules becomes Ω(2n). Although we have not yet
proved that this exponential blowup is really inevitable, the
current results are very negative. Since the CSG algorithm
presented in [10] is exponential in the number of rules, even
the increase of Θ(n2) can be prohibitive.

In contrast, by using the partial transformation or direct
encoding algorithms, an exponential blow-up never occurs
even for embedded MC-nets. For embedded MC-nets, the
direct encoding algorithm creates less rules than the partial
transformation algorithm.

We experimentally compare the full/partial transforma-
tion algorithms and the direct encoding algorithm, and show
that the direct encoding algorithm is by far superior. Also,
this algorithm is scalable, i.e., an off-the-shelf optimization
package (CPLEX) can solve problem instances with 100
agents/rules within 10 seconds.

2. MODELS/EXISTING WORKS

2.1 Characteristic Function Game
Let A be the set of agents, where |A| = n. We assume

a characteristic function game, i.e., the value of coalition S
is given by a characteristic function v : 2A → R. Without
loss of generality, we assume ∀S ⊆ A, v(S) ≥ 0 holds. As
shown in [15], even if some coalition’s values are negative, as
long as each coalition’s value is bounded (i.e., not infinitely
negative), we can normalize the coalition values so that all
values are non-negative. This rescaled game is strategically
equivalent to the original game. To save space, where there
is no risk of confusion, we omit commas when listing sets,
for example, writing {ab} as a shorthand for {a, b}.

Coalition Structure Generation (CSG) involves partition-
ing a set of agents into coalitions so that social surplus is
maximized. A coalition structure CS = {S1, S2, . . .} is a
partition of A and is divided into disjoint and exhaustive
coalitions, i.e., CS = {S1, S2, . . .} satisfies the following con-
ditions:

∀i, j(i ̸= j), Si ∩ Sj = ∅,
∪

Si∈CS

Si = A.

We denote by Π(A) the space of all coalition structures
over A. The value of coalition structure CS, denoted as
V (CS), is given by V (CS) =

∑
Si∈CS v(Si).

An optimal coalition structure CS∗ is a coalition structure
that satisfies the following condition: ∀CS ∈ Π(A), V (CS∗) ≥
V (CS).

Definition 1 (MC-nets). An MC-net consists of set
of rules R. Each rule r ∈ R is of the form: (Lr) → vr, where
Lr is a condition of this rule, which is the conjunctions of
literals over A, i.e., a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am. We
call {a1, . . . , ak} positive literals and {ak+1, . . . , am} nega-
tive literals. We say rule r is applicable to coalition S if Lr

is true when the values of all Boolean variables that corre-
spond to the agents in S are set to true, and the values of all
Boolean variables that correspond to agents in A \ S are set
to false, i.e.,

∧
a∈S a ∧ ∧

b∈A\S ¬b |= Lr holds. Without loss
of generality, we assume each rule has at least one positive
literal1.

In MC-nets, the condition of a rule must be the conjunc-
tions of the literals. We say such a rule is basic. Also, we
call a rule that has more complicated condition as non-basic
rule. A non-basic rule must be transformed into multiple
basic rules, whose conditions are disjointed with each other.
For example, a non-basic rule that has form (a∨b∨c) → v, is
transformed into three basic rules, i.e., (a) → v, (¬a∧b) → v,
and (¬a ∧ ¬b ∧ c) → v.

Ohta et al. [10] identified a relation between two rules
that can be classified into four non-overlapping and exhaus-
tive cases. Based on this classification, they identified the
condition of a set of rules as consistent, i.e., there exists at
least one coalition structure CS such that each rule is appli-
cable to a coalition in CS. Furthermore, they develop mixed
integer programming (MIP) formulations for finding a con-
sistent rule set that maximizes the sum of the rule values.

1For example, if a rule has a form ¬a1 → 1 and there
exist agents a1, a2, . . . , an, we can create equivalent rules
as follows: ¬a1 ∧ a2 → 1, ¬a1 ∧ ¬a2 ∧ a3 → 1, . . . ,
¬a1 ∧ ¬a2 . . . ∧ ¬an−1 ∧ an → 1.
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2.2 Partition Function Game
When there exist externalities among coalitions, the value

of a coalition depends on the coalition structure in which the
coalition belongs. An embedded coalition is a pair (S, CS),
where S ∈ CS ∈ Π(A). Let us denote the set of all embed-
ded coalitions as M , i.e., M := {(S, CS) : CS ∈ Π(A), S ∈
CS}. A partition function is a mapping w : M → R.

Michalak et al. [8] proposed a concise representation of a
partition function called embedded MC-nets.

Definition 2 (Embedded MC-nets). An embedded
MC-nets consists of set of embedded rules ER. Each embed-
ded rule er ∈ ER is of the form: (L1)|(L2), . . . , (Ll) → ver,
where each L1, L2, . . . , Ll is the conjunctions of literals over
A. L1, which we call the internal condition, is the condi-
tion that must be satisfied in the coalition that receives the
value. L2, . . . , Ll, which we call external conditions, must
be satisfied in other coalitions. We say that an embedded
rule er is applicable to coalition S in CS if L1 is applica-
ble to S and each of L2, . . . , Ll is applicable to some coali-
tion S′ ∈ CS \ {S}. For coalition S, w(S, CS) is given as∑

er∈ER(S,CS)
ver, where ER(S,CS) is the set of embedded

rules applicable to S in CS.

Note that for an embedded rule, there exists an implicit
constraint such that external conditions must be satisfied
in coalitions CS \ {S}. By adding each positive literal in
internal condition L1 to the negative literals of each exter-
nal conditions L2, . . . , Ll, as well as by adding each positive
literal in external conditions L2, . . . , Ll to the negative lit-
erals of internal condition L1, we can explicitly represent
this implicit constraint. We say an embedded rule is in an
explicit form if the above condition is satisfied. For exam-
ple, if an original rule is (a)|(b), (c) → v, its explicit form is
(a ∧ ¬b ∧ ¬c)|(b ∧ ¬a), (c ∧ ¬a) → v. For simplicity, in the
rest of this paper, we assume each embedded rule is in an
explicit form.

Example 1. Let us assume the following rules. Here, er1

is an embedded rule.

r1 : (a) → 1, r2 : (b) → 1,
r3 : (c) → 1, r4 : (d ∧ ¬a ∧ ¬b) → 3,
r5 : (a ∧ b) → 1, er1 : (d ∧ ¬a ∧ ¬b)|(a ∧ b ∧ ¬d) → −2.

If CS = {{ab}, {c}, {d}}, all rules are applicable. Thus, the
V (CS) = 1 + 1 + 1 + 3 + 1 − 2 = 5.

The representation of embedded MC-nets is fully expres-
sive and at least as concise as the conventional partition
function game representation. As far as the authors are
aware, the problem of finding an optimal coalition structure
when a game is represented by embedded MC-nets has not
yet been investigated. Extending the MIP formulation in
[10] to handle embedded MC-nets is rather straightforward,
as long as the rule has a non-negative value. More specifi-
cally, for an embedded rule that has a form er : (L1)|(L2), . . . ,
→ ver, we create basic rules r1 : (L1) → 0, r2 : (L2) → 0,
. . ., rl : (Ll) → 0. Assume xer, xr1 , . . . , xrl are 0/1 deci-
sion variables in the MIP formulation, i.e., when the value
is 1, the rule is selected. An objective function is given
by

∑
er ver · xer. Also, we add a constraint that xer can be

1 only when all of xr1 , . . . , xrl are 1. Note that such a
constraint is not linear. However, there exists a well-known
encoding trick to represent such a non-linear constraint in
MIP formulations [3].

3. CSG WITH NEGATIVE VALUE RULES
Although any characteristic function can be represented

without using negative value rules, this restriction can make
the representation size of a problem exponentially large. For
example, let us assume for set of agents A = {a1, a2, . . . , an},
v(S) = |S| if S ̸= A and v(A) = 0. If we naively represent
this characteristic function without negative value rules, we
need 2n − 1 rules, where each rule is applicable exactly to
one coalition2. If we can use a negative value rule, it suffices
to have n + 1 rules, i.e., for each ai ∈ A, (ai) → 1, and one
negative value rule (a1 ∧ a2 ∧ . . . ∧ an) → −n.

However, handling negative value rules is a challenging
task. In general, a negative reward in a reward maximization
problem, or a negative cost in a cost minimization problem,
is considered as a nuisance. When all rules have positive
values, choosing a rule never hurts. Thus, in the MIP for-
mulation, we construct a solver so that it tries to choose
as many rules as possible. The constraints only specify the
conditions where rules cannot be selected at the same time.
Thus, if we simply include a negative value rule, the solver
just ignores this rule, since choosing it hurts. We must de-
scribe the condition where the solver is forced to choose this
negative value rule as a result of choosing other positive
rules. Such a condition involves interaction among multiple
rules, which is difficult to handle efficiently.

4. FULL TRANSFORMATION
Since handling negative value rules is difficult for the MIP

formulation in [10], we consider transforming a rule set,
which contains both positive/negative value rules into a rule
set that contains positive value rules only.

4.1 MC-nets
We first show a full transformation algorithm for MC-nets.

We assume that R is divided into two groups, i.e., a set of
positive value rules R+ and a set of negative value rules R−.

Definition 3 (Full transformation algorithm).
The full transformation algorithm is defined as follows.

1. Set R′
− = R−, R′

+ = R+.

2. If R′
− = ∅, return R′

+.

3. Remove one rule rx : (Lx) → −vx from R′
−.

4. Remove one rule ri : (Li) → vi from R′
+, such that

Lx ∧ Li ̸|= ⊥. If no such rule exists, return failure.

5. If ¬Lx ∧ Li ̸|= ⊥, create a set of basic rules that is the
transformation of non-basic rule (¬Lx ∧Li) → vi. Add
them to R′

+.

6. Create new basic rule (Lx∧Li) → vi−vx. If vi−vx > 0,
add this rule to R′

+. If vi − vx < 0, add it to R′
−.

7. If Lx ∧ ¬Li ̸|= ⊥, create a set of basic rules that is the
transformation of non-basic rule (Lx ∧ ¬Li) → −vx.
Add them to R′

−. Goto 2.

Let us explain the basic ideas of this algorithm. Since we
assume that ∀S, v(S) ≥ 0 holds, if negative value rule rx :
(Lx) → −vx is applicable to coalition S, there exists at least
one positive value rule ri : (Li) → vi, which is also applicable
to S. In other words, ri can partially eliminate the effect of
rx. We transform rx and ri into the following three rules:

2If we use a clever encoding trick, we require O(n2) rules.
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r′
1: (¬Lx ∧ Li) → vi, which is added in Step 5,

r′
2: (Lx ∧ Li) → vi − vx, which is added in Step 6, and

r′
3: (Lx ∧ ¬Li) → −vx, which is added in Step 7.

It is obvious that the original two rules, rx and ri, and these
three rules are equivalent. Since r′

1 and r′
3 are non-basic,

they must be transformed into multiple basic rules.
We can guarantee that the full transformation algorithm

terminates, i.e., the following theorem holds.

Theorem 1. The full transformation algorithm terminates.

Proof. By one iteration of this algorithm, the negative
value rule rx is eliminated if Lx ∧ ¬Li |= ⊥ and vi ≥ vx. If
Lx∧¬Li ̸|= ⊥, a set of negative value rules are added in Step
7, but the conditions of these rules, i.e., Lx ∧ ¬Li, are more
specific than Lx. Also, if vi < vx, a new negative value rule is
added in Step 6, but the condition of this rule, i.e., Lx ∧ Li

is more specific than Lx and also disjoint with Lx ∧ ¬Li.
Furthermore, the value of this rule, i.e., vi − vx is closer
to 0 than the original value −vx. Thus, by one iteration of
this algorithm, the conditions of negative value rules become
more specific and/or the negative value becomes closer to 0.
Therefore, this algorithm cannot iterate infinitely and will
terminate eventually.

Example 2. Let us describe the full transformation algo-
rithm, assuming rx : (Lx) → −1, where Lx = a ∧ d ∧ e, and
r1 : (L1) → 1, where L1 = a ∧ ¬b ∧ ¬c, are selected. Since
L1 ∧ ¬Lx = (a ∧ ¬b ∧ ¬c) ∧ (¬a ∨ ¬d ∨ ¬e) ̸|= ⊥ holds, we
create non-basic rule (L1 ∧ ¬Lx) → 1 in Step 5. Then, we
obtain two basic rules from this rule: (a∧¬b∧¬c∧¬d) → 1
and (a ∧ ¬b ∧ ¬c ∧ d ∧ ¬e) → 1. We do not create any
new rule in Step 6 since vr1 + vrx = 1 − 1 = 0. Finally,
since ¬L1 ∧ Lx = (¬a ∨ b ∨ c) ∧ (a ∧ d ∧ e) ̸|= ⊥ holds, we
create non-basic rule (¬L1 ∧ Lx) → −1. Then, we obtain
two basic rules from this rule: (a ∧ b ∧ d ∧ e) → −1 and
(a ∧ ¬b ∧ c ∧ d ∧ e) → −1.

By using this algorithm, we can eliminate all negative
value rules. However, this approach is not scalable. There
exists an instance where the number of newly generated rules
becomes Ω(n2) by using the full transformation algorithm.

Example 3. Let us consider the following rules.

r0: (p0 ∧ ¬n1 ∧ ¬n2 ∧ . . . ∧ ¬nk) → 1

r1: (p1 ∧ n1) → 1

r2: (p2 ∧ n2) → 1

. . .

rk: (pk ∧ nk) → 1

rx: (p0 ∧ p1 ∧ p2 ∧ . . . ∧ pk) → −1

This rule set contains k + 1 positive value rules and one
negative value rule, where the total number of agents is 2k+
1. Figure 1 shows the number of newly generated rules from
this rule sets by varying k. We can see that the number of
newly generated rules becomes Ω(k2), which is also Ω(n2).

Then, can we reduce the number of required rules by using
more clever encoding trick? Actually, the answer is no, i.e.,
the following theorem holds.

Theorem 2. To represent the characteristic function in
Example 3 by using positive value rules only, we need Ω(n2)
rules.

Proof. For all 1 ≤ i < j ≤ k, we denote {p0, p1, . . . , pk,
ni, nj} as Si,j . For Si,j , only rules rx, ri, rj are applicable,
thus v(Si,j) is equal to 1. Assume that a set of positive value
rules R′

+ represents v. There must be at least one rule in
R′

+ that is applicable to Si,j . Let us represent such a rule
as ri,j .

Now, we show that ri,j is not applicable to any Si′,j′ ,
where 1 ≤ i′ < j′ ≤ k and i ̸= i′ ∨ j ̸= j′. We derive a
contradiction by assuming that ri,j is applicable to Si′,j′ .

When i = i′ or i = j′, let us consider coalition S =
{p0, p1, . . . , pk, ni}. For S, only rules rx, ri are applica-
ble, thus v(S) is equal to 0. However, we show that ri,j is
applicable to S, thus v(S) cannot be 0. ri,j is not applica-
ble to S, if (i) its positive literals include agent nl, where
l ̸= i, or (ii) its negative literals include at least one of
{p0, p1, . . . , pk, ni}. For (i), if l = j, ri,j is not applicable
to Si′,j′ . Also, if l ̸= j, ri,j is not applicable to Si,j . For
(ii), ri,j is not applicable to both of Si,j and Si′,j′ . This
contradicts the assumption that ri,j is applicable to both of
Si,j and Si′,j′ . We can use a similar argument for the cases
where j = i′ or j = j′.

Then, let us consider the case that i, j, i′, j′ are different
with each other. Let us consider coalition S = {p0, p1, . . . , pk}.
For S, only rules rx, r0 are applicable, thus v(S) is equal to
0. However, we show that ri,j is applicable to S, thus v(S)
cannot be 0. ri,j is not applicable to S, if (i) its positive
literals include agent nl, where 1 ≤ l ≤ k, or (ii) its nega-
tive literals include at least one of {p0, p1, . . . , pk}. For (i),
if l = i or l = j, ri,j is not applicable to Si′,j′ . If l ̸= i
and l ̸= j, ri,j is not applicable to Si,j . For (ii), ri,j is not
applicable to both of Si,j and Si′,j′ . This contradicts the
assumption that ri,j is applicable to both of Si,j and Si′,j′ .

Thus, for each i, j, where 1 ≤ i < j ≤ k, there must be
distinct element ri,j in R′

+, and the number of elements in
R′

+ must be at least k(k − 1)/2, which is Ω(n2).

It remains an open question whether there exists a char-
acteristic function and MC-nets representation with nega-
tive value rules, such that representing this characteristic
function by a MC-net without negative value rules requires
exponentially more space compared to the original MC-net
representation. Our current conjecture is that such a char-
acteristic function is likely to exist in embedded MC-nets,
but not in MC-nets, assuming the number of negative value
rules is bounded. We will discuss this issue in the next sub-
section.

4.2 Embedded MC-nets
The full transformation algorithm presented in Section 4.1

can be easily extended to embedded MC-nets. We replace
a condition such as Li to the condition for embedded rule
Cer, which is a pair of internal condition L1 and external
conditions L2, . . . , Ll.

One tricky point is how to create the negation of Cer. Re-
call that embedded rule er is applicable to coalition S in CS
if L1 is applicable to S and each of L2, . . . , Ll is applicable
to some coalition S′ ∈ CS \ {S}. Thus, er is not applicable
to coalition S in CS if (i) L1 is not applicable to S, (ii) L1

is applicable to S, but L2 is not applicable to any coalition
in CS \ {S}, (iii) L1 is applicable to S and L2 is applicable
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to some coalition S′ ∈ CS \ {S}, but L3 is not applicable
to any coalition in CS \ {S}, and so on. Handling case (i)
is easy. Let us examine how to handle case (ii). Assume
L2 = p1 ∧ p2. We must guarantee that for any coalition
S′ ∈ CS \ {S}, ¬L2 = ¬p1 ∨ ¬p2 holds. If S′ does not con-
tain p1, ¬L2 holds. If S′ contains p1, then S′ must satisfy
¬p2. Since there exists exactly one coalition that contains
p1, it is sufficient to guarantee that there exists some coali-
tion S′ ∈ CS \ {S}, such that p1 ∧ ¬p2 holds.

To summarize, in order to represent ¬Cer, where Cer is
a pair of the internal condition L0 and external conditions
L1, . . . , Ll, we need following conditions (here, we assume
each Li = li1 ∧ li2 ∧ li3 ∧ . . .): (i) (¬L0), (ii) (L0)|(l11 ∧
¬l12), (L0)|(l11 ∧ l12 ∧ ¬l13), . . . , (iii) (L0)|(L1)(l21 ∧ ¬l22),
(L0)|(L1)(l21 ∧ l22 ∧ ¬l23), and so on.

Example 4. Let us consider the following rules:

rx: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a ∧ p1 ∧ ¬p2 ∧ ¬p3 . . . ∧ ¬pk+1),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1), . . . ,
(¬a ∧ pk+1 ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk) → −1,

r1: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a∧p1 ∧¬p2 ∧¬p3 . . .∧¬pk+1 ∧¬h1 ∧¬h2 . . .∧¬hk),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1),
. . . ,
(¬a ∧ pk+1 ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk) → 1,

...

rk+1: (a ∧ ¬p1 ∧ ¬p2 . . . ∧ ¬pk+1) |
(¬a ∧ p1 ∧ ¬p2 ∧ ¬p3 . . . ∧ ¬pk+1),
(¬a ∧ p2 ∧ ¬p1 ∧ ¬p3 . . . ∧ ¬pk+1),
. . . ,
(¬a∧pk+1∧¬p1∧¬p2 . . .∧¬pk∧¬h1∧¬h2 . . .∧¬hk) → 1

This rule set contains k + 1 positive value rules and one
negative value rule. The total number of agents is 2k + 2.
This rule set is constructed based on the well-known pigeon
hole principle. There are k + 1 pigeons p1, . . . , pk+1 and k
holes h1, . . . , hk. rx requires that all pigeons are in different
coalitions. Also, each ri is true if no hole is assigned to
pigeon pi. Thus, ¬ri means pigeon pi has (at least) one
hole. Then, as long as rx is true, at least one rule r1, . . . , rk

must be true. Otherwise, each pigeon has a different hole
to stay, which is clearly impossible since there exist only k
holes while there exist k + 1 pigeons.

Figure 2 shows the number of newly generated rules (which
includes embedded rules) by using our transformation algo-
rithm. We can see that the number of newly generated rules
becomes Ω(2k), thus it is Ω(2n). Although we have not
yet proved that this exponential blowup is really inevitable,
our current conjecture suggest that it is actually inevitable.
Even if this is not the case, the current results are already
very negative. Since the CSG algorithm presented in [10]
is exponential in the number of rules, even the increase of
Θ(n2) can be problematic.

5. PARTIAL TRANSFORMATION
In this section, we develop an alternative transformation

algorithm, which does not eliminate all negative value rules.
More specifically, we are going to transform rules that con-
tain negative value rules into positive value rules and some
negative value rules that have a special form defined as fol-
lows.

Definition 4 (Singleton Rule). We say rule r : (L)
→ vr is singleton if L consists of exactly one positive literal
a.

It is clear that such a singleton rule r is applicable to any
CS, since agent a must belong to one coalition. Also, for any
other rule r′, choosing r never prohibits choosing r′. Thus,
if CS∗ is optimal without r, then it is optimal with r. Thus,
when solving the optimization problem, we can just ignore
r. After finding optimal CS∗, we adjust V (CS∗) by adding
vr.

Thus, if a negative value rule is singleton, it is actually
harmless. Our new partial transformation algorithm trans-
forms all negative value rules into positive value rules and
negative value singleton rules.

Definition 5 (Partial transformation algorithm).
The partial transformation algorithm is defined as follows.

1. Set R′
− = R−, R′

+ = R+, Rsingleton = ∅.
2. If R′

− = ∅, return R′
+ and Rsingleton.

3. Remove one rule rx : (Lx) → −vx from R′
−.

4. Choose one positive literal a ∈ Lx. Add one rule rsingleton :
(a) → −vx to Rsingleton.

5. Create a set of basic rules that are the transformation
of non-basic rule (¬Lx ∧ a) → vx. Add them to R′

+.
Goto 2.

Let us describe the procedure of this algorithm. In Step 4,
we add one negative value singleton rule rsingleton : (a) →
−vx. Conceptually, we also add one positive value singleton
rule r+ : (a) → vx. It is clear that adding these two rules
does not change the values of a characteristic function since
they negate with each other. Note that the procedure in
Step 5 is equivalent to the full transformation algorithm in
Steps 5 to 7, assuming that we choose r+ as a positive value
rule. No rule is added since vx − vx = 0 holds in Step 6,
and Lx ∧¬a |= ⊥ holds in Step 7. We iterate this procedure
until all negative non-singleton value rules are eliminated.
Then, we have a new rule set, which contains only positive
value rules R′

+ and negative value singleton rules Rsingleton.
As described above, we can solve CSG by using only R′

+

and obtain CS∗. The true value of V (CS∗) is obtained by
adding the values of the singleton rules in Rsingleton.

Theorem 3. The partial transformation algorithm ter-
minates.

Proof. By one iteration of this algorithm, one negative
value rule is eliminated and no negative literal is added.
Therefore, this algorithm terminates after |R−| iterations.

Theorem 4. In MC-nets, each negative value rule is trans-
formed into one singleton negative value rule and m−1 pos-
itive value rules, where m is the maximal number of agents
included in the rule.

Proof. Let us assume rx is the form (Lx) → −vx, where
Lx = (a1 ∧ a2 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am). We first
create non-basic rule ¬Lx ∧ a1 → vx in Step 5. Then, it
is transformed into m − 1 basic rules i.e., (a1 ∧ ¬a2) → vx,
(a1 ∧ a2 ∧ ¬a3) → vx, . . . , (a1 ∧ a2 ∧ · · · ∧ ¬ak) → vx,
(a1 ∧a2 ∧ · · · ∧ak ∧ak+1) → vx, . . . , (a1 ∧ · · · ∧ak ∧¬ak+1 ∧
· · · ∧ ¬am−1 ∧ am) → vx. Thus, each negative value rule is
transformed into one singleton negative value rule and m−1
positive value rules.
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Theorem 5. In embedded MC-nets, each negative value
rule is transformed into one singleton negative value rule and
O(m · l) positive value rules, where l is the maximal number
of basic rules included in the embedded rule, and m is the
maximal number of agents included in each basic rule.

Proof. Let us assume erx has a form (Cerx) → −vx,
where Cerx = (L0)|(L1) . . . (Ll−1). Also, each Li has a form
(pi1 ∧ pi2 ∧ · · · ∧ pis ∧ ¬ni1 ∧ ¬ni2 ∧ · · · ∧ ¬nit), where s +
t ≤ m. We first create non-basic rule ¬Cerx ∧ p0i → vx

in Step 5. In order to represent ¬Cerx , we need following
conditions: (i) (¬L0)|∅, (ii) (L0)|(p11 ∧ ¬p12), (L0)|(p11 ∧
p12∧¬p13), . . . , (L0)|(p11∧p12∧. . . p1s ∧n11), . . . , (L0)|(p11∧
p12 ∧ . . . p1s ∧ ¬n11 ∧ . . . n1t), (iii) (L0)|(L1)(p21 ∧ ¬p22),
(L0)|(L1)(p21 ∧p22 ∧¬p23), . . . , (L0)|(L1)(p21 ∧p22 ∧. . . p2s ∧
n21), . . . , (L0)|(L1)(p21 ∧ p22 ∧ . . . p2s ∧ ¬n21 ∧ . . . n2t), (iv)
(L0)|(L1)(L2)(p31 ∧ ¬p32), . . . , and so on. Thus, we create
at most m basic rules from each part of ¬Cerx . Since there
exist l parts, each negative value rule is transformed into
one singleton negative value rule and O(m · l) positive value
embedded rules.

Example 5. Let us consider a negative value embedded
rule that has the following form: rx : (L1)|(L2), (L3), . . . , (Ln)
→ −1, where each Li = ai ∧ ∧

j ̸=i ¬aj.

In other words, this rule means each agent creates its own
coalition. This rule contains n basic rules, and each basic
rule contains n agents. Thus, this rule gives the worst-case
where the number of rules added in the partial transfor-
mation algorithm is maximized, i.e., it becomes Θ(n2). To
make matters worse, most of these rules are embedded rules.
Each embedded rule contains at most n basic rules. Thus, in
this worst case, the total increase of the basic rules becomes
Θ(n3). In general, the partial transformation algorithm cre-
ates O(m · l2) basic rules.

6. DIRECT ENCODING
In this section, we develop another approach for handling

negative value rules. Instead of transforming a negative
value rule into positive value rules, we add several dummy
rules, whose rule values are zero. Each dummy rule describes
some situations where the negative value rule is inapplica-
ble. Furthermore, we add a constraint for the optimization
algorithm so that the negative value rule must be selected if
all of the dummy rules are not selected.

Definition 6 (Dummy rules (for basic rule)).
Assume there exists a negative value rule rx : (Lx) →

−vx (vx > 0), where Lx = a1 ∧ a2 ∧ · · · ∧ ak ∧ ¬ak+1 ∧
¬ak+2 ∧ · · · ∧ ¬am. Dummy rules generated by this negative
value rule are of the following two types:

(i) (a1 ∧ ¬ai) → 0, where 2 ≤ i ≤ k,

(ii) (a1 ∧ aj) → 0, where k + 1 ≤ j ≤ m.

We denote D(Lx) as a set of dummy rules created from Lx.

It is obvious that the following theorem holds.

Theorem 6. For each negative value rule, m− 1 dummy
rules are created, where m is the maximal number of agents
included in the rule.

Also, the following theorem holds.

Theorem 7. A negative value rule is applicable to a coali-
tion in coalition structure CS if and only if all of its dummy
rules are not applicable to any coalition in CS.

Proof. The condition of a dummy rule can be either
a1 ∧ ¬ai or a1 ∧ aj . In either case, it is clear that when
this dummy rule is applicable to one coalition in CS, the
negative value rule is not applicable to any coalition in CS.
Also, if all dummy rules are inapplicable to any coalition in
CS, it means that a1, a2, . . . , ak are in identical coalition S,
while ak+1, ak+2, . . . , am are not in S. Thus, the negative
value rule is applicable to S.

Assume xrx , xd1 , . . . are 0/1 decision variables for nega-
tive value rule rx and its dummy rules D(Lx) in the MIP for-
mulation. We add a constraint that at least one of xrx , xd1 , . . .
must be 1, i.e., xrx + xd1 + · · · ≥ 1 holds.

Let us show an example of dummy rules. We create the
following dummy rules D(Lx) for negative value rule rx pre-
sented in Example 3: (p0 ∧ ¬p1) → 0, (p0 ∧ ¬p2) → 0, . . . ,
(p0 ∧¬pk) → 0. These dummy rules D(Lx) are quite similar
to the rules added in the partial transformation algorithm,
which we denote R(Lx) = {(p0 ∧¬p1) → 1, (p0 ∧p1 ∧¬p2) →
1, . . . , (p0 ∧ p1 ∧ · · · ∧ pk−1 ∧ ¬pk) → 1}. Actually, both al-
gorithms add the same number of rules. However, dummy
rules are much simpler. This is because the rules in R(Lx)
must be disjoint with each other, while the dummy rules can
overlap (since their rule values are zero).

Definition 7 (Dummy rules (for embedded rule)).
Assume there exists a negative value embedded rule
rx : (L1)|(L2), . . . , (Ll) → −vx (vx > 0). Then, dummy
rules for rx is

∪
Li

D(Li).

It is obvious that the following theorem holds.

Theorem 8. For each negative value embedded rule, one
singleton negative value rule and (m−1) · l dummy rules are
created.

Also, the following theorem holds.

Theorem 9. A negative value embedded rule is applicable
to a coalition with coalition structure CS if and only if all
of its dummy rules are not applicable to any coalition in CS

We omit the proof since it is basically identical to Theorem 7.
For example, we create the following dummy rules for

negative value embedded rule rx presented in Example 5:
(a1 ∧ a2) → 0, . . . , (a1 ∧ an) → 0, (a2 ∧ a3) → 0, . . . ,
(a2 ∧ an) → 0, . . . , (an−1 ∧ an) → 0.

The number of these dummy rules is about the same as
the number of rules added in the partial transformation al-
gorithm. However, each dummy rule is a simple basic rule.
Thus, in the worst case, the total increase of basic rules in
the direct encoding approach is Θ(n2), while it is Θ(n3) in
the partial transformation algorithm.

7. EVALUATIONS
We experimentally evaluated the performance of proposed

methods. All of the tests were run on a Xeon E5540 pro-
cessor with 12-GB RAM. The test machine runs Windows
Vista Business x64 Edition SP2. We used CPLEX 12.1, a
general-purpose mixed integer programming package.

We show the performance of our proposed algorithms with
randomly generated instances for the following two cases:

800



 0

 5000

 10000

 15000

 20000

 0  20  40  60  80  100

nu
m

be
r 

of
 r

ul
es

k

full transformation

Figure 1: # of Generated Rules
(Example 3)

100

101

102

103

104

105

 1  2  3  4  5  6

nu
m

be
r 

of
 r

ul
es

k

full transformation

Figure 2: # of Generated Rules
(Example 4)

10-1

100

101

102

103

104

105

106

 0  10  20  30  40  50  60  70  80  90  100

T
im

e[
m

s]

#agents=#rules

full transformation
partial transformation

direct encoding

Figure 3: Computation Time:
Case (i)

 0

 20

 40

 60

 80

 100

 120

 140

 0  10  20  30  40  50  60  70  80  90  100

n
u

m
b

er
 o

f 
ru

le
s

#agents=#rules

 300

 250 full transformation
partial transformation

direct encoding

Figure 4: # of Generated Rules:
Case (i)

10-1

100

101

102

103

104

105

106

 0  10  20  30  40  50  60  70  80  90  100

T
im

e[
m

s]

#agents=#rules

full transformation
partial transformation

direct encoding

Figure 5: Computation Time:
Case (ii)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80  90  100

nu
m

be
r 

of
 r

ul
es

#agents=#rules

full transformation
partial transformation

direct encoding 

Figure 6: # of Generated Rules:
Case (ii)

(i) rules can be either positive/negative and non-embedded,
and (ii) rules can be either positive/negative and either non-
embedded/embedded. For each case, problem instances are
generated in the following method.

For case (i), we use a decay distribution [14] described
as follows. Create a coalition with one random agent. Then
repeatedly add a new random agent with probability α until
an agent is not added or the coalition includes all agents. We
use α = 0.55. Choose value v(S) between 0 and the number
of agents in S uniformly at random. Then we create rule
(
∧

a∈S a) → v(S). Furthermore, we modify each rule by
randomly moving an agent from the positive to negative
literals with probability p. We use p = 0.2. Also, we convert
the value to be negative with probability q. This method is
basically identical to that used in [10].

For case (ii), we first create rule (L1) → ver in the same
way as described in (i). Then, we repeatedly add a new con-
dition of a rule with probability β until a rule is not added.
We use β = 0.15. The value of the generated embedded rule
is chosen between 0 and the number of agents in the rule,
uniformly at random. Then we convert it to be negative
with probability q = 0.2.

For all generated problem instances, we make sure that
no coalition has a negative value. More specifically, we add
positive value rules, if some coalition has a negative value.

We limit the time for problem transformation to five min-
utes, i.e., if an algorithm fails to transform a problem in-
stance within five minutes, we terminate the transformation
and do not examine the computation time for such an in-
stance. Such an early termination occurs frequently in the
full transformation approach, but it never happens in the
partial transformation and direct encoding algorithms.

We set #rules = #agents and vary #rules from 5 to 100.
We generate 50 problem instances for all cases and #rules.
We investigate the computation time for these three algo-
rithms and the number of newly generated rules. The results
are illustrated in Figures 3, 4, 5, and 6. Each data point in
these Figures is the median of 50 data points.

The results of case (i) are illustrated in Figures 3 and 4.
We can see that the CSG problem becomes more difficult
when #rules (which is equal to #agents) increases in Fig-
ure 3. This is natural since #rules increases, the number of
decision variables in the corresponding MIP formulation.

It is clear that the full transformation algorithm is in-
efficient compared with the other two algorithms. It can-
not transform problem instances in five minutes even when
#rules = 15. Also, we were able to solve only 45% of the
problem instances; the remaining 55% problem instances
cause error due to insufficient memory. On the other hand,
the partial transformation and direct encoding algorithms
are more efficient than the full transformation algorithm.
The required time for these algorithms is less than 10 sec-
onds. We can see that the number of the newly generated
rules of these two algorithms is almost the same in Figure 4.

The differences of these algorithms become more obvious
in Figures 5 and 6. The full transformation algorithm cannot
transform the problem instances in five minutes when #rules
= 15. Also, we were able to solve only 45% of the problem
instances; the remaining 55% problem instances cause error
due to insufficient memory. The partial transformation algo-
rithm can solve problem instances within 1.0 seconds when
#rules = 20, but it fails to solve problem instances when
#rules becomes more than 30 due to insufficient memory.
On the other hand, the direct encoding algorithm can solve
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problem instances for all #rules and the required time is
less than 10 seconds. Figure 6 shows the number of newly
generated basic rules, i.e., a newly generated embedded rule
is further decomposed into multiple basic rules. The partial
transformation algorithm adds O(m·l) embedded rules, each
of which contains at most l basic rules. Thus, the number
of basic rules is O(m · l2). On the other hand, the direct
encoding algorithm adds at most O(m · l) basic rules. Con-
sequently, the problem instances generated by the partial
transformation algorithm becomes more difficult than those
of the direct encoding algorithm.

To summarize, the direct encoding algorithm is the most
scalable among these three algorithms; the required times
for the solving problem instances in all cases are all less
than 10 seconds. On the other hand, the IP+/− algorithm,
which does not make use of compact representations, re-
quired around 160 minutes to solve instance with 20 agents [12].

8. CONCLUSIONS
In this paper, we extended the formalization of CSG in [10]

so that it can handle negative value rules. Allowing negative
value rules is important since (a) it can reduce the efforts for
describing a characteristic function, (b) the representation
size of a problem can be much more concise, and (c) in many
realistic situations, it is natural to assume that a coalition
has negative externalities to other coalitions.

Since the current CSG algorithm cannot handle negative
value rules, we examine the following three methods: (i) a
full transformation algorithm, which transforms all negative
value rules into positive value rules, (ii) a partial transfor-
mation algorithm, which transforms all negative value rules
into positive value rules and some negative rules that have
a special form, and (iii) a direct encoding algorithm, which
creates a set of dummy rules so that negative value rules are
handled appropriately.

We show that the full transformation algorithm is not scal-
able in MC-nets since the worst-case representation size will
be Ω(n2) for MC-nets, and it can be Ω(2n) for embedded
MC-nets. On the other hand, by using the partial transfor-
mation or direct encoding algorithms, an exponential blow-
up never occurs even for embedded MC-nets. We experi-
mentally compared these algorithms and showed that the
direct encoding algorithm is by far superior.

It still remains an open question whether a character-
istic function exists that inevitably requires exponentially
more space without using negative value rules. In our fu-
ture works, we hope to confirm our current conjectures, i.e.,
such a characteristic function exists in embedded MC-nets
(one promising candidate is the characteristic function pre-
sented in Example 4), but not in MC-nets.
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ABSTRACT
The paper introduces a class of games in extensive form
where players take strategic decisions while not having ac-
cess to the terminal histories of the game, hence being un-
able to solve it by standard backward induction. This class
of games is studied along two directions: first, by providing
an appropriate refinement of the subgame perfect equilib-
rium concept, a corresponding extension of the backward
induction algorithm and an equilibrium existence theorem;
second, by showing that these games are a well-behaved sub-
class of a class of games with possibly unaware players re-
cently studied in the literature.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Theory

Keywords
Extensive games, bounded rationality

1. INTRODUCTION
In the past decade the multi agent systems (MAS) com-

munity has witnessed several attempts to relax the strong
assumptions underpinning game-theoretical models, such as
common knowledge of the game structure, logical omnis-
cence and unbounded computational power, to mention a
few. Along these lines Joseph Halpern’s invited talk at AA-
MAS 2011—Beyond Nash-Equilibrium: Solution Concepts
for the 21st Century—highlighted several research challenges
that arise when attempting to provide more realistic versions
of the Nash equilibrium solution concept. Among those chal-
lenges, the issue of unawareness seems to stand out, viz. the
observation that in real games, like for instance chess, play-
ers take decisions even if they cannot possibly have access
to the whole game form. Halpern himself extensively con-
tributed to the research on players’ unawareness: in [4] and
its extension [5], a game-theoretical analysis of unawareness

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright © 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in extensive games is presented, where players have access
to only part of the terminal histories of a game tree as they
ignore, at some nodes, some of the actions available to their
fellow players. The same phenomenon has been studied, al-
though by different means, by Yossi Feinberg in [1, 2].

All the aforementioned models of unawareness in games
make a common assumption: players might be unaware of
some branches of the game tree, but they do have access to a
subset of the terminal histories, that is, they have a full rep-
resentation of at least some possible endings of the game.
With the present work we would like to push Halpern’s
stance further, by lifting this assumption and present a model
of players who not only might not see a part of the terminal
nodes of a game tree but who might not even see any such
nodes. As happens in real games like chess, but also in a
number of occasions where individuals are confronted with
a large game structure, decisions are taken on the basis of
a stepwise evaluation of foreseeable intermediate positions.
As the game proceeds, it often reveals earlier decisions to be
wrong.1 The following example provides a concrete motivat-
ing scenario representing this special kind of unawareness,
which we will be calling short sight.

80Z0Z0j0Z
7Z0Z0ZPZ0
60Z0ZPZ0Z
5Z0Z0Z0J0
40Z0Z0Z0Z
3Z0Z0Z0Zp
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

�

Figure 1: Black to move

Example 1 (A chess scenario) In Figure 1 Black is to
move. He has three options at his disposal: moving the black
king to g7 (shortly Kg7), moving it to e7 ( Ke7), or moving
the pawn one square further to h2 (h2). Let us assume that
Black has to move under pressing time constraints or that he
is not well-versed in evaluating key positions on the chess-
board. He will then take into consideration only a few possi-
ble developments of the play—for instance what he would be
able to reach in two moves (i.e., some plays up to two steps

1To say it with [9], “Chess is a draw that is only made com-
petitive by human error” .
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ahead)—and he will base his decisions on somewhat ‘coarse’
evaluations—for instance, gaining material advantage.

If this is the case, in a situation such as the one displayed
in Figure 1, he will prefer to queen his pawn as quickly as
possible.2 Comparing the moves Kg7, Ke7 and h2, the latter
clearly leads to material advantage while the formers do not.
So Black will go for h2. However after h2 White can move
its king to f6 ( Kf6). Now Black is in trouble because after
the white king is in f6 Black has only one move at its disposal
— he must queen his pawn (h1) — as Ke7 and Kg7 are now
illegal. Black’s material advantage in the resulting position
(one queen against two pawns) is no consolation: after e7
Black is checkmated.

In the example Black loses for two reasons: 1) he has par-
tial view even on the immediate development of the game;
2) he bases his decision on an evaluation criterion—reaching
material advantage—which turns out to be counter-productive.
These observations exemplify the characteristics of short
sight in extensive games: 1) players may be aware of only
part of the game structure and may not be able to calcu-
late the consequences of their actions up to the terminal
nodes; 2) at each choice point, players base their decisions
evaluating the positions they can foresee according to (pos-
sibly faulty) criteria. The paper will incorporate the char-
acteristic features of short sight in a standard treatment of
extensive games, studying their properties and their rela-
tion with models of players’ unawareness to be found in the
literature—in particular the ones in [4].

Outline of the paper. Section 2 introduces the basic ter-
minology and facts to be used later on in the paper. It
mainly concernes the notion of extensive game and pref-
erence relation and it presents standard solution concepts,
such as the subgame perfect equilibrium. Section 3 equips
extensive games with a description of players’ limited view
at each history and presents corresponding solution concepts
for the new models. In particular it defines a backward in-
duction algorithm for games with short sight and proves an
equilibrium existence theorem for this class of games. Sec-
tion 4 discusses the relation between games with short sight
and games with awareness as studied by Halpern and Rêgo.
Concretely, it shows that games with short sight are a spe-
cial type of games with awareness. Section 5 concludes the
paper pointing to several possible developments.

2. PRELIMINARIES
The section introduces the basic terminology and notation

to be used in the rest of the paper.

2.1 Game forms and games
The structures we will be working with are extensive games

which, unlike the games in strategic or normal form, take the
sequential structure of decisions into account [7]. We start
out introducing extensive games forms of perfect informa-
tion (henceforth simply ”extensive game forms” or ”game
forms”), where players have full knowledge of the possible
courses of events. The following definition is adapted from
[7].

2The black pawn reaching h1 can be queened, i.e. turned
into a strong major piece, giving its owner an often decisive
advantage.

Definition 1 (Extensive game forms) An extensive game
form is a tuple G = (N,H, t,Σi, o) where:

• N is a non-empty set of players;

• H is a non-empty set of sequences, called histories,
such that: 1) The empty sequence ∅ is a member of H;
2) If (ak)k=1,...,K ∈ H and L < K then (ak)k=1,...,L ∈
H; 3) If an infinite sequence (ak)ωk=1 is s.t. (ak)k=1,...,L ∈
H for every L < ω = |N| then (ak)ωk=1 ∈ H.

A history h ∈ H is called terminal if it is infinite or
it is of the form (ak)k=1,...,K with K < ω and there
is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The set of
terminal histories is denoted Z. Each component of a
history is called an action. The set of all actions is
denoted A. The set of actions following a history h is
denoted with A(h). Formally A(h) = {a | (h, a) ∈ H}.
If h is a prefix of h′ we write h� h′.

• t : H\Z → N is a function, called turn function, as-
signing players to non-terminal histories, with the idea
that player i moves at history h whenever t(h) = i;

• Σi is a non-empty set of strategies σi : {h ∈ H\Z |
t(h) = i} → A for each player i that assign an action
to any non-terminal history whose turn to play is i’s;
we refer to σt(h)(h) as the action prescribed by strategy
σ at history h for the player who moves at h;

• o :
∏
i∈N Σi → Z is a bijective outcome function from

strategy profiles to terminal histories.

For any set of histories A ⊆ H we denote l(A) the length of
its longest history. The notation can also be used with game
forms, where l(G) = l(H), for H being the set of histories
of game form G. If H is a finite set G is called a finite
game form. Extensive game forms equipped with preference
relations, i.e. a family of orders on terminal histories for
each player, are referred to as extensive games (or simply as
games).

Definition 2 (Extensive games) An extensive game is a
tuple E = (G,�i) where G is an extensive game form and
�i⊆ Z2 is a total preorder3 over Z, for each player i.

An extensive game E = (G,�i) is called finite if G is finite.

2.2 Preferences and evaluation criteria
In Definition 2 players’ preferences are given by a total

preorder over the set of terminal nodes. However situations
such as the one described in Example 1 suggest that, in pres-
ence of short sight, decisions need to be taken even when
terminal nodes are not accessible. For this reason we as-
sume here that players hold preferences about foreseeable
intermediate nodes according to general criteria which re-
main stable throughout the game. The idea is that players
are endowed with some kind of ‘theory’ that allows them to
conceptualize and evaluate game positions. For instance, in
Example 1 Black evaluates the positions that he can calcu-
late according to the general criterion of material advantage.

3I.e., a reflexive, transitive and total binary relation.
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2.2.1 Priority sequences
To model the intuition above we follow a simple strategy.

We take evaluation criteria to consist of preferences defined
over properties of game positions, and we take properties to
be sets of game positions, i.e., sets of histories.

Definition 3 (Priority sequences) Let G = (N,H, t,Σi, o)
be an extensive game form. A priority sequence, or P-sequence,
for G is a tuple P = (H,�) where:

• H ⊆ ℘(H) and H is finite, i.e., the set of properties H
is a finite set of sets of histories. Elements of H are
denoted H,H′, . . . .

• �⊆ H2 is a strict linear order4 on the properties in H.
To say that H is preferred to H′, for H,H′ ∈ H, we
write: H � H′.

P-sequences express a fixed priority between a finite set of
relevant criteria. In our understanding they represent a gen-
eral theory that a player can use to assess game positions.
P-sequences and their generalisation to graphs have been
object of quite some recent studies in the logic of prefer-
ence, such as [6] from which Definition 3 is adapted. Given
a P-sequence, a preference over histories can be derived in a
natural way:

Definition 4 (Preferences) Let G = (N,H, t,Σi, o) be an
extensive game form and P = (H,�) a P-sequence for G.
The preference relation �P⊆ H2 over the set of histories of
G induced by P is defined as follows:

h �P h′ ⇐⇒ ∀H ∈ H : [ if h′ ∈ H then h ∈ H or

∃H′ ∈ H : [h ∈ H′ and h′ 6∈ H′ and H′ � H]]

In words, a history h is at least as good as a history h′

according to P , if and only if, either all properties occurring
in P that are satisfied by h′ are also satisfied by h or, if that
is not the case and there is some property that h′ has but h
has not, then there exists some other better property which
h satisfies and h′ does not. This ‘recipe’ yields preferences
of a standard type:

Fact 1 Let G be an extensive game form and P = (H,�
) a P-sequence for G. The relation �P has the following
properties: 1) It is a total pre-order; 2) �P contains at most

2|H| sets of equally preferred elements.5

Proof (sketch). 1. That�P is reflexive follows directly
from Definition 4. Transitivity is established by the follow-
ing argument: assume h �P h′ and h′ �P h′′. By Definition
4 we have four possible cases: i) all properties satisfied by
h′ are also satisfied by h and all properties satisfied by h′′

are also satisfied by h′, hence h �P h′′; ii) all properties
satisfied by h′ are also satisfied by h and for some prop-
erty H enjoyed by h′′ but not by h′ there exists another
property H′ such that H′ � H and h′ satisfies H but h′′

does not. Hence for some property H enjoyed by h but not
by h′′ there exists another property H′ such that H � H′

and h satisfies H but h′′ does not, from which we conclude
h �P h′′. iii) More schematically, for all H: ∃H′ ∈ H :
[h′ ∈ H′ and h′′ 6∈ H and H′ � H]] and ∀H ∈ H : [ if h′ ∈
H then h ∈ H]. The proof is analogous to the one of ii).

4I.e. an irreflexive, transitive, asymmetric and total binary
relation.
5I.e., sets of elements h, h′ such that h �P h′ and h′ �P h.

iv) For all H: ∃H′ ∈ H : [h ∈ H′ and h′ 6∈ H and H′ � H]]
and ∃H′′ ∈ H : [h′ ∈ H′′ and h′′ 6∈ H′′ and H′′ � H]] fol-
lows from the transitivity of relation � (Definition 3). As
for totality, suppose not h �P h′. But then, by totality of
� (Definition 3) ∃H ∈ H : [h′ ∈ H and h 6∈ H and ∀H′ ∈
H : [h ∈ H′ and h′ 6∈ H′ implies H � H′]], which implies
that h′ �P h.

2) Equivalence classes in �P are determined by the set
of properties in H that they satisfy, hence by elements of
℘(H). As some of these sets might be empty, 2|H| is an
upper bound.

Intuitively, P-sequences yield total preorders consisting of a
finite set of equally preferred elements which form a linear
hierarchy from the set of most preferred elements to the set
of least preferred elements.

Example 2 As an illustration, recall Example 1. We could
model Black’s evaluation criteria by the following simple P-
sequence (let cm denote the set of histories where White is
checkmated, dr the set of histories where the game is a draw,
and ma the set of histories where Black has material advan-
tage): cm � dr � ma This P-sequence yields the following
total preorder over histories:6

cm ∩ −dr ∩ ma

cm ∩ −dr ∩ −ma

−cm ∩ dr ∩ ma

−cm ∩ dr ∩ −ma

−cm ∩ −dr ∩ ma

−cm ∩ −dr ∩ −ma
where we have assumed that no history can be a checkmate
and a draw at the same time. In words, Black prefers most of
all positions where White is checkmated and at the same time
he retains material advantage, then positions where White
is checkmated without material advantage, and so according
to the above P-sequence. The worst positions are the ones
where none of the properties occurring in the P-sequence are
satisfied.

It is worth observing that the elements of a P-sequence can
be represented by set-theoretic compounds of properties 7.
6The total preorder is represented as a Hasse diagram con-
sisting of linearly ordered equivalence classes. Standard
set-theoretic notation for inclusion and complementation is
used.
7As an anonymous reviewer pointed out, there may be situ-
ations in which two properties H and H′ that, when occur-
ring together, outweigh a third one H′′, while H′′ would be
preferred over both H and H′ when they occur alone (e.g.,
centre control together with an exposed opponent’s king may
outweigh material disadvantage). In our framework this is
handled by stating that H ∩H′ � H′′ � H ∪H′.
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The link to logic should here be evident as sets of histories—
our properties—could be seen as denotations of formulae
in some logical language (e.g. propositional logic). Our
exposition abstracts from the logical aspect which could,
however, add a further interesting syntactic dimension to
our account.

2.2.2 Games with priorities
Henceforth we will be working with game forms that are

endowed with a family of P-sequences, one for each player:

Definition 5 (Prioritized games) Let G be a game form
and let Pi be a family of P-sequences for G, one for each
player i ∈ N . A prioritized game is a tuple GP = (G, Pi).

Clearly, each prioritized game GP = (G, Pi) defines a game
in extensive form (Definition 2) EGP = (G, Z2∩ �Pi). So,
when attention is restricted to terminal histories, prioritized
games yield standard extensive form games. What they add
to the them is information by means of which players can
systematically rank non-terminal histories also without hav-
ing access to terminal histories.

2.3 Subgame-perfect equilibrium
In this section we adapt the notion of subgame-perfect

equilibrium to prioritized games. The adaptation is straight-
forward since each prioritized game univocally determines an
extensive one. It is nevertheless worth it to introduce all the
notions in details, as they will be our stepping stone for the
definition of an analogous solution concept in games with
short sight. We first introduce the notion of subgame.

Definition 6 (Subgames of prioritized games) Take a
prioratized game GP = ((N,H, t,Σi, o), Pi). Its subgame
from h is a prioritized game GPh = ((N |h, H|h, t|h,Σi|h, o|h), Pi|h)
such that: 1) H|h is the set of sequences h′ for which (h, h′) ∈
H; 2) Σi|h is the set of strategies for each player available at
h. It consists of elements σi|h such that σi|h(h′) = σi(h, h

′)
for each h′ ∈ H|h with t(h, h′) = i; 3) t|h is such that
t|h(h′) = t(h, h′) for each h′ ∈ H|h; 4) o|h :

∏
i∈N Σi|h →

Z|h is the outcome function of GPh , where Z|h is the set of
sequences h′ for which (h, h′) ∈ Z; 5) Pi|h = Pi.

Now we are ready to introduce subgame perfect equilibria.

Definition 7 (Subgame perfect equilibrium) Let GP be
a finite prioritized game. A strategy profile σ∗ is a subgame
perfect equilibrium if for every player i ∈ N and every non-
terminal history h ∈ H\Z for which t(h) = i we have that:

o|h(σ∗i |h, σ∗−i|h) �Pi o|h(σi, σ
∗
−i|h)

for every strategy σi available to player i in the subgame GPh
that differs from σ∗i |h only in the action it prescribes after
the initial history of GPh .

The definition of subgame perfect equilibrium is normally
given in its stronger version, without the requirement that σi
for player i in the subgame GPh differs from σ∗i |h only in the
action it prescribes after the initial history of GPh . However
the formulation we have given is equivalent to the stronger
version for the case of finite games, as proved in [7, Lemma
98.2]. This property of the subgame perfect equilibria is
known as the one deviation property.

By Kuhn’s theorem8 we can then conclude that all finite
prioritized games have a subgame perfect equilibrium.

Remark 1 The existence of subgame perfect equilibria in fi-
nite extensive games is usually proven constructively via the
well-known backward induction (BI) algorithm. It might be
worth recalling that the algorithm solves the game by extend-
ing the total preorder on the terminal histories of the game
to a total preorder over all histories, where for every player
each history is as preferred as the terminal history it leads to
under the assumption that the other players play ‘rationally’.
So the result of the algorithm is a total preorder over all his-
tories consisting of a finite set of equivalence classes, viz. the
sort of preference structures also determined by P-sequences
(Fact 1). The key difference, however, is that while the order
determined by BI is consistent with the order on the terminal
nodes, in the sense that keeping on choosing the best option
guarantees the best outcome in the game, no such guaran-
tee exist in the order yielded by a P-sequence—as Example
1 neatly shows.

3. SHORT SIGHT IN GAMES
In this section we introduce and discuss the notion that

has motivated the present work: short sight.

3.1 Players’ sights
The following definition introduces a simple device to cap-

ture what and how deep each player can see in the game at
each choice point.

Definition 8 (Sight function) Let GP = ((N,H, t,Σi, o), Pi)
be a prioritized game. A (short) sight function for GP is a
function s : H\Z → 2H\∅ associating to each non-terminal
history h a finite subset of all the available histories at h.
That is: 1) s(h) ∈ 2H|h\∅ and |s(h)| < ω, i.e. the sight at h
consists of a finite nonempty set of histories extending h; 2)
h′ ∈ s(h) implies that h′′ ∈ s(h) for every h′′�h′, i.e., sight
is closed under prefixes.

Intuitively, the function associates to any choice point those
histories that the player playing at that choice point can
see. Notice that how this set of histories is determined is
left open. In other words, the set constitutes the view that
the player playing at that non-terminal history has of the
remaining of the game. It could be, for instance, all the
histories of length at least d, or all histories that start with
a given action a, or similar constraints.

The intuition is that s(h) is the limited view of t(h) after
history h. Such intuition is supported by the fact that s(h)
inherits the moves and the turns from GP but not necessarily
the terminal nodes. That the view is limited can be noticed
by the conditions required in Definition 8, which together
imply that l(s(h)) < ω, i.e. players can only see finitely
many steps ahead. Several extra conditions, besides the one
given in Definition 8, might be natural for short sight, e.g.:
requiring that the sight increases as the play proceeds, in
the sense that what player i can see from h is at least as
much as from any history hh′. The present work will not
deal with these extra conditions and will limit itself to a
general account.

We now define the class of games with short sight.
8We adopt the terminology of [7, Proposition 99.2] and refer
to the result stating that every finite extensive game has a
subgame perfect equilibrium as Kuhn’s theorem.
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Definition 9 (Games with short sight) A game with short
sight is a tuple S = (GP , s) where GP is a prioritized game
and s a sight function for GP .

It is clear that each game with short sight yields a family of
finite extensive games, one for each non-terminal history:

Fact 2 Let S = (GP , s) be a prioritized game with short
sight, with GP = ((N,H, t,Σi, o), Pi). Let also h be a finite
non-terminal history. Consider the tuple:

Edh= (Ndh, Hdh, tdh,Σidh, odh,�i dh)

where: 1) Ndh= N ; 2) Hdh= s(h). The set Zdh denotes
the histories in Hdh of maximal length, i.e., the terminal
histories in Hdh; 3) tdh= Hdh\Zdh→ N so that tdh(h′) =
t(h, h′); 4) Σidh is the set of strategies for each player avail-
able at h and restricted to s(h). It consists of elements σidh
such that σidh(h′) = σi(h, h

′) for each (h′, σi(h, h
′)) ∈ Hdh

with tdh(h′) = i ; 5) odh:
∏
i∈N Σidh→ Zdh; 6) �i dh = �Pi

∩(Zdh)2. Tuple Edh is a finite extensive game.

Remark 2 It is worth noticing that each finite extensive
game EGP determined by a prioritized game GP (recall Def-
inition 5) is equivalent (modulo the sight function) to the
game with short sight built on GP such that, for each h,
EGP dh= EGP |h. That is, at each non-terminal history, the
game determined by the sight function corresponds to the
whole subgame at h.

3.2 Solving games with short sight
In games with short sight the course of the play is such

that at each node players are confronted with decisions to
be taken on the grounds of what they can foresee of the
game. The purpose of this section is to provide a model of
rationality for such situations, i.e. what players should do
given the history of the play and their sight.

3.2.1 Subgame perfect equilibria
As we are dealing with self-interested agents, it is natural

to think that they will try to get the most out of the in-
formation they possess, choosing their best strategy at each
choice node. This leads us to a simple adaptation of the
notion of subgame perfect equilibrium (Definition 7).

Definition 10 (Sight-compatible subgame perfection)
Take a game with short sight S = (GP , s) and, for each fi-
nite history h, let Edh be the extensive game yielded by s at
h (as defined in Fact 2). A sight-compatible subgame perfect
equilibrium of S is a profile of strategies σ∗ ∈∏i∈N Σi such
that for every nonterminal history h there exists a strategy
profile σdh that is a subgame perfect equilibrium of Edh and
such that σt(h)dh(h) = σ∗t(h)(h).

Three aspects of the equilibrium definition are worth men-
tioning. First, each restriction Edh prunes the game tree
at the bottom (considering the extensions of h) and at the
top (considering only the sight-compatible extensions of h).
Second, each player i determines his best move supposing
that his opponents behave rationally with respect to their P-
sequences and relative to the part of the game that i can see.
This might be considered a conservative—or safe, depend-
ing on the circumstances—way for i to play, by attributing
to the opponents the ability to see at least as much as i
sees. Third, the definition of subgame perfect equilibrium

in games with short sight does not require an explicit finite-
ness assumption. A finiteness assumption—the finiteness of
the histories constituting the sight—is built in Definition 8.
This brings us to the next section.

3.2.2 An equilibrium existence theorem
Let us start with the following observation:

Fact 3 Let S = (GP , s) be a game with short sight and h one
of its finite non-terminal histories. Then Edh has a subgame
perfect equilibrium.

Proof. The fact is a direct consequence of Fact 2 and
Kuhn’s theorem [7, Proposition 99.2].

We can now prove the existence of sight-compatible sub-
game perfect equilibria (Definition 10).

Theorem 3 (Equilibrium existence) Every game with short
sight has a sight-compatible subgame perfect equilibrium.

Proof. Let S = (GP , s) be a game with short sight and
let σ∗ be a strategy profile such that, for each non-terminal

history h: σ∗t(h)(h) = σ
BI(Edh)
t(h) where σBI(Edh) denotes the

strategy profile constructed by the standard backward in-
duction algorithm on the extensive game Edh determined
by the sight function at history h. The result follows then
directly by the construction—via backward induction—of
subgame perfect equilibria for each Edh (Kuhn’s theorem)

as σ
BI(Edh)
t(h) is the action dictated to player t(h) by its back-

ward induction strategy and therefore the action dictated
by a subgame perfect equilibrium of Edh.

3.2.3 An algorithm for solving games with short sight
By building on the standard backward induction algo-

rithm (BI), we can define an algorithm which solves each
finite game with short sight by constructing a terminal his-
tory, the one determined a sight-compatible subgame perfect
equilibrium of the game.

Definition 11 (BI-path in games with short sight)

Input: A finite game with short sight S = (GP , s)
Output: A terminal history (x0, . . . , xn) of GP

Method: 1. Define h := ∅;
2. Run BI over Edh and set h :=

(
h, σ

BI(Edh)
t(h)

)
;

3. If h ∈ Z then return h, otherwise repeat step 2.

It is easy to see that the algorithm terminates and constructs
indeed a history consisting of actions dictated by a sight-
compatible subgame perfect equilibrium. Intuitively, the al-
gorithm starts at the root and solves Ed∅. This yields a ter-
minal history in Zd∅, and their initial fragments of length
1 are taken as the first moves of the histories returned by
the algorithm. Each of these first moves determine, in turn,
as many extensive games via the sight function. These are
solved in the same way, determining a set of histories of
length 2, and so on, until terminal histories of GP are built.

4. SHORT SIGHT AND UNAWARENESS
This section is devoted to establishing the precise rela-

tionship between games with short sight and games with
possibly unaware players elaborated by Halpern and Rêgo
in [4]. As already pointed out, the models focused upon in [4]
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feature players that can always observe at least some of the
terminal histories of the actual game being played. In the
same paper, in order to overcome this limitation, Halpern
and Rêgo generalize their models to allow players to hold
false beliefs about the game being played although, it must
be mentioned, they do not provide an equilibrium analysis
of that class of games. Essentially, at each node of a game
each player might believe to be playing a completely differ-
ent game from the one that he or she is actually playing.
These generalized models are extremely abstract and can
incorporate several forms of unawareness. Even though the
intuitive understanding of short sight is rather different from
that of false belief, the models in [4] can be formally related
to our models. To establish this relationship we proceed as
follows.

First, we formally introduce games with possibly unaware
players and lack of common knowledge of the underlying
game, the most general model of unawareness provided in
[4]. We will refer to this class of models simply as games with
awareness (Subsection 4.1). Second, we provide a canoni-
cal representation of games with short sight as games with
awareness. In short, we are going to build a class of the lat-
ter models where, at each position of the actual game being
played, players believe to be playing a game that corresponds
to their own sight. We show, moreover, that the canonical
representation is of the right kind, i.e. it obeys the axioms
of the general models of Halpern and Rêgo (Subsection 4.2).
Third, we provide the axioms that characterize games with
short sight as games with awareness (Subsection 4.3).

4.1 Games with awareness
Halpern and Rêgo work with finite extensive games en-

dowed with information sets and probability measures [4].
As the games structures dealt with in our paper do not
model epistemic aspects such as knowledge and belief, the
comparison to which this section is devoted will concern
the somewhat more fundamental level of the finite exten-
sive games with perfect information upon which Halpern
and Rêgo base their models.

To each extensive game E = ((N,H, t,Σi, o),�i), [4] as-
sociates an augmented game +E that specifies the level of
awareness of each player at each node of the original game.
The following definition is adapted from [4].

Definition 12 (Augmented game) Let E = (G,�i) be a
finite extensive game and, for each history h (not necessar-
ily belonging to the set of histories of G), let h be the sub-
sequence of h consisting of the moves in h that are made
by actions available in G. The augmented game +E =
(((N,H, t,Σi, o),�i), Awi) based on G is such that:

A1 (N,H, t,Σi, o),�i) is a finite extensive game;

A2 Awi : H → 2H
′

is the awareness function of each player

i, that maps each history to a set of histories (in 2H
′
)

of some arbitrary finite extensive game E ′. For each
h ∈ H the set Awi(h) consists of histories in H ′ and
their prefixes.

A11 {z | z ∈ Z} ⊆ Z, i.e. the terminal histories of the
game +E correspond to terminal histories of E; more-
over if z′ is a terminal history of +E then z′ ∈ Z, i.e.
terminal histories of which players are aware are ter-
minal histories of the game E upon which +E is based.

A12 for each terminal history z ∈ Z such that z ∈ Z we

have that z �i z and z �i z for each i ∈ N , i.e. players’
preferences come from game E upon which +E is based.

The items in the definition keep the original names of axioms
A1, A2, A11 and A12 given in [4] for games with lack of
common knowledge.

We can now formally introduce a game with awareness in
its most general form.

Definition 13 (Games with awareness) Let E be a fi-
nite extensive game. A game with awareness based on E is
a tuple EAw = (Γ, Em,F), where:

• Γ is a countable set of augmented games each one based
on some (possibly different) game E ′;
• Em is a distinguished augmented game based on E;

• F is a mapping that associates to each augmented game
+E ′ ∈ Γ and history h′ of +E ′ an augmented game Eh′ .
This game is the game the player whose turn is to play
believes to be the true game when the history is h′.9

The definition spells out the crucial feature of a game
with awareness, namely the fact that each player at each
history is associated to a game that he belives to be the
current game. This can be distinct from the current game
being played, which is instead observed by an omniscent
modeller. Specifically, while each +E ′ is the point of view of
some player at some history (the precise relation is given by
the F mapping), Em is the point of view of the omniscent
modeller, who can actually see the game that is being played
and the players’ awareness level. Definition 13 is extremely
abstract and can be refined by imposing several reasonable
constraints, especially with respect to Em, the point of view
of the modeller. The following definition, adapted from [4],
takes care of that.

Definition 14 (Games with awareness: constraints)
The class of games with awareness is refined by the following
constraints, for each EAw = (Γ, Em,F):

M1 Nm = N , i.e. the modeller is aware of all the players;

M2 A ⊆ Am and {z : z ∈ Zm} = Z, i.e. the modeller
is aware of all the moves available to the players and
knows the terminal histories of the game;

M3 If tm(h) ∈ N then Am(h) = A(h), i.e. the modeller is
aware of the possible courses of the events;

C1 {h′ | h′ ∈ Hh} = Awi(h), i.e. the awareness function
shows exactly the histories that can be observed.

The constraints just discussed hold for all games with aware-
ness. The following part lays a first bridge between these
structures and games with short sight.

4.2 Canonical representation
In [8] a canonical representation is provided of a finite ex-

tensive game as a game with awareness. For the present pur-
poses, which are not concerned with epistemic aspects, a fi-
nite extensive game E is representable as a tuple ({Em}, Em,F)

9Henceforth, to reduce clutter in notation, we use the sub-
script h′ to index the elements of game tuple Eh′ , i.e. the
game that player t(h′) believes to be playing at history h′.
For instance Hh′ is the set of histories that player t(h′) be-
lieves to be the set of histories that are available when he is
in h′.
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where Em = (((N,H, t,Σi, o),�i), Awi) with Awi(h) = H
for all h ∈ H and F(Em, h) = Em. Essentially, all players
and the modeller are aware of the game and agree on it.
Likewise in this section we provide a canonical representa-
tion of games with short sight in terms of the general models
introduced above (Definitions 13 and 14).

Definition 15 (Canonical representation of short sight)
Take a finite prioritized game with short sight (GP , s) where
GP = ((N,H, t,Σi, o), Pi). Let also h be a finite non-terminal
history and Edh the resulting extensive game as in Defini-
tion 2. The canonical representation of (GP , s) consists of
the tuple

E(GP ,s) = ({{(Edh, Awidh) | h ∈ H}, Em}, Em,F)

where: 1) Em = (((N,H, t,Σi, o),�i), Awi) with Awi(h) =
Hdh= s(h); 2) Awidh(h′) = Awi(h, h

′); 3) for each +E ∈
Γ, + �i = ( +Z × +Z)∩ �Pi ; 4) F(Em, h) = (Edh, Awidh);
5) F((Edh, Awidh), h′) = (Ed(h,h′) , Awid(h,h′)).

In words, a game with short sight can be represented as
a game with awareness where at each choice point play-
ers believe to be playing the game induced by their sight.
Specifically, the first item says that the modeller knows the
structure of the game and the sight of the players at each
point. The second item says that players’ sight in each aug-
mented game agrees with their sight in the original game.
The third item says that every augmented game is consis-
tent with the P-sequence in its terminal nodes. The fourth
and fifth item say that the awareness function returns the
sight of the players at each decision point.

The following result shows that the above representation
yields the right sort of games with awareness.

Theorem 4 Let (GP , s) be a game with short sight. E(GP ,s)
is a game with awareness.

Proof. We first need to check that Γ∗ is made by a
countable set of augmented games and then that they satisfy
the axioms given in Definition 14. As for the first part we
need to show that the axioms of Definition 12 are satisfied:
[A1] we know that the game (GP , s) is finite (Definition 15)
and that each Edh for h being a history of E is a finite ex-
tensive game (Proposition 2); [A2] Awi is well defined, as it
associates each history of each augmented game exactly the
sight of the player who moves at that history. Players’ sight
is closed under prefixes by Definition 8; [A11-12] Notice that
by the construction in Proposition 2 for each history h ∈ H
we have that h = h. By reflexivity of preferences we ob-
tain the desired result. As for the second part we need to
show that the following axioms are satisfied: [M1-M3, C1]
Consequence of Definition 15 .

4.3 Characterization result
In this section we provide the constraints that a game

with awareness needs to satisfy in order to be the canonical
representation of some game with short sight. Before doing
this we introduce the auxiliary notion of game pruning.

Definition 16 (Game pruning) Let E = ((N,H, t,Σi, o),�i
) be a finite extensive game. The game E ′ = ((N ′, H ′, t′,Σ′i, o

′),�′i
) is a pruning of game E whenever 1) N = N ′; 2) H ′ ⊆
H and H ′ is a finite set of histories closed under prefixes; 3)
for each h′ ∈ H ′, t′(h′) = t(h′); 4) Σ′i = {σi ∈ Σi | σi :

h′ → A for h′ ∈ H ′ with t′(h′) = i and there is a h′′ ∈
H ′ with h′ � h′′}; 5) for each σ′ ∈ Σ′, o′(σ′) = z′ when-
ever z′ ∈ Z′ and is obtained by executing σ′.10

A game pruning of an extensive game E is just E deprived
of some histories, preserving the structure of strategies and
turn function and defining the outcome function accordingly.
Notice that a game pruning of a game is nothing but what
we called a sight (recall Definition 8), defined at the root of
the game.

The following definition makes use of game prunings, iso-
lating a class of games with awareness with which we will
be able to exactly characterize games with short sight.

Definition 17 (Coherence) Let EAw = (Γ, Em,F) be a
game with awareness based on a finite extensive game E =
((N,H, t,Σi, o),�i). We call EAw coherent if it satisfies the
following constraints:

K1 the game Em is the tuple (((N,H, t,Σi, o),�i), Awi) with
Awi(h) = H ′ for H ′ being the set of histories of some
game +E ∈ Γ;

K2 the set Γ comprises Em and for each h ∈ H a set of |H|
augmented games of the form (E ′|h, Aw′i), with E ′ being
a pruning of E, and Aw′i(h

′) = Awi(h, h
′);

K3 there exists a total preorder �Hi on H extending �i
such that for each +E ∈ Γ we have that + �i=�Hi
∩( +Z × +Z), i.e. histories get the same preferences
across augmented games;

K4 F(Em, h′) = (E ′|h′ , Aw′i), for E ′ being the pruning of E
associated to h′;

K5 for each (E ′|h, Aw′i) ∈ Γ we have that F((E ′|h, Aw′i), h′) =
(E ′|(h,h′), Aw′′i ), where Aw′′i (h′′) = Awi(h, h

′, h′′).

The constraints deal with the game form structure and
the preferences of coherent games with awareness. Axiom
K1 states that the modeller has a perfect view of the game
and of the awareness of each player at each history. No-
tice that by K1, awareness of players agrees at each decision
point.11 Axiom K2 states that players can only see a part
of the real game being played. Axiom K3 deals instead with
the preference relations and ensures that histories are evalu-
ated according to the same criteria if observed from different
points. Axioms K4-5 state that what players believe to be
true in the real game at a point coincides with their aware-
ness level at that point. Notice the resemblance of these
axioms with the conditions on Definition 15.

We first prove the following lemma:

Proposition 5 (P-sequence existence) Assume a game
with awareness EAw = (Γ, Em,F) that is coherent. We can
construct a finite game with short sight GP = (G, Pi) such
that Z×Z∩ �Pi=�i where Z and �i are the terminal histo-
ries and the preference relation for player i in any +E ∈ Γ.

Proof (sketch). Let ((N,H, t,Σi, o) �i) be the game E
upon which Em is based. Consider its game form (N,H, t,Σi, o).
We construct the desired P-sequence as follows. Let �Hi
be the total preorder required by axiom K3 (Definition 17)

10Formally, for z = (z1, z2, . . . , zl(z)) and ∀i ∈ {1, 2, . . . , l(z)}
we have that σt(zi)(zi) = zi+1.

11The requirement looks rather strong, but notice that for de-
cision making purposes the only awareness level that matters
is the one of the player who is to move.
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and let �Hi indicate its strict counterpart. Let moreover
H = {[h] | h′ ∈ [h] ⇐⇒ h′ �Hi h and h �Hi h′}. Intu-
itively, H is the set of all equivalence classes induced by the
relation �Hi . The desired P-sequence (H,�) is so defined
for each H,H′ ∈ H: H � H′ if and only if for some x ∈
H, y ∈ H′ we have x �Hi y. We need to show (i) that (H,�)
is indeed a P-sequence and (ii) that it displays the required
properties. As for (i) set H is clearly a finite set of subsets of
H. We are left to show that the relation � is (a) irreflexive
(b) transitive (c) asymmetric and (d) total. (a) Suppose not,
then for some H ∈ H and x, y ∈ H we would have x �Hi y,
leading to contradiction. Claims (b) - (c) - (d) can be
proven by a similar procedure. (ii) For any two histories
h′, h and +E ∈ Γ with preference relation �i and with
h′, h among the terminal histories of +E we need to show
that: h �i h′ if and only if h �(H,�) h′. Both directions are
straightforward.

We are now ready to formulate our main result.

Theorem 6 (Correspondence) Let EAw = (Γ, Em,F) be
a coherent game with awareness based on E. There exists a
finite game with short sight (GP , s) such that its canonical

representation E(GP ,s) is such that EAw = E(GP ,s).
Proof. We proceed by construction. Let ((N,H, t,Σi, o) �i

) be the game E . Consider its game form (N,H, t,Σi, o). To
construct the game (GP , s) first use Proposition 5 to ob-
tain the desired P-sequence Pi for each player. As for the
sight function we simply impose the following: for every his-
tory h ∈ H, and every player i ∈ N we have that s(h) =
Awi(h), where Awi(h) = H ′ is the awareness function as
appears in Em . The requirements of Definition 8 are satis-
fied as a consequence of the fact that s(h) is always the set
of histories of some finite game following h (Definition 17).

Now the fact that EAw = E(GP ,s) follows from Definitions 15
and 17.

Theorems 4 and 6 have established a precise link between
the most general class of games with awareness introduced in
[4]—i.e., games with awareness and lack of common knowl-
edge of the game structure—and the class of games with
short sight, namely that the latter is a special subclass of
the former. This puts the results presented in Section 3 in
an interesting light. In fact, [4] did not develop any equilib-
rium analysis of games with awareness and lack of common
knowledge of the game structure. The notion of sight com-
patible subgame perfect equilibrium can therefore be viewed
as a first principled generalization of subgame perfection to
a specific form of unawareness—short sight.

5. CONCLUSIONS
Inspired by Joseph Halpern’s invited talk at AAMAS 2011—

Beyond Nash-Equilibrium: Solution Concepts for the 21st
Century—and moving from simple considerations concern-
ing real life game playing (Example 1), the paper has pro-
posed a class of games where players are characterized by
two key features: 1) they have only partial access to the
game structure including, critically, having possibly no ac-
cess to terminal nodes; 2) they play according to extrinsic
evaluation criteria, which have here been modeled as se-
quences of properties of histories (Definition 3). The paper
has shown thas such games 1) always possess an appropri-
ate refinement of the subgame perfect equilibrium concept

(Theorem 3); 2) are an interesting—because of the above
equilibrium properties—subclass of the most general class
of games with awareness proposed by Halpern and Rêgo
(Theorems 4 and 6) which, although introduced in [4], had
not yet been object of investigation from the point of equi-
librium analysis.

Future work will focus on weakening two assumptions.
First, the fact that in solving games with short sight we
have presupposed that players only consider their own sight
(Definition 10) and that the evaluative components of the
game—the P-sequences—are common knowledge. Dropping
these assumptions could open up interesting avenues of re-
search concerning learning methods by means of which play-
ers could infer other players’ evaluation criteria and sights,
i.e., other players’ types. This would bring the game the-
oretical method of equilibrium analysis close to established
game-playing techniques in artificial intelligence and some of
its recent developments such as the theory of general game
playing [3]. Second, it is clear that the granularity of their
evaluation criteria has direct impact on players’ performance
in a game with short sight. We have currently defined P-
sequences as sequences of sets of histories. A more refined
approach would take into consideration the (formal) lan-
guage by means of which players express their evaluation
criteria. Methods from logic could then be used to compare
the expressivity of different languages for P-sequences, pos-
sibly correlating such expressivity to players’ performance
in the games.
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ABSTRACT
The computational study of strategic interaction situations
has recently deserved a lot of attention in multi–agent sys-
tems. A number of results on strategic–form games and
zero–sum extensive–form games are known in the literature,
while general–sum extensive–form games are not studied in
depth. We focus on the problem to decide whether or not
a solution is a refinement of the Nash equilibrium (NE) for
extensive–form games. Refinements are needed because the
NE concept is not satisfactory for this game class. While
verifying whether a solution is an NE is in P , verifying
whether it is a NE refinement may be not (all the results
known so far show NP–hardness). In this paper, we provide
the first positive result, showing that verifying a sequential
equilibrium with any number of agents and a quasi perfect
equilibrium with two agents are in P . We show also that
when the input is expressed in (non–perturbed) sequence
form even the problem to verify a subgame perfect equilib-
rium is NP–complete and that sequence form, if applicable,
must be rethought to verify (and therefore to compute) an
extensive–form perfect equilibrium.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative)

1. INTRODUCTION
The study of formal methods for addressing strategic in-

teraction problems among rational agents has recently re-
ceived an increasing attention in artificial intelligence and,
especially, in the multi–agent system community. The aim is
the development of algorithms to automate software agents
and robots. Formal methods can allow one to model sit-
uations and define what is the optimal behavior an agent
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can have. Game theory and microeconomics represent the
most elegant formal methods for strategic interaction sce-
narios [8]. Customarily, a scenario is modeled as a game in
which one distinguishes the mechanism, defining the rules
of the game (i.e., number of agents, actions available to the
agents, game sequential structure, outcomes, and agents’
preferences over the outcomes), from the strategies, defining
how each single agent behaves at every decision node she
acts. A solution of a game is strategy that is stable accord-
ing to some solution concept. The basic solution concept is
the Nash equilibrium (NE) constraining the strategy of each
agent to be optimal given the strategies of the others.

Game theory and microeconomics provide only models
and solution concepts, but they do not provide computa-
tional tools to deal with games. The development of these
tools is an interesting topic, with the name of equilibrium
computation, in computer science. The main open problems
are, e.g., the verification that a solution is a given solution
concept and the search for some exact or approximate solu-
tion concept. A number of computational results are known
on the NE, we cite a few. Computing an exact NE [6, 7]
and approximating it [4] are PPAD–complete. PPAD is
in NP , it does not include NP–complete problems unlessNP = co–NP , and it is not known whether PPAD is inP , but it is commonly believed that it is not. Instead, the
problem to verify whether or not a solution is a NE is in P .

A number of works deal with the problem to compute a
NE with general–sum strategic–form games (especially with
two agents), e.g., [2, 19, 21, 22], and with the problem to
solve large zero–sum extensive–form games, e.g., [11, 12].
The problem to study general–sum extensive–form games
has received less attention and appears as one of the “next
issues of the agenda” according to [28]. With these games,
the NE is not satisfactory and refinements are needed. The
most common refinements are [25]: the subgame perfect equi-
librium (SPE) when information is perfect and the sequen-
tial equilibrium (SE), quasi perfect equilibrium (QPE), and
extensive–form perfect equilibrium (EFPE) when informa-
tion is imperfect. While the SE is the “natural” extension of
the SPE to the case with imperfect information, perfect equi-
libria (both QPE and EFPE) pose more severe constraints,
requiring the strategies to be optimal also when the agents
tremble over non–optimal strategies. QPEs and EFPEs dif-
ferentiate as follows: in a QPE each agent does not consider
her own trembles, while in EFPEs she does.

While the verification of an NE is easy, few results are
known about the verification of NE refinements for extensive–
form games. The verification problem is of extraordinary
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importance, allowing an user to verify whether a software
agent is an optimizer or not. In the case this problem is
intractable, we cannot certificate that the behavior of an
agent is optimal and therefore the use of autonomous agents
appears impractical. This would push one to resort to new
approximate solution concepts. The unique results known
so far in the literature are negative. More precisely, verify-
ing whether a solution is a QPE or an EFPE is NP–hard
with three or more agents [14]. For SEs it is known only an
algorithm that can be exponential in the worst case [15].

In the present paper, we provide new contributions on the
NE refinement verification. More precisely, we provide two
prominent positive results: both problems of verifying a SE
with an arbitrary number of agents and a QPE with two
agents are in P . This supports the employment of these
solution concepts in practice. In addition, we provide two
negative results. The first result shows that, when the in-
put is expressed in (non–perturbed) sequence form [27], even
verifying an SPE is NP–complete. The second result shows
that the sequence form, if applicable, must be rethought to
verify (and compute [9]) an EFPE with two agents (if not
applicable, verifying an EFPE requires non–linear optimiza-
tion and therefore the problem is not probably in P).

2. EXTENSIVE–FORM GAMES AND EQUI-
LIBRIUM COMPUTATION

2.1 Game definition and strategies
A perfect–information extensive–form game [8] is a tuple(N,A,V,T, ι, ρ,χ,u), where: N is the set of agents (i ∈ N

denotes a generic agent), A is the set of actions (Ai ⊆ A de-
notes the set of actions of agent i and a ∈ A denotes a generic
action), V is the set of decision nodes (Vi ⊆ V denotes the
set of decision nodes of i), T is the set of terminal nodes
(w ∈ V ∪ T denotes a generic node and w0 is root node),
ι ∶ V → N returns the agent that acts at a given decision
node, ρ ∶ V → ℘(A) returns the actions available to agent
ι(w) at w, χ ∶ V ×A → V ∪ T assigns the next (decision or
terminal) node to each pair w,a where a is available at w,
and u = (u1, . . . , un) is the set of agents’ utility functions
ui ∶ T → R. Games with imperfect information extend those
with perfect information, allowing one to capture situations
in which some agent cannot observe some action undertaken
by the other agents. We denote by Vi,h the h–th informa-
tion set of agent i. An information set is a set of decision
nodes such that when an agent plays at one of its nodes she
cannot distinguish the node in which she is playing. For
the sake of simplicity, we assume that every information set
has a different index h, thus we can univocally identify an
information set by h. An imperfect–information game is a
tuple (N,A,V,T, ι, ρ,χ,u,H) where (N,A,V,T, ι, ρ,χ,u) is
a perfect–information game and H = (H1, . . . ,Hn) induces a
partition Vi = ⋃h∈Hi

Vi,h such that for all w,w′ ∈ Vi,h we have
ρ(w) = ρ(w′). We focus on games with perfect recall where
each agent recalls all her previous actions and her previous
observations. Perfect recall poses severe constraints over the
structure of the information sets, we omit their description
here, not being necessary for our work, and point an inter-
ested reader to [8].

There are three representations for extensive–form games:
normal form [26], agent form [17, 23], and sequence form [27].
In this paper, we resort to the agent and sequence forms.

b

b b

b b

b b

L1 R1

L2 R2

l1 r1

1.1

1.2

2.1

1 , 1

1 , 1

1 , 1 0 , 0

Figure 1: Example of two–agent perfect–information
extensive–form game.

In the agent form, it is assumed that at each information
set a different agent plays (e.g., in Fig. 1 there are three
different agents, one per information set). In this way, a
strategy (said behavioral) is represented as a probability dis-
tribution over the actions available at each single informa-
tion set independently of the probability with which such an
information set is reached. A behavioral strategy profile is
σ = (σ1, . . . , σ∣N ∣) where σi is the strategy of agent i. We
denote by σi,a the probability associated with action a ∈ Ai.

In the sequence form, a strategy is represented as a prob-
ability distribution over sequences. A sequence q ∈ Qi is
a set of consecutive actions a ∈ Ai, where Qi ⊆ Q is the
set of sequences of agent i and Q is the set of all the se-
quences. A sequence can be terminal, if, combined with
some sequence of the opponents, it leads to a terminal node,
or non–terminal, if it cannot lead to any terminal node
for every opponents’ sequence. In addition, the initial se-
quence of every agent, denoted by q0, is said empty sequence
and, given sequence q ∈ Qi leading to some information
set h ∈ Hi, we say that q′ extends q (denoted by q′ = q∣a) if
the last action a′ of q′ (denoted by a(q)) belongs to ρ(w)
with w ∈ Vi,h. We denote a sequence–form strategy profile
as a vector by x = [x1, . . . ,x∣N ∣] where xi is the strategy of
agent i and we denote by xi,q the probability associated with
sequence q ∈ Qi. Well defined strategies are such that, for
every information set h ∈ Hi, the probability xi,q assigned
to the sequence q leading to h is equal to the sum of the
probabilities xi,q′s where q′ extends q at h. Sequence form
constraints can be conveniently described as Fixi = fi, where
Fi is an opportune matrix and fi is an opportune vector. The
agent i’s utility is represented as a sparse multi–dimensional
array, denoted by Ui, specifying the value associated to ev-
ery combination of terminal sequences of all the agents. The
size of the sequence form representation is linear in the size
of the game tree.

A sequence–form strategy xi is equivalent to a number
(precisely, a compact set) of behavioral strategies σi and the
relationship is non–linear. More precisely, given an informa-
tion set h ∈ Hi and called q ∈ Qi the sequence leading to h,
the behavioral strategy σi,a related to the actions a ∈ ρ(w)
with w ∈ Vi,h and q′ = q∣a is σi,a(q′) = xi,q′

xi,q
if xi,q > 0 and

0 otherwise. The two representations have different degrees
of expressiveness, e.g., sequence–form strategies, differently
from behavioral ones, do not specify the actions that would
be played at information sets reached with zero probability.

Several solution concepts (see below) are based on the
idea of perturbed strategies. Call li,a(ǫ) > 0 the perturba-
tion (in terms of probability) over action a ∈ Ai such that
lim
ǫ→0

li,a(ǫ) = 0 and ǫ is a positive value. We denote by li(ǫ)
the vectors of the perturbations over all the agent i’s ac-
tions. A perturbed behavioral strategy profile σ(ǫ) of σ is

814



a fully mixed strategy where σi,a ≥ li,a(ǫ) for all a ∈ Ai and
lim
ǫ→0

σ(ǫ) = σ. Analogously, the idea of perturbation can be

applied to the sequence form. In this case, we denote by
xi(ǫ) the perturbed sequence form strategy and by xi,q(ǫ)
the perturbed strategy over q ∈ Qi. The result in [1] shows
that we can deal with perturbations li,a(ǫ) defined as poly-
nomials in ǫ keeping ǫ a symbolic parameter by resorting to
the concept of lexico positiveness (see Appendix A). In our
work, we denote by xi(ǫk) the coefficients of ǫk in xi(ǫ) and
xi,q(ǫk) the coefficients of ǫk in xi,q(ǫ).
2.2 Solution concepts

It is well known that the concept of NE is not satisfac-
tory for extensive–form games, allowing agents to play non–
credible threats. The concept of SPE refines the concept
of NE, constraining a strategy profile to be a NE in every
subgame [8], where a subgame is a portion of the game tree
defined as follows: it has a root and for every node w ∈ Vi,h

belonging to the subgame the whole information set Vi,h

belongs to the subgame. (A SPE can be easily found by ap-
plying backward induction [8].) The concept of SPE is satis-
factory with perfect–information games, while it is not when
information is imperfect. The“natural”extension of the SPE
to situations with imperfect information is the SE [16]. We
denote by µi = (µi,w) for every w ∈ Vi the beliefs of agent i
where µi,w is the probability with which agent i believes to
be at node w ∈ Vi,h when she plays at information set h.
We denote by µ = (µ1, . . . , µ∣N ∣) the profile of beliefs. An
assessment is a pair (µ,σ). An SE is an assessment (µ,σ)
such that: every σi is sequentially optimal (in the sense of
backward induction) with respect to µi, and every µi is con-
sistent (in the sense of Kreps and Wilson) with respect to
σ−i. Consistency of µ with respect to σ requires that there
exists a perturbed strategy profile σ(ǫ) of σ such that, if
µ(ǫ) the sequence of beliefs derived from σ(ǫ) by using the
Bayes rule, lim

ǫ→0
µ(ǫ) = µ. With perfect information every

SPE is also an SE and vice versa. Instead, when information
is imperfect, the SEs constitute a subset of the SPEs.

Example 2.1. Consider the game in Fig. 1. The pure
strategy SEs (and SPEs) are: (σ1,L1 = 1, σ1,L2 = 1, σ2,l1 = 1),(σ1,L1 = 1, σ1,R2 = 1, σ2,l1 = 1), (σ1,R1 = 1, σ1,L2 = 1, σ2,l1 =
1), (σ1,R1 = 1, σ1,R2 = 1, σ2,l1 = 1).

The idea of perfection, introduced by Selten in [23], is
strictly correlated to the idea of perturbed strategy. Ba-
sically, a strategy profile is perfect when it is optimal even
with perturbations over the strategies. The rationale behind
perturbations is that agents do not perfectly play their opti-
mal strategy, but they tremble with a very small probability
over non–optimal strategies. The application of perturba-
tion to the three (normal, agent, sequence) forms of a game
may lead to different concepts of equilibria.

A strategy profile σ is a QPE if there exists a perturbed
strategy profile σ(ǫ) of σ such that σi,a(ǫ) ≥ li,a(ǫ) and ev-
ery σi is a best response to σ−i(ǫ) for every ǫ ≤ ǫ for some
ǫ > 0 [24]. In a QPE every agent takes into account the
opponents’ trembles, but not own. For every combination
of li(ǫ) there is a potentially different QPE. The authors
show in [20] that quasi perfection can be captured by us-
ing a specific class of perturbations with the sequence form
constraining that for every pair of sequences q, q′ ∈ Qi with
q = q′∣a(q) the minimum degree of k such that li,q(ǫk) is

strictly positive is strictly smaller than the minimum de-
gree of k such that li,q′(ǫk) is strictly positive, formally,

min
li,q(ǫk)>0 {k} > min

li,q′ (ǫk)>0 {k}.
Other solution concepts are the normal–form perfect equi-

librium (NFPE; when perturbations are over normal–form
strategies, but it is not a satisfactory solution concept) and
the extensive–form perfect equilibrium (EFPE; it is defined
as the QPE except that an agent takes into account her own
trembles in addition to those of the opponents).

Example 2.2. Consider the game represented in Fig. 1.
The pure strategy QPEs are: (σ1,L1 = 1, σ1,L2 = 1, σ2,l1 =
1), (σ1,R1 = 1, σ1,L2 = 1, σ2,l1 = 1). Notice that (σ1,R1 =
1, σ1,R2 = 1, σ2,l2 = 1) (σ1,R1 = 1, σ1,R2 = 1, σ2,l1 = 1),
that is an SE, is not a QPE. This is because, accounting
for any perturbed σ2,l1(ǫ), the utility expected by agent 1
from making action R2 (i.e., σ2,l1(ǫ) < 1) is strictly smaller
than the utility she expects from making action L2 (i.e., 1).
The unique EFPE, when agents account for own trembles,
is (σ1,L1 = 1, σ1,L2 = 1, σ2,l1 = 1).
2.3 Known computational results

The sequence form is the most efficient representation
to compute an NE (normal form is exponentially larger,
while agent form poses highly non–linear constraints over
the agents’ best response optimization problems). The main
results on the computation of an NE are with two agents.
The problem to search for an NE is formulated as a linear–
complementarity problem (LCP) and solved by employing
the Lemke’s algorithm [18], a generalization of the Lemke–
Howson algorithm [19]. The problem to verify whether a
strategy profile, both in sequence form and agent form (in
this case deriving the corresponding sequence form strate-
gies), is an NE can be easily solved in polynomial time by
checking whether or not the constraints are satisfied.

The computation and verification problems for an SE are
open [14] and it is not known whether it is possible to address
them in sequence form or, as it is commonly believed, it is
necessary the agent form. The unique result on the verifica-
tion of an SE is provided in [15]. They propose finite–step
algorithm to verify whether an assessment is an SE, but,
as they state it, the number of steps accomplished by the
algorithm can be exponential in the worst case. A slightly
different problem is studied in [14], where the authors show
in that with three or more agents, verifying whether there
is an SE with a given strategy is NP–hard.

In [20] the authors use the Lemke’s algorithm applied
to the sequence form with perturbations l1(ǫ), l2(ǫ) with

li,q(ǫ) = ǫ∣q∣ where ∣q∣ is the length of sequence q to compute
a QPE when agents are two (details are in Appendix B).
This places that such a problem in the PPAD class. In-
stead, the verification problem is currently open with two
agents. Differently from the verification of an NE, verify-
ing whether a strategy profile is a QPE is a search problem
in which perturbations l1(ǫ), l2(ǫ) need to be found to sat-
isfy the QPE constraints. With three or more agents the
verification problem is shown to be NP–hard [14].

Other known results on the equilibrium verification prob-
lem are: the verification of a NFPE with two agents is in P ,
while the verification of a NFPE and of an EFPE with three
or more agents is NP–hard [14]. No result is known for
EFPE with two agents and it is not known even whether or
not the sequence form can be employed.
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3. VERIFICATION WITH AGENT FORM
We report a positive (tractable) result on the verification

of an SE by providing an algorithm that works with the
agent form. This is possible since we do not need to use
perturbations. When instead perturbations must be con-
sidered, as for the verification of a QPE, working with the
agent form appears hard since the verification problem is
equivalent to the problem to search for an appropriate per-
turbation over the behavioral strategies and this problem is
highly non–linear because the perturbations at different in-
formation sets would be multiplied. We state the following
theorem, whose proof provides a polynomial time algorithm
based on linear programming.

Theorem 3.1. Given a game with an arbitrary number
of agents, it is in P the problem to decide whether or not an
assessment (µ,σ) is an SE.

Proof. This decision problem requires one to verify two cor-
related properties: sequential rationality and consistency.
Sequential rationality of σ can be easily verified by back-
ward induction on the basis of µ. This task requires a num-
ber of maximizations that is linear in the size of the game,
and each single maximization is over a number of actions
that is linear in the size of the game. Verifying consistency
of µ is an harder task. By definition, it requires one to find
a fully mixed perturbed strategy profile σ(ǫ) such that the
beliefs µ(ǫ) derived from σ(ǫ) by Bayes rule converges to µ
as ǫ → 0.

The problem to find a σ(ǫ) can be solved by resorting
to the concept of b–labeling provided by Kreps and Wilson
in [16]. A b–labeling for an assessment (µ,σ) is a function
λ ∶ A → N that assigns a label (expressed as a non–negative
integer number) to all the actions a ∈ A such that:

λa = 0 ⇐⇒ σi,a > 0 ∀a ∈ Ai, i ∈ N

∑
a→w

λa = argmin
w′ ∑

a→w′ λa ⇐⇒ µi,w > 0 ∀w, w
′ ∈ Vi,h, i ∈N, h ∈Hi

We use the symbol ‘a → w’ to denote all the actions a ∈
A leading to node w from the root node w0. Given a b–
labeling, we can define a fully mixed strategy profile σ(ǫ)
as:

σi,a(ǫ) = {c(ǫ, h, a) ⋅ σi,a if σi,a > 0

c(ǫ, h, a) ⋅ ǫλa otherwise

where a is an action played by some agent at information
set h, and c(ǫ, h, a) is the appropriate normalizing constant.
Kreps and Wilson proved that µ is consistent to σ if and
only if the above σ(ǫ) is well defined (i.e., a b–labeling ex-
ists). We show below that the problem to search for a b–
labeling can be accomplished in polynomial time.

The bottom line of proof is the following. First, we for-
mulate the problem to find a b–labeling as a linear integer
mathematical program [29], second, we show that the coef-
ficient matrix associated with the mathematical program in
standard form is totally unimodular [3] and the right hand
is integer. Therefore, the integer mathematical program can
be solved in polynomial time, all the basic solutions of the
relaxed continuous mathematical program being integer.

The integer mathematical programming formulation is (γ
and ν denote auxiliary variables, while s and t denote slack
variables):

min ∑
a∈A λa (1)

λa = 0 ∀a ∈ A, σi,a > 0, i ∈ N (2)

λa − sa = 1 ∀a ∈ A, σi,a = 0, i ∈ N (3)

γw0
= 0 (4)

γw′ + λa − γw = 0 ∀w, w
′ ∈ V, a ∈ A, w = χ(w′, a) (5)

γw − νh = 0 ∀h ∈Hi, w ∈ Vi,h, i ∈ N, µi,w > 0 (6)

γw − νh − tn = 1 ∀h ∈ Vi,h, i ∈ N, µi,w = 0 (7)

λa ∈ N ∀a ∈ A (8)

sa ≥ 0 ∀a ∈ A (9)

tw ≥ 0 ∀w ∈ V (10)

Constraints (2) force labels λa of actions a played with pos-
itive probability to be equal to zero; constraints (3) force
labels λa of actions a played with zero probability to be at
least one; constraint (4) assigns a value of zero to auxiliary
variable γw0 associated with root node w0; constraints (5)
assign the auxiliary variable γw associated with node w a
value equal to the sum of the value of the parent node w′ and
the label of the action connecting w′ to w; constraints (6)
force the values of all the γws associated with the nodes ws
with µi,w > 0 belonging to the same information set to be
same (i.e., νh); constraints (7) force the other nodes w (those
with µi,w = 0) to have a value γw strictly larger than the min-
imum value of the information set (i.e., νh); constraints (8)–
(10) fix the domains of the variables (notice that, with these
domains, all the variables have non–negative values).

The above constraints can be expressed as My = b with
y ≥ 0 and λ constrained to have non–negative integer values,
where:

M =
⎡⎢⎢⎢⎢⎢⎢⎣

C 0 0 0 0
C′ 0 0 −I 0
D E 0 0 0
0 G K 0 0
0 G′ K′ 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦
,y =

⎡⎢⎢⎢⎢⎢⎢⎣
λ
γ
ν
s
t

⎤⎥⎥⎥⎥⎥⎥⎦
,b =

⎡⎢⎢⎢⎢⎢⎢⎣
0
1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦
such that Cλ = 0 codes constraints (2), C′λ − Is = 1 codes
constraints (3), Dλ +Eγ = 0 codes constraints (4) and (5),
Gγ +Kν = 0 codes constraints (6), and G′γ +K′ν − It =
0 codes constraints (7). The above submatrices have the
following properties: C, C′, G, and G′ have one 1 per row
and zero or one 1 per column; D is composed of a row of
zero and identity matrix I ; E has one ‘1’ in the first row and
one ‘1’ and one ‘−1’ in all the other rows; K presents one
‘−1’ per row.

Given that a matrix M is totally unimodular if and only
if the transpose MT is totally unimodular [3], we can restate
the theorem of Ghoulia–Houri [10] as: M is totally unimod-
ular if and only if for every subset M ′ of columns of M it is
possible to find a partition of columns {M ′

1,M
′
2} such that

(call m′kj a generic element of matrices M ′
1 and M ′

2):

∀k

⎛⎜⎜⎝ ∑
j,m′

kj
∈M′

1

m
′
kj − ∑

j,m′
kj
∈M′

2

m
′
kj

⎞⎟⎟⎠ ∈ {−1, 0, 1} (11)

To prove that this condition holds for M , call Λi the k–th
block of rows of M (from the top to the bottom) and call ∆j

the j–th block of columns of M (from the left to the right).
At first, we notice that we can remove the last two blocks

of columns ∆4 and ∆5. Indeed, if constraints (11) are sat-
isfied limiting to the first three blocks of columns (i.e., con-
sidering only the elements m′ij belonging to M ′

k ∩{∆1∪∆2∪
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Figure 2: Example of assessment (µ,σ) where σ
is sequentially rational, but µ is not consistent (σ
is represented by using bold lines to denote ac-
tions played with positive probability and µ is rep-
resented reporting the beliefs close to the nodes of
each information set). No b–labeling exists because
the constraints due to information set h = 2.1 (i.e.,
λR1 ≥ λM1 +1) and due to information set h = 2.2 (i.e.,
λM1 ≥ λR1 + 1) cannot be satisfied simultaneously.

∆3}), then we can always put columns of M ′ belonging to
∆4 or ∆5 into M ′

1 or M ′
2 to make constraints (11) satisfied

along all the columns. We build M ′
1 and M ′

2 as follows. Put
all the columns of M ′ belonging to ∆2 or ∆3 into M ′

1. It can
be easily seen that constraints (11) for the rows belonging
to Λ4 and Λ5 are satisfied (the sum of elements belongs to{−1,0,1}) independently of whether the columns of M ′ be-
longing to ∆1 are put into M ′

1 or M ′
2. Consider the columns

of M ′
1 belonging to ∆2: the sum of the elements of rows be-

longing to Λ3 can be {−1,0,1}. It can be easily seen that, D
having no more than one ‘1’ per column, we can always put
the columns of ∆1 into M ′

1 or M ′
2 to make constraints (11)

satisfied along the rows belonging to Λ3. Finally, we observe
that constraints (11) are always satisfied along the rows be-
longing to Λ1 and Λ2. Thus, M is totally unimodular and,
b being integer, a b–labeling, if it exists, can be found by
linear (continuous) mathematical programming. ◻

We provide two examples to which we apply the algorithm
discussed in the proof of Theorem 3.1.

Example 3.2. Consider the game depicted in Fig. 2 and
the assessment (µ,σ) where σ = (σ1,L1 = 1, σ1,L2 = 1, σ1,R3 =
1, σ2,l1 = 1, σ2,r2 = 1, σ2,l3 = 1) and beliefs µ are reported in
the figure aside the corresponding nodes. No b–labeling ex-
ists because the constraints due to information set h = 2.1
(i.e., λR1 ≥ λM1+1) and due to information set h = 2.2 (i.e.,
λM1 ≥ λR1+1) cannot be satisfied simultaneously. Therefore,
the assessment is not an SE.

Example 3.3. Consider the game depicted in Fig. 3 and
the assessment (µ,σ) where σ = (σ1,M1 = 1, σ1,L2 = 1, σ1,R3 =
1, σ2,l1 = 1, σ2,l2 = 1, σ2,r3 = 1) and beliefs µ are reported in
the figure aside the corresponding nodes. A b–labeling is:
λa = 1 for all a ∈ Ai with σi,a = 0. Therefore, the assessment
is an SE.

4. VERIFICATION WITH SEQUENCE FORM
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Figure 3: Example of assessment (µ,σ) where σ is
sequentially rational and µ is consistent (σ is repre-
sented by using bold lines to denote actions played
with positive probability and µ is represented re-
porting the beliefs close to the nodes of each infor-
mation set). The b–labeling is: λa = 1 for all a ∈ Ai

with σi,a = 0.
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Figure 4: Game used in the proof of Theorem 4.1.

We provide some verification results when we use the se-
quence form. Initially, we report a negative result even for
the SPE when the input strategies of the verification prob-
lem are expressed in (non–perturbed) sequence form.

Theorem 4.1. Given a game with two agents, it is NP–
complete the problem to decide whether or not non–fully per-
turbed strategies x1,x2 constitute an SPE.

Proof. We reduce this to the problem to decide whether
there is a NE with some property. This problem was shownNP–complete in [5]. The reduction is based on the game
tree depicted in Fig. 4. The subgame starting with informa-
tion set h = 1.2 and including information set h = 2.2 is a
generic general–sum strategic–form game Γ with two agents.
Consider the following non–perturbed strategies (in the case
strategies are perturbed, but not fully mixed, the proof is
analogous): x1 prescribes that action L is played with a
probability of one, and x2 prescribes that action l is played
with a probability of one. For all the other actions, x1,x2

prescribe a probability of zero. Strategies x1,x2 constitute
an SPE if and only if the subgame starting at h = 1.2 admits
an NE that provides agent 2 an expected utility smaller than
1. Since x1,x2 prescribe a probability of zero in Γ, they do
not pose any constrain over the problem to search for an NE
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for Γ providing agent 2 with no more than 1. Hence, our
problem reduces to the problem to decide whether there is
a NE with some property. ◻

The above theorem can be easily extended showing that
the verification of an SE (with an arbitrary number of agents)
is NP–complete when the input is in sequence form. Fur-
thermore, it is trivial to show that, when the input to the
verification problem is a fully perturbed sequence form strat-
egy profile, we have positive results. Indeed, given a fully
mixed perturbed sequence form strategy, we can always de-
rive an equivalent perturbed behavioral strategy and from
this a non–perturbed behavioral strategy. Thus, we can ap-
ply the positive results with agent form.

Now, we consider the problem to verify a QPE. While this
problem appears hard by working with the agent form, we
have a tractable result with the sequence form.

Theorem 4.2. Given a game with two agents, it is in P
the problem to decide whether or not a strategy profile σ is
a QPE.

Proof. In order to verify whether a strategy profile σ =(σ1, σ2) is a QPE, we need to verify:

● the existence of a perturbed σ1(ǫ) such that σ1(ǫ)→ σ1

as ǫ→ 0 and σ2 is a best response to σ1(ǫ),
● the existence of a perturbed σ2(ǫ) such that σ2(ǫ)→ σ2

as ǫ→ 0 and σ1 is a best response to σ2(ǫ).
This is equivalent to verify the existence of a lexicographic
belief structure according to [1, 13]. Since characterization
of a QPE can be accomplished in sequence form without re-
sorting the agent form we can formulate our problem with
the sequence form exploiting the LCP formulation discussed
in Appendix B. We can formulate the search for σ1(ǫ)
and σ2(ǫ) as the search for two perturbed strategies x1(ǫ)
and x2(ǫ) such that the following constraints hold (the con-
straints over x2(ǫ) are analogous):

F1x1(ǫ) = f1 (12)

x1(ǫ) >L 0 (13)

F
T
2 v2(ǫ) −U

T
2 x1(ǫ) ≥L 0 (14)

(F T
2 v2(ǫ) −U

T
2 x1(ǫ))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (15)

min
x1,q(ǫk)>0k < min

x
1,q′ (ǫk)>0k

∀a(q) ∈ ρ(w), a(q′) ∈ ρ(w′),
w, w

′ ∈H1,h, h ∈H1,

σ1,a(q) > 0, σ1,a(q′) = 0

(16)

where constraints (12) state that the strategy is well defined
according to sequence form definition; constraints (13) state
that the strategy is fully mixed (>L means ‘lexico–positive’);
constraints (14) are the dual best response constraints; con-
straints (15) state that, if the behavioral strategy σ2,a(q) has
strictly positive value for the last action of sequence q, then
the best response constraint associated with q must hold
with equality; constraints (16) provide a hierarchical struc-
ture over the lexicographic perturbation of x1(ǫ) forcing in
every information set that the minimum degree k, such that
x1,q(ǫk) is positive when the last action action a(q) of q is
played with σ1,a(q) > 0, is strictly lower than the minimum
degree k′ related to sequences q′s whose last action is played
with σ1,a(q′) = 0.

The above feasibility problem can be solved iteratively as
follows. At each iteration k, we find the values of x1(ǫk).

Each iteration can be formulated as a linear mathematical
programming problem. Iteration k = 0 requires the resolu-
tion of the following mathematical program:

F1x1(ǫ0) = f1 (17)

x1,q(ǫ0) ≥ 0 ∀a(q) ∈ A1, σ1,a(q) > 0 (18)

x1,q(ǫ0) = 0 ∀a(q) ∈ A1, σ1,a(q) = 0 (19)

F
T
2 v2(ǫ0) −U

T
2 x1(ǫ0) ≥ 0 (20)

(F T
2 v2(ǫ0) −U

T
2 x1(ǫ0))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (21)

where constraints (17) are analogous to (12); constraints (18)
and (19) correspond to (16); constraints (20) and (21) cor-
respond to (14) and (15). The above program is feasible if
σ is a Nash equilibrium. Therefore, if the above program is
infeasible, then the algorithm stops and σ is not a QPE.

From k = 1 on, the mathematical program to solve is:

max ∑
∀k′<k,x1,q(ǫk′ )=0

x1,q(ǫk) (22)

F1x1(ǫk) = 0 (23)

x1,q(ǫk) ≥ 0 ∀q ∈ Q1, x1,q(ǫk′) = 0, k
′ < k (24)

x1,q(ǫk) ≤ 1 ∀q ∈ Q1 (25)

x1,q(ǫk) = 0

∀q, q
′ ∈ Q1, w, w

′ ∈ V1,h,

a(q) ∈ ρ(w), a(q′) ∈ ρ(w′),
σ1,a(q) = 0, σ1,a(q′) > 0,

x1,q′ (ǫk′) = 0, k
′ < k, h ∈H1

(26)

(F T
2 v2(ǫk) −U

T
2 x1(ǫk))q ≥ 0

∀q ∈ Q2, (F T
2 v2(ǫk′)−

U
T
2 x1(ǫk′))q = 0, k

′ < k

(27)

(F T
2 v2(ǫk) −U

T
2 x1(ǫk))q = 0 ∀q ∈ Q2, σ2,a(q) > 0 (28)

where constraints (23) grant the strategy to be well defined;
constraints (24) grant that x1(ǫ) is lexico–positive; con-
straints (25) pose an upper bound of 1 over the coefficients
of ǫk (this value does not affect the feasibility of the prob-
lem); constraints (26) force constraints (16); constraints (27)
and (28) force constraints (14) and (15), respectively. The
objective function aims at maximizing the sum of the coef-

ficients x1,q(ǫk) such that x1,q(ǫk′) = 0 for all k′ < k.
The algorithm stops either when x1(ǫ) is strictly lexico–

positive or when the objective function is 0. In the latter
case, it is not possible to find any strictly lexico–positive
x1(ǫ) that satisfies the above constraints and therefore σ is
not a QPE. Otherwise, if there are strictly lexico–positive
x1(ǫ) and x2(ǫ), σ is a QPE.

We discuss the completeness of the algorithm. Note that
the constraints at iteration k depend on the solutions of the
optimization problems at the previous iterations. Given that
a linear optimization problem can admit different optimal
solutions, we have that the possible paths the algorithm can
follow are different. However, it can be observed that the set
of constraints strictly relaxes from iteration k to k′. There-
fore, for all the paths the algorithm can follow, the algo-
rithm always terminates with the same outcome in terms of
existence or non–existence of a strictly lexico–positive x1(ǫ)
(notice that in the case of existence, different paths may lead
to different strictly lexico–positive strategies).

Finally, we show that the number of iteration is in the
worst case linear in the size of the game. At each itera-
tion k, either some x1,q(ǫk) that is zero for every k′ < k be-
comes strictly positive or the algorithm stops with failure.
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Figure 5: Example of strategy profile σ expressed in
behavioral strategies that is a quasi perfect equilib-
rium (σ is represented by using bold lines to denote
actions played with positive probability).

In the worst case, only one sequence becomes strictly lexico–
positive per iteration and therefore the number of iteration
is equal to the number of sequences. Thus, linear mathe-
matical programming being polynomial time, the theorem
is proved. ◻

We provide two examples to which we apply the algorithm
described in the proof of Theorem 4.2.

Example 4.3. Consider the game depicted in Fig. 3 and
the strategy profile σ = (σ1,M1 = 1, σ1,L2 = 1, σ1,R3 = 1, σ2,l1 =
1, σ2,l2 = 1, σ2,r3 = 1). (As shown in Example 3.3, it is an
SE.) We check whether or not it is a QPE. From the applica-
tion of the algorithm we provide in the proof of Theorem 4.2,
we obtain the following x2(ǫ):

l1 r1 l2 r2 l3 r3

ǫ0 1 0 1 0 0 0

ǫ1 0 0 0 0 0 0
.

At iteration 1, the algorithm stops because the objective func-
tion is zero. Indeed, the algorithm cannot put a positive
value on r2 without violating the constraints of best response
of agent 1. As a result, no fully mixed σ2(ǫ) makes σ1 to be
a best response and, therefore, σ is not a QPE.

Example 4.4. Consider the game depicted in Fig. 5 and
the strategy profile σ = (σ1,L1 = 1, σ1,L2 = 1, σ1,R3 = 1, σ2,l1 =
1, σ2,l2 = 1, σ2,r3 = 1). We check whether or not it is a QPE.
From the application of the algorithm we provide in the proof
of Theorem 4.2, we obtain the following fully mixed x2(ǫ):

l1 r1 l2 r2 l3 r3

ǫ0 1 0 1 0 0 0
ǫ1 −1 1 −2 1 0 1

ǫ2 0 0 0 0 1 −1
,

and the following fully mixed x1(ǫ):
L1 M1 R1 L2 R2 L3 R3

ǫ0 1 0 0 0 0 0 0

ǫ1 −2 1 1 1 0 0 1

ǫ2 0 0 0 −1 1 1 −1
,

therefore σ is a QPE.

Finally, we show that the employment of sequence form,
when each agent takes into account also her own perturba-
tions, presents several problems to verify an EFPE.

b

b b

b bb b

L1 R1

l1 r1 L2 R2

1.1

2.1 1.2

1 , 1 0 , 0 1 , 1 0 , 0

Figure 6: Game used in the proof of Proposition 4.5.

Proposition 4.5. The best response optimization prob-
lem with the sequence form, when each agent takes into ac-
count also her own perturbations, cannot be used to verify
an EFPE.

Proof. Consider the game tree depicted in Fig. 6. At h = 1.2,
the unique optimal strategy is σ1,L2 = 1. Analogously, at
h = 2.1, the unique optimal strategy is σ2,l1 = 1. At h = 1.1,
L1 and/or R1 can be optimal on the basis of the pertur-
bation at the two subgames. For instance, with a pertur-
bation over behavioral strategies such that l2,r1 = ǫ2 and
l1,R2 = ǫ, L1 is strictly better than R1 for agent 1. We show
that maximizing over the expected utility provided by the
sequences L1 cannot be an optimal action. The expected
utility, considering also the own perturbation, provided by
sequence L1 is: EU1(L1) = (1 − l1,R1(ǫ))(1 − l2,r1(ǫ)) +
l1,R1(ǫ) − l1,R2(ǫ) = 1 − l1,R2(ǫ) − l2,r1(ǫ) + l1,R1(ǫ)l2,r1(ǫ).
The expected utility, considering also the own perturba-
tion, provided by sequence R1 is: EU1(R1) = l1,L1(ǫ)(1 −
l2,r1(ǫ))+1−l1,L1(ǫ)−l1,R2(ǫ) = 1−l1,R2(ǫ)−l1,L1(ǫ)l2,r1(ǫ).
It can be observed that for every possible combination of
l1,L1(ǫ), l1,R1(ǫ), l2,r1(ǫ), l1,R2(ǫ) the inequality EU1(R1) >
EU1(L1) holds, since EU1(R1) − EU1(L1) = l2,r1(ǫ)(1 −
l1,L1(ǫ)−l1,R1(ǫ)). Therefore, by maximizing over perturbed
sequences we cannot verify correctly any EFPE that pre-
scribes σ1,L1 = 1. ◻

Notice that the above result does not show that the se-
quence form cannot be used to verify an EFPE at all, but
that, if applicable, the sequence form must be rethought for
this problem (and for the problem to compute an EFPE).

5. CONCLUSIONS AND FUTURE WORKS
We studied the problem to verify whether a solution is a

given solution concept refining the NE for extensive–form
games. This problem is of extraordinary importance. If the
verification of a solution concept is intractable, such a solu-
tion concept cannot be adopted in practice. While verifying
a NE is easy, this may be not the case for NE refinements.
In this paper, we complete the results known in the liter-
ature concerning the verification of a SE and of an QPE,
proving that problems to verify an SE with an arbitrary
number of agents and a QPE with two agents are in P and
we provide two pertinent algorithms based on linear pro-
gramming. We show also that when the input solution is
expressed in (non–perturbed) sequence form even verifying
an SPE is NP–complete and that sequence form, if appli-
cable, must be rethought for the verification of an EFPE.

In future, we aim at completing our results, exploring the
verification of an EFPE with two agents and of a Myerson’s
proper equilibrium with two agents [8].
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APPENDIX

A. LEXICOGRAPHIC PERTURBATIONS
Given an ordered vector z1 ∈ Rn, we say that z1 is lexico–

positive if the first non–zero element of z1 is positive. For-
mally, we write z1 ≥L 0. z1 is strictly lexico–positive if it
is lexico–positive and there is at least a strictly positive ele-
ment. Easily, given a pair of ordered vectors z1,z2 ∈ Rn, we
say that z1 ≥L z2 if and only if z1 − z2 is lexico positive.

A perturbation li,a(ǫ) over action a is a polynomial in ǫ,
e.g., li,a(ǫ) = c1ǫ + c2ǫ

2 + c3ǫ
3 + c4ǫ

4 + . . ., where ck ∈ R. A
perturbation can be represented as one ordered vector in
which the first element is the coefficient c1 of ǫ, the second
element is the coefficient c2 of ǫ2, and so on. That is, when
ǫ goes to zero, ck1ǫk1 and ck2ǫk2 are comparable if and only
if k1 = k2. Similarly, a perturbed strategy σi(ǫ) (analo-
gously, xi(ǫ)) can be represented by using an lexico positive
ordered vector per action (sequence). Requiring that a per-
turbed strategy σi(ǫ) (analogously, xi(ǫ)) is fully mixed is
equivalent to requiring that each element σi,a(ǫ) is strictly
lexico positive.

B. QPE COMPUTATION
A QPE with two–agent games can be computed by ap-

plying a specific symbolic perturbation l1(ǫ), l2(ǫ) (see [20]
for the details on the perturbation) to the LCP to find an
NE (the solving algorithm is the same for the computation
of NE). Given a perturbed strategy xi ≥ li(ǫ), we substitute
xi with x̃i + li(ǫ) where x̃i ≥ 0. The resulting symbolically
perturbed LCP is:

x̃i ≥ 0 ∀i ∈ {1, 2} (29)

Fix̃i = fi − Fili(ǫ) ∀i ∈ {1, 2} (30)

F
T
i vi −Uix̃−i ≥ 0 +Uil−i(ǫ) ∀i ∈ {1, 2} (31)

x̃
T
i ⋅ (F T

i vi −Uix̃−i −Uil−i(ǫ)) = 0 ∀i ∈ {1, 2} (32)

where vi are the dual variables of the best response opti-
mization problems and their values are the expected utilities
associated with the best actions for each information set of
agent i.
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ABSTRACT
In Stackelberg games, a “leader” player first chooses a mixed
strategy to commit to, then a “follower” player responds
based on the observed leader strategy. Notable strides have
been made in scaling up the algorithms for such games, but
the problem of finding optimal leader strategies spanning
multiple rounds of the game, with a Bayesian prior over un-
known follower preferences, has been left unaddressed. To-
wards remedying this shortcoming we propose a first-of-a-
kind tractable method to compute an optimal plan of leader
actions in a repeated game against an unknown follower, as-
suming that the follower plays myopic best-response in every
round. Our approach combines Monte Carlo Tree Search,
dealing with leader exploration/exploitation tradeoffs, with
a novel technique for the identification and pruning of dom-
inated leader strategies. The method provably finds asymp-
totically optimal solutions and scales up to real world secu-
rity games spanning double-digit number of rounds.

Categories and Subject Descriptors
G [3]: Probabilistic algorithms (including Monte Carlo)

General Terms
Algorithms

Keywords
Stackelberg Games, Monte-Carlo Tree Search

1. INTRODUCTION
Recent years have seen a rise in interest in applying game

theoretic models to real world security domains, ranging
from allocation of security checkpoints at Los Angeles Inter-
national Airport [13] to the analysis and detection of com-
puter network intrusions [1, 10]. As these security domains
impose non-simultaneous player actions, they are naturally
modeled as Stackelberg games [4] wherein one player (re-
ferred to as the leader) commits to a mixed strategy of
its choice, while the second player (referred to as the fol-
lower) responds based on the observed leader strategy. This
type of approach has received a lot of attention, resulting

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in new methods for the scale-up of the proposed algorithms
to games with large number of follower types [12] or large
leader strategy spaces [6].

In arriving at the optimal leader strategies for such games,
of critical importance is the leader’s ability to profile the
follower [14]. In essence, determining the preferences of the
follower actions is a necessary step in predicting the fol-
lower best responses to leader actions, which in turn are
necessary for finding the optimal leader strategy. If these
follower preferences cannot be determined exactly, one can
consider Stackelberg formulations with distributional uncer-
tainty over the follower payoffs [14]. However, the best
leader strategies in such games are often conservative [7] and
prior work only considered the case of single-round games.
The repeated-game Stackelberg scenario, wherein the leader
can exploit extra information in the form of the follower re-
sponses, was not studied. A notable advance for repeated
games was recently reported in [9], wherein the authors de-
velop an elegant method for choosing leader strategies to un-
cover the follower preferences in as few rounds as possible.
To our knowledge, however, no attempts have been made to
exploit the revealed information about follower preferences
to optimize total leader payoff over the rounds of the game.

This paper remedies these shortcomings by providing a
first-of-a-kind method to balance the exploration of the fol-
lower payoff structure versus the exploitation of this knowl-
edge to optimize on-the-fly the expected cumulative reward-
to-go of the leader. By coupling Monte-Carlo Tree Search
sampling to estimate the utility of leader mixed strategies
with preemptive pruning of dominated leader strategies, we
show how to effectively handle a broad class of repeated
Stackelberg games often employed to model real world do-
mains. We first provide a brief formal description of the
decision problems at hand and recall the Bayesian Stack-
elberg game model. We then develop our algorithm and a
separate method for pruning of dominated leader strategies.
We finally provide an empirical evaluation of our method
and discuss our results in the context of related work.

2. PROBLEM STATEMENT

2.1 Bayesian Stackelberg Games
A Bayesian Stackelberg game assumes a leader agent of

a single type and a follower agent of type drawn from a
set Θ. The set of pure strategies of the leader is Al =
{al1 , ..., alM } and the set of pure strategies of the follower
is Af = {af1 , ..., afN }. Game payoffs are described in terms
of the player utility functions: Leader’s utility function is
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ul : Al × Af → R while the follower utility function uf :
Θ × Al × Af → R is unique for each type θ ∈ Θ of the
follower. The leader acts first by committing to a mixed
strategy σ ∈ Σ where σ(al) is the probability of the leader
executing its pure strategy al ∈ Al. (Mixed strategies allow
for higher expected payoffs of the leader as shown in [12].)
For a given leader strategy σ and a follower of type θ ∈ Θ,
the follower’s best response B(θ, σ) ∈ Af to σ is a pure
strategy B(θ, σ) ∈ Af that satisfies:

B(θ, σ) = arg max
af∈Af

X
al∈Al

σ(al)uf (θ, al, af ). (1)

Given the follower type θ ∈ Θ, the expected utility of the
leader strategy σ is therefore given by:

U(θ, σ) =
X
al∈Al

σ(al)ul(al, B(θ, σ)). (2)

Given a probability distribution P (θ) over the follower types,
the expected utility of the leader strategy σ over all the
follower types is hence:

U(σ) =
X
θ∈Θ

P (θ)
X
al∈Al

σ(al)ul(al, B(θ, σ)). (3)

Solving a single-round Bayesian Stackelberg game involves
finding σ∗ = arg maxσ∈Σ U(σ).

An example Stackelberg game is depicted in Figure 1.
Here, the leader agent (the security force) first commits
to a mixed strategy. The follower agent (the adversary)
of just a single type then observes the leader strategy and
responds optimally to it, with a pure strategy, to maximize
its own payoff. For example, the leader mixed strategy to
“Patrol Terminal #1” (abbr. “PT1”) with probability 0.5
and “Patrol Terminal #2” with probability 0.5 provokes the
follower response “Attack Terminal #1” (abbr. “AT1”), be-
cause it provides the follower with the expected utility of
0.5 · (−2) + 0.5 · (2) = 0 which is greater than the ex-
pected utility of 0.5 · (2) + 0.5 · (−4) = −1 if the follower
were to “Attack Terminal #2”. One can calculate that the
best leader mixed strategy for the Stackelberg game in Fig-
ure 1 is a pair [PT1=60%, PT2=40%] which (assuming
that the follower breaks ties in the leader’s favor) provokes
the follower response AT1 thus providing the leader with
the expected utility of EU([PT1 = 60%, PT2 = 40%]) =
0.6 ∗ 6 + 0.4 ∗ 3 = 4.8. (Note, how this mixed strategy is su-
perior to the leader pure strategies [PT1=100%, PT2=0%]
and [PT1= 0%, PT2=100%] which illustrates the benefits
of randomized strategies in security domains.)

Figure 1: Single round Stackelberg game

2.2 Repeated Game Formulation
We adopt the model of repeated Bayesian Stackelberg

games [9] which assumes that nature draws a follower of type
θ ∈ Θ at the start of the game, and then the leader plays H

rounds of a Stackelberg game against a follower with fixed
type θ. The formulation also posits that the follower plays a
myopic (non-strategic) best-response strategy to the leader
strategy observed in each round. (We defer to future work
the more general case where the follower may also behave
strategically, and may utilize a distribution over unknown
leader preferences.) As such, the leader may never know the
actual follower type θ that it is playing against, but it can
infer the parts of the opponent payoff structure by observ-
ing follower responses to various leader actions. Whereas
the objective in [9] was to minimize the number of rounds
needed to exactly identify the follower type θ, our objective
is to compute the best leader strategy in each round, given
P (θ) and history of play in prior rounds, to maximize total
leader payoff over H rounds of play.

To illustrate this concept refer to a two-round Stackelberg
game in Figure 2 where the follower payoffs are initially un-
known (uniformly distributed), represented by missing val-
ues in Table (a). Suppose the leader action in the first
round is [PT1=100%,PT2=0%]. If the follower responds
with action AT1 (refer to Table (b)), the leader receives a
first-round payoff of 6, and infers that u11 > u12. Con-
sequently, in the second round the leader will again play
[PT1=100%,PT2=0%], for it assuredly provokes the follower
response AT1 and hence provides the leader with another
payoff of 6, for a total two-round payoff of 12. (Note, that as
the leader strategy [PT1=100%,PT2=0%] will not provide
additional information about the follower payoffs, it will not
be chosen in the second round of the game by the algorithm
introduced in [9].) On the other hand, if the follower replies
in the first round to [PT1=100%,PT2=0%] by playing AT2
(refer to Table (c)), the leader receives first-round payoff
of -2, and infers that u11 < u12. In that case, the optimal
leader strategy in the second round is [PT1=0%,PT2=100%]
yielding an expected payoff of 0.5 · (3 + 1) = 2 in the second
round, for a two-round total of 0. We conclude that, after
initially playing [PT1=100%,PT2=0%], the leader has 50%
chance each of receiving total payoff of either 12 or 0, so
the leader’s expected total payoff is 6. Similarly, one can
derive that the expected total utility of the leader strategy
[PT1=0%,PT2=100%] in the first round of the game (refer
to Tables (d) and (e)) is EU([PT1=0%,PT2=100%])=4.5.

Unfortunately, finding the optimal leader strategy in the
first round of the game requires one to evaluate all the strate-
gies [PT1=x,PT2=1-x], 0 ≤ x ≤ 1, considering for each
strategy the unique knowledge of the opponent payoff struc-
ture gained by observing the follower responses to the said
strategies. As the derivation of the formulae for the the ex-
pected utilities of the leader actions for arbitrary repeated
Stackelberg games is an open research problem, we propose
to approach the problem using a customized version of the
Monte-Carlo Tree Search method, as shown next.

3. MCTS APPROACH

3.1 MCTS Overview
Monte-Carlo Tree Search (MCTS) methods provide new

tools for online planning in complex sequential decision prob-
lems that have generated considerable excitement in recent
years, due to breakthrough results in challenging domains
such as 19 × 19 Go [5] and General Game Playing [3]. The
key innovation of MCTS is to incorporate node evaluations
within traditional tree search techniques that are based on
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Figure 2: Two-round Stackelberg game, with uni-
formly distributed follower payoffs. First round of
play shown in (a). If the leader plays 100% PT1,
the follower may reply either AT1, leading to (b),
or AT2, leading to (c). If the leader plays 100%
PT2, follower may reply either AT1, leading to (d),
or AT2, leading to (e).

stochastic simulations (i.e., “rollouts” or “playouts”), while
also using bandit-sampling algorithms to focus the bulk of
simulations on the most promising branches of the tree search.
This combination appears to have overcome traditional ex-
ponential scaling limits to established planning techniques
in a number of large-scale domains. MCTS is also an any-
time algorithm and simple parallelization schemes have been
found to scale effectively to hundreds of cores [16].

Standard implementations of MCTS maintain and incre-
mentally grow a collection of nodes, usually organized in a
tree structure, representing possible states that could be en-
countered in the given domain. The nodes maintain counts
nsa of the number of simulated trials in which action a was
selected in state s, as well as mean reward statistics r̄sa ob-
tained in those trials. A simulation trial begins at the root
node, representing the current state, and steps of the trial
descend the tree using a tree-search policy that is based on
sampling algorithms for multi-armed bandits that embody

a tradeoff between exploiting actions with high mean re-
ward, and exploring actions with low sample counts. When
the trial reaches the frontier of the tree, it may continue
performing simulation steps by switching to a “playout pol-
icy,” which commonly select actions using a combination of
heuristics. When the trial terminates, sample counts and
mean reward values are updated in all tree nodes that par-
ticipated in the trial. At the end of all simulations, the
reward-maximizing top-level action from the root of the tree
is selected and performed in the real domain.

Our implementation of MCTS makes use of the UCT al-
gorithm [8], which employs a tree-search policy based on a
variant of the UCB1 bandit-sampling algorithm [2]. The
policy computes an upper confidence bound Bsa for each
possible action a in a given state s according to: Bsa =
r̄sa + c

p
lnNs/nsa, where Ns =

P
a′ nsa′ is the total num-

ber of trials of all actions in the given state, and c is a tun-
able constant controlling the tradeoff between exploration
and exploitation. With an appropriate choice of the value
of c, UCT is guaranteed to converge to selecting the best
top-level action with probability 1.

3.2 MCTS in Repeated Stackelberg Games
We now present our MCTS-based method for planning

leader actions in repeated Stackelberg games with unknown
opponents. A key feature of our method builds upon the
assumption that the leader has a prior probability distribu-
tion over possible follower types (equivalently, over follower
utility functions). We leverage this by performing MCTS
trials in which each trial simulates the behavior of the fol-
lower using an independent draw from this distribution. As
different follower types transition down different branches of
the MCTS tree, this provides a simple and elegant means of
implicitly approximating the posterior distribution for any
given history in the tree, where the most accurate posteriors
are focused on the most critical paths for optimal planning.
This may enable faster approximately optimal planning than
established methods which require fully specified transition
models for all possible histories as input to the method.

A high-level depiction of the method is given in Figure 3.
The method performs a total of T simulated trials, each
with a randomly drawn follower, where a trial consists of H
rounds of play. In each round, the leader chooses a mixed
strategy σ ∈ Σ to be performed, that is, to play each pure
strategy al ∈ Al with probability σ(al). To obtain a finite
enumeration of leader mixed strategies, similarly to [11], we
discretize the σ(al) values into integer multiples of a dis-
cretization interval ε = 1/K, and represent the leader mixed
strategy components as σ(al) = kl · ε where {kl} is a set of
non-negative integers s.t.

P
kl = K. In the example in

Figure 3 the number of leader pure strategies is |Al| = 2
and K = 2 and the leader can choose to perform only one
of the following three mixed strategies: LA1 = [0.0, 1.0];
LA2 = [0.5, 0.5] or LA3 = [1.0, 0.0] as shown in Figure
3. Upon observing the leader mixed strategy, the follower
then plays a greedy pure-strategy response, that is, it selects
from among its pure strategies (FR1, FR2, FR3 in Figure 3)
the strategy achieving highest expected payoff given the ob-
served leader mixed strategy. Although such discretization
method can in theory lead to suboptimal solutions [11], the
underlying discretization error is rarely seen in practice [12],
especially for big values of K. An argument can also be made
that in real world Stackelberg games the leader can imple-
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ment its mixed strategy (and the follower can observe it)
with only a limited precision [14].

Leader strategies in each round of each trial are selected
by MCTS using either the UCB1 tree-search policy for the
initial rounds within the tree, or a playout policy for the re-
maining rounds taking place outside the tree. Our playout
policy uses uniform random selection of leader mixed strate-
gies for each remaining round of the playout. We grow the
MCTS tree incrementally with each trial, starting from just
the root node at the first trial. Whenever a new leader
mixed strategy is tried from a given node, the set of all pos-
sible transition nodes (i.e. leader mixed strategy followed
by all possible follower responses) are added to the tree.

The basic idea of the abbreviated proof of convergence
of our algorithm is to map a repeated Bayesian Stackelberg
game to an equivalent Markov Decision Process. The MDP
states in such a mapping are the finite horizon histories of
pairs of (discretized) leader mixed strategies and their cor-
responding follower responses. The MDP actions represent
possible leader mixed strategies in a current state. The tran-
sition probability from state s = (h) to state s′ = (h|σaf )
given action σ ∈ Σ equals the probability of a follower re-
sponse af to σ which can be uniquely determined from P (θ)
and the observed history h. Finally, the corresponding MDP
reward is given in Equation 2 wherein B(θ, σ) from Equa-
tion 1 is known to be af . Following Lemma 1 in [17], the
expected payoff of a repeated Bayesian Stackelberg game
policy equals the expected payoff of the equivalent MDP pol-
icy and therefore the optimal repeated Bayesian Stackelberg
game policy and the optimal MDP policy are equivalent.
Since our method samples according to the UCT formula,
which is guaranteed to converge to the optimal MDP pol-
icy [8], therefore it also converges to the optimal repeated
Bayesian Stackelberg game policy.

Figure 3: MCTS algorithm overview

4. PRUNING OF THE DOMINATED LEADER
STRATEGIES

As it is shown in this section, in some cases, the leader’s
exploration of the complete reward structure of the follower
is unnecessary. In essence, in any round of the game, the
leader can identify the leader strategies—that have not yet
been employed by the leader—whose immediate expected
value for the leader is guaranteed not to exceed the expected
value of leader strategies employed by the leader in the ear-

lier rounds of the game. If the leader then just wants to
maximize the expected payoff of its next action, these not-
yet-employed strategies can safely be disregarded.

To formalize the concept of pruning of dominated leader
strategies assume that the leader is playing a repeated Stack-
elberg game with a follower of type θ ∈ Θ. Furthermore, de-
note by E(n) ⊂ Σ a set of leader mixed strategies that have
been employed by the leader in rounds 1, 2, ..., n of the game.
Notice, that the leader who aims to maximize its payoff in
the n+ 1st round of the game should consider to employ an
unused strategy σ ∈ Σ− E(n) only if:

U(θ, σ) > max
σ′∈E(n)

U(θ, σ′) (4)

Where U(θ, σ) is the upper bound on the expected utility
of the leader playing σ, established from the leader observa-
tions B(θ, σ′); σ′ ∈ E(n) as follows:

U(θ, σ) = max
af∈Af (σ)

U(σ, af ). (5)

Where Af (σ) ⊂ Af is defined here as a set of follower actions

af that can still (given B(θ, σ′); σ′ ∈ E(n)) constitute the
follower best response to σ while U(σ, af ) is the expected
utility of the leader mixed strategy σ if the follower responds
to it by executing action af . That is:

U(σ, af ) =
X
al∈Al

σ(al)ul(al, af ) (6)

Thus, in order to determine whether a not-yet-employed
strategy σ should be executed, one has to determine the
elements of a best response set Af (σ) given B(θ, σ′) for all

σ′ ∈ E(n). We now show how that can be accomplished.

4.1 Best Response Sets
To find the actions that can still constitute the best re-

sponse of the follower of type θ to a given leader strategy σ,
we first define the concept of Best Response Sets and Best
Response Anti-Sets and then prove an important property
of best response sets.

Definition 1. For each action af ∈ Af of the follower,
a best response set Σaf is a set of all the leader strategies
σ ∈ Σ for which it holds that B(θ, σ) = af .

Definition 2. For each action af ∈ Af of the follower, a
best response anti-set Σaf is a set of all the leader strategies
σ ∈ Σ for which it holds that B(θ, σ) 6= af .

Proposition 1. Each best response set Σaf is convex and
{Σaf }af∈Af is a finite covering of Σ.

Proof. By contradiction: If Σaf is not convex then there

must exist σ′, σ′′ ∈ Σaf such that B(θ, σ′) = B(θ, σ′′) = af
and σ = λσ′ + (1 − λ)σ′′; λ > 0 such that σ 6∈ Σaf . From
Equation (1) it then holds that:X

al∈Al

σ′(al)uf (al, af ) >
X
al∈Al

σ′(al)uf (al, af )

X
al∈Al

σ′′(al)uf (al, af ) >
X
al∈Al

σ′′(al)uf (al, af )

X
al∈Al

σ(al)uf (al, af ) >
X
al∈Al

σ(al)uf (al, af ).
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Where af ∈ Af is not af . After adding these inequalities
and substituting σ := λσ′ + (1− λ)σ′′ we obtain:X

al∈Al

σ(al)uf (al, af ) <
X
al∈Al

σ(al)uf (al, af )

Which contradicts the earlier inequality. Now, since for each
σ ∈ Σ there exists some af ∈ Af such that B(θ, σ) = af , we
have that {Σaf }af∈Af covers the entire set Σ and is therefore
a partitioning of Σ.

We first illustrate how to find the follower best responses
on an example and then provide a method that achieves
it in a general case. Specifically, we now illustrate that
(after a few rounds of the games) there may indeed exist
σ ∈ Σ such that Af (σ) 6= Af . Consider an example in
Figure 4 where the game has already been played for two
rounds. Let Al = {al1 , al2}, Af = {af1 , af2 , af3} and E(2) =
{σ′, σ′′} where σ′(al1) = 0.25;σ′(al2) = 0.75 and σ′′(al1) =
0.75;σ′′(al2) = 0.25. Furthermore, assume U(al1 , af1) =
0; U(al2 , af1) = 1; U(al1 , af2) = 1; U(al2 , af2) = 0 and
U(al1 , af3) = U(al2 , af3) = 0. The follower best responses
observed so far are B(θ, σ′) = af1 (solid black circle) and
B(θ, σ′′) = af2 (black circle with dashed perimeter).

Figure 4: Best response actions

Notice, how in this context it is not profitable for the
leader to employ a mixed strategy σ such that σ(al1) ∈
[0, σ′(al1))∪(σ′′(al1), 1]. In particular, for σ such that σ(al1) ∈
[0, σ′(al1)) (refer to Figure 4 point σ) it holds that B(θ, σ) 6=
af2 because otherwise (from Proposition (1)) the convex set
Σaf2 would contain the elements σ and σ′′—and hence also

contain the element σ′—which is not true as B(θ, σ′) =
af1 6= af2 . Consequently, we have Af (σ) = {af1 , af3} (no-
tice the points with question marks above σ in Figure 4)
which implies that U(θ, σ) = max{U(σ, af1), U(σ, af3)} <
max{0.25, 0} = 0.25 = max{U(σ′, af1), U(σ′′, af2)}. Hence,
while employing strategy σ would allow the leader to learn
B(θ, σ) (i.e., to disambiguate in Figure 4 the question marks
in points above σ), this knowledge would not translate into
the leader higher payoffs: The immediate expected reward
for the leader for employing strategies σ′, σ′′ is always greater
than the expected reward for employing σ such that σ(al1) ∈
[0, σ′(al1)) ∪ (σ′′(al1), 1].

The example in Figure 4 also illustrates how the leader has
to balance the benefits of exploration versus exploitation in
the current round of the game. Specifically, the leader has
a choice to either play one of the strategies σ′, σ′′ it had
employed in the past (σ′ if U(σ′, af1) > U(σ′′, af2) or σ′′

otherwise) or play some strategy σ′′′ such that σ′′′(al1) ∈
(σ′(al1), σ′′(al1)) = [0, 1] \ [0, σ′(al1)) \ (σ′′(al1), 1] that it
had not yet employed—and hence does not know what the

follower best response B(θ, σ′′′) for this strategy is. Notice,
that in this case, Af (σ′′′) = {af1 , af2 , af3} (illustrated in
Figure 4 by three points with question marks above σ′′′).
Now, if B(θ, σ′′′) = af3 were true, it would mean that
U(σ′′′, af3) < max{U(σ′, af1), U(σ′′, af2)}. In such case, the
leader would explore the follower payoff preference (by learn-
ing B(θ, σ′′′)) at a cost of loosing the potential immediate
payoff of U(σ′′′, af3)−max{U(σ′, af1), U(σ′′, af2)}.

Finally, the example also shows that although the im-
mediate expected utility for executing a not-yet-employed
strategy is smaller than the immediate expected utility for
executing a strategy employed in the past, in some cases
it might be profitable not to prune such not-yet-employed
strategy. For example, if the game in Figure 4 is going to
be played for at least two more rounds, the leader might
still have an incentive to play σ, because if it turns out that
B(θ, σ) = af3 then (from Proposition 1) B(θ, σ′′′) 6= af3
and consequently U(θ, σ′′′) > max{U(σ′, af1), U(σ′′, af2)}.
In essence, if the execution of a dominated strategy can pro-
vide information about the follower preferences that will be-
come critical in subsequent rounds of the game, one pruning
heuristic might be to not prune such dominated strategy.

4.1.1 The Pruning Algorithm
When an MCTS trial starts (at the root node), the leader

does not know how the follower is going to respond to any
of its mixed strategies σ ∈ Σ, for it does not know the type
θ ∈ Θ of the follower that it is playing with. That is, the
leader knows nothing about the sets Σaf and anti-sets Σaf ;
af ∈ Af . As the game enters subsequent rounds though, the
leader collects the information about the follower responses
to the leader strategies, assembles this information to infer
more about Σaf and Σaf ; af ∈ Af and then prunes the
provably dominated leader strategies that do not provide
critical information to be used in later rounds of the game.

The pruning algorithm runs orthogonally to MCTS and
can be applied to any MCTS node whose parent has already
been serviced by the pruning algorithm. Consider one such
MCTS node corresponding to a situation where the rounds
1, 2, ..., k − 1 of the game have already been played and let
Σ(k−1) ⊂ Σ denote the set of leader strategies that have not
yet been pruned (not to be confused with the set E(k−1)

of leader strategies employed in rounds 1, 2, ..., k − 1 of the
game). We have Σ(0) = Σ at the MCTS root node. Also,

let Σ
(k−1)
af ⊂ Σaf and Σ

(k−1)
af ⊂ Σaf be the partially un-

covered follower best response sets and anti-sets, inferred
by the leader from its observations of the follower responses
in rounds 1, 2, ..., k − 1 of the game. (Unless |Af | = 1, we

have Σ
(0)
af = ∅, Σ

(0)
af = ∅; af ∈ Af at the MCTS root node.)

When the leader then plays σ ∈ Σ(k−1) in the k-th round of
the game and observes the follower best response b ∈ Af , it

constructs the sets Σ(k), Σ
(k)
af , Σ

(k)
af ; af ∈ Af as described in

Algorithm 1.
Algorithm 1 starts by cloning the non-pruned action set

(line 1) and best response sets (lines 2 and 3). Then, in line

4, Σ
(k)
b becomes the minimal convex hull that encompasses

itself and the leader strategy σ (computed e.g. using a lin-
ear program). At this point (lines 5 and 6), the algorithm
constructs the best response anti-sets, for each b′ ∈ Af . In

particular: σ′ 6∈ Σ
(k)

b′ is added to the anti-set Σ
(k)

b′ if there

exists a vector (σ′, σ′′) where σ′′ ∈ Σ
(k)

b′ that intersects some
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Algorithm 1

Input: σ, b, Σ(k−1), Σ
(k−1)
af ; af ∈ Af

Output: Σ(k), Σ
(k)
af , af ∈ Af

1: Σ(k) ← Σ(k−1)

2: for all b′ ∈ Af do

3: Σ
(k)

b′ ← Σ
(k−1)

b′

4: Σ
(k)
b ←ConvexHull(Σ

(k)
b , σ)

5: for all b′ ∈ Af do

6: Σ
(k)

b′ ← {σ′ ∈ Σ \ Σ
(k)

b′ s.t. (λσ′ + (1− λ)σ′′) ∈ Σ
(k)
af

for some λ > 0; σ′′ ∈ Σ
(k)

b′ and af ∈ Af ; af 6= b′}
7: σ∗ ← arg max[σ′ ∈ Σ

(k)
b ] {U(σ′, b)}

8: Σ(k) ← Σ(k) \ (Σ
(k)
b \ {σ∗})

9: for all σ ∈ Σ(k) \ ∪af∈AfΣ
(k)
af and all b ∈ Af do

10: if σ ∈ ∩af∈Af\{b}Σ
(k)
fa then

11: goto 4

set Σ
(k)
af ; af 6= b (else, Σ

(k)

b′ ∪ {σ′} would not be convex,
thus violating Proposition 1). Next (lines 7 and 8), the al-

gorithm prunes from Σ(k) all the strategies that are strictly
dominated by σ∗, for which the leader already knowns the
best response b ∈ Af of the follower. (Notice that no further
information about the follower preferences can be gained by
pruning these actions.) Finally, the algorithm loops (line
9) over all the non-pruned leader strategies σ for which the
best response of the follower is still unknown; In particular
(line 10) if b ∈ Af is the only remaining plausible follower
response to σ, it automatically becomes the best follower
response to σ and the algorithm goes back to line 4 where
it considers the response b to the leader strategy σ as if it
was actually observed. The pruning algorithm terminates its
servicing of an MCTS node once no further actions can be
pruned from Σ(k). One can then identify the leader strate-
gies to be pruned from Equations (4, 5, 6).

5. EXPERIMENTS

5.1 Basic Checks
We first performed a series of experiments aimed at check-

ing the validity of MCTS generated policy. One of these
experiments (refer to Figure 5) is in the airport security do-
main of Figure 1. We set the discretization interval of leader
mixed strategies to 0.25, resulting in a total of 5 leader ac-
tions. We considered a 4 stage game and ran 1, 000, 000
MCTS trials assuming (a) a follower whose payoffs are sam-
pled from a uniform prior distribution and (b) a follower
whose payoffs are sampled from some distribution that re-
flects conflicting preferences of the leader and follower agents.
As can be seen in Figure 5, the resulting MCTS policies ap-
pear to conform to our intuitions. In particular, in the uni-
form prior distribution case, notice how the leader chooses to
play [PT1=50%,PT2=50%] in the third round of the game,
to effectively learn (and later take advantage of) the follower
best response to [PT1=50%,PT2=50%], having learned in
the earlier rounds of the game the follower responses to the
leader pure strategies. Also, in the zero-sum prior distribu-
tion case, notice that when the follower is identified to prefer
to AT1, the leader never chooses to play a pure strategy PT1
as this would result in Terminal 2 being left unguarded.

An illustration of typical rate-of-convergence behavior in

Figure 5: Policies generated by MCTS

our experiments is plotted in Figure 6. These experiments
used followers with uniform random utility functions over
4 pure strategies, horizon H = 6, and leader discretization
ε = 0.25. The number of leader pure strategies is varied over
{2, 3, 4}. We generally find clear convergence to the optimal
policy and value estimate, at least in all of our small-scale
studies. Note that the convergence time may not have a
simple dependence on number of leader strategies, as it may
also depend on specific details of the leader’s utility function.

Figure 6: Value of best top-level action node vs.
number of trials, illustrating typical MCTS conver-
gence behavior.

5.2 Scaling studies without pruning
We present two scaling studies that examine how far we

can push a “vanilla” version of MCTS with no built-in do-
main knowledge, and no capability of inference across nodes,
so that the only way to estimate the value of a tree node is
by explicit sampling. The first study focuses on scaling of
convergence time with horizon H. We would expect MCTS
convergence time to scale exponentially with H, possibly
with a large base if the branching factor is large. However,
certain aspects of the Bayesian Stackelberg domain could re-
sult in relatively mild scaling. First, it seems plausible that
the optimal policy would consist of “exploratory” actions for
the first few rounds, in order to determine the follower pref-
erences, followed by pure exploitation actions that maximize
immediate payoff in all remaining rounds. This means that
it could be relatively easy for MCTS to find the best action
at deep levels of the tree, as it would only need to find the
action with best immediate payoff. This is easy to determine
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in our domain, since the payoffs are deterministic given the
leader and follower actions, and the follower type is likely to
be uniquely determined deep in the tree.

Results of scaling of mean convergence time with H, from
H = 2 to H = 16, are shown in Table 1. We define “conver-
gence time” as the number of trials needed to reach 99% of
asymptotic optimal value. We use uniform random follower
utility functions, and fix the following experiment param-
eters: leader strategies = 3, follower strategies = 4, and
discretization = 0.25.

Note that there are 15 possible leader mixed-strategy com-
binations, so the branching factor per round is nominally 60,
including the possible follower responses. However, we can
see much more favorable scaling in Table 1 than would be
implied by the nominal branching factor.

Horizon Trials to Converge CPU (sec)
2 15,300 13.40
4 26,100 23.53
6 42,200 38.48
8 77,500 72.60
10 132,000 127.92
12 221,000 227.79
14 340,000 515.22
16 512,000 1124.75

Table 1: Number of MCTS trials to converge and
CPU runtime as a function of horizon H.

Next, we examine scaling of convergence time in a fixed ex-
periment configuration (uniform random followers, 3 leader
and 4 follower strategies, and H = 6) where we vary the dis-
cretization interval ε. Here we expect that “vanilla” MCTS
could perform quite poorly, as the branching factor increases
exponentially in 1/ε, and MCTS has to explicitly sample
each option to acquire any information regarding its value.
Results shown in Table 2 indicate that the convergence time
in fact blows up rapidly once ε becomes small, and we were
unable to obtain convergence within one million trials for
ε = 1/16. The observed poor scaling with discretization pro-
vides ample motivation for using our pruning algorithm of
Section 4, whose results are reported below.

Discretization Trials to Converge CPU (sec)
0.5 21,100 18.22
0.25 42,200 38.48
0.125 177,000 193.56
0.0625 — —

Table 2: Mean convergence time (in thousands of
trials and CPU runtime) as a function of discretiza-
tion ε. The 0.0625 run failed to converge within one
million trials.

5.3 Results using leader strategy pruning
In our final set of experiments we switched on the prun-

ing of the dominated leader strategies to see how it improves
the performance of our algorithm. We chose the number of
leader and follower pure strategies to be M = 2 and N = 2
respectively and fixed the number of game rounds toH = 10.
Across the three experiments in Figure 7 we progressively

increased the discretization accuracy of the leader mixed
strategies, by decreasing the length of the discretization in-
terval from 25% to 12% and finally to 6%. For each setting
we then ran a sufficient number of MCTS trials to obtain
convergence, and plotted on the x-axis the current trial num-
ber and on the y-axis the expected utility of the currently
best leader strategy.

All three experiments in Figure 7 show that using our
pruning technique results in a clear reduction in the number
of trials needed to obtain convergence. As can be seen in
the first graph (ε = 1/4), with pruning switched on, the
algorithm converged to within 99% of its asymptotically
optimal value in less than 100, 000 trials as compared to
more than 200, 000 trials needed to accomplish the same
task with pruning switched off. The impact of pruning is
even more pronounced in the second graph (ε = 1/8): Here,
with pruning switched on, the algorithm managed to con-
verge to the asymptotically optimal solution after approxi-
mately 670, 000 trials. In contrast, convergence with pruning
switched off required more than 1.2 million trials, i.e., prun-
ing reduced the required number of trials by over 500, 000.
Finally, in the third graph in Figure 7, the increased ac-
curacy of the discretization of the leader mixed strategies
(ε = 1/16) resulted in a game tree with 250 nodes. The
algorithm with pruning converged in ∼ 4.2 million trials,
representing a savings of 1M trials compared to the 5.2 mil-
lion needed for convergence without pruning.

Of course, the number of trials needed for convergence is
not the only relevant performance metric in these experi-
ments, since the pruning technique entails greater compu-
tational overhead per trial. If the CPU cost of the prun-
ing calculations were to exceed the savings in number of
required trials, the pruning technique would not yield a net
win in terms of wall-clock run time. Fortunately, our imple-
mentation of pruning limits the CPU cost of pruning to at
most 50% of total simulation CPU time: we run pruning and
MCTS search on two independent threads, with the pruning
thread taking up to 50% of the cycles of a single CPU, and
the search thread taking the remaining cycles. To obtain
a fair comparison, the corresponding experiments without
pruning also utilized two threads, each performing indepen-
dent MCTS trials. As seen below in Table 3, the savings
in number of trials more than compensates for the greater
CPU overhead of the pruning technique. We observe a pro-
gressive increase in wall-clock time savings via pruning, from
25 seconds (157-132) at ε = 1/4, to 94 seconds (637-540) at
ε = 1/8, to 277 seconds (2903-2626) at ε = 1/16.

Discretization Pruning Time No-Pruning Time
0.25 132 157
0.125 540 637
0.0625 2626 2903

Table 3: Mean wall-clock time to converge, in sec-
onds, as a function of discretization ε, in pruning vs.
no-pruning experiments of Figure 7.

6. CONCLUSIONS
We presented the first-ever study of repeated Bayesian

Stackelberg games where the objective is to maximize the
leader’s cumulative expected payoff over the rounds of the
game. The optimal policies in such games must make intel-
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Figure 7: Impact of pruning of dominated leader strategies on the efficiency of MCTS

ligent tradeoffs between actions that reveal information re-
garding the unknown follower preferences, and actions that
aim for high immediate payoff. We proposed an innovative
approach to solve for such optimal policies, based on Monte
Carlo Tree Search combined with an original method for
pruning dominated leader strategies.

Our results show ample promise that the approach will
be able to tackle numerous problems in real-world security
domains. The points of particular promise that we see are:
(1) MCTS trials based on sampling from the follower distri-
bution appears to offer a highly efficient means of approx-
imating follower posteriors over all possible history paths,
insofar as they contribute to the optimal policy. (2) MCTS
scaling is very manageable with respect to the number of
rounds to be played. (3) Our pruning method addresses a
major limitation of simple MCTS which scales poorly in the
case of fine-grained discretization of leader mixed strategies.

Our findings draw support from the recent work by Sil-
ver and Veness [17] which obtained excellent scaling results
in applying MCTS to solving large scale POMDPs. This
suggests to us that the advantages of MCTS that we found
in Bayesian Stackelberg Games may extend to more general
classes of imperfect information games.

One of our future research studies will focus on gener-
alizing the model to repeated Bayesian Stackelberg games
where the follower also behaves strategically. In this more
general case there might be scenarios where MCTS conver-
gence may be much more difficult than what we found in the
non-strategic case. This has been observed in recent work by
Ramanujan et al. [15] which identified soft traps. We believe
that such traps do not occur in our current formulation as
the leader always gains information about the follower pref-
erences. However, how to avoid such traps when facing a
strategic follower player is a worthy topic of investigation.
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ABSTRACT
When a zero-sum game is played once, a risk-neutral player
will want to maximize his expected outcome in that single
play. However, if that single play instead only determines
how much one player must pay to the other, and the same
game must be played again, until either player runs out of
money, optimal play may differ. Optimal play may require
using different strategies depending on how much money has
been won or lost. Computing these strategies is rarely feasi-
ble, as the state space is often large. This can be addressed
by playing the same strategy in all situations, though this
will in general sacrifice optimality. Purely maximizing ex-
pectation for each round in this way can be arbitrarily bad.
We therefore propose a new solution concept that has guar-
anteed performance bounds, and we provide an efficient al-
gorithm for computing it. The solution concept is closely
related to the Aumann-Serrano index of riskiness, that is
used to evaluate different gambles against each other. The
primary difference is that instead of being offered fixed gam-
bles, the game is adversarial.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems

General Terms
Algorithms, Economics, Theory

Keywords
Game playing, Game theory

1. INTRODUCTION
Game theory has often been used to prescribe good be-

havior in strategic interactions, and to make predictions on
how participants will behave in interaction with one another.
This is traditionally done by isolating a particular interac-
tion of interest, and then modelling the interaction math-
ematically. The constructed model is then analyzed sepa-
rately from the rest of the system, and the resulting analysis

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is then translated back into the system where the interac-
tion fits in. For this approach to be successful, the right
objectives must be derived from the system surrounding the
interaction; otherwise the analysis will likely draw incorrect
conclusions. In this paper, we examine such a situation,
where a fixed finite zero-sum game is played repeatedly un-
der a budget. The overall goal for each player is to win all
the money the opponent has, and not run out of money in
the process. A simple approach to analyzing this repeated
game would be to analyze the zero-sum game as if it was
only played once, with the objective of winning the most
money in that single play. This, however, can lead to dis-
astrous results, as we shall see in Section 4. In this paper,
we show how one can analyze the underlying zero-sum game
with respect to a more suitable objective.

As a motivating example, let us look at what happens
when we offer a player the chance to double the payoffs of
a zero-sum game. Given any zero-sum game G with payoffs
in {−1, 1} and value v 6= 0. Amend G by giving Player 1
the option of doubling the outcome of the game, before the
game is played. If Player 1 does so, the outcomes will be in
{−2, 2} instead, but the rest of the game is unchanged. Any
risk neutral Player 1 would clearly double the game, if and
only if the value of the game is positive; the doubling does
not change optimal strategies, but it doubles the expected
value. What is perhaps more surprising is that the situation
is reversed if the game has to be repeated until one player is
broke; i.e., Player 1 would only double if the value was neg-
ative. To see this, first observe that two players playing the
undoubled game optimally for some total amount of money,
C, is simply a random walk on a line of length C. The walk
moves one step to the right with probability p = v/2 + 1/2,
and one step to the left with probability (1 − p). Starting
from point c1 (being the amount of money Player 1 has), the
probability of reaching the right-most point (where Player 1
has won all the money) before the left-most point is exactly

Pr[Player 1 wins undoubled] =
αc1 − 1

αC − 1
(1)

where α = 1−p
p

. Playing the doubled game is essentially the
same as playing the undoubled game for half as much money.
Assume for simplicity that C and c1 are both even. This
means that the probability of Player 1 winning by doubling
every game is

Pr[Player 1 wins doubled] =
αc1/2 − 1

αC/2 − 1
(2)

This probability is greater than that (1) if and only if α > 1,
which happens exactly when v < 0. Thus, Player 1 should
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double the game, if and only if he has negative expectation
in the individual rounds of the game.

This example serves to show that if we attempt to derive
good strategies for the repeated game by trying to maximize
the expected outcome of the individual rounds, we will get
suboptimal results. In Section 4, we will show that this
suboptimality can be arbitrarily large.

1.1 Related research
In a recent paper, Miltersen and Sørensen [13] computed

near optimal strategies for a full scale two-player poker tour-
nament. The tournament format fits the description of a
game being played repeatedly for a budget, but their game
was different for each round; the variant of poker allowed for
an all-in, which depends on how much money each player
has. They concluded that simply maximizing the amount of
chips won in each round was slightly worse than maximizing
the probability of winning the tournament. In contrast, the
present paper shows that it can be much worse to maximize
the expected gain in each round. Furthermore, our results
are about general zero-sum games, and not poker specific.

The conceptual ancestor of the contribution of this paper
is the Aumann-Serrano index of riskiness [1], which is used
to compare different gambles against each other. The main
difference is that the Aumann-Serrano index of riskiness is
not in an adversarial setting. The Aumann-Serrano index of
riskiness of a stochastic variable X is defined as the unique γ
such that E[exp(−X/γ)] = 1. Expressed in these terms, our
contribution is to compute the strategy that has the most
favorable Aumann-Serrano index of riskiness on the outcome
of the game.

1.2 Structure of the paper
The rest of the paper is structured as follows. In Sec-

tion 2 we introduce the formal model of the games we are
discussing in this paper. In Section 3, we review existing
theory that provide exact optimal strategies for the games,
and discuss why this is not a feasible approach. In Section 4,
we show why maximizing expectation in each round can be
arbitrarily far from optimal. In Section 5, we describe the
main contribution of the paper in the form of a new solution
concept and an algorithm for computing it. In Section 6, we
derive a bound on the performance of the introduced solu-
tion concept. In Section 7, we apply the theory to the game
Kuhn poker with a budget. In Section 8, we provide a way
to estimate the parameter of the introduced solution con-
cept for games that are too large to repeatedly solve. In
Section 9, we discuss two natural extensions of the theory.
In Section 10 we compare the introduced solution concept
to existing concepts, and discuss future research.

2. MODEL
In this section, we will formalize the model we are using

in this paper. First we need some notation and terminology
from classic game theory. Details can be found in any intro-
ductory textbook on game theory. The underlying game to
be played is given as a finite zero-sum game:

Definition 1 (Finite zero-sum game).
A finite zero-sum game is given by m × n matrix A with
integer entries. It is played by Player 1 and Player 2 simul-
taneously choosing a row i and a column j respectively, after
which Player 2 pays Aij to Player 1.

The definition above has a non-standard assumption that
the outcome of the finite zero-sum games are integer. This
is only to make analysis easier, and everything in this paper
can be done with rational valued outcomes as well, as is
discussed in section 9.

The players can use mixed strategies, that are probability
distributions over rows and columns respectively. For zero-
sum games, there is a well defined value that each player can
guarantee himself, and the associated strategies that provide
this guarantee:

Definition 2 (Minimax value and strategies).
The minimax value of a finite zero-sum game given by the
matrix A ∈ Zm×n is:

val(A) = max
x∈∆m

min
y∈∆n

x>Ay = min
y∈∆n

max
x∈∆m

x>Ay

The minimax strategies for Player 1 are the maximizing x’s
in the expression above:

argmax
x∈∆m

min
y∈∆n

x>Ay

Likewise, the minimax strategies for Player 2 are

argmin
y∈∆n

max
x∈∆m

x>Ay

In the setting we are examining in this paper, the game
is played repeatedly between two players, each starting with
some amount of money, c1 and c2. The game progresses over
a number of rounds, each of which is a play of a finite zero-
sum game. After a round is played, money changes hands
according to the strategies (i, j) chosen by the two players,
and the game continues with c1 = c1 +Aij and c2 = c2−Aij ,
unless either player has run out of money. If that happens
the game ends, and the player who is out of money has lost
the game, and his opponent has won. Notice that the total
amount of money stays constant throughout the repeated
game. Denote this constant by C = c1 + c2. It is of course
not possible to win more money from the other player than
he has, so the last round might not have full payment off
all of Aij . Each player naturally wants to maximize the
probability of ending up with all the money, thereby winning
the whole game. As in [13], this is not necessarily the same
as maximizing the amount of money in each round. In the
next section, we will quantify exactly how bad this can be.

Before we can continue, we need to handle certain special
cases of games.

Definition 3 (Degenerate game).
We call a game degenerate, if either player has a strategy
that never loses any money against any strategy of the op-
ponent. We also call a game degenerate, if it has equilibria
with deterministic outcome 0.

If the first is the case, then one of the players doesn’t have
any chance of winning the game, if his opponent tries to
prevent it. This is not the same as the opponent always
being able to win, and as such, the objective of the game
is not necessarily clear; it depends on whether infinite play
is truly an acceptable outcome. We have chosen to sidestep
this complication, as it is caused by a degenerate input game.
For the same reason, we will assume that the game does not
have equilibria with deterministic outcome 0, as this also
opens the possibility of infinite play.
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3. EVERETT’S RECURSIVE GAMES
In this section we will describe how to play the repeated

game optimally, and discuss why this is often infeasible. If
the total amount of money is known beforehand, the game
can be modelled and solved as a recursive game, introduced
by Everett [7]. These recursive games should not be confused
with the largely unrelated recursive games by Etessami and
Yannakakis [6]. Everett’s recursive games is a generalization
of concurrent reachability games [5] and of simple stochastic
games [3, 4]. A recursive game consists of a set of game
elements, each of which are finite zero-sum games, with the
added possibility of a outcome being a reference to another
game element. If a normal outcome is reached, the game
ends with the associated value as the zero-sum outcome.
If one of the special outcomes is reached, the play must
continue at the referenced game element. This opens up the
possibility of the game never ending, which we assign the
value 0.

This model fits the repeated game setting in the follow-
ing way. There will be a game element for every possible
division of money between the two players, and each game
element will be indexed by how much money Player 1 has.
The outcomes of each game element will be references to
the neighboring game elements, such that outcome Aij from
game element indexed c1 will be a reference to game element
indexed c1 +Aij .

Everett proved that these games can be played ε-optimally
using stationary strategies. A stationary strategy consists of
one strategy per game element, and it is played by always
using the strategy associated with the current game element.
This means that there is nothing to be gained for a player
by remembering what game elements have been visited prior
to playing a particular game element.

Everett showed that a critical value can be assigned to
each game element, similar to the minimax value of a fi-
nite zero-sum game, such that each player can guarantee an
expected outcome arbitrarily close to the assigned value, if
the play was started at that game element. The vector of
the critical values for all game elements is called the critical
vector.

If we assign value 0 to game element 0, and value 1 to
game element C, the critical value of a game element will be
exactly the probability that Player 1 can guarantee himself
of winning the repeated game.

In general, there is no easy way to check whether a given
vector is an upper bound to the critical vector of a given
recursive game. However, Everett gave a property that can
be checked in polynomial time that would hold for a subset
of the upper bounds and another property that would hold
for a subset of the lower bounds. Before we can formally
state the property, we need to define the value mapping:

Definition 4 (Value vector and value mapping).
Let G be a recursive game with n game elements. A value
vector ~v ∈ Rn for G is a vector with one value for each game
element of G. The value mapping M : Rn → Rn of G, map-
ping value vectors to value vectors, is the minimax evalua-
tion of each game element, where the non-terminal outcomes
have been replaced with the values given by the input vector.

The properties rely on the following relations among value

vectors:

~u � ~v ⇔
{
~ui > ~vi if ~vi > 0
~ui ≥ ~vi if ~vi ≤ 0

}
∀i

~u � ~v ⇔
{
~ui < ~vi if ~vi < 0
~ui ≤ ~vi if ~vi ≥ 0

}
∀i

Everett proved the following Theorem:

Theorem 5 (Everett, 1957).
If M(~v) � ~v, then v is a lower bound on the critical vector.
Furthermore, the stationary strategy for Player 1 obtained
by finding the optimal strategy in each game element, with
arcs to other game elements replaced by the corresponding
values in ~v, has guaranteed expected payoff at least ~vg for
play starting in g. If M(~v) � ~v, then ~v is an upper bound on
the critical vector.

In short, if the value mapping increases the value of each
entry of a value vector, then the new values is a lower bound
on the critical vector. It is this property we will use later in
the paper to give performance guarantees on the introduced
solution concept.

For general recursive games, the only known algorithm
for computing the exact critical vector is that of Hansen
et.al. [9]. This algorithm runs in time doubly exponential
in the size of the game, and outputs the values as algebraic
numbers in isolating interval representation. However, we
can approximate the critical vector efficiently using value
iteration. This approach does not work for general recursive
games, as shown by Everett, but as discussed below, it works
for our special case.

In this context, value iteration means repeatedly applying
the value mapping to a value vector, until it converges. An
easy way to detect convergence is to run two value iterations,
one starting from a trivial upper bound and the other start-
ing from a trivial lower bound. In our case, as the values are
probabilities, a vector of 0s would serve as a lower bound,
while a vector of 1s would work as an upper bound. Notice
that M(~v) is monotone in ~v, so if ~v is an upper (resp. lower)
bound to the critical vector, then so is M(~v). Thus, if the
two vectors are close after a number of iterations, then we
have a good approximation to the critical vector. Now we
only need to show that the two vectors will in fact get close.
Notice that the value iteration on the lower bound after T
steps corresponds exactly to the time limited game, where
Player 2 is declared the winner if the game doesn’t end nat-
urally before T steps. Similarly with Player 1 for the up-
per bound. Since the game is non-degenerate, both Players
have positive probability of winning money from any given
game element. Thus, the probability of the game not having
ended after T steps goes to 0 as T goes to infinity. For a
more thorough analysis of this type of algorithms, see [8].

While this approach gives a provably optimal strategy
for the repeated game, it might not be a feasible approach
for several reasons. First of all, the explicit modelling re-
quires one game element for every non-degenerate division
of money between the two players, which is C − 1 game
elements. This number might be prohibitively large from a
computational point of view, as more game elements requires
more work. It also has the problem that each player must
remember one strategy per game element, as the strategies
in general will be different. Finally, it might be that a player
does not know how much money his opponent has, in which
case the explicit modelling given above is not possible.
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Definition 6 (Oblivious strategy).
A positional strategy is oblivious if it associates the same
strategy to all game elements.

Using an oblivious strategies, the player needs only re-
member a single strategy, but it will in general not be op-
timal in the recursive game. To the best of our knowledge,
there is no algorithm for computing the best oblivious strat-
egy for this setting.

4. FAILURE OF MINIMAX
In this section, we will prove why simply maximizing im-

mediate outcome of each round can be arbitrarily far from
optimal. We will do this by explicit construction of a finite
zero-sum game with a unique minimax strategy that wins
with probability zero, where the optimal strategy would win
with probability arbitrarily close to 1. Let n ≥ 4 be an even
number. Now construct A ∈ Z2n×n in the following way:

Aij =





−1 if i = j
0 if i 6= j ∧ i ≤ n
1 if i > n ∧ [(i+ j) mod n ≤ n/2− 1]
−1 otherwise

Both players have unique minimax strategies; Player 2
uniformly mixes over all n columns, while Player 1 uni-
formly mixes over the n first rows. The one-round game
thus has value −1/n. However, the row player would never
win the repeated game using this strategy, as the strategy
never wins any money. If the row player instead uniformly
mixed over the n last rows, he would win a coin with proba-
bility 1/2− 1/n, and lose a coin with probability 1/2 + 1/n.
Player 2’s minimax strategies are still a best response, even
in the repeated setting. The expected gain in each round is
lowered to −2/n, but the probability of winning something
is now just below 1/2 instead of 0. If the repeated game is
started from (c1 = k−1, c2 = 1), the probability of Player 1
winning with the second strategy will be almost 1 − 1/k,
while the first strategy will win with probability 0. Pick
n and k large enough, and the minimax strategies turn an
almost sure win into a certain loss.

5. RISKINESS OF A GAME
In this section we will describe the main contribution of

the paper. In short, we show how to find the right expo-
nential utility function for a given game, such that mini-
max strategies with respect to that utility function will have
good guaranteed bounds on the performance in the repeated
game. Utility functions are functions from outcomes to real
values, describing a player’s satisfaction with a particular
outcome. They are commonly used to explain how both the
seller and the buyer of insurance policies can be satisfied by
the transaction, even though the underlying transaction is
zero-sum. A risk-averse (concave utility function) insuree is
happy to pay an insurance premium that is more than the
expected loss, in exchange for less variance of the outcome.
Similarly, a risk-seeking gambler (convex utility function)
will buy lottery tickets, even though the expected outcome
is lower than the price of the ticket. For our purpose, the
players want to maximize the probability of winning the
tournament, which in general is not linear in the money
won in each round. We therefore want to find the right

function to serve as a proxy for the probability of winning
the tournament. Let us first define the exponentiation of a
game:

Definition 7 (Exponentiation of a game).
Given a zero-sum game A ∈ Zm×n and a positive constant
α, define Aα to be

Aαij =





α
Aij−1
lnα

, if α 6= 1

Aij , if α = 1

Notice that the entries of Aα are continuous in α . If
α = 1, then Aα = A, corresponding to the players being
completely risk neutral. If α > 1, the utility function is con-
vex for Player 1 and concave for Player 2, making Player 1
risk seeking, while Player 2 will be risk averse. The situation
is the opposite for α < 1. We are now looking for a suitable
α for the game at hand.

Proposition 8.
Given a non-degenerate zero-sum game A ∈ Zm×n, there
exists an α∗ such that val(Aα

∗
) = 0.

Proof sketch. Since all entries of Aα are continuous
functions of α, we know that val(Aα) is also continuous in
α. Since A is non-degenerate, Player 1 has a strategy that
guarantees at least some fixed strictly positive probability of
a positive outcome. As all positive entries of Aα approach
∞ as α → ∞, and all negative entries approach 0, we have
the val(Aαhi) > 0 for some sufficiently large αhi. Likewise,
Player 2 has a strategy that guarantees at least some fixed
strictly positive probability of a negative outcome. As all
positive entries of Aα approach 0 as α→ 0, and all negative
entries approach −∞, we have the val(Aαlo) < 0 for some
sufficiently small αlo. Combined with continuity of val(Aα)
in α, the intermediate value theorem gives us that there
exists some α∗ such that val(Aα

∗
) = 0.

Proposition 9.
Given a non-degenerate zero-sum game A ∈ Zm×n, there is
only one α∗ such that val(Aα

∗
) = 0.

Proof sketch. We need to prove that val(Aα
∗
) is strictly

monotone in α, from which the proposition follows. Given
α1 < α2, we must prove that val(Aα1) < val(Aα2). Notice
first that the payoff of all strategy combinations strictly in-
creases in α, unless they result in a deterministic outcome
of 0. Let x be the strategy for Player 1 that guarantees
val(Aα1) in Aα1 . Unless Player 2 has a response that guar-
antees a deterministic outcome of 0, the value of all responses
of Player 2 will be strictly higher in Aα2 than in Aα1 , and
Player 1 can thus use x to get a higher value in Aα2 than
in Aα1 , from which it follows that val(Aα1) < val(Aα2).
If val(Aα1) < 0, Player 2 has no desire to use such a 0-
strategy, but the payoff of all other strategies against x in
Aα2 is higher than in Aα1 . If val(Aα1) > 0, Player 2 does
not have a 0-strategy, and therefore val(Aα1) < val(Aα2 ).
The only case left is if val(Aα1) = 0. As the base game A
does not have equilibria with deterministic outcome 0, the
outcome of Aα1 cannot be deterministic outcome 0, there-
fore val(Aα2) > val(Aα1).

The assumption that A does not have equilibria with de-
terministic outcome 0 is crucial for the uniqueness of α∗.
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Without this assumption, val(Aα) is only weakly monotone
in α. To properly handle such degenerate games with mul-
tiple such α∗, we need the following slightly more general
definition of the suitable value of α∗.

Definition 10 (Riskiness of a game).
Given a zero-sum game A ∈ Zm×n, the riskiness for Player 1
in A is the largest α∗ such that val(Aα

∗
) = 0.

If the game is non-degenerate, the is only one A∗ satisfying
the condition. If that is the case, we will simply call it the
riskiness of the game.

Definition 11 (risk-aware strategies).
Given a non-degenerate zero-sum game A ∈ Zm×n, the risk-
aware strategies of A are the minimax strategies of Aα

∗
,

where α∗ is the riskiness for Player 1 in A.

Even with just weak monotonicity, we can compute the
riskiness for Player 1 using the algorithm given in Algo-
rithm 1.

Algorithm 1 Computes risk-aware strategies

αhi ← 1
αlo ← 1
while val(Aαlo) > 0 do
αlo ← αlo/2

end while
while val(Aαhi) ≤ 0 do
αhi ← αhi ∗ 2

end while
while αhi − αlo > ε do
α← (αlo + αhi)/2
if val(Aα) > 0 then
αhi ← α

else
αlo ← α

end if
end while
return minimax strategies of Aαhi

6. PERFORMANCE GUARANTEE
In this section, we will show what performance guarantees

we get in the repeated game, if both players have a finite
budget. This is done by expressing value vectors that satisfy
Everett’s conditions, proving that they are true bounds on
the critical vector, and that the computed strategies have
the promised performance.

Theorem 12. Given a game A ∈ [−min;max]M×N with
riskiness α, using the risk-aware strategy will guarantee Player
1 a winning probability of:

αc1 − 1

αc1+c2+max−1 − 1

when the game is started from money division (c1, c2).

Proof. We need to prove that the values vector described
above satisfies Everett’s lower-bound condition. For all in-
ternal game elements, with indices in [min;C − max], we
can use the following argument. Given a fixed game ele-
ment indexed c1, the values assigned to the game elements
around it are:

. . .
αi−1 − 1

αC+max−1 − 1
,

αi − 1

αC+max−1 − 1
,

αi+1 − 1

αC+max−1 − 1
, . . .

C − 2 C − 1 C

Figure 1: Shifting the value vector to satisfy Ev-
erett’s condition for high indexed game element.

Optimal strategies are not changed by positive affine trans-
formations of the utility function. Notice that if we multiply
the neighborhood values by the positive constant

αC+max−1 − 1

αi lnα

and add the constant

α−i − 1

lnα

the neighborhood becomes

. . .
α−1 − 1

lnα
,
α0 − 1

lnα
,
α1 − 1

lnα
, . . .

which is exactly the exponentiated game with parameter α.
This exponentiated game has positive value for all α > α∗,
implying that the value mapping on the vector given in The-
orem 12 increases the value of game elements with indices
in [min;C −max].

The outlying game elements, where either player might
not have enough money to pay Aij , for some (i, j), we need
to argue differently. For game elements with indices in
[1;min − 1], some of the low values in the neighborhood
is rounded up to 0, compared to what the exponentiated
game looks like. But since we are increasing the value of
some game elements in the neighborhood, Everett’s condi-
tion will still hold, as the value mapping is monotone. The
situation is different for the indices [C −max+ 1;C − 1], as
they have neighborhoods extending beyond game element
C. If we were to fit the exponentiated utility function in
with valC = 1, we would have to round the value down of
the higher payoffs, thereby possibly violating Everett’s con-
dition. We therefore have to shift the value vector such that
the non-existing game elements indexed C + max − 1 gets
value 1, as shown in figure 1. Fitting the exponential func-
tion to the points (0, 0) and (C+max−1, 1), we get exactly
the expression in Theorem 12. By definition of the riskiness
of Player 1, we now have that Everett’s first condition is sat-
isfied for all α > α∗ for all game elements, and we therefore
have the limit as a lower bound.
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We can also use the same expression to give an upper
bound on the performance, not just of these strategies, but
of any strategy; even non-oblivious.

Theorem 13. Given a non-degenerate game with matrix
A ∈ [−min;max]m×n with riskiness α, no strategy for Player 1
can guarantee more than

αc1+min−1 − 1

αC+min−1 − 1

in the repeated game starting from division (c1, c2).

Proof of Theorem 13. To prove this, we need a sim-
ple observation about the game from the opponents point
of view, namely that the riskiness is inverted for the other
player, i.e.,

risk(A) = risk(−A>)−1

Combining this with Theorem 12 we get a strategy for Player 2
that wins with probability

α−c2 − 1

α−C−min+1 − 1

when the game is started from division (c1, c2). Since at
most one player can win, Player 1 cannot guarantee a higher
probability of winning than 1 minus the guarantee Player 2
has.

Pr[Player 1 win] ≤ 1− α−c2 − 1

α−C−min+1 − 1

=
α−C−min+1 − α−c2
α−C−min+1 − 1

=
αc1+min−1 − 1

αC+min−1 − 1

We can use the upper bound to give a bound on how far
from optimal the risk-aware strategies are. Assume for sim-
plicity that min = max, i.e., that that most negative out-
come is minus the most positive outcome of the game. The
difference between the upper and lower bounds is greatest
at game element C-1 when α > 1, and at game element 1
when α < 1. Assume wlog the latter is the case:

Gap =
α1+min−1 − 1

αC+min−1 − 1
− α1 − 1

αC+max−1 − 1
=

αmin − α
αC+min−1 − 1

Notice that the gap is 0 when min = max = 1. That is, the
risk-aware strategies are optimal for games with outcomes in
{−1, 0, 1}. The gap in the general case approached α−αmin
for C →∞ for α < 0.

7. EXPERIMENTS
As an example of how well the risk-aware strategies per-

form, let us look at the game of Kuhn poker [12]. The game
is a heavily simplified version of poker, played between two
players. The rules are as follows. A deck of three cards
(King, Queen and Jack) is shuffled, and the two players re-
ceive one card each. Both players put one coin in the pot as
an ante. The players now use normal poker betting protocol
to decide whether to bet an additional coin, i.e., Player 1
can check or bet. If he bet, Player 2 can either call or fold.
If Player 1 checked, Player 2 can either check or bet. In case
Player 2 bets, Player 1 has to decide whether to call or fold.

If a player folds, he forfeits the hand and loses the ante he
paid in the beginning of the hand. If neither player folds,
the hidden cards are revealed, and the higher card wins the
ante and the bets (if any).

The game has a unique equilibrium:

• Player 1 bets with King, checks with Queen, and bets
(bluffs) with probability 1/3 with Jack. If Player 2
bets, Player 1 will call with probability 2/3 with Queen,
and always folds with Jack.

• If Player 1 checks, Player 2 uses same strategy as
Player 1 does for the first move. If Player 1 bets,
Player 2 calls with King, calls with probability 1/3
with Queen, and always folds with Jack.

The game has value −1/18, i.e., Player 1 is expected to
lose a little every round. Using the algorithm outlined earlier
in the paper, we compute the riskiness of the game to be
α ≈ 1.062. Solving the game exponentiated with this α, we
find that the optimal strategy has changed in the following
way:

• Player 1 increases the probability of bluffing with Jack
to 37.6%, but slightly lowers the probability of calling
with Queen to 64.6%.

• Player 2 lowers the probability of bluffing with Jack
to 29.5%, but increases the probability of calling with
Queens to 37.3%.

We can evaluate the two pairs of strategies against an
optimal counter strategy in the following way. If we fix the
strategy of one player to the strategy we want to evaluate,
the other player is left with a one-player game, which we can
easily solve as a Markov Decision Process; simply do value
iteration with only one player. The values of these counter
strategies are given in Figures 2, 3, and 4.

For larger values of C, the minimax performance gap grows
to around 20%, while the risk-aware performance gap falls
to less than 3%. This corresponds well with the theoreti-
cal bound on the performance gap of 5.5%, calculated using
the difference between the upper and lower bound in the
previous section.

8. ESTIMATING RISKINESS
Some games are so large that even solving them once re-

quires months of computation [10] and it is therefore practi-
cally impossible to solve it repeatedly in order to do binary
search and compute the riskiness of the game. It would
therefore be useful to estimate the riskiness of the game be-
forehand, and then only compute minimax strategies of the
exponentiated game once with the estimated riskiness. This
can be done by observing that two fixed strategies played
obliviously against each other results in a random walk on
line of possible divisions of money between the players, just
as in the introductory example. This process can be approxi-
mated by a Wiener process with drift, if we know just a little
about the typical play in the game. The following theorem
can be found in any textbook on stochastic processes:

Theorem 14. A Wiener process with parameter σ2 and
drift µ on a line of length C, starting at point i has proba-
bility of reaching the right endpoint before the left equal to

αi − 1

αC − 1
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Figure 2: Upper line is the value of Player 1’s best
response to Player 2’s minimax, lower line is value of
Player 2’s best response Player 1’s minimax, middle
line is the critical vector
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Figure 3: Upper line is the value of Player 1’s best
response to Player 2’s risk-aware strategy, lower line
is value of Player 2’s best response Player 1’s risk-
aware strategy, middle line is critical the vector
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Figure 4: Upper line is the difference between the
best response values against minimax. Lower line
is the difference between the best response values
against the risk-aware strategies.

where α = exp(−2µ
σ

)

Thus, if we know the typical outcome distribution of the
game, we can estimate the riskiness as α = exp(−2µ

σ
).

In 2007, the computer poker research group at the Uni-
versity of Alberta organized the First Man-Machine Poker
Competition [10, p.79], where two professional poker players
played against four different poker playing programs, collec-
tively called Polaris. Out of the four sessions, the humans
won two sessions, drew one, and lost one. The only program
they lost to was named“Mr. Orange”, and it was constructed
by solving the game with respect to a modified utility func-
tion. The utility function was as follows:

u(v) =

{
v if v ≤ 0

1.07 · v if v > 0

In other words, the program saw the game as if any win-
nings where 7% higher, while losses where left unmodified.
A side effect of this choice was that the game was no longer
a zero-sum game, since the 7% was not paid by the loser.
The resulting program was very aggressive; according to
Laak [10] (one of the human players), Mr. Orange “. . . was
like a crazed, cocaine-driven maniac with an ax”.

If we were to use the results of this paper to suggest an
alternative utility function, we could use empirical observa-
tions about the game to estimate the riskiness of the game.
Heads Up Limit Texas Hold’em has been observed [2] to
have a standard deviation of 6.856 sb/hand. Currently,
the best minimax algorithms produce poker playing pro-
grams that lose around 0.1 sb/hand against an optimal op-
ponent [11]. We can then use the discussion in the pre-
vious section to figure out what riskiness balances out the
0.1 sb/hand suboptimality. Using the formula, we get the
α = exp(−2 · (−0.1)/6.856) ≈ 1.03, and the resulting modi-
fied utility function becomes

u′(v) =
1.03v − 1

ln 1.03

Notice that u(v) and u′(v) are very close for typical values
v ∈ [−σ;σ]. While the setting for the Man-Machine match
was not exactly the same as our model, the similarity does
provide some hope to the applicability of the approach.

9. EXTENSIONS
The most natural extension is to remove the requirement

that outcomes must be integer. If we allow them to ratio-
nal numbers instead, we can still do the same analysis. The
explicit modelling of the game would require C/gcd game
elements, where gcd is the greatest common divisor of all
the outcomes of the game. This could be a very large num-
ber of game elements, but as our approach uses oblivious
strategies, we are not hindered by this. The easiest way to
prove performance guarantees for rational valued games is
by scaling all number of the game (outcomes and amount
of money) up with a constant, so that everything becomes
integers. To do this, we need to know how scaling affects
riskiness of a game.

Proposition 15. Multiplying all outcomes of a game A
by constant k results in the riskiness becoming the k’th root
of the previous riskiness:

risk(k ·A) = risk(A)1/k
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Proof. The property follows directly by the fact that
exponentiating with the k’th root cancels out the scaling,
except for a constant scaling of the whole utility function,

and therefore val((k ·A)α
1/k

= k · val(Aα) = 0.

Using this property, we can scale to integers, get the per-
formance guarantee, and scale back to the original game.
Doing this, we get the lower bound on winning probability
for Player 1 to be

αc1 − 1

αC+max−gcd − 1

when the game starts from money division (c1, c2). In other
words, the only change is that the −1 we got from the over-
lap for high index game elements is replaced with an ex-
pression that only depends on the input game. Notice that
Algorithm 1 does not rely on the outcomes being integer, so
it can be used directly on games with fractional outcomes;
the scaling is only for the analysis.

Another interesting extension of the result is to the case
where only one of the players has a restricted budget, while
his opponent has infinite resources. The goal for the bud-
get constrained player is to build his fortune, while avoiding
going bankrupt in the process. Of course, for this to be in-
teresting, the budget constrained player must have positive
expectation; otherwise he will lose with probability 1. As-
sume wlog that it is Player 1 that is budget constrained,
and that the value of the underlying game is positive. This
implies that the game has low riskiness. We can now ob-
serve that in this case the performance guarantee given by
Theorem 12 for a fixed c1 converges to 1− αc1 for c2 →∞.
Thus, the risk-aware strategies apply to one-sided budgets
as well.

10. DISCUSSION AND FUTURE RESEARCH
An interesting observation on the riskiness estimate in sec-

tion 8 is that the riskiness is closely tied to the ratio of mean
over standard deviation. In portfolio management, this ratio
is commonly called the Sharpe ratio [14] (with risk free rate
0). In many idealized settings, it is exactly the Sharpe ratio
one wants to maximize. It does, however, have important
shortcomings. Primarily, it relies on the outcomes being nor-
mally distributed, which is not in general the case for the
scenarios we have examined in this paper. To the best of our
knowledge, there is no known algorithm for maximizing the
Sharpe ratio of a zero-sum game. However, we can observe
that our proposed solution concept outperforms Sharpe ra-
tio maximization on simple examples. To see why this is
the case, examine the doubling game from the introduction.
Both the doubled and the undoubled games have the same
Sharpe ratio, so a slight perturbation would make a Sharpe
ratio maximizer choose the wrong action. One can easily
construct games where the scaling is with a larger constant
to exacerbate the problem.

In this paper, we have only examined a single setup, where
two players where playing under a budget. The general idea
of deriving a utility function to use for solving a sub-problem
leads to many open problems. For instance, in the Man-
Machine poker tournament discussed in section 8, the true
objective was not to bankrupt the opponent (you cannot; he
has unlimited bankroll), but rather to have the most money
after a fixed number of rounds has been played. This again

leads to a non-linear utility function, but the exact function
to be used in unclear.
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ABSTRACT
Recently, there has been considerable progress towards algorithms
for approximating Nash equilibrium strategies in extensive games.
One such algorithm, Counterfactual Regret Minimization (CFR),
has proven to be effective in two-player zero-sum poker domains.
While the basic algorithm is iterative and performs a full game
traversal on each iteration, sampling based approaches are possible.
For instance, chance-sampled CFR considers just a single chance
outcome per traversal, resulting in faster but less precise iterations.
While more iterations are required, chance-sampled CFR requires
less time overall to converge. In this work, we present new sam-
pling techniques that consider sets of chance outcomes during each
traversal to produce slower, more accurate iterations. By sampling
only the public chance outcomes seen by all players, we take ad-
vantage of the imperfect information structure of the game to (i)
avoid recomputation of strategy probabilities, and (ii) achieve an
algorithmic speed improvement, performing O(n2) work at termi-
nal nodes in O(n) time. We demonstrate that this new CFR update
converges more quickly than chance-sampled CFR in the large do-
mains of poker and Bluff.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert Systems—
Games

General Terms
Algorithms

Keywords
Economic paradigms::Game theory (cooperative and non-
cooperative)

1. INTRODUCTION
Extensive games are an intuitive formalism for modelling in-

teractions between agents in a sequential decision making setting.
One solution concept in such domains is a Nash equilibrium. In
two-player zero-sum domains, this is equivalent to a minmax strat-
egy, which minimizes each agent’s expected worst-case perfor-
mance. For games of moderate size, such a strategy can be found
using linear programming [5]. For larger games, techniques such as
Counterfactual Regret Minimization (CFR) [10] and the Excessive
Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Gap Technique [3] require less memory than linear programming
and are capable of finding an equilibrium in games (also known as
solving a game) with up to 1012 game states.

CFR is an iterative procedure that resembles self-play. On each
iteration, CFR performs a full game tree traversal and updates its
entire strategy profile to minimize regret at each decision. Theoret-
ical bounds suggest that the procedure takes a number of iterations
at most quadratic in the size of a player’s strategy [10, Theorem
4]. Thus, as we consider larger games, not only are more itera-
tions required to converge, but each traversal becomes more time
consuming. A variant known as Chance-Sampled (CS) CFR [6,
10] samples one set of chance outcomes per iteration and traverses
only the corresponding portion of the game tree. Compared to the
basic algorithm, this sampling procedure results in faster but less
precise strategy updates. In large games, the drastic reduction in
per-iteration time cost outweighs the increased number of iterations
required for convergence to an optimal strategy.

While CS considers only a single set of chance outcomes per
iteration, recent work [4] towards fast best-response computation
has shown that tree traversal and evaluation can be accelerated by
simultaneously considering sets of information sets for each player.
This allows for the caching and reuse of computed values, and also
allows a fast terminal node evaluation in whichO(n2) work can of-
ten be done in O(n) time. While best response calculation in large
games was previously considered intractable, the new technique
was shown to perform the computation in just over one day [4].

In this paper, we apply this new tree traversal to CFR, result-
ing in three new sampling variants: Self-Public Chance Sampling
(SPCS), Opponent-Public Chance Sampling (OPCS), and Pub-
lic Chance Sampling (PCS). The new techniques reverse the pre-
vious trend in that they advocate less sampling: a small number
of slow iterations, each updating a large number of information
sets, yielding precise strategy updates while reusing computed val-
ues. In particular, PCS takes advantage of the computation reuse
and fast terminal node evaluation used in accelerating the best re-
sponse computation. We will prove the convergence of the new
techniques, investigate their qualities, and demonstrate empirically
that PCS converges more quickly to an equilibrium than CS in both
poker and the game of Bluff.

2. BACKGROUND
An extensive game is a general model of sequential decision-

making with imperfect information. Extensive games consist pri-
marily of a game tree whose nodes correspond to histories (se-
quences) of actions h ∈ H . Each non-terminal history, h, has an
associated player P (h) ∈ N ∪ {c} (where N is the set of play-
ers and c denotes chance) that selects an action a ∈ A(h) at that
history h. When P (h) = c, fc(a|h) is the (fixed) probability of

837



chance generating action a at h. We call h a prefix of history h′,
written h v h′, if h′ begins with the sequence h. Each termi-
nal history z ∈ Z ⊂ H has associated utilities for each player i,
ui(z). In imperfect information games, histories are partitioned
into information sets I ∈ Ii representing different game states
that player i cannot distinguish between. For example, in poker,
player i does not see the opponents’ private cards, and thus all his-
tories differing only in the private cards dealt to the opponents are
in the same information set for player i. For histories h, h′ ∈ I ,
the actions available at h and h′ must be the same, and we denote
this action set by A(I). We also assume perfect recall that guar-
antees players always remember information that was revealed to
them and the order in which it was revealed.

A strategy for player i, σi, is a function that maps each I ∈ Ii
to a probability distribution over A(I). We denote Σi as the set of
all strategies for player i. A strategy profile is a vector of strategies
σ = (σ1, . . . , σ|N|), one for each player. We let σ−i refer to the
strategies in σ excluding σi.

Let πσ(h) be the probability of history h occurring if all players
choose actions according to σ. We can decompose

πσ(h) =
Y
i∈N

πσi (h)
Y
h′avh
P (h′)=c

fc(a|h′)

into each player’s and chance’s contribution to this probability.
Here, πσi (h) is the contribution from player i when playing ac-
cording to σi. Let πσ−i(h) be the product of all players’ contribu-
tion (including chance) except that of player i. Furthermore, let
πσ(h, h′) be the probability of history h′ occurring, given h has
occurred with πσi (h, h′), and πσ−i(h, h

′) defined similarly.
Given a strategy profile, σ, we define a player’s best response as

a strategy that maximizes their expected payoff, assuming all other
players play according to σ. The best-response value for player
i is the value of that strategy, bi(σ−i) = maxσ′i∈Σi ui(σ

′
i, σ−i).

A strategy profile σ is an ε-Nash equilibrium if no player
can deviate from σ and gain more than ε; i.e. ui(σ) + ε ≥
maxσ′i∈Σi ui(σ

′
i, σ−i) for all i ∈ N . If ε = 0, then σ is a Nash

equilibrium and every player is playing a best response.
In this paper, we will focus on two-player zero-sum games:

N = {1, 2} and u1(z) = −u2(z) for all z ∈ Z. In this case,
the exploitability of σ, εσ = (b1(σ2) + b2(σ1))/2, measures how
much σ loses to a worst case opponent when players alternate po-
sitions. A Nash equilibrium has an exploitability of 0.

Lastly, define C = {h ∈ H : P (h) = c} to be the set of all
histories where it is chance’s turn to act. We will assume that C can
be partitioned into three sets with respect to player i: Si, Oi, and
P . Each set contains the histories h whose actions a ∈ A(h), or
chance events, are observable only by player i (Si), only by player
i’s opponent (Oi), or by both players (P). We refer to chance
events occurring at h ∈ Si∪Oi as private and to chance events oc-
curring at h ∈ P as public. In addition, we assume that the actions
available to the players throughout the game are independent of the
private chance events. These two assumptions hold for a large class
of games, including poker as well as any Bayesian game with ob-
servable actions [8] (e.g., Bluff or negotiation games); furthermore,
games can often be modified by adding additional chance actions
to satisfy the property.

2.1 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) resembles a self-play

algorithm where we iteratively obtain strategy profiles σt based on
regret values accumulated throughout previous trials. At each in-
formation set I ∈ Ii, the expected value for player i at I under the

current strategy is computed, assuming player i plays to reach I .
This expectation is the counterfactual value for player i,

vi(σ, I) =
X
z∈ZI

ui(z)π
σ
−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through I and
z[I] is the prefix of z contained in I . For each action a ∈ A(I),
these values determine the counterfactual regrets at iteration t,
rti(I, a) = vi(σ

t
(I→a), I) − vi(σt, I), where σ(I→a) is the profile

σ except at I , action a is always taken. The regret rti(I, a) mea-
sures how much player i would rather play action a at I than play
σt. The counterfactual regrets are accumulated and σt is updated
by applying regret matching [2, 10] to the accumulated regrets. Re-
gret matching is a regret minimizer; i.e., over time, the average of
the counterfactual regrets approaches 0. Minimizing counterfac-
tual regret at each information set minimizes the average overall
regret [10, Theorem 3], defined by

RTi = max
σ′∈Σi

1

T

TX
t=1

`
ui(σ

′, σt−i)− ui(σti , σt−i)
´
.

It is well-known that in a two-player zero-sum game, minimizing
average overall regret implies that the average profile σT is an ap-
proximate equilibrium. CFR produces an ε-Nash equilibrium in
O(|H||Ii|/ε2) time [10, Theorem 4].

Rather than computing the exact counterfactual values on every
iteration, one can instead sample the values using Monte Carlo
CFR (MCCFR) [6]. Chance-sampled (CS) CFR [10] is an in-
stance of MCCFR that considers just a single set of chance out-
comes per iteration. In general, letQ be a set of subsets, or blocks,
of the terminal histories Z such that the union of all blocks spans
Z. For CS,Q is the partition of Z where two histories belong to the
same block if and only if no two chance events differ. In addition,
a probability distribution over Q is required and a block Q ∈ Q is
sampled on each iteration, giving us the sampled counterfactual
value for player i,

ṽi(σ, I) =
X

z∈ZI∩Q
ui(z)π

σ
−i(z[I])πσ(z[I], z)/q(z),

where q(z) is the probability that z was sampled. In CS, we sample
the blocks according to the likelihood of the chance events occur-
ring, so that

q(z) =
Y
havz
h∈C

fc(a|h).

The counterfactual regrets are then measured according to these
sampled values, as opposed to “vanilla CFR” that uses the true val-
ues vi(σ, I). Sampling reduces enumeration to the smaller subset
Q rather than all of Z, decreasing the amount of time required per
iteration. For a fixed ε, CS requires more iterations than vanilla
CFR to obtain an ε-Nash equilibrium; however, the overall com-
puting time for CS is lower in poker games [9, Appendix A.5.2].

2.2 Accelerated Traversal and Evaluation
A recent paper describes how to accelerate the computation of

the best response value in large extensive form games [4]. This
technique traverses a game’s public tree, which represents the state
of the game visible to all players. The authors observe that each
player’s strategy must be independent of the other player’s private
information. As such, a player’s action probabilities can be com-
puted just once while considering the opponent’s entire set of pos-
sible private states in one traversal.

In addition, the authors describe an efficient terminal node eval-
uation that considers a range of n information sets for each player
in tandem. If the game’s payoffs exhibit structure, then it may be
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possible to exploit this structure and reduce a naive O(n2) com-
putation to O(n). Examples of structured payoffs include games
where utilities are affected by only certain factors within the play-
ers’ information sets, such as in a negotiation game, and games
where information sets can be ranked from weakest to strongest,
such as in poker. This algorithmic speedup is not being used in any
of the previously published equilibrium solvers. In Section 3, we
describe how to use these ideas to produce a new equilibrium solver
that outperforms the current state of the art.

2.3 Domains: Poker and Bluff
The Game of Poker. Our main poker game of interest is heads-
up (i.e., two-player) limit Texas hold’em poker, or simply Texas
hold’em. The game uses a standard 52 card deck and consists of
4 betting rounds. In the first round, the pre-flop, each player is
dealt two private cards. For subsequent rounds – in order, the flop,
turn, and river – public community cards are revealed (3 at the
flop and 1 at each of the turn and river). During each round, players
sequentially take one of three actions: fold (forfeit the game), call
(match the previous bet), or raise (increase the bet). There is a
maximum of 4 raises per round, each with a fixed size, where the
size is doubled on the final two rounds. If neither player folds, then
the player with the highest ranked poker hand wins all of the bets.

Texas hold’em contains approximately 3.2 × 1014 information
sets. The large size of the game makes an equilibrium computation
intractable for all known algorithms; CFR would require more than
ten petabytes of RAM and hundreds of CPU-years of computation.
A common approach is to use state-space abstraction to produce a
similar game of a tractable size by merging information sets or re-
stricting the action space [1]. In Section 4, we consider several ab-
stractions of Texas hold’em and two new variants of Texas hold’em
that are small enough to compute equilibrium solutions using CFR
without abstraction. The first new variant is [2-1] hold’em. The
game is identical to Texas hold’em, except consists of only the first
two betting rounds, the pre-flop and flop, and only one raise is al-
lowed per round. This reduces the size of the game to 16 million
information sets. Similarly, [2-4] hold’em has just two rounds, but
the full four raises are allowed per round, resulting in 94 million
information sets in total. In both [2-1] hold’em and [2-4] hold’em,
the size of a raise doubles from the pre-flop to the flop.
The Game of Bluff. Bluff, also known as Liar’s Dice, Dudo, and
Perudo, is a dice-bidding game. In our version, Bluff(D1,D2), each
die has six sides with faces 1 to 5 and a star: ?. Each player i
rolls Di of these dice and looks at them without showing them to
their opponent. On each round, players alternate by bidding on the
outcome of all dice in play until one player claims that the other
is bluffing (i.e., claims that the bid does not hold). A bid consists
of a quantity of dice and a face value. A face of ? is considered
“wild” and counts as matching any other face. For example, the bid
2-5 represents the claim that there are at least two dice with a face
of 5 or ? among both players’ dice. To place a new bid, the player
must increase either the quantity or face value of the current bid; in
addition, lowering the face is allowed if the quantity is increased.
The player calling bluff wins the round if the opponent’s last bid is
incorrect, and loses otherwise. The losing player removes one of
their dice from the game and a new round begins, starting with the
player who won the previous round. When a player has no more
dice left, they have lost the game. A utility of +1 is given for a win
and −1 for a loss.

In this paper, we restrict ourselves to the case whereD1 = D2 =
2, a game containing 352 million information sets. Note that since
Bluff(2,2) is a multi-round game, the expected values of Bluff(1,1)
are precomputed for payoffs at the leaves of Bluff(2,1), which is

Chance Sampling
(CS)

My state: Scalar
Opponent State: Scalar

Self / Public
Chance Sampling

(SPCS)

My state: Scalar
Opponent State: Vector

Opponent / Public
Chance Sampling

(OPCS)

My state: Vector
Opponent State: Scalar

Public
Chance Sampling

(PCS)

My state: Vector
Opponent State: Vector

Slower iterations,
lower variance

Slower iterations,
more updates

Same speed,
lower variance

Same speed,
more updates

Figure 1: Relationship between MCCFR variants

then solved for leaf payoffs in the full Bluff(2,2) game.

3. NEW MONTE CARLO CFR VARIANTS
Before presenting our new CFR update rules, we will begin by

providing a more practical description of chance-sampled CFR. On
each iteration, we start by sampling all of chance’s actions: the
public chance events visible to each player, as well as the private
chance events that are visible to only a subset of the players. In
poker, this corresponds to randomly choosing the public cards re-
vealed to the players, and the private cards that each player is dealt.
In the game of Bluff, there are no public chance events, and only
private chance events are sampled for each player. Next, we recur-
sively traverse the portion of the game tree that is reachable given
the sampled chance events, and explore all of the players’ actions.
On the way from the root to the leaves, we pass forward two scalar
values: the probability that each player would take actions to reach
their respective information sets, given their current strategy and
their private information. On the way back from the leaves to the
root, we return a single scalar value: the sampled counterfactual
value ṽi(σ, I) for player i. At each choice node for player i, these
values are all that is needed to calculate the regret for each action
and update the strategy. Note that at a terminal node z ∈ Z, it takes
O(1) work to determine the utility for player i, ui(z).

We will now describe three different methods of sampling
chance events that have slower iterations, but do more work on
each iteration. Figure 1 shows the relationship between CS and
these three new variants, all of which belong to the MCCFR fam-
ily [6] of update rules.

Opponent-Public Chance Sampling. Consider a variation on
CS, where instead of sampling at every chance node, we sample
an action for just the opponent’s chance and the public chance
events while enumerating all of the possible outcomes at our pri-
vate chance events. We will call this variant Opponent-Public
Chance Sampling (OPCS). This can be formalized within the MC-
CFR framework by letting Q be the partition of Z such that two
histories fall into the same block if and only if the actions taken at
opponent and public chance events match. The probability that z is
sampled is then

q(z) =
Y
havz

h∈Oi∪P

fc(a|h).

Naively, we could use the same recursive tree walk that we used
for CS to perform this update, by doing one tree walk for each
of our private chance outcomes in turn. However, this update al-
lows us to traverse the sampled portion of the game tree in a much
more efficient way. Since our opponent does not observe our pri-
vate chance events, their strategy and choice of actions, given their
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single sampled chance event, cannot depend on which information
set we are in. This means that we can update all of our information
sets that are consistent with the current game state and the sampled
public chance events at the same time, thus amortizing the cost of
walking the tree over many updates. This can be achieved by a new
recursive tree walk that passes forwards a vector for us (our prob-
ability of reaching the current game state with each of our private
chance outcomes) and a scalar for the opponent (their probability
of reaching the current game state with their single sampled private
chance outcome), and returns a vector of values (our counterfactual
value for each of our private chance outcomes).

At terminal nodes, we must evaluate n possible game states, each
consisting of a different private chance outcome for us and one
chance outcome for the opponent. This requires O(n) time. In
comparison to CS, each iteration of OPCS is slower, but performs
more work by updating a much larger number of information sets.

Self-Public Chance Sampling. In OPCS, we enumerate over all
of our possible private chance outcomes. Alternatively, we can in-
stead enumerate over all of our opponent’s private chance outcomes
while sampling our own private chance outcomes and the public
chance outcomes. We will call this variant Self-Public Chance
Sampling (SPCS). This can similarly be formalized by defining Q
to be the partition of Z that separates histories into different blocks
whenever the actions taken at our private or public chance events
differ, where

q(z) =
Y
havz

h∈Si∪P

fc(a|h)

is the probability of sampling terminal history z.
As in OPCS, we can use an efficient recursive tree walk to per-

form this update. Since we cannot observe the opponent’s private
chance events, our strategy and choice of actions cannot depend on
which information set they are in. Thus, when computing our coun-
terfactual value, we will consider every possible private chance out-
come for our opponent. Doing so forms a more accurate estimate of
the true counterfactual value for our sampled outcome, compared
to the noisy estimate CS and OPCS obtain through one sampled
opponent private chance outcome. The SPCS tree walk passes for-
ward a scalar for ourselves (the probability of reaching the current
game state with our single chance outcome) and a vector for the op-
ponent (their probabilities of reaching the current game state with
each of their private chance outcomes), and returns a scalar (the
counterfactual value for our sampled outcome).

At terminal nodes, we must evaluate up to n possible game
states, formed by our single chance outcome and up to n possi-
ble chance outcomes for the opponent. This requiresO(n) time. In
comparison to CS, each iteration is slower and performs the same
number of updates to the strategy, but each update is based off of
much more precise estimates.

Public Chance Sampling. We will now introduce the core con-
tribution of this work, called Public Chance Sampling (PCS), that
combines the advantages of both of the previous two updates, while
taking advantage of efficient terminal node evaluation to keep the
time cost per iteration in O(n). In PCS, we sample only the pub-
lic chance events, and consider all possible private chance events
for ourself and for the opponent. In other words, we define Q to
be the partition of Z that separates histories into different blocks
whenever the actions taken at a public chance event differ, where

q(z) =
Y
havz
h∈P

fc(a|h)

is the probability of sampling z ∈ Z.

PCS relies on the property that neither us nor our opponent can
observe the other’s private chance events, and so the action prob-
abilities for each remain the same across the other’s private infor-
mation. Thus, we can perform a CFR update through a recursive
tree walk with the following structure. On the way from the root to
the leaves, we will pass forwards two vectors: one containing the
probabilities of us and one containing the probabilities of the oppo-
nent reaching the current game state, for each player’s n possible
private chance outcomes. On the way back, we will return a vector
containing the counterfactual value for each of our n information
sets.

At the terminal nodes, we seemingly have an O(n2) computa-
tion, as for each of our n information sets, we must consider all
n of the opponent’s possible private outcomes in order to compute
our utility for that information set. However, if the payoffs at termi-
nal nodes are structured in some way, we can often reduce this to an
O(n) evaluation that returns exactly the same value as the O(n2)
evaluation [4]. Doing so gives PCS the advantage of both SPCS
(accurate strategy updates) and OPCS (many strategy updates) for
the same evaluation cost of either.

3.1 Algorithm
The three new chance-sampling variants, along with CS, are

shown in Algorithm 1. The WalkTree function traverses down the
game tree by recursively concatenating actions, starting with the
empty history h = ∅, and updates player i’s regrets and average
strategy on the way back up. Two vectors are maintained, one for
player i, ~πi, and one for the opponent, ~π−i. These vectors keep
track of the probabilities of reaching each information set consis-
tent with the current history h, with each element corresponding
to a different private chance outcome for that player. In CS, both
vectors have length one (i.e., are scalars). In OPCS, ~π−i has length
one because the opponent’s private chance events are being sam-
pled. Similarly, in SPCS, ~πi has length one.

When the current sequence h is a terminal history (line 6), the
utility is computed and returned. At line 7, ~fc,i(h) and ~fc,−i(h) are
the vectors corresponding to the probability distribution over player
i’s and the opponent’s private chance outcomes, respectively, and�
represents element-wise vector multiplication. Again, one or both
vectors may have length one depending on the selected variant, in
which case the single element is always 1. For OPCS and PCS, ~ui is
a vector containing a utility for each of player i’s private outcomes;
for SPCS and CS, ~ui is a length one vector corresponding to the
utility for player i’s sampled private outcome. PCS uses the O(n2)
to O(n) algorithmic improvement to compute ~ui, which will be
described in Section 3.2.

Chance events are handled by lines 12 to 18. When one of the
four conditions at line 12 holds, we are at a chance event that is
to be sampled; otherwise, we consider all possible chance events
at h. In the latter case, we must take a dummy action (line 16)
simply to continue traversing the tree. This action has no effect on
the remainder of the tree walk due to our assumption that player
actions are independent of private chance events.

Lines 19 to 42 handle the cases where h is a decision node for
one of the players. First, lookupInfosets(h) retrieves all of the infor-
mation sets consistent with h and the current playerP (h)’s range of
possible private outcomes, whether sampled (|~I| = 1) or not. Next,
at line 21, regret matching [2, 10] determines the current strategy
~σ, a vector of action probabilities for each retrieved information set
(and thus, in general, a vector of vectors). Regret matching assigns
action probabilities according to

σ[a][I] =


r+I [a]/

P
b∈A(I) r

+
I [b] if

P
b∈A(I) r

+
I [b] > 0

1/|A(I)| otherwise,
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Algorithm 1 PCS Algorithm
1: Require: a variant v ∈ {CS,OPCS, SPCS, PCS}.
2: Initialize regret tables: ∀I, rI [a]← 0.
3: Initialize cumulative strategy tables: ∀I, sI [a]← 0.
4:
5: function WalkTree(h, i, ~πi, ~π−i):
6: if h ∈ Z
7: return ~fc,i(h)� ~ui

“
h | ~π−i � ~fc,−i(h)

”
8: end if
9: if (v = PCS and h ∈ P)

10: or (v = SPCS and h ∈ Si ∪ P)
11: or (v = OPCS and h ∈ Oi ∪ P)
12: or (v = CS and h ∈ C)
13: Sample outcome a ∈ A(h) with probability fc(a|h)
14: return WalkTree(ha, i, ~πi, ~π−i)
15: else if h ∈ C
16: Select dummy outcome a ∈ A(h)
17: return WalkTree(ha, i, ~πi, ~π−i)
18: end if
19: ~I ← lookupInfosets(h)
20: ~u← ~0
21: ~σ ← regretMatching(~I)
22: for each action a ∈ A(h) do
23: if P (h) = i
24: ~π′i ← ~σ[a]� ~πi
25: ~u′ ←WalkTree(ha, i, ~π′i, ~π−i)
26: ~m[a]← ~u′

27: ~u← ~u+ ~σ[a]� ~u′
28: else
29: ~π′−i ← ~σ[a]� ~π−i
30: ~u′ ←WalkTree(ha, i, ~πi, ~π′−i)
31: ~u← ~u+ ~u′

32: end if
33: end for
34: if P (h) = i

35: for I ∈ ~I do
36: for a ∈ A(I) do
37: rI [a]← rI [a] +m[a][I]− u[I]
38: sI [a]← sI [a] + πi[I]σ[a][I]
39: end for
40: end for
41: end if
42: return ~u
43:
44: function Solve():
45: for t ∈ {1, 2, 3, · · · } do
46: for i ∈ N do
47: WalkTree(∅, i, ~1, ~1)
48: end for
49: end for

where r+I [a] = max{rI [a], 0}. We then iterate over each action
a ∈ A(h), recursively obtaining the expected utilities for a at each
information set (line 25 or 30). When P (h) = i, these utilities are
stored (line 26) and used to update the regret at each information
set (line 37), while the current strategy ~σ weights both the returned
expected utility at h (line 27) and the average strategy update (line
38). Note that at line 31, we do not weight ~u′ by ~σ[a] since the op-
ponent’s reaching probabilities are already factored into the utility
computation (line 7).

After iterating over the outer loop of Solve() (line 45) for many
iterations, an ε-Nash equilibrium is obtained from the accumulated

strategies: σ̄(I, a) = sI [a]/
P
b∈A(I) sI [b].

3.2 Efficient Terminal Node Evaluation
We now describe how PCS computes a vector of expected utili-

ties ~ui(h | ~π−i) at line 7 for player i’s n private outcomes in O(n)
time. As we have already noted, Johanson et al. [4] gave a detailed
description for how to do this in poker. In this section, we will
describe an efficient terminal node evaluation for Bluff(D1, D2).

Every game ends with one player calling bluff, and the payoffs
(+1 or −1) are determined solely by whether or not the last bid
holds. Let x-y be the last such bid. We now must discriminate
between cases where there are less than and where there are at least
x dice showing face y or ?.

At the terminal history h, we have a vector of reach probabil-
ities ~π−i for each of the opponent’s n possible dice rolls. Let
~X−i be a vector of length D−i + 1, where the element X−i[j]
(0 ≤ j ≤ D−i) equals the probability of the opponent reaching
h with exactly j dice showing face y or ?. ~X−i is constructed in
O(n) time by iterating over each element of ~π−i, adding the prob-
ability to the appropriate entry of ~X−i at each step. We can then
compute the expected utility for player i with exactly j of his or
her dice showing face y or ?. If player i called bluff, this expected
utility is

Ui[j] =

x−j−1X
`=0

(+1) ·X−i[`] +

D−iX
`=x−j

(−1) ·X−i[`];

if the opponent called bluff, the expected utility is −Ui[j]. Con-
structing ~Ui takes O(n) time. Finally, we iterate over all k ∈
{1, ..., n} and set ui[k] = Ui[xk], where xk is the number of dice
showing face y or ? in player i’s kth private outcome. In total, the
process takes 3O(n) = O(n) time.

3.3 Theoretical Analysis
CS, OPCS, SPCS, and PCS all belong to the MCCFR family

of algorithms. As such, we can apply the general results for MC-
CFR to obtain a probabilistic bound on the average overall regret
for CS and our new algorithms. Recall that in a two-player zero-
sum game, minimizing average overall regret produces an ε-Nash
equilibrium. The proof of Theorem 1 is in the appendix.

THEOREM 1. For any p ∈ (0, 1], when using CS, OPCS, SPCS,
or PCS, with probability at least 1 − p, the average overall regret
for player i is bounded by

RTi ≤
„

1 +
2√
p

«
∆u,iMi

√
Ai√

T
,

whereMi is a property of the game satisfying
p
|Ii| ≤Mi ≤ |Ii|,

∆u,i = maxz,z′ |ui(z)− ui(z′)|, and Ai = maxI∈Ii |A(I)|.

4. RESULTS
The efficacy of these new updates are examined through an em-

pirical analysis in both poker and Bluff. We begin the analysis
by examining the performance of CS, SPCS, OPCS and PCS in
two small games, [2-1] hold’em and [2-4] hold’em. We will then
present the performance of CS and PCS in a set of Texas hold’em
abstract games, to investigate their usefulness under the conditions
of the Annual Computer Poker Competition. Finally, we will apply
CS and PCS to the Bluff domain.
Poker. [2-1] hold’em and [2-4] hold’em are games that are small
enough to be tractably solved using all four of the CFR variants
we are investigating: CS, SPCS, OPCS and PCS. As discussed in
Section 3, SPCS, OPCS and PCS all perform O(n) work at each
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Figure 2: Log-log graphs displaying convergence of best response values over time for different CFR update methods in two small
unabstracted hold’em like poker games. Best response values are in milli-big-blinds per game (mbb/g). Each curve shows the average
performance over five independent runs.

terminal state, and are thus of comparable speed. However, all three
require more time per iteration than CS, and to converge faster than
CS, the advantage of each approach (more precise updates, more
work per iteration, or both) must overcome this speed penalty.

Figure 2 shows the convergence of CS, OPCS, SPCS and PCS
towards an optimal strategy in these small hold’em variants. We
see that SPCS and OPCS converge slower than CS; the difference
in speed is too great for the higher quality iterations. However, we
find that PCS converges much more quickly than CS in these small
games.

While [2-1] hold’em and [2-4] hold’em can be tractably solved
using CFR, solving the much larger game of Texas hold’em is in-
tractable. A common procedure used by competitors in the Annual
Computer Poker Competition is to use a state-space abstraction
technique to produce a smaller, similar game that can be tractably
solved, and the resulting abstract strategy can then be used to se-
lect actions in the original game. The abstract strategy is an ε-
Nash equilibrium in the abstract game, and we can measure its rate
of convergence by calculating a best response within the abstract
game. A critical choice in this procedure is the granularity of the
abstraction. In practice, larger and finer-grained abstractions take
longer to solve, but result in better approximations to a Nash equi-
librium [4].

In Figure 3, we apply the CS and PCS algorithms to four sizes of
abstract Texas hold’em games. The abstraction technique used in
each is Percentile E[HS2], as described in [10], which merges in-
formation sets together if the chance events assign similar strength
to a player’s hand. An n-bucket abstraction branches the chance
outcomes into n categories on each round.

In the smallest abstract game in Figure 3a, we find that CS con-
verges more quickly than PCS. As we increase the abstraction gran-
ularity through Figures 3b, 3c and 3d, however, we find that PCS
matches and then surpasses CS in the rate of convergence. In each
of these games, the chance sampling component samples outcomes
in the real game and then maps this outcome to its abstract game
equivalent. When a small abstraction is used, this means that many
of the information sets being updated by PCS in one iteration will
share the same bucket, and some of the benefit of updating many
information sets at once is lost. In larger abstract games, this effect
is diminished and PCS is of more use.

In the Annual Computer Poker Competition, many competitors
submit entries that are the result of running CFR on very large ab-

stract games. Computing a best response within such abstractions,
as we did in Figure 3, is often infeasible (as many competitors use
abstractions with imperfect recall). In these circumstances, we can
instead evaluate a strategy based on its performance in actual games
against a fixed opponent. We can use this approach to evaluate the
strategies generated by CS and PCS at each time step, to investigate
how PCS and CS compare in very large games.1

The results of this experiment are presented in Figure 4. The op-
ponent in each match is Hyperborean 2010.IRO, which took third
place in the 2010 Annual Computer Poker Competition’s heads-up
limit Texas hold’em instant runoff event. The y-axis shows the av-
erage performance in milli-big-blinds per game (mbb/g) over a 10-
million hand match of duplicate poker, and the results are accurate
to±1 mbb/g (so the difference in curves is statistically significant).
The abstraction used for CS and PCS in this experiment uses im-
perfect recall and has 880 million information sets, and is similar
to but slightly larger than Hyperborean’s abstraction, which con-
tains 798 million information sets. At each time step, the strategies
produced by PCS perform better against Hyperborean than those
produced by CS. Consider the horizontal difference between points
on the curves, as this indicates the additional amount of time CS
requires to achieve the same performance as PCS. As the compe-
tition’s winner is decided based on one-on-one performance, this
result suggests that PCS is an effective choice for creating compe-
tition strategies.

Bluff. Bluff(2,2) is small enough that no abstraction is required.
Unlike poker, all of the dice rolls are private and there are no public
chance events. In this domain, one iteration of PCS is equivalent to
a full iteration of vanilla CFR (i.e., no sampling). However, the re-
ordering of the computation and the fast terminal node evaluation
allows PCS to perform the iteration more efficiently than vanilla
CFR. Figure 5 shows the convergence rates of CS and PCS in Bluff
on a log-log scale. We notice that PCS converges towards equilib-
rium significantly faster than CS does. As noted earlier, PCS has
two speed advantages: the fast terminal node evaluation, and the
ability to reuse the opponent’s probabilities of reaching an infor-
mation set for many of our own updates. By comparison, vanilla
1Another possible evaluation metric is to compute the real-game
exploitability of the strategies. However, the overfitting effect de-
scribed in [4] makes the results unclear, as a strategy can become
more exploitable in the real game as it approaches an equilibrium
in the abstract game.
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(a) 5 buckets, 3.6 million information sets

10-1

100

101

102

102 103 104 105

Ab
st

ra
ct

 b
es

t r
es

po
ns

e 
(m

bb
/g

)

Time (seconds)

CS
PCS

(b) 8 buckets, 23.6 million information sets
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(c) 10 buckets, 57.3 million information sets
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(d) 12 buckets, 118.6 million information sets

Figure 3: Log-log graphs displaying convergence of abstract best response values over time for different CFR update methods in
two perfect recall abstractions of heads-up limit Texas hold’em poker. Best response values are in milli-big-blinds per game (mbb/g).
Each curve shows the average performance over five independent runs.
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Figure 4: Performance of CS and PCS strategies in a large ab-
straction against a fixed, strong opponent.

CFR would traverse the action space 441 times to do the work of 1
PCS traversal. Similar to Figure 4 in the poker experiments, we can
also compare the performance of CS and PCS strategies against a
fixed opponent: an ε-Nash equilibrium for Bluff(2,2). This exper-
iment is presented in Figure 6, and the fixed opponent is the final
data point of the PCS line; the results are similar if the final CS data
point is used. This result shows that PCS is also more efficient than
CS at producing effective strategies for one-on-one matches.
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Figure 5: Log-log graph showing convergence of CS and PCS
towards an equilibrium in Bluff(2,2). Each curve shows the
average performance over five independent runs.

5. CONCLUSION
Chance Sampled CFR is a state-of-the-art iterative algorithm for

approximating Nash equilibria in extensive form games. In this
work, we presented three new CFR variants that perform less sam-
pling than the standard approach. They perform slower but more
efficient and precise iterations. We empirically demonstrated that
Public Chance Sampling converges faster than Chance Sampling on
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Figure 6: Performance of CS and PCS strategies against an ε-
Nash equilibrium in Bluff(2,2)

large games, resulting in a more efficient equilibrium approxima-
tion algorithm demonstrated across multiple domains. Future work
will look to tighten the theoretical bounds on the new algorithms to
prove that they can outperform Chance Sampling.
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APPENDIX
Proof of Theorem 1. Let~ai be a subsequence of a history such that
it contains only player i’s actions in that history, and let ~Ai be the
set of all such subsequences. Let Ii(~ai) be the set of all information
sets where player i’s action sequence up to that information set is
~ai. Without loss of generality, assume i = 1. Let D = C,O1 ∪
P,S1 ∪ P , or P depending on whether we are using CS, OPCS,
SPCS, or PCS respectively. The probability of sampling terminal
history z is then

q(z) =
Y
havz
h∈D

fc(a|h). (1)

Let ~ai ∈ ~Ai, B = Ii(~ai), and let Q ∈ Q. By [7, Theorem 7], it
suffices to show that

Y =
X
I∈B

0@ X
z∈ZI∩Q

πσ−1(z[I])πσ(z[I], z)/q(z)

1A2

≤ 1.

By (1) and definition of πσ−i, we have

Y =
X
I∈B

0BB@ X
z∈ZI∩Q

πσ2 (z[I])πσ1,2(z[I], z)
Y
havz
h∈C\D

fc(a|h)

1CCA
2

.

(2)
Now by the definition of Q, for each h ∈ D, there exists a unique
a∗h ∈ A(h) such that if z ∈ Q and h v z, then ha∗h v z. Next, we
define a new probability distribution on chance events according to

f̂c(a|h) =

8<: 1 if h ∈ D, a = a∗h
0 if h ∈ D, a 6= a∗h
fc(a|h) if h ∈ C\D.

Notice that
Q
havz,h∈D f̂c(a|h) is 1 if z ∈ Q and is 0 if z /∈ Q.

Thus from (2), we have

Y =
X
I∈B

0B@X
z∈ZI

πσ2 (z[I])πσ1,2(z[I], z)
Y
havz
h∈C

f̂c(a|h)

1CA
2

=
X
I∈B

0@X
z∈ZI

π̂σ−1(z[I])π̂σ(z[I], z)

1A2

where π̂σ is πσ except fc is replaced by f̂c

=
X
I∈B

0@X
h∈I

π̂σ−1(h)
X
z∈ZI

π̂σ(h, z)

1A2

=
X
I∈B

 X
h∈I

π̂σ−1(h)

!2

≤ 1,

where the last inequality follows by [7, Lemma 16]. 2.
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ABSTRACT
To step beyond the first-generation deployments of attacker-defender
security games – for LAX Police, US FAMS and others – it is criti-
cal that we relax the assumption of perfect rationality of the human
adversary. Indeed, this assumption is a well-accepted limitation of
classical game theory and modeling human adversaries’ bounded
rationality is critical. To this end, quantal response (QR) has pro-
vided very promising results to model human bounded rationality.
However, in computing optimal defender strategies in real-world
security games against a QR model of attackers, we face difficulties
including (1) solving a nonlinear non-convex optimization problem
efficiently for massive real-world security games; and (2) address-
ing constraints on assigning security resources, which adds to the
complexity of computing the optimal defender strategy.

This paper presents two new algorithms to address these diffi-
culties: GOSAQ can compute the globally optimal defender strat-
egy against a QR model of attackers when there are no resource
constraints and gives an efficient heuristic otherwise; PASAQ in
turn provides an efficient approximation of the optimal defend-
er strategy with or without resource constraints. These two nov-
el algorithms are based on three key ideas: (i) use of a binary
search method to solve the fractional optimization problem effi-
ciently, (ii) construction of a convex optimization problem through
a non-linear transformation, (iii) building a piecewise linear ap-
proximation of the non-linear terms in the problem. Additional
contributions of this paper include proofs of approximation bound-
s, detailed experimental results showing the advantages of GOSAQ
and PASAQ in solution quality over the benchmark algorithm (BRQR)
and the efficiency of PASAQ. Given these results, PASAQ is at the
heart of the PROTECT system, which is deployed for the US Coast
Guard in the port of Boston, and is now headed to other ports.
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H.4 [Computing Methodology]: Game Theory

General Terms
Algorithm, Security

Keywords
Game Theory, Human Behavior, Optimization, Quantal Response
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1. INTRODUCTION
The recent real-world applications of attacker-defender Stackel-

berg security games, ARMOR, IRIS [7] and GUARDS [12], pro-
vide software assistants that help security agencies optimize alloca-
tions of their limited security resources. These applications require
efficient algorithms that derive mixed (randomized) strategies for
the defender (security agencies), taking into account an attacker’s
surveillance and best response. The algorithms underlying these
applications [7] or most others in the literature [1, 10] have as-
sumed perfect rationality of the human attacker, who strictly max-
imizes his expected utility. While this is a standard game-theoretic
assumption and appropriate as an approximation in first generation
applications, it is a well-accepted limitation of classical game theo-
ry [4]. Indeed, algorithmic solutions based on this assumption may
not be robust to the boundedly rational decision making of a human
adversary (leading to reduced expected defender reward), and may
also be limited in exploiting human biases.

To address this limitation, several models have been proposed
to capture human bounded rationality in game-theoretic settings
[14, 5, 11]. Among these, the quantal response (QR) model [11]
is an important solution concept. QR assumes errors in human
decision making and suggests that instead of strictly maximizing
utility, individuals respond stochastically in games: the chance of
selecting a non-optimal strategy increases as the associated cost
decreases. The QR model has received widespread support in the
literature in terms of its superior ability to model human behavior
in games [6, 14], including in recent multi-agent systems literature
[17]. An even more relevant study in the context of security games
showed that defender security allocations assuming a quantal re-
sponse model of adversary behavior outperformed several compet-
ing models in experiments with human subjects [18]. QR is among
the best-performing current models (with significant support in the
literature) and one that allows tuning of the ‘adversary rationali-
ty level’ as explained later. Hence this model is one that can be
practically used by security agencies desiring to not be locked into
adversary models of perfect rationality.

Unfortunately, in computing optimal defender strategies in se-
curity games assuming an adversary with quantal response (QR-
adversary), we face two major difficulties: (1) solving a nonlin-
ear non-convex optimization problem efficiently for massive real-
world security games; and (2) addressing resource assignment con-
straints in security games, which adds to the complexity of com-
puting the optimal defender strategy. Yet, scaling-up to massive se-
curity problems and handling constraints on resource assignments
are essential to address real-world problems such as computing s-
trategies for Federal Air Marshals Service (FAMS) [7] and the US
Coast Guard (USCG) [13].

Yang et al. [18] introduced the algorithm BRQR to solve a Stack-
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elberg security game with a QR-adversary. BRQR however was not
guaranteed to converge to the optimal solution, as it used a non-
linear solver with multi-starts to obtain an efficient solution to a
non-convex optimization problem. Furthermore, that work did not
consider resource assignment constraints that are included in this
paper. Nevertheless we compare the performance of the proposed
algorithms against BRQR, since it is the benchmark algorithm. An-
other existing algorithm that efficiently computes the Quantal Re-
sponse Equilibrium [15] only applies to cases where all the players
have the same level of errors in their quantal response, a condition
not satisfied in security games. In particular, in security games, the
defender’s strategy is based on a computer-aided decision-making
tool, and therefore it is a best response. Adversaries, on the oth-
er hand, are human beings who may have biases and preferences in
their decision making, so they are modeled with a quantal response.
Therefore, new algorithms need to be developed to compute the op-
timal defender strategy when facing a QR-adversary in real-world
security problems.

In this paper, we provide the following five contributions. First,
we provide an algorithm called GOSAQ to compute the defender
optimal strategy against a QR-adversary. GOSAQ uses a binary
search method to iteratively estimate the global optimal solution
rather than searching for it directly, which would require solving a
nonlinear and non-convex fractional problem. It also uses a non-
linear variable transformation to convert the problem into a con-
vex problem. GOSAQ leads to a ε-optimal solution, where ε can
be arbitrarily small. Second, we provide another algorithm called
PASAQ to approximate the optimal defender strategy. PASAQ is
also based on binary search. It then converts the problem into a
Mixed-Integer Linear Programming problem by using a piecewise
linear approximation. PASAQ leads to an efficient approximation
of the global optimal defender strategy and provides an arbitrari-
ly near-optimal solution with a sufficiently accurate linear approx-
imation. Third, we show that both GOSAQ and PASAQ can not
only solve problems without resource assignment constraints, such
as for the LAX police[7], but also problems with resource assign-
ment constraints, such as problems for FAMS [7] and USCG [13].
Fourth, we provide the correctness/approximation-bound proof of
GOSAQ and PASAQ. Fifth, we provide detailed experimental anal-
ysis on the solution quality and computational efficiency of GOSAQ
and PASAQ, illustrating that both GOSAQ and PASAQ achieve bet-
ter solution quality and runtime scalability than the previous bench-
mark algorithm BRQR [18]. Indeed, PASAQ can potentially be ap-
plied to most of the real-world deployments of the Stackelberg Se-
curity Game, including ARMOR and IRIS [7] that are based on
a perfect rationality model of the adversary. This should improve
the performances of such systems when dealing with human adver-
saries. In fact, PASAQ is at the heart of the PROTECT system [13]
deployed by the US Coast Guard at the port of Boston and that is
now headed to other ports in the US.

2. PROBLEM STATEMENT
We consider a Stackelberg Security Game [7, 18, 9] (SSG) with

a single leader and at least one follower, where the defender plays
the role of the leader and the adversary plays the role of the fol-
lower. The defender and attacker may represent organizations and
need not be single individuals. We use the following notation to
describe a SSG, also listed in Table 1: the defender has a total of
M resources to protect a set of targets T = {1, . . . , |T |}. The
outcomes of the SSG depend only on whether or not the attack is
successful. So given a target i, the defender receives reward Rdi
if the adversary attacks a target that is covered by the defender;
otherwise, the defender receives penalty P di . Correspondingly, the

Table 1: Notations used in this paper
T Set of targets; i ∈ T denotes target i
xi Probability that target i is covered by a resource
Rdi Defender reward for covering i if it’s attacked
P di Defender penalty on not covering i if it’s attack
Rai Attacker reward for attacking i if it’s not covered
P ai Attacker penalty on attacking i if it’s covered
A Set of defender strategies; Aj ∈ A denotes jth strategy
aj Probability for defender to choose strategy Aj
M Total number of resources

attacker receives penalty P ai in the former case; and reward Rai in
the latter case. Note that a key property of SSG is that while the
games may be non-zero-sum, Rdi > P di and Rai > P ai , ∀i [9]. In
other words, adding resources to cover a target helps the defender
and hurts the attacker.

We denote the jth individual defender strategy asAj , which is an
assignment of all the security resources. Generally, we could rep-
resent Aj as a column vector Aj = 〈Aij〉T , where Aij indicates
whether or not target i is covered by assignment j. Let A = {Aj}
be the set of feasible assignments of resources and let aj be the
probability of selecting strategy j. Given this probability of select-
ing defender strategies we can compute the likelihood of protect-
ing any specific target i as the marginal xi =

∑
Aj∈A ajAij . The

marginals xi clearly sum to M , the total number of resources [8,
18]. Previous work [7] has shown that defender strategies in SS-
Gs can be represented in terms of these marginals, leading to more
concise equivalent representations. In particular, the defender’s ex-
pected utility if the adversary attacks target i can be written as:

Udi (xi) = xiR
d
i + (1− xi)P di

and the adversary’s expected utility on attacking target i is

Uai (xi) = xiP
a
i + (1− xi)Rai

These marginal coverage vectors can be converted to a mixed s-
trategy over actual defender strategies when there are no resource
constraints [8], such as in ARMOR [7].

In the presence of constraints on assignments of resources, we
may end up with marginals that cannot be converted to probabili-
ties over individual strategies [8]. However, as Section 2.2 shows,
we can address this difficulty if we have a complete description of
defender strategies set A. In this case we can add constraints en-
forcing that the marginals are obtained from a convex combination
of these feasible defender strategies.

In SSGs, our goal is to compute a mixed strategy for the leader
to commit to based on her knowledge of the adversary’s response.
More specifically, given that the defender has limited resources
(e.g., she may need to protect 8 targets with 3 guards), she must
design her strategy to optimize against the adversary’s response to
maximize effectiveness.

2.1 Optimal Strategy against Quantal Response
In this work, we assume a QR-adversary, i.e. with a quantal

response 〈qi, i ∈ T 〉 [11] to the defender’s mixed strategy x =
〈xi, i ∈ T 〉. The value qi is the probability that adversary attacks
target i, computed as

qi(x) =
eλU

a
i (xi)

∑
k∈T e

λUa
k
(xk)

(1)

where λ ≥ 0 is the parameter of the quantal response model [11],
which represents the error level in adversary’s quantal response. Si-
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multaneously, the defender maximizes her utility (given her computer-
aided decision making tool):

Ud(x) =
∑

i∈T
qi(x)Udi (xi)

Therefore, in domains without constraints on assigning the resources,
the problem of computing the optimal defender strategy against a
QR-adversary can be written in terms of marginals as:

P1:





max
x

∑
i∈T e

λRai e−λ(R
a
i−Pai )xi((Rdi − P di )xi + P di )

∑
i∈T e

λRai e−λ(R
a
i−Pai )xi

s.t.
∑

i∈T
xi ≤M

0 ≤ xi ≤ 1, ∀i ∈ T
Problem P1 has a polyhedral feasible region and is a non-convex
fractional objective function.

2.2 Resource Assignment Constraint
In many real world security problems, there are constraints on

assigning the resources. For example, in the FAMS problem [7], an
air marshal is scheduled to protect 2 flights (targets) out of M total
flights. The total number of possible schedule is

(
M
2

)
. However,

not all of the schedules are feasible, since the flights scheduled for
an air marshal have to be connected, e.g. an air marshal cannot be
on a flight from A to B and then on a flight C to D. A resource
assignment constraint implies that the feasible assignment set A is
restricted; not all combinatorial assignment of resources to targets
are allowed. Hence, the marginals on targets, x, are also restricted.

Definition 1. We consider a marginal coverage x to be feasible if
and only if there exists aj ≥ 0, Aj ∈ A such that

∑
Aj∈A aj = 1

and for all i ∈ T , xi =
∑
Aj∈A ajAij .

In fact, 〈aj〉 is the mixed strategy over all the feasible assign-
ments of the resources. In order to compute the defender’s opti-
mal strategies against a QR-adversary in the presence of resource-
assignment constraints, we need to solve P2. The constraints in P1
are modified to enforce feasibility of the marginal coverage.

P2:





max
x,a

∑
i∈T e

λRai e−λ(R
a
i−Pai )xi((Rdi − P di )xi + P di )

∑
i∈T e

λRai e−λ(R
a
i−Pai )xi

s.t.
∑

i∈T
xi ≤M

xi =
∑

Aj∈A
ajAij , ∀i ∈ T

∑

Aj∈A
aj = 1

0 ≤ aj ≤ 1, ∀Aj ∈ A

3. BINARY SEARCH METHOD
We need to solve P1 and P2 to compute the optimal defender

strategy, which requires optimally solving a non-convex problem
which is in general an NP-hard problem [16]. In this section, we
describe the basic structure of using a binary search method to solve
the two problems. However, further efforts are required to convert
this skeleton into actual efficiently runnable algorithms. We will
fill in the additional details in the next two sections.

For notational simplicity, we first define the symbols ∀ i ∈ T
in Table 2. We then denote the numerator and denominator of the
objective function in P1 and P2 by N(x) and D(x):

Table 2: Symbols for Targets in SSG
θi := eλR

a
i > 0 βi := λ(Rai − P ai ) > 0 αi := Rdi − P di > 0

• N(x) =
∑
i∈T θiαixie

−βixi +
∑
i∈T θiP

d
i e
−βixi

• D(x) =
∑
i∈T θie

−βixi > 0

The key idea of the binary search method is to iteratively esti-
mate the global optimal value (p∗) of the fractional objective func-
tion of P1, instead of searching for it directly. Let Xf be the fea-
sible region of P1 (or P2). Given a real value r, we can know
whether or not r ≤ p∗ by checking

∃x ∈ Xf , s.t. rD(x)−N(x) ≤ 0 (2)

We now justify the correctness of the binary search method to
solve any generic fractional programming problem maxx∈Xf N(x)/D(x)
for any functions N(x) and D(x) > 0.

Lemma 1. For any real value r ∈ R, one of the following two
conditions holds.

(a) r ≤ p∗⇐⇒ ∃x ∈ Xf , s.t., rD(x)−N(x) ≤ 0

(b) r > p∗⇐⇒ ∀x ∈ Xf , rD(x)−N(x) > 0

PROOF. We only prove (a) as (b) is proven similarly. ‘⇐’: since
∃x such that rD(x) ≤ N(x), this means that r ≤ N(x)

D(x) ≤ p∗;
‘⇒’: Since P1 optimizes a continuous objective over a closed

convex set, then there exists an optimal solution x∗ such that p∗ =
N(x∗)
D(x∗) ≥ r which rearranging gives the result. 2

Algorithm 1 describes the basic structure of the binary search
method. Given the payoff matrix (PM ) and the total number of se-

Algorithm 1: Binary Search

1 Input: ε, PM and numRes;
2 (U0, L0)← EstimateBounds(PM , numRes);
3 (U,L)← (U0, L0);
4 while U − L ≥ ε do
5 r ← U+L

2
;

6 (feasible, xr)← CheckFeasibility(r);
7 if feasible then
8 L← r

9 else
10 U ← r

11 return L, xL;

curity resources (numRes), Algorithm 1 first initializes the upper
bound (U0) and lower bound (L0) of the defender expected utility
on Line 2. Then, in each iteration, r is set to be the mean of U and
L. Line 6 checks whether the current r satisfies Equation (2). If
so, p∗ ≥ r, the lower-bound of the binary search needs to be in-
creased; in this case, it also returns a valid strategy xr . Otherwise,
p∗ < r, the upper-bound of the binary search should be decreased.
The search continues until the upper-bound and lower-bound are
sufficiently close, i.e. U − L < ε. The number of iterations in
Algorithm 1 is bounded byO(log(U0−L0

ε
)). Specifically for SSGs

we can estimate the upper and lower bounds as follows:
Lower bound: Let su be any feasible defender strategy. The

defender utility based on using su against a adversary’s quantal
response is a lower bound of the optimal solution of P1. A simple
example of su is the uniform strategy.
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Upper bound: SinceP di ≤ Udi ≤ Rdi we haveUdi ≤ maxi∈T R
d
i .

The defender’s utility is computed as
∑
i∈T qiU

d
i , where Udi is the

defender utility on target i and qi is the probability that the adver-
sary attacks target i. Thus, the maximum Rdi serves as an upper
bound of Udi .

We now turn to feasibility checking, which is performed in Step
6 in Algorithm 1. Given a real number r ∈ R, in order to check
whether Equation (2) is satisfied, we introduce CF-OPT.

CF-OPT: min
x∈Xf

rD(x)−N(x)

Let δ∗ be the optimal objective function of the above optimiza-
tion problem. If δ∗ ≤ 0, Equation (2) must be true. Therefore, by
solving the new optimization problem and checking if δ∗ ≤ 0, we
can answer if a given r is larger or smaller than the global max-
imum. However, the objective function in CF-OPT is still non-
convex, therefore, solving it directly is still a hard problem. We
introduce two methods to address this in the next two sections.

4. GOSAQ: ALGORITHM 1 + VARIABLE
SUBSTITUTION

We now present Global Optimal Strategy Against Quantal re-
sponse (GOSAQ), which adapts Algorithm 1 to efficiently solve
problems P1 and P2. It does so through the following nonlinear
invertible change of variables:

yi = e−βixi ,∀i ∈ T (3)

4.1 GOSAQ with No Assignment Constraint
We first focus on applying GOSAQ to solve P1 for problems with

no resource assignment constraints. Here, GOSAQ uses Algorithm
1, but with a rewritten CF-OPT as follows given the above variable
substitution:

min
y

r
∑

i∈T
θiyi −

∑

i∈T
θiP

d
i yi +

∑

i∈T

αiθi
βi

yi ln(yi)

s.t.
∑

i∈T

−1

βi
ln(yi) ≤M (4)

e−βi ≤ yi ≤ 1, ∀i (5)

Let’s refer to the above optimization problem as GOSAQ-CP.

Lemma 2. Let ObjCF (x) and ObjGC(y) be the objective function
of CF-OPT and GOSAQ-CP respectively; Xf and Yf denote the
feasible domain of CF-OPT and GOSAQ-CP respectively:

min
x∈Xf

ObjCF (x) = min
y∈Yf

ObjGC(y) (6)

The proof, omitted for brevity, follows from the variable substi-
tution in equation 6. Lemma 2 indicates that solving GOSAQ-CP
is equivalent to solving CF-OPT. We now show that GOSAQ-CP is
actually a convex optimization problem.

Lemma 3. GOSAQ-CP is a convex optimization problem with a
unique optimal solution.

PROOF. We can show that both the objective function and the
nonlinear constraint function (4) in GOSAQ-CP are strictly convex
by taking second derivatives and showing that the Hessian matrices
are positive definite. The fact that the objective is strictly convex
implies that it can have only one optimal solution. 2

In theory, convex optimization problems like the one above, can
be solved in polynomial time through the ellipsoid method or inte-
rior point method with the volumetric barrier function [2] (in prac-
tice there are a number of nonlinear solvers capable of finding the

only KKT point efficiently). Hence, GOSAQ entails running Algo-
rithm 1, performing Step 6 with O(log(U0−L0

ε
)) times, and each

time solving GOSAQ-CP which is polynomial solvable. Therefore,
GOSAQ is a polynomial time algorithm.

We now show the bound of GOSAQ’s solution quality.

Lemma 4. Let L∗ and U∗ be the lower and upper bounds of
GOSAQ when the algorithm stops, and x∗ is the defender strate-
gy returned by GOSAQ. Then,

L∗ ≤ ObjP1(x∗) ≤ U∗

where ObjP1(x) denotes the objective function of P1.

PROOF. Given r, Let δ∗(r) be the minimum value of the objec-
tive function in GOSAQ-CP. When GOSAQ stops, we have δ∗(L∗) ≤
0, because from Lines 6-8 of Algorithm 1, updating the lower bound
requires it. Hence, from Lemma 2, L∗D(x∗) − N(x∗) ≤ 0 ⇒
L∗ ≤ N(x∗)

D(x∗) . Similarly, δ∗(U∗) ≥ 0⇒ U∗ > N(x∗)
D(x∗) 2

Theorem 1. Let x∗ be the defender strategy computed by GOSAQ,

0 ≤ p∗ −ObjP1(x∗) ≤ ε (7)

PROOF. p∗ is the global maximum of P1, so p∗ ≥ ObjP1(x∗).
Let L∗ and U∗ be the lower and upper bound when GOSAQ stops.
Based on Lemma 4, L∗ ≤ ObjP1(x∗) ≤ U∗. Simultaneously,
Algorithm 1 indicates that L∗ ≤ p∗ ≤ U∗.

Therefore, 0 ≤ p∗ −ObjP1(x∗) ≤ U∗ − L∗ ≤ ε 2

Theorem 1 indicates that the solution obtained by GOSAQ is an
ε-optimal solution.

4.2 GOSAQ with Assignment Constraints
In order to address the assignment constraints, we need to solve

P2. Note that the objective function of P2 is the same as that of
P1. The difference lies in the extra constraints which enforce the
marginal coverage to be feasible. Therefore we once again use Al-
gorithm 1 with variable substitution given in Equation 3, but mod-
ify GOSAQ-CP as follows (which is referred as GOSAQ-CP-C) to
incorporate the extra constraints:

min
y,a

r
∑

i∈T
θiyi −

∑

i∈T
θiP

d
i yi +

∑

i∈T

αiθi
βi

yi ln(yi)

s.t. Constraint (4), (5)

−1

βi
ln(yi) =

∑

Aj∈A
ajAij , ∀i ∈ T (8)

∑

Aj∈A
aj = 1 (9)

0 ≤ aj ≤ 1, Aj ∈ A (10)

Equation (8) is a nonlinear equality constraint that makes this op-
timization problem non-convex. There are no known polynomi-
al time algorithms for generic non-convex optimization problems,
which can have multiple local minima. We can attempt to solve
such non-convex problems using one of the efficient nonlinear solver-
s but we would obtain a KKT point which can be only locally opti-
mal. There are a few research grade global solvers for non-convex
programs, however they are limited to solving specific problems
or small instances. Therefore, in the presence of assignment con-
straints, GOSAQ is no longer guaranteed to return the optimal solu-
tion as we might be left with locally optimal solutions when solving
the subproblems GOSAQ-CP-C.
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5. PASAQ: ALGORITHM 1 + LINEAR AP-
PROXIMATION

Since GOSAQ may be unable to provide a quality bound in the
presence of assignment constraints (and as shown later, may turn
out to be inefficient in such cases), we propose the Piecewise lin-
ear Approximation of optimal Strategy Against Quantal response
(PASAQ). PASAQ is an algorithm to compute the approximate opti-
mal defender strategy. PASAQ has the same structure as Algorithm
1. The key idea in PASAQ is to use a piecewise linear function
to approximate the nonlinear objective function in CF-OPT, and
thus convert it into a Mixed-Integer Linear Programming (MILP)
problem. Such a problem can easily include assignment constraints
giving an approximate solution for a SSG against a QR-adversary
with assignment constraints.

In order to demonstrate the piecewise approximation in PASAQ,
we first rewrite the nonlinear objective function of CF-OPT as:

∑

i∈T
θi(r − P di )e−βixi +

∑

i∈T
θiαixie

−βixi

The goal is to approximate the two nonlinear function f (1)
i (xi) =

e−βixi and f (2)
i (xi) = xie

−βixi as two piecewise linear functions
in the range xi ∈ [0, 1], for each i = 1..|T |. We first uniformly
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Figure 1: Piecewise Linear Approximation

divide the range [0, 1] into K pieces (segments). Simultaneously,
we introduce a set of new variables {xik, k = 1..K} to represent
the portion of xi in each of the K pieces, {[ k−1

K
, k
K

], k = 1..K}.
Therefore, xik ∈ [0, 1

K
], ∀k = 1..K and xi =

∑K
k=1 xik. In order

to ensure that {xik} is a valid partition of xi, all xik must satisfy:
xik > 0 only if xik′ = 1

K
,∀k′ < k. In other words, xik can be

non-zero only when all the previous pieces are completely filled.
Figures 1(a) and 1(b) display two examples of such a partition.

Thus, we can represent the two nonlinear functions as piecewise
linear functions using {xik}. Let {( k

K
, f

(1)
i ( k

K
)), k = 0..K} be

the K + 1 cut-points of the linear segments of function f (1)
i (xi),

and {γik, k = 1..K} be the slopes of each of the linear segments.
Starting from f

(1)
i (0), the piecewise linear approximation of f (1)

i (xi),
denoted as L(1)

i (xi):

L
(1)
i (xi) = f

(1)
i (0) +

K∑

k=1

γikxik = 1 +

K∑

k=1

γikxik

Similarly, we can obtain the piecewise linear approximation of f (2)
i (xi),

denoted as L(2)
i (xi):

L
(2)
i (xi) = f

(2)
i (0) +

K∑

k=1

µikxik =
K∑

k=1

µikxik

where, {µik, k = 1..K} is the slope of each linear segment.

Table 3: Notations for Error Bound Proof

θ := min
i∈T

θi Rd := max
i∈T
|Rdi | β := max

i∈T
βi

θ := max
i∈T

θi P d := max
i∈T
|P di | α := max

i∈T
αi

5.1 PASAQ with No Assignment Constraint
In domains without assignment constraints, PASAQ consists of

Algorithm 1, but with CF-OPT rewritten as follows:

min
x,z

∑

i∈T
θi(r − P di )(1 +

K∑

k=1

γikxik) +
∑

i∈T
θiαi

K∑

k=1

µikxik

s.t.
∑

i∈T

K∑

k=1

xik ≤M (11)

0 ≤ xik ≤ 1

K
, ∀i, k = 1 . . .K (12)

zik
1

K
≤ xik, ∀i, k = 1 . . .K − 1 (13)

xi(k+1) ≤ zik, ∀i, k = 1 . . .K − 1 (14)
zik ∈ {0, 1}, ∀i, k = 1 . . .K − 1 (15)

Let’s refer to the above MILP formulation as PASAQ-MILP.

Lemma 5. The feasible region for x = 〈xi =
∑K
k=1 xik, i ∈ T 〉

of PASAQ-MILP is equivalent to that of P1

JUSTIFICATION. The auxiliary integer variable zik indicates whether
or not xik = 1

K
. Equation (13) enforces that zik = 0 only when

xik <
1
K

. Simultaneously, Equation (14) enforces that xi(k+1) is
positive only if zik = 1. Hence,{xik, k = 1..K} is a valid par-
tition of xi and xi =

∑K
k=1 xik and that xi ∈ [0, 1]. Thus, the

feasible region of PASAQ-MILP is equivalent to P1
Lemma 5 shows that the solution provided by PASAQ is in the

feasible region of P1. However, PASAQ approximates the mini-
mum value of CF-OPT by using PASAQ-MILP, and furthermore
solves P1 approximately using binary search. Hence, we need to
show an error bound on the solution quality of PASAQ.

We first show Lemma 6, 7 and 8 on the way to build the proof for
the error bound. Due to space constraints, many proofs are abbre-
viated; full proofs are available in an on-line appendix1. Further,
we define two constants which are decided by the game payoffs:
C1 = (θ/θ)eβ{(Rd + P d)β + α} and C2 = 1 + (θ/θ)eβ . The
notation used is defined in Table 3. In the following, we are inter-
ested in obtaining a bound on the difference between p∗ (the global
optimal obtained from P1) andObjP1(x̃∗), where x̃∗ is the strategy
obtained from PASAQ. However, along the way, we have to obtain a
bound for the difference betweenObjP1(x̃∗) and its corresponding
piecewise linear approximation ÕbjP1(x̃∗).

Lemma 6. Let Ñ(x) =
∑
i∈T θiαiL

(2)
i (xi)+

∑
i∈T θiP

d
i L

(1)
i (xi)

and D̃(x) =
∑
i∈T θiL

(1)
i (xi) > 0 be the piecewise linear ap-

proximation of N(x) and D(x) respectively. Then, ∀x ∈ Xf

|N(x)− Ñ(x)| ≤ (θα+ P dθβ)
|T |
K

|D(x)− D̃(x)| ≤ θβ |T |
K

1http://anon-aamas2012.webs.com/FullProof.pdf
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Lemma 7. The difference between the objective funciton of P1,
ObjP1(x), and its corresponding piecewise linear approximation,
ÕbjP1(x), is less than C1

1
K

PROOF.

|ObjP1(x)− ÕbjP1(x)| = |N(x)

D(x)
− Ñ(x)

D̃(x)
|

= |N(x)

D(x)
− N(x)

D̃(x)
+
N(x)

D̃(x)
− Ñ(x)

D̃(x)
|

≤ 1

D̃(x)
(|ObjP1(x)||D(x)− D̃(x)|+ |N(x)− Ñ(x)|)

Based on Lemma 6, |ObjP1(x)| ≤ Rd, and D̃(x) ≥ |T |θe−β .

|ObjP1(x)− ÕbjP1(x)| ≤ C1
1

K
2

Lemma 8. Let L̃∗ and L∗ be final lower bound of PASAQ and
GOSAQ,

L∗ − L̃∗ ≤ C1
1

K
+ C2ε

Lemma 9. Let L̃∗ and Ũ∗ be the final lower and upper bounds of
PASAQ, and x̃∗ is the defender strategy returned by PASAQ. Then,

L̃∗ ≤ ÕbjP1(x̃∗) ≤ Ũ∗

Theorem 2. Let x̃∗ be the defender strategy computed by PASAQ,
p∗ is the global optimal defender expected utility,

0 ≤ p∗ −ObjP1(x̃∗) ≤ 2C1
1

K
+ (C2 + 1)ε

PROOF. The first inequality is implied since x̃∗ is a feasible so-
lution. Furthermore,

p∗ −ObjP1(x̃∗) =(p∗ − L∗) + (L∗ − L̃∗) + (L̃∗ − ÕbjP1(x̃∗))

+ (ÕbjP1(x̃∗)−ObjP1(x̃∗))

Algorithm 1 indicates that L∗ ≤ p∗ ≤ U∗, hence p∗ − L∗ ≤
ε. Additionally, Lemma 7, 8 and 9 provide an upper bound on
ÕbjP1(x̃∗)−ObjP1(x̃∗), L∗−L̃∗ and L̃∗−ÕbjP1(x̃∗), therefore

p∗−ObjP1(x̃∗) ≤ ε+C1
1

K
+C2ε+C1

1

K
≤ 2C1

1

K
+(C2+1)ε 2

Theorem 2 suggests that, given a game instance, the solution
quality of PASAQ is bounded linearly by the binary search thresh-
old ε and the piecewise linear accuracy 1

K
. Therefore the PASAQ

solution can be made arbitrarily close to the optimal solution with
sufficiently small ε and sufficiently large K.

5.2 PASAQ With Assignment Constraints
In order to extend PASAQ to handle the assignment constraints,

we need to modify PASAQ-MILP as the follows, referred to as
PASAQ-MILP-C,

min
x,z,a

∑

i∈T
θi(r − P di )(1 +

K∑

k=1

γikxik) +
∑

i∈T
θiαi

K∑

k=1

µikxik

s.t. Constraint (11)− (15)

K∑

k=1

xik =
∑

Aj∈A
ajAij , ∀i ∈ T (16)

∑

Aj∈A
aj = 1 (17)

0 ≤ aj ≤ 1, Aj ∈ A (18)

PASAQ-MILP-C is an MILP so it can be solved optimally with
any MILP solver (e.g. CPLEX). We can prove, similarly as we
did for Lemma 5, that the above MILP formulation has the same
feasible region as P2. Hence, it leads to a feasible solution of P2.
Furthermore, the error bound of PASAQ relies on the approximation
accuracy of the objective function by the piecewise linear function
and the fact that the subproblem PASAQ-MILP-C can be solved
optimally. Both conditions have not changed from the cases with-
out assignment constraints to the cases with assignment constraints.
Hence, the error bound is the same as that shown in Theorem 2.

6. EXPERIMENTS
We separate our experiments into two sets: the first set focuses

on the cases where there is no constraint on assigning the resources;
the second set focuses on cases with assignment constraints. In
both sets, we compare the solution quality and runtime of the t-
wo new algorithms, GOSAQ and PASAQ, with the previous bench-
mark algorithm BRQR. The results were obtained using CPLEX to
solve the MILP for PASAQ. For both BRQR and GOSAQ, we use
the MATLAB toolbox function fmincon to solve nonlinear opti-
mization problems2. All experiments were conducted on a standard
2.00GHz machine with 4GB main memory. For each setting of the
experiment parameters (i.e. number of targets, amount of resources
and number of assignment constraints), we tried 50 different game
instances. In each game instance, payoffs Rdi and Rai are chosen
uniformly randomly from 1 to 10, while P di and P ai are chosen
uniformly randomly from -10 to -1; feasible assignments Aj are
generated by randomly setting each element Aij to 0 or 1. For the
parameter λ of the quantal response in Equation (1), we used the
same value (λ = 0.76) as reported in [18].

6.1 No Assignment Constraints
We first present experimental results comparing the solution qual-

ity and runtime of the three algorithms (GOSAQ,PASAQ and BRQR)
in cases without assignment constraints.

Solution Quality: For each game instance, GOSAQ provides the
ε-optimal defender expected utility, BRQR presents the best local
optimal solution among all the local optimum it finds, and PASAQ
leads to an approximated global optimal solution. We measure the
solution quality of different algorithms using average defender’s
expected utility over all the 50 game instances.

Figures 2(a), 2(c) and 2(e) show the solution quality results of
different algorithms under different conditions. In all three figures,
the average defender expected utility is displayed on the y-axis.
On the x-axis, Figure 2(a) changes the numbers of targets (|T |)
keeping the ratio of resources (M ) to targets and ε fixed as shown
in the caption; Figure 2(c) changes the ratio of resources to targets
fixing targets and ε as shown; and Figure 2(e) changes the value
of the binary search threshold ε. Given a setting of the parameters
(|T |, M and ε), the solution qualities of different algorithms are
displayed in a group of bars. For example, in Figure 2(a), |T | is set
to 50 for the leftmost group of bars, M is 5 and ε = 0.01. From
left to right, the bars show the solution quality of BRQR (with 20
and 100 iterations), PASAQ (with 5,10 and 20 pieces) and GOSAQ.

Key observations from Figures 2(a), 2(c) and 2(e) include: (i) The
solution quality of BRQR drops quickly as the number of targets in-
creases; increasing the number of iterations in BRQR improves the
solution quality, but the improvement is very small. (ii) The solu-
tion quality of PASAQ improves as the number of pieces increases;

2We also tried the KNITRO [3] solver. While it gave the same
solution quality as fmincon, it was three-times slower than
fmincon; as a result we report results with fmincon
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(b) Runtime v.s. |T | (M = 0.1|T |,
ε = 0.01)
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(|T | = 400, ε = 0.01)
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(d) Runtime v.s. M (|T | = 400,
ε = 0.01)
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Figure 2: Solution Quality and Runtime Comparison, without
assignment constraints (better in color)

and it converges to the GOSAQ solution as the number of pieces
becomes larger than 10. (iii) As the number of resources increas-
es, the defender expected utility also increases; and the resource
count does not impact the relationship of solution quality between
different algorithms. (iv) As ε becomes smaller, the solution qual-
ity of both GOSAQ and PASAQ improves. However, after epsilon
becomes sufficiently small (≤ 0.1), no substantial improvement is
achieved by further decreasing the value of ε. In other words, the
solution quality of both GOSAQ and PASAQ converges.

In general, BRQR has the worst solution quality; GOSAQ has the
best solution quality. PASAQ achieves almost the same solution
quality as GOSAQ when it uses more than 10 pieces.

Runtime: We present the runtime results in Figures 2(b), 2(d)
and 2(f). In all three figures, the y-axis display the runtime, the x-
axis displays the variables which we vary to measure their impact
on the runtime of the algorithms. For BRQR run time is the sum of
the run-time across all its iterations.

Figure 2(b) shows the change in runtime as the number of targets
increases. The number of resources and the value of ε are shown
in the caption. BRQR with 100 iterations is seen to run significant-
ly slower than GOSAQ and PASAQ. Figure 2(d) shows the impact
of the ratio of resource to targets on the runtime. The figure indi-
cates that the runtime of the three algorithms is independent of the
change in the number of resources. Figure 2(f) shows how runtime
of GOSAQ and PASAQ is affected by the value of ε. On the x-axis,

the value for ε decreases from left to right. The runtime increases
linearly as ε decreases exponentially. In both Figures 2(d) and 2(f),
the number of targets and resources are displayed in the caption.

Overall, the results suggest that GOSAQ is the algorithm of choice
when the domain has no assignment constraints. Clearly, BRQR
has the worst solution quality, and it is the slowest of the set of
algorithms. PASAQ has a solution quality that approaches that of
GOSAQ when the number of pieces is sufficiently large (≥ 10),
and GOSAQ and PASAQ also achieve comparable runtime efficien-
cy. Thus, in cases with no assignment constraints, PASAQ offers no
advantages over GOSAQ.
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(c) Runtime v.s. |T | (|A| = 60|T |)

20 40 60 80 100
0

20

40

60

80

Ratio: (# of Assignments)/(# of Targets)

R
un

tim
e 

(m
in

ut
es

)

 

 

GOSAQ
BRQR−100
BRQR−20
PASAQ−20
PASAQ−10
PASAQ−5

(d) Runtime v.s. |A| (|T | = 60)
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(e) Runtime v.s. |T | (|A| = 60|T |)
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(f) Runtime v.s. |A| (|T | = 60)

Figure 3: Solution Quality and Runtime Comparison, with as-
signment constraint (better in color)

6.2 With Assignment Constraint
In the second set, we introduce assignment constraints into the

problem. The feasible assignments are randomly generated. We
present experimental results on both solution quality and runtime.

Solution Quality: Figures 3(a) and 3(b) display the solution
quality of the three algorithms with varying number of targets (|T |)
and varying number of feasible assignments (|A|). In both figures,
the average defender expected utility is displayed on the y-axis. In
Figure 3(a) the number of targets is displayed on the x-axis, and the
ratio of |A| to |T | is set to 60. BRQR is seen to have very poor per-
formance. Furthermore, there is very little gain in solution quality
from increasing its number of iterations. While GOSAQ provides
the best solution quality, PASAQ achieves almost identical solution
quality when the number of pieces is sufficiently large (> 10). Fig-
ure 3(b) shows how solution quality is impacted by the number of
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feasible assignments, which is displayed on the x-axis. Specifical-
ly, the x-axis shows numbers of assignment constraints A to be 20
times, 60 times and 100 times the number of targets. The number
of targets is set to 60. Once again, BRQR has significantly lower
solution quality, and it drops as the number of assignments increas-
es; and PASAQ again achieves almost the same solution quality as
GOSAQ, as the number the number of pieces is larger than 10.

Runtime: We present the runtime results in Figures 3(c), 3(e),
3(d) and 3(f). In all experiments, we set 80 minutes as the cut-
off. Figure 3(c) displays the runtime on the y-axis and the number
of targets on the x-axis. It is clear that GOSAQ runs significantly
slower than both PASAQ and BRQR, and slows down exponential-
ly as the number of targets increases. Figure 3(e) shows extended
runtime result of BRQR and PASAQ as the number of targets in-
creases. PASAQ runs in less than 4 minutes with 200 targets and
12000 feasible assignments. BRQR runs significantly slower with
higher number of iterations.

Overall, the results suggest that PASAQ is the algorithm of choice
when the domain has assignment constraints. Clearly, BRQR has
significantly lower solution quality than PASAQ. PASAQ not on-
ly has a solution quality that approaches that of GOSAQ when the
number of pieces is sufficiently large (≥ 10), PASAQ is significant-
ly faster than GOSAQ (which suffers exponential slowdown with
scale-up in the domain).

7. CONCLUSION
This paper marks an advance over the state-of-the-art in security

games. It goes beyond the assumption of perfect rationality of hu-
man adversaries embedded in deployed applications [7] and most
of the current algorithms [1, 10] for Stackelberg security games;
instead, it models the human adversaries’ bounded rationality us-
ing the quantal response (QR) model. This work overcomes the
difficulties in developing efficient methods to solve the massive se-
curity games in real applications, including solving a nonlinear and
non-convex optimization problem and handling constraints on as-
signing security resources in designing defender strategies. In ad-
dressing these difficulties, key contributions in this paper include:
(i) a new algorithm, GOSAQ, which guarantees the global opti-
mal solution in computing the defender strategy against an adver-
sary’s quantal response; (ii) an efficient approximation algorithm,
PASAQ, which provides more efficient computation of the defender
strategy with nearly-optimal solution quality; (iii) algorithms solv-
ing problems with resource assignment constraint; (iv) proof of
correctness/approximation-error of the algorithms; (v) detailed ex-
perimental results which show that both GOSAQ and PASAQ achieve
much better solution quality than the benchmark algorithm (BRQR),
and that PASAQ achieves much better computational efficiency than
both GOSAQ and BRQR. Given these results, PASAQ is at the heart
of the PROTECT system which is currently being used for the US
Coast Guard in the port of Boston, and is currently being deployed
in the port of New York.
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ABSTRACT
Given their existing and potential real-world security applications,
Bayesian Stackelberg games have received significant research in-
terest [3, 12, 8]. In these games, the defender acts as a leader, and
the many different follower types model the uncertainty over dis-
crete attacker types. Unfortunately since solving such games is an
NP-hard problem, scale-up has remained a difficult challenge.

This paper scales up Bayesian Stackelberg games, providing a
novel unified approach to handling uncertainty not only over dis-
crete follower types but also other key continuously distributed real
world uncertainty, due to the leader’s execution error, the follower’s
observation error, and continuous payoff uncertainty. To that end,
this paper provides contributions in two parts. First, we present a
new algorithm for Bayesian Stackelberg games, called HUNTER,
to scale up the number of types. HUNTER combines the follow-
ing five key features: i) efficient pruning via a best-first search of
the leader’s strategy space; ii) a novel linear program for comput-
ing tight upper bounds for this search; iii) using Bender’s decom-
position for solving the upper bound linear program efficiently;
iv) efficient inheritance of Bender’s cuts from parent to child; v)
an efficient heuristic branching rule. Our experiments show that
HUNTER provides orders of magnitude speedups over the best ex-
isting methods to handle discrete follower types. In the second part,
we show HUNTER’s efficiency for Bayesian Stackelberg games
can be exploited to also handle the continuous uncertainty using
sample average approximation. We experimentally show that our
HUNTER-based approach also outperforms latest robust solution
methods under continuously distributed uncertainty.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Bayesian Stackelberg Games, Relaxation

1. INTRODUCTION
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ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Due to their significance in real-world security, there has been a
lot of recent research activity in leader-follower Stackelberg games,
oriented towards producing deployed solutions: ARMOR at LAX [9],
IRIS for Federal Air Marshals Service [9], and GUARDS for the
TSA [14]. Bayesian extension to Stackelberg game has been used
to model the uncertainty over players’ preferences [12, 8] by allow-
ing multiple discrete follower types, as well as, by use of sampling-
based algorithms, continuous payoff uncertainty [10].

The key idea in this paper is to scale-up Bayesian Stackelberg
games, providing a novel unified approach to handling not only dis-
crete follower types but also continuous uncertainty. Scalability of
discrete follower types is essential in domains such as road network
security [6], where each follower type could represent a criminal at-
tempting to follow a certain path. Scaling up the number of types
is also necessary for the sampling-based algorithms to obtain high
quality solutions under continuous uncertainty. Unfortunately, such
scale-up remains difficult, as finding the equilibrium of a Bayesian
Stackelberg game is NP-hard [5]. Indeed, despite the recent al-
gorithmic advancement including Multiple-LPs [5], DOBSS [12],
HBGS [8], none of these techniques can handle games with more
than ≈ 50 types, even when the number of actions per player is
as few as 5: inadequate both for scale-up in discrete follower types
and for sampling-based approaches. This scale-up difficulty has led
to an entirely new set of algorithms developed for handling contin-
uous payoff uncertainty [10], and continuous observation and exe-
cution error [16]; these algorithms do not handle discrete follower
types, however.

This paper provides contributions in two parts. In the first part, to
address the challenge of discrete uncertainty, we propose a novel al-
gorithm for solving Bayesian Stackelberg games, called HUNTER,
combining the following five key ideas. First, it conducts a best-
first search in the follower’s best-response assignment space, which
only expands a small number of nodes (within an exponentially
large assignment space). Second, HUNTER computes tight upper
bounds to speed up this search using a novel linear program. Third,
HUNTER solves this linear program efficiently using Bender’s de-
composition. Fourth, we show that the Bender’s cuts generated
in a parent node are valid cuts for its children, providing further
speedups. Finally, HUNTER deploys a heuristic branching rule
to further improve efficiency. Thus, this paper’s contribution is in
combining an AI search technique (best-first search) with multi-
ple techniques from Operations Research (disjunctive program and
Bender’s decomposition) to provide a novel efficient algorithm; the
application of these techniques for solving Stackelberg games had
not been explored earlier, and thus their application towards solv-
ing these games, as well as their particular synergistic combination
in HUNTER are both novel. Our experiments show HUNTER dra-
matically improves the scalability of the number of types over other
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existing approaches [12, 8].
In the second part of our contribution, we show that via sample

average approximation, HUNTER for Bayesian Stackelberg games
can be used in handling continuously distributed uncertainty such
as the leader’s execution error, the follower’s observation noise, and
both players’ preference uncertainty. For comparison, we consider
a class of Stackelberg games motivated by security applications,
and enhance two existing robust solution methods, BRASS [13]
and RECON [16] to handle such uncertainty. We again show that
HUNTER provides significantly better performance than BRASS
and RECON. Our final set of experiments in this paper also illus-
trates HUNTER’s unique ability to handle both discrete and con-
tinuous uncertainty within a single problem.

2. BACKGROUND AND NOTATION
The first part of the paper is focused on solving Bayesian Stack-

elberg games with discrete follower types; this background section
focuses on such games. A Stackelberg game is a two-person game
played by a leader and a follower [15]. Following the recent lit-
erature [8], we focus on Stackelberg games where the leader com-
mits to a mixed strategy first, and the follower observes the leader’s
strategy and responds with a pure strategy, maximizing his utility
correspondingly. We generalize this set-up by extending the def-
inition of the leader’s strategy space and the leader and follower
utilities in two ways beyond what was previously considered [12,
8] and by allowing for compact representation of constraints.

We assume the leader’s mixed strategy is an N -dimensional real
column vector x ∈ RN , bounded by a polytope Ax � b,x � 0,
which generalizes the traditional constraint of

∑
i xi = 1 and al-

lows for compact strategy representation with constraints as in [9]
(although such constraints are not the focus of this paper). Sec-
ond, given a leader’s strategy x, the follower maximizes his util-
ity by choosing from J pure strategies. For each pure strategy
j = 1, . . . , J played by the follower, the leader gets a utility of
µT
j x + µj,0 and the follower gets a utility of νT

j x + νj,0, where
µj ,νj are real vectors in RN and µj,0, νj,0 ∈ R. This use of µj,0,
νj,0 terms generalizes the utility functions.

We now define the leader’s utility matrix U and the follower’s
utility matrix V as the following,

U =

(
µ1,0 . . . µJ,0
µ1 . . . µJ

)
, V =

(
ν1,0 . . . νJ,0
ν1 . . . νJ

)
.

Then for a leader’s strategy x, the leader and follower’s J utilities

for the follower’s J pure strategies areUT

(
1
x

)
and V T

(
1
x

)
.

A Bayesian extension to the Stackelberg game allows multiple
types of players, each with its own payoff matrix. We represent a
Bayesian Stackelberg game with S follower types by a set of util-
ity matrix pairs (U1, V 1), . . . , (US , V S), each corresponding to a
type. A type s has a prior probability ps representing the likelihood
of its occurrence. The leader commits to a mixed strategy without
knowing the type of the follower she faces. The follower, however,
knows his own type s, and plays the best response js ∈ {1, . . . , J}
according to his utility matrix V s. A strategy profile in a Bayesian
Stackelberg game is 〈x, j〉, a pair of leader’s mixed strategy x and
follower’s response j, where j = 〈j1, . . . , jS〉 denotes a vector of
the follower’s responses for all types.

Type 1 Target1 Target2
Target1 1, -1 -1, 0
Target2 0, 1 1, -1

Type 2 Target1 Target2
Target1 1, -1 -1, 1
Target2 0, 1 1, -1

Figure 1: Payoff matrices of a Bayesian Stackelberg game.

The solution concept of interest is a Strong Stackelberg Equilib-
rium (SSE) [15], where the leader maximizes her expected util-
ity assuming the follower chooses the best response and breaks
ties in favor of the leader for each type. Formally, let u(x, j) =∑S
s=1 p

s((µsjs)
Tx + µsjs,0) denote the leader’s expected utility,

and vs(x, js) = (νsjs)
Tx + νsjs,0 denote the follower’s expected

utility for a type s. Then, 〈x∗, j∗〉 is an SSE if and only if,

〈x∗, j∗〉 = arg max
x,j
{u(x, j)|vs(x, js) ≥ vs(x, j′), ∀j′ 6= js}.

As an example, which we will return to throughout the paper,
consider a Bayesian Stackelberg game with two follower types,
where type 1 appears with probability .84 and type 2 appears with
probability .16. The leader (defender) chooses a probability distri-
bution of allocating one resource to protect the two targets whereas
the follower (attacker) chooses the best target to attack. We show
the payoff matrices in Figure 1, where the leader is the row player
and the follower is the column player. The utilities of the two types
are identical except that a follower of type 2 gets a utility of 1
for attacking Target2 successfully, whereas one of type 1 gets 0.
The leader’s strategy is a column vector (x1, x2)T representing the
probabilities of protecting the two targets. Given one resource, the
strategy space of the leader is x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0, i.e.,
A = (1, 1),b = 1. The payoffs in Figure 1 can be represented by
the following utility matrices,

U1 =




0 0
1 −1
0 1


 , V 1 =




0 0
−1 0
1 −1


 ;

U2 =




0 0
1 −1
0 1


 , V 2 =




0 0
−1 1
1 −1


 .

In terms of previous work, Bayesian Stackelberg games have
been typically solved via tree search, where we assign one follower
type to a pure strategy at each tree level [8]. For example, Figure 2
shows the search tree of the example game in Figure 1. We solve
four linear programs, one for each leaf node. At each leaf node,
the linear program provides an optimal leader strategy such that the
follower’s best response for every follower type is the chosen target
at that leaf node, e.g., at the leftmost leaf node, the linear program
finds the optimal leader strategy such that both type 1 and type 2
have a best response of attacking Target1. Comparing across leaf
nodes, we obtain the overall optimal leader strategy [5]. In this
case, the leaf node where type 1 is assigned to Target1 and type 2
to Target2 provides the overall optimal strategy.

Instead of solving an LP for all JS leaf nodes, recent work uses
a branch-and-bound technique to speed up the tree search [8]. The
key to efficiency in branch-and-bound is obtaining tight upper and
lower bounds for internal nodes, i.e., for nodes shown by circles in
Figure 2, where subsets of follower types are assigned to particu-
lar targets. For example, in Figure 2, suppose the left subtree has
been explored; now if at the rightmost internal node (where type 1
is assigned to Target2) we realize that the upper bound on solution
quality is 0.5, we could prune the right subtree without even con-
sidering type 2. One possible way of obtaining upper bounds is by
relaxing the integrality constraints in DOBSS MILP [12]. Unfortu-
nately, when the integer variables in DOBSS are relaxed, the objec-
tive can be arbitrarily large, leading to meaningless upper bounds.
HBGS [8] computes upper bounds by heuristically utilizing the so-
lutions of smaller restricted games. However, the preprocessing
involved in solving many small games can be expensive and the
bounds computed using heuristics can again be loose.
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Target1

0.5 0.506 Infeasible -0.33

Type 1: 

Type 2: 

Target2

Target1 Target2 Target2Target1

 

Figure 2: Example search tree of solving Bayesian games.

3. APPROACH
We present HUNTER (Handling UNcerTainty Efficiently using

Relaxation) based on the five key ideas mentioned in Section 1.

3.1 Algorithm Overview
To find the optimal leader’s mixed strategy, HUNTER would

conduct a best-first search in the search tree that results from as-
signing follower types to pure strategies, such as the search tree in
Figure 2. Simply stated, HUNTER aims to search this space much
more efficiently than HBGS [8]. As discussed earlier, efficiency
gains are sought by obtaining tight upper bounds and lower bounds
at internal nodes in the search tree (which corresponds to a partial
assignment in which a subset of follower types are fixed). To that
end, as illustrated in Figure 3, we use an upper bound LP within
an internal search node. The LP returns an upper bound UB and
a feasible solution x∗, which is then evaluated by computing the
follower best response, providing a lower bound LB. The solution
returned by the upper bound LP is also utilized in choosing a new
type s∗ to create branches. To avoid having this upper bound LP
itself become a bottleneck, it is solved efficiently using Bender’s
decomposition, which will be explained below.

Node
Upper Bound LP: 

Bender’s Decomposition

Constraints:

Ax≤b, x≥0
x*

UB

LB
Master

Sub
1

Sub
2

Sub
S...

s*

 

Figure 3: Steps of creating internal search nodes in HUNTER.

To understand HUNTER’s behavior on a toy game instance, see
Figure 4, which illustrates HUNTER’s search tree in solving the
example game from Figure 1 above. To start the best-first search,
at the root node, no types are assigned any targets yet; we solve
the upper bound LP with the initial strategy space x1 + x2 ≤
1, x1, x2 ≥ 0 (Node 1). As a result, we obtain an upper bound
of 0.560 and the optimal solution x∗1 = 2/3, x∗2 = 1/3. We evalu-
ate the solution returned and obtain a lower bound of 0.506. Using
HUNTER’s heuristics, type 2 is then chosen to create branches by
assigning it to Target1 and Target2 respectively. Next, we consider
a child node (Node 2) in which type 2 is assigned to Target1, i.e.,
type 2’s best response is to attack Target1. As a result, the fol-
lower’s expected utility of choosing Target1 must be higher than
that of choosing Target2, i.e., −x1 + x2 ≥ x1 − x2, simplified as
x1 − x2 ≤ 0. Thus, in Node 2, we impose an additional constraint
x1 − x2 ≤ 0 on the strategy space and obtain an upper bound of
0.5. Since its upper bound is lower than the current lower bound
0.506, this branch can be pruned out. Next we consider the other
child node (Node 3) in which type 2 is assigned to Target2. This
time we add constraint−x1 + x2 ≤ 0 instead, and obtain an upper
bound of 0.506. Since the upper bound coincides with the lower
bound, we do not need to expand the node further. Moreover, since
we have considered both Target1 and Target2 for type 2, we can

terminate the algorithm and return 0.506 as the optimal solution
value.

Node 2: Type 2 → Target1

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0,

x1 – x2 ≤ 0

UB = 0.5

Pruned!

UB < best LB

Node 1

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0

x1* = 2/3,

x2* = 1/3

UB = 0.560

LB = 0.506

s* = Type 2

Node 3: Type 2 → Target2

Constraints:

x1 + x2 ≤ 1, 

x1, x2 ≥ 0,

-x1 + x2 ≤ 0

UB = 0.506

Optimality proved!

UB = best LB

 

Figure 4: Example of internal nodes in HUNTER’s search tree.

We now discuss HUNTER’s behavior line-by-line (see Algo-
rithm 1). We initialize the best-first search by creating the root
node of the search tree with no assignment of types to targets and
with the computation of the node’s upper bound (Line 2 and 3). The
initial lower bound is obtained by evaluating the solution returned
by the upper bound LP (Line 4). We added the root node to a prior-
ity queue of open nodes which is internally sorted in a decreasing
order of their upper bounds (Line 5). Each node contains informa-
tion of the partial assignment, the feasible region of x, the upper
bound, and the Bender’s cuts generated by the upper bound LP. At
each iteration, we retrieve the node with the highest upper bound
(Line 8), select a type s∗ to assign pure strategies (Line 9), com-
pute the upper bounds of the node’s child nodes (Line 12 and 14),
update the lower bound using the new solutions (Line 15), and en-
queue child nodes with upper bound higher than the current lower
bound (Line 16). As shown later, Bender’s cuts at a parent node can
be inherited by its children, speeding up the computation (Line 12).

Algorithm 1: HUNTER
1 Initialization;
2 [UB, x∗, BendersCuts] = SolveUBLP(φ,Ax � b,−∞);
3 root := 〈 UB, x∗,Ax � b, x � 0, BendersCuts 〉 ;
4 LB := Evaluate(x∗);
5 Enqueue(queue, root);

6 Best-first Search;
7 while not Empty(queue) do
8 node := pop(queue);
9 s∗ := PickType(node);

10 for j := 1 to J do
11 NewConstraints := node.Constraints ∪{Ds∗j x + ds

∗
j � 0} ;

12 [NewUB, x′, NewBendersCuts] = SolveUBLP(node.BendersCuts,
NewConstraints, LB) ;

13 if NewUB > LB then
14 child := 〈 NewUB, x′, NewConstraints, NewBendersCuts〉 ;
15 LB := max{Evaluate(x′), LB} ;
16 Enqueue(queue, child);
17 end
18 end
19 end

In the rest of the section, we will 1) present the upper bound
LP, 2) show how to solve it using Bender’s decomposition, and 3)
verify the correctness of passing down Bender’s cuts from parent
to child nodes, 4) introduce the heuristic branching rule.

3.2 Upper Bound Linear Program
We derive a tractable linear relaxation of Bayesian Stackelberg

games to provide an upper bound efficiently at each of HUNTER’s
internal nodes. For expository purpose, we focus on the root node
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of the search tree. Applying the results in disjunctive program [2],
we first derive the convex hull for a single type. Then we show
intersecting the convex hulls of all its types provides a tractable,
polynomial-size relaxation of a Bayesian Stackelberg game.

3.2.1 Convex hull of a Single Type
Consider a Stackelberg game with a single follower type (U, V ),

the leader’s optimal strategy x∗ is the best among the optimal so-
lutions of J LPs where each restricts the follower’s best response
to one pure strategy [5]. Hence we can represent the optimization
problem as the following disjunctive program (i.e., a disjunction of
"Multiple LPs" [5]),

max
x,u

u

s.t. Ax � b,x � 0
J∨

j=1

(
u ≤ µT

j x + µj,0
Djx + dj � 0

) (1)

where Dj and dj are given by,

Dj =



νT
1 − νT

j

...
νT
J − νT

j


 ,dj =




ν1,0 − νj,0
...

νJ,0 − νj,0


 .

The feasible set of (1), denoted by H , is a union of J convex
sets, each corresponding to a disjunctive term. Applying the results
in [2], the closure of the convex hull of H , clconvH , is1,




x =

J∑

j=1

χj ,χj � 0,∀j

u ∈ R u =

J∑

j=1

ψj , ψj ≥ 0,∀j

x ∈ Rn
J∑

j=1

θj = 1, θj ≥ 0, ∀j



A −b 0
Dj dj 0
−µT

j −µj,0 1





χj
θj
ψj


 � 0,∀j





.

The intuition here is that the continuous variables θ,
∑J
j=1 θj = 1

are used to create all possible convex combination of points in H .
Furthermore, when θj 6= 0, 〈χj

θj
,
ψj
θj
〉 represents a point in the con-

vex set defined by the j-th disjunctive term in the original prob-
lem (1). Finally, since all the extreme points of clconvH belong to
H , the disjunctive program (1) is equivalent to the linear program:

max
x,u
{u|(x, u) ∈ clconvH} .

3.2.2 Tractable Relaxation
Building on the convex hulls of individual types, we now derive

the relaxation of a Bayesian Stackelberg game with S types. We
write this game with S types as the following disjunctive program,

max
x,u1,...,uS

∑S
s=1 p

sus

s.t. Ax � b,x � 0
S∧

s=1

[
J∨

j=1

(
us ≤ (µsj)

Tx + µsj,0
Ds
jx + dsj � 0

)] (2)

1To use the results in [2], we assume u ≥ 0 for convenience. In the
case where u can be negative, we can replace u by u+ − u−, with
u+, u− ≥ 0.

Returning to our toy example, the corresponding disjunctive pro-
gram of the game in Figure 1 can be written as,

max
x1,x2,u1,u2

0.84u1 + 0.16u2

s.t. x1 + x2 ≤ 1, x1, x2 ≥ 0(
u1 ≤ x1
x1 − 2x2 ≤ 0

)∨(
u1 ≤ −x1 + x2
−x1 + 2x2 ≤ 0

)

(
u2 ≤ x1
x1 − x2 ≤ 0

)∨(
u2 ≤ −x1 + x2
−x1 + x2 ≤ 0

)
(3)

Denote the set of feasible points (x, u1, . . . , uS) of (2) by H∗.
Unfortunately, to use the results of [2] here and create clconvH∗,
we need to expand (2) to a disjunctive normal form, resulting in
a linear program with an exponential number (O(NJS)) of vari-
ables. Instead, we now give a much more tractable, polynomial-
size relaxation of (2). Denote the feasible set of each type s, (x, us)

byHs, and define Ĥ∗ := {(x, u1, . . . , uS)|(x, us) ∈ clconvHs, ∀s}.
Then the following program is a relaxation of (2):

max
x,u1,...,us

{
S∑

s=1

psus|(x, us) ∈ clconvHs,∀s
}

(4)

Indeed, for any feasible point (x, u1, . . . , uS) in H∗, (x, us) must
belong to Hs, implying that (x, us) ∈ clconvHs. Hence H∗ ⊆
Ĥ∗, implying that optimizing over Ĥ∗ provides an upper bound on
H∗. On the other hand, Ĥ∗ will in general have points not belong-
ing to H∗ and thus the relaxation can lead to an overestimation.

For example, consider the disjunctive program in (3). (x1 =
2
3
, x2 = 1

3
, u1 = 2

3
, u2 = 0) does not belong to H∗ since −x1 +

x2 ≤ 0 but u2 � −x1 + x2 = − 1
3

. However the point belongs
to Ĥ∗ because: i) (x1 = 2

3
, x2 = 1

3
, u1 = 2

3
) belongs to H1 ⊆

clconvH1; ii) (x1 = 2
3
, x2 = 1

3
, u2 = 0) belongs to clconvH2, as

it is the convex combination of two points in H2: (x1 = 1
2
, x2 =

1
2
, u2 = 1

2
) and (x1 = 1, x2 = 0, u2 = −1),

(
2

3
,

1

3
, 0) =

2

3
× (

1

2
,

1

2
,

1

2
) +

1

3
× (1, 0,−1).

The upper bound LP (4) has O(NJS) number of variables and
constraints, and can be written as the following two-stage problem
by explicitly representing clconvHs:

max
x

S∑

s=1

psus(x)

s.t. Ax � b,x � 0

(5)

where us(x) is defined to be the optimal value of,

max
χsj ,ψ

s
j ,θ

s
j

J∑

j=1

ψsj , ψ
s
j ≥ 0, ∀j

s.t.

S∑

j=1

χsj = x, χsj � 0, ∀j

S∑

j=1

θsj = 1, θsj ≥ 0,∀j



A −b 0
Ds
j dsj 0

−(µsj)
T −µsj,0 1





χsj
θsj
ψsj


 � 0, ∀j

(6)

Although written in two stages, the above formulation is in fact
a single linear program, as both stages are maximization prob-
lems and combining the two stages will not produce any non-linear
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terms. We display formulations (5) and (6) in order to reveal the
block structure for further speedup as explained below.

Note that so far, we have only derived the relaxation for the root
node of HUNTER’s search tree, without assigning any type to a
pure strategy. This relaxation is also applied to other internal nodes
in HUNTER’s search tree. For example, if type s is assigned to
pure strategy j, the leader’s strategy space is further restricted by
the addition of constraints of Ds

jx + dsj � 0 to the original con-
straints Ax � b,x � 0. That is, we now have A′x � b′,x � 0,

where A′ =

(
Ds
j

A

)
and b′ =

(
−dsj
b

)
.

3.3 Bender’s Decomposition
Although much easier than solving a full Bayesian Stackelberg

game, solving the upper bound LP can still be computationally
challenging. Here we invoke the block structure of (4) we observed
above, which partitioned it into (5) and (6), where, (5) is a mas-
ter problem and (6) for s = 1, . . . , S are S subproblems. This
block structure allows us to solve the upper bound LP efficiently us-
ing multi-cut Bender’s Decomposition [4]. Generally speaking, the
computational difficulty of optimization problems increases signif-
icantly with the number of variables and constraints. Instead of
considering all variables and constraints of a large problem simul-
taneously, Bender’s decomposition partitions the problem into mul-
tiple smaller problems, which can then be solved in sequence. For
completeness, we now briefly describe the technique.

In Bender’s decomposition, the second-stage maximization prob-
lem (6) is replaced by its dual minimization counterpart, with dual
variables λsj ,π

s, ηs for s = 1, . . . , S:

us(x) = min
λsj�0,πs,ηs

(πs)Tx + ηs

s.t.




AT (Ds
j )

T −µsj
−bT (dsj)

T −µsi,0
0T 0T 1


λsj +



πs

ηs

−1


 � 0, ∀i

(7)

Since the feasible region of (7) is independent of x, its optimal
solution is reached at one of a finite number of extreme points (of
the dual variables). Since us(x) is the minimum of (πs)Tx +
ηs over all possible dual points, we know the following inequality
must be true in the master problem,

us ≤ (πsk)Tx + ηsk, k = 1, . . . ,K (8)

where (πsk, η
s
k), k = 1, . . . ,K are all the dual extreme points.

Constraints of type (8) for the master problem are called optimality
cuts (infeasibility cuts, another type of constraint, turn out not to be
relevant for our problem).

Since there are typically exponentially many extreme points for
the dual formulation (7), generating all constraints of type (8) is
not practical. Instead, Bender’s decomposition starts by solving
the master problem (5) with a subset of these constraints to find a
candidate optimal solution (x∗, u1,∗, . . . , uS,∗). It then solves S
dual subproblems (7) to calculate us(x∗). If all the subproblems
have us(x∗) = us,∗, the algorithm stops. Otherwise for those
us(x∗) < us,∗, the corresponding constraints of type (8) are added
to the master program for the next iteration.

3.4 Reusing Bender’s Cuts
We can further speed up the upper bound LP computation at in-

ternal nodes of HUNTER’s search tree by not creating all of the
Bender’s cuts from scratch; instead, we can reuse Bender’s cuts
from the parent node in its children. Suppose us ≤ (πs)Tx + ηs

is a Bender’s cut in the parent node. This means us cannot be
greater than (πs)Tx + ηs for any x in the feasible region of the

parent node. Because a child node’s feasible region is always more
restricted than its parent’s, we can conclude us cannot be greater
than (πs)Tx+ηs for any x in the child node’s feasible region, i.e.,
us ≤ (πs)Tx + ηs must also be a valid cut for the child node.

3.5 Heuristic Branching Rules
Given an internal node in the search tree of HUNTER, we must

decide on the type to branch on next, i.e., the type for which J child
nodes will be created at the next lower level of the tree. As we show
in Section 5 below, the type selected to branch on has a significant
effect on efficiency. Intuitively, we should select a type whereby
the upper bound at these children nodes will decrease most signifi-
cantly. To that end, HUNTER chooses the type whose θs returned
by (6) violates the integrality constraint the most. Recall that θs

is used to generate convex combinations. The motivation here is
that if all θs returned by (6) are integer vectors, the solution of
the upper bound LP (5) and (6) is a feasible point of the original
problem (2), implying the relaxation already returns the optimal
solution. More specifically, as suggested in [7], HUNTER chooses
type s∗ whose corresponding θs

∗
has the maximum entropy, i.e.,

s∗ = arg maxs−
∑J
j=1 θ

s
j log θsj .

4. CONTINUOUS UNCERTAINTY IN STACK-
ELBERG GAMES

This section extends HUNTER to handle continuous uncertainty
via the sample average approximation technique [1]. We first intro-
duce the uncertain Stackelberg game model with continuously dis-
tributed uncertainty in leader’s execution, follower’s observation,
and both players’ utilities. Then we show the uncertain Stackelberg
game model can be written as a two-stage mixed-integer stochas-
tic program, to which existing convergence results of the sample
average approximation technique apply. Finally, we show the sam-
pled problems are equivalent to Bayesian Stackelberg games, and
consequently could also be solved by HUNTER.

4.1 Uncertain Stackelberg Game Model
We consider the following types of uncertainty in Stackelberg

games with known distributions. First, similar to [10], we assume
there is uncertainty in both the leader and the follower’s utilities U
and V . Second, similar to [16], we assume the leader’s execution
and the follower’s observation are noisy. In particular, we assume
the executed strategy and observed strategy are linear perturbations
of the intended strategy, i.e., when the leader commits to x, the
actual executed strategy is y = FTx+ f and the observed strategy
by the follower is z = GTx + g, where (F, f) and (G,g) are
uncertain. Here f and g are used to represent the execution and
observation noise that is independent on x. In addition, F and G
areN×N matrices allowing us to model execution and observation
noise that is linearly dependent on x. Note that G and g can be
dependent on F and f . For example, we can represent an execution
noise that is independent of x and follows a Gaussian distribution
with 0 mean using F = IN and f ∼ N (0,Σ), where IN is the
N × N identity matrix. We assume U , V , F , f , G, and g are
random variables, following some known continuous distributions.
We use a vector ξ = (U, V, F, f , G,g) to represent a realization
of the above inputs, and we use the notation ξ(ω) to represent the
corresponding random variable.

We now show the uncertain Stackelberg game can be written as
a two-stage mixed-integer stochastic program. Let Q(x, ξ) be the
leader’s utility for a strategy x and a realization ξ, assuming the
follower chooses the best response. The first stage maximizes the
expectation of leader’s utility with respect to the joint probability
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distribution of ξ(ω), i.e., max
x
{E[Q(x, ξ(ω))]|Ax � b,x � 0}.

The second stage computes Q(x, ξ)2:

Q(x, ξ) = µT
i∗(F

Tx + f) + µi∗,0
where i∗ = arg maxmi=1 ν

T
i (GTx + g) + νi,0.

(9)

4.2 Sample Average Approximation
Sample average approximation is a popular solution technique

for stochastic programs with continuously distributed uncertainty [1].
It can be applied to solving uncertain Stackelberg games as follows.
First, a sample ξ1, . . . , ξS of S realizations of the random vector
ξ(ω) is generated. The expected value function E[Q(x, ξ(ω))] can
then be approximated by the sample average function 1

S

∑S
s=1Q(x, ξs).

The sampled problem is given by,

max
x

{
S∑

s=1

1

S
Q(x, ξs)|Ax � b,x � 0

}
. (10)

The sampled problem provides tighter and tighter statistical upper
bound of the true problem with increasing number of samples [11];
the number of samples required to solve the true problem to a cer-
tain accuracy grows linearly in the dimension of x [1].

In the sampled problem, each sample ξ corresponds to a tuple
(U, V, F, f , G,g). The following proposition shows ξ is equivalent
to some ξ̂ where F̂ = Ĝ = IN and f̂ = ĝ = 0, implying the
sampled execution and observation noise can be handled by simply
perturbing the utility matrices.

PROPOSITION 1. For any leader’s strategy x and follower’s
strategy j, both players get the same expected utilities in two noise
realizations (U, V, F, f , G,g) and (Û , V̂ , IN ,0, IN ,0), where,

Û =

(
1 fT

0 F

)
U, V̂ =

(
1 gT

0 G

)
V.

PROOF. We calculate both players’ expected utility vectors for
both noise realizations to establish the equivalence:

ÛT

(
1
x

)
= UT

(
1 0T

f FT

)(
1
x

)
= UT

(
1

FTx + f

)
.

V̂ T

(
1
x

)
= V T

(
1 0T

g GT

)(
1
x

)
= V T

(
1

GTx + g

)
.

A direct implication of Proposition 1 is that the sampled prob-
lem (10) and (9) is equivalent to a Bayesian Stackelberg game
of S equally weighted types, with utility matrices (Ûs, V̂ s), s =
1, . . . , S. Hence, via sample average approximation, HUNTER
could be used to solve Stackelberg games with continuous payoff,
execution, and observation uncertainty.

4.3 A Unified Approach
Applying sample average approximation in Bayesian Stackel-

berg games with discrete follower types, we are able to handle both
discrete and continuous uncertainty simultaneously using HUNTER.
The idea is to replace each discrete follower type by a set of sam-
ples of the continuous distribution, converting the original Bayesian
Stackelberg game to a larger one. The resulting problem could
again be solved by HUNTER, providing a solution robust to both
types of uncertainty.

2(9) can be formulated as a mixed-integer linear program as in [12]

5. EXPERIMENTAL RESULTS
Since none of the existing algorithm can handle both discrete

and continuous uncertainty in Stackelberg games, we conduct three
sets of experiments considering i) only discrete uncertainty, ii) only
continuous uncertainty, and iii) both types of uncertainty . The util-
ity matrices were randomly generated from a uniform distribution
between -100 and 100. Results were obtained on a standard 2.8GHz
machine with 2GB main memory, and were averaged over 30 trials.

5.1 Handling Discrete Follower Types
For discrete uncertainty, we compare the runtime of HUNTER

with DOBSS [12] and HBGS [8] (specifically, HBGS-F, the most
efficient variant), the two best known algorithms for general Bayesian
Stackelberg games. We compare these algorithms, varying the num-
ber of types and the number of pure strategies per player. The tests
use a cutoff time of one hour for all three algorithms.

Figure 5(a) shows the performance of the three algorithms when
the number of types increases. The games tested in this set have
5 pure strategies for each player. The x-axis shows the number
of types, while the y-axis shows the runtime in seconds. As can
be seen in Figure 5(a), HUNTER provides significant speed-up, of
orders of magnitude over both HBGS and DOBSS3(the line depict-
ing HUNTER is almost touching the x-axis in Figure 5(a)). For
example, we find that HUNTER can solve a Bayesian Stackelberg
game with 50 types in 17.7 seconds on average, whereas neither
HBGS nor DOBSS can solve an instance in an hour. Figure 5(b)
shows the performance of the three algorithms when the number
of pure strategies for each player increases. The games tested in
this set have 10 types. The x-axis shows the number of pure strate-
gies for each player, while the y-axis shows the runtime in seconds.
HUNTER again provides significant speed-up over both HBGS and
DOBSS. For example, HUNTER on average can solve a game with
13 pure strategies in 108.3 seconds, but HBGS and DOBSS take
more than 30 minutes.

We now turn to analyzing the contributions of HUNTER’s key
components to its performance. First, we consider the runtime of
HUNTER with two search heuristics, best-first (BFS) and depth-
first (DFS), when the number of types is further increased. We set
the pure strategies for each player to 5, and increase the number of
types from 10 to 200. In Table 1, we summarize the average run-
time and average number of nodes explored in the search process.
As we can see, DFS is faster than BFS when the number of types is
small, e.g., 10 types. However, BFS always explores significantly
fewer number of nodes than DFS and is more efficient when the
number types is large. For games with 200 types, the average run-
time of BFS based HUNTER is 20 minutes, highlighting its scal-
ability to a large number of types. Such scalability is achieved by
efficient pruning – for a game with 200 types, HUNTER explores
on average 5.3 × 103 nodes with BFS and 1.1 × 104 nodes with
DFS, compared to a total of 5200 = 6.2×10139 possible leaf nodes.

#Types 10 50 100 150 200
BFS Runtime (s) 5.7 17.7 178.4 405.1 1143.5

BFS #Nodes Explored 21 316 1596 2628 5328
DFS Runtime (s) 4.5 29.7 32.1 766.0 2323.5

DFS #Nodes Explored 33 617 3094 5468 11049

Table 1: Scalability of HUNTER to a large number of types
Second, we test the effectiveness of the two heuristics: inher-

itance of Bender’s cuts from parent node to child nodes and the
3The runtime results of HBGS and DOBSS are inconsistent with
the results in [8] because we use CPLEX 12 for solving mixed in-
teger linear program instead of GLPK which is used in [8].
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Figure 5: Experimental analysis of HUNTER and runtime comparison against HBGS, and DOBSS.

branching rule utilizing the solution returned by the upper bound
LP. We fix the number of pure strategies for each agent to 5 and
increase the number of types from 10 to 50. In Figure 5(c), we
show the runtime results of three variants of HUNTER: i) Variant-I
does not inherit Bender’s cuts and chooses a random type to create
branches; ii) Variant-II does not inherit Bender’s cuts and uses the
heuristic branching rule; iii) Variant-III (HUNTER) inherits Ben-
der’s cuts and uses the heuristic branching rule. The x-axis repre-
sents the number of types while the y-axis represents the runtime
in seconds. As we can see, each individual heuristic helps speed
up the algorithm significantly, showing their usefulness. For ex-
ample, it takes 14.0 seconds to solve an instance of 50 types when
both heuristics are enabled (Variant-III) compared to 51.5 seconds
when neither of them is enabled (Variant-I).

Finally, we consider the performance of HUNTER in finding
quality bounded approximate solutions. To this end, HUNTER is
allowed to terminate once the difference between the upper bound
and the lower bound decreases to η, a given error bound. The solu-
tion returned is therefore an approximate solution provably within
η of the optimal solution. In this set of experiment, we test 30
games with 5 pure strategies for each player and 50, 100, and 150
types with varying error bound η from 0 to 10. As shown in Fig-
ure 5(d), HUNTER can effectively trade off solution quality for
further speedup, indicating the effectiveness of its upper bound and
lower bound heuristics. For example, for games with 100 types,
HUNTER returns within 30 seconds a suboptimal solution at most
5 away from the optimal solution (the average optimal solution
quality is 60.2). Compared to finding the global optimal solution
in 178 seconds, HUNTER is able to achieve six-fold speedup by
allowing at most 5 quality loss.

5.2 Handling Continuous Uncertainty
For continuous uncertainty, ideally we want to compare HUNTER

with other algorithms that handle continuous execution and obser-
vation uncertainty in general Stackelberg games; but no such algo-
rithm exists. Hence we restrict our investigation to the more re-
stricted security games [9], so that two previous robust algorithms
BRASS [13] and RECON [16] can be used in such a comparison.
To introduce the uncertainty in these security games, we assume
the defender’s execution and the attacker’s observation uncertainty
follows independent uniform distributions. That is, for an intended
defender strategy x = 〈x1, . . . , xN 〉, where xi represents the prob-
ability of protecting target i, we assume the maximum execution
error associated with target i is αi, and the actual executed strat-
egy is y = 〈y1, . . . , yN 〉, where yi follows a uniform distribution
between xi − αi and xi + αi for each i. Similarly, we assume
the maximum observation error for target i is βi, and the actual ob-
served strategy is z = 〈z1, . . . , zN 〉, where zi follows a uniform
distribution between yi − βi and yi + βi for each i. The definition
of maximum errorα and β is consistent with the definition in [16].

We use HUNTER with 20 samples and 100 samples to solve the
problem above via sample average approximation as described in
Section 4. For each setting, we repeat HUNTER 20 times with dif-
ferent sets of samples and report the best solution found (as shown
below, HUNTER’s competitors also try 20 settings and choose the
best). Having generated a solution with 20 or 100 samples, evaluat-
ing its actual quality is difficult in the continuous uncertainty model
– certainly any analytical evaluation is extremely difficult. There-
fore, to provide an accurate estimation of the actual quality, we
draw 10, 000 samples from the uncertainty distribution and evalu-
ate the solution using these samples.

For comparison, we consider two existing robust solution meth-
ods BRASS [13] and RECON [16]. As experimentally tested in [10],
when its parameter ε is chosen carefully, BRASS strategy is one of
the top performing strategy under continuous payoff uncertainty.
RECON assumes a maximum execution error α and a maximum
observation error β, computing the risk-averse strategy for the de-
fender that maximizes the worst-case performance over all possible
noise realization. To provide a more meaningful comparison, we
find solutions of BRASS / RECON repeatedly with multiple set-
tings of parameters and report the best one. For BRASS, we test 20
ε settings, and for RECON, we set α = β and test 20 settings.

In our experiments, we test on 30 random generated security
games with five targets and one resource. The maximum execu-
tion and observation error is set to α = β = 0.1. The utili-
ties in the game are drawn from a uniform distribution between
−100 and +100. Nonetheless, the possible optimal solution qual-
ity lies in a much narrower range. Over the 30 instances we tested,
the optimal solution quality we found by any algorithm varies be-
tween -26 and +17. In Table 2, we show the solution quality of
HUNTER compared to BRASS and RECON respectively. #Wins
shows the number of instances out of 30 where HUNTER returns
a better solution than BRASS / RECON. Avg. Diff. shows the av-
erage gain of HUNTER over BRASS (or RECON), and the aver-
age solution quality of the corresponding algorithm (shown in the
parentheses). Max. Diff. shows the maximum gain of HUNTER
over BRASS (or RECON), and the solution quality of the corre-
sponding instance and algorithm (shown in the parentheses). As
we can see, HUNTER with 20 and 100 samples outperforms both
BRASS and RECON on average. For example, RECON on av-
erage returns a solution with quality of −5.1, while even with 20
samples, the average gain HUNTER achieves over RECON is 0.6.
The result is statistically significant with a paired t-test value of
8.9× 10−6 and 1.0× 10−3 for BRASS and RECON respectively.
Indeed, when the number of samples used in HUNTER increases
to 100, HUNTER is able to outperform both BRASS and RECON
in every instance tested. Not only is the average difference in this
case statistically significant, but the actual solution quality found
by HUNTER– as shown by max difference – can be significantly
better in practice than solutions found by BRASS and RECON.
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HUNTER-20 vs. HUNTER-100 vs.
BRASS RECON BRASS RECON

#Wins 27 24 30 30
Avg. Diff. 0.7(-5.2) 0.6(-5.1) 0.9(-5.2) 0.8(-5.1)
Max. Diff. 2.4(7.6) 4.0(-16.1) 3.31(7.6) 4.4(-16.1)

Table 2: Quality gain of HUNTER against BRASS and RECON
under continuous execution and observation uncertainty.

5.3 Handling Both Types of Uncertainty
In our last experiment, we consider Stackelberg games with both

discrete and continuous uncertainty. Since no previous algorithm
can handle both, we only show the runtime results of HUNTER. We
test on security games with five targets and one resource, and with
multiple discrete follower types whose utilities are randomly gen-
erated. For each type, we use the same utility distribution and the
same execution and observation uncertainty as in Section 5.2. Ta-
ble 3 summarizes the runtime results of HUNTER for 3, 4, 5, 6 fol-
lower types, and 10, 20 samples per type. As we can see, HUNTER
can efficiently handle both uncertainty simultaneously. For exam-
ple, HUNTER spends less than 4 minutes on average to solve a
problem with 5 follower types and 20 samples per type.

#Discrete Types 3 4 5 6
10 Samples 4.9 12.8 29.3 54.8
20 Samples 32.4 74.6 232.8 556.5

Table 3: Runtime results (in seconds) of HUNTER for handling
both discrete and continuous uncertainty.

6. CONCLUSIONS
With increasing numbers of real-world security applications of

leader-follower Stackelberg games, it is critical that we address un-
certainty in such games, including discrete attacker types and con-
tinuous uncertainty such as the follower’s observation noise, the
leader’s execution error, and both players’ payoffs uncertainty. Pre-
viously, researchers have designed specialized sets of algorithms to
handle these different types of uncertainty, e.g. algorithms for dis-
crete follower types [8, 12] have been distinct from algorithms that
handle continuous uncertainty [10]. However, in the real-world, a
leader may face all of this uncertainty simultaneously, and thus we
desire a single unified algorithm that handles all this uncertainty.

To that end, this paper provides a novel unified algorithm, called
HUNTER, that handles discrete and continuous uncertainty by scal-
ing up Bayesian Stackelberg games. The paper’s contributions are
in two parts. First it proposes the HUNTER algorithm. The novelty
of HUNTER is in combining AI search techniques (e.g. best first
search and heuristics) with techniques from Operations Research
(e.g. disjunctive programming and Bender’s decomposition). None
of these are out-of-the-box techniques, however, and most of these
techniques had not been applied earlier in the context of Stackel-
berg games even in isolation. Our novel contributions are in al-
gorithmically specifying how these can be applied (and applied in
conjunction with one another) within the context of Stackelberg
games. The result is that HUNTER provides speedups of orders of
magnitude over existing algorithms.

Second, we show that via sample average approximation, HUNTER
handles continuously distributed uncertainty. While no algorithm
other than HUNTER exists to handle such continuous uncertainty
in general Stackelberg games, we find, even in restricted settings
of security games, HUNTER performs better than competitors fo-
cusing on robust solutions [16, 13]. Finally, the paper illustrates

HUNTER’s unique ability to handle both discrete and continuous
uncertainty simultaneously within a single problem.
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ABSTRACT
The burgeoning area of security games has focused on real-world
domains where security agencies protect critical infrastructure from
a diverse set of adaptive adversaries. There are security domains
where the payoffs for preventing the different types of adversaries
may take different forms (seized money, reduced crime, saved lives,
etc) which are not readily comparable. Thus, it can be difficult to
know how to weigh the different payoffs when deciding on a secu-
rity strategy. To address the challenges of these domains, we pro-
pose a fundamentally different solution concept, multi-objective se-
curity games (MOSG), which combines security games and multi-
objective optimization. Instead of a single optimal solution, MOSGs
have a set of Pareto optimal (non-dominated) solutions referred
to as the Pareto frontier. The Pareto frontier can be generated
by solving a sequence of constrained single-objective optimiza-
tion problems (CSOP), where one objective is selected to be max-
imized while lower bounds are specified for the other objectives.
Our contributions include: (i) an algorithm, Iterative ε-Constraints,
for generating the sequence of CSOPs; (ii) an exact approach for
solving an MILP formulation of a CSOP (which also applies to
multi-objective optimization in more general Stackelberg games);
(iii) heuristics that achieve speedup by exploiting the structure of
security games to further constrain a CSOP; (iv) an approximate
approach for solving an algorithmic formulation of a CSOP, in-
creasing the scalability of our approach with quality guarantees.
Additional contributions of this paper include proofs on the level
of approximation and detailed experimental evaluation of the pro-
posed approaches.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed artificial intelligence—
Intelligent agents

General Terms
Algorithms, Performance, Security

Keywords
Game Theory, Security, Multi-objective Optimization

1. INTRODUCTION
Game theory is an increasingly important paradigm for model-

ing security domains which feature complex resource allocation [5,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2]. Security games, a special class of attacker-defender Stackel-
berg games, are at the heart of several major deployed decision-
support applications. Such systems include ARMOR at LAX air-
port [8], IRIS deployed by the US Federal Air Marshals Service [8],
GUARDS developed for the US Transportation Security Adminis-
tration [1], and PROTECT used in the Port of Boston by the US
Coast Guard [1].

In these applications, the defender is trying to maximize a single
objective. However, there are domains where the defender has to
consider multiple objectives simultaneously. For example, the Los
Angeles Sheriff’s Department (LASD) needs to protect the city’s
metro system from ticketless travelers, common criminals, and ter-
rorists.1 From the perspective of LASD, each one of these attacker
types provides a unique threat (lost revenue, property theft, and
loss of life). Given this diverse set of threats, selecting a security
strategy is a significant challenge as no single strategy can mini-
mize the threat for all attacker types. Thus, tradeoffs must be made
and protecting more against one threat may increase the vulnera-
bility to another threat. However, it is not clear how LASD should
weigh these threats when determining the security strategy to use.
One could attempt to establish methods for converting the different
threats into a single metric. However, this process can become con-
voluted when attempting to compare abstract notions such as safety
and security with concrete concepts such as ticket revenue.

Bayesian security games have been used to model domains where
the defender is facing multiple attacker types. The threats posed by
the different attacker types are weighted according to the relative
likelihood of encountering that attacker type. There are three po-
tential factors limiting the use of Bayesian security games: (1) the
defender may not have information on the probability distribution
over attacker types, (2) it may be impossible or undesirable to di-
rectly compare and combine the defender rewards of different secu-
rity games, and (3) only one solution is given, hiding the trade-offs
between the objectives from the end user.

Thus, for many domains, including the LASD metro system,
we propose a new game model, multi-objective security games
(MOSG), which combines game theory and multi-objective opti-
mization. The threats posed by the attacker types are treated as
different objective functions which are not aggregated, thus elim-
inating the need for a probability distribution over attacker types.
Unlike Bayesian security games which have a single optimal solu-
tion, MOSGs have a set of Pareto optimal (non-dominated) solu-
tions which is referred to as the Pareto frontier. By presenting the
Pareto frontier to the end user, they are able to better understand the
structure of their problem as well as the tradeoffs between different
security strategies. As a result, end users are able to make a more
informed decision on which strategy to enact. For instance, LASD

1http://sheriff.lacounty.gov

863



has provided explicit feedback that rather than having a single op-
tion handed to them, they would prefer to be presented with a set of
alternative strategies from which they can make a final selection.

In this paper, we describe the new MOSG solution concept and
provide a set of algorithms for computing Pareto optimal solu-
tions for MOSGs. Our key contributions include (i) Iterative ε-
Constraints, an algorithm for generating the Pareto frontier for MOSGs
by producing and solving a sequence of constrained single-objective
optimization problems (CSOP); (ii) an exact approach for solving
a mixed-integer linear program (MILP) formulation of a CSOP
(which also applies to multi-objective optimization in more gen-
eral Stackelberg games); (iii) heuristics that exploit the structure of
security games to speedup solving CSOPs; and (iv) an approximate
approach for solving CSOPs, which greatly increases the scalabil-
ity of our approach while maintaining quality guarantees. Addi-
tionally, we provide analysis of the complexity and completeness
for all of our algorithms as well as experimental results.

2. MOTIVATING DOMAINS
As mentioned earlier, LASD must protect the Los Angeles metro

system from ticketless travelers, criminals, and terrorists. Each
type of perpetrator is distinct and presents a unique set of chal-
lenges. Thus, LASD may have different payoffs for preventing the
various perpetrators. Targeting ticketless travelers will increase the
revenue generated by the metro system as it will encourage passen-
gers to purchase tickets. Pursuing criminals will reduce the amount
of vandalism and property thefts, increasing the overall sense of
passenger safety. Focusing on terrorists could help to prevent or
mitigate the effect of a future terrorist attack, potentially saving
lives. LASD has finite resources with which to protect all of the
stations in the city. Thus, it is not possible to protect all stations
against all perpetrators at all times. Therefore, strategic decisions
must be made such as where to allocate security resources and for
how long. These allocations should be determined by the amount
of benefit they provide to LASD. However, if preventing different
perpetrators provides different, incomparable benefits to LASD, it
may be unclear how to decide on a strategy. In such situations, a
multi-objective security game model could be of use, since the set
of Pareto optimal solutions can explore the trade-offs between the
different objectives. LASD can then select the solution they feel
most comfortable with based on the information they have.

3. MULTI-OBJECTIVE SECURITY GAMES
A multi-objective security game is a multi-player game between

a defender and n attackers.2 The defender tries to prevent attacks
by covering targets T = {t1, t2, . . . , t|T |} using m identical re-
sources which can be distributed in a continuous fashion amongst
the targets. The defender’s strategy can be represented as a cover-
age vector c∈C where ct is the amount of coverage placed on tar-
get t and represents the probability of the defender successfully pre-
venting any attack on t [9]. C={〈ct〉|0 ≤ ct ≤ 1,

∑
t∈T ct ≤ m}

is the defender’s strategy space. The attacker i’s mixed strategy
ai=〈ati〉 is a vector where ati is the probability of attacking t.
U defines the payoff structure for an MOSG, with Ui defining

the payoffs for the security game played between the defender and
attacker i. Uc,di (t) is the defender’s utility if t is chosen by attacker
i and is fully covered by a defender resource. If t is not covered,
the defender’s penalty is Uu,di (t). The attacker’s utility is denoted
similarly by Uc,ai (t) and Uu,ai (t). A property of security games
2The defender does actually face multiple attackers of different
types, however, these attackers are not coordinated and hence the
problem we address is different than in [10].

is that Uc,di (t) > Uu,di (t) and Uu,ai (t) > Uc,ai (t) which means
that placing more coverage on a target is always beneficial for the
defender and disadvantageous for the attacker [9]. For a strategy
profile 〈c,ai〉 for the game between the defender and attacker i,
the expected utilities for both agents are given by:

Udi (c,ai)=
∑

t∈T
atiU

d
i (ct, t), Uai (c,ai)=

∑

t∈T
atU

a
i (ct, t)

where Udi (ct, t) = ctU
c,d
i (t) + (1− ct)Uu,di (t) and Uai (ct, t) =

ctU
c,a
i (t)+(1−ct)Uu,di (t) are the payoff received by the defender

and attacker i, respectively, if target t is attacked and is covered
with ct resources.

The standard solution concept for a two-player Stackelberg game
is Strong Stackelberg Equilibrium (SSE) [14], in which the de-
fender selects an optimal strategy based on the assumption that the
attacker will choose an optimal response, breaking ties in favor of
the defender. We denote Udi (c) and Uai (c) as the payoff received
by the defender and attacker i, respectively, when the defender uses
the coverage vector c and attacker i attacks the best target while
breaking ties in favor of the defender.

With multiple attackers, the defender’s utility (objective) space
can be represented as a vector Ud(c) = 〈Udi (c)〉. An MOSG de-
fines a multi-objective optimization problem:

max
c∈C

(
Ud1 (c), . . . , Udn(c)

)

Solving such multi-objective optimization problems is a funda-
mentally different task than solving a single-objective optimization
problem. With multiple objectives functions there exist tradeoffs
between the different objectives such that increasing the value of
one objective decreases the value of at least one other objective.
Thus for multi-objective optimization, the traditional concept of
optimality is replaced by Pareto optimality.

DEFINITION 1. (Dominance). A coverage vector c ∈ C is said
to dominate c′ ∈ C if Udi (c) ≥ Udi (c′) for all i= 1, . . . , n and
Udi (c) > Udi (c′) for at least one index i.

DEFINITION 2. (Pareto Optimality) A coverage vector c ∈ C
is Pareto optimal if there is no other c′ ∈ C that dominates c.
The set of non-dominated coverage vectors is called Pareto optimal
solutions C∗ and the corresponding set of objective vectors Ω =
{Ud(c)|c ∈ C∗} is called the Pareto frontier.

This paper gives algorithms to find Pareto optimal solutions in
MOSGs. If there are a finite number of Pareto optimal solutions, it
is preferable to generate all of them for the end-user. If there are an
infinite number of Pareto optimal solutions, it is impossible to gen-
erate all the Pareto optimal solutions. In this case, it is necessary to
generate a subset of Pareto optimal solutions that can approximate
the true Pareto frontier with quality guarantees. The methods we
present in this paper are a starting point for further analysis and ad-
ditional preference elicitation from end users, all of which depends
on fast approaches for generating the Pareto frontier.

4. RELATED WORK
MOSGs build on security games and multi-objective optimiza-

tion. We have already reviewed (in Section 1) the relationship
of MOSGs to previous work in security games and in particular
Bayesian security games. In this section, we primarily review the
research on multi-objective optimization. There are three repre-
sentative approaches for generating the Pareto frontier in multi-
objective optimization problems. Weighted summation [4], where
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the objective functions are assigned weights and aggregated, pro-
ducing a single Pareto optimal solution. The Pareto frontier can
then be explored by sampling different weights. Another approach
is multi-objective evolutionary algorithms (MOEA) [6]. Evolu-
tionary approaches such as NSGA-II [7] are capable of generat-
ing multiple approximate solutions in each iteration. However, due
to their stochastic nature, both weighted summation and MOEA
cannot bound the level of approximation for the generated Pareto
frontier. This lack of solution quality guarantees is unacceptable
for security domains on which we are focused.

The third approach is the ε-constraint method in which the Pareto
frontier is generated by solving a sequence of CSOPs. One ob-
jective is selected as the primary objective to be maximized while
lower bound constraints are added for the secondary objectives.
The original ε-constraint method [4] discretizes the objective space
and solves a CSOP for each grid point. This approach is computa-
tionally expensive since it exhaustively searches the objective space
of secondary objectives. There has been work to improve upon the
original ε-constraint method. [11] proposes an adaptive technique
for constraint variation that leverages information from solutions of
previous CSOPs. However, this method requires solving O(kn−1)
CSOPs, where k is the number of solutions in the Pareto fron-
tier. Another approach, the augmented ε-constraint method [12]
reduces computation by using infeasibility information from pre-
vious CSOPs. However, this approach only returns a predefined
number of points and thus cannot bound the level of approximation
for the Pareto frontier. Our approach for solving an MOSG builds
upon the basic idea of the ε-constraint method. Security domains
demand both efficiency as well as quality guarantees when pro-
viding decision support. Our approach only needs to solve O(nk)
CSOPs and can provide approximation bounds.

5. ITERATIVE ε-CONSTRAINTS
The ε-constraint method formulates a CSOP for a given set of

constraints b, producing a single Pareto optimal solution. The
Pareto frontier is then generated by solving multiple CSOPs pro-
duced by modifying the constraints in b. This section presents
Iterative ε-Constraints, an algorithm for systematically generating
a sequence of CSOPs for an MOSG. These CSOPs can then be
passed to a solver Φ to return solutions to the MOSG. The next
two sections present 1) an exact MILP approach (Section 6) which
can guarantee that each solution is Pareto optimal and 2) a faster
approximate approach (Section 7) for solving CSOPs.

5.1 Algorithm for Generating CSOPs
Iterative ε-Constraints uses the following four key ideas: 1) The

Pareto frontier for an MOSG can be found by solving a sequence
of CSOPs. For each CSOP, Ud1 (c) is selected as the primary ob-
jective, which will be maximized. Lower bound constraints b are
then added for the secondary objectives Ud2 (c), . . . , Udn(c). 2) The
sequence of CSOPs are iteratively generated by exploiting previ-
ous Pareto optimal solutions and applying Pareto dominance. 3)
It is possible for a CSOP to have multiple coverage vectors c that
maximize Ud1 (c) and satisfy b. Thus, lexicographic maximization
is used to ensure that CSOP solver Φ only returns Pareto optimal
solutions. 4) It may be impractical (even impossible) to generate
all Pareto optimal points if the frontier contains a large number of
points, e.g., the frontier is continuous. Therefore, a parameter ε is
used to discretize the objective space, trading off solution efficiency
versus the degree of approximation in the generated Pareto frontier.

We now present a simple MOSG example with two objectives
and ε = 5. Figure 5.1 shows the objective space for the prob-
lem as well as several points representing the objective vectors for

Figure 1: Pareto Frontier for a Bi-Objective MOSG

different defender coverage vectors. In this problem, Ud1 will be
maximized while b2 constrains Ud2 . The initial CSOP is uncon-
strained (i.e., b2 = −∞), thus the solver Φ will maximize Ud1 and
return solution A = (100,10). Based on this result, we know that any
point v = {v1, v2} (e.g., B) is not Pareto optimal if v2 < 10, as it
would be dominated by A. We then generate a new CSOP, updating
the bound to b2 = 10 + ε. Solving this CSOP with Φ produces
solution C=(80, 25) which can be used to generate another CSOP
with b2 = 25 + ε. Both D=(60,40) and E=(60,60) satisfy b2 but
only E is Pareto optimal. Lexicographic maximization ensures that
only E is returned and dominated solutions are avoided (details in
Section 6). The method then updates b2 = 60 + ε and Φ returns
F=(30,70), which is part of a continuous region of the Pareto fron-
tier from Ud2 = 70 toUd2 = 78. The parameter ε causes the method
to select a subset of the Pareto optimal points in this continuous re-
gion. In particular this example returns G=(10,75) and in the next
iteration (b2 = 80) finds that the CSOP is infeasible and terminates.
The algorithm returns a Pareto frontier of A, C, E, F, and G.

Algorithm 1 systematically updates a set of lower bound con-
straints b to generate the sequence of CSOPs. Each time we solve
a CSOP, a portion of the n − 1 dimensional space formed by the
secondary objectives is marked as searched with the rest divided
into n − 1 subregions (by updating b for each secondary objec-
tive). These n − 1 subregions are then recursively searched by
solving CSOPs with updated bounds. This systematic search forms
a branch and bound search tree with a branching factor of n − 1.
As the depth of the tree increases, the CSOPs are more constrained,
eventually becoming infeasible. If a CSOP is found to be infeasi-
ble, no child CSOPs are generated because they are guaranteed to
be infeasible as well. The algorithm terminates when the entire
secondary objective space has been searched.

Algorithm 1: Iterative-ε-Constraints(b={b2, . . . , bn})
1 if b /∈ previousBoundsList then
2 append(previousBoundsList,b) ;
3 c← Φ(b) ;
4 if c is a feasible solution then
5 v← {Ud1 (c), . . . , Udn(c)};
6 for 2 ≤ i ≤ n do
7 b′ ← b;
8 b′i ← vi + ε ;
9 if b′ 6≥ s, ∀s ∈ infeasibleBoundsList then

10 Iterative-ε-Constraints(b′) ;

11 else append(infeasibleBoundsList,b) ;

Two modifications are made to improve the efficiency of the al-
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gorithm. 1) Prevent redundant computation resulting from multiple
nodes having an identical set of lower bound constraints by record-
ing the lower bound constraints for all previous CSOPs in a list
called previousBoundsList. 2) Prevent the solving of CSOPs
which are known to be infeasible based on previous CSOPs by
recording the lower bound constraints for all infeasible CSOPs in a
list called infeasibleBoundsList.

5.2 Approximation Analysis
Assume the full Pareto frontier is Ω and the objective space of

the solutions found by the Iterative ε-Constraints method is Ωε.

THEOREM 3. Solutions in Ωε are non-dominated, i.e., Ωε⊆Ω.

PROOF. Let c∗ be the coverage vector such that Ud(c∗) ∈ Ωε
and assume that it is dominated by a solution from a coverage vec-
tor c̄. That means Udi (c̄) ≥ Udi (c∗) for all i = 1, . . . , n and
for some j, Udj (c̄) > Udj (c∗). This means that c̄ was a feasible
solution for the CSOP for which c∗ was found to be optimal. Fur-
thermore, the first time the objectives differ, the solution c̄ is better
and should have been selected in the lexicographic maximization
process. Therefore c∗ 6∈ Ωε which is a contradiction.

Given the approximation introduced by ε, one immediate ques-
tion is to characterize the efficiency loss. Here we define a bound
to measure the largest efficiency loss:

ρ(ε) = max
v∈Ω\Ωε

min
v′∈Ωε

max
1≤i≤n

(vi − v′i)

This approximation measure is widely used in multi-objective
optimization (e.g. [3]). It computes the maximum distance between
any point v ∈ Ω \Ωε on the frontier to its “closest” point v′ ∈ Ωε
computed by our algorithm. The distance between two points is the
maximum difference of different objectives.

THEOREM 4. ρ(ε) ≤ ε.
PROOF. It suffices to prove this theorem by showing that for any

v ∈ Ω \ Ωε, there is at least one point v′ ∈ Ωε such that v′1 ≥ v1

and v′i ≥ vi − ε for i > 1.
Algorithm 2 recreates the sequence of CSOP problems gener-

ated by Iterative ε-Constraints but ensuring that the bound b ≤ v
throughout. Since Algorithm 2 terminates when we do not update
b, this means that v′i+ ε > vi for all i > 1. Summarizing, the final
solution b and v′ = Ud(Φ(b)) satisfy b ≤ v and v′i > vi − ε
for all i > 1. Since v is feasible for the CSOP with bound b, but
Φ(b) = v′ 6= v then v′1 ≥ v1.

Given Theorem 4, the maximum distance for every objective be-
tween any missed Pareto optimal point and the closest computed
Pareto optimal point is bounded by ε. Therefore, as ε approaches 0,
the generated Pareto frontier approaches the complete Pareto fron-
tier in the measure ρ(ε). For example if there are k discrete solu-
tions in the Pareto frontier and the smallest distance between any
two is δ then setting ε = δ/2 will make Ωε = Ω. In this case, since
each solution corresponds to a non-leaf node in our search tree, the
number of leaf nodes is no more than (n−1)k. Thus our algorithm
will solve at most O(nk) CSOPs.

6. MILP APPROACH
In Section 5, we introduced a high level search algorithm for

generating the Pareto frontier by producing a sequence of CSOPs.
In this section we present an exact approach for defining and solv-
ing a mixed-integer linear program (MILP) formulation of a CSOP
for MOSGs. We then go on to show how heuristics that exploit the
structure and properties of security games can be used to improve
the efficiency of our MILP formulation.

Algorithm 2: For v ∈ Ω\Ωε, find v′ ∈ Ωε satisfying v′1 ≥ v1

and v′i ≥ vi − ε for i > 1

1 Let b be the constraints in the root node, i.e., bi = −∞ for i > 1 ;
2 repeat
3 c← Φ(b), v′ ← Ud(c), b′ ← b;
4 for each objective i > 1 do
5 if v′i + ε ≤ vi then
6 bi ← v′i + ε ;
7 break;

8 until b = b′;
9 return Φ(b) ;

max dλ (1)
1 ≤ j ≤ n, ∀t ∈ T : dj − Udj (ct, t) ≤M(1− atj) (2)

1 ≤ j ≤ n, ∀t ∈ T : 0 ≤ kj − Uaj (ct, t) ≤M(1− atj) (3)

1 ≤ j < λ : dj = d∗j (4)

λ < j ≤ n : dj ≥ bj (5)
1 ≤ j ≤ n, ∀t ∈ T : atj ∈ {0, 1} (6)

∀j ∈ A :
∑
t∈T a

t
j = 1 (7)

∀t ∈ T : 0 ≤ ct ≤ 1 (8)∑
t∈T ct ≤ m (9)

Figure 2: Lexicographic MILP Formulation for a CSOP

6.1 Exact MILP Method
As stated in Section 5, to ensure Pareto optimality of solutions

lexicographic maximization is required to sequentially maximizing
all the objective functions. Thus, for each CSOP we must solve
n MILPs in the worst case where each MILP is used to maximize
one objective. For the λth MILP in the sequence, the objective is to
maximize the variable dλ, which represents the defender’s payoff
for security game λ. This MILP is constrained by having to main-
tain the previously maximized values d∗j for 1 ≤ j < λ as well as
satisfy lower bound constraints bk for λ < k ≤ n.

We present our MILP formulation for a CSOP for MOSGs in
Figure 2. This is similar to the MILP formulations for security
games presented in [9] and elsewhere with the exceptions of Equa-
tions (4) and (5). Equation (1) is the objective function, which
maximizes the defender’s payoff for objective λ, dλ. Equation (2)
defines the defender’s payoff. Equation (3) defines the optimal re-
sponse for attacker j. Equation (4) constrains the feasible region to
solutions that maintain the values of objectives maximized in pre-
vious iterations of lexicographic maximization. Equation (5) guar-
antees that the lower bound constraints in b will be satisfied for all
objectives which have yet to be optimized.

If a mixed strategy is optimal for the attacker, then so are all the
pure strategies in the support of that mixed strategy. Thus, we only
consider the pure strategies of the attacker [13]. Equations (6) and
(7) constrain attackers to pure strategies that attack a single target.
Equations (8) and (9) specify the feasible defender strategy space.

Once the MILP has been formulated, it can be solved using an
optimization software package such as CPLEX. It is possible to
increase the efficiency of the MILP formulation by using heuristics
to constrain the decision variables. A simple example of a general
heuristic which can be used to achieve speedup is placing an upper
bound on the defender’s payoff for the primary objective. Assume
d1 is the defender’s payoff for the primary objective in the parent
CSOP and d′1 is the defender’s payoff for the primary objective in
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Variable Definition Dimension
λ Current Objective −
m Number of Defender Resources −
n Number of Attacker Types −
Z Huge Positive Constant −
T Set of Targets |T |
a Attacker Coverage atj n× |T |
b Objective Bounds bj (n− 1)× 1
c Defender Coverage ct |T | × 1
d Defender Payoff dj n× 1
d∗ Maximized Defender Payoff d∗j n× 1

k Attacker Payoff kj n× 1
Ud Defender Payoff Structure Udj (ct, t) n× |T |
Ua Attacker Payoff Structure Uaj (ct, t) n× |T |

Figure 3: MILP Formulation Definitions

the child CSOP. As each CSOP is a maximization problem, it must
hold that d1 ≥ d′1 because the child CSOP is more constrained than
the parent CSOP. Thus, the value of d1 can be passed to the child
CSOP to be used as an upper bound on the objective function.

As noted earlier, this MILP is a slight variation of the optimiza-
tion problem formulated in [9] for security games. The same varia-
tions can be made to more generic Stackelberg games, such as those
used for DOBSS [13], giving a formulation for multi-objective Stacke-
berg games in general.

6.2 Exploiting Game Structures
In addition to placing bounds on the defender payoff, it is possi-

ble to constrain the defender coverage in order to improve the effi-
ciency of our MILP formulation. Thus, we introduce an approach
for translating constraints on defender payoff into constraints on
defender coverage. This approach, ORIGAMI-M, achieves this
translation by computing the minimum coverage needed to sat-
isfy a set of lower bound constraints b such that Udi (c) ≥ bi for
1 ≤ i ≤ n. This minimum coverage is then added to the MILP in
Figure 2 as constraints on the variable c, reducing the feasible re-
gion and leading to significant speedup as verified in experiments.

ORIGAMI-M is a modified version of the ORIGAMI algorithm [9]
and borrows many of its key concepts. At a high level, ORIGAMI-
M starts off with an empty defender coverage vector c, a set of
lower bound constraints b, and m defender resources. We try
to compute a coverage c which uses the minimum defender re-
sources to satisfy constraints b. If a constraint bi is violated, i.e.,
Udi (c) < bi, ORIGAMI-M updates c by computing the minimum
additional coverage necessary to satisfy bi. Since we focus on sat-
isfying the constraint on one objective at a time, the constraints
for objectives that were satisfied in previous iterations may become
unsatisfied again. The reason is that additional coverage may be
added to the target that was attacked by this attacker type, caus-
ing it to become less attractive relative to other alternatives for the
attacker, and possibly reducing the defender’s payoff by changing
the target that is attacked. Therefore, the constraints in b must be
checked repeatedly until quiescence (no chances are made to c for
any bi). If all m resources are exhausted before b is satisfied, then
the CSOP is infeasible.

The process for calculating minimum coverage for a single con-
straint bi is built on two properties of security games [9]: (1) the
attacker chooses the optimal target; (2) the attacker breaks ties in
favor of the defender. The set of optimal targets for attacker i for
coverage c is referred to as the attack set, Γi(c). Accordingly,
adding coverage on target t /∈ Γi does not affect the attacker i’s
strategy or payoff. Thus, if c does not satisfy bi, we only consider
adding coverage to targets in Γi. Γi can be expanded by increasing
coverage such that the payoff for each target in Γi is equivalent to
the payoff for the next most optimal target. Adding an additional

target to the attack set cannot hurt the defender since the defender
receives the optimal payoff among targets in the attack set.

Algorithm 3: ORIGAMI-M(b)

1 c← empty coverage vector ;
2 while bi > Udi (c) for some bound bi do
3 sort targets T in decreasing order of value by Uai (ct, t);
4 left←m−∑t∈T ct, next← 2;
5 while next ≤ |T | do
6 addedCov[t]← empty coverage vector;
7 if max1≤t<next U

c,a
i (t) > Uai (cnext, tnext) then

8 x← max1≤t<next U
c,a
i (t);

9 noninducibleNextTarget← true;
10 else
11 x← Uai (cnext, tnext);

12 for 1 ≤ t < next do
13 addedCov[t]← x−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

− ct;

14 if
∑
t∈T addedCov[t] > left then

15 resourcesExceeded← true;
16 ratio[t]← 1

U
u,a
i (t)−Uc,ai (t)

, ∀1 ≤ t < next;

17 addedCov[t] =
ratio[t]·left∑

1≤t≤next ratio[t]
,∀1 ≤ t < next;

18 if Udi (c + addedCov) ≥ bi then
19 c′ ←MIN-COV(i, c,b);
20 if c′ 6= null then
21 c← c′

22 break;

23 else if resourcesExceeded ∨ noninducibleNextTarget then
24 return infeasible;

25 else
26 ct += addedCov[t],∀t ∈ T ;
27 left −=

∑
t∈T addedCov[t];

28 next++;

29 if next = |T |+ 1 then
30 if left > 0 then
31 c←MIN-COV(i, c,b);
32 if c = null then
33 return infeasible;

34 else
35 return infeasible;

36 return c ;

The idea for ORIGAMI-M is to expand the attack set Γi un-
til bi is satisfied. The order in which the targets are added to Γi
is by decreasing value of Uai (ct, t). Sorting these values, so that
Uai (c1, t1) ≥ Uai (c2, t2) ≥ · · · ≥ Uai (c|T |, t|T |), we have that
Γi(c) starts only with target t1. Assume that the attack set includes
the first q targets. To add the next target, the attacker’s payoff for all
targets in Γi must be reduced to Uai (cq+1, tq+1) (Line 11). How-
ever, it might not be possible to do this. Once a target t is fully cov-
ered by the defender, there is no way to decrease the attacker’s pay-
off below Uc,ai (t). Thus, if max1≤t≤q U

c,a
i (t) > Uai (cq+1, tq+1)

(Line 7), then it is impossible to induce the adversary i to attack
target tq+1. In that case, we must reduce the attacker’s payoff for
targets in the attack set to max1≤t≤q U

c,a
i (t) (Line 8). Then for

each target t ∈ Γi, we compute the amount of additional coverage,
addCov[t], necessary to reach the required attacker payoff (Line
13). If the total amount of additional coverage exceeds the amount
of remaining coverage, then addedCov is recomputed and each
target in the attack set is assigned ratio of the remaining coverage
so to maintain the attack set (Line 17). There is then a check to see
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if c + addedCov satisfies bi (Line 18). If bi is still not satisfied,
then the coverage c is updated to include addedCov (Line 26) and
the process is repeated for the next target (Line 28).

Algorithm 4: MIN-COV(i, c,b)

1 Input: Game index i, initial coverage c, lower bound b;
2 c∗ ← null;
3 minResources← m;
4 foreach t′ ∈ Γi(c) do
5 c′ ← c ;

6 c′
t′ =

bi−Uu,ai (t′)
U
c,a
i (t′)−Uu,ai (t′) ;

7 foreach t ∈ T \ {t′} do
8 if Uai (c′t, t) > Uai (c′

t′ , t
′) then

9 c′t =
Uai (c′

t′ ,t
′)−Uu,ai (t)

U
c,a
i (t)−Uu,ai (t)

;

10 if Udi (c′) ≥ bi and
∑
t∈T c

′
t ≤ minResources then

11 c∗ ← c′;
12 minResources←∑

t∈T c
′
t ;

13 return c∗

Then if c + addedCov expands Γi and exceeds bi, it may be
possible to use less defender resources and still satisfy bi. Thus we
use the algorithm MIN-COV to compute, ∀t′ ∈ Γi, the amount of
coverage needed to induce an attack on t′ which yields a defender
payoff of bi. For each t′, MIN-COV generates a defender coverage
vector c′, which is initialized to the current coverage c. Coverage
c′t′ is updated such that the defender payoff for t′ is bi, yielding an
attacker payoff Uai (c′t′ , t

′) (Line 6). The coverage for every other
target t ∈ T \ {t′} is updated, if needed, to ensure that t′ remains
in Γi, i.e. Uai (c′t′ , t

′) ≥ Uai (c′t, t) (Line 9). After this process,
c′ is guaranteed to satisfy bi. From the set of defender coverage
vectors, MIN-COV returns the c′ which uses the least amount of
defender resources. If while computing the additional coverage to
added, either Γi is the set of all targets or all m security resources
are exhausted, then both bi and the CSOP are infeasible.

If b is satisfiable, ORIGAMI-M will return the minimum cover-
age vector c∗ that satisfies b. This coverage vector can be used to
replace Equation (8) with c∗t ≤ ct ≤ 1.

7. ORIGAMI-A
In the previous section, we showed heuristics to improve the ef-

ficiency of our MILP approach. However, solving MILPs, even
when constrained, is computationally expensive. Thus, we present
ORIGAMI-A, an extension to ORIGAMI-M which eliminates the
computational overhead of MILPs for solving CSOPs. The key
idea of ORIGAMI-A is to translate a CSOP into a feasibility prob-
lem which can be solved using ORIGAMI-M. We then generate
a series of these feasibility problems using binary search in order
to approximate the optimal solution to the CSOP. As a result, this
algorithmic approach is much more efficient.

ORIGAMI-M computes the minimum coverage vector necessary
to satisfy a set of lower bound constraints b. As our MILP approach
is an optimization problem, lower bounds are specified for the sec-
ondary objectives but not the primary objective. We can convert
this optimization problem into a feasibility problem by creating a
new set of lower bounds constraints b+ by adding a lower bound
constraint b+1 for the primary objective to the constraints b. We
set b+1 = mint∈T U

u,d
1 (t), the lowest defender payoff for leaving

a target uncovered. Now instead of finding the coverage c which
maximizes Ud1 (c) and satisfies b, we can use ORIGAMI-M to de-
termine if there exists a coverage vector c such that b+ is satisfied.

Algorithm 5: ORIGAMI-A(b, α)

1 c← empty coverage vector;
2 b+1 ← mint∈T U

u,d
1 (t);

3 b+ ← {b+1 } ∪ b ;
4 for 1 ≤ i ≤ n do
5 lower ← b+i ;
6 upper ← maxt∈T U

c,d
i (t);

7 while upper − lower > α do
8 b+i ←

upper+lower
2

;
9 c′ ← ORIGAMI-M(b+);

10 if c′ = violated then
11 upper ← b+i ;

12 else
13 c← c′, lower ← b+i ;

14 b+i ← Udi (c);

15 return c ;

ORIGAMI-A finds an approximately optimal coverage vector c
by using ORIGAMI-M to solve a series of feasibility problems.
This series is generated by sequentially performing binary search
on the objectives starting with initial lower bounds defined in b+.
For objective i, the lower and upper bounds for the binary search
are, respectively, b+i and maxt∈T U

c,d
1 (t), the highest defender

payoff for covering a target. At each iteration, b+ is updated by
setting b+i = (upper + lower)/2 and then passed as input to
ORIGAMI-M. If b+ is found to be feasible, then the lower bound is
updated to b+i and c is updated to the output of ORIGAMI-M, oth-
erwise the upper bound is updated to b+i . This process is repeated
until the difference between the upper and lower bounds reaches the
termination threshold, α. Before proceeding to the next objective,
b+i is set to Udi (c) in case the binary search terminated on an infea-
sible problem. After searching over each objective, ORIGAMI-A
will return a coverage vector c such that Ud1 (c∗) − Ud1 (c) ≤ α,
where c∗ is the optimal coverage vector for a CSOP defined by b.

The solutions found by ORIGAMI-A are no longer Pareto op-
timal. Let Ωα be the objective space of the solutions found by
ORIGAMI-A. We can bound its efficiency loss using the approxi-
mation measure ρ(ε, α)=maxv∈Ω minv′∈Ωα max1≤i≤n(vi−v′i).

THEOREM 5. ρ(ε, α) ≤ max{ε, α}.
PROOF. Similar to the proof of Theorem 4, for each point v ∈

Ω, we can use Algorithm 2 to find a CSOP with constraints b which
is solved using ORIGAMI-A with coverage c such that 1) bi ≤ vi
for i > 1 and 2) v′i ≥ vi − ε for i > 1 where v′ = Ud(c).

Assume that the optimal coverage is c∗ for the CSOP with con-
straints b. It follows that Ud1 (c∗) ≥ v1 since the coverage resulting
in point v is a feasible solution to the CSOP with constraints b.
ORIGAMI-A will terminate if the difference between lower bound
and upper bound is no more than α. Therefore, v′1 ≥ Ud1 (c∗)− α.
Combining the two results, it follows that v′1 ≥ v1 − α.

Therefore, for any point missing in the frontier v ∈ Ω, we can
find a point v′ ∈ Ωα such that 1) v′1 ≥ v1 − α and v′i ≥ vi − ε for
i > 1. It then follows that ρ(ε, α) ≤ max{ε, α}.
8. EVALUATION

We perform our evaluation by running the full algorithm in or-
der to generate the Pareto frontier for randomly-generated MOSGs.
For our experiments, the defender’s covered payoff Uc,di (t) and at-
tacker’s uncovered payoff Uu,ai (t) are uniformly distributed inte-
gers between 1 and 10 for all targets. Conversely, the defender’s
uncovered payoff Uu,di (t) and attacker’s covered payoff Uc,ai (t)
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Figure 7: Scaling down epsilon

are uniformly distributed integers between -1 and -10. Unless oth-
erwise mentioned, the setup for each experiment is 3 objectives, 25
targets, ε = 1.0, andα = 0.001. The amount of defender resources
m is fixed at 20% of the number of targets. For experiments com-
paring multiple formulations, all formulations were tested on the
same set of MOSGs. A maximum cap on runtime for each sample
is set at 1800 seconds. We solved our MILP formulations using
CPLEX version 12.1. The results were averaged over 30 trials.

8.1 Runtime Analysis
We evaluted five MOSG formulations. We refer to the baseline

MILP formulation as MILP-B. The MILP formulation adding a
bound on the defender’s payoff for the primary objective is MILP-P.
MILP-M uses ORIGAMI-M to compute bounds on defender cov-
erage. MILP-P can be combined with MILP-M to form MILP-PM.
The algorithmic approach using ORIGAMI-A will be referred to by
name. For the number of targets, we evaluate all five formulations
for solving CSOPs. We then select ORIGAMI-A and the fastest
MILP formulation, MILP-PM, to evaluate the remaining factors.

Effect of the Number of Targets:This section presents results
showing the efficiency of our different formulations as the num-
ber of targets is increased. In Figure 4, the x-axis represents the
number of the targets in the MOSG. The y-axis is the number of
seconds needed by Iterative ε-Constraints to generate the Pareto
frontier using the different formulations for solving CSOPs. Our
baseline MILP formulation, MILP-B, has the highest runtime for
each number of targets we tested. By adding an upper bound on
the defender payoff for the primary objective, MILP-P yields a run-
time savings of 36% averaged over all numbers of targets compared
to MILP-B. MILP-M uses ORIGAMI-M to compute lower bounds
for defender coverage, resulting in a reduction of 70% compared
to MILP-B. Combining the insights from MILP-P and MILP-M,
MILP-PM achieves an even greater reduction of 82%. Remov-
ing the computational overhead of solving MILPs, ORIGAMI-A
is the most efficient formulation with a 97% reduction. For 100
targets, ORIGAMI-A requires 4.53 seconds to generate the Pareto
frontier, whereas the MILP-B takes 229.61 seconds, a speedup of
>50 times. Even compared to fastest MILP formulation, MILP-PM
at 27.36 seconds, ORIGAMI-A still achieves a 6 times speedup.
T-test yields p-value<0.001 for all comparison of different formu-
lations when there are 75 or 100 targets.

We conducted an additional set of experiments to determine how
MILP-PM and ORIGAMI-A scale up for an order of magnitude in-
crease in the number of targets by testing on MOSGs with between
200 and 1000 targets. Based on the trends seen in the data, we can
concluded that ORIGAMI-A significantly outperforms MILP-PM
for MOSGs with large number of targets. Therefore, the number of
targets in an MOSG is not a prohibitive bottleneck for generating
the Pareto frontier using ORIGAMI-A.

Effect of the Number of Objectives: Another key factor on the
efficiency of Iterative ε-Constraints is the number of objectives
which determines the dimensionality of the objective space that It-
erative ε-Constraints must search. We ran experiments for MOSGs

with between 2 and 6 objectives. For these experiments, we fixed
the number of targets at 10. Figure 6 shows the effect of scaling
up the number of objectives. The x-axis represents the number of
objectives, whereas the y-axis indicates the average time needed to
generate the Pareto frontier. For both MILP-PM and ORIGAMI-A,
we observe an exponential increase in runtime as the number of ob-
jectives is scaled up. For both approaches, the Pareto frontier can be
computed in under 5 seconds for 2 and 3 objectives. Whereas, with
6 objectives neither approach is able to generate the Pareto frontier
before the runtime cap of 1800 seconds. These results show that
the number of objectives, and not the number of targets, is the key
limiting factor in solving MOSGs.

Effect of Epsilon: A third critical factor on the running time of
Iterative ε-Constraints is the value of the ε parameter which deter-
mines the granularity of the search process through the objective
space. In Figure 7, results are shown for ε values of 0.1, .25, .5,
and 1.0. Both MILP-PM and ORIGAMI-A see a sharp increase in
runtime as the value of ε is decreased due to the rise in the number
of CSOPs solved. For example, with ε = 1.0 the average Pareto
frontier consisted of 49 points, whereas for ε = 0.1 that number
increased to 8437. Due to the fact that ε is applied to the n − 1
dimensional objective space, the increase in the runtime resulting
from decreasing ε is exponential in the number of secondary objec-
tives. Thus, using small values of ε can be computationally expen-
sive, especially if the number of objectives is large.

Effect of the Similarity of Objectives: In previous experiments,
all payoffs were sampled from a uniform distribution resulting in
independent objective functions. However, it is possible that in
a security setting, the defender could face multiple attacker types
which share certain similarities, such as the same relative prefer-
ences over a subset of targets. To evaluate the effect of objective
similarity on runtime, we used a single security game to create a
Gaussian function with standard deviation σ from which all the
payoffs for an MOSG are sampled. Figure 8 shows the results for
using ORIGAMI-A to solve MOSGs with between 3 and 7 objec-
tives using σ values between 0 and 2.0 as well as for uniformly
distributed objectives. For σ = 0, the payoffs for all security
games are the same, resulting in Pareto frontier consisting of a sin-
gle point. In this extreme example, the number of objectives does
not impact the runtime. However, as the number of objectives in-
creases, less dissimilarity between the objectives is needed before
the runtime starts increasing dramatically. For 3 and 4 objectives,
the amount of similarity has negligible impact on runtime. The
experiments with 5 objectives time out after 1800 seconds for the
uniformly distributed objectives. Whereas, 6 objectives times out
at σ = 1.0 and 7 objectives at σ = 0.5. We conclude that it is
possible to scale to larger number of objectives if there is similarity
between the attacker types.

8.2 Solution Quality Analysis
Effect of Epsilon: If the Pareto frontier is continuous, only a

subset of that frontier can be generated. Thus, it is possible that one
of the Pareto optimal points not generated by Iterative ε-Constraints
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Figure 10: Comparison against uniformly
weighted Bayesian security games

would be the most preferred solution, were it presented to the end
user. In Section 5.2, we proved that the maximum utility loss for
each objective resulting from this situation could be bounded by ε.
We conducted experiments to empirically verify our bounds and to
determine if the actual maximum objective loss was less than ε.

Ideally, we would compare the Pareto frontier generated by It-
erative ε-Constraints to the true Pareto frontier. However, the true
Pareto frontier may be continuous and impossible for us to gener-
ate, thus we simulate the true frontier by using ε = 0.001. Due
to the computational complexity associated with such a value of ε,
we fix the number of objectives to 2. Figure 9 shows the results for
ε values of 0.1, .25, .5, and 1.0. The x-axis represent the value of
ε, whereas the y-axis represents the maximum objective loss when
comparing the generated Pareto frontier to the true Pareto frontier.
We observe that the maximum objective loss is less than ε for each
value of ε tested. At ε = 1.0, the average maximum objective
loss is only 0.63 for both MILP-PM and ORIGAMI-A. These re-
sults verify that the bounds for our algorithms are correct and that
in practice we are able to generate a better approximation of the
Pareto frontier than the bounds would suggest.

Comparison against Uniform Weighting: We introduced the
MOSG model, in part, because it eliminates the need to specify
a probability distribution over attacker types a priori. However,
even if the probability distribution is unknown it is still possible to
use the Bayesian security game model with a uniform distribution.
We conducted experiments to show the potential benefit of using
MOSG over Bayesian security games in such cases. We computed
the maximum objective loss sustained by using the Bayesian solu-
tion as opposed to a point in the Pareto frontier generated by Iter-
ative ε-Constraints. If v′ is the solution to a uniformly weighted
Bayesian security game then the equation for maximum objective
loss is maxv∈Ωε maxi(vi − v′i). Figure 10 shows the results for ε
values of 0.1, .25, .5, and 1.0. At ε = 1.0, the maximum objective
loss were 1.87 and 1.85 for MILP-PM and ORIGAMI-A. Decreas-
ing ε all the way to 0.1 increases the maximum objective loss by
less than 12% for both algorithms. These results suggests that ε
has limited impact on maximum objective loss, which is a positive
result as it implies that solving an MOSG with a large ε can still
yield benefits over a uniform weighted Bayesian security game.

9. CONCLUSION
We built upon insights from game theory and multi-objective

optimization to introduce a new model, multi-objective security
games (MOSG), for domains where security forces must balance
multiple objectives. Contributions include: 1) Iterative ε-Constraints,
a high-level approach for transforming MOSGs into a sequence of
CSOPs, 2) exact MILP formulations, both with and without heuris-
tics, for solving CSOPs, and 3) ORIGAMI-A, an approximate ap-
proach for solving CSOPs. We then provided bounds for both the
complexity as well as the solution quality of our approaches; addi-
tionally we provided detailed experimental comparison of the dif-
ferent approaches presented.
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ABSTRACT
There has been significant recent interest in computing effec-
tive strategies for playing large imperfect-information games.
Much prior work involves computing an approximate equi-
librium strategy in a smaller abstract game, then playing
this strategy in the full game (with the hope that it also
well approximates an equilibrium in the full game). In this
paper, we present a family of modifications to this approach
that work by constructing non-equilibrium strategies in the
abstract game, which are then played in the full game. Our
new procedures, called purification and thresholding, mod-
ify the action probabilities of an abstract equilibrium by
preferring the higher-probability actions. Using a variety of
domains, we show that these approaches lead to significantly
stronger play than the standard equilibrium approach. As
one example, our program that uses purification came in
first place in the two-player no-limit Texas Hold’em total
bankroll division of the 2010 Annual Computer Poker Com-
petition. Surprisingly, we also show that purification signif-
icantly improves performance (against the full equilibrium
strategy) in random 4× 4 matrix games using random 3× 3
abstractions. We present several additional results (both
theoretical and empirical). Overall, one can view these ap-
proaches as ways of achieving robustness against overfitting
one’s strategy to one’s lossy abstraction. Perhaps surpris-
ingly, the performance gains do not necessarily come at the
expense of worst-case exploitability.
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1. INTRODUCTION
Developing effective strategies for agents in multiagent

systems is an important and challenging problem. It has
received significant attention in recent years from several dif-
ferent communities—in part due to the competitions held at
top conferences (e.g, the computer poker, robo-soccer, and
trading agent competitions). As many domains are so large
that solving them directly (i.e., computing a Nash equilib-
rium or a solution according to some other relevant solution
concept) is computationally infeasible, some amount of ap-
proximation is necessary to produce agents.

Specifically, significant work has been done on computing
approximate game-theory-based strategies in large imperfect-
information games. This work typically follows a three-step
approach, which is depicted in Figure 1. First, an abstrac-
tion algorithm is run on the original game G to construct
a smaller game G′ which is strategically similar to G [1, 2,
3, 11]. Second, an equilibrium-finding algorithm is run on
G′ to compute an ε-equilibrium σ′ [6, 13]. Third, a reverse
mapping is applied to σ′ to compute an approximate equilib-
rium σ in the full game G [5, 10]. While most prior work has
focused on the first two steps of this approach, in this paper
we focus on the third. In particular, we propose first map-
ping the abstract approximate-equilibrium strategy profile
to a non-equilibrium strategy profile in the abstract game,
which we then map to a strategy profile in the full game.

Almost all prior work has used the trivial reverse mapping
in which σ is the straightforward projection of σ′ into G. In
other words, once the abstract game is solved, its solution
is just played directly in the full game. In this paper, we
show that applying more sophisticated reverse mappings can
lead to significant performance improvements—even if they
produce strategy profiles that are no longer equilibria in the
abstract game.

One of the key ideas that motivated our approach is that
the exact action probabilities of a mixed strategy equilib-
rium in an abstraction can exemplify overfitting to the par-
ticular abstraction used. (Our results confirm this.) Ide-
ally, we would like to extrapolate general principles from
the strategy rather than just use values that were finely
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Figure 1: General approach for solving large games.

tuned for a specific abstraction. This is akin to the clas-
sic example from machine learning, where we would prefer a
degree-one polynomial that fits the training data quite well
to a degree-hundred polynomial that may fit it slightly bet-
ter. (Subsequent to the appearance of the earlier versions
of our paper, others have also shown that overfitting strate-
gies to a particular abstraction is a very significant and real
problem in large imperfect-information games [7].)

We present a family of modifications to the standard ap-
proach that work by constructing non-equilibrium strategies
in the abstract game, which are then played in the full game.
Our new procedures, called purification and thresholding,
modify the action probabilities of an abstract equilibrium
by placing a preference on the higher-probability actions.
The main intuition behind our algorithms is that we should
ignore actions that are played with small probability in the
abstract equilibrium, as they are likely due to abstraction
coarseness, overfitting, or failure of the equilibrium-finding
algorithm to fully converge.

Using a variety of experimental domains, we show that our
new approach leads to significantly stronger play than the
standard abstraction/equilibrium approach. For example,
our program that uses purification won the two-player no-
limit Texas Hold’em total bankroll division of the 2010 An-
nual Computer Poker Competition (ACPC), held at AAAI.
Surprisingly, we also show that purification significantly im-
proves performance (against the full equilibrium strategy)
in random 4× 4 matrix games using random 3× 3 abstrac-
tions. We present additional results (both theoretical and
empirical), including: worst-case theoretical results, empiri-
cal and theoretical results on specific support properties for
which purification helps in matrix games, and experimen-
tal results in well-studied large imperfect-information games
(Leduc Hold’em and Texas Hold’em).

2. GAME THEORY BACKGROUND
In this section, we briefly review relevant definitions and

prior results from game theory and game solving.

2.1 Strategic-form games
The most basic game representation, and the standard

representation for simultaneous-move games, is the strategic
form. A strategic-form game (aka matrix game) consists of
a finite set of players N, a space of pure strategies Si for each

player, and a utility function ui : ×Si → R for each player.
Here ×Si denotes the space of strategy profiles—vectors of
pure strategies, one for each player.

The set of mixed strategies of player i is the space of prob-
ability distributions over his pure strategy space Si. We will
denote this space by Σi. Define the support of a mixed strat-
egy to be the set of pure strategies played with nonzero prob-
ability. If the sum of the payoffs of all players equals zero at
every strategy profile, then the game is called zero sum. In
this paper, we will be primarily concerned with two-player
zero-sum games; we will show that the new approaches lead
to performance improvements even in this class of games
where the equilibrium approach should be at its best. If the
players are following strategy profile σ, we let σ−i denote
the strategy taken by player i’s opponent, and we let Σ−i
denote the opponent’s entire mixed strategy space.

2.2 Extensive-form games
An extensive-form game is a general model of multiagent

decision making with potentially sequential and simultane-
ous actions and imperfect information. As with perfect-
information games, extensive-form games consist primarily
of a game tree; each non-terminal node has an associated
player (possibly chance) that makes the decision at that
node, and each terminal node has associated utilities for the
players. Additionally, game states are partitioned into in-
formation sets, where the player whose turn it is to move
cannot distinguish among the states in the same informa-
tion set. Therefore, in any given information set, a player
must choose actions with the same distribution at each state
contained in the information set. If no player forgets infor-
mation that he previously knew, we say that the game has
perfect recall. A (behavioral) strategy for player i, σi ∈ Σi,
is a function that assigns a probability distribution over all
actions at each information set belonging to i.

2.3 Nash equilibria
Player i’s best response to σ−i is any strategy in

arg max
σ′i∈Σi

ui(σ
′
i, σ−i).

A Nash equilibrium is a strategy profile σ such that σi is a
best response to σ−i for all i. An ε-equilibrium is a strategy
profile in which each player achieves a payoff of within ε of
his best response.

In two-player zero-sum games, we have the following result
which is known as the minimax theorem:

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2).

We refer to v∗ as the value of the game to player 1. Some-
times we will write vi as the value of the game to player i.
It is worth noting that in two-player zero-sum games, any
equilibrium strategy for a player will guarantee an expected
payoff of at least the value of the game to that player.

All finite games have at least one Nash equilibrium. In
two-player zero-sum strategic-form games, a Nash equilib-
rium can be found efficiently by linear programming. In the
case of zero-sum extensive-form games with perfect recall,
there are efficient techniques for finding an ε-equilibrium,
such as linear programming [8], generalizations of the exces-
sive gap technique [6], and counterfactual regret minimiza-
tion [13]. The latter two algorithms scale to games with
approximately 1012 game tree states, while the best current
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general-purpose linear programming technique (CPLEX’s
barrier method) scales to games with around 108 states.

2.4 Abstraction
Despite the tremendous progress in equilibrium-finding in

recent years, many interesting real-world games are so large
that even the best algorithms have no hope of computing
an equilibrium directly. The standard approach of dealing
with this is to apply an abstraction algorithm, which con-
structs a smaller game that is similar to the original game;
then the smaller game is solved, and its solution is mapped
to a strategy profile in the original game. The approach has
been applied to two-player Texas Hold’em poker, first with
a manually generated abstraction [1], and now with abstrac-
tion algorithms [2]. Many abstraction algorithms work by
coarsening the moves of chance, collapsing several informa-
tion sets of the original game into single information sets of
the abstracted game.

The game tree of two-player no-limit Texas Hold’em has
about 1071 states (while that of two-player limit Texas Hold’
em has about 1018 states); so significant abstraction is nec-
essary.

3. PURIFICATION AND THRESHOLDING
Suppose we are playing a game Λ that is too large to solve

directly. As described in Section 2.4, the standard approach
would be to construct an abstract game Λ′, compute an
equilibrium σ′ of Λ′, then play the strategy profile σ induced
by σ′ in the full game Λ.

One possible problem with this approach is that the spe-
cific strategy profile σ′ might be very finely tuned for the
abstract game Λ′, and it could perform arbitrarily poorly in
the full game (see the results in Section 5). Ideally we would
like to extrapolate the important features from σ′ that will
generalize to the full game and avoid playing a strategy that
is overfit to the particular abstraction. This is one of the key
motivations for our new approaches, purification and thresh-
olding.

3.1 Purification
Let σi be a mixed strategy for player i in a strategic-form

game, and let S = arg maxj σi(j), where j ranges over all
of player i’s pure strategies. Then we define the purification
pur(σi) of σi as follows:

pur(σi)(j) =

{
0 : j /∈ S
1
|S| : j ∈ S

If σi plays a single pure strategy with highest probability,
then the purification will play that strategy with probabil-
ity 1. If there is a tie between several pure strategies of the
maximum probability played under σi, then the purification
will randomize equally between all maximal such strategies.
Thus the purification will usually be a pure strategy, and
will only be a mixed strategy in degenerate special cases
when several pure strategies are played with identical prob-
abilities.

If σi is a behavioral strategy in an extensive-form game,
we define the purification similarly; at each information set
I, pur(σi) will play the purification of σi at I.

3.2 Thresholding

The effects of purification can be quite extreme in some
situations. For example, if σi plays action a with probability
0.51 and action b with probability 0.49, then b will never be
played after purification. We also consider a more relaxed
approach, called thresholding, that only eliminates actions
below a prescribed ε to help alleviate this concern.

Thresholding works by setting all actions that have weight
below ε to 0, then renormalizing the action probabilities.
Pseudocode is given below in Algorithm 1. One intuitive in-
terpretation of thresholding is that actions with probability
below ε may just have been given positive probability due
to noise from the abstraction (or because an equilibrium-
finding algorithm had not yet taken those probabilities all
the way to zero), and really should not be played in the full
game. Additionally, low probability actions are often played
primarily to protect a player from being exploited, and this
may be an overstated concern against realistic opponents (as
discussed further in Section 4.2).

Algorithm 1 Threshold(σi, ε)

for j = 1 to |S| do
if σi(j) < ε then
σi(j)← 0

end if
end for
normalize(σi)
return σi

4. EVALUATION METRICS
In recent years, several different metrics have been used

to evaluate strategies in large games.

4.1 Empirical performance
The first metric, which is perhaps the most meaningful,

is empirical performance against other realistic strategies.
For example, in the ACPC, programs submitted from re-
searchers and hobbyists from all over the world compete
against one another. Empirical performance is the metric
we will be using in Section 8 when we assess our perfor-
mance in Texas Hold’em.

4.2 Worst-case exploitability
The worst-case exploitability of player i’s strategy σi is

the difference between the value of the game to player i and
the payoff when the opponent plays his best response to σi
(aka his nemesis strategy). Formally it is defined as follows:

expl(σi) = vi − min
σ−i∈Σ−i

ui(σi, σ−i).

Worst-case exploitability has recently been used to assess
strategies in several variants of poker [4, 7, 12].

Any equilibrium has zero exploitability, since it receives
payoff vi against its nemesis. So if our goal were to approxi-
mate an equilibrium of the full game, worst-case exploitabil-
ity would be a good metric to use, since it approaches zero
as the strategy approaches equilibrium.

Unfortunately, the worst-case exploitability metric has se-
veral drawbacks. First, it cannot be computed in very large
games (though very recent advancements have made it possi-
ble to compute full best responses offline in two-player limit
Texas Hold’em, which has about 1018 game states [7], and
we will be leveraging that algorithm in our experiments).
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Second, exploitability is a worst-case metric that assumes
the opponent is able to optimally exploit us in the full game
(i.e., he knows our full strategy and is able to efficiently com-
pute a full best response in real time). In fact, it is quite
common in very large games for agents to simply play static,
fixed strategies the entire time, since the number of inter-
actions is generally tiny compared to the size of the game,
and it is usually quite difficult to learn to effectively exploit
opponents online. For example, in recent computer poker
competitions, almost all submitted programs simply play a
fixed strategy. In the 2010 ACPC, many of the entrants at-
tached summaries describing their algorithm. Of the 17 bots
for which summaries were included, 15 played fixed strate-
gies, while only 2 included some element of attempted ex-
ploitation. If the opponents are just playing a fixed strategy
and not trying to exploit us, then worst-case exploitability
is too pessimistic of an evaluation metric. Furthermore, if
the opponents have computational limitations and use ab-
stractions, then they will not be able to fully exploit us in
the full game.

4.3 Performance against full equilibrium
In this paper, we will also evaluate strategies based on per-

formance against equilibrium in the full game. The intuition
behind this metric is that in many large two-player zero-
sum games, the opponents are simply playing fixed strate-
gies that attempt to approximate an equilibrium of the full
game (using some abstraction). For example, most entrants
in the ACPC do this. Against such static opponents, worst-
case exploitability is not very significant, as the agents are
not generally adapting to exploit us.

This metric, like worst-case exploitability, is not feasible
to apply on very large games. However, we can still apply
it to smaller games as a means of comparing different so-
lution techniques. In particular, we will use this metric in
Sections 6 and 7 when presenting our experimental results
on random matrix games and Leduc Hold’em. This metric
has similarly been used on solvable problem sizes in the past
to compare abstraction algorithms [4].

5. THEORY: SELECTIVE SUPERIORITY
So which approach is best: purification, thresholding, or

the standard abstraction/equilibrium approach? It turns
out that using the performance against full equilibrium met-
ric, there exist games for which each technique can outper-
form each other. Thus, from a worst-case perspective, not
much can be said in terms of comparing the approaches.

Proposition 1 shows that, for any equilibrium-finding al-
gorithm, there exists a game and an abstraction such that
purification does arbitrarily better than the standard ap-
proach.

Proposition 1. For any equilibrium-finding algorithms
A and A′, and for any k > 0, there exists a game Λ and an
abstraction Λ′ of Λ, such that

u1(pur(σ′1), σ2) ≥ u1(σ′1, σ2) + k,

where σ′ is the equilibrium of Λ′ computed by algorithm A′,
and σ is the equilibrium of Λ computed by A.

Proof. Consider the game in Figure 2. Let Λ denote the
full game, and let Λ′ denote the abstraction in which player
2 (the column player) is restricted to only playing L or M,

L M R
U 2 0 −3k − 1
D 0 1 −1

Figure 2: Two-player zero-sum game used in the
proof of Proposition 1.

but the row player’s strategy space remains the same. Then
Λ′ has a unique equilibrium in which player 1 plays U with
probability 1

3
, and player 2 plays L with probability 1

3
. Since

this is the unique equilibrium, it must be the one output by
algorithm A′. Note that player 1’s purification pur(σ′1) of σ′

is the pure strategy D.
Note that in the full game Λ, the unique equilibrium is

(D,R), which we denote by σ. As before, since this equilib-
rium is unique it must be the one output by algorithm A.
Then we have

u1(σ′1, σ2) =
1

3
(−3k − 1) +

2

3
(−1) = −k − 1

u1(pur(σ′1), σ2) = −1.

So u1(σ′1, σ2) + k = −1, and therefore

u1(pur(σ′1), σ2) = u1(σ′1, σ2) + k.

We can similarly show that purification can also do arbi-
trarily worse against the full equilibrium than standard un-
purified abstraction, and that both procedures can do arbi-
trarily better or worse than thresholding (using any thresh-
old cutoff). We can also show similar results using an arbi-
trary multiplicative (rather than additive) constant k.

6. RANDOM MATRIX GAMES
The first set of experiments we conduct to demonstrate

the power of purification is on random matrix games. This
is perhaps the most fundamental and easy to analyze class of
games, and is a natural starting point when analyzing new
algorithms.

6.1 Evaluation methodology
We study random 4×4 two-player zero-sum matrix games

with payoffs drawn uniformly at random from [-1,1]. We re-
peatedly generated random games and analyzed them using
the following procedure. First, we computed an equilibrium
of the full 4× 4 game Λ; denote this strategy profile by σF .
Next, we constructed an abstraction Λ′ of Λ by ignoring the
final row and column of Λ. In essence, Λ′ is a näıve, random
abstraction of Λ, since there is nothing special about the
final row or column. As in Λ, we computed an equilibrium
σA of Λ′. We then compared u1(σA1 , σ

F
2 ) to u1(pur(σA1 ), σF2 )

to determine the effect of purification on performance of the
abstract equilibrium strategy for player 1 against the full
equilibrium strategy of player 2.

To solve the full and abstract games, we used two differ-
ent procedures. For our first set of experiments comparing
the overall performance of purified vs. unpurified abstract
equilibrium strategies, we used a standard algorithm involv-
ing solving a single linear program [8]. For our results on
supports, we used a custom support enumeration algorithm
(similar to the approach of Porter et al. [9]). We note that it
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is possible that the specific algorithm used may have a sig-
nificant effect on the results (i.e., certain algorithms may be
more likely to select equilibria with specific properties when
several equilibria exist).

6.2 Experimental results and theory
In our experiments on 4×4 random games, we performed

1.5 million trials; the results are given in Table 1. The first
row gives the average value of u1(pur(σA1 ), σF2 ) over all trials,
while the second row gives the average value of u1(σA1 , σ

F
2 ).

We conclude that purified abstraction outperforms the stan-
dard unpurified abstraction approach using 95% confidence
intervals.

The next three rows of Table 1 report the number of trials
for which purification led to an increased, decreased, or un-
changed payoff of the abstract equilibrium strategy of player
1 against the full equilibrium strategy of player 2. While pu-
rification clearly improved performance more often than it
hurt performance (17.44% vs. 11.48%), for the overwhelm-
ing majority of cases it led to no change in performance
(71.08%). In particular, Proposition 2 gives two general sets
of conditions under which purification leads to no change in
performance.

Proposition 2. Let Λ be a two-player zero-sum game,
and let Λ′ be an abstraction of Λ. Let σF and σA be equilibria
of Λ and Λ′ respectively. Then

u1(σA1 , σ
F
2 ) = u1(pur(σA1 ), σF2 )

if either of the following conditions is met:

1. σA is a pure strategy profile

2. support(σA1 ) ⊆ support(σF1 )

Proof. If the first condition is met, then pur(σA1 ) = σA1
and we are done. Now suppose the second condition is
true and let s, t ∈ support(σA1 ) be arbitrary. This im-
plies that s, t ∈ support(σF1 ) as well, which means that
u1(s, σF2 ) = u1(t, σF2 ), since a player is indifferent between
all pure strategies in his support at an equilibrium. Since
s and t were arbitrary, player 1 is also indifferent between
all strategies in support(σA1 ) when player 2 plays σF2 . Since
purification will just select one strategy in support(σA1 ), we
are done.

To understand our results further, we investigated whe-
ther they would vary for different supports of σF . In partic-
ular, we kept separate tallies of the performance of pur(σA1 )
and σA1 for each support of σF . We observed that pur(σA1 )
outperformed σA1 on many of the supports, while they per-
formed equally on some (and σA1 did not outperform pur(σA1 )
on any). These results are all statistically significant using
95% confidence intervals. A summary of the results from
these experiments is given in Observation 1.

Observation 1. In random 4 × 4 matrix games using
3 × 3 abstractions, pur(σA1 ) performs better than σA1 using
a 95% confidence interval for each support of σF except for
supports satisfing one of the following conditions, in which
case neither pur(σA1 ) nor σA1 performs significantly better:

1. σF is the pure strategy profile in which each player
plays his fourth pure strategy

2. σF is a mixed strategy profile in which player 1’s sup-
port contains his fourth pure strategy, and player 2’s
support does not contain his fourth pure strategy.

To interpret Observation 1, consider the following exam-
ple. Suppose the support for player 1 includes his first three
pure strategies, while the support for player 2 includes his
final three pure strategies; denote this support profile by
S∗. Now consider the set U of all games for which our
equilibrium-finding algorithm outputs an equilibrium profile
σF with support profile S∗. Since S∗ does not satisfy either
condition of Observation 1, this means that, in expectation
over the set of all games in U,

u1(pur(σA1 ), σF2 ) > u1(σA1 , σ
F
2 )

(i.e., purification improves the performance of the abstracted
equilibrium strategy of player 1 against the full equilibrium
strategy of player 2).

We find it interesting that there is such a clear pattern
in the support structures for which pur(σA1 ) outperforms
σA1 . We obtained identical results using 3 × 3 games with
2× 2 abstractions. We did not experiment on games larger
than 4 × 4. While we presented experimental results that
are statistically significant at the 95% confidence interval,
rigorously proving that the results of Observation 1 hold
even on 4× 4 games with 3× 3 abstractions remains a chal-
lenging open problem. Resolving this problem would shed
some light on the underlying reasons behind the observed
performance improvements of purification in random ma-
trix games, which are quite surprising and unintuitive. In
addition, we conjecture that a more general theoretical re-
sult will hold for general matrix games with any size, using
any size random abstractions. Proving such a result could
have significant theoretical and practical implications.

7. LEDUC HOLD’EM
Leduc Hold’em is a simplified poker variant that has been

used in previous work to evaluate imperfect-information
game-playing techniques (e.g., [12]). Leduc Hold’em is large
enough that abstraction has a non-trivial impact, but un-
like larger games of interest (e.g., Texas Hold’em) it is small
enough that equilibrium solutions in the full game can be
quickly computed. That is, Leduc Hold’em allows for rapid
and thorough evaluation of game-playing techniques against
a variety of opponents, including an equilibrium opponent
or a best responder.

Prior to play, a deck of six cards containing two Jacks, two
Queens, and two Kings is shuffled and each player is dealt a
single private card. After a round of betting, a public card
is dealt face up for both players to see. If either player pairs
this card, he wins at showdown; otherwise the player with
the higher ranked card wins. For a complete description of
the betting, we refer the reader to Waugh et al. [12].

7.1 Experimental evaluation and setup
To evaluate the effects of purification and thresholding in

Leduc Hold’em, we compared the performance of a number
of abstract equilibrium strategies altered to varying degrees
by thresholding against a single equilibrium opponent av-
eraged over both positions. The performance of a strategy
(denoted EV for expected value) was measured in millibets
per hand (mb/h), where one thousand millibets is a small
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u1(pur(σA1 ), σF2 ) (purified average payoff) −0.050987± 0.00042

u1(σA1 , σ
F
2 ) (unpurified average payoff) −0.054905± 0.00044

Number of games where purification led to improved performance 261569 (17.44%)
Number of games where purification led to worse performance 172164 (11.48%)

Number of games where purification led to no change in performance 1066267 (71.08%)

Table 1: Results for experiments on 1.5 million random 4× 4 matrix games using random 3× 3 abstractions.
The ± given is the 95% confidence interval.

bet. As the equilibrium opponent is optimal, the best ob-
tainable performance is 0 mb/h. Note that the expected
value computations in this section are exact.

We used card abstractions mimicking those produced by
state-of-the-art abstraction techniques to create our abstract
equilibrium strategies. Specifically, we used the five Leduc
Hold’em card abstractions from prior work [12], denoted
JQK, JQ.K, J.QK, J.Q.K and full. The abstraction full de-
notes the null abstraction (i.e., the full unabstracted game).
The names of the remaining abstractions consist of groups of
cards separated by periods. All cards within a group are in-
distinguishable to the player prior to the flop. For example,
when a player using the JQ.K abstraction is dealt a card, he
will know only if that card is a king, or if it is not a king.
These abstractions can only distinguish pairs on the flop.
By pairing these five card abstractions, one abstraction per
player, we learned twenty four abstract equilibrium strate-
gies using linear programming techniques. For example, the
strategy J.Q.K-JQ.K denotes the strategy where our player
of interest uses the J.Q.K abstraction and he assumes his
opponent uses the JQ.K abstraction.

7.2 Purification vs. no purification
In Table 2 we present the performance of the regular and

purified abstract equilibrium strategies against the equilib-
rium opponent. We notice that purification improves the
performance in all but 5 cases. In many cases this improve-
ment is quite substantial. In the cases where it does not
help, we notice that at least one of the players is using the
JQK card abstraction, the worst abstraction in our selection.
Prior to purification, the best abstract equilibrium strategy
loses at 43.8 mb/h to the equilibrium opponent. After pu-
rification, 14 of the 24 strategies perform better than the
best unpurified strategy, the best of which loses at only 1.86
mb/h. That is, only five of the strategies that were improved
by purification failed to surpass the best unpurified strategy.

7.3 Purification vs. thresholding
In Figure 3 we present the results of three abstract equi-

librium strategies thresholded to varying degrees against the
equilibrium opponent. We notice that, the higher the thresh-
old used the better the performance tends to be. Though
this trend is not monotonic, all the strategies that were im-
proved by purification obtained their maximum performance
when completely purified. Most strategies tended to improve
gradually as the threshold was increased, but this was not
the case for all strategies. As seen in the figure, the JQ.K-
JQ.K strategy spikes in performance between the thresholds
of 0.1 and 0.15.

From these experiments, we conclude that purification
tends to improve the performance of an abstract equilib-
rium strategy against an unadaptive equilibrium opponent
in Leduc Hold’em. Though thresholding is itself helpful, it

Strategy Base EV Purified EV Improvement
JQ.K-J.QK -119.46 -37.75 81.71
J.QK-full -115.63 -41.83 73.80
J.QK-J.Q.K -96.66 -27.35 69.31
JQ.K-J.Q.K -96.48 -28.76 67.71
JQ.K-full -99.30 -39.13 60.17
JQ.K-JQK -80.14 -24.50 55.65
JQ.K-JQ.K -59.97 -8.31 51.66
J.Q.K-J.QK -60.28 -13.97 46.31
J.Q.K-J.Q.K -46.23 -1.86 44.37
J.Q.K-JQ.K -44.61 -3.85 40.76
full-JQK -43.80 -10.95 32.85
J.QK-J.QK -96.60 -67.42 29.18
J.QK-JQK -95.69 -67.14 28.55
full-J.QK -52.94 -24.55 28.39
J.QK-JQ.K -77.86 -52.62 25.23
J.Q.K-full -68.10 -46.43 21.66
full-JQ.K -55.52 -36.38 19.14
full-J.Q.K -51.14 -40.32 10.82
JQK-J.QK -282.94 -279.44 3.50
JQK-full -273.87 -279.99 -6.12
JQK-J.Q.K -258.29 -279.99 -21.70
J.Q.K-JQK -156.35 -188.00 -31.65
JQK-JQK -386.89 -433.64 -46.75
JQK-JQ.K -274.69 -322.41 -47.72

Table 2: Effects of purification on performance of
abstract strategies against an equilibrium opponent
in mb/h.

appears that the improvement generally increases with the
threshold whenever thresholding improves a strategy, with
the biggest improvement achieved using full purification.

8. TEXAS HOLD’EM
In the 2010 Annual Computer Poker Competition, the

CMU team (Ganzfried, Gilpin, and Sandholm) submitted
bots that used both purification and thresholding to the
two-player no-limit Texas Hold’em division. We present
the results in Section 8.1. Next, in Section 8.2, we observe
how varying the amount of thresholding used effects the ex-
ploitabilities of two bots submitted to the two-player limit
Texas Hold’em division.

8.1 A champion no-limit Texas Hold’em
program

The two-player no-limit competition consists of two sub-
competitions with different scoring rules. In the instant-
runoff scoring rule, each pair of entrants plays against each
other, and the bot with the worst head-to-head record is
eliminated. This procedure is continued until only a sin-
gle bot remains. The other scoring rule is known as to-
tal bankroll. In this competition, all entrants play against
each other and are ranked in order of their total profits.
While both scoring metrics serve important purposes, the
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Figure 3: Effects of thresholding on performance of
abstract strategies against an equilibrium opponent
in mb/h.

total bankroll competition is considered by many to be more
realistic, as in many real-world multiagent settings the goal
of agents is to maximize total payoffs against a variety of
opponents.

We submitted bots to both competitions: Tartanian4-IRO
(IRO) to the instant-runoff competition and Tartanian4-
TBR (TBR) to the total bankroll competition. Both bots
use the same abstraction and equilibrium-finding algorithms.
They differ only in their reverse-mapping algorithms: IRO
uses thresholding with a threshold of 0.15 while TBR uses
purification. IRO finished third in the instant-runoff com-
petition, while TBR finished first in the total bankroll com-
petition.

Although the bots were scored only with respect to the
specific scoring rule and bots submitted to that scoring rule,
all bots were actually played against each other, enabling
us to compare the performances of TBR and IRO. Table 3
shows the performances of TBR and IRO against all of the
bots submitted to either metric in the 2010 two-player no-
limit Texas Hold’em competition.

One obvious observation is that TBR actually beat IRO
when they played head-to-head (at a rate of 80 milli big
blinds per hand). Furthermore, TBR performed better than
IRO against every single opponent except for one (c4tw.iro).
Even in the few matches that the bots lost, TBR lost at
a lower rate than IRO. Thus, even though TBR uses less
randomization and is perhaps more exploitable in the full
game, the opponents submitted to the competition were ei-
ther not trying or not able to find successful exploitations.
Additionally, TBR would have still won the total bankroll
competition even if IRO were also submitted.

These results show that purification can in fact yield a big
gain over thresholding (with a lower threshold) even against
a wide variety of realistic opponents in very large games.

8.2 Assessing worst-case exploitability in limit
Texas Hold’em

Despite the performance gains we have seen from purifi-
cation and thresholding, it is possible that these gains come
at the expense of worst-case exploitability (see Section 4.2).

Exploitabilities for several variants of a bot we submitted
to the two-player limit division of the 2010 ACPC (GS6.iro)
are given in Table 4; the exploitabilities were computed in
the full unabstracted game using a recently developed ap-
proach [7].

Interestingly, using no rounding at all produced the most
exploitable bot, while the least exploitable bot used an in-
termediate threshold of 0.15. There is a natural explana-
tion for this seemingly surprising phenomenon. If there is
too much thresholding, the resulting strategy does not have
enough randomization, so it signals too much to the oppo-
nent about the agent’s private information. On the other
hand, if there is too little thresholding, the strategy is over-
fit to the particular abstraction.

Hyperborean.iro was submitted by the University of Al-
berta to the competition; exploitabilities of its variants are
shown as well. Hyperborean’s exploitabilities increased
monotonically with the threshold, with no rounding pro-
ducing the least exploitable bot.

Exploitability Exploitability
Threshold of GS6 of Hyperborean

None 463.591 235.209
0.05 326.119 243.705
0.15 318.465 258.53
0.25 335.048 277.841

Purified 349.873 437.242

Table 4: Worst-case exploitabilities of several strate-
gies in two-player limit Texas Hold’em. Results are
in milli big blinds per hand. Bolded values indicate
the lowest exploitability achieved for each strategy.

These results show that it can be hard to predict the rela-
tionship between the amount of rounding and the worst-case
exploitability, and that it may depend heavily on the ab-
straction and/or equilibrium-finding algorithm used. While
exploitabilities for Hyperborean are more in line with what
one might intuitively expect, results from GS6 show that the
minimum exploitability can actually be produced by an in-
termediate threshold value. One possible explanation of this
difference is that thresholding and purification help more
when coarser abstractions (i.e., smaller abstract games rela-
tive to the full game) are used, while in finer-grained abstrac-
tions, they may not help as much, and may even hurt per-
formance.1 The fact that the exploitability of Hyperborean
is smaller than that of GS6 suggests that it was computed
using a finer-grained abstraction.

9. CONCLUSIONS
We presented two new reverse-mapping algorithms for

large games: purification and thresholding. One can view
these approaches as ways of achieving robustness against
one’s own lossy abstraction. From a theoretical perspec-
tive, we proved that it is possible for each of these algo-
rithms to help (or hurt) arbitrarily over the standard ap-
proach, and that each can perform arbitrarily better than

1It is worth noting that purification and thresholding cannot
help us against an equilibrium strategy if the abstraction is
lossless; but even if it is lossless the algorithms may still help
against actual (non-equilibrium) opponents.
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c4tw.iro c4tw.tbr Hyperborean.iro Hyperborean.tbr PokerBotSLO SartreNL IRO TBR
IRO 5334 ± 109 8431 ± 156 -248 ± 49 -364 ± 42 108 ± 46 -42 ± 38 -80 ± 23
TBR 4754 ± 107 8669 ± 168 -122 ± 38 -220 ± 39 159 ± 40 13 ± 33 80 ± 23

Table 3: Results from the 2010 Annual Computer Poker Competition for two-player no limit Texas Hold’em.
Values are in milli big blinds per hand (from the row player’s perspective) with 95% confidence intervals
shown. IRO and TBR both use the same abstraction and equilibrium-finding algorithms. The only difference
is that IRO uses thresholding with a threshold of 0.15 while TBR uses purification.

the other. However, in practice both purification and thresh-
olding seem to consistently help over a wide variety of do-
mains.

Our experiments on random matrix games show that, per-
haps surprisingly, purification helps even when random ab-
stractions are used. Our experiments on Leduc Hold’em
show that purification leads to improvements on most ab-
stractions, especially as the abstractions become more so-
phisticated. Additionally, we saw that thresholding gen-
erally helps as well, and its performance improves over-
all as the threshold cutoff increases, with optimal perfor-
mance usually achieved at full purification. We also saw
that purification outperformed thresholding with a lower
threshold cutoff in the Annual Computer Poker Competi-
tion against a wide variety of realistic opponents. In partic-
ular, our bot that won the 2010 two-player no-limit Texas
Hold’em bankroll competition used purification. Finally, we
saw that these performance gains do not necessarily come
at the expense of worst-case exploitability, and that inter-
mediate threshold values can actually produce the lowest
exploitability. There is a natural explanation for this seem-
ingly surprising phenomenon. If there is too much thresh-
olding, the resulting strategy does not have enough random-
ization, so it signals too much to the opponent about the
agent’s private information. On the other hand, if there is
too little thresholding, the strategy is overfit to the particu-
lar abstraction.

10. FUTURE RESEARCH
Our results open up many interesting avenues for future

work. In Section 6, we presented several concrete theoretical
open problems related to understanding the performance of
purification in random matrix games. In particular, larger
games (with different degrees of abstraction) should be stud-
ied, and perhaps general theorems can be proven to augment
our (statistically significant) empirical findings.

Future work should also investigate possible deeper con-
nections between purification, abstraction, and overfitting
from a learning-theoretic perspective. Is there a formal
sense in which purification and thresholding help dimin-
ish the effects of overfitting strategies to a particular ab-
straction? Is such overfitting more prone to occur with
coarser abstractions, or with some abstraction algorithms
more than others? Perhaps the results also depend cru-
cially on the equilibrium-finding algorithm used (especially
for games with many equilibria). A better understanding of
these phenomena could have significant practical and theo-
retical implications.

In addition, note that purification/thresholding is just one
family of modifications to the current abstraction/equili-
brium paradigm. Many other approaches are possible; for
example, rounding probabilities to intermediate values (ra-

ther than to 0), or randomizing equally between the k
highest-probability actions.
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ABSTRACT
Moving assets through a transportation network is a crucial
challenge in hostile environments such as future battlefields
where malicious adversaries have strong incentives to attack
vulnerable patrols and supply convoys. Intelligent agents
must balance network costs with the harm that can be in-
flicted by adversaries who are in turn acting rationally to
maximize harm while trading off against their own costs to
attack. Furthermore, agents must choose their strategies
even without full knowledge of their adversaries’ capabili-
ties, costs, or incentives.

In this paper we model this problem as a non-zero sum
game between two players, a sender who chooses flows through
the network and an adversary who chooses attacks on the
network. We advance the state of the art by: (1) moving be-
yond the zero-sum games previously considered to non-zero
sum games where the adversary incurs attack costs that are
not incorporated into the payoff of the sender; (2) intro-
ducing a refinement of the Stackelberg equilibrium that is
more appropriate to network security games than previous
solution concepts; and (3) using Bayesian games where the
sender is uncertain of the capabilities, payoffs, and costs of
the adversary. We provide polynomial time algorithms for
finding equilibria in each of these cases. We also show how
our approach can be applied to games where there are mul-
tiple adversaries.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Intelligent agents, Multiagent systems; J.4 [Social
and Behaviorial Sciences]: [Economics]

General Terms
Theory, Security, Economics

Keywords
network security game, communication security, multiagent
communication

1. INTRODUCTION
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MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Many multiagent applications must utilize networks in in-
herently hostile environments where adversaries have strong
incentives to disrupt operations, as when enemies attack vul-
nerable patrols and supply convoys in transportation net-
works using asymmetric warfare techniques. Any multiagent
deployment in these environments must address the crucial
issue of strategically moving assets in a secure and effective
manner in the presence of such malicious adversaries. Game
theory offers a natural and rigorous framework for reasoning
strategically in these kinds of adversarial domains.

Such hostile network environments share six key charac-
teristics: (1) The topology of the network creates exponen-
tial sized strategy spaces that cannot be solved efficiently us-
ing standard normal form techniques. (2) Security is not the
sole criterion but must be balanced with competing perfor-
mance objectives. For example, shorter paths are preferred
by supply convoys to minimize fuel costs and by sensor net-
works to conserve battery power and reduce latency. (3)
Patterns of behavior may be learned by the adversary. For
example, the adversary may observe supply convoys in secret
before planning and executing his attack. (4) Adversaries
are rational agents who balance the harm that they can in-
flict with costs of attacking. (5) Information on the adver-
sary’s capabilities, payoffs, and costs is rarely available, and
estimates must be used instead. (6) Multiple adversaries
with differing abilities may be present.

Work in network security games has addressed the first [15,
12, 8], second [12], and third [15, 8] of these, but has left the
others largely untouched. Attack costs have largely been ig-
nored by assuming a zero-sum payoff structure, so that the
incentives of the sender and adversary are exactly opposed.
In general this leads to a computationally simpler problem,
but does not reflect the fact that the attack costs do not fac-
tor in to the payoff of the sender. Abandoning the zero-sum
assumption is also essential to addressing the fourth point
because it is known that in zero-sum games it does not mat-
ter if the adversary can observe the behavior patterns before
choosing a strategy [17]. In this paper we address each of
these characteristics, starting most importantly by allowing
non-zero sum payoffs based on attack costs.

We model the problem as a game between a sender and an
adversary. The sender chooses a flow through the network
from the source nodes to the sink. The adversary chooses
one or more attacks from a set of possible attacks, where
each attack adds penalties to one or more link in the net-
work. For example, one attack may be to jam a node in a
communication network, thereby interfering with the com-
munication with that targeted node and also (although to a
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lesser extent) to all communication with neighboring nodes
as well. When the sender utilizes a link that has been at-
tacked, he suffers harm proportional to the total penalty
on the link and the amount of flow being sent on the link.
The adversary incurs a cost for each attack, and different at-
tacks may have different costs reflecting the differing degrees
of difficulty or ease of attack. The sender seeks to minimize
harm while the attacker seeks to maximize the harm minus
the attack costs.

In this paper we advance the state of the art by combin-
ing the existing approaches with three major new contribu-
tions. First, we assume non-zero sum payoffs due to attack
costs that adversary incurs in attacking the network. These
costs factor into his payoff but not the payoff of the sender.
We provide polynomial time algorithms based on linear pro-
grams (LPs) for finding Nash equilibria in these games. Sec-
ond, the non-zero sum payoffs allow the possibility of the
sender improving his payoff by committing to strategies in
a Stackelberg game. We show that the existing solution
concepts are inappropriate for network security games and
introduce a refinement of the Stackelberg equilibrium based
on the sender’s ability to affect the adversary’s strategy by
deviating from equilibrium behavior. Finally, we consider
games of incomplete information where the sender knows
only probability distributions over the maximum number of
nodes that the adversary can attack, and the adversary’s
payoffs and costs. We formulate these as Bayesian games
and provide polynomial time algorithms for finding equilib-
ria. We also show how this approach can be generalized to
model games with multiple adversaries.

2. SIMULTANEOUS GAME

2.1 Model
We start with the network flow security game with attack

costs but no uncertainty. This game is played between a
sender and an adversary taking actions on a network repre-
sented by a directed graph G = (V, E) with n = |V | nodes
and m = |E| edges. The sender chooses how to send flow
from a set S ⊂ V of source nodes to the sink node t ∈ V .
The amount of flow originating at a node v ∈ V that must
be sent to t is denoted by bv, with bv > 0 for all v ∈ S and
bv = 0 for all v /∈ S. The sender’s strategy space F is the set
of all feasible flows from the source nodes to the sink. Flows
may be divided on alternate paths from the source nodes
to the sink1, leading to a continuous strategy space for the
sender if there are at least two paths from any source node
to the sink. A sender strategy f is represented as a m × 1
vector where fe is the amount of flow sent on edge e ∈ E.
For convenience, for an edge (u, v) ∈ E, f(u,v) is denoted
simply as fuv.

The adversary chooses attacks from a set A. The adver-
sary has a cost for each attack, represented by the |A| × 1
attack cost vector c, where ca ≥ 0 is the the cost suffered by
the adversary for attack a ∈ A. The adversary can execute
up to k attacks simultaneously. Thus the adversary’s set of
pure strategies A is the set of all subsets of A of size at most

1This approach can be used even when the asset moving
through the network cannot be split, as with a convoy that
must travel intact. The flow is then an efficient polynomial-
sized representation for a mixed strategy over the exponen-
tial number of paths from the source nodes to the sink. Splits
in the flow correspond to randomization over possible paths.

k, which has size Θ(|A|k), and his set of mixed strategies
is the set of all probability distributions over A. Instead of
representing mixed strategies explicitly, we use the marginal
probability distribution represented by the 1× |A| vector p,
where pa is the marginal probability of the adversary exe-
cuting a ∈ A. This is sufficient for computing payoffs (and
hence equilibrium behavior) [12], and so we sometimes refer
to p as the adversary’s mixed strategy. Because of the size of
A, even describing a mixed strategy explicitly requires expo-
nential time in general, but it is possible to efficiently sample
a pure strategy in conformance with p using algorithms such
as comb sampling [15] or weighted random sampling [5].

The payoff for the sender in the game is quantified by the
harm suffered as a result of the adversary’s attacks. The
harm is represented by a harm matrix M with |A| rows and
m columns, where each row specifies the penalties on edges
caused by an attack so that entry Mij is the per-unit-flow
harm suffered when the adversary executes attack ai and
and the sender transmits flow on edge ej . Harm for multiple
attacks is summed, as occurs when a convoy must endure
multiple attacks on its route, or when multiple jamming
attacks in different parts of an ad hoc network additively
increase the latency of messages. This representation models
a broad range of harm functions that cannot be represented
in other network security games [12]. When the sender plays
f and the adversary plays p, the total expected harm is pMf
and so the sender’s payoff is −pMf . The payoff for the
adversary depends on the harm that the sender suffers and
the cost of the attacks, computed as pMf − pc. We refer to
the adversary’s payoff as his reward.

When the players choose their actions without any obser-
vations of the other player the game is played as a simulta-
neous move game and we use the familiar Nash equilibrium
solution concept. A strategy profile (f∗, p∗) is a Nash equi-
librium if f∗ is a best response to p∗ (for the sender) and p∗

is a best response to f∗ (for the adversary). In equilibrium,
neither player has incentive to deviate and hence both are
indifferent between their possible strategies.

To illustrate the importance of the attack costs on the
Nash equilibrium, consider the network in Figure 1. Assume
that bs = 1 and k = 1 and that the adversary can choose to
attack the top path or the bottom path with harm matrix

M =

[
102 0 0 0
0 3 0 0

]
.

Let fi denote the amount of flow on edge ei and note that
the sender’s strategy is fully specified by f1 as f2 = 1− f1.
Let p1 and p2 denote the probability of attacking the top
and bottom paths respectively.

When attack costs are zero, the adversary never has in-
centive not to attack, so p1 + p2 = 1. In equilibrium the
adversary is indifferent between the two attacks so 102f1 =
3(1 − f1) and so f1 = 3/105. Similarly, the sender is indif-
ferent between the two paths so 102p1 = 3(1 − p1) and so
p1 = 3/105. An intuitive interpretation is that the sender
sends most of his flow on the bottom path because of the
lower potential for harm, while the adversary, being able to
deduce this, attacks the bottom path with high probability
because that’s where most of the flow is.

Now suppose that attacking the top path has a cost c1 =
100. The adversary’s equilibrium strategy remains the same
because the sender’s payoff hasn’t changed, but now for the
adversary to be indifferent it must be that 102f1−100 = 3f2
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Figure 1: An example of a network with two possible
paths.

so that f1 = 103/105. An intuitive explanation is that the
adversary attacks the top path with low probability because
of the high attack cost, and the sender, deducing this, sends
most of the flow on the top path despite the high potential
for harm because the adversary is unlikely to attack there.

The attack costs can also cause the adversary to not exe-
cute his maximum number of attacks because the cost out-
weighs the harm. For example, if c1 > 102 then the sender
can set f1 = 1 and a best response by the adversary is to
choose p1 = p2 = 0.

2.2 Computing Nash Equilibrium
Finding Nash equilibria in general non-zero games is com-

putationally more expensive than finding equilibria in zero-
sum games. In addition, there may be multiple equilibria
with different payoffs for both players, which can compli-
cate the matter of choosing a strategy. In this section we
show that these concerns do not arise in the network flow
game with attack costs, because the Nash equilibria in this
game are precisely those of the zero-sum game where both
payoffs are affected by attack cost.

To prove this we will use the following lemma:

Lemma 1. Let p be an adversary’s strategy and let f be a
sender’s strategy. Then f is a best response to p if and only
if f minimizes the adversary’s expected payoff given p.

Proof. We start with the forward direction. Assume f
is a best response to p. Because f is a best response to p,
it follows that f must minimize harm, pMf . Therefore it
must also minimize pMf +α for any α that is constant (with
respect to f). In particular, f must minimize pMf − pc,
the adversary’s expected payoff. The proof of the reverse
direction is similar.

We can now prove the theorem:

Theorem 1. (f, p) is a Nash equilibrium for the network
flow game with attack costs if and only if f minimizes the
maximum adversary payoff and p maximizes the minimum
adversary payoff.

Proof. We start with the backward direction. The fact
that p maximizes the adversary’s payoff given f follows di-
rectly from the assumption that p is a maximin strategy for
the adversary’s payoff. Thus p is a best response to f . It also
follows that f minimizes reward given p because f is a min-
imax strategy for the adversary’s payoff. Thus by Lemma 1
f is a best response to p. Therefore (f, p) are mutual best
responses and hence form a Nash equilibrium.

Now, suppose that (f, p) is a Nash equilibrium. We prove
that f must minimize the maximum adversary payoff by
contradiction. Suppose that f is not a minimax strategy

and let f ′ be a minimax strategy. Then there exists marginal
probability vector p′′ such that for all marginal probability
vectors p′, p′Mf ′ − p′c < p′′Mf − p′′c. In particular, for
p′ = p, we get

pMf ′ − pc < p′′Mf − p′′c

≤ pMf − pc (p is a best response to f)

But pMf ′−pc < pMf−pc implies that pMf ′ < pMf , which
means that f is not a best response to p (for the sender),
contradicting (f, p) being a Nash equilibrium. Hence f must
be a minimax strategy.

It then follows readily that p must be a maximin strategy,
as the adversary seeks to maximize reward.

Because of Theorem 1, finding an equilibrium sender strat-
egy reduces to finding a minimax strategy. This can be
found efficiently by using the linear program LP 1, despite
the large strategy spaces for both players:

LP 1 Equilibrium Sender Strategy with Attack Costs

Input: G, M , c, k
Output: f , R, λ

Minimize
f,R,λ

kR +
∑

a∈A

λa (1)

subject to:

R ≥ rowa[M ]f − ca − λa ∀a ∈ A (2)
∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t} (3)

fuv ≥ 0 ∀(u, v) ∈ E (4)

λa ≥ 0 ∀a ∈ A (5)

The adversary’s expected payoff is represented by R and
the λa variables. For a flow f , the potential reward of an at-
tack a is the amount of additional payoff that the adversary
will get if he plays a. This is calculated as rowa[M ]f − ca

where “rowa[M ]” denotes the row of M corresponding to at-
tack a. When k = 1, a best response by the adversary is
to play an attack with maximum potential reward. Thus
λa = 0 for all a and thus R is the amount of reward gained
and will be the maximum reward that can be gained from
any single attack, as required by Equation (2). Thus the
sender will minimize the maximum potential reward. When
k > 1, the sender no longer needs to minimize the potential
reward of a single attack, but rather must minimize the sum
of potential rewards for a set of attacks of size k. In some
cases, the sender may benefit from the adversary playing
attacks with higher potential reward if it allows other at-
tacks to have lower potential reward, thus resulting in a net
decrease in total potential reward. This idea is captured by
the λa variables, which allow an attack to“borrow”potential
reward from other nodes to form a net decrease. Variable
R now represents the minimum potential reward among the
nodes that may be attacked by the adversary in a best re-
sponse. Rewriting Equation 2 to get R+λa ≥ rowa[M ]f−ca,
we see that the reward potential for a node is the minimum
plus the “borrowed” amount. Each attack a will contribute
R + λa reward to the total, which is shown in the objective
function kR+

∑
a∈A λa. LP 1 has |A|+m+1 variables and

at most 2|A|+ n + m− 1 constraints. Thus it can be solved
in polynomial time (with respect to n and |A|).
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For adversary, we take the dual to the sender’s LP and
get the following program LP 2:

LP 2 Equilibrium Adversary Strategy with Attack Costs

Input: G, M , c, k
Output: r, p

Maximize
r,p

(∑

v∈S

bvrv

)
− p cT

subject to:

ru ≤ rv + p col(u,v)[M ] ∀(u, v) ∈ E

rt = 0
∑

a∈A

pa ≤ k

0 ≤ pa ≤ 1 ∀a ∈ A

The vector p represents the marginal probabilities of at-
tacking nodes. The vector r encodes the sender’s best re-
sponse to p, with rv being the least harm that the sender
can suffer for each unit of flow sent from v to the sink. At
the sink, no harm can be suffered (the flow is already at
the sink). From a node u other than the sink, we observe
that the sender must send flow on one of the outgoing edges
(u, v) to a neighbor v. The harm suffered will be equal to the
harm suffered crossing (u, v), plus the harm suffered from v
to t. Thus, the least harm suffered sending from u to t will
be equal to the minimum of the harm suffered from send-
ing flow on (u, v) plus the least harm from v to t. That is,
ru = min(u,v)∈E rv + p col(u,v)[M ] (where “col(u,v)[M ]” de-
notes the column in M for edge (u, v)), which is captured by
the constraint in Equation ??. Because the sender needs to
send bv endogenous flow from node v to t (with bv = 0 for
v /∈ S), the reward for the adversary is (

∑
v∈S bvrv)− p cT ,

the objective that is maximized by LP 2.
We note that by the strong duality theorem, LP 2 finds the

maximin adversary payoff strategy, despite the constraint in
Equation ?? considering minimum harm (the sender’s pay-
off), not the adversary’s payoff! This phenomena is well es-
tablished by Theorem 1: when the adversary optimizes his
strategy against a sender who is trying to minimize harm,
it is the same as optimizing the adversary strategy against
a sender who is trying to minimize the adversary’s payoff.
That is, the sender’s best response behavior in the non-zero
sum game where his payoff is just based on harm and the
adversary’s payoff is reward is the same as the sender’s best
response behavior in the zero sum game where both players’
payoffs are based on reward.

3. STACKELBERG GAME
In this section we consider the Stackelberg game in which

the sender plays first, committing to a strategy. We show
how two commonly used solution concepts, the strong and
weak Stackelberg equilibria, are inappropriate for sequen-
tial network security games, and provide a polynomial time
algorithm for finding a more nuanced equilibrium.

3.1 Model
In the previous section we described the simultaneous

game where the sender and adversary act without observ-
ing each other’s actions. However, in many settings this

is not the case. For example, convoys in support of per-
sistent military or humanitarian relief missions will oper-
ate over extended periods of time and the adversary can
observe routes taken over time to build up an estimate of
the sender’s mixed strategy before choosing which attacks
to launch. These types of settings are commonly modeled
as Stackelberg games, a type of sequential game in which
one player (the “leader”) moves first, committing to a mixed
strategy. The second player (the“follower”) can then observe
that mixed strategy and choose an appropriate response. It
is known that in Stackelberg games the leader can sometimes
improve his equilibrium payoff (and cannot decrease it, un-
der mild assumptions) compared to his equilibrium payoff
in the simultaneous move game [14].

In a two-player Stackelberg game the follower’s strategy is
a function that maps mixed strategies of the leader to mixed
strategies of the follower. In the network flow security game
with attack costs, the adversary’s strategies are functions g :
F → A that map each flow to an adversary mixed strategy.
Let G denote the set of all such functions. A Stackelberg
equilibrium (f∗, g∗) is a refinement of subgame perfect Nash
equilibrium where (f∗, g∗) are mutual best responses, i.e.,

g∗(f∗)Mf∗ = min
f∈F

g∗(f)Mf

g∗(f∗)Mf∗ − g∗(f∗)c = max
g∈G

g(f∗)Mf∗ − g(f∗)c.

both hold, and g∗(f) is a best response to f for all f ∈ F
(the follower always plays optimally, even off the equilib-
rium path). Computing a best response function g for the
adversary is straightforward: given f , greedily choose up to
k attacks that have maximum payoff to the adversary, ex-
cluding any that would contribute negative payoff because
the attack cost is too high. Note that there will be multiple
best response functions if there is some f for which the set
of k attacks yielding highest adversary payoff is not unique,
and that these best response functions may yield different
payoffs to the sender because of heterogeneous attack costs.
Thus there may be multiple Stackelberg equilibria that have
the same sender strategy but different sender payoffs.

Traditionally two kinds of Stackelberg equilibrium are dis-
tinguished: strong Stackelberg equilibrium (SSE), where the
follower’s best response function always maps to a strategy
that maximizes the leader’s payoff; and weak Stackelberg
equilibrium (WSE), where the follower’s best response func-
tion always maps to a strategy that minimizes the leader’s
payoff [9]. The pessimistic WSE is the more natural solu-
tion concept for security applications, which tend to focus
on worst case behavior. Despite this, SSE, which assumes
that the malicious adversary breaks ties in the leader’s fa-
vor, has been considered more often in the literature for two
technical reasons: (1) a SSE is guaranteed to exist in every
Stackelberg game, while a WSE may not; and (2) it is often
claimed that the leader can induce the adversary to play
the desired best-case strategy by deviating by an arbitrarily
small amount from the equilibrium in order to break the ad-
versary’s indifference [14]. We will show that both of these
arguments are inappropriate for the network security game,
but first illustrate several important concepts by example.

Recall the example in Figure 1 with c1 = 100. The
adversary is indifferent when f1 = 103/105, prefers the
top path when it is f1 > 103/105, and prefers the bottom
path when f1 < 103/105. Thus all best response functions
g1 : [0, 1]→ [0, 1] mapping f1 to the probability of attacking
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s v1 v2 t
e1 e2 e3

Figure 2: A network topology in which the sender
cannot induce a strong Stackelberg equilibrium.

the top path must satisfy g1(f1) = 0 when f1 < 103/105 and
g1(f1) = 1 when f1 > 103/105, and any value g1(f1) ∈ [0, 1]
is acceptable for f1 = 103/105.

In the unique simultaneous Nash equilibrium, p1 = 3/105,
so that the sender was indifferent between the top and bot-
tom paths but sent f1 = 103/105 flow on the top path
and f2 = 2/105 flow on the bottom path, suffering harm
on both paths. It follows that f1 = 103/105 is a best re-
sponse to the adversary’s best response function gNE

1 with
gNE
1 (103/105) = 3/105. Thus the simultaneous Nash equi-

librium naturally gives rise to a Stackelberg equilibrium strat-
egy, with the same payoff to the sender as in the Nash equi-
librium, −306/105. In the SSE the adversary attacks the
bottom path (i.e., gSSE

1 (103/105) = 0), resulting in a much
higher payoff to the sender, −6/105. It is easy to see that
there are no other Stackelberg equilibria for this game. For
example, there is no WSE because if the adversary played
the worst-case best response with gworst

1 (103/105) = 1, then
the sender would have incentive to deviate by decreasing f1.

The sender’s strategy is the same in both of these equilib-
ria which means that his payoff ultimately depends on the
choice of the indifferent adversary. However, note that the
sender can deviate slightly from his equilibrium strategy by
playing f1 = 103/105 − ε for some small ε > 0, in order
to incentivize the adversary to attack the bottom path. By
doing this the sender will receive a payoff of −(6/105 + 3ε)
instead of the −6/105 that he would earn in the SSE, but
as ε is made arbitrarily small his strategy converges to the
SSE strategy.

It is not always possible to induce the SSE by deviating
from an equilibrium strategy. Consider the network in Fig-
ure 2, and assume that A contains two attacks, one that
affects e1 and one that affects e2, with harm matrix

M =

[
5 0 0
0 3 0

]
,

and costs c1 = 3 and c2 = 1. The sender has no choice as his
only pure strategy is to send the full flow on the single path
from s to t. At the same time, the adversary is indifferent
to the choice of attack as they both yield him a payoff of 2
and so might choose either of them.

3.2 Inducing Locally Optimal Equilibria
Because the WSE may not exist and the SSE may not be

attainable, we address the problem of how the sender can
deviate from a Stackelberg equilibrium strategy f to induce
a Stackelberg equilibrium (f, g) that yields him maximum
payoff. We call this a locally optimal inducible Stackelberg
equilibrium (loptISE). It is locally optimal because the value
of the Stackelberg equilibrium that is induced depends on
the starting equilibrium strategy f . The starting strategy
that we use is one that arises naturally from the simultane-
ous game Nash equilibrium strategy found by LP 1, which
we now show to always be a Stackelberg equilibrium.

Lemma 2. If a strategy profile (f, p) is a Nash equilibrium

Algorithm 1 Computing deviation to find optimal in-
ducible Stackelberg equilibrium

1: Find Nash equilibrium flow f using LP1
2: Set A′ to be the set of minimum adversary payoff can-

didate attacks.
3: Set k′ ≤ k to be the number of candidate attacks that

must be chosen from A′.
4: if |A′| ≤ k′ then
5: Return.
6: Add dummy source s0 to G. Set I ′ ← ∅. Set fε to be

the empty flow.
7: while |I| < k′ do
8: Set F ← ∅.
9: for all a ∈ A′ do

10: Solve (fa, H, H ′)← LP3(G, M, A′, a)
11: if H −H ′ ≥ 0 then
12: F ← F ∪ {fa}
13: Set Y ← {a|fa ∈ F with minimum rowa[M ]fa}.
14: Set Z ← {a|∃a′ ∈ Y s.t. rowa[M ]fa = rowa′ [M ]fa′}
15: Set A′ ← A′\Z and I ← I ∪ Z.
16: Set fε ← fε +

∑
a∈Y fa

17: Set f ← f + εfε

18: for all s ∈ S do
19: Normalize outgoing flow.

for the network flow security game with attack costs found by
LP 1 then (f, g) is a Stackelberg equilibrium for the Stackel-
berg network flow security game with attack costs for a best
response function g with g(f) = p.

Proof. We construct g as a best response function with
g(f) = p. For f ′ ̸= f , we set g(f ′) to be the best response
that maximizes g(f ′)Mf ′. By definition of Nash equilib-
rium, f maximizes g(f)Mf . Because LP 1 finds a minimax
strategy, it follows that g(f ′)Mf ′ ≥ g(f)Mf for all f ′ ∈ F .
Thus, f is a best response to g in the Stackelberg game, and
so (f, g) is a Stackelberg equilibrium.

Algorithm 1 computes a deviation from an equilibrium
strategy that the sender can use to induce a loptISE. We
first sketch the high level approach before delving into the
details. The sender starts with a Nash equilibrium flow f
(which is also a Stackelberg equilibrium strategy according
to Lemma 2), then computes the set A′ of candidate attacks
that might be chosen by the adversary as part of a best re-
sponse to f and that the adversary is indifferent between.
The sender tries to incentivize the adversary to choose cer-
tain of these candidate attacks by adding small amounts of
flow. Intuitively this approach exploits what we observed
in the example: parallel paths allow the sender freedom to
deviate and bias the adversary’s choice toward less harm-
ful attacks, while a sequential topology does not permit
this flexibility and instead the adversary will be assumed
to choose the most harmful attack (a worst-case approach
to security). However, the process is not as obvious when
dealing with general attacks, each of which may affect an ar-
bitrary set of links with heterogeneous harm values. Instead
of choosing a simple path, the sender tries to find a flow for
each candidate attack that will cause the sender to prefer
to play that attack over all other candidate attacks. When
presented with multiple options, the sender chooses one that
causes the least harm (i.e., increases his payoff the most).
The repeats until the sender has incentivized all of the adver-
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sary’s attacks, to less harmful attacks when possible and to
most harmful attacks otherwise. The deviation flows (which
may be made arbitrarily small) are then superimposed on
the original flow to generate the desired deviation.

Computing the candidate attacks is straightforward. Given
f , we compute the payoff that the adversary would receive
for each attack a ∈ A as ρa = rowa[M ]f . The adversary
will choose up to k attacks with the highest ρa, and will
only choose attacks with ρa ≥ 0. If there are more than
k attacks with ρa ≥ 0, we compute the multiset of attacks
with the highest k values of ρa (with repetition). For exam-
ple, if the multiset of ρa values is {10, 10, 8, 7, 7, 7, 0,−2} and
k = 4, then there are 6 candidate attacks, {a ∈ A|ρa ≥ 7}.
The adversary’s best response will always choose the attacks
with ρa strictly greater than the minimum, so we need only
consider A′ to be those with minimum ρa values. In the
previous example, that would mean that the best response
always plays the two attacks with ρa = 10 and the one attack
with ρa = 8 (i.e., these cannot be affected by the sender), so
we are left to choose k′ = k − 3 = 1 candidate attacks from
among the three remaining with ρa = 7.

A dummy source node s0 is added to G and connected to
each source in s ∈ S, to allow deviant flows from any source.
The set of induced attacks I, is initialized as empty. The
overall deviation flow fε is initially empty.

The algorithm then iterates up to k′ times in the loop
starting at line 7. On each iteration it attempts to greedily
induce the adversary to choose attacks that maximally in-
crease the sender’s payoff. The set of best deviant flows is F .
For each a ∈ A′, we compute the deviation fa that makes
the adversary prefer to play a ∈ A′ over other candidate
attacks. This is achieved by LP 3:

LP 3 Stackelberg deviating flow for a.

Input: G, M , A′, a
Output: fa, H, H ′

Maximize
fa,H,H′

H −H ′

subject to:

H ≤ rowa[M ]fa

H ′ ≥ rowa′ [M ]fa ∀a′ ∈ A′\{a}
∑

(v,u)∈E

fa
vu =

∑

(u,v)∈E

fa
uv ∀v ∈ V \{s0, t}

∑

(s0,u)∈E

fa
s0u = 1

fa
uv ≥ 0 ∀(u, v) ∈ E

Variable H represents the amount of harm inflicted by at-
tack a, while H ′ is the amount of harm inflicted for any
other attack a′ ∈ A′ with a′ ̸= a. LP 3 seeks to maximize
the difference H −H ′. By assumption the adversary is in-
different between candidate attacks so costs can be ignored;
relative changes in reward are solely due to relative changes
in harm. Thus if H −H ′ ≥ 0 the adversary receives at least
as much reward by choosing a and so the sender can induce
the adversary to play a (perhaps with other attacks), while
if H −H ′ < 0, the sender cannot yet induce the adversary
to prefer a over other candidate attacks.

Of the attacks that can be induced on this iteration, the

sender chooses those that cause minimum increase in harm.
These may not be unique (i.e., when H−H ′ = 0 for multiple
a), so Y is the set of all such candidate attacks with mini-
mum increase in harm that the adversary can be induced to
attack on this iteration. The deviation flows that are used
to induce these attacks may also induce other attacks (which
have the same increase in harm), so the set Z contains all
the attacks that will be induced in the current iteration.
These are removed from the candidate attacks and added to
the induced attacks in line 15, and the deviation flows for
this iteration are superimposed on the total deviation flow
fε before starting a new iteration.

The loop terminates when the requisite number of attacks
have been induced. On each iteration of the loop, I grows
and A′ shrinks. It is not possible for A′ to become empty
prior to the termination of the loop. Prior to beginning the
loop, |A′| > k′ (lines 4 – 5) and on every iteration the same
number of attacks are added to I as are removed from A′.
Thus, |I| ≥ k′ no later than the iteration when A′ = ∅.

In line 17 the deviation flow is scaled and superimposed
on the equilibrium flow, and in line 19 the amount of flow
(which increased due to the addition of the deviation flow)
is normalized at each source node so that the total amount
of flow is maintained with the addition of the deviation.

Theorem 2. Algorithm 1 runs in time polynomial in the
size of G and A.

Proof. Each line in the algorithm can clearly be exe-
cuted in polynomial time. The for loops in lines 9 – 12 and
lines 18 – 19 iterate at most Θ(|A|) and Θ(n) time, respec-
tively. In each iteration of the main loop from lines 7 – 16 at
least 1 attack is added to |I| and therefore the loop cannot
iterate more than |I| = Θ(|A|) times.

4. BAYESIAN GAMES
In many security applications, it is unrealistic to assume

that complete information on the adversary is available be-
cause adversaries are hostile and usually secretive. In mil-
itary and law enforcement domains, intelligence analysts,
criminologists, and other experts collect relevant data on
real and possible adversaries and develop inherently uncer-
tain estimates of their capabilities and motives. In this sec-
tion we represent that uncertainty as probability distribu-
tions over the maximum number of attacks that they can
execute, the harm matrices, and the attack costs. We de-
velop ways to reason strategically over this incomplete infor-
mation by adopting the Bayesian game framework and find
polynomial time algorithms for finding equilibria.

4.1 Uncertain k
In many situations it is not possible for the sender to know

the adversary’s capabilities with certainty. The sender can
act as if he has the full knowledge, but he then might perform
badly. For example, suppose that the game is the same as
in Figure 1, but now k = 2. In equilibrium, the adversary
strategy is p1 = 1/34 and p2 = 1, and the sender strategy is
f1 = 100/102 and f2 = 2/102. The expected harm for the
sender will thus be 3. However, if the sender does not know
that k = 2 now, and continue to play his strategy for k = 1,
the adversary will exploit it and will always attack v1 and v2.
The sender’s harm will thus increase to 100.116. Therefore,
when the sender is not sure about the exact value of k, he
will have to estimate it. We represent this by a probability
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distribution q over possible values of k, which we assume is
known to both players. Given this distribution, we formulate
the sender’s problem as a Bayesian game. A Bayesian game
is one in which information about characteristics of the other
players is incomplete. There is a probability distribution
over possible types for each player, and the type of a player
determines that player’s payoff function. In our case, the
sender has only one type, and the type of the adversary is
determined by the value of k. We denote the probability
that the adversary is of type k as qk. The sender’s optimal
equilibrium strategy can be computed using the following
linear program:

LP 4 Equilibrium Sender Strategy in a Bayesian game (un-
certain k)

Input: G, M , A, c, k, q
Output: f , {Rk}, {λk}

Minimize
f,{Rk},{λk}

|A|∑

k=1

qk

(
kRk +

∑

a∈A

λk
a

)

subject to:

Rk ≥ rowa[M ]f − ca − λk
a ∀a ∈ A, ∀k ∈ [1..|A|]

∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t}

fuv ≥ 0 ∀(u, v) ∈ E

λk
a ≥ 0 ∀a ∈ A, ∀k ∈ [1..|A|]

Rk ≥ 0 ∀k ∈ [1..|A|]

This LP is similar to LP 1, except that instead of minimiz-
ing maximum adversary expected payoff for a specific value
of k, it minimizes the weighted sum of the expected rewards
over possible values of k, weighted by their probability. The
number of variables and constraints is still polynomial in n
and |A| and so this LP can be solved in polynomial time.

We must verify that in the Bayesian game, minimizing
the adversary’s maximum expected payoff also maximizes
the sender’s expected payoff.

Theorem 3. (f, {pk}) is a Nash equilibrium for the non-
zero sum game if and only if f minimizes the maximum
expected adversary payoff and {pk} maximizes the minimum
expected adversary payoff.

The proof is similar to the proof of Theorem 1, and we omit
it due to space constraints.

Even though the adversary knows his type (i.e., the cor-
rect value of k) he cannot use LP 2 to find his equilibrium
strategy since the sender does not know the exact value of
k. Instead, we can take the dual to the sender’s LP. Due to
space constraints we omit the exact description.

5. UNCERTAIN PAYOFFS
Another way in which the sender may be uncertain of the

adversary is by not knowing the payoffs and costs. Suppose
instead that he has a probability distribution r over possible
l payoff matrices and attack costs (types of adversaries).
For i ∈ [1..l], let ri be the probability that the adversary
is of type i with a harm matrix M i and cost of attacks ci.

LP 5 Equilibrium Sender Strategy in a Bayesian game (un-
certain M and c)

Input: G, M , c, k, r
Output: f , {Ri}, {λi}

Minimize
f,{Ri},{λi}

l∑

i=1

ri

(
kRi +

∑

a∈A

λi
a

)

subject to:

Ri ≥ rowa[M i]f − ci
a − λi

a ∀a ∈ A, ∀i ∈ [1..l]
∑

(v,u)∈E

fvu = bv +
∑

(u,v)∈E

fuv ∀v ∈ V \{t}

fuv ≥ 0 ∀(u, v) ∈ E

λi
a ≥ 0 ∀a ∈ A, ∀i ∈ [1..l]

The following linear program computes the sender’s optimal
equilibrium strategy:

As before, the adversary’s equilibrium strategy can be
computed by taking the dual of LP 5.

If we assign ri = 1 for every i ∈ [1..l] we get a linear pro-
gram which solves another interesting variant of our prob-
lem. Consider a game with one sender and multiple adver-
saries. The adversaries choose their strategies independently
of each other (i.e., no colluding). The adversaries have dif-
ferent harm matrices and costs for attacking nodes and the
total harm to the sender is the sum of the harm resulting
from each adversary’s attack. The payoff to each adversary
depends only on his own strategy and the sender’s strategy;
it does not depend on the strategies of any of the other ad-
versaries. For now, let’s assume that every adversary can
attack k nodes. By assigning ri = 1 for every i ∈ [1..l]
we get that LP4 finds the optimal equilibrium strategy for
the sender in the multiple adversaries game too! As for the
adversary’s equilibrium strategies we get an interesting ob-
servation: since the strategies can be computed by the dual
of LP4, they are in fact correlated. Even though the adver-
saries choose their strategies independently of each other,
due to the strategic consideration they behave as if they
coordinate their moves.

6. RELATED WORK
Problems similar to the one we address in this paper have

been studied in operations research [16, 7], robotics [6, 2],
and multiagent systems [15, 8]. Many of these have also
taken the perspective of the player who selects nodes or
edges in the network to impair the other player who chooses
paths through the network. The study of network interdic-
tion [16, 7] looks at problems where an interdictor chooses
edges or nodes to damage or destroy destroy (“interdict”)
in order to impair the ability of an enemy moving through
the network, for example for by forcing it to take longer
paths [7]. An early study of single source, single sink zero-
sum games where the interdictor interdicts a single edge
found that the equilibrium strategy is to only interdict edges
in the minimum cut [16]. Similar results were found in net-
work routing settings [3], and more recently in games where
multiple edges can be interdicted[15, 8]. In evader-pursuer
games [6, 2], both players move through the network. In
path disruption games [1] multiple cooperative agents work
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together to interdict an adversary, in contrast to our setting
where both sides are assumed to be monolithic players.

In most of these related problems, the payoff depends on
the probability that at least one attack occurs on a pathway;
multiple attacks on the same pathway either are not possible
or incur no additional penalty. This models situations like
placing checkpoints to intercept the sender; once caught, the
sender cannot be caught again. In contrast, in our problem
the same pathway may be subject to multiple attacks or a
single attack may affect multiple edges on the same path-
way, resulting in additional harm. This is useful for settings
where the sender continues after an attack, as when convoys
fight their way through ambushes or robots clear obstacles.
Games with similar payoffs have been solved in the context
of communication networks using linear programming [12]
and Markov Decision Processes using oracle algorithms [11].
However, these approaches have assumed zero-sum games.

Stackelberg games [13, 15] have recently been a common
framework for security where patterns of behavior may be
observed and learned by the adversary, as opposed to more
traditional simultaneous games[3, 10]. Stackelberg games
generally allow the leader to find equilibrium strategies with
higher payoff than in a simultaneous game, but only in non-
zero sum games [17, 14]. Computing the optimal strategies
to commit to is solvable in polynomial time in the normal
form game [4], but this is not practical in our games which
have exponential-sized strategy spaces. The traditional so-
lution concept considered in all of these is the strong Stack-
elberg equilibrium, which is questionable for the worst-case
reasoning common in security settings and is not appropri-
ate for the network security games we consider.

7. CONCLUSIONS AND FUTURE WORK
In this paper we considered non-zero sum network secu-

rity games where the adversary incurs costs to attack the
network. We proved that the equilibria in this non-zero sum
game correspond exactly to the equilibria in a related zero-
sum game, and used this insight to develop linear programs
(LPs) to find the equilibrium strategies. While the strategies
were the same as in the zero-sum game, the payoffs were not,
which allowed the sender to benefit by committing. We in-
troduced a new Stackelberg equilibrium, the locally optimal
inducible Stackelberg equilibrium (loptISE) that is particu-
lary well suited for network security games, and provided a
polynomial time algorithm for calculating the way in which
the sender can deviate from an equilibrium strategy to get
achieve strategy profiles arbitrarily close to the loptISE. We
also found LPs to solve for equilibria in Bayesian games
where the sender is uncertain of capabilities, payoffs, and
costs of the adversary he faces.

In future work we seek to extend the Stackelberg frame-
work to our Bayesian games. Commitment is computation-
ally more difficult in Bayesian normal form games, so it will
be interesting to see if we can further leverage the payoff and
network structure to find polynomial time algorithms. We
will also try to extend our results on loptISE to a globally
optimal equilibrium, which seems possible given the relation-
ships between the simultaneous and Stackelberg equilibria in
the network flow security game.
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ABSTRACT
We describe methods for routing a prediction task on a net-
work where each participant can contribute information and
route the task onwards. Routing scoring rules bring truth-
ful contribution of information about the task and optimal
routing of the task into a Perfect Bayesian Equilibrium un-
der common knowledge about the competencies of agents.
Relaxing the common knowledge assumption, we address the
challenge of routing in situations where each agent’s knowl-
edge about other agents is limited to a local neighborhood.
A family of local routing rules isolate in equilibrium routing
decisions that depend only on this local knowledge, and are
the only routing scoring rules with this property. Simulation
results show that local routing rules can promote effective
task routing.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Economics, Theory

Keywords
Scoring rules, task routing, social networks

1. INTRODUCTION
Organizations rely on a mix of expertise and on means

for identifying and harnessing expertise for completing dif-
ferent kinds of tasks. The ability to leverage the expertise
and interests of individuals effectively is crucial for the suc-
cess of an organization. Accomplishing a task may require
the expertise of multiple actors, and harnessing that exper-
tise requires identifying who the experts are and providing
proper incentives for inducing contributions.

One approach to coordinating expertise is to pool knowl-
edge about competencies and preferences and to assign tasks
in a centralized manner. Another approach is to rely on in-
dividuals distributed across an organization to select tasks
themselves. Both approaches have flaws. In the former, an

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

organization or system may not know which individuals have
the required expertise. In the latter, while individuals may
often be able to gauge their own expertise, they may not
know which tasks best match their respective competencies.

In social networks and organizations, an individual’s knowl-
edge extends beyond their own expertise on tasks and top-
ics to knowledge about the expertise of others. For example,
members within the same research group know whom within
that group can best review a paper, or best contribute to an-
swering a research question. Members of a social network
may know who among their friends can best answer a par-
ticular question, or otherwise provide valuable opinions on a
topic of discussion. Even in situations where an individual
cannot identify an expert who can best contribute to a task,
they may know others who would likely know experts, or
be able to identify subsets of individuals among whom the
requisite expertise is likely to exist (e.g., people who share
a particular interest).

We explore principles and methods for task routing that
aim to harness the ability of people or automated agents to
both contribute to a solution, and to route tasks to others
who they believe can also effectively solve and route. Task
routing provides an interesting paradigm for problem solv-
ing in which individuals become engaged with tasks based
on their peers’ assessments of their expertise. On the task
level, effective task routing aims to take advantage of agents’
knowledge about solving problems as well as agents’ knowl-
edge about other agents’ abilities to contribute. Agents
make routing decisions in a peer-to-peer manner, and the
system rewards participating agents for their contributions.
On the organizational level, task routing may provide a
means for bringing tasks to individuals effectively, where
agents’ routing decisions take into account not only an in-
dividual’s expertise on the particular task, but also their
ability to contribute as a router.

Methods for automated and manual routing of tasks have
been employed in online networks. For example, question-
answering services such as Aardvark [10] allow a user to ask
questions in natural language, which the system interprets
and automatically routes to appropriate individuals in the
user’s social graph based on an assessment of who is best
able and willing to provide an answer. Aardvark also allows
for peer routing, where a user can manually route questions
to others, enabling the system to reach users outside its fund
of knowledge about people and their expertise.

We consider methods for routing and solving tasks with a
focus on the challenge of efficiently obtaining accurate prob-
ability assessments about an uncertain event. For this task,
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a question is passed among individuals on a network, and
each participant can update the posterior probability and
forward the task to a neighbor. We introduce routing scoring
rules for incentivizing contributions. Given an assumption
of common knowledge about the amount of information held
by each agent on the network, we obtain truthful reporting
of posterior probability assessments and optimal routing in
a Perfect Bayesian Equilibrium. Even with this common
knowledge assumption, we find that the equilibrium strat-
egy on a general network requires finding a routing path
through individuals that have the most information in ag-
gregate and is NP-hard. In comparison, a myopic routing
rule is optimal on simple topologies such as cliques.

A second difficulty is that common knowledge is unlikely
to hold for large social networks where each agent’s informa-
tion about the competencies of others is limited to a local
neighborhood (e.g., friends, and perhaps friends of friends).
To handle such cases, we also consider task routing where
knowledge about others’ abilities may be limited to only
those agents in an agent’s local neighborhood. Unfortu-
nately, equilibrium routing under the routing rules becomes
even more computationally challenging, requiring an agent
on the path to perform inference that takes into considera-
tion the previous routing decisions of agents.

Beyond formalizing the joint routing and solution chal-
lenge, our main contribution is to introduce a family of local
routing rules that isolate simple routing decisions in equilib-
rium, while still taking advantage of knowledge about the
expertise of others to promote effective routing decisions.
We achieve this by incentivizing agents to make routing de-
cisions based on short, locally optimal paths that can be
computed easily using shared local knowledge. In summary,
we design incentive schemes that explicitly enable equilib-
rium behavior for which the inference required of agents is
tractable.1 We provide a full characterization of local rout-
ing rules, and show that they are the only routing scoring
rules that induce truthful equilibria in which agents’ routing
decisions can be computed using only local common knowl-
edge. Simulation results demonstrate that equilibrium rout-
ing strategies based on local routing rules lead to effective
information aggregation.

1.1 Related work
Leveraging individuals’ abilities to both solve and route

is a key component of the winning team’s strategy in the
DARPA Red Balloon Challenge [13]. The task was to find
large, salient helium-filled balloons placed in ten undisclosed
locations across the continental United States. The winning
team introduced an incentive mechanism that uses a limited
budget to incentivize individuals to look for balloons and
to let their friends know about the task; see also Emek et
al. [8] and Douceur and Moscibroda [7] for related theoreti-
cal analysis, and work on query incentive networks [12, 2, 5]
that analyze games in which players split rewards to recruit
others to answer a query. The mechanism used by the win-
ning team differs from those in our work because it aims to
induce agents to broadcast the task to everyone they know
regardless of their expertise or knowledge of others’ exper-
tise, whereas mechanisms in our work aim to induce agents
to identify particular experts that can best contribute to the
task and route it to others.

1This is analogous to the role of strategyproofness in simpli-
fying strategic problems facing agents in mechanism design.

The problem of task routing is also related to the prob-
lem of decentralized search on networks in which the goal
is to find a target node quickly through local routing deci-
sions [15, 6, 16, 11, 1]. In such work, the goal is to identify a
single target node representing a particular individual; while
a single-target task differs from the task routing problem we
seek to solve, the results on its solution provides theoreti-
cal and experimental support for the prospect that routing
decisions with local information may have effective, global
performance.

One can view routing scoring rules as an extension of
market scoring rules [9] used in prediction markets. Mar-
ket scoring rules provide proper incentives for individuals to
improve probability estimates by contributing additional in-
formation. The major difference between task routing and a
prediction market is in the ‘burden’ of identifying expertise:
while prediction markets place the responsibility on indi-
viduals to find prediction tasks for which they have useful
information, task routing incentivizes individuals to notify
others with appropriate expertise who may otherwise be un-
aware of the task.

2. MODEL
To formalize the setting, consider a single prediction task

T , for which we would like to gather an accurate probability
assessment of the true state ω ∈ Ω. The probability assess-
ment task can be for any state of the world that will be
revealed later in time, e.g., “Will it snow next Tuesday in
Boston?” or “Will the Celtics win the NBA championship
this year?” We consider discrete state spaces, and assume
without loss of generality a binary state space, such that
Ω = {Y,N}.

Consider a game with n players, where each player is rep-
resented by a node on the routing graph G = (V,E). Edges
in the graph may be directed or undirected, and indicate
whether a particular player can route the task to another
player. The task is initially assigned to a source player
named player 1, with later players on a routing path num-
bered sequentially. The source player is either determined
by the system, or the individual who originally posed the
task. The source player is asked to update the probability
of state Y from the prior probability p0 to some probability
p1, and, in addition, to route the task to a neighbor. The
selected neighbor is then asked to update the assessment p1

to p2 and route the task to a neighbor, and so on, until the
game ends after a pre-specified number of rounds R that
denotes when a final assessment must be made. We assume
players receiving the task are provided with a list of people
or agents who have participated so far, as well as informa-
tion about the number of rounds that remain. Our goal is to
design incentive mechanisms that will induce each player to
update probability assessments truthfully and route the task
to other players that can best refine the prediction, so as to
arrive at an accurate assessment after R rounds.

We model players’ knowledge about the task as follows:
the true state of the world is drawn according to the proba-
bility distribution Pr(Y ) = p0 and Pr(N) = 1− p0, which is
common knowledge to all players. While no player observes
the true state directly, each player may receive additional
information about the true state. To model this state of
affairs, each player privately observes the outcome of some
number of coin flips drawn according to a commonly known
distribution that depends on the true state. Different players
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may observe different numbers of coin flips, where players
observing more coin flips are a priori more knowledgeable.

Formally, we represent player i’s signal ci as a random
bit vector of length li, where bit cik is a random variable
over the outcome of the k-th coin flip observed by player
i. We assume the value of bits of signal are conditionally
independent given the true state, and drawn from the same
distribution (known to all players) for all players and all bits,
such that Pr(cik = H|ω) = Pr(cjm = H|ω) for all players
i, j, bits k,m, and realization H (head). Each bit of signal
is assumed to be informative, that is, Pr(cik = H|ω = Y ) 6=
Pr(cik = H|ω = N) for all i, k. We also assume that bits
of signal are distinct, that is, Pr(ω = o|cik = H) 6= Pr(ω =
o|cik = T ) for all i, k, o, where H is heads and T is tails.2

We assume the realization of each player’s signal is private,
but make different assumptions about the knowledge of one
player about the number of coin flips of another player.

With conditionally independent signals, each player can
properly update the posterior probability without having
to know the signals of previous players or their length, as
long as previous updates were done truthfully [4]. This is
useful practically in that players do not have to keep track
of nor communicate their signals, and can simply report an
updated posterior probability that sufficiently summarizes
all information collected thus far.

3. ROUTING SCORING RULES
With rational, self-interested players who have no intrin-

sic value (or cost) for solving or routing a particular task,
effective task routing requires mechanisms that will incen-
tivize players to both truthfully update and report posterior
probabilities and to route tasks to individuals who can best
refine the predictions of the tasks. In this section, we review
strictly proper scoring rules and market scoring rules for in-
centivizing truthful reports, and introduce routing scoring
rules, which also incentivize effective routing decisions.

In the forecasting literature, strictly proper scoring rules [14]
are mechanisms that strictly incentivize a forecaster to truth-
fully reveal his subjective probability of an event, typically
under the assumption that agents are risk neutral. The out-
come of the event is assumed observable in the future, and
payments are conditioned on the outcome. A well-known
strictly proper scoring rule is the quadratic scoring rule, un-
der which a player reporting probability q for state Y is
rewarded 1 − (1 − q)2 when the true state is Y and 1 − q2
when the true state is N . Other strictly proper scoring rules
include the logarithmic and spherical scoring rules, and any
strictly proper scoring rule can be scaled or normalized via
linear transformations to form another strictly proper scor-
ing rule [3].

Market scoring rules [9] extend strictly proper scoring
rules to settings where we wish to aggregate information
across multiple people. Given a sequence of reports, player
i reporting pi is rewarded si − si−1, where si denotes the
score of player i as computed by some strictly proper scor-
ing rule applied to this agent’s report alone. Note that since
strictly proper scoring rules incentivize accurate reports, a
player’s reward under a market scoring rule is positive if and
only if he improves the prediction.

2These assumptions rule out degenerate cases and can be
made without loss of generality. A signal that is not infor-
mative can be removed from the signal space, and two signals
that are not distinct can be treated as the same signal.

Building on market scoring rules, we introduce routing
scoring rules to incentivize accurate predictions, along with
effective routing decisions.

Definition 1. A routing scoring rule defines a se-
quence of positive integers k1, . . . , kR−1, which rewards play-
ers i ∈ {1, . . . , R− 1} on the routing path:

(1− α)si + αsi+ki − si−1

where si is the score under an arbitrary strictly proper scor-
ing rule, α ∈ (0, 1) is a constant, and i + ki ≤ R for all
players i. Player R reports but does not route and is paid
sR − sR−1.

In a routing scoring rule, player i’s payment is based on
the marginal value the player provides for refining the pre-
diction, as measured by his report and the report of the
player who receives the task ki steps after him, in compari-
son to the report of the player just before him. For player 1,
s0 denotes the score computed with respect to the prior p0.
Each player i can be paid for up to R− i steps forward, and
the final player R does not route and is paid by the market
scoring rule sR − sR−1.

Intuitively, routing scoring rules reward players who are
experts and players who are knowledgeable about the ex-
pertise of other players. We introduce here several routing
scoring rules of particular interest. We first consider the my-
opic routing scoring rule (MRSR), which sets ki = 1 for all
players i < R. This routing scoring rule aims to reward a
player for submitting accurate probability assessments and
routing in a greedy manner to the player who can most ac-
curately refine the probability assessment.

Lemma 1. The total payment from the system in the rout-
ing game with MRSR is sR − s0 + α(sR − s1).

The lemma follows from taking telescoping sums, and
states that, for MRSR, the center needs to only pay for
the difference between the final assessment and the initial
assessment, since each player is only paid for the additional
information they provide and their routing decision.

We can extend the MRSR to reward players’ routing de-
cisions based on the accuracy of information after ki =
min(k,R− i) more players have provided their information.
The k-step routing scoring rule (kRSR) rewards a player
based on his report, as well as the eventual consequence of
his routing decision k steps into the future. Unlike MRSR,
kRSR rewards players for routing to players who may not
have information themselves but who are still able to route
to others who do.

In particular, when player i’s routing payment is based on
player R’s score, that is, i + ki = R, for all i, we call this
the path-rewarding routing scoring rule (PRSR). As its name
suggests, this routing scoring rule seeks to focus a player’s
attention on the final consequence of his routing decision, as
judged at the end of the solving and routing process.

The choice of routing scoring rule affects players’ routing
decisions in equilibrium, which in turn affects how much
information is aggregated. To see the connection between
a player’s score and the amount of information aggregated,
note that the expected score is strictly increasing in the total
number of coin flips collected:

Lemma 2. Let S′ and S′′ denote two possible sequences of
players through the first k rounds of the routing process that
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are identical up to player i < k. Assume all players truth-
fully update posterior probabilities, and that player i knows
lj for players i < j ≤ k on S′ and S′′. Let EiS [sk] denote
player i’s ex-ante expectation of the score after player k’s
report in path S. EiS′ [sk] > EiS′′ [sk] holds if and only ifP
m∈u(S′) lm >

P
n∈u(S′′) ln, where u(S) is the (unique) set

of players in S.

Proof. (sketch) Assume without loss of generality that
there are a total of n coin flips in S′, and n + m coin flips
in S′′, m > 0. The expected score of player k from S′′

consists of two (hypothetical) parts, (a) the score he would
get when giving a prediction after receiving the first n coin
flips, denoted s[n], and (b) the difference in the score he
would get by changing his prediction after receiving the next
m coin flips, denoted s[n+m] − s[n]. The expectation of the
first part is the same as the expected score of player k from
S′, and the expectation of the second part is always non-
negative given any strictly proper scoring rule.

Intuitively speaking, additional bits of information can
only improve the accuracy of the prediction in expectation.
Since strictly proper scoring rules reward accuracy, collect-
ing more coin flips will lead to higher scores in expectation.

4. CASE OF COMMON KNOWLEDGE
Having introduced routing scoring rules of interest, we

consider an equilibrium analysis of the associated routing
game. We first consider the case where the number of coin
flips li observed by each player i is common knowledge.3

Note the actual signal realizations are still assumed private.

4.1 Clique topology
Let us now consider the routing game on a clique, where

each player can route the task to any other player. From
Lemma 2, and given the clique topology, an optimal routing
algorithm can just route myopically and collect as many
coin flips as possible at each step. This is because there is
no opportunity cost for being greedy in this way, due to the
clique topology. We have the following equilibrium result:

Theorem 1. Assume the number of coin flips of each
player is common knowledge, and that players are risk neu-
tral. Consider a routing game in which the routing graph is
a clique, and let S>i denote the set of players who have yet
to receive the task after i rounds. Under the myopic routing
scoring rule, it is a Perfect Bayesian Equilibrium (PBE) for
each player i to truthfully update the posterior probability,
and to route the task to player i+1 ∈ argmaxm∈S>i lm, with
the belief that all other players update the posterior probabil-
ity truthfully.

Proof. (sketch) We show that no player wishes to devi-
ate from the equilibrium strategy, given the belief that all
other players report truthfully. Consider player i. To prove
the theorem, we first show that player i should honestly up-
date the posterior beliefs by establishing that (a) truthful
reporting maximizes si, and that (b) for any player m who
may be routed the task, truthful reporting by player i max-
imizes the score sm. For (a), note that, since si is based on

3By taking appropriate expectations, the analysis through-
out the paper extends easily to settings where players are
equally well-informed but are uncertain about the number
of coin flips that other players observe.

a strictly proper scoring rule, truthful reporting maximizes
the expectation of si. For (b), note that the expected score
of sm (from the perspective of player i) is strictly greater
when player i reports honestly because sm is based on a
strictly proper scoring rule. It is left to show that player
i maximizes si+1 by routing to the player in S>i with the
most coin flips; this follows from Lemma 2.

4.2 General networks
We now turn to consider routing games on general net-

works, with missing edges; e.g., only managers can route
tasks between teams, only professors can route questions to
other professors, and only friends can route to friends.

We can state the algorithmic problem of finding the opti-
mal route in terms of collecting coin flips:

Problem 1. Consider the routing graph G = (V,E),
where nodes are assigned non-negative integer weights wi
(coin flips). Given a starting node o, find a path of length
at most k such that the sum of weights on the path is maxi-
mized.

Note that a player can route to another player who have
received the task before (e.g., the path need not be simple),
but no additional information is collected in subsequent vis-
its.

Immediately, we see that myopic routing will not always
find the optimal solution to this problem, as routing to the
neighbor with the most coin flips does not consider the con-
sequence on future routing decisions and can now convey an
opportunity cost.

We can show that this problem is NP-hard for variable
path length k:

Lemma 3. Problem 1 is NP-hard.

Proof. Consider a reduction from the Hamiltonian Path
problem. Let all nodes have weight 1, and set k = |V |. The
solution path has total weight |V | if and only if all nodes are
visited within k steps, that is, a Hamiltonian Path exists.

While the problem is NP-hard for a variable path length
k, for small constant k the optimal path may be tractable
to compute via exhaustive search.

Intractability is not the only difficulty faced. Even if play-
ers can compute the optimal path, we still need to find incen-
tives that induce players to honestly report their information
and to route along the optimal path. The path-rewarding
routing scoring rule does just that.

Theorem 2. Assume the number of coin flips of each
player is common knowledge, and that players are risk neu-
tral. Let S>i denote the set of players who have yet to receive
the task after i rounds. Let Qi denote a solution to problem 1
for which k = R − i, o = i, and wm = lm if m ∈ S>i and
0 otherwise. Under the path-rewarding routing scoring rule,
it is a PBE for each player i to truthfully update the poste-
rior probability, and to route the task to the next player in
the path provided by Qi, with the belief that all other players
follow this strategy.

Since PRSR rewards each agent’s routing decision based on
the final score, it is in each agent’s interest to maximize the
number of coin flips collected along the entire routing path.
We can show that reporting honestly and routing this way
is the only behavior that can be supported in equilibrium
under PRSR:
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Theorem 3. The set of PBE identified in Theorem 2
(corresponding to possible ties in the solution to problem 1)
are the only PBE of the routing game under PRSR.

Proof. (sketch) Given any routing path, by backward
induction every player should update the posterior proba-
bility truthfully because agents’ scores are computed using
a strictly proper scoring rule. Given that players update
truthfully, by backwards induction every player i should
route along the path identified by some solution Qi because
maximizing the number of coin flips collected maximizes the
routing portion of each player’s score (Lemma 2).

5. LOCAL COMMON KNOWLEDGE
Although people may know one another’s expertise in

small organizations, the common knowledge assumption be-
comes unreasonable for larger organizations and social net-
works. Any given individual will not necessarily know every-
one else, and may only have summary information about the
expertise and connectivity of individuals outside of a local
neighborhood.

We replace the common knowledge assumption with a re-
quirement that individuals all attain the same minimal level
of knowledge about each others’ expertise within a partic-
ular size of local neighborhood, defined by the number of
hops between agents. For example, all friends of a partic-
ular person are aware of his expertise, and friends of his
friends may also be aware; people may know a local portion
of the routing graph, e.g., individuals typically know not
only their friends but also their friends’ friends.

Definition 2. A routing game satisfies the local com-
mon knowledge assumption within m-hops if, for all
nodes (individuals) i, (a) li is common knowledge to all in-
dividuals connected to i via some path of length at most m,
and (b) i knows all paths of length at most m connecting i
to other individuals, and this is common knowledge.

For example, 1-hop local common knowledge assumes all
friends of a particular person know the person’s level of ex-
pertise, and 2-hop local common knowledge extends this
shared knowledge to his friends of friends. Note that the
local common knowledge assumption within m-hops is just
a minimal requirement, and does not preclude a player hav-
ing more information.

Given that a player may only have m-hop local common
knowledge, let’s consider the problem facing such a player in
deciding how to route to maximize the final prediction qual-
ity after R steps. Routing optimally may require a player to
use the history of routing decisions to infer why certain peo-
ple were not routed the task (but could have been), based
on which to perform inference about the amount of informa-
tion of different agents in the network. Furthermore, opti-
mal routing requires a player to make inferences about the
value that can be generated from the routing decisions of
subsequent players beyond his locality. Not only is such
reasoning complex and likely impractical, any equilibrium
to induce optimal routing is likely to be fragile as it requires
players to adopt priors on other players’ beliefs.

An attempt to avoid such issues may suggest incentivizing
players based on a m-step routing rule whenever the local
common knowledge assumption holds for m-hops. The prob-
lem with this suggestion is that a player still has to consider
routing decisions of players outside its locality because max-
imizing its payoff requires considering the routing decisions

2	   1	   2	   1	   2	  

2	   2	   2	   2	   2	  

Figure 1: Illustration of the 2-1-2-1 and 2-step rout-
ing rules. Arrows depict dependencies in routing
payments.

of the chain of players within its locality. For example, con-
sider the two-step routing rule (see bottom of Figure 1). For
any player, the score two steps forward will depend in part
on the routing decision of the next player. But since the next
player is also paid by the two-step routing rule, his routing
decision will depend not only on the amount of information
held by the player after him, but also that player’s routing
decision. Since each player has to consider the routing de-
cision of the next player, each player has to reason about
the future routing decisions of all players down the routing
path, just to compute the expected score after two steps.

This motivates the family of local routing rules, under
which players’ strategies in equilibrium rely only on com-
putations based on local information, but nevertheless take
advantage of the available local common knowledge. We
define the notion of a local strategy as follows:

Definition 3. A player i in a routing game adopts a m-
local strategy if its routing decision depends only on m-hop
local common knowledge and is invariant to any beliefs the
player might have about players outside of its own locality.

Let us first consider the following local routing rule, de-
signed to be useful with 2-hop local common knowledge:

Definition 4. The 2-1-2-1 routing rule is a routing
scoring rule which sets ki = 2 if i is odd and i < R− 1, and
ki = 1 otherwise.

The 2-1-2-1 routing rule incentivizes players to compute
locally optimal paths of length two (see top of Figure 1),
which can be computed with local common knowledge, and
so inference is not required. As even players are paid based
on the myopic routing scoring rule, they will route to the
available player with the most number of coin flips. Since
each odd player knows the number of coin flips that can be
collected from the next even player and also from the odd
player that is then routed the task, he can compute the best
local path without regard to routing decisions beyond his
locality. Note that players still need to take into account
which other players have already participated, but no other
inference based on history is necessary.

Expanding on the idea, we construct a class of routing
scoring rules (e.g., MRSR, 2-1-2-1, 3-2-1-3-2-1, . . .) that in-
centivize players to compute locally optimal paths for m-hop
local common knowledge:

Definition 5. The m-hop routing rule is a routing
scoring rule which sets ki = min[m− (i− 1) mod m,R− i].

We can characterize the equilibrium behavior as follows:
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Theorem 4. Assume that players are risk neutral and m-
hop local common knowledge holds. Let S>i denote the set of
players who have yet to receive the task after i rounds. Let
Qi denote a solution to problem 1 for which k = min[m−(i−
1) mod m,R − i], o = i, and wj = lj if j ∈ S>i and 0 oth-
erwise. Under the m-hop routing rule, it is a PBE for each
player i to truthfully update the posterior probability, and to
route the task to the next player in the path provided by Qi,
with the belief that all other players follow this strategy.

Proof. (sketch) Using similar arguments as the proof
sketch for Theorem 1, we can show that players should
truthfully update the posterior probability. To show player
i should route based on Qi, we first note that Qi is com-
putable given m-hop local common knowledge. Since Qi
maximizes the number of coin flips collected in the next k
steps, Lemma 2 proves the point, and the theorem.

The main idea behind the m-hop routing rule is that each
player can compute his best routing action with respect to
the decisions in his locality and without regard to routing
decisions beyond his locality. This property can be satis-
fied by other local routing rules as well. For example, when
m = 3, the 3-1-1-3-1-1 routing rule is one in which the first
of three players in sequence is paid by the score three steps
forward, but in which the next two players are each paid
myopically. Note that here the first player can still compute
its optimal routing decision using only local common knowl-
edge, by computing the routing decisions of others in its
locality via backwards induction. We can thus characterize
the entire family of local routing rules:

Definition 6. Given m-hop local common knowledge, the
family of local routing rules contains routing scoring rules
k1, . . . , kR−1 that satisfies local reasoning, that is, ki+j +
j ≤ m for all i and 0 ≤ j < ki.

The local reasoning condition ensures that local routing
rules can only reward players whose routing decisions may
affect the payoff of an earlier player based on the routing
decisions of future players that are within m hops of that
earlier player. In other words, it considers the set of routing
scoring rules for which the payment to any player should
only depend on the local information that player is guaran-
teed to hold. For example, the 2-1-2-1 routing rule satisfies
local reasoning for m = 2 because for an odd i, ki ≤ 2 ≤ m
and ki+1 + 1 = 2 ≤ m, and for an even i, ki = 1 ≤ m. How-
ever, the two-step routing scoring rule violates local reason-
ing, because for all i < R− 2, ki+1 + 1 = 3 > m. Note that
the m-hop routing rule satisfies local reasoning, since ki is
set such that ki+j + j = m for all appropriate i and j in the
above definition.

We argue that using a local routing rule is necessary and
sufficient for the existence of an equilibrium in which agents
follow m-local, truthful strategies. We first show sufficiency:

Theorem 5. Assume that risk neutrality and m-hop local
common knowledge holds. For any node i and possible path
ni+1, . . . , ni+ki from i, let the weights wj on node j be lj if j
has yet to be visited up until then, and 0 otherwise. For any
local routing rule, consider the following dynamic program:

V (nj+1, . . . , nj+kj |n1, . . . , nj) = max
j+1,...,j+kj+1

[

kj+1X
b=1

wj+b

+ V (nj+kj+1+1, . . . , nj+kj |n1, . . . , nj+kj+1)]

V (∅|n1, . . . , nj+kj ) = 0 ∀n1, . . . , nj+kj

Let n∗i+1, . . . , n
∗
i+ki

= argmaxV (ni+1, . . . , ni+ki |n1, . . . , ni)
denote a solution of the dynamic program. It is a PBE for
each player i to truthfully update posterior probabilities and
to route the task to n∗i+1, with the belief that all other agents
follow this strategy.

Proof. (sketch) To prove the theorem, we first note that
all players would truthfully update the posterior probabil-
ity along the path as we had previously argued, as doing
so maximizes the scores computed, based on its assessment
and based on the assessments collected from those routed
the task via the routing payment. Second, as the variables
and parameters of the dynamic program are only the nodes
in paths of length at most ki from i, and by the local rea-
soning assumption ki ≤ m, players follow m-local strate-
gies in which the information that each player i needs to
compute the dynamic program is within m hops and thus
known to player i. Finally, given the routing decisions of
others down the path, the number of coin flips collected is
by definition maximized by the routing decisions along the
computed path. Applying Lemma 2 proves the point, and
the theorem.

Theorem 6. For any local routing rule, the set of PBE
identified in Theorem 5 (corresponding to possible ties in the
optimal solution to the dynamic program) are the only PBE
of the routing game under that local routing rule.

Theorem 7. The only routing scoring rules that induce
for every routing game a truthful PBE (where players hon-
estly update probability assessments) in m-local strategies are
local routing rules.

Proof. (sketch) Assume for sake of contradiction that
there exists a routing scoring rule that induces a truthful
PBE for all routing games in m-local strategies but is not
a local routing rule. Since this routing scoring rule violates
local reasoning, there must be some i in the sequence for
which there exists some j such that ki+j+j > m, 0 ≤ j < ki.
Consider the first such i and j.

First consider the case where j = 0. We construct a graph
with two paths (top and bottom), as is shown in Figure 2:

Figure 2: Routing game construction for j = 0 case.

Based on the construction, consider two routing games G
and G′, where in game G the coin flips held by U and V are
1.5ε and 1.6ε respectively and in game G′ the coin flips at U
and V are reversed. Due to the violation of local reasoning
at i for j = 0, by construction U and V are more than m
hops from player i. In a PBE with m-local strategies, it
is thus necessary for the routing decisions of player i to be
independent of the number of coin flips held by players at
U and V , that is, for the routing decision to be the same for
these two games G and G′.

We show that player i’s best response to the equilibrium
strategies of the other agents depends on G or G′. For both
games, using backwards induction, all players strictly prefer
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to route the task forward (to the right) instead of backwards
at any given point in time and for any lookahead depth as
induced by their routing payment, because its expected pay-
ment is based on the number of coin flips collected and one
can always collect more coin flips in the forward direction
(because for any player, going backwards would necessitate
visiting a node that’s been visited before and thus has no
new coin flips to share). Since in game G player i would
collect more coin flips by routing up due to the higher value
at U over V and the reverse is true in game G′, player i’s
best response would be different, which contradicts our as-
sumption.

Now consider the case where j > 0. We construct a graph
with three paths (top, middle, and bottom), as is shown in
Figure 3:

Figure 3: Routing game construction for j > 0 case.

Based on the construction, consider two routing games
G′′ and G′′′, where in game G′′ the coin flips held by A,
B, and C are ε, ε, and ε respectively, and in game G′′′ are
ε, 1.7ε, and 1.7ε, respectively. Due to the violation of local
reasoning, by construction A, B, and C are more than m
hops from player i. In a PBE with m-local strategies, it
is thus necessary for the routing decisions of player i to be
independent of the number of coin flips held by players at
A, B, and C, that is, for the routing decision to be the same
for G′′ and G′′′.

We show that player i’s best response to the equilibrium
strategies of the other agents depends on G′′ or G′′′. We
first consider game G′′. Using backwards induction, note
that each player must strictly prefer to route the task for-
ward (to the right) instead of backwards at any given point
in time, regardless of the lookahead induced by their rout-
ing payment, because its expected payment is based on the
number of coin flips collected and, as before, one can always
collect more coin flips in the forward direction (as going
backwards necessitates visiting a node that’s been visited
before). In this case, the top player at i+ j would route up
because the i+ ki-th player will have more coin flips (1.6ε)
and is within the scope of the routing payment. Given this,
it is strictly better for player i to route up instead of down,
given knowledge of the values at A and B.

Consider now game G′′′. By backwards induction, each
player strictly prefers to route forward because doing so
guarantees the largest payment along the way for any looka-
head. The top player at i + j will route along the middle
path in equilibrium because he would receive ε + 1.7ε from
coin flips at the middle path of i + ki and i + j + ki+j vs.
the 1.6ε +ε along the top path. In this case, player i would
rather route down instead of up because it would collect
0.5ε more coin flips due to the 1.5ε at i+ ki on the bottom
path. However, since player i’s best response routing deci-
sion should be the same for game G′′ and G′′′, we have a
contradiction.

d = 4 d = 10

β Dist. MRSR m=2 m=3 MRSR m=2 m=3

.03 U 69 71 72 83 84 85
0.1 U 71 72 75 85 86 87
1.0 U 76 78 80 89 89 90
.03 S 80 87 104 150 183 227
0.1 S 88 109 146 181 226 259
1.0 S 120 155 183 227 258 278

Table 1: Comparison of routing performance after
10 steps on connected Watts-Strogatz graphs based
on uniform (U) and skewed (S) coin flip distributions
with fixed mean (5.5).

6. SIMULATION RESULTS
The equilibrium strategies induced by local routing rules

can be considered to provide a heuristic algorithm for com-
puting an optimal route over a network. We now demon-
strate via simulations that routing decisions based on local
rules can effectively aggregate information as a task is routed
through the network.

We consider connected random graphs with 100 nodes
and average degree d ∈ {4, 10}, generated using the Watts-
Strogatz model [17]. By varying the re-wiring probability β,
the model allows us to generate graphs that interpolate be-
tween a regular lattice (β = 0) and a G(n, p) random graph
(β = 1), with small-world networks emerging at interme-
diate values of β. We associate each node with a number
of coin flips, which is drawn independently either discretely
from U[1,10], or from a skewed distribution where the value
is 1 with probability 0.9 and 46 with probability 0.1. Note
that the distributions have equal mean (5.5), but that the
skewed distribution more closely resembles a setting where
there are few experts. For graphs generated in this man-
ner, we simulate player strategies under local routing rules
(MRSR, and m-hop with m = 2, m = 3) by computing
local paths in the manner noted in Theorem 4, where revis-
ited nodes are treated as having no value. As a baseline,
we consider a random routing rule that routes to a random
neighbor, and whenever possible, to a random neighbor who
has yet to be assigned the task. Note that the expected
performance of the baseline is bounded by 5.5 coin flips per
round, as we would expect from randomly picking unvisited
nodes in the graph.

Table 1 shows the average number of coin flips collected
after 10 steps by players following local routing rules on
graphs with varying β, average degree, and coin flip distri-
bution over 100 trials (standard errors are small and hence
not reported). We see that routing rules are particularly ef-
fective in cases where there are few experts (S), and when the
graph has a sufficiently high connectivity (higher d and β)
that there exist paths through which experts can be routed
the task. But even in cases with uniformly distributed coin
flips (U) and low average degree (d = 4), local routing rules
collect significantly more coin flips than the upper bound
of 55 we would expect from randomly choosing nodes, and
that despite connectivity constraints the paths include many
high valued nodes (recall the max per node is 10).

The difference in routing performance among local rout-
ing rules is rather small for uniformly distributed values,
but is more significant when the distribution is skewed. In
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Figure 4: Comparison of routing performance
among local routing rules for graphs with β = 0.1,
d = 10, and skewed coin flip distributions. Values
are averaged over 100 trials.

this case, effective routing may require finding short paths
to experts who are not neighbors. That said, this differ-
ence shrinks for graphs with higher degree, as high-value
nodes become more easily reachable (recall that as graphs
approach cliques, myopic is optimal). Figure 4 shows the
average number of coin flips collected by local routing rules
as we progress through the routing game on graphs with
β = 0.1, d = 10, and skewed coin flip distributions. We
see that for m ≥ 2 the performance under the routing rules
are essentially the same, suggesting that we can sometimes
achieve near-optimal performance globally with just two-hop
local common knowledge. Note that for all local routing
rules the rate of information aggregation eventually slows
down, which denotes the point at which virtually all experts
have been routed the task.

7. CONCLUSION
We consider the opportunity for incentivizing the joint

refinement and routing of tasks among agents within a net-
work, focusing on prediction tasks. We introduce and study
routing scoring rules which, in equilibrium, support agents
truthfully contributing information, and routing tasks based
on simple computations that nevertheless lead to effective
information aggregation. Future work on task routing for
prediction tasks includes efforts to integrate additional in-
formation structures and study routing performance under
specialized network topologies, consideration of intrinsic val-
ues for solving or routing, and introduction of communica-
tion or sensing mechanisms coupled with means of tracking
costs for acquiring additional bits of signal. There are mul-
tiple opportunities to address task-level issues, and also or-
ganizational issues related to distributing streams of tasks
in a manner that takes into account people’s solving and
routing abilities over a spectrum of tasks, as well as partic-
ipants’ changing levels of attention, motivation, and avail-
ability, and the corresponding need for balancing the load
across participants. We envision numerous potential appli-
cations of methods for jointly solving and routing tasks and
foresee an ongoing need to strike insightful balances between
principled procedures and designs that rise from intuitions
about practical implementations.
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ABSTRACT
We consider multi-player games, and the guarantees that a
master player that plays on behalf of a set of players can offer
them, without making any assumptions on the rationality of
the other players. Our model consists of an (n + 1)-player
game, with m strategies per player, in which a master player
M forms a coalition with nontransferable utilities among n
players, and the remaining player is called the independent
player. Existentially, it is shown that every game admits
a product-minimax-safe strategy for M — a strategy that
guarantees for every player in M ’s coalition an expected
value of at least her product minimax value (which is at
least as high as her minimax value and is often higher). Al-
gorithmically, for any given vector of values for the players,
one can decide in polytime whether it can be ensured by
M , and if so, compute a mixed strategy that guarantees
it. In symmetric games, a product minimax strategy for M
can be computed efficiently, even without being given the
safety vector. We also consider the performance guarantees
that M can offer his players in repeated settings. Our main
result here is the extension of the oblivious setting of Feld-
man, Kalai and Tennenholtz [ICS 2010], showing that in
every symmetric game, a master player who never observes
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a single payoff can guarantee for each of its players a similar
performance to that of the independent player, even if the
latter gets to choose the payoff matrix after the fact.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; J.4 [Computer Applica-
tions]: Social and Behavioral Sciences—Economics

General Terms
Algorithms, Economics, Theory

Keywords
Game Theory, minmax, repeated games

1. INTRODUCTION
In many situations, a master is playing on behalf of mul-

tiple players, and wishes to offer them some guarantees. For
example, a representative plaintiff in a class action repre-
sents a group of complainants, and wishes to guarantee the
individual complainants a certain level of compensation. In
many of these settings, the payoffs of the players under the
master’s control are nontransferable, due to the nature of
the good or some legal or ethical concerns. Presumable, ev-
ery individual player has some safety-level payoff, which is
the payoff she can guarantee for herself, when playing inde-
pendently. An individual player will typically not delegate
her action to a third party unless he can guarantee for her a
value of at least the safety level she can guarantee for her-
self. The focus of this paper is the performance guarantees
that a master can provide to the members of the coalition he
forms. This involves two aspects. One is existential, study-
ing which guarantees are possible. The other is algorithmic,
presenting efficient algorithms that find strategies for M .

As is well known [1], if the master can play on behalf of all
the players in the game, he can offer them a correlated equi-
librium. However, in this manuscript the master plays only
on behalf of some of the players, and not all. Hence he forms
a coalition among the players that he controls. The strength
of coalitions has been studied in the past [2, 8], but mostly
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in the context of incentives they may have to deviate from
a Nash equilibrium. In this manuscript we assume nothing
about what other players play, and ask for guarantees to
the coalition players regardless of what non-coalition play-
ers do. As we assume nothing about the strategies played
by non-coalition players, we group them into one player.

To study this problem, we use the following model. Let
G be an arbitrary (n + 1)-player game with m strategies
per player. Consider a situation in which a master player
M controls players P1, . . . Pn, and the remaining player P0

is called the independent player I. This induces a new two
player game between the master player and the independent
player. This new game is referred to as the Master Game
of G, and is denoted G2. The payoffs for the independent
player in G2 are the same as in G. For the master player,
there is a vector of payoffs, one for each player Pi. The goal
of M is to provide performance guarantees to the players
under his control. Crucially, throughout the paper, the no-
tion of performance guarantee refers to the expected value
that can be guaranteed.

What types of guarantees can a player expect to get?
There are various safety notions that correspond to different
guarantees a player can guarantee for herself when playing
as an individual. Clearly, the master can guarantee each
player the minimum possible payoff in the payoff matrix for
that player. But in general, can the master offer better guar-
antees? Two natural candidates that do not work are the
following:

1. For every i ∈ [n], guarantee player Pi the minimum
payoff for Pi in any Nash equilibrium. This does not
work because I is not forced to play an equilibrium
strategy. We wish our guarantees to hold even if I
plays arbitrarily.

2. For an (n+1) player game G and a choice x of n−1 pure
strategies, let Gi

x be the marginal game that remains
between player Pi and P0 when the remaining players
play the strategies as in x, and the payoff for P0 is the
negative of the payoff for Pi. The suggested guarantee
is to guarantee every player Pi the minimum over x of
the value of the games Gi

x. To see that this cannot be
guaranteed, consider for example a three player game
in which P1 and P2 are playing matching pennies with
each other with payoffs ±1, and P0 only observes (is
irrelevant to the payoffs). Hence given what P2 plays
(this is x for P1), P1 can get a payoff of 1 (“against
P0”) and vice versa, but clearly there is no strategy for
M controlling P1 and P2 that ensures expected payoff
of at least 1 for both players simultaneously.

Additional natural safety notions for a player Pi are the
minimax and maximin values. The minimax value is the
expected value that Pi can guarantee if the other players
announce a (possibly correlated) strategy first and Pi re-
sponds, and the maximin value is the expected value that
Pi can guarantee if she announces a strategy first and the
other players respond. It is also interesting to consider the
product minimax and product maximin values, which are
the respective versions of minimax and maximin, where the
other players are restricted to play a product mixed strategy.

One may observe that the definitions of maximin value
and product maximin value are in fact identical. Once a
player announces her mixed strategy, the most harmful re-

sponse is a pure strategy on behalf of each of the remain-
ing players, and hence is captured by a product strategy.
The minimax value and maximin value are also identical,
by the minimax theorem for two player games (here the
player under consideration is one player and a coalition of
all remaining players serves as the other player). Hence the
maximin, minimax and product maximin notions are equiv-
alent to each other. However, the product minimax value
might be different; it is at least as high, and often higher.

In simultaneous play, a player may guarantee for herself
the minimax value (which equals the maximin value and the
product maximin value). However, a player cannot guaran-
tee the product minimax value, at least not without making
assumptions on the rationality of other players. We ask
whether a master who plays on behalf of n players can guar-
antee for each one of them her product minimax value.

Our existential result asserts that for every game G, there
exists a mixed strategy for M in G2 that guarantees for every
player Pi under his control her product minimax value. Such
a strategy for M is called a product-minimax-safe strategy.
Moreover, we show that given any vector v̄ = (v1, . . . , vn),
one can find in polynomial time whether there exists a mixed
strategy for M that guarantees for every player Pi a value
of vi, and if so, compute it in polynomial time. Conse-
quently, given a vector of the players’ product minimax val-
ues, a product-minimax-safe strategy can be computed in
polynomial time. One should, however, not misinterpret
the last result to suggest that the master can always com-
pute a product-minimax-safe strategy in polynomial time.
Indeed, it is shown in [5] that computing the product mini-
max value of a player is NP-hard, even for symmetric games.
This makes it difficult for M to deduce what are the product
minimax values that he needs to attain for his players. It
remains open whether a product minimax safe strategy can
be found without the safety vector being given.

Much of the intuition of what can and cannot be achieved
is given through the analysis of symmetric games. As a
special case of our existential result, it follows that in every
symmetric game, M can guarantee each one of his players an
expected payoff that equals at least that of I. Moreover, in
the symmetric case, the master can also compute in polyno-
mial time (via a linear program) a strategy that guarantees
each one of his players at least her product minimax value.
Interestingly, there exist symmetric games in which M can
guarantee each one of his players an expected payoff that
is strictly greater than the payoff of I. The last result is
particularly significant in competitive settings, where play-
ers care less about their absolute payoff, rather they wish to
perform well relative to others. For example, when a group
of potential employees compete over a limited set of posi-
tions, they are mostly concerned with their ranking within
the group.

In addition to the vector version (where the payoff of M
is a vector of his players’ payoffs), we consider the mini-
mum version, where the payoff for M is the minimum of
the payoffs to all his players. This version models situations
that exhibit the “weakest-link” characteristic — where the
weakest player determines the outcome for all involved par-
ties. A classical example, given by [9], is the level of flood
protection of an island, which is determined by the lowest
dike along the coastline. Other prominent examples include
airport security, the spread of infectious diseases, and more.
Unfortunately, the guarantees that can be offered in the vec-
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tor version do not extend to the minimum version. Indeed,
there exist symmetric games in which for every mixed strat-
egy of M , there exists a player Pi whose expected payoff is
strictly lower than I’s payoff.

In the second part of the paper we extend the model to
repeated settings under various information structures. In
all settings, a two-player repeated game between M and
I is considered, where the payoff for M is a vector of his
players’ payoffs, and I is assumed to have full information
of the payoff matrix and the history of play. The various
settings differ by the information available to M , and the
nature of the desired safety vector depends on the specific
setting. We say that M approaches a safety vector v̄ =
(v1, . . . , vn) if regardless of the strategy of I, the expected
sum of payoffs over T rounds, for every player Pi controlled
by M , is Tvi − o(T ).

We first consider a full information setting. In a 2-player
game, where the payoff of player 1 is a vector, Blackwell’s
approachability theorem [4] implies that a vector is vector-
minimax achievable (in a one-shot game) if and only if it is
also approachable (in a repeated setting). This implication
can be viewed as a generalization of the minimax theorem
for vector payoffs. In our setting, the payoff of M is the
vector of its players’ payoffs; thus it is essentially a 2-players
game between M and I, with M having a vector payoff. In
the one-shot game, the payoff vectors that are safe for M
are precisely those that are vector-maximin achievable. For
example, by our existential result for the one-shot game, the
class of vectors that consist of respective product-minimax
values of the players are vector-maximin achievable in the
one-shot game. Vectors that are minimax achievable in the
one shot game are not necessarily safe for M in the one shot
game. Nevertheless, based on the implication of Blackwell’s
theorem stated above, these vectors are approachable in the
repeated settings. Thus, the set of safe vectors for M in the
repeated setting is larger than the set of safe vectors in the
one-shot game.

We also consider an oblivious version, in which payoffs are
never observed by M over the course of the game, extend-
ing the setting of [7] from two players to multiple players.
This version models situations where players are engaged in
games but the payoffs are determined only in later stages.
This is the situtaion, for example, in cases where the ac-
tual behavior of players is evaluated by other parties only in
retrospect or when the actual payoffs are determined based
on an event whose outcome is unknown in the time actions
are taken. A motivating example would be a reporter who
writes a daily column about political issues. In some coun-
tries reporters may be recruited after the elections to repre-
sent government officials. Needless to say that the content
of the daily columns by the different reporters may affect
this selection. However, only after the government is se-
lected the reporters will be able to determine their payoffs
for their expressed opinions.

If players have similar capabilities and preferences, then
these games are also symmetric. In the latter case an attrac-
tive objective for a player is to guarantee a payoff which is
close to the one of his competitor despite the a-prior lack of
information; indeed, for the case of two players this problem
has been addressed by [7]. More generally, however, we ask
whether a group of players can guarantee each one of them
a payoff close to the one of an independent player, even if
that player is all capable and able to predict the actual pay-

off function.
To model such situations, we consider a repeated game

between M and I, where the game is first played T times,
and after all T repetitions are completed I gets to choose
the payoff matrix. The notion of safety for M that we use
here is that as T tends to infinity, the regret is o(T ). We
show that for every symmetric game G, M is safe in the
oblivious repeated version. Moreover, a safe strategy for M
can be found in time polynomial in mn and T .

Related work.
Our work relates to the body of work on mediators in

AI (see e.g. [10, 12]), which extends on classical literature
on non-transferable utility coalition games, originated in [3],
which relies on the fundamental work introduced in [2] (lead-
ing to the concepts of β-core and c-acceptable strategies,
respectively). In particular, given a non-cooperative game,
a c-acceptable strategy can be viewed as a recommended
strategy profile to the group of all agents, augmented with
a punishing correlated strategy for each strict subset of the
agents. The idea is that the recommended strategy will be
accepted if there is no subset of the players that can all
gain with respect to this strategy payoffs, using a correlated
strategy without side-payments when playing against the
punishing correlated strategy of the remaining agents. A
subset of deviating agents can be viewed as a master player,
and the question is whether this master player can guaran-
tee a vector of payoffs that exceeds the corresponding vector
of payoffs of the recommended strategy profile. Some of our
results complement this literature, by showing that if the
recommended strategy payoffs are dominated by the prod-
uct minimax outcomes associated with a particular master-
player then it can not be accepted. We are not aware of a
similar result.

2. SOME SAFETY NOTIONS
Given a multiplayer game G with n players, let us review

some safety notions that a player may wish to achieve, and
in some cases may indeed achieve. We use the following
notation. Si denotes a mixed strategy for player Pi. S−i

denotes a mixed strategy for all players except for Pi, when
we do not assume that this is a product strategy. That is,
all remaining players may collaborate to agree on a joint
correlated mixed strategy. When the players each individu-
ally plays a mixed strategy, then S−i× denotes the resulting
product strategy (excluding player Pi). We use vi(Si, S

−i)
to denote the expected payoff of player Pi when it plays the
mixed strategy Si and other players play the mixed strategy
S−i.

We consider here four different versions of safety notions,
three of which are equivalent to each other.

• Minimax value (a best response notion). The other
players announce their most harmful mixed strategy
(min), and in response Pi chooses his best strat-
egy (max). minimaxi(G) = maxSi minS−i vi(Si, S

−i).
Without loss of generality, Si can be a pure strategy
here.

• Maximin value (a best bid notion). Pi an-
nounces a mixed strategy that is deemed best
(max), and in response the other players choose
their most harmful strategy (min). maximini(G) =
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minS−i maxSi vi(Si, S
−i). Without loss of generality,

S−i can be a pure strategy here.

• Product minimax value. The other players announce
their most harmful product mixed strategy, and in re-
sponse Pi chooses his best strategy. minimax×

i (G) =
maxSi minS−i× vi(Si, S

−i×). Without loss of general-
ity, Si can be a pure strategy here.

• Product maximin value. Pi announces a mixed strat-
egy that is deemed best, and in response the other
players choose their most harmful product strategy.
maximin×

i (G) = minS−i× maxSi vi(Si, S
−i×). With-

out loss of generality, S−i can be a pure strategy here.

As mentioned in the Introduction, the minimax, maximin
and product maximin values are identical, whereas the min-
imax value is at least as high and may be higher. The supe-
riority of the product minimax value is demonstrated in the
following example.

Example. Suppose that P1 has four pure strategies
whereas P2 and P3 each has two pure strategies, and hence
four combinations of pairs of pure strategies. If P1 plays
strategy 1 against combination 1 its payoff is 2. For j > 1,
if P1 plays strategy j against combination j its payoff is 1.
In all other cases the payoff of P1 is 0. The minimax value
for P1 in this game is 2/7. The unique S−1 that limits P1

to this value is the mixed strategy in which the other play-
ers play combination 1 with probability 1/7, and each other
combination with probability 2/7. But this S−1 cannot be
represented as a product strategy, and hence the product
minimax value is strictly larger than 2/7.

In simultaneous play, a player may guarantee for herself
the minimax value, but not the product minimax value. In
this context, it is interesting to note that in every (mixed)
Nash equilibrium for the multiplayer game G, every player
gets at least his product minimax value. A player not getting
this value (in expectation) necessarily can gain by deviating
from his current mixed strategy, contradicting the assump-
tions of a Nash equilibrium.

We note also that there are multiplayer games for which
in every Nash equilibrium, all players get expected payoff
strictly larger than their respective product minimax val-
ues. For example, consider an n-player game in which each
player has two strategies, and the payoffs to all players is
the number of players playing strategy 1. This game has a
unique Nash equilibrium, with value n to all players, but the
product minimax value is only 1.

2.1 Computational complexity of safety no-
tions

The minimax (and hence maximin and product maximin)
value for a player Pi in a multiplayer game can be computed
in polynomial time (time polynomial in the game matrix).
This is done by viewing the setting as a 0-sum two player
game, where Pi is one player, and a coalition of all players
is the other player.

When the number of players is three or more, computing
the product minimax value of a game is NP-hard. See [5],
where the vector of product minimax values is called the
threat point. This also holds when the 3-player game is sym-
metric.

3. SAFETY GUARANTEES IN ONE-SHOT
GAMES

We consider multi-player games, and the guarantees that
a master player that plays on behalf of a set of players can
offer the players. Let G be an arbitrary (n+1)-player game
with m strategies per player. Consider a situation in which a
master player M controls players P1, . . . Pn, and the remain-
ing player P0 is called the independent player I. Having only
one independent player can be assumed without loss of gen-
erality: as we assume nothing about the strategies played
by non-coalition players, we may as well view them as one
player. (See Section 3.3 for a brief discussion on this point.)
This induces a new two player game G2 between the master
player and the independent player. The payoffs for the inde-
pendent player in G2 are the same as in G. For the master
player, there is a vector of payoffs, one for each player Pi.
We use [n] to denote the set {1, . . . , n}. We use the notion
of guarantee to refer to guarantees on the expected payoff.

3.1 Algorithmic results
The v̄-safe problem is defined as follows.

v̄-safe problem. Given a multi-player game G and a vector
of values v̄ = {v1, . . . , vn}, is there a mixed strategy for M
that guarantees for every player Pi an expected payoff of at
least vi, and if so, present such a mixed strategy.

A key concept that we shall use here is the following.
Selection version. Given a multi-player game G we intro-
duce a selection version G′. In G′ players P1, . . . , Pn have
the same set of strategies as in G. The set of strategies for
I includes two coordinates, one being the set of strategies
for P0 and the other a choice of an index in [n]. Given the
strategies played by the players, player Pi (where i is the
value of the second coordinate chosen by I) gets the same
payoff as in G, the payoff for I is the negative of the payoff
for Pi, and all other players get payoff 0. The master version
G′

2 of G′ (where M controls P1, . . . , Pn) is a 0-sum game, if
the payoff for M is taken to be as the sum of payoffs of its
players. This implies that linear programming can be used
in order to find optimal strategies in G′

2 in time polynomial
in the size of the normal form representation of G′

2, namely,
polynomial in (n + 1)mn+1.

The concept of a selection version is used to show that the
v̄-safe problem if polynomial.

Theorem 1. There is a polynomial time algorithm for
the v̄-safe problem.

Proof. Given a game G and a vector v̄, scale the payoff
for each player Pi (for i ∈ [n]) by subtracting vi, so that the
v̄-safe problem now asks for nonnegative expected payoff for
every player controlled by M in G2. We claim that this
is equivalent to finding a strategy for M with nonnegative
expected payoff in the corresponding selection game G′

2. If
such a strategy exists for G2, then it can be used in G′

2 and
I is helpless in choosing i ∈ [n]. If such a strategy exists in
G′

2, then the same strategy can be used in G2, and every
player controlled by M has expected nonnegative payoff, as
otherwise there would be a strategy for I in G′

2 giving I
expected positive payoff. Now polynomiality of G2 follows
from polynomiality of G′

2.

3.2 Existential results
The product minimax value of a player is always at least as

high as her minimax value (and hence also the maximin and
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product maximin values), and is often higher (see Section 2).
While a player cannot guarantee this value for herself when
playing independently, we show that a master who plays on
behalf of a set of players can guarantee each one of them her
product minimax value.

Definition 2. We say that a mixed strategy for M is
product-minimax-safe for G2 if for each player Pi controlled
by M it guarantees an expected payoff of at least her product
minimax value. We say that G2 is product-minimax-safe for
M if M has a product-minimax-safe mixed strategy for G2.

Theorem 3. For every multi-player game G, the corre-
sponding game G2 is product-minimax-safe for M . More-
over, given the players’ product minimax values, a product-
minimax-safe strategy for M can be found in time polynomial
in mn.

Note that the algorithmic content of Theorem 3 is implied
by Theorem 1, and hence the main new content is in the ex-
istential statement. Before proving Theorem 3, we consider
the special case of symmetric games which gives much of the
intuition of what can and cannot be achieved.

3.3 Symmetric games
A multi-player game is symmetric if the payoff matrix of

each player is symmetric (namely, permuting the identities of
the remaining players keeps the payoff matrix unchanged),
and moreover, the payoff matrices of any two players are
identical to each other.

In this section G is a symmetric game, or more accurately,
the difference version Ĝ of a symmetric game G. The payoff
for Pi in Ĝ is computed as the payoff in G to Pi minus the
payoff in G to P0. Based on the symmetry of G and the 0-
sum nature of Ĝ, it follows that the product minimax value
of all the players is 0. Thus, product-minimax-safety in Ĝ
means obtaining a nonnegative expected payoff for every
player.

The following proposition is a special case of Theorem 3.

Proposition 4. For every symmetric game G, Ĝ2 is
product-minimax-safe for M .

Proof. For every entry in the payoff matrix G, add a
constant to all payoffs to make the game 0-sum. It remains
symmetric. Every symmetric game has a symmetric equi-
librium [11]. Let M play this symmetric equilibrium. Then
for I to play it as well is a mixed Nash, and the expected
payoff for each player is 0, by symmetry. If I deviates from
the mixed Nash, his expected payoff cannot increase, and
hence the expected sum of payoffs of other player cannot
decrease. By symmetry, no player controlled by M can then
have negative expected payoff. This implies that the same
strategy for M in Ĝ2 is product-minimax-safe.

Let us end this section with a few comments on what hap-
pens when G is symmetric, but I represents several players
rather than just one. For concreteness, suppose that I repre-
sents two players (but the same principles can be generalized
to a larger number of players).

If n, the number of players controlled by M , is divisible
by 2, then the results extend in the following sense. M can
partition his players into pairs, resulting in a new symmetric
game with half the players (where each pair of players in G

is a single player in the new game). Hence all results trans-
fer, but with guarantees to pairs of players rather than to
individual players. This can further be changed to a guar-
antee for an individual player by randomly permuting the
order of players in a pair, and hence guaranteeing for each
player the average of the guarantee for the pair. (In sym-
metric games, coalitions with nontransferable utilities can
implement a transfer of utility to achieve fairness within
coalition, by randomizing over the members).

If n is not divisible by 2, the guarantees become weaker.
(Theorem 3 is still true as stated, but does not form an incen-
tive for players to join the coalition formed by M .) Consider
for example a 5-player symmetric game in which each player
announces a number in [m] (where m is large), and a player
gets payoff of 1 if exactly one other player announced the
same number as he did, and a payoff of 0 otherwise. In this
game, a coalition M of three players cannot guarantee to its
members an average expected payoff equal to the average of
the remaining two players (that if controlled by I can co-
ordinate to both report the same number in [m], chosen at
random).

3.4 Proof of safety for arbitrary games
Here we prove the existential part of Theorem 3. (The

algorithmic part then follows from Theorem 1.)

Proof. Let vi be the product minimax value of player
Pi. As in the proof of Theorem 1, scale the payoff for each
player Pi (for i ∈ [n]) by subtracting vi, and let G̃ denote the
obtained game. Showing that G2 is product-minimax-safe
for M is equivalent to showing that M has a strategy for G̃2

that guarantees for each player Pi a nonnegative expected
value.

Consider an arbitrary mixed Nash for G̃′ (the selection

version of G̃). We claim that in this mixed Nash the ex-
pected payoff for every player Pi (for i ∈ [n]) is nonnegative.
Equivalently, in this mixed Nash the expected payoff of ev-
ery player Pi in G′ is at least vi. Assume otherwise, that
there exists a player Pi (i ∈ [n]), whose expected payoff in
G′ is lower than vi. Let x denote the mixed strategies for
Pj (j ∈ [n], j ̸= i) as in the mixed Nash. Then Pi is almost
playing the marginal game that remains between herself and
P0 when the remaining players play according to x, which
has value at least vi. The only difference is that Pi gets
payoff only if P0 chooses i. However, the choice of i is inde-
pendent of the choice of x, and the strategy of P0 on its first
coordinate conditioned on having i on the second coordinate
is a strategy for P0 in the original game G. Hence the lower
bound guarantee on expected payoff in G is transferred also
to G′ (otherwise Pi would not be in a Nash equilibrium in
G′ – he will have an incentive to change his mixed strategy).

We next claim that this implies that regardless of the
strategy played by P0, the expected sum of payoffs for Pi

(i ∈ [n]) when playing according to this mixed Nash is
nonnegative. Assume otherwise, that P0 has a strategy for
which the expected sum of payoffs for Pi (when playing ac-
cording to the mixed Nash equilibrium) is negative. Then,
the payoff for P0 would be positive, which means that P0

can improve its expected payoff from the mixed Nash equi-
librium, in contradiction. This means that in the 0-sum
game G̃′

2 (which is similar to G̃′, except that M controls
players Pi for i ∈ [n] and gets as payoff their sum of payoffs

from G̃′), the strategy given above ensures M a nonnegative
expected payoff.
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Finally, we claim that using the same strategy in G̃2 en-
sures a nonnegative payoff for every player Pi controlled by
M . If this was not the case, say for a particular Pi, then
I would have a strategy in G̃′

2 picking this particular i and
achieving a positive payoff, implying a negative payoff for
M in G̃′

2, reaching a contradiction.

3.5 A note on complexity
In [5] it is shown that computing the threat value (which

is precisely the product minimax value) is NP-hard, even for
symmetric games. This makes it difficult for M to deduce
what are the product minimax values that it needs to attain
for the players that it represents. Nevertheless, if these val-
ues are given to M as input, it can attain it via a polynomial
time strategy, by Theorem 1.

Let us point out that for symmetric games, neither Propo-
sition 4 nor its proof ensures for M that its vector of ex-
pected payoffs attains or exceeds the product minimax safety
vector. Consider a 3-player symmetric game with two strate-
gies, “cooperate” and “defect”. If all players cooperate then
all payoffs are 3. If one player defects his payoff is 0 and
other payoffs are 1. If two or more players defect all pay-
offs are 2. The product minimax value for each player is
strictly above 1. (Here is a simple way of achieving such a
value. If one other player plays the pure strategy defect and
the other plays the pure strategy cooperate, then the given
player plays defect. In any other case, the given player co-
operates.) However, the proof of Proposition 4 may (though
also may not, as it has nondeterministic components) pro-
duce for M the strategy of always cooperating, which might
(if I defects) lead to a payoff of only 1 to each of its players.

Nevertheless, despite the fact that it is NP-hard to com-
pute the product minimax value of the players even in sym-
metric games, for the case of symmetric games, we have the
following algorithmic results.

Proposition 5. There is a polytime strategy for M in
symmetric games that ensures at least the product minimax
value to each of its players.

Proof. By symmetry, the product minimax value for
each player is the same. We denote this value by v. Con-
sider now the 0-sum two player game between M and I is
which M attempts to maximize the expected sum of payoffs
for its players, and I tries to minimize it. The value of this
game for M is at least nv (since we have shown that exis-
tentially M can guarantee each of its players an expected
payoff of v), and perhaps larger. Let V ≥ nv denote this
value. A mixed strategy for M that achieves value V can
be computed in polynomial time (as this is a 0-sum game).
Thereafter, this strategy can be further randomized by per-
muting the players controlled by M at random, ensuring (by
symmetry) each one of the players expected payoff at least
V/n ≥ v.

3.6 Additional safety notions in symmetric
games

Recall that Ĝ denotes the difference version of a sym-
metric game G (where the payoff for Pi is computed as
the payoff in G to Pi minus the payoff in G to P0). The

product minimax value of all the players in Ĝ is 0; thus,

product-minimax-safety in Ĝ means obtaining a nonnega-
tive expected payoff for every player. We can extend the
notion of product-minimax-safe, and say that M product-
minimax-wins a game if it can guarantee every player an
expected value that is strictly greater than her product min-
imax value. Thus, M product-minimax-wins Ĝ2 if M has a
mixed strategy that guarantees positive expected payoff for
each one of its players.

Up to this point we considered the vector version of a
master game, where the payoff of M is a vector of its play-
ers’ payoffs. It will be instructive for us to consider also the
minimum version of Ĝ2 in which the payoff for M is the min-
imum of the payoffs to all its players. (Note that expectation
of minimum is never higher than minimum of expectation,
and hence the minimum version is more difficult for M than
the vector version.)

Proposition 6. There are symmetric games G for which
M product-minimax-wins the corresponding game Ĝ2 even
in the minimum version, and there are symmetric games G
for which M product-minimax-wins the corresponding game
Ĝ2 in the vector version, but not in the minimum version.

Proof. Consider G+ with three players and two strate-
gies (0 or 1) per player, where the payoff to a player is the
number of other players playing his strategy. Then in the
respective Ĝ+

2 , M can play (0, 0) with probability 1/2 and
(1, 1) with probability 1/2, achieving payoff 1/2 to each of
its players. Here M achieves expected payoff of 1/2 even in
the minimum version, thus product-minimax-wins even in
the minimum version.

Alternatively, consider G− where the payoff to a player is
the number of other players not playing his strategy. Then
in the respective Ĝ−

2 , M can play (0, 1) with probability 1/2
and (1, 0) with probability 1/2. Here M product-minimax-
wins in the vector version and the selection version, but not
in the minimum version (where he can guarantee only 0).

Some comments on Proposition 6 are in order. It shows
that for some games (e.g., G+) it is good for M to play
identically for all its players, and for others (e.g., G−) it is a
mistake to do so. Also, observe that for G+ and G−, playing
independently randomly and uniformly is product-minimax-
safe for M (but not winning) in the vector version, but not
product-minimax-safe in the minimum version.

The following proposition shows that the offers that can be
guaranteed in the vector version (asserted in Proposition 4)
do not extend to the minimum version.

Proposition 7. There are games for which M is not
product-minimax-safe in the minimum version of the cor-
responding Ĝ2.

Proof. Let G be the following three player game (for
large enough m). If two (or three) players play the same
strategy they get payoff 0. For players that do not collide
their payoff is computed as follows. Add the numbers (in
[m]) reported by the players and consider the sum modulo 3.
This determines which of the three player wins a payoff (the
lowest report if the result is 0, second lowest if 1, highest
if 2). Other players get no payoff. One of M ’s player cannot
get payoff. Hence the minimum payoff for M is always 0. If
I plays randomly (and m is large enough), it has probability
roughly 1/3 to get a positive payoff.
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4. SAFETY GUARANTEES IN REPEATED
GAMES

We consider here repeated games. We say that M ap-
proaches a safety vector v̄ for its n players if regardless of
the strategy of the independent player I, for every player i
controlled by M , the expected sum of payoffs for player i
over T rounds is T v̄i −o(T ). The nature of the safety vector
v̄ will be dependent on the context. We describe several set-
tings of repeated games, and they differ by the information
available to M .

4.1 Full information
Blackwell’s approachability theorem [4] deals with ap-

proachability issues in general. One of its consequences is
the following generalization of the minimax theorem to vec-
tor payoffs.

Consider a two player game between players Q1 and Q2

where the payoff for Q1 is a vector. A vector v̄ is vector-
minimax achievable if for every mixed strategy of Q2, player
Q1 has a mixed strategy with expected payoff at least v̄.
Vector v̄ is vector-maximin achievable if Q1 has a mixed
strategy such that no matter what Q2 plays, the expected
payoff for Q1 is at least v̄. For vector payoffs the well known
minimax theorem does not apply. That is, a vector that
is vector-minimax achievable need not be vector-maximin
achievable. However, Blackwell’s approachability theorem
implies that if a vector v̄ is vector-minimax achievable, then
it is also approachable (in a repeated game, where one con-
siders the average payoff vector over all rounds). Moreover,
this is an if and only if relation.

The above general result about games with vector pay-
offs is applicable in our setting, with M serving as Q1, and
I serving as Q2. The master player M controls n play-
ers, and hence his payoff can be viewed as an n-dimensional
vector (one coordinate for each player that M represents).
In the one-shot game, the payoff vectors that are safe for
M are precisely those that are vector-maximin achievable
for Q1. Under this interpretation, Theorem 3 identifies a
particular class of vectors that are vector-maximin achiev-
able, namely, those vectors that in each coordinate i have
the product-minimax value for player Pi. Proposition 6 pro-
vides examples showing vectors that are strictly higher than
the vector of product-minimax values, but nevertheless are
vector-maximin achievable.

Blackwell’s theorem implies that there are vectors that
are not safe for M in the one shot game but are neverthe-
less approachable in the repeated games settings. Here is an
explicit example that illustrates this. Consider a 3-player
game with players P0, P1 and P2. Only actions of P0 and
P1 determine the payoffs of the game, and only P1 and P2

can receive any payoff. Each of the two players P0 and P1

has two possible actions, where one action gives P1 a payoff
of 1 and the other action gives P2 a payoff of 1. The master
player M controls P1 and P2, and the independent player I
is P0. The vector v̄ = (1, 1) is not safe for M in the one shot
game: whatever mixed strategy M has, there is one player
(P1 or P2) for which P1 gives expected payoff less than 1,
and then I can give this player an additional payoff of 0, pre-
venting it from achieving an expected payoff of 1. However,
v̄ = (1, 1) is approachable by M in the repeated setting. One
could prove this fact using Blackwell’s theorem, but for this
simple game, one can see this directly: M plays arbitrarily
in round 1, and in every round after that M plays (for P1)

the opposite of what I played in the previous round. Hence
at every round t, either both P1 and P2 have accumulated
a payoff of exactly t, or one of them accumulated a payoff
of t − 1 and the other t + 1. As t grows, the average payoff
vector converges to (1, 1).

4.2 Only realized payoffs are observable
Here we consider a version in which the payoff matrices are

not known to M . Moreover, they cannot be inferred from
repeated play because the actions of I are not observable.
All that M observes is the actual realized payoff vector after
each round of play.

For symmetric games, a natural goal for M is to maximize
the sum (over all n players) of payoffs, because randomizing
over players spreads this sum evenly among them. This task
of M in a repeated game can be cast as a so called bandit
problem, for which solutions are known [6].

For nonsymmetric games the situation becomes more com-
plicated, but M can still attain sublinear regret (for an ap-
propriate choice of safety vector) using a combination of
bandit algorithms and Blackwell’s approachability theorem.
This turns out to be a special case of a more general result
(concerning expert and bandit algorithms in vector settings)
that will be presented in a companion paper (in prepara-
tion), and hence will not be discussed further in the current
paper.

4.3 Only actions are observable
Here we consider an oblivious version in which M does

not know the payoffs, and never observes them, extending
a setting of [7] from two players to multiple players. The
game G is initially defined only in terms of sets of strategies
available to the players. In the one round version the play-
ers M and I announce their strategies, and only after the
game is played I announces a payoff matrix of its choice. In
the repeated version the game is first played T times, and
after all T repetitions are completed I gets to choose the
payoff matrix. To give M hope of providing meaningful per-
formance guarantees, we limit the choice of payoff matrix to
be symmetric and the entries to be bounded independently
of T (say by 1).

We shall use here the notion of differential safety; that is,
as T tends to infinity, the difference between the expected
average payoff of every player i over T rounds and that of I
is o(T ).

Theorem 8. For every symmetric game G, M is differ-
ential safe in the oblivious repeated version. Moreover, a
safe strategy for M can be found in time polynomial in mn

and T .

Proof. We combine the proof technique of [7] (that was
previously used for n = 1) together with our Theorem 3.

We provide a strategy for the master player that guaran-
tees for each player Pi under his control an expected average
difference (over T periods) of

E

[∣∣∣∣∣
1

T

T∑

t=1

vt
i

∣∣∣∣∣

]
≤

√
m

T
mn/2,

where vt
i is the difference between the payoff of player Pi

and player I in period t. Note that since the expectation is
taken over the absolute value, this bounds actually serves as
a lower bound on the payoff of player i.
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In round t consider nm(n−1) auxiliary matrices Ai
x[t],

where index i ∈ [n] specifies a player controlled by M , and
index x specifies a choice of strategies for the other players
controlled by M . Entry Ai

x(j, k)[t] shows the difference in
number of times Pi played k and I played j versus a play of
(j, k) on periods 1, . . . , t − 1, conditioned on x. Each matrix
Ai

x[t] is antisymmetric. A mixed strategy for M also implic-
ity defines a distribution over x, and hence a distribution
over auxiliary matrices. Define the “pretend” payoff matrix
of Pi as the weighted average of the antisymmetric matrices
Ai

x[t], induced by the distribution over x. As a weighted
average of antisymmetric matrices, the pretend payoff ma-
trix is still antisymmetric. Being antisymmetric and 0-sum,
Pi has a strategy for this payoff matrix with nonnegative
expected payoff.

Using Theorem 3, M has a strategy that simultaneously
gives expected nonnegative payoff to each of his players Pi

in their respective pretend payoff matrices. Moreover, this
strategy can be computed efficiently (as implied by Theo-
rem 1). We claim that by playing such a strategy in every
round (relative to the pretend payoff matrices of the respec-
tive round), M achieves the asserted bound for every player
Pi.

Let ϕi =
∑T

t=1 vt
i . Then, |ϕi| ≤ 1

2

∑
x,j,k

∣∣Ai
x(j, k)[T + 1]

∣∣.
It holds that

(E[|ϕi|])2 ≤ E[ϕ2
i ]

≤ E





∑

x,j,k

1

2

∣∣∣Ai
x(j, k)[T + 1]

∣∣∣




2


≤ E


m2mn−1

4

∑

x,j,k

(
Ai

x(j, k)[T + 1]
)2


 ,

where the last inequality follows by Cauchy-Schwartz.
Now let βi

t =
∑

x,j,k(Ai
x(j, k)[t])2. We claim that

E
[
βi

t

]
≤ 2t for every t. To see this, let φi

t denote the
expected “pretend” payoff of player Pi in period t, under
the specified strategy of M . Simple algebra reveals that
E

[
βi

t+1 − βi
t

]
≤ 2 − 2φi

t. But since φi
t ≥ 0, it follows

that E
[
βi

t+1 − βi
t

]
≤ 2. Combining the last inequality with

βi
0 = 0 implies that E

[
βi

t

]
≤ 2t, as promised. It follows

that E [|ϕi|] ≤
√

mTmn/2. Hence, the average number of
deviations that I is expected to build against a single player
over T periods is bounded by

√
m
T

mn/2.

5. CONCLUSION
One of the major challenges in the “agent perspective” to

multi-agent systems is to deal with guarantees an agent can
obtain, without assuming rationality of the other agents.
This work pushes the envelope of that fundamental attempt
by showing several results on the effective use of a master
agent (aka mediator). Our two major results are:

• Every game admits a product-minimax-safe strategy
for M — a strategy that guarantees for every player in
M ′s coalition an expected value of at least her prod-
uct minimax value (which is at least as high as her
minimax value and is often higher). A player cannot
guarantee for herself this value, when playing indepen-
dently.

• In repeated symmetric games a master player who

never observes a single payoff can guarantee (in an
asymptotic sense) for each of its players a similar per-
formance to that of the independent player, even if the
latter gets to choose the payoff matrix after the fact.

These results are augmented with corresponding algorithmic
results. The results expand on early foundational work in
game theory, and work on mediators in AI.
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ABSTRACT
We study the problem of optimal resource allocation for
packet selection and inspection to detect potential threats in
large computer networks with multiple computers of differ-
ing importance. An attacker tries to harm these targets by
sending malicious packets from multiple entry points of the
network; the defender thus needs to optimally allocate her
resources to maximize the probability of malicious packet
detection under network latency constraints.

We formulate the problem as a graph-based security game
with multiple resources of heterogeneous capabilities and
propose a mathematical program for finding optimal solu-
tions. We also propose Grande, a novel polynomial time
algorithm that uses an approximated utility function to cir-
cumvent the limited scalability caused by the attacker’s large
strategy space and the non-linearity of the aforementioned
mathematical program. Grande computes solutions with
bounded error and scales up to problems of realistic sizes.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multi-agent
Systems; C.2.0 [Computer-Communication Networks]:
Security and Protection

General Terms
Algorithms, Security, Performance

Keywords
computer networks, security, game-theory, approximation
algorithm, submodularity

1. INTRODUCTION
The problem of attacks on computer systems and cor-

porate computer networks gets more pressing each year as
the sophistication of the attacks increases together with the
cost of their prevention. A number of intrusion detection
and monitoring systems are being developed in order to in-
crease the security of sensitive information, and many re-

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

search works seek methods for optimizing the use of available
security resources [9, 20]. One such countermeasure is con-
ducting deep packet inspections, a method that periodically
selects a subset of packets in a computer network for anal-
ysis. However, there is a cost associated with conducting a
deep packet inspection: it leads to significant delays in the
throughput of the network. Thus, the monitoring system
works under a constraint of limited selection of a fraction of
all packets which can be inspected to bound the total delay.

Game-theoretic methods are appropriate for modeling such
problems and the optimal behavior of the involved parties
can be found using the well-defined concept of an equilib-
rium computation. We formulate this problem as a game
between two players: the attacker (or the intruder), and the
defender (the detection system). The intruder wants to gain
control over (or to disable) a valuable computer in the net-
work by scanning the network, compromising a more vulner-
able system, and/or gaining access to further devices on the
computer network. The actions of the attacker can there-
fore be seen as sending malicious packets from a controlled
computer (termed source) to a single or multiple vulnerable
computers (termed targets). The objective of the defender
is to prevent the intruder from succeeding by selecting the
packets for inspection, identifying the attacker, and subse-
quently thwarting the attack. However, packet inspections
cause unwanted latency and hence the defender has to de-
cide where and how frequently to inspect network traffic in
order to maximize the probability of a successful malicious
packet detection.

We build on previous work on game-theoretic approaches
to network security [1, 11] and security games [9, 20] to
present a novel approach to the challenges of malicious packet
detection. In our approach, we follow the deep packet in-
spection scenario on an arbitrary network topology, and con-
sider the following assumptions that hold true in this do-
main: the attacker can access the computer network through
multiple entry points, can attack multiple targets of differ-
ing importance in parallel, and the defender has limited re-
sources that can be used for packet analysis. To the best
of our knowledge, there is no previous work considering to-
gether all of these aspects of the problem.

This paper offers following contributions: (1) we propose
a novel game-theoretic model that can be characterized as a
graph-based security game with multiple heterogeneous at-
tacker’s and defender’s resources; (2) we give a mathemati-
cal program for finding the optimal solution for this problem
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formulated both as a non-zero sum and zero sum game ap-
proximation; (3) we describe a polynomial approximation al-
gorithm Grande (GReedy Algorithm for Network DEfense)
that benefits from the submodularity property of the dis-
cretized zero-sum variant of the game and finds solutions
with bounded error in polynomial time; (4) we experimen-
tally evaluate these three algorithms and show the trade-off
in computational time and quality of found solutions.

2. RELATED WORK
Game theory has been applied to a wide range of security

problems, with many deployed applications in transporta-
tion networks [10, 20]. In fact, game-theoretic models of
real-world security problems are applicable in a wide variety
of domains with similar attributes, including (1) intelligent
players, (2) varying preferences among targets, (3) and lim-
ited resources to protect targets. This has led researchers to
model computer network security in game-theoretic frame-
works and a large body of work has been created (summa-
rized e.g. in [15]).

Most related is the recent work by Kodialam and Laksh-
man [11] since they also look at a scenario where the de-
fender conducts inspections on possible paths from a source
to a target. However, they look at a zero-sum setting for a
single source and a single target. Similarly, Otrok et al. [17]
present solutions for a domain with a single target, where the
attacker potentially uses multiple packets for an attack. On
the other hand, Chen et al. [2] present solutions for heteroge-
neous targets, with multiple attacker’s resources. However,
they only consider detection at the target nodes.

From the research focused on the security-games mod-
els, Korzhyk et al. [12] present a polynomial algorithm for
general-sum security games with multiple attacker’s resources,
however, without constraining underlying graph structure.
Jain et al. [9] present an algorithm for securing an urban net-
work with many sources and heterogeneous targets. How-
ever, this model is zero-sum and the attacker has a sin-
gle resource. Our approach mainly differs in considering a
network-security domain, where the payoffs are not necessar-
ily zero-sum and player’s utilities have more complex struc-
ture. We also model the attacker with multiple resources
used in parallel, so the defender succeeds in preventing an
attack only if all the attacker’s paths leading to a single
target are intercepted.

Our work also exploits the submodular properties of the
network security domain. Submodular functions for optimal
resource allocation optimization in adversarial environments
were first introduced by Freud et al. [6], and further devel-
oped by Krause et. al [13]. However, they do not work with
continuous defender’s resources and consider only zero-sum
setting.

3. FORMAL MODEL

3.1 Environment
We define the problem of the packet selection for inspec-

tion as a two-player game between the attacker and the de-
fender. The game is played on a graph G(N,E) that repre-
sents the topology of a computer network. The set of nodes
can be decomposed into three non-empty sets: (1) S is the
set of nodes that can be under the control of the attacker; (2)
T is the set of targets (S∩T = ∅); (3) A = N\{S∪T} is the

set of all other nodes in the network. From A, the defender
can inspect the traffic only on a subset of intermediate nodes
I ⊆ A (representing, for example, firewalls, proxy servers,
etc.). For our problem, we consider only nodes from S, T, I.

The packages are routed in the network by an underly-
ing deterministic routing protocol that is not under the at-
tacker’s control; therefore, for each tuple (s, t) : s ⊆ S, t ⊆
T , there is either a fixed single path through intermediate
nodes I, or there is a path without intermediate nodes lead-
ing from s to t, or there is no path from s to t in the graph.
Thus, the defender does not need to consider allocation of
resources to such intermediate nodes which do not lie on any
path (given the set of sources and targets).

Each target t has an associated value τt ≥ 0 that rep-
resents the importance of the target; the defender loses τt
if t is attacked successfully and gains 0 if she succeeds in
preventing the attack. The attacker gains τt if t is attacked
successfully. In case of an unsuccessful attack (i.e. a ma-
licious packet was detected by the defender), the attacker
pays a detection penalty γs ≥ 0 associated with using the
source s1. The penalty for the attacker models situations
when the defender detects that source s is being used to
send malicious packets and blocks this source from the net-
work. Due to this penalty, the attacker may choose not to
attack any of the targets, we thus define a virtual node in
the network — a dummy target tD that is directly connected
to all sources, and for which τtD = 0. Finally, for each in-
termediate node ni we define flow fi that represents the
amount of legitimate network traffic going through ni. We
assume this amount to be constant in time2 and we assume
that the amount of malicious packets sent by the attacker is
fractional compared to the legitimate network traffic3.

3.2 Players
Both players have multiple resources that they can use.

The resources of the attacker are determined by the size of
the set of sources |S| = k and we assume that the attacker
attacks from one source only a single target (however, one
target can be attacked from multiple sources). The strategy
of the attacker is to select k tuples determining which target
will be attacked from each of the sources:

P = {(si, ti) : si ∈ S, ti ∈ T, i = 1 . . . k, ∀j 6=isi 6= sj}

Since there is at most one path from source s to target t
in the graph, we refer to the attacker’s strategies as paths
and denote them as p(s,t) ⊆ I with subscript omitted if the
source-target is clear from the context. Hence, we denote
Ct to be a set of such paths that originate in some source
and end in a single target t. The attacker’s resources are
thus heterogeneous, since it may not be possible to attack
the same set of targets from all sources.

The strategy of the defender is an assignment of a vector
of probabilities X = (x1, x2, . . . , xm), where for each inter-
mediate node n ∈ I; (m = |I|), the probability xi represents
the fraction of the traffic going through the node ni that will

1We assume standard IP packets with a source IP address,
i.e. the source is traceable from the packet header; for spoof-
ing attacks [8], γs is set to zero.
2If the amount of traffic varies in time (e.g., weekends vs.
workdays, days vs. nights), we can compute multiple strate-
gies and switch between them.
3For flooding attacks, different detection/prevention coun-
termeasures instead of deep packet inspection are used.
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be inspected. Therefore, the value xi also represents the
probability of the detection of a malicious packet sent by
the attacker through node ni

4. The available amount of the
defender’s resources is determined by the maximum amount
of inspected traffic B — the maximum allowed average la-
tency in the computer network. Therefore, the defender is
seeking her strategy satisfying the following constraint:

L(X) =
∑

ni∈I
xi · fi ≤ B

where xi ·fi represents the expected number of packets that
were inspected at node ni (for the complete network, we use
L(X) for brevity)5. As in the case of the attacker, the het-
erogeneity of the defender’s resources is given by the struc-
ture of the graph (different intermediate nodes provide a
malicious packet detection for different groups of targets)
and different flows for different ni ∈ I.

Finally, when designing an intrusion detection system, a
typical assumption is that the attacker will have a full knowl-
edge of techniques used by the system [19] and together with
the full knowledge of the network structure6 the attacker is
able to reconstruct the defender’s strategy; the attacker is
thus assumed to know the probability with which a packet
may be inspected at each of the intermediate nodes. In this
paper, we thus assume Stackelberg game formulation; how-
ever, the relaxation of these assumptions is subject of further
research.

3.3 Utility Functions
The utility functions of both the players are a function of

the probability of detection of the sent malicious packets.
Since the intermediate nodes inspect packets independently,
the probability of a single malicious packet avoiding de-
tection along the path p is given by:

π(X, p) =
∏

i∈p
(1− xi) (1)

where X is a strategy of the defender in the form of allo-
cation of detection resources at nodes ni. The probability
of detecting a packet on each path for a set of paths C is
computed as:

ψ(X, C) =
∏

p∈C
[1− π(X, p)]

Now, if P denotes the strategy of the attacker (i.e., paths
pj in the graph), and Ct is the set of all paths chosen by
the attacker leading to a target t, the utility of the defender
Ud(X,P ) is defined as follows:

Ud(X,P ) = −
∑

∀t∈T
τt · [1− ψ(X, Ct)] (2)

where the term (1− ψ(X, Ct)) denotes the probability that
at least one malicious packet avoids detection and reaches
target t. Therefore, the defender’s utility is an expected loss
of values of targets that were reached by malicious packets.

4This assumes having a perfect detector.
5The latency is not computed for every path but averaged
over the entire network, keeping our model tractable.
6Using standard network analysis tools, such as Nmap.
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Figure 1: Example graph. Two source nodes s1 and s2,
three intermediate nodes n1, n2 and n3, two target nodes t1
and t2, and a dummy target node td.

Analogously, we define the attacker’s utility Ua(X,P ) as:

Ua(X,P ) = −Ud(X,P )−
∑

p(s,t)∈P
γs · [1− π(X, p)] (3)

The attacker’s utility equals to the expected gain of values
of targets that were reached by malicious packets reduced by
the detection penalty γs for each path that the attacker uses;
recall the attacker needs to pay a penalty when a packet is
detected, as discussed in Section 3.1. As such, for any non-
zero γs, the game is not zero-sum.

3.4 Example
The example on Figure 1 depicts a simple graph with two

sources s1, s2, three intermediate nodes n1, n2, n3 with flows
f1 = 5, f2 = 3, f3 = 5 and two targets t1, t2 with values
τt1 = 2, τt2 = 6. The number of adversary resources k = 2
and defender’s latency budget is set toB = 6. The attacker’s
strategy set is:

P = { [(s1, t1), (s2, t1)], [(s1, t1), (s2, t2)],

[(s1, tD), (s2, t1)], [(s1, tD), (s2, t2)],

[(s1, t1), (s2, tD)], [(s1, tD), (s2, tD)]}.
If, for example, the defender chooses her strategy to be

X = {x1 = 0.0, x2 = 0.5, x3 = 0.1}, the latency caused is
L(X) = 0.0 · 5 + 0.5 · 3 + 0.1 · 5 = 2. If the attacker selects a
strategy P = [(s1, t1), (s2, t1)], the defender’s utility will be:
Ud(X,P ) = −2·[1−(1−(1−0.0)·(1−0.1))·(1−(1−0.0)·(1−
0.1))] = −1.98. The attacker’s utility will be (when setting
γs1 = γs2 = 1): Ua(X,P ) = −Ud(X,P )− 1 · (1− (1− 0.0) ·
(1−0.1))+(1− (1−0.0) · (1−0.1)) = 1.98−0.2 = 1.78. The
optimal setting is X∗ = {x1 = 0.0, x2 = 0.857, x3 = 0.686},
forcing the attacker to select P ∗ = [(s1, tD), (s2, t2)], giving
the defender expected utility Ud(X

∗, P ∗) = −0.858; and the
attacker’s expected utility is Ua(X∗, P ∗) = 0.001.

4. SOLUTION APPROACH
First, we look for Strong Stackelberg Equilibrium (SSE)

of the full general-sum game. Second, we propose a zero-
sum game model (Section 4.2) that is capable of scaling to
larger problem sizes. Third, we prove the submodularity
of the problem (Section 4.3). Finally, we propose Grande,
an iterative algorithm for finding suboptimal solutions in
polynomial time (Section 4.4).

4.1 General-sum Game Model
Given the assumptions stated above, we model the prob-

lem as a Stackelberg general-sum game between the defender
and the attacker: the defender is the leader, committing to
her strategy first, and the attacker is the follower, choosing
his strategy after the leader’s commitment. The SSE gives
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the optimal strategy for the leader given that the follower
acts with the knowledge of this optimal leader strategy. It
is found by solving multiple programs [3] as follows:

max
X

Ud(X,P
∗) (4)

s.t. L(X) ≤ B (5)

Ua(X,P ∗) ≥ Ua(X,P ) ∀P (6)

xi ∈ [0, 1] (7)

The inputs of the programs are all possible pure strategies of
the attacker P and P ∗ is assumed to be the current best re-
sponse for the attacker. We compute the defender’s strategy
X that maximizes the defender’s utility Ud(X,P

∗) (Equa-
tion 4) while adhering to the latency constraint (Equation 5)
and ensuring that the assumed best response of the attacker
P ∗ is better than all other attacker’s pure strategies ∀P
(Equation 6). While this program may not always be fea-
sible if some choice of P ∗ is strictly dominated by others,
it will still always return a solution for all non-dominated
P ∗. The number of programs needed to be solved to find an
optimal solution is given by the number of attacker’s strate-
gies, which is |T |k, since there are |T | targets and k sources.
This approach has two main scalability limitations: first, the
non-linear formulations of Ud and Ua prohibit us from using
fast linear-program solvers; second, the attacker’s strategy
space is extremely large (for a graph with 5 sources, 5 tar-
gets and one dummy target, we get over 7500 (65) programs
with similar number of non-linear equations), limiting the
usability of the non-linear solvers.

An alternative approach, inspired by algorithms comput-
ing SSE by solving a single mixed-integer program [18], would
introduce into each Equation 6 an integer variable zi (for
each attacker’s strategy Pi) and restrict the variables by∑
zi = 1, i.e., only one attacker’s strategy can be selected

as the best response. However, this program would be very
large, having (|T |k)2 non-linear equations (which is over 56
million for the problem with 5 sources and 5 targets). Hence,
we look at the zero-sum game formulation for the problem
which allows us to exploit the structure in ways that keep
the solution tractable.

4.2 Zero-sum Game Approximation
Finding an optimal solution using the full general-sum

game representation is computationally demanding on large
problems. We thus propose a zero-sum game formulation
which reduces the complexity of the model. Setting the
cost of each source to γs = 0, the utility function of the
attacker becomes a negation of the utility of the defender
(Ua(X,P ) = −Ud(X,P )), and the game becomes zero-sum.
In zero-sum games, the SSE is also a Nash Equilibrium,
which can be computed using the minimax theorem. This
approximation causes an error quantified in Section 5. SSE
of our zero-sum game can be found by solving a single non-
linear mathematical program:

max
X

V (8)

s.t. Ud(X,P ) ≥ V ∀P (9)

L(X) ≤ B (10)

xi ∈ [0, 1] (11)

In this mathematical program, the main scalability limita-
tion persists – as for the general sum model – the non-linear
nature of the utility function (Equation 9) and the size of

the linear program, depending on the size of the attacker’s
strategy space (Equation 9). However, in spite of the large
problem size, zero-sum games are generally easier to solve
optimally (e.g., iterative algorithms can be used as in [7,
9]) or to approximate [14]. We follow the latter approach
and investigate approximation algorithms that utilize the
property of submodularity and are able to find solutions for
zero-sum games with guaranteed bounded error.

4.3 Submodularity
In our problem formulation, the defender’s resources ex-

hibit diminishing returns, i.e., as the number of defender’s
resources is increased, the marginal utility of deploying one
extra resource keeps decreasing. This property is formal-
ized by the concept of submodularity [16] which is utilized
in many domains (e.g., sensor networks) to design effec-
tive algorithms for solving problems with a large number
of defender’s resources. A real-valued function F defined on
subsets A of a finite set V is called submodular, if for all
A ⊂ B ⊂ V and for all s ∈ V \B holds that F (A ∪ {s}) −
F (A) ≥ F (B∪{s})−F (B). The constrained optimization of
a submodular set function is NP-hard in general, however, a
number of approximation algorithms with provable quality
guarantees can be used [22].

In our formulation, we have intermediate nodes that de-
tect the activity of the attacker. The value of the detected
activity in this problem setting is a probability between
[0, 1], as opposed to being binary which is generally assumed
in submodularity. Thus, our requirements do not meet the
assumptions of most prior work on submodularity, except
the work by Vondrak et al. [22], which studied smooth con-
tinuous extension of submodular functions by taking expec-
tations, defining sensors making observations independently
with probability in range [0, 1]. The approach requires the
continuous function to be twice partially differentiable and
an approximation bound is established by exploiting the up-
concavity7 of the resulting continuous function [5]. However,
this work is not applicable to our problem since our objec-
tive function, Ud(X,P ), is not up-concave which can be de-
termined by taking the double derivative of the defender’s
utility function.

4.4 GRANDE Algorithm
We choose a different approach (in contrast to standard

submodular approaches) to exploit the submodularity of the
problem: we transform Ud into a submodular function de-
fined over sets by discretizing the sampling rate of each
node and we allow nodes to sample only a fixed portions
of traffic defined by a discretization step d ≤ 1; e.g. for
d = 0.1, the sampling rate at each node can be set only to
0, 10, 20, . . . , 100%. Then, each node ni can be seen as a set

of 1/d sensors S(ni) = {n1
i , n

2
i , . . . , n

1/d
i }. A sensor nji can

be switched either on (and sample a portion of the traffic)
or off which is expressed by a binary variable xji ∈ {0, 1}
having value of 1 for a sensor switched on. The defender’s
strategy is defined using the sensor notation as X = {xji}.
We redefine the Equation 1 defining the probability of a sin-

7Up-concavity means that the function is concave along any
non-negative direction vector; however, it is not necessarily
concave in all directions.
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Algorithm 1 GReedy Algorithm for Network DEfense.

budget← B
I ← nodesOnPaths
repeat
updated← false
bestNode← null
bestIncrement← 0
attackerBR← getAttackerBR(graph)
for node ∈ I do
increment = getSecurityIncrement(d, attackerBR)
if bestIncrement < increment then

if d · flow(node) < Budget then
bestIncrement← increment
bestNode← node

end if
end if

end for
if bestNode! = null then
bestNode.sampling ← bestNode.sampling + d
budget← budget− d · flow(node)
updated← true

end if
until not updated

gle malicious packet avoiding detection along a path p as:

π(X, p) =
∏

ni∈p
(1− d ·

∑

S(ni)
xji ) (12)

Having a submodular utility function defined over sets
for the defender Ud (which has the same formulation as in
Equation 2), we are able to design an iterative greedy algo-
rithm to achieve at least (1 − 1/e)-optimal (approximately
63.2%) solution (compared to the zero-sum game SSE) [6]
similarly to work of Krause et al. [14]. However, it is also
necessary to consider the cost of each sensor, given by the
budget constraint L(X) ≤ B. When inspecting the same ra-
tio of packets at two nodes ni, nk with flows f(ni) > f(nk),
the cost of inspection at the node ni (and thus switching
on a sensor at node ni) is higher than inspection cost at
node nk. The cost of switching on a sensor is defined as
c(nji ) = d · f(ni). As shown in [13], the greedy algorithm

has to select a sensor xj∗i with the highest cost-benefit ratio
to guarantee bounded error of the solution:

xj∗i = arg max
x
j
i

Ud(X ∪ {xji}, P )− Ud(X,P )

c(nji )
(13)

Based on this formalization, we introduce Grande (GRe-
edy Algorithm for Network DEfense), depicted in Algorithm 1.
Grande iteratively selects sensors with the highest security
increment vs. cost ratio to add to the defender’s strategy,
following the greedy approach. To find the best sensor to
add, we find attacker’s optimal strategy attackerBR and
test each candidate sensor against this strategy. The algo-
rithm ends when there is no budget left or there is no sensor
to be added.

The complexity of the algorithm is thus dependent on the
number of nodes n = |I|, the discretization step d, the min-
imum amount of traffic flow at each node f , the sampling
budget B and the complexity of the attacker’s best response
oracle O(BR), and is O(nB/fd) ·O(BR).

The attacker’s optimal strategy attackerBR is a best re-
sponse to the current defender’s strategy (following the orig-
inal Stackelberg formulation). The algorithm thus needs a
fast best response oracle providing best response to the cur-

Algorithm 2 Attacker’s Best Response Oracle

H ← {}
K ← attackerResources
Pairs← enumerateAllPairs()
repeat

(s∗, t∗)← emptyPair
for (s, t) ∈ Pairs do

if U((s, t)|H) > U((s∗, t∗)|H) then
(s∗, t∗)← (s, t)

end if
end for
H ← H ∪ (s∗, t∗)

until size(H) = K

rent strategy of the other player. The following section de-
fines such oracle and provides insight into the complexity of
this approach.

Attacker’s Best Response Oracle
Recall that the attacker only selects for each source a target
to attack and the routing path is automatically assigned.
The attacker’s best response is thus an optimal assignment
of a target to every source, given a fixed defender’s strategy
X, maximizing the attacker’s utility. The attacker’s best
response can be found using an iterative greedy approach.

Let’s assume we have the defender’s strategy — a mix-
ture of sampling probabilities xi for each node ni. We
can compute for each source-target pair, what is the like-
lihood of being detected ρts = 1− π(X, p(s,t)). Let’s denote
the source-target pairs by STP = {(s1, t1), . . . , (sn, tm)}.
We also know that two different source-target pairs (with
different sources) can share the same target t. Given in-
put {STP, ρts}, the best response is k source-target pairs,
{(s1, t1), (s2, t2), . . . , (sk, tk)} such that the attacker’s util-
ity is maximized.

The greedy algorithm (summarized in Algorithm 2) works
as the following: we choose one source-target pair at a time
that maximizes the attacker’s immediate gain in utility. Let’s
assume some pairs H, have been chosen and we need to
choose the next one. Since pairs in H have already been
chosen, we know there is some probability of successfully at-
tacking a target t, denoted by qt, which may or may not be
0. If we choose source s, and target t, the additional utility
we will get will be:

U((s, t)|H) = [1− ρts · (1− qt)] · τt − qt · τt
= (1− ρts) · (1− qt) · τ t (14)

If H is empty, all qt = 0 and U((s, t)|{}) = (1 − ρts) · τ t,
is the expected value of attacking t from s. The greedy
algorithm would then choose (s∗, t∗) such that U((s∗, t∗)|H)
is maximized.

Theorem 1. The attacker’s oracle always returns attacker’s
best response to a given defender’s strategy.

Proof. Consider at any point of the algorithm, a set of
source-target pairs H has been chosen. The greedy algo-
rithm returns (s∗, t∗). We want to show (s∗, t∗) must be
in the best solution conditioned on H being included. This
will allow us to do induction on the number of pairs cho-
sen. Let’s denote the optimal solution by C∗. The first pair
chosen, which is the best one from STP , must be in C∗ be-
cause H1 is empty (no condition required). And if the pairs
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up to k are all in the optimal solution, implying Hk is in C∗,
therefore the k + 1-th pair must be in the optimal solution.

This implies that we want to show (s∗, t∗) must be in the
best solution conditioned on H being included. To show
this by contradiction, we consider another candidate best
solution C (having H) which does not have (s∗, t∗). Two
cases to consider:

1. C contains no pair attacking target t∗ other than those
in H. Then we find an arbitrary pair (s′, t′) in C
but not in H (such set is denoted as C\H) and re-
place it by (s∗, t∗). We know the attacker gains ex-
actly U((s∗, t∗)|H) (since no other pair in C\H at-
tacks t∗) and loses at most U((s′, t′)|H) (since there
might be another pair in C\H). Recall U((s∗, t∗)|H) ≥
U((s′, t′)|H) given how (s∗, t∗) is chosen, the new solu-
tion C+ (s∗, t∗)− (s′, t′) must be better than C which
also includes H, leading to a contradiction.

2. C\H has at least another pair attacking t∗ that is not
(s∗, t∗). Let the pair be (s′, t∗). We replace it by

(s∗, t∗). We know ρt
∗
s∗ ≥ ρt

∗
s′ because U((s∗, t∗)|H) ≥

U((s′, t∗)|H). Therefore the total probability of suc-
cessfully attacking t∗ must increase after the replacing
given other pairs in C remain fixed. Again this shows,
C + (s∗, t∗) − (s′, t∗) is a better solution which is the
contradiction.

Having reached contradiction in both points, we have shown
that (s∗, t∗) must be in the best solution conditioned on H
being included, implying validity of the induction step.

The complexity of the algorithm is O(STn + S2T ) =
O(n3), where the O(STn) is complexity of the initializa-
tion and O(S2T ) is complexity of iterations. Here, S is the
number of sources, T is number of targets and n = |I| is the
number of nodes.

5. EVALUATION
In the evaluation, we focus on exploring the trade-off be-

tween scalability and the quality of the solution. We con-
sider the solution of the general-sum model to be optimal
and compare it with the solution of the mathematical pro-
gram representing the zero-sum game model, and the solu-
tion from Grande. Additionally, we want to explore finer
properties of Grande, specifically, the dependency of the
solution error on the discretization step of the sampling rate.

Experimental scenarios of the analyzed problem depend
on a large set of parameters that affect both the performance
of the algorithms, as well as the quality of produced solutions
for the approximative ones. The key parameter is the graph
on which the game is played; more specifically the number
of intermediate nodes |I|, the number of sources |S|, and the
number of targets |T |. Moreover, the degree of overlapping
paths also plays an important role in the non-linear models.
The detection penalty γs has no direct impact on the run
time of Grande; the defender’s budget B, traffic flow fi and
discretization step d proportionally influence mainly the run
time of Grande.

While we conducted experiments for different graph struc-
tures, we present results only on scale-free graphs since these
graphs are known to be the closest to general computer net-
works in their structure. We performed experiments with

(a) Defender’s exp. util-
ity. Red diamonds denote
locally optimal solution.

(b) Distribution of de-
fender’s resources between
n1 and n2 (log x axis).

Figure 2: Impact of detection penalty γ on the solution
structure. While increasing value of γ, the defender redis-
tributes her resources between n1 and n2 and her exp. utility
changes (b), however, it stays equal to zero for γ > 1.2 (a).

random flows (e.g. the flow at each node is set indepen-
dently on the flow of the others) as well as with network-
flow constrained traffic distribution (the flow at each node
is computed from the network-flow equations by randomly
selecting traffic sources and sinks in the network) which did
not directly influence both the performance and quality of
the solution. Without loss of generality, in every experi-
ment, the traffic flow in the graph is set between [0, 1] at
each node. We have included the dummy target in each
model to keep the graph size constant for all algorithms,
even though the zero-sum model as well as the iterative al-
gorithm never consider the attacker to attack the dummy
target. The detection penalty was set to γs = 1 for each
source.

5.1 Solving Non-linear Constrained Programs
To obtain an optimal solution of the program representing

the general-sum game model, we use a non-linear solver to
find optimal or locally optimal solution. NEOS server [4]
provides on-line solvers for solving non-linear programs. We
used LINDOGlobal [21], a non-linear constrained program
solver able to find globally optimal solutions for many con-
strained non-linear programs. The input to the solver is a
file describing the program in the GAMS format, which is
sent by a remote procedure call to the NEOS server using
XML remote procedure call API. The solution is computed
on the server and the results are sent back to the user.

5.2 General-sum vs. Zero-sum Model
As a first step, we compare the quality of the general-

sum and the zero-sum game model. The difference in the
solution quality between these two models will be directly
affected by the value of the detection penalty γ, as it can be
observed from Equations 2 and 3. For the example described
in Section 3.4, the trend of defender’s expected utility while
varying γ is depicted on Figure 2a. As γ is increased (i.e. the
attacker is penalized more for a detected malicious packet,
thus the utility of players is further from zero-sum), the de-
fender’s expected utility rises. Two rapid transitions occur
for (γ = 0.8 and γ = 1.2) which are caused by the switch of
attacker’s strategies to attack the dummy target tD. In the
interval from [0, 0.8], the attacker attacks from both sources,
in the interval from [0.8, 1.2] the attacker attacks only from
one source, and from [1.2,∞], the attacker chooses not to
attack at all. Figure 2b shows the distribution of defender’s
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(a) General-sum NLP (b) Zero-sum NLP (c) Grande

Figure 3: Scalability of the three models with respect to the number of sources and targets on scale-free graphs with 100
intermediate nodes (note the different scale of the x axis). For comparison of Grande with other two approaches, we have
displayed one result of the zero-sum NLP in the Figure (c) denoting performance of the zero-sum model for 4 targets.

resources between nodes n1 and n2 as γ is varied. Notice
that the defender has to redistribute the resources to dis-
courage the attacker from attacking, while still adhering to
the latency constraints, i.e. the node sampling rates multi-
plied by the flows through the nodes x1 ·f1+x2 ·f2 ≤ B = 6.
The results of the zero-sum model are equal to the results
of the general-sum model with γ = 0.

5.3 Performance
Figure 3 depicts the scalability of the three main algo-

rithms. The results for general-sum NLP are restricted to a
maximum of 3 sources and 3 targets, since the NEOS server
limits the size of the input that can be sent to it. Similarly,
for the zero-sum NLP, the limit was reached at 5 sources and
4 targets. However, even on these problem sizes it is possible
to see performance trends: the runtime of the general-sum
as well as zero-sum NLP is exponential (even in logarithmic
coordinates) in the number of sources (i.e. number of at-
tacker’s strategies) and time needed to solve a graph with
3 sources and 3 targets is over three minutes in average for
the general-sum NLP. Using the zero-sum NLP, we are able
to compute solutions on graphs with 5 sources and 4 targets
in approximately 30 seconds.

Comparing Grande to mathematical program formula-
tions, we can observe its superiority on Figure 3c (perfor-
mance of the zero-sum NLP on 4 targets is depicted as a
single line on the left of the chart). The performance of
Grande is linearly dependent on the discretization step d
(see Section 4.4). The algorithm is able to find solution
on graphs with 20 sources and 4 targets in seconds, having
the discretization step set to d = 0.01 (which is sufficient
to compute solutions with an average error under 10%, see
Section 5.4). The largest problem tried, with 2000 nodes,
200 sources and 20 targets was solved in approximately 50
hours on a standard PC.

5.4 GRANDE Solution Error
The theoretical error bounds of greedy algorithms opti-

mizing submodular set functions shown in [22] are valid only
for zero-sum settings. We explore the error of Grande com-
pared to the general-sum game solution, which can be pos-
sibly unbounded. It is necessary to set the discretization
step of Grande to a specific step, which has a direct im-
pact on the quality of solution. To evaluate the error, we
have varied both the discretization step as well as attacker

loss expressed by γ. The budget constraint of the defender
was fixed to B = 4.

For every graph, we have computed the defender’s re-
source allocation X∗ and attacker’s best response P ∗ us-
ing the program of the general-sum NLP, which served as
a reference optimal solution (even if only a local optimum
was found by the solver, due to lack of other globally optimal
techniques). Then we computed the defender’s resource allo-
cationXG using Grande. To evaluate the quality ofXG, we
have found the attacker’s best response PG to XG using the
general-sum utility formulation. Then, we computed the er-

ror of XG as err = UD(X∗,P∗)−UD(XG,PG)
T , where T =

∑
τt

(maximum achievable error).
Figure 4 quantifies errors of Grande from 50 different

scale-free graphs with two sources and two targets (prob-
lem sizes limited due to restrictions imposed by the NEOS
server). The graph depicts the median error (denoted by
the circle) with the 25th and the 75th percentile (denoted
by a thick bar) and maximal and minimal error (denoted
by whiskers). As we refine the discretization step from 1 to
0.001 (i.e. the sensors can increase their sampling rate by
0.1% for d = 0.001), the quality of solution increases. An
average error under 10% is reached when the discretization
step is set to d = 0.01, however Grande is able to compute
strategies with discretization step set to 0.001 resulting into
errors under 5%. The variance is observed to be the highest
for d = 0.1 as the solutions varied from close-to-optimal to
100% ineffective.

6. CONCLUSION
Effectively securing large computer networks without sti-

fling the quality of service is a practical and theoretical chal-
lenge of grave impact in the real-world. In this paper, we
outline the mathematical model of the network security do-
main. We provide the mathematical formulation for the
two person security game between the defender and the
attacker, where the attacker sends malicious packets from
some (known) set of sources and the defender uses packet
inspections to detect such malicious traffic. Since the non-
linear calculations render the model intractable for computer
networks with even 5 sources and 5 targets, we also intro-
duce a zero-sum simplification of the original model. We
then propose Grande, a novel error-bounded approxima-
tion algorithm that relies on the submodular property of the
malicious packet detection problem.We validate our algo-
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Figure 4: Error of Grande evaluated over different scale-
free graphs. The errors are grouped according d, and in each
group, γ was set to {0.1, 1, 2, 5, 20}.

rithms experimentally, and show that Grande, on average,
produces results with orders of magnitude higher solution
quality as projected by the theoretical worst case bounds.
This work contributes by outlining the challenges present
in the network security domain, and by introducing state-
of-the-art algorithms that compute the optimal strategy for
the defender in computer networks.

7. ACKNOWLEDGMENTS
This research was supported by the United States De-

partment of Homeland Security through the National Cen-
ter for Risk and Economic Analysis of Terrorism Events
(CREATE) under award number 2010-ST-061-RE0001, by
the Czech Ministry of Education, Youth and Sports (grant
no. LH11051), by the Czech Science Foundation (grant
no. P202/12/2054) and by the AirForce Office of Scien-
tific Research, Air Force Material Command, USA (grant
no. FA8655-10-1-3016).

8. REFERENCES
[1] T. Alpcan. Network Security: A Decision and

Game-Theoretic Approach. Cambridge University
Press, 2010.

[2] L. Chen and J. Leneutre. A game theoretical
framework on intrusion detection in heterogeneous
networks. IEEE Transactions on Information
Forensics and Security, 4(2):165–178, 2009.

[3] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM
conference on Electronic commerce, pages 82–90.
ACM, 2006.

[4] J. Czyzyk, M. Mesnier, and J. Moré. The NEOS
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ABSTRACT
We analytically study the role played by the network topol-
ogy in sustaining cooperation in a society of myopic agents in
an evolutionary setting. In our model, each agent plays the
Prisoner’s Dilemma (PD) game with its neighbors, as spec-
ified by a network. Cooperation is the incumbent strategy,
whereas defectors are the mutants. Starting with a popula-
tion of cooperators, some agents are switched to defection.
The agents then play the PD game with their neighbors and
compute their fitness. After this, an evolutionary rule, or
imitation dynamic is used to update the agent strategy. A
defector switches back to cooperation if it has a cooperator
neighbor with higher fitness. The network is said to sustain
cooperation if almost all defectors switch to cooperation.
Earlier work on the sustenance of cooperation has largely
consisted of simulation studies, and we seek to complement
this body of work by providing analytical insight for the
same.

We find that in order to sustain cooperation, a network
should satisfy some properties such as small average diam-
eter, densification, and irregularity. Real-world networks
have been empirically shown to exhibit these properties, and
are thus candidates for the sustenance of cooperation. We
also analyze some specific graphs to determine whether or
not they sustain cooperation. In particular, we find that
scale-free graphs belonging to a certain family sustain co-
operation, whereas Erdos-Renyi random graphs do not. To
the best of our knowledge, ours is the first analytical at-
tempt to determine which networks sustain cooperation in
a population of myopic agents in an evolutionary setting.
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General Terms
Economics, Theory
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1. INTRODUCTION
The question of how cooperation emerges among ratio-

nal, intelligent agents is one which has received consider-
able amount of attention. When agents interact with one
another, they are often faced with two choices - cooperate
with each other for mutual benefit, or think about one’s
own interests, and defect. This abstract interaction model
is captured succinctly in the Prisoner’s Dilemma (PD) game,
which is a two player, one shot, simultaneous move game.
Although the Hawk-Dove and Stag Hunt games are also used
to model agent cooperation, the PD game is arguably the
most often used and well studied.

Table 1 shows the (normalized) payoff matrix for the two
player PD game. In this game, each agent can choose one
of two actions or strategies – cooperate or defect. The first
entry in each cell in the table is the payoff for the row player,
and the second entry is that of the column player. For
example, when the row player cooperates and the column
player defects, then the cell entry is 0, b, meaning that the
row player gets 0, and the column player gets b. When
both agents cooperate, each gets a moderate payoff (say 1).
However, a defector achieves a higher payoff (say b) against
a cooperator, who gets zero payoff. Here b is called the ben-
efit or temptation to defect, and typically 1 < b < 2. When
both agents defect, then both get zero payoff. We observe
that if the column player cooperates, the row player is better
off defecting, whereas, if the column player defects, then the
row player is indifferent as to his strategy. Hence defection
is a dominant strategy, and rational agents will be expected
to defect always. When two rational players play the PD
game, both defect. However, it would ultimately have been
better for both agents to have cooperated with each other
(mutual cooperation is Pareto-optimal with respect to mu-
tual defection) and therein lies the dilemma. Hence it is of
interest to study what conditions or protocols of interaction
induce agents to cooperate with one another.

Cooperate Defect
Cooperate 1,1 0,b

Defect b,0 0,0

Table 1: Prisoner’s Dilemma payoff matrix

In the literature, several settings that sustain coopera-
tion have been proposed and studied. When agents interact
repeatedly with one another, and can remember past histo-
ries, then agents can retaliate against defectors by refusing
to cooperate in future interactions, and this could induce
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mutual cooperation [3]. However this line of reasoning fails
in settings where the same agents may not interact repeat-
edly. In such settings, reputation mechanisms may be used
by the community of agents to track and punish defectors
[19]. Such a technique requires unique, constant identities
for the defectors, and cannot account for settings in which
agents are anonymous, or can freely change their identities,
such as happens in interactions over the Internet. Hence we
seek interaction models which sustain cooperation in a soci-
ety of myopic, memoryless agents. We approach this study
by looking at the way in which the structure of interaction
between the agents affects their strategies.

In a multiagent society, one cannot always expect that all
agents interact with one another. For example, spatial struc-
ture (agents only interact with other agents in their vicinity)
and organizational structure (agents interact only with other
agents immediately above or below them in a hierarchy) are
two immediate examples in which interactions are restricted
between agents. The structure of the interaction of agents
with one another is naturally represented by a network, with
each node corresponding to an agent, and each edge repre-
senting an interaction between a pair of agents. We model
agent interaction as an evolutionary PD game played on this
network. In this model, every agent is either a cooperator
or a defector, and plays the same strategy uniformly with
each of its neighbors on the network. We take cooperation
to be the incumbent strategy, and defection as the mutant
strategy. Starting with a population of cooperators, a small
number of agents are switched to defection. The agents then
play the game with their neighbors on the network. The fit-
ness of an agent is calculated as the sum of the payoffs that
it receives in each game. After one such round the defectors
then decide whether to stay with their current strategy, or
switch, depending on the fitness of their neighbors. In par-
ticular, a defector switches to cooperation when one of its
neighbors is a cooperator with higher fitness. We say that a
network sustains cooperation if almost all defectors switch
to cooperation.

Given this simple model of agent interaction, we ask which
networks sustain cooperative behavior, and which do not.
In our analysis, we identify some necessary properties that
a network should satisfy in order to sustain cooperation,
such as small average diameter, densification, and irregular-
ity (Section 4). Real-world networks have been empirically
observed to exhibit these properties, and hence can be con-
sidered suitable for sustaining cooperation. We also identify
some graphs which sustain cooperation, and some which do
not (Section 5). In this way, we try to build a complete
characterization of networks which sustain cooperation.

There have been many simulation studies on the suste-
nance of cooperation on networks, but very few of analytical
nature. In an analytical study, although the complexity of
the model that is studied is necessarily limited in the interest
of tractability, the insights obtained are very clear. In fact,
it is the analytical approach alone that enables us to obtain
a characterization of graphs that sustain cooperation, as il-
lustrated in our necessary conditions above. In contrast, it
is arguably difficult, if not impossible to conduct an simula-
tion on a graph class such as “all graphs with large average
diameter”.

The rest of the paper is as follows: In Section 2, we de-
scribe the network interaction model that we use in our
study, and formally define when a network is said to sus-

tain cooperation. In Section 3, we briefly survey the lit-
erature relating to the study of sustenance of cooperation
under various settings. In Sections 4 and 5, we give proofs
for the necessary conditions to sustain cooperation and an-
alyze some specific graphs, respectively. Finally, in Section
6, we summarize our study, and also identify some avenues
for future work.

2. THE NETWORK INTERACTION MODEL

2.1 Intuition for the Model
Our definition of networks which sustain cooperation uses

a fitness function and imitation rule that follows in spirit
the model described by Kearns and Suri [13]. However, we
have made some important changes to the model to make it
more realistic and suitable to a wider range of applications.
We now describe the salient features of our model.

1. Agent fitness: The fitness of each agent is defined to
be the sum of the payoffs it derives from the PD games
played with each of its neighbors in the interaction net-
work. We have defined it to be the sum rather than
average (as considered in [13]), because in real world
networks, the agents are disparate and have fitnesses
based on their centrality and degree of connectedness
and normalizing them based on their degree is not nat-
ural. The sum of payoffs has been used in earlier works
as a measure of fitness of an agent in evolutionary game
theory [1, 17].

2. Incumbents and mutants: In [13], it is shown that
an evolutionarily stable strategy (ESS) in a classical
sense (that is, when underlying network of interac-
tions is a complete graph) is also an ESS on graphs
(with respect to their fitness model). This result holds
under mild restrictions on the graph or how the mu-
tants are chosen. In the context of the PD game, this
implies that a population of defectors is resistant to in-
vasion by mutant cooperators. However, we are trying
to study whether cooperation (a dominated strategy)
can survive mutant attacks (by defectors) given cer-
tain network topologies. To this effect we assume the
incumbent strategy is cooperation and introduce de-
fectors as mutants.

3. Imitation dynamics: In a PD game, for every agent,
the best response strategy is to defect (irrespective of
the actions of other agents). Hence cooperation cannot
be sustained when agents follow best response dynam-
ics. The dynamics considered in our work is not that of
best response but that of imitation (which not only ap-
plies to humans but also to primitive life forms where
rationality cannot be completely justified). Here, if
a mutant defector has at least one cooperator neigh-
bor with a higher fitness than it, then it is likely to
imitate that strategy and switch over to cooperation.
This is a natural behavior and models the fact that
every agent tries to imitate other successful agents it
interacts with, so as to improve its own payoff [8].

4. Sustaining cooperation: Starting with a network
of cooperators, a small randomly selected fraction of
agents are switched to defection. We say that a net-
work sustains cooperation, if almost all defectors change
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their strategy back to cooperation, in accordance with
the imitation dynamics described above. The random
selection is warranted, as with adversarial placement it
is always possible to place mutants in such a way that
no mutant switches to cooperation, and the question
becomes trivial.

2.2 Notation
Following the game model considered by Santos and

Pacheco [20], we work with a normalized PD game ma-
trix, shown in Table 1. The interaction structure among
the agents is specified by a graph G = (V,E), where V is
the vertex (or node) set, and E ⊆ V × V is the edge set.
The number of vertices (|V|) is denoted as n. We consider
graphs which are specified for all large values of n, as we
are interested in asymptotic behavior as n→∞. When two
vertices u, v are connected by an edge, we denote the edge
as (u, v) (which is equivalent to (v, u), because we work with
undirected graphs), and say that (u, v) ∈ E. For each vertex
v ∈ V , the neighborhood N(v) is the set of vertices adjacent
to v. That is, N(v) = {u ∈ V : (u, v) ∈ E}. Each vertex
v corresponds to an agent, and has a fixed strategy s(v),
which is either C or D. In future, we will refer to the terms
agent and vertex interchangeably. Also, we will refer to each
agent, or node, as either a cooperator or a defector, depend-
ing on its strategy. Now each agent plays the PD game with
each of its neighbors on the graph. Denote by f(v, u), the
payoff obtained by agent v playing against agent u. Now the
total fitness f(v) of agent v is the sum of its payoffs against

each of its neighbors, that is, f(v) =
∑

u∈N(v)

f(v, u).

Cooperator
Defector (Unsuppressed)

1

4

1

1

1

b

b

2b

0

Defector (Suppressed)

Figure 1: Network Interaction Model

Figure 1 shows an example graph with some cooperators
and defectors, along with their fitness. We also see two
defectors (shaded) adjacent to a cooperator who has a higher
fitness than them. We say that such defectors are suppressed.
If a defector is not adjacent to any cooperator of higher
fitness than it, then we refer to it as unsuppressed. We say
that an event occurs with high probability, if it occurs with
probability 1 − o(1) (where o(1) is a term which goes to 0
as n→∞). Given a graph G, and a constant ε∗, (0 ≤ ε∗ ≤
1) the defector selection process chooses a random subset
of vertices D, of size ε∗n as defectors, keeping the other
(1− ε∗)n vertices C as cooperators. (Strictly speaking, the
number of cooperators and defectors should be integers. Our
analysis can be carried out taking either the floor or ceiling
of such quantities, without affecting the results.) A graph G
is said to sustain cooperation, if there is a constant ε (0 <

ε < 1) such that for all values ε∗ ≤ ε, with high probability
(with respect to the defector selection process), at most o(n)
defectors are unsuppressed. If not, that is, for all values
of ε, there exist corresponding values of ε∗ ≤ ε, such that
the probability that the number of unsuppressed defectors is
Ω(n) is greater than some fixed α, then we say that the graph
does not sustain cooperation. The definition of sustenance of
cooperation of a graph, can be extended to that of a random
graph in a simple manner. In this case, we require that with
high probability with respect to selection of a graph from
the set of possible graphs (in addition to selection of the
defector set), at most o(n) defectors are unsuppressed.

In the above model, we select a random subset of nodes as
defectors. One might also consider an adversarial selection.
In Section 4.1, we show that with adversarial selection of the
defector set, no graph can sustain cooperation, and hence
the model becomes uninteresting.

3. RELATED WORK
We now briefly survey the literature which addresses the

broad question of how cooperation emerges and is sustained
in social interactions, and also identify some key differences
between earlier work and ours. These studies can be cate-
gorized according to the choice of conditions studied. The
most commonly used and popular model of agent interac-
tion is the Prisoner’s Dilemma (PD) game, although some
studies use the Hawk-Dove (HD, also called Snowdrift or
Chicken) game [10, 20]. The network of interaction between
the agents can be either static [11, 20] or dynamic [9, 12].
The agents themselves can be myopic and memoryless [11,
20] or strategic and intelligent [3, 12].

Early studies relating to sustenance of cooperation have
been in the context of repeated games, where agents play the
PD game repeatedly with one another for an infinite number
of rounds. In such a setting, the Folk Theorem indicates that
mutual cooperation can be sustained as a Nash equilibrium
[18]. Axelrod and Hamilton [3] found experimentally that
cooperation is sustained when defectors are punished recip-
rocally with defection in a tit-for-tat fashion. The study
was conducted in the form of two computer tournaments
where strategic programs competed against one another in
a repeated PD game. In their model, each agent (program)
plays with every other agent in several rounds, can distin-
guish each agent’s identity, remember the history of actions
for each agent that it played, and adopt a different strat-
egy for each interaction. Also the final fitness of an agent is
calculated as the sum of the payoffs that it received in each
round. A detailed analysis of the sustenance of cooperation
in such a setting can be found in [2]. In contrast to this
model, agents in our model can adopt only one strategy at a
time, which they uniformly exercise in all their interactions,
and the payoffs that agents receive are recomputed in each
round and are not added up.

Hofmann, Chakraborty, and Sycara [11] carried out a com-
prehensive simulation study, in which they found that the
sustenance of cooperation depends on a number of factors
such as network topology, strategy update rule, and ini-
tial population of cooperators. In particular, they found
that scale-free networks sustain cooperation given almost
any update rule. Hanaki, Peterhansl, Dodds, and Watts
[9] conducted simulations and found that cooperation can
be sustained in a dynamic multiagent network when links
between agents are costly and local structure is largely ab-
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sent. They used a model where each agent imitates the strat-
egy of its most successful neighbor, and breaks/creates links
stochastically based on a cost/benefit comparison. Santos
and Pacheco [20] carried out simulations of the PD and HD
games on various networks and found that cooperation is
not sustained on regular graphs and graphs formed by a
growth model without preferential attachment, but can be
sustained on graphs formed by a growth model with prefer-
ential attachment (such graphs were introduced by Barabasi
and Albert [4]). Other simulation studies of the sustenance
of cooperation are [1, 6, 10, 15, 17, 21]. Also refer to Szabo
and Fath [22] for a survey of evolutionary games on graphs.

We observe that the literature in this field largely deals
with simulation studies of the sustenance of cooperation on
networks. We now turn to the relevant analytical studies in
this area. The work which is most similar to ours in terms
of the techniques used is that of Kearns and Suri [13], who
extended the notion of evolutionarily stable strategies (ESS,
[16]) to games played on graphs. An ESS is a strategy that is
resistant to invasion by mutant strategies. Kearns and Suri
showed analytically that the ESS of games are preserved in
their model. In the context of the PD game, this implies
that defection is dominant even in the graph setting. While
the techniques that we use are similar to the above work,
our model is fundamentally different in the computation of
fitness, as well as in the restrictions imposed on the graph
and placement of defectors. Hence our analysis yields quali-
tatively different results regarding the sustenance of cooper-
ation, which cannot be obtained in their model. Immorlica,
Lucier, and Rogers [12] found that cooperation can be sus-
tained by the formation of social capital. They studied a
PD game on a dynamic network where an agent can change
its links, but not its strategy. At each round some randomly
chosen agents are removed, and replaced by new agents, who
choose their strategy based on expected long term fitness.
They found that under some parameter settings, cooperators
and defectors co-exist in a dynamic self-correcting equilib-
rium. Our work is different from this, in that we consider
myopic, memoryless agents, who cannot compute long-term
costs and benefits, but are instead driven by imitation dy-
namics.

3.1 Our Contributions
In the context of the proposed model, we identify the fol-

lowing necessary conditions for a network to sustain coop-
eration:

• Small Average Diameter: The average diameter
of the network should be sub-linear in the number of
nodes. Real-world networks have been shown to have
an average diameter that grows logarithmically in the
number of nodes [23].

• Densification: As the number of nodes in the net-
work grows, the average degree of the nodes should
increase. In other words, the number of edges should
grow super-linearly in the number of nodes [14].

• Irregularity: The ratio of maximum degree to mini-
mum degree should be greater than b, the benefit re-
ceived by defectors. Real-world networks have a power
law degree distribution, and hence satisfy this condi-
tion [4].

In particular, we analyze the sustainability of cooperation
on specific important networks, and classify them accord-
ingly:

• Sustaining cooperation: Scale-Free graphs, Hierar-
chical graphs, Bipartite Random graphs

• Not sustaining cooperation: Erdos-Renyi random
graphs

4. NECESSARY CONDITIONS FOR
SUSTAINING COOPERATION

First, we show that with adversarial selection of the de-
fector set, no graph can sustain cooperation.

4.1 Adversarial Mutant Selection

Theorem 1. For any graph G with n nodes, it is always
possible to place εn defectors and (1−ε)n cooperators in such
a way that for every cooperator vc and defector vd adjacent
to each other, f(vd) ≥ f(vc).

Proof. Let P be a placement of cooperators and defec-
tors on the graph which minimizes the total fitness of all
cooperators. We will show that this placement satisfies the
condition of the theorem, and we are done.

If not, then there is a cooperator vc, and a defector vd
adjacent to each other, such that f(vc) > f(vd). Let the
number of cooperators who are adjacent to vc but not vd
be kc and those adjacent to vd but not vc be kd, and let
k be the number of cooperators adjacent to both. Then,
f(vc) = kc+k; f(vd) = b ·(kd+k); f(vc) > f(vd)⇒ kc+k >
b · (kd + k) ⇒ kc > kd. Now interchange the strategies of
vc and vd. That is, vc now becomes a defector, and vd be-
comes a cooperator. Let us consider the total change in the
cooperator fitness. The fitness of each of the kc cooperators
adjacent to vc decreases by 1 (−kc); that of the kd cooper-
ators adjacent to vd increases by 1 (+kd); and that of the
k cooperators adjacent to both does not change. Also, vc is
no longer a cooperator (−kc−k) and vd is now a cooperator
(+kd + k). Hence the change in total cooperator fitness is
2(kd − kc), which is negative since kd < kc. Now we have
a new placement of cooperators and defectors P ′, in which
the total cooperator fitness is strictly less than that of P ,
contradicting the minimality of P .

We now establish two key lemmas that will be used in the
proofs.

Lemma 1. Let A1, A2, ..., Ak be a set of events, where k
is a constant. Further, each Ai occurs with high probability

Let A =

k⋂

i=1

Ai. Then, A occurs with high probability.

Proof. For each i, since Pr[Ai] = 1 − o(1), Pr[Ai] =

o(1). Also, Pr[A] = 1 − Pr[A], and A =

k⋃

i=1

(Ai). By the

union bound, Pr[

k⋃

i=1

(Ai)] ≤
∑

Pr[Ai] = o(1).

Lemma 2. Let a graph G have Ω(n) vertices of bounded
degree. Then G does not sustain cooperation.
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Proof. Let VS be the set of vertices of bounded degree,
that is, which have degree at most some k. We are given
that for some fixed β, |VS | ≥ βn. (Actually, this statement
is true when n > n0, for some fixed n0, but we are inter-
ested in the asymptotic behavior as n → ∞, so we do not
mention this condition.) Set ε∗ = ε. For each vertex in this
set, the probability that it and its neighbors are defectors
is at least εk+1, and expected number of such vertices is
at least βεk+1n, which is linear in n. It is clear that these
vertices are unsuppressed, and hence the total number of
unsuppressed defectors is at least βεk+1n. By the Large Ex-
pectation Lemma (refer A.2), we can say that with constant
non-zero probability, the number of unsuppressed defectors
is greater than o(n).

We now establish the necessary conditions for any graph
to sustain cooperation.

4.2 Small Average Diameter
With a view to keeping our model as general as possible,

we do not require the networks under consideration to be
connected. That is, the network may consist of disjoint sets
of vertices, which are not connected to each other. Each such
set of vertices, within which there is a path between any pair
of vertices is called a component. We now define the diame-
ter and average diameter of a component G′ or a network G.
The distance between two nodes in a component is defined
as the length of the shortest path between them. The di-
ameter (diam(G′)) and average diameter (diamavg(G

′)) of
a component G′ are defined as the maximum and average
distance respectively over all pairs of nodes within the com-
ponent. The diameter (diam(G)) and the average diameter
diamavg(G) is defined as the maximum over all components
of the diameter and average diameter respectively.

We find that in order to sustain cooperation, the average
diameter of the network should be o(n), that is, the average
diameter should grow sub-linearly in the number of nodes.
In other words, the network cannot have a large average
diameter of Ω(n).

Theorem 2. Let G be a graph of large average diame-
ter, that is, diamavg(G) = Ω(n). Then G does not sustain
cooperation.

Proof. From the definition for average diameter, we know
that some component of G, say G′, has average diameter
diamavg(G

′) = Ω(n). It is easy to see that this implies
diam(G′) = Ω(n) and also that G′ has Ω(n) vertices. We
now show that some Ω(n) vertices in G′ have bounded de-
gree. This along with Lemma 2 establishes the theorem.

Suppose not, that is, at most o(n) vertices in G′ have
bounded degree. Call this set VS . All the other vertices in
G′ have degree ω(1). Call this set VB . Recursively apply
the following procedure:

1. Let i = 0; V ′ = VB

2. Find v ∈ V ′ : N(v)
⋂

(S0

⊎
S1....

⊎
Si−1) = φ (Stop if

no such vertex exists).

3. Let N [v] = v ∪N(v)

4. Assign Si = N [v]; i = i+ 1

5. Assign V ′ = V ′ −N [v]

Let the value of i at the end of the iterations be k. Since
each Si has ω(1) vertices, the number k of stars Si formed
is o(n). Notice that each vertex remaining in V ′ at the end
is at distance one to some star, that is, it has a neighbor in
some star Si. For each vertex v remaining in V ′, find some i
such that Si∩N(v) 6= φ, and add v to Si. Now the diameter
of each Si is at most 4.

The component G′ is now decomposed into two parts -
o(n) stars (S0, ..., Sk−1), and some subset V ′S of VS . Let
us look at the shortest path between any two vertices in
G′. This path passes through each Si at most constant
times, and through each of the V ′S at most once. Hence
the diameter is o(n), contradicting the statement above that
diam(G′) = Ω(n).

4.3 Densification
A graph is said to densify if the number of edges in the

graph asymptotically grows faster than n. That is, |E| =
ω(n). Put in another way, these are graphs whose average
degree increases with n. This rules out all sparse graphs
(paths, cycles, trees, planar graphs, etc.), that is, graphs
which do not densify over time.

Theorem 3. Let G be a sparse graph, that is, |E| =
O(n). Then G does not sustain cooperation.

Proof. We will show that some Ω(n) vertices have bounded
degree, which along with Lemma 2, establishes the result.

We are given that for some fixed β, |E| ≤ βn. Since the
total degree is at most 2βn, there can be at most n/2 vertices
of degree greater than 4β, and hence at least n/2 vertices of
degree bounded by 4β, which is a constant.

4.4 Irregularity
The degree d(v) of a vertex v is the size of its neighbor-

hood N(v). The maximum degree ∆ and minimum degree δ
of a graph G are defined as the maximum and minimum re-
spectively, over the degrees of all vertices of G. For a graph
G to sustain cooperation, the ratio of the maximum degree
to the minimum degree should be at least b (∆/δ ≥ b). This
means that the graph should be irregular to some extent,
ruling out all near-regular graphs.

Theorem 4. Let G be a Near-Regular graph, that is, ∆/δ <
b. Then G does not sustain cooperation.

Proof. Let τ := ∆/δ < b. If δ = O(1), that is, a con-
stant, then ∆ is also a constant, implying that all nodes have
bounded degree. By Lemma 2, the graph does not sustain
cooperation.

Now consider δ = ω(1). We will show that with fixed
non-zero probability, there is a linear-sized set of defectors,
in which each defector has a fitness higher than that of any
other cooperator. No defector in this set is suppressed, and
the result follows.

The maximum degree of any vertex is ∆, and hence the
maximum fitness of any cooperator is ∆. This implies that if
a defector has more than ∆

b
cooperator neighbors, then it is

unsuppressed. We call such a node bad, and the other nodes
good. Let us now give an upper bound for the probability
of a node being good. This happens if the node is a coop-
erator (probability 1 − ε∗), or if the node has less than ∆

b
cooperator neighbors. Using the Chernoff bound, this latter

probability is not more than e−
λ2

3
µ =: β, where µ is the
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expected number of cooperator neighbors of a vertex, which
is at least δ(1− ε∗), and λ = (1− τ

(1−ε∗)·b ) is the deviation

from the mean on the lower side (which is strictly positive,
as ε∗ can be set to a value less than 1− τ

b
). Using the Union

bound, the probability of a node being good is not more than
1− ε∗ + β, and hence the probability of a node being bad is
at least ε∗ − β =: γ, which is strictly positive (as δ = ω(1),
β is arbitrarily close to zero).

The expected number of bad nodes is at least γn. The
maximum number of bad nodes is ε∗n, and hence by the
Large Expectation Lemma (refer A.2), the size of this set is
linear with non-zero probability.

5. SUSTAINABILITY OF COOPERATION
ON SPECIFIC GRAPHS

5.1 Erdos-Renyi Random Graphs
We now analyze the G(n, p) model of Erdos-Renyi [7].

In this model, a graph on n nodes is taken, and the edge
between every pair of vertices is included in the graph inde-
pendently with probability p(n) = p. In such a graph, the
degree of each vertex is roughly close to the expected value
(np). Hence this graph behaves like a regular graph, and
one would expect that does not sustain cooperation. This
intuition is supported by the proofs for specific ranges of the

parameter p (p = O
(

1
n

)
and p = ω

(
log(n)
n

)
). We expect the

result to hold similarly for other values of p as well.

Theorem 5. Let G(n, p) be an Erdos-Renyi random graph,
where ∀e ∈ V × V, Pr[e ∈ E] = p, and p = O

(
1
n

)
or

p = ω
(
log(n)
n

)
. G(n, p) does not sustain cooperation.

Proof. When p = O
(

1
n

)
, with high probability the num-

ber of edges is linear in n. That is, |E| = O(n). Hence
G(n, p) does not densify, and by Theorem 3, does not sus-
tain cooperation.

When p = ω
(
log(n)
n

)
, we show that the graph is near-

regular, and hence by Theorem 4, does not sustain cooper-
ation. The expected degree of each vertex is µ := E[d(v)] =
(n − 1)p = ω(log(n)). By the Chernoff bound, the prob-
ability that the degree of a node is not within (1 ± λ)µ is

at most 2e−
λ2

3
µ, and the expected number of such nodes is

n · 2e−λ
2

3
µ, which goes to 0. Hence all nodes have degrees

within (1 ± λ) of the expected value. Setting λ such that
1+λ
1−λ < b makes the graph near-regular, and we have the
result.

5.2 Bipartite Random Graphs
These graphs are bipartite graphs, that is, graphs in which

the vertex set can be partitioned into two sets L and R,
such that there are no edges within each partition. Also the
size of the partition L is given by a function f(n), which
asymptotically grows faster than log(n), but slower than n.
Every edge between one vertex in L and one in R is included
in the graph independently with probability p(n) (which is

at least 4log(n)
f(n)

).

We thus have a family of random graphs parametrized by
the values of f(n) and p(n). We observe that the expected
degrees of vertices in partition L is linear in n, whereas
in partition R is sub-linear in n, because of which, coop-
erators in L can suppress defectors in R, and intuitively

these graphs should sustain cooperation. This family of
graphs is useful in that allows us to construct networks
which sustain cooperation having any given edge density
which is super-linear in n ∗ log(n) and sub-linear in n2,
that is |E| = ω(n ∗ log(n)), o(n2). This is done by setting

f(n) = |E|
n

, and p(n) appropriately.

Theorem 6. Let G be a bipartite graph with V = L
⊎
R

(L and R are the two partitions of the vertices), |L| =
f(n) = ω(log(n)), o(n), and ∀e ∈ L×R,Pr[e ∈ E] = p(n) =

p, where p(n) ≥ 4log(n)
f(n)

. G sustains cooperation.

Proof. We will show that all defectors in R are sup-
pressed. Hence the number of unsuppressed defectors is only
that in L, which is at most f(n) = o(n), and the theorem is
proved.

Let 0 < ε < 1 and let ε∗ take any value ≤ ε; define
ε′ := 1 − ε∗. The number of cooperators in partition L has
an expected value of ε′f(n), and by the Chernoff bound, is
at least 1

2
ε′f(n) with high probability. Call this set VC .

There are a total of ε′n cooperators in the graph, and
hence at least ε′n − f(n) cooperators in R. Since f(n) =
o(n), this number is at least 1

2
ε′n. Since a cooperator in

VC is adjacent to each cooperator in R independently with
probability p, the expected fitness of a cooperator in VC is
at least 1

2
ε′np. By the Chernoff bound, the probability that

the fitness is less than half of this expected value is not more

than e−
1
24
ε′np. The expected number of such vertices is not

more than 1
2
ε′n ∗ e− 1

24
ε′np = 1

2
ε′elog(n)− 1

24
ε′np, which goes

to 0, as p ≥ 48log(n)
n

. Hence the fitness of each cooperator

in VC is at least 1
4
ε′np, with high probability.

Using a similar analysis, we can say that the fitness of each
defector d ∈ R is at most 3

2
bε′pf(n), with high probability.

From the above two arguments, we can say that any de-
fector in R who is adjacent to any one cooperator in VC is
suppressed.

The probability that a defector in R is not connected to

any cooperator in VC is at most (1 − p) 1
2
ε′f(n), which is at

most e−
1
2
ε′f(n)p. The expected number of such defectors is

at most n∗e− 1
2
ε′f(n)p, which goes to 0 since p ≥ 4log(n)

f(n)
.

5.3 Hierarchical Graph
This graph is built by starting with a complete binary

tree, and connecting each node to all of its ancestors (and
descendants). The set of nodes of a given degree correspond
to a level in the hierarchy. Nodes which are higher up in
the hierarchy are high degree nodes, and those lower in the
hierarchy are of low degree. Hence intuitively cooperators
in higher levels can suppress defectors in lower levels, and
cooperation can be sustained.

Theorem 7. Let G be a complete binary tree where each
node is connected to all its descendants. Formally, let Σ∗

be the set of all strings over alphabet Σ = {0, 1}. For each
such s ∈ Σ∗, let |s| denote the length of s, and let prefix be a
relation on Σ∗, such that prefix (u, v) is true, when the string
u is a prefix of the string v. Take V = {s ∈ Σ∗ : |s| ≤ log(n+
1) − 1}, and E = {(u, v) : prefix (u, v) or prefix (v, u)}. G
sustains cooperation.

Proof. Let us call the length of the string that represents
a vertex v, as the level of v; and say that the level of vertex
v is above, or higher than that of vertex u, if |v| < |u| (and
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also that the level of vertex |u| is below or lower than that
of |v|). Let 0 < ε < 1/2 and let ε∗ take any value ≤ ε, and
define ε′ := 1− ε∗.

First we will show that every vertex at level h1 + 1, where
h1 = 1

3
log(n), has an ancestor who is a cooperator (and

hence every vertex below level h1 (that is, |v| > h1) has an
ancestor of level higher than h1 +1 (that is, |v| ≤ h1), who is
a cooperator). Every vertex at level h1 +1 has h1 ancestors,
and the probability that all of them are defectors is roughly
(ε∗)h1 . Hence the expected number of such vertices is 2h1+1 ·
(ε∗)h1 , which goes to 0 as ε∗ ≤ ε < 1/2.

Now, we will show that each vertex of level h1 (and hence

each vertex of level higher than h1 + 1), has at least 1
4
ε′n2/3

cooperator neighbors. For each vertex at level h1, the ex-
pected number of cooperator neighbors is at least 1

2
ε′n2/3,

and by the Chernoff bound, the probability that this num-
ber is less than half the expected value is not more than

e−
1
12
ε′n2/3

. The expected number of such vertices is not

more than n2/3 ∗ e− 1
12
ε′n2/3

, which goes to zero.
It is clear that each defector of level lower than h2 =

2
3
log(n) has fitness fd at most b · |N(d)| ≤ b · (n1/3 + log(n)).

By the above two arguments, each such defector has an an-
cestor of level higher than h1 + 1 who is a cooperator, who
has fitness fc at least 1

4
ε′n2/3. Clearly fc > fd. Hence each

such defector is suppressed. The number of unsuppressed
defectors is at most that in levels above h2 + 1, which is
O(n2/3) = o(n).

5.4 Scale-Free Graphs
In order to study the sustainability of cooperator on scale-

free networks, we consider the random scale-free graph de-
scribed in [5]. In this model, the vertices are labeled from
1 through n, and the edge between two vertices is included
in the graph with some probability, which is defined as a
function of the vertex labels. In our model, Pr[(i, j) ∈ E] =

(ij)−
1
2

+κ, where 0 < κ < 1
2
. The expected degree of node

i is given by E[d(i)] = 2
1+2κ

n( 1
2

+κ)i(−
1
2

+κ). Observe that
the lesser the label i of a node, the higher will be its degree.
Cooperator nodes with lower labels can suppress defector
nodes with higher labels, thereby sustaining cooperation.

Theorem 8. Let graph G have vertex set |V | = {vi : 1 ≤
i ≤ n}, and ∀i, j ∈ V, Pr[(i, j) ∈ E] = (ij)−

1
2

+κ, where
0 < κ < 1

2
. G sustains cooperation.

Proof. Let 0 < ε < 1 and let ε∗ take any value ≤ ε;
define ε′ := 1− ε∗. Consider α, β, such that 0 < α < β < 1.
Let V1 = vi : 1 < i < nα; V2 = vi : nα < i < nβ ; and
V3 = vi : nβ < i < n. By the Chernoff bound, with high
probability there are at least 1

2
ε′nα cooperators in V1. Call

this set VC .
There are at most nα cooperators in V1, and hence at

least n
2

cooperators in V2

⊎
V3. Call this set V ′C . The ex-

pected fitness of any cooperator in VC – call it fc – is at least
∑

j∈V ′
C

ε′(nαj)−
1
2

+κ, which is at least ε′nα(− 1
2

+κ)
n∑

j=n/2

(j)−
1
2

+κ

= ε′nα(− 1
2

+κ)(S(n) − S(n/2)), where S(n) = 2
1+2κ

n
1
2

+κ.

Simplifying, we get fc ≥ 2γnα(− 1
2

+κ)+ 1
2

+κ, where γ is a
constant. By the Chernoff bound, we can show that with
high probability all cooperators in VC have fitness higher

than γnα(− 1
2

+κ)+ 1
2

+κ.

Similarly, it can be shown that with high probability each

defector in V3 has fitness at most γ′nβ(− 1
2

+κ)+ 1
2

+κ. By the
above two arguments, with high probability any defector in
V3 who is adjacent to any cooperator in VC is suppressed (as
α < β).

The probability that a defector in V3 is not connected

to any cooperator in VC is at most

(1−ε′)nα∏

nα

(1− (nj)−
1
2

+κ),

which is at most γe−n
2κ

, where γ is some constant. The

expected number of such defectors is at most n·γe−n2κ

which
goes to zero. Hence with high probability all defectors in V3

are suppressed, and the number of unsuppressed defectors
is at most the size of |V1

⊎
V2|, which is o(n).

6. CONCLUSIONS AND FUTURE WORK
We have studied the Evolutionary Prisoner’s Dilemma on

graphs as a model of cooperation. In particular, we iden-
tify the role played by the network topology in sustaining
cooperation in a multiagent society. We have shown ana-
lytically that for a network to sustain cooperation, it must
exhibit properties such as small average diameter, densifi-
cation, and irregularity. Real-world networks exhibit these
properties, and hence could be suitable for sustaining co-
operation. Also, we have shown that a family of Scale-Free
graphs, a Hierarchy, as well as a family of Bipartite Random
graphs sustain cooperation, whereas Erdos-Renyi random
graphs do not.

Further exploration along these lines can be carried out
to determine which graphs sustain cooperation and which
do not, building towards a complete characterization. In
our interaction model, we have considered one particular
imitation rule (a mutant copies the incumbent strategy if
it has an incumbent neighbor with higher fitness) and one
particular fitness function (sum of the payoffs received in
games played with all neighbors) in the context of the PD
game. A similar analysis can be carried out in the context
of other strategy update rules and fitness functions, as well
as other models of cooperation, such as the Hawk-Dove and
Stag-Hunt games.

In general, we feel the kind of analytical treatment carried
out in this work yields interesting insights into the factors
influencing the sustenance of cooperation, complements the
simulation work in the literature, and warrants further stud-
ies along similar lines.
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APPENDIX
A. COMMONLY USED FORMULAE

A.1 Chernoff Bound
Let (X1, X2, ..., Xn) be a set of independent random vari-

ables, each of which takes value 0 (with probability 1 − pi)

and value 1 (with probability pi). Also, let X =

n∑

i=1

Xi,

with µ = E[X] =

n∑

i=1

pi, and 0 ≤ λ ≤ 1. Then,

Pr[X ≥ (1 + λ)µ] ≤ e−λ
2

3
µ,

Pr[X ≤ (1− λ)µ] ≤ e−λ
2

3
µ

.

A.2 Large Expectation Lemma
Theorem 9. Let X(n) be a non-negative discrete (inte-

ger) random variable with density function p(x) and maxi-
mum value M(n), with E[X(n)] ≥ αM(n), where 0 ≤ α ≤ 1.
Let f(n) = o(M(n)). Then Pr[X ≥ f(n)] ≥ α/2.

Proof.

E[X(n)] =

M(n)∑

x=0

xp(x) =

f(n)−1∑

x=0

xp(x) +

M(n)∑

x=f(n)

xp(x)

M(n)∑

x=f(n)

M(n)p(x) ≥
M(n)∑

x=f(n)

xp(x)

⇒ Pr[X ≥ f(n)] =

M(n)∑

x=f(n)

p(x) ≥ 1

M(n)

M(n)∑

x=f(n)

xp(x)

≥ 1

M(n)


E[X(n)]−

f(n)−1∑

x=0

xp(x)




≥ 1

M(n)


E[X(n)]−

f(n)∑

x=0

f(n)p(x)




≥ E[X(n)]

M(n)
− f(n)

M(n)

f(n)∑

x=0

p(x)

≥ α− f(n)

M(n)

For large enough n,
f(n)

M(n)
≤ α

2

⇒ Pr[X ≥ f(n)] ≥ α

2
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ABSTRACT
Studies in experimental economics have consistently demon-
strated that Nash equilibrium is a poor description of hu-
man players’ behavior in unrepeated normal-form games.
Behavioral game theory offers alternative models that more
accurately describe human behavior in these settings. These
models typically depend upon the values of exogenous pa-
rameters, which are estimated based on experimental data.
We describe methods for deriving and analyzing the poste-
rior distributions over the parameters of such models, and
apply these techniques to study two popular models (Poisson-
CH and QLk), the latter of which we previously showed to
be the best-performing existing model in a comparison of
four widely-studied behavioral models [22]. Drawing on a
large set of publicly available experimental data, we derive
concrete recommendations for the parameters that should
be used with Poisson-CH, contradicting previous recommen-
dations in the literature. We also uncover anomalies in
QLk that lead us to develop a new, simpler, and better-
performing family of models.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics, Experimentation, Performance

Keywords
Behavioral game theory, Bounded rationality, Game theory,
Cognitive models

1. INTRODUCTION
It is well known that in many settings, the standard game-

theoretic assumption that agents will adopt Nash equilib-
rium strategies—where each agent simultaneously responds
optimally to all the others—is a poor predictor of actual
human behavior [e.g., see 9]. The field of behavioral game
theory aims to develop models that more accurately describe
human behavior, as evaluated using experimental data [2].

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

These models typically depend upon parameters such as
agents’ sensitivity to utility differences and the distribution
of cognitive ability in the population. In order for behavioral
models to be effective tools for prediction, it is necessary to
identify “good” estimates for these parameters. Such param-
eter values are also interesting for their own sake, because
they can offer economic insights into human behavior.

In past work, we conducted an exhaustive meta-study of
behavioral game theory models, focusing on the problem of
unrepeated, simultaneous-move games [22]. We evaluated
four prominent models from the behavioral game theory lit-
erature: Quantal Response Equilibrium [QRE; 12], Level-
k [Lk; 13, 6], Poisson–Cognitive Hierarchy [Poisson-CH; 3],
and Quantal Level-k [QLk; 19]. We evaluated these mod-
els according to their out-of-sample prediction performance:
we identified parameters for each model that maximized the
likelihood of a training data set, and then evaluated each
model in terms of the likelihood it assigned to a separate
test set. We took data from six publicly available datasets
describing lab experiments in which subjects played unre-
peated, simultaneous-move games against other human op-
ponents. In the end we observed a result that was statis-
tically significant and quite robust: that the QLk model
substantially outperformed all others on the set of all data,
and also had the best or nearly the best performance on each
individual dataset.

While it effectively identified the best-performing existing
model, our previous work offered very little insight about the
models’ parameter values. For example, because we relied
upon a maximum-likelihood approach, we obtained no in-
formation about the extent to which parameter values could
be changed without a major drop in predictive accuracy, or
even about the extent to which individual parameters influ-
ence a model’s performance. This paper shows how to an-
swer such questions. Specifically, it describes a Bayesian ap-
proach for gaining understanding about a behavioral model’s
entire parameter space. We combine experimental data with
explicitly quantified prior beliefs to derive a posterior dis-
tribution that assigns probability to parameter settings in
proportion to their consistency with the data and the prior
[8]. We apply this approach to analyze the posterior distri-
butions for two models: QLk and Poisson–Cognitive Hierar-
chy. Although Poisson-CH did not demonstrate competitive
performance in [22], we analyze it here because it is very sim-
ple, and because the literature contains a very specific rec-
ommendation for how its parameter should be set: Camerer
et al. [3] recommend setting the model’s single parameter,
which represents agents’ mean number of steps of strategic
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reasoning, to 1.5. Our own analysis sharply contradicts this
recommendation, placing the 99% confidence interval almost
a factor of three lower, on the range [0.51, 0.59]. We devote
most of our attention to QLk, however, since we previously
showed it to achieve strong performance. Our new analysis
points out several anomalies in the parameter distributions
for QLk, suggesting that a simpler model could be prefer-
able. By exhaustively evaluating a family of variations on
QLk, we identify a simpler, more predictive model based in
part on the cognitive hierarchy concept.

We pause to contrast our work with a particularly re-
lated paper from the economics community. Rogers et al.
[17] proposed a unifying framework that generalizes both
Poisson-CH and QRE, and compared the fit of several vari-
ations within this framework. This is similar to our search
of a family of QLk variants, but there are several differ-
ences. First, we compare out-of-sample prediction perfor-
mance, not in-sample fit. Second, Rogers et al. restricted
the distributions of types to be grid, uniform, or Poisson
distributions, whereas we consider unconstrained discrete
distributions. Third, they required different types to have
different precisions, while we do not. Finally, we consider
level-k beliefs as well as cognitive hierarchy beliefs, whereas
they compared only cognitive hierarchy belief models (al-
though their framework in principle allows for both).

There has also been interest by various computer scientists
in behavioral solution concepts as an alternative to standard
economic models. For example, Wunder et al. [23] extended
the cognitive hierarchy model in their analysis of the Lemon-
ade Stand Game, and Gao and Pfeffer [7] used quantal re-
sponse equilibrium to model bounded rationality in a game
where agents respond to payoffs unknown to the modeler.

In the next section, we define the models that we analyze.
We then describe the framework that we used for estimating
and analyzing parameters and their distributions, and the
dataset and specific techniques that we used to derive our
estimates. In Section 4 we present the results of our analyses
for the Poisson-CH and QLk models. In Section 5, we de-
scribe the QLk-like variants that we evaluated, and present
the results of our search.

2. BEHAVIORAL MODELS
We begin by formally defining the behavioral models that

we analyze. We then relate these models to other widely
studied models that we do not consider further, due to their
poor predictive performance in our previous study [22].

2.1 Quantal Level-k
Stahl and Wilson [19] proposed a rich model of strate-

gic reasoning that we refer to as the quantal level-k model
(QLk). The QLk model of human behavior incorporates
two primary components: iterated strategic reasoning, and
cost-proportional errors. Iterated strategic reasoning refers
to a limit on the number of levels of higher-order belief that
agents can maintain.1 Agents make cost-proportional errors
if their rate of making errors increases as errors become less
costly. This can be modeled by assuming that agents best
respond quantally, rather than via strict maximization.

Definition (Quantal best response). Let ui(ai, s−i) be
agent i’s expected utility when playing action ai against

1This limit is believed to be quite low; e.g., Arad and Ru-
binstein [1] found no support for 4th order or higher beliefs.

strategy profile s−i. Then a quantal best response QBRi(s−i;λ)
by agent i to s−i is a mixed strategy si such that

si(ai) =
exp[λ·ui(ai, s−i)]∑
a′i

exp[λ·ui(a′i, s−i)]
, (1)

where λ (the precision) indicates agents’ sensitivity to utility
differences. �

Note that unlike regular best response, which is a set-valued
function, quantal best response always returns a single mixed
strategy. When λ = 0, quantal response mixes uniformly
over all of the agents’ actions; as λ → ∞, quantal best re-
sponse approaches strict best response.

In the QLk model, agents have one of three levels: level-
0, level-1, or level-2. Level-0 agents are nonstrategic, and
choose their actions uniformly at random. Level-1 agents
quantally best respond to level-0 agents; that is, they be-
lieve that the rest of the population consists entirely of
level-0 agents. Similarly, level-2 agents quantally respond
to level-1 agents. Level-1 and level-2 agents can use differ-
ent precisions (λ’s), and furthermore level-2 agents’ beliefs
about level-1 agents’ precision can be arbitrarily different
from level-1 agents’ actual precision.

Definition (QLk model). Let Ai denote player i’s action

set. Then the probability distribution πQLki,k ∈ Π(Ai) over
actions that QLk predicts for a level-k agent playing as agent
i is defined as follows.

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 ;λ1),

πQLki,1(2) = QBRi(π
QLk
−i,0 ;λ1(2)),

πQLki,2 = QBRi(π
QLk
i,1(2);λ2),

where πQLki,1(2) is a mixed-strategy profile representing level-2

agents’ (possibly incorrect) beliefs about how level-1 agents
play. The overall predicted distribution πQLk of actions is
the weighted sum of the distributions for each level: πQLki =∑2
k=0 αkπ

QLk
i,k , where α0 = 1 − α1 − α2. The QLk model

thus has five parameters: {α1, α2}, the proportions of level-
1 and level-2 agents (α1 + α2 ≤ 1; any remaining agents
are level-0); {λ1, λ2}, the precisions of level-1 and level-2
agents’ responses; and λ1(2), level-2 agents’ beliefs about
the precision of level-1 agents. �

2.2 Poisson Cognitive Hierarchy
Like QLk, the cognitive hierarchy model [3] aims to model

agents with heterogeneous bounds on iterated reasoning. It
differs from the QLk model in two key ways. First, agents
use standard best response, rather than quantal response.
Second, agents best respond to the full distribution of lower-
level types, rather than only to the strategy one level be-
low. More formally, every agent has an associated level
m ∈ {0, 1, 2, . . .}. Let f be a probability mass function
describing the distribution of the levels in the population.
Level-0 agents play uniformly at random. Level-m agents
(m ≥ 1) best respond to the strategies that would be played
in a population described by the truncated probability mass
function f(j | j < m).

Camerer et al. [3] advocate a single-parameter restriction
of the cognitive hierarchy model called Poisson-CH, in which
f is a Poisson distribution.
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Definition (Poisson-CH model). Let πPCHi,m ∈ Π(Ai) be
the distribution over actions predicted for an agent i with
levelm by the Poisson-CH model. Let f(m) = Poisson(m; τ).
LetBRi(s−i) denote the set of i’s best responses to the strat-
egy profile s−i. Let πPCHi,0:m =

∑m
`=0 f(`)πPCHi,` /

∑m
`=0 f(`) be

the “truncated” distribution over actions predicted for an
agent conditional on that agent’s having level 0 ≤ ` ≤ m.
Then πPCH is defined as follows:

πPCHi,0 (ai) = |Ai|−1,

πPCHi,m (ai) =

{
|BRi(πPCHi,0:m−1)|−1 if ai ∈ BRi(πPCHi,0:m−1),

0 otherwise.

As with QLk, the overall predicted distribution of actions
πPCH is a weighted sum of the distributions for each level:
πPCHi =

∑∞
`=0 f(`)πPCHi,` . The mean of the Poisson distri-

bution, τ , is this model’s single parameter. �

2.3 Other Behavioral Models
We previously evaluated two other behavioral models in

addition to those listed above [22]. The first, QRE [12],
is a generalization of Nash equilibrium where agents re-
spond quantally instead of best responding. The second, Lk
[13, 6], is similar to QLk, except that agents best respond
to the next level down rather than quantally responding.
We omit these models from our analysis, since they consis-
tently achieved worse predictive performance than QLk in
our previous comparison.

3. BAYESIAN PARAMETER ANALYSIS
In this section, we describe this paper’s first contribution,

our formal framework for parameter estimation, along with
the experimental data and estimation techniques we used.

3.1 Prediction Framework
We begin by noting that any behavioral game theoretic

model is a mapping from a game description G and a vector
of parameters θ to a distribution over action profiles in G.
In other words, a given behavioral model provides us with
a way of computing Pr(a | G, θ). Our goal is to use this
behavioral model in conjunction with our experimental data,
D, to predict future behavior in a given gameG. The dataset
may or may not contain examples of earlier play in G. The
model parameters need to be determined based upon the
data. There are two approaches that we can take.

The frequentist approach, taken by Rogers et al. [17] and
Wright and Leyton-Brown [22], is to compute a point esti-

mate θ̂ of the model’s parameters based on our dataset, and
then use θ̂ to compute the prediction for new games. That
is, we use the model

Pr(a | G,D) = Pr(a | G, θ̂). (2)

The Bayesian approach is to calculate a posterior distri-
bution over parameter values Pr(θ | D), and then use this
distribution to integrate out the parameter. This yields the
alternate model

Pr(a | G,D) =

∫
Pr(a | G, θ) Pr(θ | D)dθ. (3)

Observe that Equation (2) can be seen as a special case of

(3), where the posterior is a point mass at θ̂.

We use the posterior distribution to analyze model param-
eters, which is an application of Bayesian estimation. How-
ever, on our dataset, we have observed that the frequentist
approach achieves better predictive performance than the
Bayesian approach. Thus, we use point estimation to com-
pare performance between model variants. We describe both
approaches.

3.1.1 Point Estimation
We use the maximum likelihood estimate of the parame-

ters as our point estimate:

θ̂ = arg max
θ

Pr(D | θ).

Our dataset consists of a set D of observations di = (Gi, ai),
indicating that an action profile ai was played in game Gi.
The likelihood of a single datapoint is

Pr(di | θ) = Pr(Gi, ai | θ).

By the chain rule (of probabilities), this is equivalent to

Pr(di | θ) = Pr(ai | Gi, θ) Pr(Gi | θ). (4)

We assume that θ and G are independent; i.e., we assume
that Pr(Gi | θ) = Pr(Gi). Intuitively, this means that we
assume there is a single “true” parameter value θ∗ for all
games, rather than a separate “true” θGi for each game Gi.
This allows us to rewrite (4) as

Pr(di | θ) = Pr(ai | Gi, θ) Pr(Gi). (5)

We assume that the datapoints are independent, so the like-
lihood of the dataset is just the product of the likelihoods
of the datapoints:

Pr(D | θ) =
∏

di∈D
Pr(di | θ). (6)

Substituting (5) into (6) gives us

Pr(D | θ) =
∏

di∈D
Pr(ai | Gi, θ) Pr(Gi). (7)

The probabilities Pr(Gi) are constant with respect to θ, and
can therefore be disregarded when maximizing likelihood:

arg max
θ

Pr(D | θ) = arg max
θ

∏

di∈D
Pr(ai | Gi, θ).

3.1.2 Bayesian Estimation
We derive an expression for the posterior distribution Pr(θ | D)

by applying Bayes’ rule, where p0(θ) is the prior:

Pr(θ | D) =
p0(θ) Pr(D | θ)

Pr(D)
. (8)

Substituting in (7), the posterior distribution is

Pr(θ | D) =
p0(θ)

∏
di∈D Pr(ai | Gi, θ) Pr(Gi)

Pr(D)
,

and since both Pr(Gi) and Pr(D) are constant with respect
to θ,

Pr(θ | D) ∝ p0(θ)
∏

di∈D
Pr(ai | Gi, θ). (9)
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Codename Source Games n Units

SW94 Stahl and Wilson [19] 10 400 $0.025
SW95 Stahl and Wilson [20] 12 576 $0.02
CGCB98 Costa-Gomes et al. [5] 18 1566 $0.022
GH01 Goeree and Holt [9] 10 500 $0.01
CVH03 Cooper and Huyck [4] 8 2992 $0.10
RPC09 Rogers et al. [17] 17 1210 $0.01
HSW01 Haruvy et al. [11] 15 869 $0.02
HS07 Haruvy and Stahl [10] 20 2940 $0.02
SH08 Stahl and Haruvy [18] 18 1288 $0.02

Combo9 Above datasets 128 3600 $0.01

Table 1: Names and contents of each dataset. The
column headed n indicates the number of observa-
tions in the dataset. Units are in expected value.

3.2 Data
We analyzed data from nine experimental studies, sum-

marized in Table 1; this expands beyond the six studies we
considered in our previous work [22]. We also constructed
a new dataset (Combo9) containing observations from all
nine source datasets. To ensure that each was equally rep-
resented, despite their differences in size, we included ex-
actly 400 observations from each dataset (sampled uniformly
without replacement).

The precision parameter for quantal response is not scale
invariant. That is, the correct value of λ can differ depend-
ing upon the units in which payoffs are expressed. To ensure
consistent estimation of precision parameters, we renormal-
ized all games so that their payoffs were in expected cents.

3.3 Estimation Methods
For all of the models we considered, we used a flat prior for

the parameters. Although this prior is improper, it results in
a correctly-normalized posterior distribution; the posterior
distribution in this case reduces to the likelihood [8]. We
computed the posterior distribution for the single-parameter
Poisson-CH model by grid sampling. That is, we computed
the likelihood of the Combo9 dataset for each value of τ ∈
{0.01k | k ∈ N, 0 ≤ 0.01k ≤ 10}, and then normalized by
the sum of the likelihoods.

The QLk model has five parameters, and is therefore too
high dimensional to grid sample efficiently; approximately
5 × 1012 samples would have been required for a grid of
the same granularity as we used for Poisson-CH! Instead,
for QLk—and the other high dimensional models introduced
in Section 5—we used a sequential Monte Carlo technique
called annealed importance sampling, or AIS [14]. AIS al-
lows for efficient sampling from high dimensional distribu-
tions, similarly to Markov Chain Monte Carlo (MCMC)
techniques. However, each sample point generated using
AIS is independent, so AIS does not exhibit the random-
walk behavior that can plague MCMC samplers. Briefly,
the annealed importance sampling procedure is as follows.
A sample

#»

θ 0 is drawn from an easy-to-sample-from distri-
bution P0. For each Pj in a sequence of intermediate distri-
butions P1, . . . , Pr−1 that become progressively closer to the
posterior distribution, a sample

#»

θ j is generated by drawing

a sample
#»

θ ′ from a proposal distribution Q(· | #»

θ j−1), and
accepted with probability

Pj(
#»

θ ′)Q(
#»

θ j−1 | #»

θ ′)

Pj(
#»

θ j−1)Q(
#»

θ ′ | #»

θ j−1)
. (10)

If the proposal is accepted,
#»

θ j =
#»

θ ′; otherwise,
#»

θ j =
#»

θ j−1.
We repeat this procedure multiple times, and report the dis-
tribution of the resulting

#»

θ r values, with each
#»

θ r’s contri-
bution weighted according to

P1(
#»

θ 0)P2(
#»

θ 1)

P0(
#»

θ 0)P1(
#»

θ 1)
· · · Pr−1(

#»

θ r−2)Pr(
#»

θ r−1)

Pr−2(
#»

θ r−2)Pr−1(
#»

θ r−1)
. (11)

For the initial sampling distribution P0, we used a prod-
uct distribution over the population proportions parameters
and the precision parameters. For the population propor-
tion parameter components we used a Dirichlet distribution
Dir(1, 1, 1); this is equivalent to uniformly sampling over the
simplex of all possible combinations of population propor-
tions. For the precision parameter components we used the
renormalized non-negative half of a univariate Gaussian dis-
tribution N (0, 22) for each precision parameter; this gives a
distribution that is decreasing in precision (on the assump-
tion that higher precisions are less likely than lower ones),
and with a standard deviation of 2, which was large enough
to give a non-negligible probability to most previous preci-
sion estimates.

The proposal distribution was a product distribution“cen-
tered” at the current value, with proportion parameters #»α ′

sampled from Dir(20 #»αj−1), and each precision parameter λ′

sampled from N (λj−1, 0.2
2) (truncated at 0 and renormal-

ized). The “hyperparameters” for the Dirichlet distribution
(20) and the precision distributions (0.22) were chosen by
trial and error on a small subset of the data to make the
acceptance rate near to the standard heuristic value of 0.5
[16]. We used 200 intermediate distributions of the form

Pj(
#»

θ ) = Pr(
#»

θ | D)γj ,

with the first 40 γj ’s spaced uniformly from 0 to 0.01, and
the remaining 160 γj ’s spaced geometrically from 0.01 to
1, as in the original AIS description [14]. We performed 5
Metropolis updates in each distribution before moving to
the next distribution in the chain.

For the model performance comparisons in Section 5, we
computed the parameter point-estimates using the Nelder-
Mead simplex algorithm [15]. To reduce the danger of get-
ting caught in a local minimum, we repeated the optimiza-
tion from 500 random starting points, and chose the value
which gave the highest log likelihood.

4. RESULTS
In this section, we describe the results of our analysis of

posterior distributions for the two models defined in Sec-
tion 2. We start by comparing the posterior distribution for
the Poisson-CH model’s parameter to a previously published
recommendation. We then turn our attention to the QLk
model, whose posterior distribution exposes several possible
issues with the model.

4.1 Poisson-CH
Camerer et al. [3] recommended setting the τ parameter of

the Poisson-CH model to 1.5. Figure 1 gives the cumulative
posterior distribution over τ for each of our datasets. Over-
all, our analysis strongly contradicts Camerer et al.’s recom-
mendation. On Combo9, the posterior probability of 0.51 ≤
τ ≤ 0.59 is more than 99%. Every other source dataset had
a wider high posterior density region than Combo9 (indi-
cated by the higher slope of Combo9’s cumulative density
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Figure 1: Cumulative posterior distributions for the
τ parameter of the Poisson-CH model. Bold trace
is for the combined dataset; solid trace is for the
outlier Stahl and Wilson [19] source dataset; dotted
traces are all other source datasets.
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Figure 2: Marginal cumulative posterior distribu-
tion for the level proportion parameters (α1, α2; top
panel) and precision parameters (λ1, λ2, λ1(2); bottom
panel) of the QLk model on the combined dataset.

function); this is expected, as smaller datasets lead to less
confident predictions. Nevertheless, all but two of the source
datasets had median values less than 1.0. Only the Stahl and
Wilson [19] dataset (SW94) appears to support Camerer
et al.’s recommendation (median 1.43). However, SW94
appears to be an outlier; its high posterior density region is
wider than the other distributions, and the distribution is
very multimodal, likely due to SW94’s small size.

4.2 QLk
Figure 2 gives the marginal cumulative posterior distribu-

tions for each of the parameters of the QLk model. (That
is, we computed the five-dimensional posterior distribution,
and then extracted from it the five marginal distributions
shown here.) We found these distributions surprising for
several reasons. First, the models predict many more level-
2 agents than level-1 agents. In contrast, it is typically
assumed that higher level agents are scarcer, as they per-
form more complex strategic reasoning. Even more surpris-
ingly, the model predicts that level-1 agents should have
much higher precisions than level-2 agents. This is odd if
the level-2 agents are to be understood as “more rational”;
indeed, precision is sometimes interpreted as a measure of
rationality [e.g., see 21, 7]. Third, the distribution of λ1(2),
the precision that level-2 agents ascribe to level-1 agents, is

very concentrated around very small values ([0.023, 0.034]).
This differs by two orders of magnitude from the“true”value
of λ1, which is quite concentrated around its median value
of 3.1. Finally, the median value of λ1 (3.1) is more than 17
times larger than that of λ2 (0.18). It seems unlikely that
level-1 agents would be an order of magnitude more sensitive
to utility differences than level-2 agents.

One interpretation is that the QLk model is essentially ac-
curate, and these parameter values simply reflect a surpris-
ing reality. For example, the low precision of level-2 agents
and the even lower precision that they (incorrectly) ascribe
to the level-1 agents may indicate that two-level strategic
reasoning causes a high cognitive load, which makes agents
more likely to make mistakes, both in their own actions and
in their predictions. The main appeal of this explanation is
that it allows us to accept the QLk model’s strong perfor-
mance at face value.

An alternate interpretation is that QLk fails to capture
some crucial aspect of experimental subjects’ strategic rea-
soning. For example, if the higher-level agents reasoned
about all lower levels rather than only one level below them-
selves, then the low value of λ1(2) could predict well because
it“simulates”a model where level-2 agents respond to a mix-
ture of level-0 and level-1 agents. We investigate this second
possibility in the next section.

5. MODEL VARIATIONS
In this section, we investigate the properties of the QLk

model by evaluating the predictive power of a family of sys-
tematic variations of the model. In the end, we identify a
simpler model that dominates QLk on our data, and which
also yields much more reasonable marginal distributions over
parameter values.

Specifically, we constructed a family of models by extend-
ing or restricting the QLk model along four different axes.
QLk assumes a maximum level of 2; we varied this by con-
sidering maximum levels of 1 and 3 as well. QLk has in-
homogeneous precisions in that it allows each level to have
a different precision; we varied this by also considering ho-
mogeneous precision models. QLk allows general precision
beliefs that are not restricted to be accurate; we also con-
structed models that make the simplifying assumption of
accurate precision beliefs about lower levels’ precisions. Fi-
nally, in addition to Lk beliefs, where all other agents are
assumed by a level-k agent to be level-(k − 1), we also con-
structed models with CH beliefs, where agents believe that
the population consists of the true, truncated distribution
over the lower levels. We evaluated each combination of
axis values; the 17 resulting models2 are listed in the first
part of Table 2. In addition to the 17 exhaustive axis combi-
nations for models with maximum levels in {1, 2, 3}, we also
evaluated 12 additional axis combinations that have higher
maximum levels and 8 parameters or fewer: ai-QCH4 and ai-

QLk4; ah-QCH and ah-QLk variations with maximum levels in
{4, 5, 6, 7}; and ah-QCH and ah-QLk variations that assume
a Poisson distribution over the levels rather than using an
explicit tabular distribution. These additional models are
listed in the bottom part of Table 2.

5.1 Simplicity Versus Predictive Performance
2When the maximum level is 1, all combinations of the other
axes yield identical predictions. Therefore there are only 17
models instead of 3 · 23 = 24.
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Figure 3: Model simplicity (number of parameters) versus prediction performance. QLk1, which has far lower
performance than the other models, is omitted for scaling reasons.

We evaluated the predictive performance of each model on
the Combo9 dataset using 10-fold cross-validation repeated
10 times, as in [22]. The results are given in the last column
of Table 2, and plotted in Figure 3. Performance is mea-
sured by how much more likely the test data is according to
the given model (with parameters chosen based on a train-
ing dataset, separate from the test set) than it is according
to assuming that actions are chosen uniformly at random
(u.a.r.). E.g., the test data is 1018.37 times more likely ac-
cording to the QLk1 model’s prediction than according to a
uniform random prediction.

All else being equal, a model with higher performance is
more desirable, as is a model with fewer parameters. We can
plot an “efficient frontier” of models with the (statistically
significant) highest performance for a given number of pa-
rameters or fewer; see Figure 3. The original QLk (gi-QLk2)
is not efficient in this sense; it is dominated by ah-QCH3,
which has significantly better predictive performance even
though it has fewer parameters (due to restricting agents to
homogeneous precisions and accurate beliefs). Our analysis
thus argues that the flexibility added by inhomogeneous pre-
cisions and general precision beliefs is less important than
the number of levels and the choice of population belief.

Conversely, the poor performance of the Poisson variants
relative to ah-QCH3 suggests that flexibility in describing the
level distribution is more important than the total number
of levels modeled. Figure 4 shows the marginal posterior
level weight distributions for all four models on the efficient
frontier. There is broad agreement among all models on the
proportion of level-0 agents. However, in order to get the
“right” number of level-0 agents, ah-QCHp (which models the
level distribution as a Poisson) must place a great deal of
weight on level-1 agents as well; in contrast, the tabular-
distribution models all select bimodal distributions that as-

sign relatively little weight to level-1 agents, and more to
higher-level agents (level-2 and higher).

In fact, there is a pattern in the models along the efficient
frontier: this set consists exclusively of models with accurate
precision beliefs, homogeneous precisions, and cognitive hi-
erarchy beliefs.3 This suggests that the most parsimonious
way to model human behavior in normal-form games is to
use a model of this form, with the tradeoff between sim-
plicity (i.e., number of parameters) and predictive power
determined solely by the number of levels modeled.

To test the extent of the simplicity/power tradeoff in this
family of models, we also evaluated ah-QCH4, ah-QCH5, ah-
QCH6, and ah-QCH7, and for comparison purposes also evalu-
ated every other model in our design space having 8 or fewer
parameters. For the Combo9 dataset, adding additional lev-
els yielded small increases in predictive power until level 5,
after which it yielded no further, statistically significant im-
provements. Thus, Figure 3 includes ah-QCH4 and ah-QCH5

as part of the efficient frontier.
Overall, we recommend that practitioners seeking a model

for predicting human behavior in simultaneous-move games
use a member of the ah-QCH family. How to model the distri-
bution of levels is less clear. Of the models we considered, we
recommend ah-QCH3. While it is possible to achieve gains
in performance on our (large) dataset by modeling addi-
tional levels, these gains are small. Specifically, the gain in

3One might be interested in a weaker definition of the effi-
cient frontier, saying that a model is efficient if it achieves
significantly better performance than all efficient models
with fewer parameters, rather than all models with fewer
parameters. In this case the efficient frontier consists of all
models previously identified as efficient plus ah-QCH7 and
gi-QLk3. Our original definition rejected gi-QLk3 because
it did not predict significantly better than gh-QLk3, which
in turn did not predict significantly better than ah-QCH5.
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Name
Max
Level

Pop'n
Beliefs Precisions

Prec.
Beliefs #

Log-likelihood
vs. u.a.r.

QLk1 1 n/a n/a n/a 2 18.37± 0.12
gi-QLk2 2 Lk inhomo. general 5 29.18± 0.03
ai-QLk2 2 Lk inhomo. accurate 4 26.75± 0.19
gh-QLk2 2 Lk homo. general 4 28.64± 0.04
ah-QLk2 2 Lk homo. accurate 3 26.18± 0.03
gi-QCH2 2 CH inhomo. general 5 28.17± 0.16
ai-QCH2 2 CH inhomo. accurate 4 27.39± 0.18
gh-QCH2 2 CH homo. general 4 27.90± 0.03
ah-QCH2 2 CH homo. accurate 3 27.44± 0.02
gi-QLk3 3 Lk inhomo. general 9 30.57± 0.17
ai-QLk3 3 Lk inhomo. accurate 6 29.54± 0.27
gh-QLk3 3 Lk homo. general 7 30.35± 0.20
ah-QLk3 3 Lk homo. accurate 4 27.27± 0.03
gi-QCH3 3 CH inhomo. general 10 30.35± 0.24
ai-QCH3 3 CH inhomo. accurate 6 29.96± 0.11
gh-QCH3 3 CH homo. general 8 30.29± 0.12
ah-QCH3 3 CH homo. accurate 4 29.47± 0.02

ai-QLk4 4 Lk inhomo. accurate 8 30.05± 0.26
ah-QLk4 4 Lk homo. accurate 5 27.30± 0.03
ah-QLk5 5 Lk homo. accurate 6 27.11± 0.11
ah-QLk6 6 Lk homo. accurate 7 27.02± 0.10
ah-QLk7 7 Lk homo. accurate 8 26.99± 0.12
ah-QLkp * Lk homo. accurate 2 27.34± 0.02
ai-QCH4 4 CH inhomo. accurate 8 29.86± 0.20
ah-QCH4 4 CH homo. accurate 5 29.82± 0.05
ah-QCH5 5 CH homo. accurate 6 30.20± 0.04
ah-QCH6 6 CH homo. accurate 7 30.25± 0.03
ah-QCH7 7 CH homo. accurate 8 30.33± 0.02
ah-QCHp * CH homo. accurate 2 27.70± 0.02

Table 2: Model variations, evaluated on the Combo9
dataset. The column headed # indicates the number
of parameters in the model; the models with max
level of ∗ used a Poisson distribution.

prediction from adding two parameters to ah-QCHp to yield
ah-QCH3 was more than twice as great as was the gain in
prediction from adding two parameters to ah-QCH3 to yield
ah-QCH5. Since more complex models are more prone to
over-fitting—particularly with smaller amounts of data—we
believe that ah-QCH3 offers the best tradeoff between robust-
ness and experimental performance. A practitioner working
with a large dataset and interested in maximal prediction
quality might also investigate ah-QCH5. Another possibil-
ity, which we have begun to explore in our current work,
is to use a parametric distribution of levels whose shape is
a better match to the experimental data than the Poisson
distribution.

5.2 Parameter Analysis for ah-QCH3

We are now in a position to answer some of the questions
from Section 4.2 by examining marginal posterior distribu-
tions from a member of our new model family, plotted in
Figure 5.

We first note that, in contrast to QLk’s multimodal, jagged
parameter CDFs, the parameter CDFs for ah-QCH3 are smooth
and (nearly) unimodal. This suggests that ah-QCH3 is a
much more robust model; its prediction quality is less likely
to change drastically as a result of small changes in param-
eter values.

Second, the posterior distribution for the precision param-
eter λ is concentrated around 0.20, which is very close to the
QLk model’s estimate for λ2. This suggests that QLk’s much
lower estimate for λ1(2) may have been the closest that the
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Figure 4: Marginal cumulative posterior distribu-
tions of levels of reasoning for efficient frontier mod-
els.

model could get to having the level-2 agents best respond to
a mixture of level-0 and level-1 agents (as in cognitive hier-
archy). It is unclear whether the order-of-magnitude differ-
ences and counterintuitive ordering of λ1 and λ2 are similar
effects where QLk’s parameters are set in a way that “sim-
ulates” the assumptions of a more accurate model. Inter-
estingly, like QLk, the ah-QCH3 model predicts more level-2
agents than level-1. In fact, the ah-QCH3 model predicts even
fewer level-1 agents than QLk. This provides some support
for QLk’s seemingly counterintuitive prediction that level-1
agents are less common than more sophisticated types.

6. CONCLUSIONS
We showed how Bayesian parameter analysis can be used

to gain understanding about the sensitivity of behavioral
game theoretic models to their parameters. We derived
concrete recommendations for the use of an existing model,
Poisson-CH, which differed substantially from advice in the

927



 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5C
um

ul
at

iv
e 

pr
ob

ab
ilit

y Level proportions

α1
α2
α3

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4C
um

ul
at

iv
e 

pr
ob

ab
ilit

y Precisions

λ

Figure 5: Marginal cumulative posterior distribu-
tions for the level proportion parameters (α1, α2, α3;
top panel) and precision parameter (λ; bottom
panel) of the ah-QCH3 model on the combined dataset.

literature. We also uncovered anomalies in the best-performing
existing model (QLk) that led us to a new, simpler, better-
performing model (ah-QCH3). More broadly, the family of
accurate, homogeneous-precision QCH models allows the
modeler to trade off complexity against performance along
an efficient frontier of models simply by adjusting the model
of the distribution of levels.

In our ongoing work, we are now investigating parametric
distributions of levels that match the observed distribution
of levels. This would permit a model that uses higher levels,
thus yielding higher performance, without requiring more
parameters. Other promising directions include exploring
applications of ah-QCH models for modeling behavior in prac-
tical settings such as markets or bargaining, and applying
Bayesian analysis to additional behavioral models.
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ABSTRACT
Multiagent simulation extends the reach of game-theoretic
analysis to scenarios where payoff functions can be computed
from implemented agent strategies. However this approach
is limited by the exponential growth in game size relative
to the number of agents. Player reductions allow us to con-
struct games with a small number of players that approxi-
mate very large symmetric games. We introduce deviation-
preserving reduction, which generalizes and improves on ex-
isting methods by combining sensitivity to unilateral devi-
ation with granular subsampling of the profile space. We
evaluate our method on several classes of random games
and show that deviation-preserving reduction performs bet-
ter than prior methods at approximating full-game equilib-
ria.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Algorithms, Economics

Keywords
empirical game theory, simulation-based game theory, game
reduction

1. INTRODUCTION
Game-theoretic analysis plays an increasingly prominent

role in research on understanding and designing multiagent
systems. Agent-based simulation offers the potential to in-
crease the scope of applicability for game theory, beyond
those game scenarios that can be described straightforwardly
and solved analytically. In the simulation-based approach,
rather than directly express all payoffs for a game, the an-
alyst describes an environment procedurally and then com-
putes payoffs by simulation of agent interactions in that en-
vironment.

Simulation enables analysis of many rich strategic envi-
ronments, but determining payoffs for a large game in this

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

way may be prohibitively expensive. Straightforward es-
timation of a payoff function requires simulation of every
possible combination, or profile, of agent strategies. If the
environment is stochastic, then many simulation runs may
be necessary to obtain a reasonable estimate of even a single
profile. For multiagent interactions that extend over time, or
are otherwise complex, the computational cost of simulation
may severely limit the number of profiles—and therefore the
size of the game—that can be considered in such an analysis.

We focus for most of this paper on symmetric games, in
which all agents have the same set of available strategies and
payoffs depend only on the number of agents playing each
strategy, not on the specific identities of those agents. For-
mally, a symmetric game is a tuple Γ = (N,S, u), where N
is the number of agents, S is the set of strategies available
to all agents, and the utility function u(s,~s) gives the payoff
to any agent playing strategy s in profile ~s. To conduct a
complete analysis of Γ, we require that u specifies payoffs
for all possible profiles. A symmetric game with N agents
and |S| strategies contains

`
N+|S|−1

N

´
profiles.1 For a sense

of how great a burden this imposes, consider that a sym-
metric game with 15 agents and 15 strategies contains over
77 million profiles, so if estimating a profile’s payoff through
simulation required one second, constructing the full game
would take more than two years.

We seek to combat this exponential growth using a tech-
nique broadly known as player reduction. Player reduc-
tions approximate games with many agents by construct-
ing smaller games that aggregate over those agents in some
way. Equilibria of the reduced game can then be viewed as
approximate equilibria of the full game.

As an example, consider trading in continuous double auc-
tions (CDAs)—a problem of agent strategy that has been
extensively investigated through simulation. We review the
coverage of several studies that employed simulation to es-
timate payoff functions for purposes of game-theoretic or
evolutionary analysis. In the first empirical game analysis
of CDA strategy, Walsh et al. [15] analyzed a 20-player
game with three strategies. The 231 distinct profiles were
within their simulation budget, whereas adding just one

1To see this, note that we can describe a profile in terms
how many agents play each strategy. Suppose an ordering
of strategies, and consider a representation that indicates
players by one symbol (.) and partitions by another (|). For
instance, with S = {s1, s2, s3, s4} and N = 6, the profile
...|..||. has three agents playing s1, two s2, and one s4. The
representation contains N + |S| − 1 total symbols, and the
choice of which N of them to make players (or equivalently,
choice of partitions) uniquely defines a profile.
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more strategy would have entailed estimating 1540 more.
Vytelingum et al. [14] likewise considered a 20-player game,
though one that imposed symmetry only within the sub-
groups of 10 buyers and 10 sellers. Their study also com-
pared three strategies, but for tractability and to facilitate
visualization of their evolutionary traces, they limited anal-
ysis to two strategies at a time, which requires 121 profiles
for each strategy pair and scenario combination.2 Phelps et
al. [8] covered up to four strategies, in a 12-agent simulation
employing another form of double auction mechanism (455
profiles). The study of Tesauro and Bredin [11] considered
as many as 44 trading agents with three different strategies,
but their analysis evaluated only profiles where agents were
evenly divided across two strategies. This selection is sim-
ilar to a two-player reduction according to the hierarchical
method, as discussed below. Tesauro and Das [12] covered
five strategies for a 20-agent scenario, this time with a mix
of evenly-divided profiles and profiles where only one agent
deviates from a homogeneous profile. As we see below, this
is suggestive of the deviation-preserving reduction method
we introduce here. In by far the most comprehensive CDA
simulation study to date, Schvartzman and Wellman [10]
systematically evaluated 14 strategies in a 16-agent scenario.
This was rendered feasible only by virtue of their reduction
to a four-player game, comprising 2380 profiles as opposed
to 68 million in the unreduced game. Overall, we see that
many-agent simulation studies either adopt player reduc-
tions, or make do with very narrow strategy exploration.

In this paper, we propose and study deviation-preserving
reduction, which renders reduced-game equilibria more in-
formative with respect to the full game. We start in Sec-
tion 2 by reviewing existing methods for player reduction.
Section 3 introduces deviation-preserving reduction, and ex-
plains how our new method is designed to combine the best
aspects of its predecessors. Section 4 evaluates the reduc-
tions, and Section 5 shows how both our reduction and pre-
vious ones can be extended to games that are symmetric
only with respect to a partition of players into roles.

2. BACKGROUND: PLAYER REDUCTION
Two methods for player reduction have been proposed in

the literature: hierarchical reduction [16], and twins reduc-
tion [4]. Both methods are defined with respect to symmet-
ric games. They define a subset of the profiles in the given
(full) game, and map the payoffs of these profiles to a payoff
function defined over a game with fewer players (the reduced
game). Analyses of the reduced game are then interpreted
as approximately applying to the full game.

2.1 Hierarchical Reduction
Of the two existing methods, hierarchical reduction is the

more extensively used [1, 5, 10]. Hierarchical reduction
works by grouping agents into coalitions that are constrained
to act together. One player in the reduced game selects an
action to be played by all agents in a coalition, and receives
the payoff to any agent playing that strategy. To capture
this formally, we introduce the following notation: a strat-
egy profile ~s =

˙
c1×s1, . . . , c|S|×s|S|

¸
of game Γ consists of

strategies si ∈ S and integer counts ci ≥ 0 for each strategy

such that
P|S|
i=1 ci = N . When ci = 0, we may omit it from

2These same authors in earlier work [13] evaluated a 20-
player three-strategy CDA game.

the expression.
The hierarchical reduction of Γ to n < N players is defined

as HRn(Γ) =
`
n, S, uHR

´
, where

uHR `s, ˙c1×s1, . . . , c|S|×s|S|¸´ =

u

„
s,

fi
N

n
c1×s1, . . . , N

n
c|S|×s|S|

fl«
.

This definition follows previous applications of hierarchical
reduction in assuming that N is an integer multiple of n. In
our evaluation we employ a generalized version (described
in Section 4.1) that allows reduction to numbers of players
that do not evenly divide the number of agents in the full
game.

For illustration, consider a full game with N = 25 agents,
and a hierarchical reduction to n = 5 players. The action
of each reduced-game player is played by five agents in the
full game, so the reduced-game profile 〈2×s1, 1×s2, 2×s3〉
corresponds to the full-game profile 〈10×s1, 5×s2, 10×s3〉.

The main idea behind hierarchical reduction is that though
the payoff to a particular strategy generally varies with the
number of agents that play each strategy, it often can be ex-
pected to do so smoothly. Kearns and Mansour [6] formalize
a related condition called bounded influence to define a class
of compactly representable and solvable games. Whereas it
is easy to construct games that violate this assumption, in
many natural symmetric games, the payoffs are smooth in
this way.

However, HRn(Γ) lacks crucial information relevant to
Nash equilibria of Γ. In a Nash equilibrium of Γ, no individ-
ual agent can gain by deviating to another strategy, but the
hierarchical reduction contains no information about unilat-
eral deviations. In an equilibrium of HRn(Γ), no N

n
-agent

coalition can gain by all deviating to the same strategy, but
there are many cases in which these conditions differ sub-
stantially.

Consider a network formation game [3] in which agents
create links to one another. Agents gain from being in a
connected network, but incur a cost for each link they cre-
ate. In such a game we can envision a full-game equilibrium
that is not an equilibrium of the reduced game, as well as a
reduced-game equilibrium that is not an equilibrium of the
full game. If network effects are large, but cost of creat-
ing links is high, there could be an equilibrium of the full
game where agents create no links. However, if several play-
ers are allowed to deviate together they may create a suf-
ficiently dense network to overcome the link-creation cost:
this would be a beneficial deviation in the reduced game,
so the full-game equilibrium would not be found. Under
different parameters, there may be a spurious equilibrium
in the reduced game where all players contribute links to
the network, and no player can gain by deviating because if
all agents represented by one reduced-game player changed
strategies simultaneously, the network would collapse. On
the other hand, a unilaterally deviating agent in the full
game might have a much smaller impact and still receive
the network benefits while avoiding the link creation cost.

2.2 Twins Reduction
The natural solution to this problem is to incorporate in-

formation about the value of unilateral agent deviations into
the payoffs of the reduced game. Ficici et al. [4] propose a
method called twins reduction that takes a first step in this
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direction. The twins reduction of a symmetric game3 is a 2-
player game, TR(Γ) =

`
2, S, uTR

´
, where each player views

itself as controlling one agent in the full game, and the op-
ponent as controlling all remaining agents:

uTR `s, ˙1×s, 1×s′¸´ = u
`
s,
˙
1×s, (N − 1)×s′

¸´
.

Note that the payoffs for the two strategies in a twins reduc-
tion profile 〈1×s, 1×s′〉, s 6= s′, correspond to two different
profiles in the full game:

• 〈1×s, (N − 1)×s′〉 and

• 〈(N − 1)×s, 1×s′〉,

but that the reduced game is still symmetric.
Ficici et al. [4] advocate constructing twins reduction

games not by explicitly simulating these full-game profiles,
but by sampling random profiles from the full game and de-
termining the payoffs by linear regression on the number of
agents playing each strategy. We refer to this approach as
TR-R, where the second “R” stands for “regression”. We
consider the direct simulation approach a more appropriate
benchmark, but evaluate both methods in our experiments.

The advantage of the twins reduction is that it captures
information about individual agents’ incentives to deviate.
Its major disadvantage is that it is limited to two players,
and can therefore give only an extremely coarse-grained view
of the game. In general, a reduced-game representation will
have difficulty capturing equilibria of the full game that have
support size (number of distinct strategies played with posi-
tive probability) larger than n, the reduced number of play-
ers, as no profiles of the reduced game capture the inter-
action of all strategies in the support set. Since the twins
reduction (n = 2) never contains profiles where more than
two strategies are played, it is particularly restrained by this
limitation.

3. DEVIATION-PRESERVING REDUCTION
We propose a new game reduction method that combines

the sensitivity to unilateral deviation afforded by twins re-
duction with the profile-space granularity of hierarchical re-
duction. We call this method deviation-preserving reduction.
In a deviation-preserving reduction game, each player views
itself as controlling a single agent in the full game, but views
the profile of opponent strategies in the reduced game as an
aggregation of all other agents in the full game. Formally,
DPRn(Γ) =

`
n, S, uDPR

´
, where

uDPR (s, 〈c1×s1, . . . , cs×s, . . .〉) =

u

„
s,

fi
N − 1

n− 1
c1×s1, . . . ,

»
N − 1

n− 1
(cs − 1) + 1

–
×s, . . .

fl«
.

In a hierarchical reduction, the proportion of agents play-
ing each strategy is the same in the full and reduced games.
Under deviation-preserving reduction, analogously, the pro-
portion of opponents playing a strategy in the full and re-
duced games is the same from each player’s perspective. And
as in a twins reduction, each player in a deviation-preserving

3The original definition [4] applies to a somewhat broader
class: role-symmetric games with identical strategies. In
Section 5 we describe how to extend player reductions, in-
cluding twins reduction, to the entire class of role-symmetric
games.

Figure 1: Number of full-game profiles required to construct
reduced games (log scale), for |S| = 5.

reduction game is sensitive to the payoffs of exactly one
agent in the full game. As a consequence of this sensitiv-
ity to single agents, the deviation-preserving reduction game
can identify exact symmetric pure strategy equilibria of the
full game if they exist.

Proposition 1. A profile 〈n×s〉 is a Nash equilibrium of
DPRn(Γ) if and only if the profile 〈N×s〉 is a Nash equilib-
rium of Γ.

Proof. The profile 〈n×s〉 is a NE when uDPR (〈n×s〉) ≥
uDPR (s, 〈(n− 1)×s, 1×s′〉) for all s′ ∈ S. This is the case
exactly when u (s, 〈N×s〉) ≥ u (s, 〈(N − 1)×s, 1×s′〉) for all
s′ ∈ S.

This property also holds for twins reduction games, be-
cause the deviation preserving reduction is a strict general-
ization of the directed-sampling twins reduction: TR(Γ) =
DPR2(Γ).

To construct each profile’s payoffs in a deviation-preserving
reduction game, several profiles from the full game must be
simulated. Returning to the example of a 25-agent full game
and a 5-player reduced game, the profile 〈2×s1, 1×s2, 2×s3〉
in the deviation-preserving reduction game employs payoff
values from several profiles in the full game:

uDPR (s1, 〈2×s1, 1×s2, 2×s3〉) = u(s1, 〈7×s1, 6×s2, 12×s3〉)
uDPR (s2, 〈2×s1, 1×s2, 2×s3〉) = u(s2, 〈12×s1, 1×s2, 12×s3〉)
uDPR (s3, 〈2×s1, 1×s2, 2×s3〉) = u(s3, 〈12×s1, 6×s2, 7×s3〉)

Note that we again assume divisibility: in this case, n − 1
has to divide N − 1 for the aggregation of opponents to be
precise. As with hierarchical reduction, we can extend the
definition to reduced games with any number of players, as
described in Section 4.1. We quantify the number of profile
simulations required for deviation-preserving reduction in
the following proposition.

Proposition 2. Constructing DPRn(Γ = (N,S, u)) re-

quires simulating |S|
`
n+|S|−2
n−1

´
full-game profiles.
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Proof. In each profile of the deviation-preserving reduc-
tion game, n − 1 of the players each control N−1

n−1
full-game

agents. The set of all such profiles can be viewed as an
(n − 1)-player symmetric game, so we know that there are`
n+|S|−2
n−1

´
of them. Each of these profiles must be paired with

each s ∈ S, so |S|
`
n+|S|−2
n−1

´
profiles must be simulated.

Proposition 2 shows that constructing DPRn(Γ) requires
simulating strictly more profiles than HRn(Γ), but by a fac-
tor of at most |S|. As we show in Section 4, the extra pro-
files comprising this constant factor can contribute to signif-
icantly improved accuracy. Even so, we would like to mini-
mize the number of simulations required when possible, and
therefore also consider a variant of the deviation-preserving
reduction, which we call DPR′.

The idea behind DPR′ is that many of the profiles sim-
ulated to construct a deviation-preserving reduction game
are quite similar. For example, in the 5-player deviation-
preserving reduction of the 25-agent game, the payoff to
strategy s1 in the full-game profile ~sa = 〈7×s1, 6×s2, 12×s3〉
is employed in the reduced-game profile 〈2×s1, 1×s2, 2×s3〉.
The payoff for s2 in reduced-game profile 〈1×s1, 2×s2, 2×s3〉
is derived from ~sb = 〈6×s1, 7×s2, 12×s3〉, which differs
from ~sa only in that a single agent has switched from s1 to s2,
both of which are played by many other agents. If we believe
our assumption—inherited from hierarchical reduction—that
payoffs vary smoothly in the number of agents playing each
strategy, we should expect the payoffs to strategy s1 in pro-
files ~sa and ~sb to be very similar (likewise for s2), suggesting
that we could get away with simulating only one of the two.

Formally, DPR′(Γ) = (n, S, uDPR′), where uDPR′ is de-
fined as follows. Let ~s = 〈cmin×smin, . . . , cs×s, . . .〉, where
smin is the first strategy played by at least one agent. If

cs = 1 or cs = cmin, then uDPR′(s,~s) = uDPR(s,~s). Other-

wise, uDPR′(s,~s) is given by

u(s,

fi»
N − 1

n− 1
cmin + 1

–
×smin, . . . ,

N − 1

n− 1
(cs − 1)×s, . . .

fl
).

The result is that when DPR would prescribe simulation
of several profiles that differ only by deviation of a single
agent (and no strategy is played by only one agent), DPR′

requires that only one be simulated. From among these
profiles, DPR′ selects the one in which the lowest-numbered
strategy by which they differ is played most. In the example
above, payoffs

• uDPR′(s1, 〈2×s1, 1×s2, 2×s3〉) and

• uDPR′(s2, 〈1×s1, 2×s2, 2×s3〉)

both come from full-game profile 〈7×s1, 6×s2, 12×s3〉. The
savings in terms of profiles sampled are illustrated in Fig-
ure 1. In that graph, the curve for DPR′ follows the formula
|Γ| = |S|

`
n+|S|−2
n−1

´
− (n−2)

`
n+|S|−3
n−1

´
. DPR′ always requires

more full-game profiles than HR, and fewer than DPR, ex-
cept when n = 2, where both are equivalent to TR.

4. EMPIRICAL EVALUATION
The goal of a player reduction is to replace a full game that

is too large to effectively analyze with a more manageable
reduced game. To compare reduction methods, we therefore
need to evaluate how well analysis performed on a reduced

game translates back to the full game. This presents a prob-
lem for evaluation, in that full games of interest are too big
to effectively analyze. For example, in the simulated credit
network games discussed below, we construct 12-agent, 6-
strategy full games; we would like to analyze reductions of
60-agent games, but even with just six strategies, the full
game would consist of 8,259,888 profiles. We therefore com-
promise by reducing several types of medium-sized games to
very small ones. If one reduction consistently performs bet-
ter in such cases, we take it as an indication that the same
will hold for reductions of very large games.

4.1 Regret of Reduced Game Equilibria
Numerous methods for analyzing games exist, but the

most important is finding Nash equilibria. Because player
reductions work with symmetric games, we evaluate them
primarily by how well symmetric mixed strategy Nash equi-
libria computed in the reduced game approximate symmet-
ric mixed strategy equilibria of the full game. Our primary
measure for the quality of reduced-game equilibria is regret.
The regret ε(~σ) of a symmetric mixed strategy profile ~σ, in
which all players play mixed strategy σ is the maximum gain
any player could achieve by deviating to a pure strategy:

ε(~σ) = max
s∈S

u(s, ~σ−i),

where u(s, ~σ−i) is the expected payoff to a player playing s
when all others play σ. A Nash equilibrium has zero regret,
but a symmetric mixed profile ~σ that is an equilibrium of
the reduced game will generally have have positive regret
with respect to the full game. Such a ~σ can be viewed as
an approximate, or ε(~σ)-Nash equilibrium of the full game,
where the lower the regret, the better the approximation.

However, we cannot simply compare the regret of equilib-
ria from k-player reduced games under each method. The
first problem is that the number of players in a twins reduc-
tion game is not scalable. Moreover, since the goal of player
reduction is to simulate fewer profiles, the relevant compar-
ison is not the number of players in the reduced game, but
the number of profiles required to construct it, and DPRk al-
ways requires sampling strictly more profiles than HRk. For
example, in the 12-agent 6-strategy game instances below,
|DPR3| = 126 = |HR4|. Because the directed-simulation

twins reduction always requires |S|
2(|S|−1)

2
profiles, we com-

pare to TR by addressing the question of whether lower
regret can be achieved by a method that samples more pro-
files. Twins reduction with regression can use any set of
profiles; in our experiments we varied the size of the set over
a range similar to that required to construct the various re-
duced games.

Hierarchical reduction as defined by Wellman et al. [16]
requires that the number of reduced-game players n divide
the number of full-game agents N . By analogy, in our def-
inition of deviation preserving reduction above, we assume
that n − 1 divides N − 1. In our experiments, we perform
reductions of both varieties where these conditions do not
hold. We extend the definition of HRn to allow indivisibility
as follows.

uHR(s,
˙
c1×s1, . . . , c|S|×s|S|

¸
) =

u(s,

fi
bN
n
c1 + 1c×s1, . . . , bN

n
cj+1c×sj+1, . . .

fl
),

where j = N −PibNn cic. That is, the number of opponents
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(a) all reduction types (b) rescaled to exclude regression-based twins reductions

Figure 2: Average full-game regret of reduced-game equilibria in local effect games. N = 12, |S| = 6, 2 ≤ n ≤ 8.

playing strategy si is the integral part of N
n
ci, with extra

player slots allocated one each to strategies with lower in-
dices. For example, when we construct HR5 of a game with
12 players, the reduced-game profile 〈1×s1, 3×s2, 1×s3〉 cor-
responds to the full-game profile 〈3×s1, 7×s2, 2×s3〉. We
extend the definition of DPRn to handle indivisibility in a
similar manner.

We evaluate the reductions using two classes of random
games: congestion games [9], in which agents select a fixed-
size subset of available facilities and payoffs are decreasing
in the number of agents choosing a facility; and local effect
games [7], which have a graph over actions and each action’s
payoff is a function of the number of agents choosing it and
adjacent actions. We randomly varied the payoff function
parameters of these games to create 250 game instances for
each test described below. We also evaluate on one simu-
lated game class, based on a scenario of credit network for-
mation [2]. In the model of credit networks employed in
this scenario, directed links represent credit issued to other
agents: agents wish to transact with one-another, but issu-
ing credit bears risk in that debtors may default. In the
credit network formation game, payoffs are determined by
simulating a sequence of transactions and defaults on the
network induced by agent strategies. We sampled each pro-
file of a 12-agent, 6-strategy credit network game 100 times,
and randomly recombined these samples to create 250 game
instances.

The first finding of note is that twins reduction performs
very poorly with linear regression. The top line in Figure 2a
shows the regret of equilibria found in TR-R games with
random sampling of profiles, which is an order of magnitude
worse than the HR, TR, DPR, and DPR′. Two observa-
tions led us to try the method labeled TR–DPR: first, that
sampling profiles according to uniform agent play leads to
a very low likelihood of observing payoffs for profiles where
most agents play the same strategy, and these are exactly
the profiles whose payoffs the regression estimates. Second,
simulating all the profiles for DPR or DPR′ makes available
a substantial amount of payoff data that goes unused in con-
structing the reduced game. We therefore thought to try us-
ing all of the profiles simulated for the deviation-preserving
reduction as input to the linear regression of TR-R. As is
clear from Figure 2a, this improves very little on random
sampling.

In retrospect, it is not particularly surprising that approx-
imating payoffs by linear regression performs so poorly: all
of our example games and most games requiring simulation
have nonlinear payoffs. A better regression model could po-
tentially alleviate this problem, but choosing one requires
knowledge of the game’s payoff function that may not be
available when payoffs are determined by simulation. We
also ran TR-R and TR–DPR on each of the other game
classes, but the results are similarly poor, and are excluded
from subsequent figures.

Figure 3: Full-game regret of reduced-game equilibria in con-
gestion games. N = 100, |S| = 2, 2 ≤ n ≤ 10.

Figures 2b, 3, and 4 show that deviation-preserving reduc-
tion outperforms hierarchical reduction and twins reduction
in a wide variety of settings. In 12-agent, 6-strategy lo-
cal effect games, DPR is clearly better than HR, but the
comparison to DPR′ is less conclusive. We were surprised
to find that hierarchical reduction would perform worse with
increased reduced-game size, which corresponds to increased
abstraction granularity. We note, however, that the 5, 7, and
8-player reduced games where HR performs poorly are ex-
actly the cases where n does not divide N = 12. This also
leads us to observe that because 11 is prime, the deviation-
preserving reduction never has the advantage n − 1 divid-
ing N − 1, and yet consistently performs well. The results
from 12-agent, 6-strategy congestion games (not shown) are
broadly similar.
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Figure 4: Average full-game regret of reduced-game equilib-
ria in credit network games. N = 12, |S| = 6, 2 ≤ n ≤ 8.

In an attempt to get at the effect of very substantial
player reductions, we created 100-agent, 2-strategy conges-
tion games. The results in Figure 3 show clear separation be-
tween hierarchical reduction and both variants of deviation-
preserving reduction, suggesting that as the number of play-
ers grows, the relative difference between DPR and DPR′

may be smaller. Results for the 12-agent, 6-strategy credit
network game appear in Figure 4. Here again, DPR and
DPR′ perform similarly, and better than HR.

Across all game classes and sizes examined (including those
not shown) deviation-preserving reduction of any given size
outperforms the hierarchical reduction with at least as many
profiles that is closest in size. This means that for any
size hierarchical reduction, there exists a better deviation-
preserving reduction that requires simulating fewer profiles.
Virtually all of these differences are significant at p < 0.05;
the only exceptions are 4-player DPR versus 6-player HR
in the 12-player congestion game (Figure 3) and 12-player
credit network game (Figure 4). In addition, DPR3 outper-
forms TR across all game classes; the difference is significant
at p < 0.05 in all cases except the credit network game. The
difference between DPR4 and TR is significant in all cases.

4.2 Comparison to Full-Game Equilibria
We also compared reduced-game equilibria under HR and

DPR to equilibria from 12-player, 6-strategy full games us-
ing two metrics: similarity of support sets, and L2 distance
between distributions. Table 1 shows the number of strate-
gies by which the support sets of full and reduced-game
equilibria differ. Here, we consider a strategy to be in the
support of a symmetric ε-Nash equilibrium if it is played
with probability 0.01 or greater. In nearly all cases support
sets of DPRn match match those of full-game equilibria sig-
nificantly (p < 0.05) better than both HRn and HRn+1.
In addition, for congestion games and local effect games,
DPR>2 significantly outperforms TR, whereas in credit net-
work games, there is no significant difference between TR
and DPR.

Table 2 presents a similar message, but in terms of the
L2 distances between the mixed strategy distributions in
full and reduced-game equilibria. Again, DPR is signif-
icantly better than HR and TR for congestion and local
effect games, while performing similarly on credit network
games. As in Section 4.1, in these experiments, we compute

credit network congestion local effect

n HR DPR HR DPR HR DPR

2 3.72 1.49† 1.68 0.39† 2.72 0.45†
3 3.72 1.64† 0.99* 0.17†* 1.04* 0.20†*
4 3.72 1.60† 1.05 0.10†* 0.98 0.12†*
5 1.98* 1.54† 1.10 0.08† 1.01 0.09†
6 1.19†* 1.39 0.98 0.05† 0.85* 0.08†

Table 1: Reduced versus full-game NE support set differ-
ence. * indicates significant difference between n and n− 1;
† indicates significant difference between HRn and DPRn.

credit network congestion local effect

n HR DPR HR DPR HR DPR

2 0.713 0.703 0.435 0.069† 0.503 0.128†
3 0.764* 0.690† 0.141* 0.039†* 0.154* 0.064†*
4 0.860 0.640† 0.117* 0.022†* 0.117* 0.037†*
5 0.643* 0.641 0.141 0.019†* 0.144 0.027†*
6 0.467†* 0.564* 0.099* 0.018† 0.088* 0.026†

Table 2: Reduced versus full-game NE distribution L2 dis-
tance. * indicates significant difference between n and n−1;
† indicates significant difference between HRn and DPRn.

one symmetric mixed-strategy Nash equilibrium per game
by running replicator dynamics initialized to the uniform
mixture.

4.3 Dominated Strategies
Another useful operation in the analysis of simulation-

based games is to check for dominated strategies. A dom-
inated strategy is one that no agent should ever play be-
cause there is an alternative strategy that is at least as good
in response to any profile of opponent strategies. We ran
experiments on 12-agent, 6-strategy congestion and credit
network games (250 each), comparing the set of strategies
that remain after iterated elimination of strictly dominated
strategies in the full game against those that remain in 2,
4, and 6-player reduced games. We observed that DPR and
DPR′ produced very similar results, and that both improved
over hierarchical and twins reduction. Figures 5 and 6 show
histograms of the number of strategies eliminated in reduced
games but not eliminated in full games.

In congestion games (Figure 5), twins reduction and both
forms of deviation-preserving outperform hierarchical reduc-
tion, eliminating fewer strategies in the reduced game that
survive in the full game, even when hierarchical reduction
samples vastly more profiles. These congestion games often
exhibit dominated strategies in the full game, but we al-
most never observed strategies surviving in reduced games
that are dominated in the full game.

In credit network games (Figure 6), no strategies are dom-
inated in the full game, but in the twins reduction game,
many strategies are eliminated. Moving to DPR4 or DPR′4
solves this problem almost entirely. These experiments also
confirm that for all reduction types, increasing the number
of players in the reduced game reduces the number of strate-
gies erroneously found to be dominated.

5. ROLE-SYMMETRIC GAMES
We can smoothly relax the constraint that games be fully
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(a) HR2 (21 profiles) (b) HR4 (126 profiles) (c) TR ≡ DPR2 ≡ DPR′2 (36 profiles)

Figure 5: Histograms showing the number of strategies surviving iterated elimination of dominated strategies in full but not
reduced congestion games. N = 12, |S| = 6, 250 random games. TR ≡ DPR2 outperforms HR, sampling far fewer profiles.

(a) TR ≡ DPR2 ≡ DPR′2 (36 profiles) (b) DPR′4 (336 profiles)

Figure 6: Histograms showing the number of strategies surviving iterated elimination of dominated strategies in full but not
reduced credit network games. N = 12, |S| = 6, 250 sample games. DPR′4 avoids the aggressive elimination occurring in TR.

symmetric by assigning agents to roles, and enforcing sym-
metry only within these roles. Across roles, agents’ strat-
egy sets and payoffs can differ, but within a role, they are
symmetric. Formally, a role-symmetric game is a tuple Γ =
({Ni}, {Si}, u), where the number of agents with role i is Ni,
and agents with role i have strategy set Si. Role-symmetric
games provide a natural model for many settings where
agents can be partitioned into meaningful categories, such
as buyers and sellers in a market, or attackers and defenders
in a security game. Role symmetry imposes no loss of gen-
erality on normal-form games, spanning the spectrum from
complete asymmetry (each player has its own role) to full
symmetry (a single role for everyone).

All of the player reduction methods discussed here can be
straightforwardly extended to role-symmetric games. Con-
sider for example the 20-agent continuous double auction
study of Vytelingum et al. [14] with N1 = 10 buyers and
N2 = 10 sellers. Instead of choosing n, the number of players
in the reduced game, we must choose each {ni}, the number
of players with each role in the reduced game.

To perform a hierarchical reduction, a natural choice would
be n1 = n2 = 2. This would involve simulating all profiles
where 0, 5, or 10 agents play each buyer strategy, and a
multiple of five agents likewise play each seller strategy.

With twins reduction, there are two players per role. Each

player views itself as controlling a single agent, and the other
player with the same role as controlling nine agents. It views
the two other-role players as each representing half the ten
agents with that role, so in the reduced-game profile

〈1×s1.1, 1×s1.2, 1×s2.1, 1×s2.2〉 ,
the payoff to buyer 1, who plays s1.1, comes from full-game
profile

〈1×s1.1, 9×s1.2, 5×s2.1, 5×s2.2〉 .
The deviation-preserving reduction extends the twins re-

duction to more than two reduced-game players per role,
maintaining the view that a reduced-game player controls a
single agent, while the other players with the same role ag-
gregate over the rest of the agents with that role, and players
with another role aggregate over all agents with their role.
With either hierarchical reduction or deviation-preserving
reduction, it would be possible to choose ni 6= nj if different
granularity of reduction were desired for different roles.

This extension to role-symmetric games encompasses the
broader class over which Ficici et al. [4] define the twins
reduction. The clustering method by which they aggregate
agents induces a role-symmetric game that restricts all roles
to have the same strategy set (but allows different payoffs).
They mention but do not develop the idea that the twins
reduction might extend to role-symmetric games. To our
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knowledge, hierarchical reduction has not been applied to
role-symmetric games.

6. CONCLUSIONS
Our new player reduction method, deviation-preserving

reduction, combines the most appealing aspects of hierar-
chical reduction and twins reduction. It also performs bet-
ter than both prior methods experimentally: equilibria from
DPR games have lower full-game regret and more closely re-
semble full-game equilibria, even when sampling fewer full-
game profiles. In addition, performing iterated elimination
of dominated strategies on deviation-preserving reduction
games stays more faithful to the full game compared to other
player reductions. Our alternative DPR′ formulation per-
forms reasonably well in the same tests. The simulation
savings from DPR′ are greatest when the reduced game has
many players but few strategies, so DPR′ may prove use-
ful in such cases. Though it may not be obvious how to
choose between DPR and DPR′, the evidence is quite com-
pelling that deviation-preserving reduction is the best avail-
able player reduction method for analyzing large simulation-
based games.
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ABSTRACT
Boolean games are a compact and expressive class of games,
based on propositional logic. However, Boolean games are
computationally complex: checking for the existence of pure
Nash equilibria in Boolean games is Σp

2-complete, and it
is co-NP-complete to check whether a given outcome for a
Boolean game is a pure Nash equilibrium. In this paper,
we consider two possible avenues to tractability in Boolean
games. First, we consider the development of alternative so-
lution concepts for Boolean games. We introduce the notion
of k -bounded Nash equilibrium, meaning that no agent can
benefit from deviation by altering fewer than k variables. Af-
ter motivating and discussing this notion of equilibrium, we
give a logical characterisation of a class of Boolean games for
which k -bounded equilibria correspond to Nash equilibria.
That is, we precisely characterise a class of Boolean games
for which all Nash equilibria are in fact k -bounded Nash
equilibria. Second, we consider classes of Boolean games for
which computational problems related to Nash equilibria are
easier than in the general setting. We first identify some re-
strictions on games that make checking for beneficial devi-
ations by individual players computationally tractable, and
then show that certain types of socially desirable equilibria
can be hard to compute even when the standard decision
problems for Boolean games are easy. We conclude with a
discussion of related work and possible future work.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
theory

Keywords
Boolean games, complexity, game theory, logic, Nash equi-
libria
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MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Game-theoretic solution concepts such as Nash equilibria
were originally formulated independently of considerations
of whether or how they might be practically computed. Since
solution concepts typically attempt to capture a notion of
optimal choice in strategic settings, it is therefore not at
all surprising that solution concepts are hard to compute in
practice for many natural and important classes of games
(see, e.g., [3, 12, 4, 15, 8]). The problem of classifying ex-
actly the complexity of solution concepts in various settings
has been an area of significant research activity over the past
two decades. Most notably, the problem of classifying the
complexity of computing mixed strategy Nash equilibria in
2-person strategic form games turned out to be one of the
major challenges in complexity theory in the first decade of
the 21st century [4].

Given that solution concepts are very often computation-
ally complex, at least two possible routes to tractability sug-
gest themselves:

• First, we can try to identify useful classes of games or
representations of games for which solution concepts
can be easily computed. In cooperative game theory,
for example, the marginal contribution net representa-
tion allows for the efficient computation of the Shapley
value solution concept [10].

• Second, we can develop alternative solution concepts,
which lend themselves to efficient computation. For
example, the notion of ε-Nash equilibrium has been
developed, which relaxes the strict notion of Nash equi-
librium by requiring that no player can gain more than
ε in a deviation from a given strategy profile [13, p.83].

Our aim in the present paper is to consider these possibil-
ities in the context of Boolean games [9, 2, 6, 7]. Boolean
games are a simple, compact, and expressive class of games
based on propositional logic. In a Boolean game, each player
i has under its unique control a set of Boolean variables Φi ,
drawn from an overall set of Boolean variables Φ. Player i
is at liberty to assign values to these variables as it chooses.
The strategies or choices available to i correspond to all pos-
sible Boolean assignments that can be made to these vari-
ables. The outcome of a Boolean game is a valuation for
the variables Φ, which will be composed from the individ-
ual assignments made by the players in the game to their
variables. In addition, each player i has a goal that it de-
sires to be achieved: the goal is represented as a Boolean
formula γi , and this goal formula may contain variables
under the control of other players. A player is satisfied
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with an overall outcome if that outcome satisfies its goal
γi , and is unsatisfied otherwise. The fact that the achieve-
ment of one agent’s goal may depend on the choices of other
agents is what gives Boolean games their strategic character.
Now, Boolean games are computationally complex: checking
whether a Boolean game has a pure strategy Nash equilib-
rium is Σp

2-complete, while checking whether a particular
outcome is a pure Nash equilibrium is co-NP-complete. If
Boolean games are to find applications, then the issue of
intractability must surely be addressed.

Our contribution in the present paper is twofold. Follow-
ing the discussion above, we first formally define and inves-
tigate the notion of k-bounded Nash equilibrium for Boolean
games. An outcome is a k -bounded Nash equilibrium if no
agent has any incentive to deviate by flipping the value of at
most k variables. We consider the computational aspects of
k -bounded equilibria, and then prove a logical characterisa-
tion of those classes of Boolean games for which k -bounded
Nash equilibria and standard pure strategy Nash equilibria
coincide. We then move on to consider classes of Boolean
games for which the computation of pure strategy Nash equi-
libria is easier than the general case. Again, we give a logical
characterisation of such cases. We conclude with discussion
and some issues for future research.

2. GAMES AND SOLUTION CONCEPTS
Let G be a class of games, and let Ω be the set of outcomes
for these games; for the purposes of this discussion, it does
not matter exactly what the games and outcomes are. A
solution concept for G can be understood as a function:

σ : G → 2Ω.

That is, a solution concept identifies with every game a sub-
set of outcomes; intuitively, those that are “rational” accord-
ing to the solution concept in question.

The obvious computational problems associated with such
a solution concept σ for a class of games G are as follows:

• Non-Emptiness:
Given some G ∈ G, is it the case that σ(G) 6= ∅?
• Membership:

Given G ∈ G and ω ∈ Ω, is it the case that ω ∈ σ(G)?

• Computation:
Given G ∈ G, exhibit some ω such that ω ∈ σ(G).

In the present paper, we will be concerned largely with the
first two of these problems. Now, for many important classes
of games, these problems are computationally hard [3, 12, 4,
15, 8]. As mentioned in the introduction, there are at least
two ways to approach this problem:

1. Develop alternative solution concepts, which lend them-
selves to being computed efficiently. For example, the
notion of ε-Nash equilibrium has been developed, which
relaxes the strict notion of Nash equilibrium by requir-
ing that no player can gain more than ε in a deviation
from a strategy profile [13, p.83].

2. Try to identify useful classes of games or representa-
tions of games for which solution concepts can be eas-
ily computed. In cooperative game theory, for example,
the marginal contribution net representation allows for
the efficient computation of the Shapley value solution
concept [10].

With respect to the first proposal, let us make the discussion
a little more formal. Suppose we have a solution concept σ
for a class of games G such that the associated computational
problems (Non-Emptiness, Membership, Computation)
are intractable (NP-hard or worse). Then we might try to
develop an alternative solution concept σ̂, which “approxi-
mates” σ, but which is tractable. Note that here we mean
“approximate” in the informal everyday sense, rather than
the formal sense of approximation algorithms and FPTAS [1]
(although of course looking for FPTAS would be a very nat-
ural approach). Now, how might σ and its “approximation”,
σ̂, be related? We can consider two natural properties, as
follows.

• We say σ̂ is a sound approximation of a solution con-
cept σ for a class of games C ⊆ G if

∀G ∈ C : σ̂(G) ⊆ σ(G)

i.e., the solutions proposed by σ̂ are a subset of those
proposed by σ.

• We say σ̂ is a complete approximation of a solution
concept σ for a class of games C ⊆ G if

∀G ∈ C : σ̂(G) ⊇ σ(G)

i.e., the solutions proposed by σ̂ are a superset of those
proposed by σ.

In the limit, where σ̂ is a sound and complete approximation
of σ w.r.t. the class C = G of all games, then σ and σ̂ would
be identical, and it would then be no easier to compute σ̂
than σ. A typical situation, with respect to the class G of
all games, is that we will have approximate solution con-
cepts σ̂ that are complete (all solutions according to σ are
solutions according to σ̂) but not sound (not all solutions
according to σ̂ are solutions according to σ). This is exactly
the situation with ε-Nash equilibrium, for example: all “ex-
act” Nash equilibria are ε-Nash equilibria, but in general,
(i.e., where ε > 0), not all ε-Nash equilibria will be “ex-
act” Nash equilibria. The fact that an approximate solution
concept is complete but not sound captures our intuitions
about relaxing the requirements for optimality inherent in
exact solution concepts: an approximate solution concept
will often admit more solutions than its exact counterpart,
thus (we hope) making approximate solutions easier to find.

If we have an approximate solution concept σ̂, then one
interesting and important question is the following: can we
identify a class of games C ⊂ G such that σ̂ is a sound and
complete approximation to σ with respect to C, even though
σ̂ is not sound and complete with respect to the class of all
games G? If we can do this, and the class C corresponds to
games that are of practical value, then this means that the
approximate solution concept is in fact all we need: we do
not need to look for exact solutions σ, since these will in any
case be given by σ̂.

In the present paper, we will focus on bounded approx-
imations to Nash equilibria for Boolean games, which will
be complete but not sound with respect to the class of all
games, and we will identify classes of games for which the
bounded solution concept is both sound and complete.
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3. BOOLEAN GAMES
We now present the formal framework of propositional logic
and Boolean games that we use throughout the remainder
of this paper. Our presentation is fairly standard [9, 2, 6,
7].

Propositional Logic: Let B = {>,⊥} be the set of Boolean
truth values, with “>” being truth and “⊥” being falsity. We
will abuse notation a little by using > and ⊥ to denote both
the syntactic constants for truth and falsity respectively, as
well as their semantic counterparts. Let Φ = {p, q , . . .}
be a (finite, fixed, non-empty) vocabulary of Boolean vari-
ables, and let L denote the set of (well-formed) formulae
of propositional logic over Φ, constructed using the conven-
tional Boolean operators (“∧”, “∨”, “→”, “↔”, and “¬”), as
well as the truth constants “>” and “⊥”. Where ϕ ∈ L, we
let vars(ϕ) denote the (possibly empty) set of Boolean vari-
ables occurring in ϕ (e.g., vars(p∧q) = {p, q}). A valuation
is a total function v : Φ → B, assigning truth or falsity to
every Boolean variable. We write v |= ϕ to mean that the
propositional formula ϕ is true under, or satisfied by, valua-
tion v , where the satisfaction relation “|=” is defined in the
standard way. Let V denote the set of all valuations over
Φ. We write |= ϕ to mean that ϕ is a tautology. We denote
the fact that |= ϕ ↔ ψ by ϕ ≡ ψ. We use some additional
definitions, as follows:

• A literal, `, is either (i) a Boolean variable or the nega-
tion of a Boolean variable, or (ii) a Boolean constant
(i.e., a member of B) or the negation of a Boolean con-
stant.

• A clause, C , is a disjunction of literals, i.e., a formula
of the form C = `1 ∨ · · · ∨ `m .

• A Horn clause is a clause in which at most one literal
is not negated.

• A formula is in Conjunctive Normal Form (CNF) if
it is a conjunction of clauses, i.e., is of the form ϕ =
C1 ∧ · · · ∧ Cl , where each Ci , (1 ≤ i ≤ l) is a clause.

• A CNF formula ϕ = C1 ∧ · · · ∧Cl is in u-CNF, if each
clause Ci (1 ≤ i ≤ l) contains at most u literals.

• A CNF formula ϕ = C1 ∧ · · · ∧ Cl is in u-clause CNF
if it contains no more than u clauses (i.e., l ≤ u).

Notice that there is an important difference between
u-CNF and u-clause CNF: the former constrains the
number of literals permitted in a clause, but does not
constrain the number of clauses permitted in a for-
mula; while the latter constrains the number of clauses
permitted in a formula, but does not constrain the
number of literals that appear in clauses.

• A CNF formula ϕ = C1 ∧ · · · ∧Cl is said to be in Horn
clause form if for all 1 ≤ i ≤ l , the clause Ci is a Horn
clause.

The satisfiability problem for formulae ϕ is the problem of
determining whether there exists a valuation v such that v |=
ϕ. For arbitrary CNF formulae, this problem is of course
NP-complete; for 2-CNF formulae, and for Horn clause for-
mulae, the satisfiability problem is decidable in polynomial
time (see, e.g., [11]).

Agents and Variables: The games we consider are popu-
lated by a set N = {1, . . . ,n} of agents – the players of the

game. Each agent is assumed to have a goal, characterised
by an L-formula: we write γi to denote the goal of agent
i ∈ N . Agents i ∈ N each control a (possibly empty) subset
Φi of the overall set of Boolean variables. By “control”, we
mean that i has the unique ability within the game to set
the value (either > or ⊥) of each variable p ∈ Φi . We will
require that Φi∩Φj = ∅ for i 6= j , and that Φ1∪· · ·∪Φn = Φ
(i.e., Φ1, . . . ,Φn partition Φ).

When playing a Boolean game, the primary aim of an
agent i will be to choose an assignment of values for the
variables Φi under its control so as to satisfy its goal γi .
The difficulty is that γi may contain variables controlled by
other agents j 6= i , who will also be trying to choose values
for their variables Φj so as to get their goals satisfied; and
their goals in turn may be dependent on the variables Φi .
A choice for agent i ∈ N is a function vi : Φi → B, i.e.,
an allocation of truth or falsity to all the variables under i ’s
control. Let Vi denote the set of choices for agent i .

Outcomes: An outcome is a collection of choices, one for
each agent. Formally, an outcome is a tuple (v1, . . . , vn) ∈
V1×· · ·×Vn . Notice that an outcome defines a value for all
variables, and we will often think of outcomes as valuations,
for example writing (v1, . . . , vn) |= ϕ to mean that the val-
uation defined by the outcome (v1, . . . , vn) satisfies formula
ϕ ∈ L.

Boolean Games: A Boolean game, G, is a (2n + 2)-tuple:

G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉
where N = {1, . . . ,n} is a set of agents, Φ = {p, q , . . .} is a
finite set of Boolean variables, Φi ⊆ Φ is the set of Boolean
variables under the unique control of i ∈ N , and γi ∈ L is
the goal of agent i ∈ N .

Utility: We now introduce a model of utility for our games.
The basic idea is that an agent will strictly prefer all out-
comes in which it gets its goal achieved over all outcomes
where it does not. We capture this in utility functions
ui(· · · ) defined over outcomes (v1, . . . , vn):

ui(v1, . . . , vn) =

{
1 if (v1, . . . , vn) |= γi
0 otherwise.

Nash Equilibrium: Let (v1, . . . , vi , . . . , vn) be an outcome.
We say that a player i has a beneficial deviation if there
exists a choice v ′i ∈ Vi for i such that ui(v1, . . . , v

′
i , . . . , vn) >

ui(v1, . . . , vi , . . . , vn). In this case, v ′i serves as a witness to
the beneficial deviation. It will be useful to refer to the
following fact later.

Observation 1. Suppose (v1, . . . , vi , . . . , vn) ∈ V1×· · ·×
Vi × · · · × Vn and v ′i ∈ Vi . Then v ′i is a beneficial deviation
for i from (v1, . . . , vi , . . . , vn) iff:

1. (v1, . . . , vi , . . . , vn) 6|= γi and

2. (v1, . . . , v
′
i , . . . , vn) |= γi .

We then say an outcome (v1, . . . , vn) is a Nash equilibrium
if no player has a beneficial deviation. We denote the Nash
equilibrium outcomes of a game G by NE(G). It may of
course be that NE(G) = ∅.

Referring back to our discussion in the preceding section,
there are two obvious decision problems relating to Nash
equilibria in Boolean games: Non-Emptiness (given a game
G, is it the case that NE(G) 6= ∅?) and Membership (given
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a game G and an outcome (v1, . . . , vn) for G, is it the case
that (v1, . . . , vn) ∈ NE(G)?). Unfortunately, it is known
that both of these problems are computationally complex [2]:

Proposition 1. The Non-Emptiness problem for Boolean
games is Σp

2-complete; the Membership problem for Boolean
games is co-NP-complete.

4. K-BOUNDED EQUILIBRIA
We will now define a new class of equilibria for Boolean
games, which we will call k-bounded equilibria. To moti-
vate this new class, take an agent i who is trying to decide
whether he has any beneficial deviation from an outcome
(v1, . . . , vi , . . . , vn). From Proposition 1, this problem is in
general NP-complete. Intuitively, player i is trying to decide
whether he can get his goal achieved by flipping the value of
some subset of his variables. The complexity in this problem
arises because i must consider 2|Φi | sets of variables in this
evaluation. It follows that our agent’s task will be simpler if
we can eliminate some of these sets of variables from player
i ’s consideration.

Where {vi , v ′i } ⊆ Vi are choices for player i ∈ N , let us
define the distance between them as being the number of
variables that have different values in the two valuations;
we denote this value by δ(vi , v

′
i ):

δ(vi , v
′
i ) = |{x ∈ Φi | vi(x ) 6= v ′i (x )}|.

We sometimes refer to δ(vi , v
′
i ) as the size of the deviation

v ′i . Now, given an outcome (v1, . . . , vi , . . . , vn) and a value
k ∈ N, k > 1 we will say a player i has a k-bounded beneficial
deviation if there is some v ′i ∈ Vi such that:

1. δ(vi , v
′
i ) ≤ k ; and

2. ui(v1, . . . , v
′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn).

We will say an outcome (v1, . . . , v
′
i , . . . , vn) is a k-bounded

Nash equilibrium if no player has a k -bounded beneficial
deviation. Let the set of k -bounded Nash equilibria of game
G be denoted by NEk (G).

Example 1. Consider the Boolean game,

G(t) = 〈{a1, a2},Φ,Φ1,Φ2, γ1, γ2〉
in which Φ1 = {x1, . . . , xt}, Φ2 = {y1, . . . , yt} (t ≥ 1) and

γ1 =

(
t∨

i=1

yi

)
∧
(

t∧

j=1

xj

)

γ2 =

(
t∨

i=1

xi

)
∧
(

t∧

j=1

yj

)

The outcome v in which x1 = y1 = >, and xi = ⊥, yi = ⊥
for all i 6= 1, is a k-bounded equilibrium for all k < t − 1. It
is not, however, a Nash equilibrium: neither goal is satisfied
but by changing the t − 1 variables under its control to >
both agents can realise their goals.

How does the notion of k -bounded equilibrium relate to the
general concept of Nash equilibrium? We have:

Proposition 2. The solution concept of k-bounded Nash
equilibrium is a complete but unsound approximation for
pure strategy Nash equilibria in Boolean games. Formally:

1. There exist Boolean games G and bounds k ∈ N, k ≥ 1
such that NEk (G) 6⊆ NE(G).

2. For all Boolean games G and bounds k ∈ N, k ≥ 1, we
have NE(G) ⊆ NEk (G).

Proof. Example 1 illustrates point (1) (in fact, it is eas-
ily seen that the construction of Example 1 shows that for all
k ≥ 2 there are games in which NEk−1(G) ⊂ NEk (G), i.e. k -
bounded equilibria are more general than (k − 1)-bounded).
For point (2), observe that if an outcome is stable in the
general sense, then no player has any beneficial deviation;
and in particular, no player has any beneficial deviation of
size ≤ k .

Now, for the notion of k -bounded equilibrium to be of any-
thing other than purely theoretical interest, it must reduce
the complexity of the reasoning task faced by agents. Of
course, it is easy to see that, with respect to worst case
asymptotic analysis, k -bounded Nash equilibria present no
advantages over Nash equilibria, since if we set the bound k
to

k = max{|Φi | | i ∈ N }
then k -bounded Nash equilibrium collapses to the standard
notion of Nash equilibrium for Boolean games. However, we
will now show that nevertheless, by constraining possible
deviations v ′i such that δ(vi , v

′
i ) ≤ k , we can dramatically

reduce the search space of possible deviations. Formally,
where G is a game containing a player i , let vi ∈ Vi be a
choice for i , and let k ∈ N, k ≥ 1 be a bound, then we have:

|{v ′i ∈ Vi | δ(vi , v
′
i ) ≤ k}| =

k∑

j=1

(
|Φi |

j

)
.

From standard combinatorics, it follows that if we set the
deviation bound k so that k < |Φi |/2 (for example), then
the search space will for a beneficial deviation will be less
than half the search space for general deviations. We thus
have an exponential reduction in the size of the search space
when looking for k -bounded beneficial deviations, compared
to the case for pure Nash equilibria in general.

In fact, from recent results of Szeider [14] it turns out that
this upper bound can often be signifcantly improved.

Proposition 3. Let G be a Boolean game in which every
goal formula, γi , is expressed as a CNF formula containing
at most t clauses, where t is a arbitrary but fixed natural
number, and v be an outcome. Deciding if v is a k-bounded
equilibrium is fixed-parameter tractable (with respect to the
parameter k), i.e., there is a decision algorithm whose run-
ning time is bounded above by f (k) poly(|G|), where |G| is
the number of bits needs to encode the game G, and f (· · · )
is a function whose value depends only on k.

Proof. Szeider [14] shows that instances of the so-called
“k -Flip Sat” problem, whereby given a CNF formula, F ,
and assignment, α to its variables, it is required to decide if
there is some assignment β satisfying F and having δ(β, α) ≤
k , may be decided in (f (k) + t3)poly(|F |) steps. The “k -
Flip Sat” problem, however, is exactly that of deciding if
γi , after simplification to γΦi

i , i.e., the CNF formula arising
by applying the variable settings to Φ \ Φi , is satisfiable
by changing the values of (exactly) k variables. We can
thus decide if i has a k -bounded beneficial deviation just
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by considering each 1 ≤ l ≤ k , deciding if γΦi
i is a positive

instance of l-flip sat with respect to the assignment vi of
values currently set in Φi . In total, v will be accepted as a
k -bounded equilibrium if no agent suceeds in identifying a
beneficial deviation via this process.

Now, it might seem that k -bounded equilibria are much
weaker than general Nash equilibria, in the sense that a
player may well have a beneficial deviation from an out-
come in the general case, but not if we restrict ourselves to
k -bounded Nash equilibria. But in fact, in some classes of
games, this is not an issue: the following proposition shows
that, in certain useful and important classes of games, gen-
eral Nash equilibria and k-bounded Nash equilibria coincide.

Proposition 4. The solution concept of k-bounded Nash
equilibrium is a sound and complete approximation of pure
strategy Nash equilibria for the class of Boolean games in
which every agent has a goal formula that is logically equiv-
alent to a propositional formula in k-clause CNF. In other
words, for all Boolean games

G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉,
if there exists some k ∈ N, k ≥ 1 such that for every agent
i ∈ N there exists a k-clause CNF formula γ′i such that
γi ≡ γ′i , then we have NE(G) = NEk (G).

Proof. Consider an arbitrary outcome (v1, . . . , vi , . . . , vn)
and a player i ∈ N . We claim that player i has a k -bounded
beneficial deviation iff the player has a general beneficial
deviation. The left-to-right implication is obvious. For the
right-to-left implication, suppose the player has a beneficial
deviation, call it v ′i . Then from Observation 1, we know
that:

• (v1, . . . , vi , . . . , vn) 6|= γi

• (v1, . . . , v
′
i , . . . , vn) |= γi

From the conditions of the Proposition, we can infer:

• (v1, . . . , vi , . . . , vn) 6|= γ′i

• (v1, . . . , v
′
i , . . . , vn) |= γ′i .

The existence of a k -bounded beneficial deviation may then
be seen as follows. Since γ′i is in k -clause CNF, it is the
conjunction of no more than k clauses: γ′i = C1 ∧ · · · ∧ Ck ,
where each Ci is a disjunction of literals. The assignment
v ′i need only satisfy at most one literal from each clause Ci ,
and so to satisfy γ′i , (and hence γi), we only need to flip at
most k variables compared to vi .

Now, the implication of this result is that if agents have
goals that are logically equivalent to k -clause CNF formu-
lae, then we don’t need to consider arbitrary deviations: k-
bounded deviations are all we need. It follows that in such
games, the search space for possible deviations can be dra-
matically reduced, compared to general Nash equilibria.

As an aside, observe that every propositional logic for-
mula can be converted into CNF. So, if we start with a
Boolean game in which goals are arbitrary propositional
formulae, we can translate each formula into an equivalent
CNF form, and take k to be the largest number of clauses
of any CNF formula in the resulting game. If we end up
with k < max{|Φi | | i ∈ N }, then this tells us that we

can rule out a potentially large fraction of the search space
when looking for beneficial deviations, as we only have to
consider k -bounded Nash equilibria. However, in the worst
case, translation to CNF can result in an exponential blow-
up in the number of clauses in the formula: k = O(2|Φ|).
In such cases, we would clearly obtain no benefit from k -
bounded equilibria.

5. TRACTABLE BOOLEAN GAMES
An alternative to developing solution concepts that are easy
(or at least, easier) to compute than exact solutions is to
consider classes of games for which exact solution concepts
are easy to compute. In our case, consider the problem of de-
termining whether a player i ∈ N has a beneficial deviation
in a Boolean game. This involves the player considering 2|Φi |

choices, to see whether it can get its goal achieved through
making one of these. So, to what extent can we identify
classes of games for which checking for beneficial deviations
is computationally easy? Well, as a starting point, the fol-
lowing is very easy to see:

Observation 2. Let C ⊆ L be a class of propositional
logic formulae with a polynomial time satisfiability problem.
The Membership problem for G = 〈N ,Φ,Φ1, . . . ,Φnγ1, . . . , γn〉
with {γ1, . . . , γn} ⊆ C is decidable in polynomial time, and
the Non-Emptiness problem is in NP.

So, for example, if the goal formulae of all players are ex-
pressed in, e.g., Horn clause form, or 2-CNF, then checking
whether an outcome is a Nash equilibrium or not is poly-
nomial time decidable, and checking whether there exists a
stable outcome is in NP. However, as we will now see, we
can in fact significantly strengthen this result; to do this,
however, we need some further notation and terminology.

First, where S = {1, . . . , k} is a subset of players and
{v1, . . . , vk} is a collection of choices, one for each player
i ∈ S , define a function w by:

w{v1,...,vk}(x ) =





v1(x ) if x ∈ dom v1

v2(x ) if x ∈ dom v2

· · · · · ·
vk (x ) if x ∈ dom vk

Where ϕ is a propositional logic formula, and {v1, . . . , vk} is
a collection of choices, one for each player in S = {1, . . . , k},
then we will denote by ϕ[v1, . . . , vk ] the formula obtained
from ϕ by systematically replacing each variable x such that

x ∈ dom v1 ∪ · · · ∪ dom vk

by the Boolean value w{v1,...,vk}(x ). Finally, the reduction
of ϕ[v1, . . . , vk ] will be denoted by ϕ∗[v1, . . . , vk ], and is de-
fined to be the propositional logic formula obtained from
ϕ[v1, . . . , vk ] by carrying out the following two steps:

1. deleting any clause containing > or ¬⊥;

2. deleting ⊥ or ¬> from any clause in which they occur.

If the resulting formula contains any empty clause (i.e., all
literals have been deleted from the original clause), then we
replace the whole formula by ⊥.

The soundness of these simplification steps is clear from
basic propositional reasoning.

Now, given a player i ’s goal γi , we will denote the range
of γi by rng(γi), and define this to be the following set of
formulae:
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rng(γi) =
{γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] |

(v1, . . . , vi−1, vi+1, . . . , vn) ∈∏i∈N\{i} Vi}.

Thus, intuitively, rng(γi) is the set of formulae that could
be obtained from γi by simplifying it under all possible com-
binations of choices made by other players. Notice that if
ψ ∈ rng(γi), then the only variables occurring in ψ will be
controlled by i , i.e., for each ψ ∈ rng(γi), we have vars(ψ) ⊆
Φi .

Now, let C ⊆ L be a class of propositional logic formu-
lae, and let G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉 be a Boolean
game. Then we say the range of G is in C if:

rng(γi) ⊆ C for all i ∈ N .

Given this, we can strengthen Observation 2 as follows.

Proposition 5. Let C ⊆ L be a class of propositional
logic formulae with a polynomial time satisfiability problem,
and let G = 〈N ,Φ,Φ1, . . . ,Φn , γ1, . . . , γn〉 be a game such
that the range of G is in C. Then the Membership prob-
lem for G is decidable in polynomial time and the Non-
Emptiness problem is in NP.

Notice Proposition 5 is not the same as Observation 2,
above (although it is related). It is a much stronger result:
it does not require that the goal formulae γi are in a tractable
form; only that the range of the goal formulae are tractable,
(i.e., the formulae obtained by simplifying the goal formulae
under the possible choices for all other players). This is a
very different, and much more powerful result than that of
Observation 2. In particular, for every player i ∈ N , the only
constraints it imposes on the goal formulae of player i relate
to the variables actually controlled by player i ; essentially
no constraints are placed on the variables of players j 6= i .
Thus we obtain:

Proposition 6. For the following classes of games, the
Membership problem is decidable in polynomial time, while
the Non-Emptiness problem is NP-complete:

1. Games in which for all players i ∈ N , if γi = C1∧· · ·∧
Cl , then we have |vars(Cj )∩Φi | ≤ 2 for all 1 ≤ j ≤ l .

2. Games in which for all players i ∈ N , if γi = C1 ∧
· · · ∧ Cl , then for all 1 ≤ j ≤ l , the clause Cj contains
at most one unnegated element of Φi .

Proof. We will do the proof for point (1); the second
point is similar. So consider Membership. Take an arbi-
trary outcome (v1, . . . , vi−1, vi , vi+1, . . . , vn).

Since for all players i ∈ N , if γi = C1 ∧ · · · ∧ Cl , then we
have |vars(Cj ) ∩ Φi | ≤ 2 for all 1 ≤ j ≤ l , then it follows
that γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] is in 2-CNF, and contains
only variables in Φi . From Proposition 1 we can see that i
has a beneficial deviation from

(v1, . . . , vi−1, vi , vi+1, . . . , vn)

if there exists a choice v ′i ∈ Vi such that

v ′i |= γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ].

Since γ∗i [v1, . . . , vi−1, vi+1, . . . , vn ] is in 2-CNF, this check
can be done in polynomial time. We now prove NP-completeness

of the Non-Emptiness problem. Membership is obvious by
“guess and check”. For hardness, we reduce SAT. Let ϕ be
a SAT instance. We construct a game Gϕ, satisfying the
conditions of the proposition, such that NE(Gϕ) 6= ∅ iff ϕ
is satisfiable. Assume ϕ has l clauses, ϕ = C1 ∧ · · · ∧ Cl ,
and vars(ϕ) = {x1, . . . , xk}. We introduce one additional
variable, z . We define k + 1 agents, with:

• player 1 ≤ i ≤ k controlling variable xi and having
goal y ; and

• player k + 1 controlling variable y and having goal

γk+1 = (ϕ ∧ z ) ∨ ¬(y ↔ z ).

• player k + 2 controls variable z and has goal

γk+2 = (¬ϕ) ∧ (y ↔ z )

(Notice that γk+1 and γk+2 can trivially be translated into
the form required by the Proposition.) We claim that ϕ
is satisfiable iff N (Gϕ) 6= ∅. If ϕ is satisfiable, then take
any satisfying assignment for ϕ and set y = z = >. We
claim that this outcome is stable: for observe that in this
case, players 1 ≤ i ≤ k + 1 have their goal achieved, and so
cannot benefit by deviating; and player k +2 does not get his
goal achieved, but has no beneficial deviation. Now we claim
that if ϕ is unsatisfiable then NE(Gϕ) = ∅. For consider any
outcome. First observe that since ϕ is unsatisfiable, any
outcome will falsify ϕ. Thus, player k + 2 will have his goal
achieved if the outcome assigns y and z the same value; if
the outcome does not give them the same value then player
k + 2 has a beneficial deviation. However, if player k + 2
deviates to give y and z the same value, then player k + 1
would have a beneficial deviation. Hence no outcome can be
a Nash equilibrium.

5.1 Equilibria that Maximise Social Welfare
The results above indicate that, in the event that rng(γi)
falls within a class of formulae that have a polynomial time
satisfiability problem, then determining whether a given out-
come is an equilibrium for the instance is tractable. It
may, however, often be the case that we do not merely
wish to accept any equilibrium, but would, if possible, pre-
fer to identify one which satisfies some notion of “optimal-
ity”. In the case of Boolean games a natural way of dis-
tinguishing between equilibria is to associate each with its
social welfare, which we define as the total number of agents
whose goal is satisfied. As a very simple example of a
Boolean game in which there are equilibria in which this
measure varies significantly, consider n = 2m agents, N =
〈a1, . . . , am , b1, . . . , bm〉 each of which has control over ex-
actly one propositional variable from

Φ = 〈x1, . . . , xm , y1, . . . , ym〉

so that i determines the value of xi and bi that of yi . Suppose
the goal formula for i is xi ∧yi , and that for bi is xi ∨¬yi . It
is easily checked that the outcome in which all variables are
assigned ⊥ is a Nash equilibrium for this game that satisfies
only the goals of the bi agents. On the other hand, the
assignment in which all variables are assigned > is also a
Nash equilibrium, but one which that satisfies the goals of
all agents. Intuitively, the latter seems preferable to the
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former as a solution.1 This motivates the following decision
question, which we present, at first, in its most general form:

Goal Maximization (gm):
Given a Boolean game, G involving n agents and
t ∈ N such that 1 ≤ t ≤ n, is there an outcome
v for which v ∈ N (G) and |{γi : v |= γi}| ≥ t?

It is not hard to show that, even if G admits a polynomial
time process for deciding membership, this is not sufficient
to ensure gm is tractable.

Proposition 7. gm is NP-complete even if instances are
restricted to those in which every goal formula is in 2-CNF,
which we will denote gm2.

Proof. That gm is in NP follows by simply guessing an
outcome, v , and checking that v satisfies at least t goals.
For NP-hardness, we recall that the so-called Max-2-Sat
problem – deciding if a given 2-cnf, F , has an assignment
that satisfies at least K of its clauses – is NP–complete. We
show that max-2-sat is polynomially reducible to gm2.

Given 〈F ,K 〉 an instance of max-2-sat in which F uses n
variables, {x1, . . . , xn} and has r clauses, form an instance,
〈G〈F ,K〉, t〉 of gm2 as follows: G〈F ,K〉 has r + 1 agents, with
γi = Ci the i ’th clause of F for 1 ≤ i ≤ r , and γr+1 ≡
>. Set Φ = {x1, . . . , xn}, Φi = ∅ when 1 ≤ i ≤ r and
Φr+1 = Φ. To complete the instance t is fixed to K + 1.
We claim that 〈G〈F ,K〉, t〉 is a positive instance of gm2 iff
〈F ,K 〉 is a positive instance of max-2-sat. Trivially, any
assigment α to 〈x1, . . . , xn〉 that satisfies at least K clauses of
F , immediately yields an outcome that achieves the goals of
the corresponding K agents and since γr+1 is always satisfied
this outcome satisfies t = K + 1 goals. Furthermore the
outcome is in N (G〈F ,K〉): i (1 ≤ i ≤ r) cannot deviate
(no variables are under its control) and ar+1 has no reason
to deviate (its goal is already satisfied). Conversely, should
there be an outcome v ∈ N (G〈F ,K〉) satisfying at least t =
K + 1 goals then, since this outcome must satisfy γr+1 it
follows that at least K goals from {γ1, . . . , γr} are satisfied
so that the corresponding assignment witnesses 〈F ,K 〉 as a
positive instance of max-2-sat.

5.2 Utility as Reachability
The forms taken by utility functions as described are some-
what restrictive in that these fail to model the possibility
that (assuming, say, negotiation with other agents can take
place) despite not having its goal satisfied with a particu-
lar outcome, an agent may, in fact be “close to” realising its
intended goal. To make this idea more precise, suppose we
define the t-reachable utility of an outcome to i (denoted w t

i

to distinguish from our standard notion of utility ui) by

w t
i (v) ={
1 − min{ r : r ≤ t and ∃v ′ with δ(v , v ′) = r and v ′ |= γi}/|Φ|
0 if no suitable v ′ exists

Notice that for any outcome, v , w t
i (v) ≥ w0

i (v) = ui(v) and
captures the behaviour that there is a possibility of γi being
achieved (even though this may not be completely within i ’s
control).

It turns out, although this new form appears superficially
computationally more demanding, if we limit attention to k -
bounded deviations then we can still identify tractable ver-
sions of the membership problem.
1Endriss et al. discuss taxation-based mechanisms that in-
centivise players to socially desirable Nash equilibria [7].

Proposition 8. Let C be any class of propositional for-
mulae for which k-flip sat is fixed-parameter tractable wrt
to parameter k. Let t ∈ N be fixed, G be a Boolean game
with agent utilities captured through w t

i . If all goal formu-
lae are in the class C then for any outcome, v ∈ NEt(G) is
polynomial time decidable.

Proof. Suppose that v is an outcome. By definition v ∈
NEt(G) iff no i has a t-bounded beneficial deviation, i.e.
letting v//α denote the outcome obtained from v by the
values currently assigned to Φi in v being replaced by α, it
follows that v ∈ NEt(G) if and only if for each i :

∀ α ∈ 〈>,⊥〉|Φi | δ(v , v//α) ≤ t ⇒ w t
i (v//α) ≤ w t

i (v)

In order to test if i has a beneficial deviation (under the new
notion of utility) it is first necessary to compute w t

i (v), i.e.
to determine if by changing the values of 0, 1, . . . , t variables
in the outcome v it is the case that γi can be achieved. This,
however, is simply the r -flip sat problem and the goal for-
mulae are restricted to those within some fixed-parameter
tractable (with parameter r) class. Thus we can compute
w t

i (v) efficiently and it remains only to test if there is a t-
bounded deviation which improves upon this, i.e whether by
altering at most t variables within the control of i (leaving
the values assigned to other variables unchanged), it is possi-
ble to to construct an outcome v ′ for which w t

i (v ′) > w t
i (v).

this, however, can (at worst) be carried out just by enumer-
ating through the O(|Φi |t) possible deviations.

We note, however, that very simple negotiation protocols,
even when only two agents are involved may lead to prob-
lematic situations. For example consider the following. We
have a Boolean game, G = 〈{a1, a2},Φ,Φ1,Φ2, γ〉 in which
the following protocol, which call the agreed-1-flip protocol
is used: starting from initial assignments a (for Φ1) and b
(for Φ2) a1 proposes a variable of Φ2 to flip at the same
time as a2 proposes a variable of Φ1 for a1 to flip. If γ (the
common goal for both agents) is not satisfied the process
continues. Although this mechnaism is very basic, it turns
out – even for γ being simply a conjunction of literals, that
starting from an ill-chosen initial assignment can lead to ex-
ponentially many negotiation rounds taking place. That is,

Proposition 9. There are 2-player Boolean games, G =
〈{a1, a2},Φ,Φ1,Φ2, γ〉 for which, all of the following hold:

1. There is exactly one outcome, v = (v1, v2) belonging
to NE(G) and such that u1(v) = u2(v) = 1.

2. There are initial valuations v ′1 for Φ1 and v ′2 for Φ2

with which the agreed-1-flip protocol will require Ω(2|Φ|/2)
rounds in order to reach this unique equilibrium state.

Proof. Immediate from Dunne [5]: initial and final val-
uations correspond to points on the |Φ|-dimensional hyper-
cube, with the effect of a single negotiation round being to
move from the current point to one at (Hamming) distance
two from it. The argument in [5] constructs examples where
the minimum numer of hyperedges to be traversed in mov-
ing from initial to final valuation according to this protocol
is bounded below by (77/128)2|Φ|/2.

6. CONCLUSIONS
Boolean games lie at the intersection of logic, game the-
ory, and computer science, and since they were introduced
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in 2001, they have attracted steadily increasing attention
within the multi-agent systems community in particular.
However, a standard criticism of Boolean games is that they
are computationally complex, which on reflection is not sur-
prising, given that they are, ultimately, games played on
propositional logic formulae. If Boolean game are to find
wider application, it will surely therefore be necessary to
consider possible routes to tractability in Boolean games.
In this paper, we have explored two such routes. First, we
considered the idea of relaxing the conditions of pure strat-
egy Nash equilibrium so that we only require that no agent
can benefit by flipping no more than k variables. We saw
that this very natural idea was, for a certain class of Boolean
games (where player’s goals are represented as k -clause CNF
formulae) in fact sufficient to capture all Nash equilibria; we
also saw that k -bounded equilibria lead to a smaller search
space than pure Nash equilibria in general. We also saw
fixed parameter tractability results for k -bounded equilib-
ria. Next, we considered possible classes of Boolean games
for which the corresponding game-theoretic questions were
computationally tractable. We identified a condition on goal
formulae that leads to tractability: if the range of all goal
formulae lies within a tractable class of Boolean formula, the
corresponding decision problems are much simpler.

In terms of related work, a great deal of work in the algo-
rithmic game theory community has addressed the issues of:
(i) the complexity of computing equilibria; (ii) approximate
solution concepts such as ε-Nash equilibria; and (iii) consid-
eration of classes of games for which computation of solu-
tion concepts is tractable; see, for example, the references
in [3, 12, 4, 15, 8]. However, this body of work differs from
the work presented here in that Boolean games have a very
distinctive logical form. Moreover, most work on Boolean
games (including the present paper) has considered only
pure Nash equilibria, while mixed equilibria have received
most attention in the algorithmic game theory community.
This is of course not surprising, given that the existence of
mixed Nash equilibria is guaranteed in finite games, while
pure Nash equilibria are not guaranteed to exist in many
classes of games.

For future work, several issues suggest themselves. First,
it would be interesting to consider mixed Nash equilibria in
the context of Boolean games; indeed, it is perhaps surpris-
ing that this issue has not been considered previously. In
particular, it will be interesting to see how the now-famous
PPAD results of [4] manifest themselves in Boolean games.
Second, since there is clearly a very close relationship be-
tween pure Nash equilibria in Boolean games and the SAT
problem for propositional logic, it would be interesting to ex-
plore this further, and investigate the extent to which SAT
solvers (and QBF/QSAT solvers) can be used to find or
verify equilibrium outcomes. Finally, as our results with k -
bounded equilibria have demonstrated, it is sometimes pos-
sible to have approximate solution concepts that correspond
to exact solution concepts on Boolean games in which goal
formulae are in certain logical normal forms. It would be in-
teresting to consider this issue further, to see whether other
approximate solution concepts “correspond” to their exact
counterparts on certain classes of games.
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ABSTRACT
This article presents a population-based cognitive hierarchy
model that can be used to estimate the reasoning depth
and sophistication of a collection of opponents’ strategies
from observed behavior in repeated games. This framework
provides a compact representation of a distribution of com-
plicated strategies by reducing them to a small number of
parameters. This estimated population model can be then
used to compute a best response to the observed distribu-
tion over these parameters. As such, it provides a basis for
building improved strategies given a history of observations
of the community of agents. Results show that this model
predicts and explains the winning strategies in the recent
2011 Lemonade Stand Game competition, where eight algo-
rithms were pitted against each other. The Lemonade Stand
Game is a three-player game with simple rules that includes
both cooperative and competitive elements. Despite its ap-
parent simplicity, the fact that success depends crucially on
what other players do gives rise to complex interaction pat-
terns, which our new framework captures well.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence

Keywords
Iterated Reasoning, Learning in populations, Multiagent Learn-
ing

1. INTRODUCTION
The essential problem in multiagent learning has been to

apply lessons and techniques from the well-developed field
of machine learning to dynamic environments where other
decision makers are present. In addition to the obvious chal-
lenges of non-stationarity and adversarial adaptation, we
might also consider worlds where agents remain anonymous,
for one reason or another, such that we may not know at
any given moment who we are playing against. This objec-
tive, which can be found in such diverse settings as financial

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

markets and politics, raises questions like how to encode a
group of complicated strategies compactly so that we may
know how to preempt them when a new situation arises. To
put the problem in a machine-learning context, we would
like to assemble the right feature set to support learning.

Game theory has been built around the concept of Nash
equilibria. On the one hand, some games have no unique
equilibrium and in many others it is not efficiently com-
putable. On the other hand, if an agent’s success primarily
depends on others’ actions, equilibria may be ubiquitous and
completely lose their interpretation as a solution concept.
As a result, researchers have developed an alternative the-
ory which has subsequently been proven relevant to human
behavior empirically by a wide array of behavioral experi-
ments. This new class of models goes by many names, but
the basic idea is that strategies can be classified according
to a cognitive hierarchy (CH) with non-reasoning behavior
at the bottom and progressively more strategic reasoning at
higher levels [4, 5]. There are several hypothesis why this
phenomenon occurs. Perhaps people wish to put a minimal
amount of effort to the task, or are limited in capabilities.
Maybe everyday experience gives them a reasonably good
model of what to expect, and this model leads to the behav-
ior. The important thing to note is that this finding appears
to be universal, across different cultures and personal back-
grounds and over many different games [3].

This paper utilizes and extends an approach that has been
applied successfully to behavioral game theory data in the
single-shot case [13]. The contribution of this line of previ-
ous work was to evalutate a range of models by determining
how well they predicted unseen behaviors in matrix-game ex-
periments played by people. This work parallels and builds
upon the prior frameworks in several ways but diverges in
others. First, we are aligned in our goal of predicting be-
havior given a data set of obervations, rather than merely
explaining the observed behavior. Another shared focus is
on the quantal level-k model which has the same properties
we would expect to see in our case. While we are primarily
interested in repeated settings, unlike the earlier work, there
are still similarities to the single-shot case that motivate this
approach. For instance, the initial action selection problem
can be viewed as a single-shot game given that there is no
history, especially if the start to a game significantly influ-
ences the course of the succeeding actions. We propose that
certain games, like the example case we examine in detail,
consist of a series of state-based decisions that closely re-
semble single-shot games. One of our main contributions is
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to develop novel statistical methods that can be applied to
sequential decisions. While we are studying games played
by software agents rather than humans, we maintain that
reasoning agents - both programs and humans - are driven
by the same behavioral interaction patterns and conclusions
of our experiments transfer to human behavior. One benefit
to analyzing simulations is the ease, speed, and low cost of
running experiments to assemble massive amounts of repro-
ducable data.

To make the investigation more concrete, our game of
choice is the Lemonade-stand Game (LSG), which consists
of simple rules that illustrate an inherent tension between
cooperation and competition [15]. This game is composed
of three “lemonade vendors” who compete to serve the most
customers in their vicinity, knowing that their competitors
are looking to do the same. It is therefore a special case
of a Hotelling game, which has been well studied in the
economics literature [7, 10]. From a practical standpoint,
location games like the LSG have obvious applications for
retail establishments in a physical space, but they can also
be applied in abstract spaces like on the web or social net-
works. Hotelling games have another interesting property,
which is that they have a price of anarchy equal to (2n−2)/n
where n is the number of players and the social optimum is
considered to be the minimum score of the n players [1].
Therefore, if many Nash equilibria exist, the resulting pay-
offs of an equilibrium can severely disadvantage any given
player, which makes it all the more urgent for individuals
to act according to an accurate population model in these
settings.

In previous iterations of the tournament, the customers
were spread evenly around the circular beach that functions
as the environment and action set. This past year featured a
new twist where the thirsty lemonade seekers are distributed
unevenly, which creates a new payoff function and strategic
challenge every time the game is played. One advantage of
using this game as a testbed for studying new multiagent
learning methods is that an annual tournament of submit-
ted agents has been run in tandem with the Trading Agent
Competition for the past two years. Because of this tour-
nament, there is now a runnable library of agents that can
be used for data collection, analysis, and model-building.
The upcoming competition adds yet another twist, where
the agents will be given the opportunity to learn over many
matches (whereas before, the memory ended after one match
of 100 rounds). Therefore, we would like a framework that
prepares for this lifelong learning problem, while keeping
data management to a minimum. This paper will present
the CH model as one way to approach such a topic, which
has led to an agent that won the 2011 LSG competition [15].
The results of this competition are given in Table 1.

The next section will discuss some of the most popular
non-equilibrium focused behavioral models and gives details
about the philosophy behind level-based reasoning. Sec-
tion 3 presents a new framework for generating levels of
reasoning in multiplayer games and learning the parameters
of this model from observations. In Section 4, we present
the Generalized Lemonade-stand Game, which has several
properties that make it an intriguing test case for our ex-
tended model, and, using actual submitted agents from a
LSG tournament, we perform experimental analysis in Sec-
tion 5. Finally, we close with a discussion in Section 6.

Place Agent Score Std. Dev.
1 Rutgers (our agent) 50.397 ± 0.022
2 Harvard 48.995 ± 0.020
3 Alberta 48.815 ± 0.022
4 Brown 48.760 ± 0.023
5 Pujara 47.883 ± 0.020
6 BMJoe 47.242 ± 0.021
7 Chapman 45.943 ± 0.019
8 GATech 45.271 ± 0.021

Table 1: Official results of the 2011 Lemonade-stand
Game Tournament. Our agent from Rutgers em-
ploys a version of the state-based Iterated Best Re-
sponse (IBR) and won with a significant margin.

2. BACKGROUND
Here, we present the models of behavior that inform our

extended model. We should note that some of these models
were developed primarily for two-player single-shot games in
mind, and therefore need some adaptation for games with
more players or that are played repeatedly.

2.1 Quantal Response
One proposed model takes into account the observation

that decision makers choose actions according to some func-
tion of their value, as opposed to picking the best one. Un-
der this procedure, agents’ actions are seen to include some
amount of error that can be quantified by the specified func-
tion. The most popular function goes by many names,
including softmax, exponential weighting, Boltzmann ex-
ploration (in the reinforcement-learning literature) or logit
quantal response (in game theory).

The quantal decision rule is as follows: A logit quantal
action for an estimated utility function ui of agent i’s action
ai results in mixed strategy πi given by

π(ai) =
eλui(ai)∑
a′i
eλui(a

′
i)

where λ is defined as the exponential weighting parameter
that decides how much error is expected depending on the
relative action values.

In games, the utilities depend on opponent strategies,
which are not specified by this model. The precision λ is
not specified either, and must be set or fit by the model
designer. The quantal response mechanism does provide a
convenient way to map values into actions that can be used
to respond to opposing strategies.

2.2 Level-k
The basis for iterated reasoning models is the idea that

agents perform various degrees of strategic reasoning. In
this model, dubbed the level-k model, strategies are formed
in response to prior strategies known to implement some
fixed reasoning capacity [5]. To be specific, an agent act-
ing at level k picks the best response to the strategy at the
previous level. In the base case of level 0, the strategy is
typically defined as a uniform random action, to provide the
reasoning a base that does not perform any reasoning at all.
This assumption can be justified by saying that if strategies
resulting from this method cannot outperform random ac-
tion selection, then they are probably not good in any real
sense.
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Given a set of actions A, Kronecker delta function δ :
A × A → {0, 1} and utility function U : Ai × A¬i → R
mapping both agent i’s action and the strategies of rest of
the population ¬i to real values, the noiseless level-k strategy
πki of agent i is

π0
i (ai) =

1

|A|
πki (ai) = δ(ai, arg max

a
u(ai, π

k−1
¬i )).

2.3 Quantal Level-k
This model combines the behaviors of the previous two

models to arrive at a strategy calculation that incorporates
the recursive best response of level-k with the error robust-
ness of quantal response. The quantal action selection op-
erates on the values derived from the level-k model at the
desired setting of k:

π0
i (ai) =

1

|A|

πki (ai) =
eλu(ai,π

k−1
¬i )

∑
a′i
eλu(a

′
i,π

k−1
¬i )

.

2.4 Cognitive Hierarchy
We mention this alternative model to address a possible

criticism of the level-k model, which is that the best response
step essentially ignores levels lower than k− 1. This crucial
point can lead to unwelcome phenomena such as repeating
the mistakes of the past. For this reason the cognitive hi-
erarchy model aims to respond to a distribution over previ-
ous strategies. Of course, model designers then face a new
problem of how to identify the cumulative distribution over
levels. The going standard for researchers is the Poisson
distribution, which has the elegant property of derivation
from a single parameter, τ , that happens to coincide with
the average level in the population [4].

If P represents the Poisson function for some τ , then let
us define the Poisson-based Cognitive Hierarchy as

π0
i (ai) =

1

|A|

πki (ai) = δ

(
ai, arg max

a

(
k−1∑

κ=0

P (κ)u(a¬i, π
κ−1
i (a¬i))

))
.

2.5 Algorithms for Modeling Agents
The recursive modeling framework has also had a big im-

pact on the intersection between artificial intelligence and
game theory. Recent formal models of reasoning paired with
statistical inference include networks of multiagent influence
diagrams [8] and interactive Partially Observable Markov
Decision Processes [9]. These direct modeling algorithms
work best and most efficiently against a single opponent, and
can be used in repeated settings. Adding more players to
the model adds a great deal of computational complexity, as
the interactions proliferate and cris-crossing recursions ap-
pear. In contrast, the simpler behavioral economics models
are well suited to groups of agents, where specific opponent
modeling is not possible. The next section illuminates a pro-

Swerve Straight
Swerve 3, 3 1, 4

Straight 4, 1 0, 0

Table 2: The game of Chicken.

cess for adapting the idea of Iterated Best Response (IBR)
for repeated games against more than a single agent.

3. A STATE-BASED IBR FRAMEWORK
Consider the game of Chicken, for which the payoff bi-

matrix is given in Table 2. The payoffs of the game are such
that a player is rewarded for playing the same action again
and again because doing so encourages others to change their
behavior to the fixed player’s benefit (although the converse
is also true). In such situations, the actions played by the
participants take on the appearance of state, in which the
players view the game both as a static environment in which
reward must be maximized as well as a Chicken-like scenario
where they might prefer to wait for others to back down.
The initial positioning of the agents is often of supreme im-
portance in these cases. We will use position or location
and action interchangeably given the semi-fixed nature of
the actions and for other reasons that will become clear as
we develop the concrete example.

We next propose a model for repeated play that addresses
these dual goals from the level-based perspective described
previously. The decision-making process contains two phases:
the initial action-selection problem, resembling a single-shot
game with no history, and a state-based decision phase,
which begins on the second round and continues until the
end. The two phases resemble each other in significant ways,
but differ in others. The first round is a special case of the
state-based decision because there is no state information
that exists; hence it is natural to use the typical assumption
that others play randomly so that there is a way to initial-
ize the strategic element. Because the initial action sets the
stage for the remainder of the game, choosing a good start
should not be ignored. The relationship between first and
subsequent rounds is key to successfully identifying good
opening moves.

3.1 Initial Action Levels
Although the approach we outline here parallels the one

taken by previous game-theoretic models of behavior, we
will diverge somewhat to handle cases with more than two
agents. The level-k model is successful in cases with only
two players, call them Alex and Bill, because if Alex knows
that Bill is playing level k− 1, then of course it makes sense
to respond with level k. However, what happens when Carla
enters the game? Should the level-k computation be opti-
mized against two level k − 1 players, or perhaps one level
k− 1 and one level 0 or something else entirely? We do not
attempt to answer such questions here, but we would like to
make a point about a certain class of games.

Consider a simple one-shot game with three players (Alex,
Bill, and Carla) and three actions (1, 2, and 3) on a number
line, so that 2 is connected to 1 and 3, but 1 is not connected
to 3. The utilties of such a game for player i are defined as

U(ai) = I(ai)/#(ai) + d(ai, a¬i)

where I is the identity function, #(ai) is the number of
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agents playing action ai, and d is a distance function that
returns the minimum distance to the “closest” player in the
action space identified by the numbers (i.e. d(ai, a¬i) =
minj|j 6=i(|ai − aj |)). If Carla were to calculate a strategy
using level-based reasoning starting at random L0, she would
find that L1 should play 3. At L2, the action choice depends
on how Carla picks the likely population of Alex and Bill. If
Carla believes there are two L1s playing action 3, then she
has no preference over action 1 or 2 as they both get utility
3, as long as she does not pick 3 with a guaranteed score of 1.
However, if she believes that Alex is an L1 but Bill is an L0,
then she has a different choice. In this case, action 1 is worth
(0.5+2+3)/3 = 11/6, action 2 is worth (3+1+3)/3 = 7/3,
and action 3 is worth (1.5 + 1.5 + 1)/3 = 4/3. In either
case, action 2 is optimal (for level 2). In the first case, the
double L1 assumption caused Carla to completely misread
the structure of the game, and ignore the crucial difference
between action 1 and action 2, which is that action 2 has a
higher base score.

Games like this one, such as certain location games, can
mislead players into dismissing such differences if the lower
strategies overlap too much. Therefore, caution dictates
that diversity should trump purity when it comes to selecting
the lower levels to optimize over. Sometimes it might work
to use a distribution over these potential outcomes, but in
other instances it may not be computationally possible to do
so. In these cases, a mix of previous level and sub-previous
level seems to balance out these concerns. Notice that this
weakness is adequately addressed by modeling the popula-
tion as a cognitive hierarchy distribution, but the problem
of selecting a correct distribution leads to a multitude of
possible responses. Using a cognitive hierarchy model raises
computational difficulties, especially in repeated games.

3.2 State-based Levels
Once initial actions have been chosen and played, the po-

sition of others is known and the game takes on a state
element. Now iterated reasoning separates into two paths.
One is the opponent strategy given that our reasoner stays
in place, and the other is the expected strategy once our
reasoner changes its action. The resulting strategies will
be useful in deciding whether or not a new action will ex-
ceed the existing cost of inaction. We make the distinction
between the current action and a new action due to our real-
ization that others are operating under the assumption that
the existing state will likely persist in the future, and the
reasoning process is thus continuing even though nothing
has necessarily changed yet.

Another way of posing this problem is as the interaction
between learning and teaching [11]. The two phenomena
are linked because while it is beneficial for agents to learn a
better course of action in regards to other agents, they must
also understand how to influence the behavior of others.

It is in this context that the concept of regret will be
useful to us. An algorithm’s total regret is defined as the
sum of differences of the total reward of the best strategy
that can be adopted and the performance of the algorithm
being evalutated up to the current point in time. It has been
shown that certain adaptive algorithms have asymptotically
no regret over a history of play [2], which suggests that no
better strategy can be found. In our present model we would
like to focus on a more limited definition of short-term regret
as a way to balance the immediate realized sub-optimal past

with a hoped-for improved future. Let S denote the state,
which is the set of actions chosen by each player. Let us
define short-term regret of agent i playing action ai in state
S as follows:

RSi = max
a∈A

T∑

t=tS

(u(a)− u(ai)),

where T is the current time and tS is the first timestep where
the game was in the current state.

While an agent can easily minimize this regret by choos-
ing its best response, it also needs to anticipate the reactions
of its opponents, which is the purpose of the level-k model.
The current state provides a basis for the level computation
if we assume that level 0 remains fixed with some unknown
probability and otherwise acts randomly. In effect, this as-
sumption leads to the maximizing best response to current
state as level 1 as this response is the optimal move unless
L0 happens to randomize. If we expect others to execute
level 1 in a hypothetical changed state, this expected reac-
tion allows a level 2 agent to compute the action that best
prepares for that eventuality. At L2, agents act in a way
that maximizes utility when the others eventually best re-
spond. If this expectation is for some reason not met, it may
result in inferior performance in the meantime.

A more sophistictated strategy type will aim to limit its
vulnerability to this kind of outmaneuvering, in a way that
is qualitatively different from simple best response. As such
we will take the third level of reasoning to mean an equi-
librium strategy. Putting a ceiling on the reasoning process
is consistent with the earliest versions of recursive reasoning
models which equate L3 with Nash behavior [12]. Reaching
the final heights of the level-based action-selection does not
necessarily complete a model for repeated games, however.
In many games, there are no unique equilibrium strategies
or outcomes, and players may wish to bring about better
ones. In a wide class of games, this path takes the form of
teaching other agents through a consistency of play in order
to guide them towards desirable ends.

Suppose we are engaged in a repeated game of Chicken
(see Table 2) with both players Driving Straight at each
other. This situation is clearly sub-optimal for both: the
regret-minimizing action, in a pure strategy sense, is for ei-
ther player to Swerve. However, the reward-maximizing op-
tion is for only the opponent to Swerve so that we may enjoy
the high reward. At any given moment, the choice comes
down to this dilemma: do I try to wait out my opponent,
in the hopes of getting the high score? Or do I succumb
to the present urge to fold and take the smaller short-term
gain? The only reason to wait in this scenario is due to the
long-term summation of projected rewards contingent on the
other player backing down. By discounting future rewards,
the present value is finite regardless of how long the game
continues. According to standard theory, the equation for
current value V of future fixed rewards rt = r received over
an infinite time period and discounted by γ per time period
can be defined as

V =
r

1− γ .

There comes a point where the regret overtakes this value
for any given discount value γ. For a value-maximizing
agent, this point marks the balance between maintaining
a low utility position in hopes that another player will re-
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lent and relenting oneself. It is reasonable to expect that
the current state of the game will persist for as long as it
already has, due to the 50% principle, which states that the
most likely temporal location for a random length occurence
is halfway through the duration. The present accumulated
regret serves to estimate the likely value lost during the up-
coming time period, traded off against some optimistic fu-
ture returns once that period ends. At that point the ben-
efits of outwaiting the opponent are no longer as favorable
as myopically choosing an action with higher utility than
is currently received. From an observer’s perspective, once
an agent moves, the discount factor for that agent can be
computed. One can also use previous observations to learn
an ideal setting of the discount for optimal action.

In games like Prisoner’s Dilemma, this waiting dilemma
does not exist as there is no short-term gain for choosing
to cooperate, nor is there a long-term cost for not doing
so. Notice also that in this Chicken example the value γ
takes on a meta-game connotation. Denote the two players
W and L. Assume w.l.o.g. that γW > γL. Notice that
W gains a higher score, but the higher the value of γL, the
worse both players perform. We can quantify this game by
saying that, subtracting out the regret, the net value for
the ultimate winner is 4

1−γW −
4

1−γL whereas the loser gets
1

1−γL −
4

1−γL = − 3
1−γL at the moment the loser backs down.

Therefore, we propose the following method for discov-
ering the ideal value of γ given repeated observations of a
population of agents in a game of this type. First, calculate
Rs, the total regret experienced in the agent’s previous state
s, as the difference between expected experienced utility and
potential utility in a new state s′. Next, calculate Ûs, the
projected alternative score advantage received if it stays in
state s assuming the model prediction for the other agents
holds. We can then set up this inequality to represent the
tradeoff between known regret and potential gains at time
t = τ , which yields a condition on γ where if this condition
is broken, a different action should be taken.

Rs ≥
∞∑

t=τ

γtÛs

Rs

Ûs
≥ γτ +

∞∑

t=τ+1

γt

Rs

Ûs
≥ γτ + γ

∞∑

t=τ+1

γt+1

Rs

Ûs
≥ γτ + γ

∞∑

u=τ

γu

Rs

Ûs
≥ γτ + γ

Rs

Ûs

γτ

1− γ ≤ Ûs
Rs

In practice, the discount factor can be interpreted as any-
thing from model uncertainty to probability of events. These
elements, once accurately learned, combine to form a model
that can be effectively used to simulate behavior in previ-
ously unseen payoff settings over many rounds, prior to the
first round of an interaction. This powerful predictive tool
allows a user to identify the most advantageous position to
stake out before others without this capability.

4. THE GENERALIZED LEMONADE-STAND
GAME

The Lemonade Stand Game is a three-player game with
simple rules, yet it gives rise to complex interaction patterns
with cooperative as well as competitive elements. Imagine a
sunny island with twelve beaches arranged like the numbers
on a clock. Early in the morning three lemonade vendors
set up their lemonade stand on one of the beaches in the
dark (simultaneously) without knowing where the others will
sell on that day. Their profit depends on the number of
customers they attract, and each customer simply goes to
the nearest lemonade stand (in case of a tie it goes to each
nearest stand with equal probability).

Martin Zinkevich hosts a competition on an approximately
annually basis, where he allows any participating team to
submit a single agent [15]. These submissions make up the
population of players in the competition. Each triplet plays
the game and submissions are scored according to their aver-
age performance. The 2009 and 2010 competition featured a
uniform customer distribution over the beach locations. In
the most recent 2011 competition, agents competed in the
Generalized Lemonade Stand Game, where each beach has
one, two or three customers with equal probability. Each
customer yields a profit of 6 for the stand that attracts
it. In expectation, there is 144 cumulative payoff, and the
lemonade stand positions decide how this is divided among
the three lemonade vendors. This game is repeated for 100
days with the same customer distribution. An example draw
with 150 cumulated payoff is given in Figure 1. Based on
such a distribution and observations from the days that have
passed, the three vendors need to choose their lemonade
stand position for the next day. In each of these competi-
tions, simple scripted strategies often outperform complex
state-of-the-art online learning algorithms. Note that learn-
ing is only allowed within each game and agents are required
to completely reset and purge all memory after every match.

4.1 Application of IBR
The Lemonade-Stand Game is a far richer environment

than the Chicken or 3-player game described previously, but
the same framework applies. This very game has been the
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Figure 1: The beaches on Lemonade Island are ar-
ranged like the numbers on the clock. Each beach
has 1, 2 or 3 customers with equal probability, and
each customer gives a profit of 6 (left, darker colors
represent higher values). Given lemonade stands ©,
� and ♦, the payoff to each can be computed (right,
colors show to which stand customers go).
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values. The � denotes the best reply to one L1
player © and one uniform random player (L0). The
♦ denotes the best available action against one L1
player © and one L2 player �.

subject of a few articles since the tournament began. Some
participants have taken a more general approach to the plan-
ning elements [6] while others have addressed the way that
iterative methods can produce the behaviors seen [14]. How-
ever, in the generalized version of the game, a richer model
is required to handle the multitude of cases and viable po-
tential strategies.

We assume an agent at Level 0 does not do any reasoning.
Thus, it will chose an arbitrary action at random. An agent
of the next reasoning level will assume its opponents both
use reasoning Level 0. Such a player of Level 1 can compute
its expected payoffs for all possible actions and choose the
best reply (see Figure 2).

At all higher levels, the player will compute a best reply
to opponents of the previous two levels. That is, a Level 2
player computes the expected payoffs against one Level 0
and one Level 1 opponent. Similarly, a Level 3 player com-
putes the best reply to one Level 1 and one Level 2 opponent
(see Figure 3 for an illustration). Structuring the iterative
model in this way is a design choice, which is motivated
both by the problems with overlapping strategies already
mentioned and by the success in capturing the three-player
interactions as presented in the following section.

5. EXPERIMENTS AND VALIDATION
The experimental data presented here is derived from the

submitted set of agents from the July 2011 Generalized LSG
tournament, which implements the LSG with varying cus-
tomer distributions. We have two goals in the following
analysis. First, to show that the features resulting from the
derived level-based model accurately predict performance in
the tournaments. This is confirmed by the more advanced
strategies under this definition being among the winners.
Second, to demonstrate how this level data can be utilized
to efficiently determine the distribution over types that are
present in an ongoing series of games, and subsequently out-
flank them. This goal is of interest for upcoming competi-
tions, where agents will have the chance to observe oppo-
nents in action over many games, albeit anonymously, and
respond as they wish. As a side point, it has been observed
that in LSG’s current form, there is not much opportunity
for modeling and responding to opponents within games, as
matches are often settled within a small number of moves.
Therefore any agent that possesses an accurate model of be-
haviors will have a great advantage when it comes to plan-
ning a strategy in matches with previously unseen density
functions.

5.1 Learning Distributions over Levels
The quantal level-k model (Section 2.3) provides a method

for producing the strategies at each level given a precision
value λ. To produce an estimate of the strategy executed by
an agent, observe its action and the probability that each
strategy would have selected it. Using this probability we
arrive via Bayes at the likelihood that this agent is acting
according to this strategy. The normalized likelihoods for
all strategies give an estimated model of this agent. As de-
scribed in the extended model 3, the two sets of observa-
tions that determine the distribution over levels are initial
actions and new actions. Because the number of these ob-
servations may tend to be small in a single instance of the
game at hand, we must gather data over many matches, with
many different payoff functions. There are several ways to
build models from this data. In the comprehensive survey
and analysis done with human data [13], the authors used a
maximum likelihood method to be able to make predictions
of future behaviors. For our purposes, this predictive abil-
ity may not be enough because we would like to be able to
generate strategies in response to a learned model. There-
fore, a compromise solution is to simply average together
the resulting likelihoods for every instance observed.

The mark of a successful model is to predict outcomes,
and the state-based multiplayer IBR framework presented
here is no exception. In this section we test the correlation
between the various model parameters and final competition
scores. Our results can be summarized in Figure 4. We took
the level distributions for each agent and found the average
estimated level for both initial action and state action in
this manner. Then we examined the history leading up to
a change in state and recorded the regrets of the participat-
ing agents, and thereby arrived at bounds on γ. This step
gives three total model parameters, including the discount
factor. All three are highly positively correlated with final
performance. If we combine all three values to predict the
score, we reach a 0.83 coefficient of correlation and over 0.9
for prediction of rankings. The initial action level has high-
est performance at L2, on account of other agents playing
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Figure 4: A comparison of the final competition score with the maximum likelihood level (R2 = 0.73), estimated
state-based level (R2 = 0.72) and estimated score (R2 = 0.83). (a) The best fit over the data points is a quadratic
function because most of the agents are L1 or less, which means that L3 does worse than an L2 strategy in
this population. (b) Average likelihoods of each level are computed and normalized, and then each level is
weighted by the corresponding likelihood. The Spearman’s rank coefficient is 0.93. (c) The estimated score is
output by the final model as a function of initial level, state-based level, and discount factor. The Spearman’s
rank coefficient is 0.9. The trendline shown is X=Y.

sub-L2 strategies. Recall that the level-k model prescribes
responding to the average degree of sophistication in the
population, and not necessarily the highest possible strat-
egy calculation with the most reasoning.

5.2 Building Strategies from a Learned Level-
based Model

Once the strategy distribution is in place, we turn to find-
ing optimal responses to the underlying population. The
process used to accomplish this task is basically the mirror
image of the learning mechanism. Given a new LSG in-
stance, we discover the initial action levels, up to the third.
In our case three is sufficient because the reasoning only
needs to handle three agents. It so happens that by choos-
ing one action from each of the three level strategies will
yield a very good approximation to the likely final state of
a series of best response steps, starting from any initial po-
sitions. In the event that the space cannot be divided in
this way, there are probably a high number of equally good
starting points distributed more or less evenly around the
circle. We have done analysis to confirm this point but can-
not show it for lack of room. We will suffice to call these
actions stable for lack of a better word.

Once these three candidate actions are chosen, we can
easily find the scores assuming that there is one agent at
each location, giving a ranking of these three, which will not
necessarily correspond to the level that first produced them.
(See Figures 4-6 for a visual example explanation.) It is un-
likely that the three players will end up picking a different
one of the three stable actions. More likely is that at least
one of our two opponents will choose the highest ranked ac-
tion, as all else equal it would be the best one. Fortunately
this situation is ideal for us to analyze using the regret-based
approach mentioned in Section 3. If we have an estimated
discount factor (γ) for our target population, then we know
how long to expect an opponent to wait before switching to
the lesser stable action, leaving our agent in command of
the best one. If γ is sufficiently low, it will be worth the
initial cost to be the lucky agent to collect the higher score.
However, if the population has demonstrated high γ and

therefore a lot of patience, then it may in fact be optimal to
take one of the lower ranked stable actions, and hope that
our opponents end up fighting over the highly ranked loca-
tion. The parameterized model accounts for these opposing
forces and combines them to compute the estimated values
for each of these stable points over an entire game, prior to
the game starting. Although we have described this process
in words here, an agent we have built is able to quantita-
tively discover this solution automatically, and thus fully
implement a model-based response.

In Table 3, we show the performance of our agent, the
Full-Model agent, against the top four challengers in the
latest tournament. The best submissions are used since
other strategies have been observed to emulate them af-
ter some time [16], and we would like our agent to perform
well against likely future competitors. This agent runs the
model to estimate the game-length values of the best start-
ing points, and selects the best of these accordingly. Once
the game has begun, it switches into state-based mode and
makes regret-informed decisions using an internal value of γ
that may be adjusted based on observations from the popu-
lation. Table 4 replicates the original tournament with the
addition of the Full-Model agent.

6. CONCLUSION
This article demonstrated a model synthesizing several

Table 3: Results of an internal experimental match-
up including the top four agents of the 2011 Tourna-
ment and an agent constructed using the full state-
based IBR. 100 repetitions of each match shown.

Ranking Agent Score Error
1 Full-Model 51.61 0.039
2 Rutgers 49.36 0.037
3 Alberta 47.63 0.039
4 Harvard 47.60 0.032
5 Brown 43.10 0.034
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Table 4: Results of an internal experimental match-
up including all agents of the 2011 Tournament and
an agent constructed using the full state-based IBR.
100 repetitions of each match shown.

Ranking Agent Score Error
1 Full-Model 50.48 0.042
2 Rutgers 50.06 0.033
3 Harvard 49.21 0.035
4 Alberta 48.83 0.030
5 Brown 48.40 0.036
6 Pujara 47.27 0.039
7 BMJoe 46.95 0.037
8 Chapman 45.46 0.035
9 GATech 45.03 0.031

schools of thought regarding the modeling and prediction
of agent behavior, especially including level-based reason-
ing and regret minimization. We built upon established
methods for constructing a hierarchy of strategies through
the tried-and-true best response operation as pieces of a ro-
bust process and adapted them to operate in new domains.
Our present framework has a corresponding automated al-
gorithm that outputs the strategies at each level. Given a
data set of behavioral observations, the model infers the rel-
evant parameters and frequencies of the constructed strate-
gies. The final step is to translate the model into useable
strategies, as we show through the Lemonade-stand Game
example. The strength of our model is its compactness and
ability to pre-simulate the likely course of action before the
game is populated with agents, giving us a sizeable advan-
tage when learning is allowed over many periods. The LSG
tournament provides a case study for this model in action,
and its past and present success is credited to the power of
an automated procedure based on our framework.
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ABSTRACT
In many multiagent domains, no single observation event is suffi-
cient to determine that the behavior of individuals is suspicious. In-
stead, suspiciousness must be inferred from a combination of mul-
tiple events, where events refer to the individual’s interactions with
other individuals. Hence, a detection system must employ a detec-
tor that combines evidence from multiple events, in contrast to most
previous work, which focuses on the detection of a single, clearly
suspicious event. This paper proposes a two-step detection system,
where it first detects trigger events from multiagent interactions,
and then combines the evidence to provide a degree of suspicion.
The paper provides three key contributions: (i) proposes a novel
detector that generalizes a utility-based plan recognition with arbi-
trary utility functions, (ii) specifies conditions that any reasonable
detector should satisfy, and (iii) analyzes three detectors and com-
pares them with the proposed approach. The results on a simulated
airport domain and a dangerous-driver domain show that our new
algorithm outperforms other approaches in several settings.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: intelligent agents, multi-
agent systems

General Terms
Algorithms, Security, Experimentation

Keywords
suspicious behavior, multiagent interactions, scoring functions

1. INTRODUCTION
There is a significant amount of research in suspicious activity de-
tection, given its importance in many domains [1, 5, 9, 16]. The
goal is to augment the traditional security measures by scrutinizing
the behavior of all the subjects in the environment. We target a large
class of applications where no single event is sufficient to make
a decision about whether behavior is suspicious or not. Instead,
we face a sparse set of trigger events that identify interesting parts
characterizing the behavior trace. Examples include a potentially
suspicious passenger who appears to turn away in the presence of
security personnel, but not blatantly so, hence no single such event

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

is enough to raise suspicion. The main question we address is how
to combine multiple events to decide whether an event trace corre-
sponds to the behavior of a normal or a suspicious person.

There are four challenges that need to be addressed. First, there
is no one significant event or incident that would help us to imme-
diately reach a decision; a series of trigger events allows us to reach
a decision. Second, we have no knowledge about the exact plans
devised by a suspicious person. Third, trigger events include the
interactions of multiple agents making recognition in the presence
of noise difficult. Fourth, the degree of suspiciousness contributed
by a suspicious event depends on the agent’s behavior in the past.
For example, the third suspicious event is evaluated differently than
the first, since the agent’s previous behavior indicates a tendency
to behave suspiciously. Hence, the simple counting of suspicious
trigger events cannot be applied, since it accumulates all the events
linearly. Furthermore, most of the plan-recognition methods, which
rely on a plan library, are insufficient, since plans are not known in
advance.

This paper presents a two-step approach to suspicious behavior
detection from a sequence of an agent’s actions. The first step de-
tects trigger events, i.e., interesting parts of the sequence that serve
as evidence, and estimates the probability that an event is suspi-
cious. For this task we present an approach using coupled hidden
Markov models [4] that are able to model interactive behavior. The
second step combines evidence from multiple events in order to
determine suspiciousness.

The key contributions of this paper are in the second step, which
is defined as a decision problem: Is the behavior of an agent sus-
picious given a sequence of trigger events? First, we formally de-
scribe the detection problem and specify the conditions that any
reasonable detector should satisfy. Second, we analyze three de-
tectors, namely the naive Bayes detector, the hidden Markov mod-
els and the utility-based plan recognition (UPR). These detectors,
however, either simplify the problem or evaluate the events linearly.
Finally, we present a novel detector that is a generalization of UPR
and denoted as Function-UPR (F-UPR): (i) we define utilities as a
set of functions over state transitions and observations; and (ii) we
introduce an observation utility function that is especially suitable
for suspicious behavior detection, since it is able to evaluate events
non-linearly. The experimental evaluation on a simulated airport
domain first compares the three detectors with our proposed ap-
proach. The best two approaches are additionally compared on the
dangerous-driver domain.

2. MOTIVATING DOMAIN AND RELATED
WORK

Airports require numerous security solutions, including the identi-
fication of suspicious activities among passengers and staff in sur-

955



rounding areas. Our goal is to monitor passengers during the time
they spend at the airport and to detect those that indicate a high level
of stress, fear or deception. It is reasonable to assume that there is
a camera network to track a passenger throughout the airport. We
focus on a task where no single event is sufficient to identify a sus-
picious passenger, but a series of events establishes the decision
over time. The detection of events might be limited due to noise or
an inability to extract some features (e.g., using a ceiling-mounted
camera one can extract the trajectory of a passenger, but not facial
expressions), hence a normal person may appear suspicious (and
vice versa). Also, a precise plan of the suspicious passenger is not
known in advance. Other domains of interest may include catch-
ing a reckless driver executing dangerous (but still legal) maneu-
vers [2], detecting a pirate vessel that plans to capture a transport
vessel and therefore avoids security patrols, etc.

There are two approaches to detecting deviant behavior [2]: sus-
picious and anomalous behavior detection. The first approach as-
sumes a behavior library that encodes negative behavior, and thus
recognizing observed behavior corresponds to identifying a match
in the library. The second approach uses the behavior library in
an inverse fashion, meaning that the library encodes only positive
behavior. When an observed behavior cannot be matched against
the library it is considered as anomalous. Several approaches have
been proposed to tackle the problem either way. In the airport sce-
nario various systems were introduced to automatically detect some
of the threats, such as leaving objects behind [10], suspicious tra-
jectory paths [16], thefts [10], and vandalism acts and fights [12].
There is also a commercially available system [7] that is able to
detect events such as running passengers, climbing over a fence,
etc. However, these approaches mainly deal with the detection of
single incidents, which are clearly suspicious. They do not address
accumulating suspicion as we do.

Another area of related work includes hidden Markov models
(HMMs) [13] that are widely used in traditional activity recogni-
tion for modeling a sequence of actions. Brand et al. [4] introduced
coupled HMMs as an extension with multiple hidden interacting
chains that are able to model interactive behavior. Duong et al. [5]
focused on the duration of activities and introduced switching hid-
den semi-Markov models that provide probabilistic constraints over
the duration of plans, and applied them to the detection of anoma-
lies in the activities of daily living. Although widely used, HMMs
may become inadequate when actions are more complex or have
long-term temporal dependencies [11].

Plan recognition algorithms may use a hybrid approach for sus-
picious activity recognition. A symbolic plan recognizer is used to
filter consistent hypotheses, passing them to an evaluation engine,
which focuses on ranking. Geib and Goldman presented PHATT [8],
a probabilistic approach based on tree grammars able to cope with
interleaved goals, partially ordered plans, and failed observed ac-
tions. Sukthankar and Sycara [14] addressed plan recognition for
multiagent teams, where plans were ordered by linear accumulation
of observed actions consistent with the plan. Another approach is
presented by Avrahami-Zilberbrand and Kaminka [2, 3]. Utility-
based Plan Recognition (UPR) introduces utility to the observer in
selecting the recognition hypotheses. The main strength of UPR is
that it can incorporate an observer’s bias to events with a low like-
lihood, for example, the a-priori probability for planting a bomb is
very low, but detecting it has a high expected utility. We further
discuss this approach in Section 5.3.

Furthermore, intrusion detection systems analyze a variety of
user activities to identify suspicious computer activities. Helman
and Liepins [9] proposed an intrusion detection system that pro-
vides a rating for computer activities, demonstrating frequency es-

timator and matching rules. Esponda et al. [6] analyzed tradeoffs
between positive and negative activity patterns in the library and
presented an approach based on partially matching rules. These ap-
proaches similarly address the problem of how to decide whether a
user’s activity is suspicious, but differ significantly in using a dif-
ferent approach to match and assess behavior.

3. DEFINITIONS AND ASSUMPTIONS
Our methods are general, but for illustrative purposes we will make
use of the airport domain to provide examples. We treat subjects as
agents in a multi-agent environment. At this point we assume that
we can perfectly observe their actions.

Definition 1. Action at is a tuple of observed feature values
⟨ f1, ..., fn⟩ that describe state of an agent at a given time stamp t.

Definition 2. Action trace a(l) is a totally-ordered sequence of l
actions a(l) = (a1,a2, ...,al).

Definition 3. Trigger event xi, j = (ai, ...,a j) is a subsequence of
action trace a(k) (s.t. 1 ≤ i < j ≤ k). A trigger event x is described
by probabilities that the corresponding subsequence is suspicious
s(x) and normal n(x).

Definition 4. Event trace x(k) is a totally-ordered sequence of k
trigger events x(k) = (x1,x2, ...,xk).

We address the problem of suspicious behavior detection in two
steps, as shown in Figure 1. The first step analyzes an action trace
and the surrounding environment to detect trigger events that char-
acterize its interesting parts. The event trace then enters the second
step, where it is evaluated. If the evaluation result exceeds a thresh-
old value or is large relative to other evaluations of the event traces,
then it is considered as suspicious.

Trigger-event detection 

Suspicious behavior detection  
f(x(k)) 

Event trace 
x(k) = x1, x2, …, xk 

Action trace 
a(l) = a1, a2, …, al 

Is 
f(x(k)) 
above

Ĳ?  

Agent is not 
suspicious 

Agent is 
suspicious 

Agent of interest 

yes 

no 

Environment 

Step 1 
Step 2 

Figure 1: Two-step detection of suspicious behavior: (1) detec-
tion of trigger events and (2) detection of suspicious behavior.

Trigger events can be any kind of partial observations we are able
to extract from the domain. In the airport domain, one can focus on
people exhibiting indications of suspicious behavior, such as tak-
ing photos of critical infrastructure, revisiting the same location,
evading the area when noticed, standing in customer service but
not requesting the service, etc. We focus on a well-known detec-
tor obtained from conversations with domain experts. We observe
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the interactions between agents at the airport, more precisely, we
are interested in how a passenger behaves in the presence of a uni-
formed authority figure. A person exposed to a high level of stress
produces behavior that indicates fear, anxiety, pressure, tension,
deception, etc. Hence, it is rational for the suspicious agent to min-
imize contacts with the authorities. Note, that no single avoidance
is enough to raise a flag, but many such events put together cause
the person to be treated as suspicious.

A trigger-event detection able to identify interactive behavior
may rely on coupled hidden Markov models (CHMMs), which are
briefly described below. The reader is referred to [4] for details;
the CHMMs are not the main contribution of the paper. The obser-
vations consist of two action traces, namely the action trace of the
agent of interest and the action trace of an authority agent when
they are within some predefined radius. The CHMMs are able
to model the complex, interactive behavior by two HMM chains,
where the hidden states from one chain directly impact on the hid-
den states from the other chain. Figure 2 illustrates the CHMM
for a pair of action traces with length l = 3. The current state QA

t
of agent A is affected by both its previous state QA

t−1 and previous
state QB

t−1 of the agent B (similarly QB
t is affected by QB

t−1 and
QA

t−1). Each state Qi also impacts the corresponding observation
state Yt . For example, if the authority agent moves toward the sus-
picious agent, the next state of the latter takes this into account and
produces an action for an avoidance maneuver.

AQ1
AQ2

BQ2
BQ1

AY1
AY2

BY2
BY1

AQ3

BQ3

AY3

BY3

Figure 2: An example of CHMM for a pair of action traces with
length l = 3.

A regular passenger may not turn or do anything different in the
presence of authorities, while a suspicious person will (although as
described below, an observer may not have perfect observability).
Therefore, we create and train two CHMMs: N̂I models the in-
teractions produced by authorities and regular passengers, while ŜI
models the interactions produced by authorities and suspicious pas-
sengers. For a new event (interaction) x we compute the posterior
probability that the event is generated with both models yielding
n̂I(x) = Pr{x|N̂} and ŝI(x) = Pr{x|Ŝ}, respectively.

4. PROBLEM DEFINITION
This section formally analyzes how to evaluate a sequence of trig-
ger events. We leverage the Bayesian framework for intrusion de-
tection [9] for the problem definition. At each time step t we ob-
serve an event xt , generated by a hidden stochastic process H. Now
suppose that H is a mixture of two auxiliary stochastic processes,
namely the normal process N and the suspicious process S that cor-
respond to a normal and a suspicious passenger. The random vari-
able yt = 0 if xt is generated by N and yt = 1 if xt is generated by S.
Since a suspicious passenger always emits a suspicious event (and
a normal person a normal event), y for a specific agent does not
change over time. In reality, there can be many subprocesses con-
tributing to each of N and S, i.e., many normal users with different
behavior patterns; however, here we assume only a single N and a
single S that capture all the variability.

To this point we assumed that an observer is able to perfectly
observe whether an event is generated by S or N. In practice, how-
ever, it may appear that a normal person emits suspicious events (or
vice-versa). An observer might be limited for various reasons, such
as an inability to detect characterizing features and noisy trigger-
event detectors. Therefore, we relax this assumption as follows.
An event xt is observed as generated by N with the probability
n(xt) = Pr{H(t) = xt |yt = 0} and as generated by S with the prob-
ability s(xt) = Pr{H(t) = xt |yt = 1} = 1−n(xt). The mixture dis-
tribution of an event xt and a prior probability λ is

Pr{H(t) = xt} = λ s(xt)+(1−λ )n(xt). (1)

The objective of suspicious behavior detection is to identify those
traces x(k) = (x1,x2, ...,xk) that are likely to be suspicious activities,
i.e., traces x for which

Pr{y = 1|H(t) = xt , t = 1, ...,k} > τ, (2)

is above some threshold τ or is large relative to the probability for
other traces.

The reason why this problem is difficult is because of the non-
linear effect. Consider the following example. Suppose we observe
a person do a U-turn in front of a police officer, so that the likeli-
hood that this was a suspicious person becomes high. Later we see
the same person doing a half-turn in front of a police officer. This
trigger event if seen on its own, would not contribute much to the
overall suspicion. However, following the initial turn we had ob-
served, this new turn is a much stronger evidence to be attributed
to the overall suspicion, because we bias the new event with our
previous observation.

Theoretically, it might be possible to optimally detect suspicious
behavior using Eq. (2). Unfortunately, this is usually not the case in
practice. To see this, let us assume a prior probability λ = Pr{yt =
1, t = 1, ...,k}. In most cases λ is close to 0, since in real-world
applications suspicious activities are rare. Let the stochastic pro-
cesses N, S and H denote n(x(k)) = Pr{H(t) = xt , t = 1, ...,k|y =

0}, s(x(k)) = Pr{H(t) = xt , t = 1, ...,k|y = 1}, and h(x(k)) =
Pr{H(t) = xt , t = 1, ...,k}, respectively. Using Bayes theorem we
can derive from Eq. (2)

Pr{y = 1|H(t) = xt , t = 1, ...,k} =
λ · s(x(k))

h(x(k))
= (3)

=
λ ·∏k

t=1 s(xt |xi,i=t−1,...,1 )

λ ∏k
t=1 s(xt |xi,i=t−1,...,1 )+(1−λ )∏k

t=1 n(xt |xi,i=t−1,...,1 )

To this point we implicitly assumed that the distributions λ , n
and s are reliably estimable. The degree to which this assumption is
valid depends on our detection capability. Suppose we have a suf-
ficiently large dataset Dl of labeled event traces, we can estimate
the prior probability λ from the Dl using the relative frequency,
presenting the number of traces generated by a suspicious agent di-
vided by the total number of traces (since traces can be of different
lengths, the quotient is normalized by the traces’ length). Note that
in order to compute Pr{H(t) = xt , t = 1, ...,k|y = 1} we have to
evaluate

s(x1) · s(x2|x1) · ... · s(xk|xk−1, ...,x1) (4)

While some first terms, i.e., s(xt),s(xt |xt−1), can still be estimated,
the estimation of latter terms including increasingly more history
becomes less and less reliable. In real-world applications we have
no direct knowledge of the values of the conditional probabilities,
i.e., we are unable to specify the probability of an event given all
the possible combinations of history. For this reason we must ap-
proximate the Bayes optimality in general. In particular, we will be
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concerned with estimating Pr{y = 1|H(t) = xt , t = 1, ...,k} using
approximate approaches.

Given an event trace, some events may appear suspicious and
some not. Hence, detection systems must have a scoring function
that combines the evidence. The output of a function is interpreted
as the degree of suspicion attributed to the event trace. Although
any two scoring functions need not be exactly the same, we can
specify the conditions that any reasonable scoring function must
satisfy. The class defined below appears to be both natural and
general.

The detection system can employ a scoring function f that inter-
prets events to produce a score characterizing the overall suspicion
of the trace. Given a threshold value τ and an event trace x(k) we
can classify x(k) as suspicious if f (x(k)) ≥ τ .

Definition 5. A scoring function f over a trace of events x(k) is
a function

f :
K∪

k=1

x(k) → R

The function f assigns a real value to any trace x(k) of length k =
1, ...,K.

Let ∆(xt) decide whether a single event xt is suspicious or not

∆(xt) =

{
1; if s′(xt) ≥ τ ′

0; else
, (5)

s′(xt) =
λ · s(xt)

λ · s(xt)+(1−λ ) ·n(xt)
. (6)

Definition 6. A class of well-behaved functions consist of scor-
ing functions s.t. ∀x(k),xk+1 :

f (x(k),xk+1) ≥ f (x(k)) if ∆(xk+1) = 1,

f (x(k),xk+1) ≤ f (x(k)) if ∆(xk+1) = 0.

The conditions imply that: (i) the scoring function f ’s evaluation
increases when a new suspicious event is added to the trace and (ii)
decreases when a normal event is added to the trace. The well-
behaved scoring functions are motivated by the key observation
that a suspicious event xk+1 (i.e., ∆(xk+1) = 1) is more likely to
be generated by a suspicious process S than a normal process N,
regardless of the history x(k), i.e.,

s(xk+1|x(k)) ≥ n(xk+1|x(k)) if ∆(xk+1) = 1 and

s(xk+1|x(k)) ≤ n(xk+1|x(k)) if ∆(xk+1) = 0.

5. DETECTORS
In this section we analyze the approaches that decide whether an
event trace is suspicious. First, we discuss the naive Bayes detector
that relaxes the initial assumptions. Next, we discuss an approach
that directly tackles the problem of estimating the likelihood that a
trace was generated by a suspicious process using HMMs. Finally,
we analyze an approach based on plan recognition and present two
extensions: (1) we define utilities as a potential function; and (2)
we present an observation utility function able to address non-linear
accumulation.

5.1 Naive Bayes Detector
A naive approach assumes that events are independent, which means
that the current event depends only on the current time step t and

not on the time steps prior to t. The evaluation of Eq. (3) is simpli-
fied using the naive assumption:

Pr{y = 1|H(t) = xt , t = 1, ...,k} =

λ ·∏k
t=1 ŝ(xt)

λ ·∏k
i=1 ŝ(xt)+(1−λ ) ·∏k

i=1 n̂(xt)
(7)

We have to evaluate the probability Pr{H(t) = xt |yt} that an event
is generated by a normal process n̂(xt) and a suspicious process
ŝ(xt), which is tractable in terms of evaluation. The approaches
for estimating n̂ and ŝ may include a frequentist estimator, hid-
den Markov models, k-nearest neighbors, neural networks, etc. We
showed an approach using CHMM in Section 3. An evaluation of
the event trace is also well behaved when τ ′ = λ .

In practice, the assumptions may oversimplify the model; how-
ever, we will use it as a baseline in our experiments.

5.2 Hidden Markov Models
An estimation of the conditional probabilities including the his-
tory can be encoded with hidden Markov models (HMMs) [13].
A HMM is a temporal probabilistic model with two embedded
stochastic processes: an unobservable (hidden) process Q, which
can be observed only through another (visible) stochastic process
O. Each state in Q has state-transition probabilities (which are vis-
ible) and a probability distribution over the possible values of O.
The key assumption is that the current hidden state of the agent is
affected only by its previous state.

Now suppose we create a HMM to estimate Pr{H(t) = xt |y =
1, t = 1, ...,k}, more precisely, it models the probability that a trace
of events is generated by a suspicious agent. The hidden states of
the process Q may be referred to as internal states presenting the
intentions of the suspicious agent. For the sake of clarity, let us
assume only two hidden states: a normal intention and a suspicious
intention, emitting normal and suspicious events, respectively. The
transitions between the hidden states can be explained as probabili-
ties that the agent will either follow or change its current intention.
Informally, this switching of intentions may be interpreted as fol-
lows: from an observer’s perspective, sometimes suggesting that
the observed agent is switching intentions appears to provide a bet-
ter explanation of the behaviors.

We construct two HMM models: a normal model N̄ and a sus-
picious model S̄. We split all the labeled traces x ∈ Dl to traces
generated by normal and suspicious agents, and use them to learn
the parameters of the models N̄ and S̄, respectively. The model
parameters can be locally optimized using an iterative procedure
such as Baum-Welch method [13]. Given a new event trace x(k) =
(x1,x2, ...,xk) we compute the probability that the trace was gen-
erated by each model Pr{x(x)|N̄} and Pr{x(x)|S̄} using a forward-
backward procedure [13]. Given the prior probability λ̄ we com-
pute an estimate the trace x(k) was generated by the suspicious pro-
cess S:

Pr{y = 1|H(t) = xt , t = 1, ...,k} =

λ̄ ·Pr{x(k)|S̄}
λ̄ ·Pr{x(k)|S̄}+(1−λ̄ )·Pr{x(k)|N̄} . (8)

Although the information about previous behavior is now par-
tially encoded in the transition probabilities (i.e., given the agent’s
intention at time step t is suspicious it is more likely that the in-
tention at t + 1 will be suspicious as well), the model still uses the
Markov assumption, i.e., the next agent’s intention depends only
on it’s current intention. It is possible to introduce more complex
HMM structures with long-term dependencies, but learning and in-
ference in such models become computationally intractable [11].
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5.3 Utility-Based Plan Recognition
We exploit UPR, an Utility-based Plan Recognition, briefly de-
scribed below. The reader is referred to [3] for details. UPR con-
sists of a plan library, which encodes behaviors of the observed
agents in a form of directed graph, and a matching algorithm. It fol-
lows the footsteps of the hierarchical HMM in representing proba-
bilistic information in the plan library. A plan step can be atomic,
or non-atomic, i.e., broken down into atomic sub-steps, each a plan
step in itself. Plan steps are linked via sequential edges, describing
the execution order of a given plan and its sub-steps. UPR intro-
duces three types of utilities on the edges: (a) the sequential utility
from the current step to the next; (b) the interruption utility from
the current step to the end of the plan; and (c) the decomposition
utility from the current step at current level to its first substep at the
sub-level. A corresponding probability is maintained for each type
of utility. The observation sequence o is matched against the library
using a Symbolic Plan Recognizer [2], which filters hypotheses that
are consistent with o. Finally, the hypotheses are ranked by their
expected utility.

We use a heuristic version of UPR as follows. Let ŝ(xt) = 1 −
n̂(xt) be the probability that the trigger event xt was generated by
a suspicious person. Let cs > 0 be the cost of the damage caused
by a suspicious person if we do not stop him, and similarly, let
dn = 0 be the cost of the damage caused by a normal person. The
expected cost of letting this person go (marking him as normal)
is cgo = csŝ(xt) + dnn̂(xt) = csŝ(xt). Now suppose cn > 0 is the
cost of arresting an innocent person and ds = 0 is the cost of the
damage caused by a suspicious person when arrested. The ex-
pected cost of stopping this person (marking him as suspicious)
is cstop = cnn̂(xt)+dsŝ(xt) = cnn̂(xt). If there was only one event,
we would compare both hypotheses and choose the one with the
lowest expected cost. Supposing in this case cnn̂(xt) is lower, we
would call this person suspicious.

One possible approach, based on the above expected-cost cal-
culation, would be to determine whether a trigger event is to be
categorized as suspicious or normal, and then to accumulate the to-
tal number of suspicious events, and subtract the total number of
normal events; unfortunately, this simple strategy performs poorly.
Therefore, not only do we count whether an event is suspicious or
normal, but we give it a weight, proportional to the benefit or cost
accrued. The function UUPR hence evaluates an event trace x(k) of
a person by accumulating the weighted benefit of stopping this per-
son and subtracting the weighted cost of arresting a normal person:

UUPR(x(k)) =
k

∑
t=1

b(xt), (9)

b(xt) =

{
csŝ(xt); if cnn̂(xt) ≤ csŝ(xt)

−cnn̂(xt); if cnn̂(xt) > csŝ(xt)
. (10)

If the accumulated cost exceeds a threshold value τ ′, the person
(i.e., trace x(k)) is marked as suspicious.

This remains a heuristic approach and further investigations could
be a topic for future work; however, given that our next approach
performs significantly superior, we chose to investigate that in more
detail rather than providing more heuristics for the current approach.

5.3.1 Utilities as Potential Functions
Although the evaluation function UUPR is well behaved, the utilities
are constant and hence do not allow a dynamic adjustment to the
behavior of the agent in the past. Thus, for instance, the first time
we note a suspicious event, and the second time we note the same
agent making a suspicious event, count equally. These utilities,

however, are unable to express the characteristics of the empirical
observations. Therefore, we extend the notion of utility and define
the utility U as follows.

Definition 7. The utility function U over a plan step qa, a plan
step qb, and the entire observation sequence x(t) until current time
step t is a function

U : ⟨qa,qb,x(t)⟩n → R.

Utility function can be written as

U(qa,qb,x(t)) =
n

∑
j=1

λ ju j(qa,qb,x(t)),

where each utility function u j can be sequential, interruption, de-
composition or any other utility, and λ j are parameters to be de-
fined. This allows us to introduce a set of auxiliary utility func-
tions u j describing not only the plan-step transitions but also the
additional characteristics of the observation sequence. For exam-
ple, the sequential utility from step qi to qi+1 can be written as
ut(qi,qi+1,x(t)) = c, but in general, the constant c can be replaced
with any function over qi, qi+1 and x(t).

Lemma 1. U is a well behaved function iff

∀u j, j = 1...k : u j is well a behaved function.

PROOF. Consider two well behaved functions f and g, and two
scalar constants λ f and λg. Let f ′ = λ f f . Since multiplication with
scalar preserves well-behaved property, f ′ is also a well behaved
function. Let function u denote u = f ′ + g′. Then, u(x(t),xt+1)

= f ′(x(t),xt+1) + g′(x(t),xt+1) ≥ u(x(t)) = f ′(x(t)) + g′(x(t)) if
∆(xt+1 = 1), since f and g are well behaved and therefore
f ′(x(t),xt+1) and g′(x(t)),xt+1) are non-negative. Similarly, f ′

and g′ are non-positive when ∆(xt+1) = 0.

5.3.2 Observation Utility for Suspicious Behavior De-
tection

In order to include the past behavior of an agent in an evaluation
of the evidence, the utility function must be defined over the obser-
vation sequence. We propose an observation utility function that
assigns cost using the number of normal and suspicious events in
the past. Consider the example from Section 4. Suppose we see a
person do a full U-turn in front of a police officer and we give this
event a cost of 1. Later we see the same person doing a half-turn
in front of a police officer. This event if seen on its own, would be
given cost 0.5. However, following this initial turn where we had
given a cost of 1, this new turn, becomes a 1 instead of 0.5. So,
a linear accumulation would have given us a cost of 1.5, whereas
because we bias the new event to register higher on our scale, our
cost is 2 instead of 1.5.

Let ηs(x(k)) define the number of suspicious events in an event
trace x(k):

ηs(x(k)) =
k

∑
t=1

∆(xt), (11)

Similarly, let ηn(x(k)) = k − ηs(x(k)) represent the number of nor-
mal events. Suppose we observed a trace x(k) of all the suspicious
events, i.e., ∀t, t = 1, ...,k : ∆(xt) = 1. Intuitively, the likelihood
that an event xt was indeed generated by a suspicious process in-
creases exponentially according to the number of suspicious events
in the past. On the other hand, if the events in x were normal, i.e.,
∀t, t = 1, ...,k : ∆(xt) = 0, the likelihood exponentially decreases as
the number of normal events increases. We define an observation
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utility function uo over the current event xt and trace x(t−1) recur-
sively as follows:

uo(xt ,x(t−1)) = ψ(x(t)) · (uo(x(t−1))+ω(x(t))), (12)

uo(x(0)) = 0,

ω(x(t)) = α ·ηs(x(t))s(xt )/β , (13)

ψ(x(t)) = γ ·ρ−η∗
n (x(t))/ηs(x(t)). (14)

The term ω(x(t)) uses an exponential function to assign a cost to the
likelihood s(xt) that an event is suspicious. The parameter α > 0
is the initial cost, ηs corresponds to the growth factor, and the pa-
rameter 0 < β < 1 is the likelihood required for the cost to increase
by the growth factor. The parameters α and β are estimated from
the data. Suppose we observe two full U-turns, the second U-turn
attributes higher cost to the overall suspicion, since the exponent
base is increased due to the first U-turn.

Additionally, the term ψ(x(t)) employs an exponential time de-
cay function that discounts the accumulated cost at time t accord-
ing to the number of consecutive normal events η∗

n . The modified
η∗

n represents the time elapsed since the last event ∆(xi) = 1, i.e.,
the number of normal events since the last suspicious event. The
higher the number of consecutive normal events, the faster the cost
decay. The parameter 0 < γ ≤ 1 is the initial decay, the parameter
0 < ρ < 1 is the decay factor, and ηs is used to specify the number
of events required for the decay to decrease by the decay factor.
The parameters γ and ρ are also estimated from the data. Suppose
we observe two agents, one already having made two U-turns and
the other with only one U-turn. Suppose we observe both agents
do a clearly normal event. The overall suspicion of the first agent is
reduced less than the overall suspicion of the second agent. Hence
the higher the number of suspicious events, the slower the suspicion
decay.

The function uo is a well-behaved function by definition. Eq. (12)
can be rewritten, which gives us the utility function UF−UPR:

UF−UPR(x(k)) =
k

∑
t=1

n

∑
j=1

λ j f j(x(t),q(t − i),q(t))

=
k

∑
t=1

(ω(x(t))
k

∏
i=t

ψ(x(i))). (15)

6. EXPERIMENTAL EVALUATION
We conducted empirical tests in a simulated airport domain to eval-
uate the performance of suspicious-passenger detection generated
by four candidate algorithms. In addition, we compared the best
two algorithms on the dangerous-driver domain [2].

To run proof-of-concept tests we considered a simulated environ-
ment, mainly to avoid difficulties due to privacy and confidentiality
issues, and as well as due to the absence of real-world annotated
data of suspicious behavior. A simulator also made it possible to
control the amount of noise otherwise introduced by various vision
systems (occlusions, false detections, etc.), and provided control-
lable and repeatable situations.

6.1 Airport domain
The experiments in this paper use the ESCAPES [15], a state-of-
the-art, multiagent simulator for airport evacuations with several
types of agents exhibiting behaviors of regular travelers, authori-
ties, and families. The agents’ behavior incorporates emotional,
informational and behavioral interactions, such as emotional conta-
gion, the spread of knowledge/fear, social comparison, etc. There-
fore, an agent is affected by the behavior of other agents and their

emotional states, and faced with uncertainty as to what happened
and where the nearest exits are. We assume that the behavior of the
agents corresponds to the behavior of real passengers at the airport.

In cooperation with security officials we defined a scenario where
a suspicious passenger goes from point A to point B while trying
to avoid security personnel at the airport. One may argue that an
adversary that plans to do something malicious would behave nor-
mally in the presence of authorities, and this might be true for a
highly trained individual. As discussed previously, an average per-
son exposed to a high level of stress produces behavior that in-
dicates fear, anxiety, tension, etc., and hence tries to cover it by
minimizing close-range interactions by making u-turns, avoidance
maneuvers, hiding in nearby shops, etc. Implementation details are
provided on a supplemental web page1.

A simulation in ESCAPES is run with a given airport map, au-
thority agents, regular passengers and a suspicious agent going
from point A to B, outputting traces with 2D coordinates for all
agents. We initialized the simulator with 100 agents including
Ka ∈ {5,10,15,20,25} authorities and a suspicious person with
randomly chosen initial and final points. For each Ka setting we
ran 30 simulations, each consisting of 1500 − 3000 time steps and
100 traces. On average, there were 215 interactions between the au-
thorities and the passengers per run. To avoid issues that arise with
highly unbalanced datasets we used random re-sampling without
replacement to balance the data to the ratio suspicious : normal
= 20 : 80.

The trace of the coordinates was preprocessed to the action trace
as follows. A change in position from the previous to the current
state was described as taking the action of moving North, South,
East and West, and their combinations (nine in total). This trans-
formation describes the shape of a trajectory but discards the lo-
cation information, which leads to better generalization. We also
experimented with other transformations, for example, a more gen-
eral one that also discards the orientation (forward, backward, left,
right), and a less general one that divides the airport map with a
square-based grid with numbered squares [2]. Preliminary tests
showed the best performance when using the first transformation.

For the evaluation we used precision, recall, specificity and F-
measure. Precision is defined as the number of true positives (all
suspicious cases correctly classified as suspicious) divided by the
number of all cases marked as suspicious (true and false positives):
pr = T P/(T P+FP). A perfect score 1 means that all cases marked
as suspicious were indeed suspicious. Hence, the score 1 − pr
represents the rate of false alarms. Recall is defined as the num-
ber of true positives divided by the number of all the suspicious
cases: re = T P/(T P + FN). A perfect score 1 means that all
the suspicious cases were detected (but says nothing about falsely
marked normal cases). Similarly, the specificity is defined for nor-
mal cases sp = T N/(T N + FP). There are two points of interest,
depending on our objective. The first one is when both scores are
minimized, i.e., the trade-off point between false alarms and non-
detected suspicious passengers, which can be detected with the F-
measure FM = 2 · pr · re/(pr + re). The other case is when a high
false-alarm rate is acceptable and non-detected cases are extremely
costly. In this case we are interested in precision when recall re = 1,
i.e., all the suspicious passengers are found. In the worst-case sce-
nario, all the passengers are marked as suspicious. We evaluate the
statistical significance of our results using the two-sample t-test.

6.1.1 Results
In the first experiment we fixed the number of authority figures

1http://dis.ijs.si/bostjan/aamas2012
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Figure 3: Confusion error rates for different threshold values.

Ka = 10. We instantiated the naive Bayes, HMMs, UPR, and F-
UPR detectors. Additionally, we considered another baseline de-
tector using a simple rule over the threshold k and the event trace
x(t), saying that if the number of suspicious events exceeds k (i.e.,
∃k : ηs(x(t)) > k), then mark trace x(t) as suspicious. All the detec-
tors used the event-trace probabilities s′(x(t)) and n′ = 1 − s′(x(t))
as returned by the event-detection step. For the HMM approach
we considered two ergodic HMMs as described is Section 6.1.2.
We used two observations, the normal ∆(xt) = 0 and the suspi-
cious ∆(xt) = 1 event, and varied the number of hidden states. The
best results were achieved with three hidden states. Note that the
HMMs detector applied on top of the CHMMs detector basically
presents a version of the mixed layered HMM structure. All the
models (including UPR and F-UPR detectors) were evaluated with
10-fold-cross validation.

Figures 3(a)–3(e) show the confusion error rates for suspicious
(1-recall) and normal (1-specificity) passengers as a function of the
normalized threshold value for all the five algorithms. For example,
if the threshold is zero, then all the passengers are marked as sus-
picious. In this case: (i) all the suspicious passengers are correctly
identified as suspicious, hence the error rate is also zero; and (ii)
all the normal passengers are incorrectly identified as suspicious,
hence the error rate is 1. As the threshold value increases, the error
rate for correctly identifying the suspicious passengers increases,
while the error rate for correctly identifying the normal passengers
decreases.

There are two points of interest: (i) when the error rates cross
each other, i.e., the F-measure is maximized; and (ii) the right-
most point when the error rate for suspicious passengers is zero
(i.e., re = 1) and the other one is minimized. These cases are tab-
ulated in Table 1. The first case is summarized in columns 2-4
showing the recall, precision and F-measure. F-UPR outperforms
the ∃k rule (p < 0.01), naive Bayes (p < 0.01), HMMs (p < 0.01),
and UPR (p < 0.01). The second case, where the threshold value
is such that all the suspicious passengers are discovered, is shown
in columns 5-6. Column five shows the confusion error for normal
passengers (i.e., 1-specificity), while the column six shows the ratio
of correctly raised alarms (i.e., precision). The ∃k rule, for instance,
marks all the passengers as suspicious (FP rate is 100%) and con-
sequentially almost 80% of alarms are false. HMMs achieve better
performance, but still mark more than 50% of normal passengers
as suspicious. Other methods mark between 1/5 and 1/4 of nor-
mal passengers as suspicious, but precision is around 50%, which
means that every second passenger marked as suspicious is indeed
suspicious (and all suspicious passengers are discovered!). Overall,
F-UPR in this setting also outperforms the ∃k rule (p < 0.01), naive
Bayes (p < 0.05), HMMs (p < 0.01), and UPR (p < 0.05). Finally,
Figure 4 depicts the ROC curves showing that F-UPR performs the
same or better in all the threshold settings.

In the last experiment we varied the number of authorities in
the simulation. We expect that an increased number of authority
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Figure 4: ROC curves comparing all the detectors.

Table 1: Evaluation results when the F-measure is maximized
(columns 2-4) and all the suspicious cases are discovered (last
two columns).

max FM re=1
Algorithm re pr FM 1-spec pr

∃k rule 0.619 0.464 0.530 1.000 0.202
Naive Bayes 0.857 0.581 0.693 0.270 0.436

HMMs 0.600 0.706 0.649 0.526 0.286
UPR 0.857 0.720 0.783 0.256 0.477

F-UPR 0.905 0.905 0.905 0.217 0.539
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(a) F-measure is maximized.
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are discovered.

Figure 5: Evaluation results for varying the number of author-
ity figures in the simulation and two different threshold values.

figures will result in more interactions between the suspicious pas-
sengers and the authorities, which will make detection easier. Fig-
ure 5 shows the results for the Ka ∈ {5,10,15,20,25} authority fig-
ures in a simulation: Fig. 5(a) shows the F-measure for a threshold
such that the F-measure is maximized, while Fig. 5(b) shows the
precision when re = 1. An increased number of authority figures
first significantly increases the detection capabilities. For example,
the F-measure for F-UPR increases by 15% when the security re-
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sources are doubled from five to ten, but as the number increases,
the impact is smaller. We can also see that F-UPR achieves the
same performance as other methods using significantly less secu-
rity resources.

6.1.2 Detection Based on the Action Trace
We also applied a sanity check and tested the suspicious behavior
detection from a sequence of agent’s actions (i.e., action trace a)
instead of a sequence of trigger events (i.e., event trace x). We
used HMMs, since they are considered as a baseline for modeling a
sequence of actions. The goal is to differentiate between a sequence
of actions produced by a suspicious and a regular passenger. We
expect this approach not to perform well, since it is too general
and unable to precisely model the interactive behavior present in a
multiagent environment.

The suspicious behavior detector consists of two ergodic HMMs:
S′ trained on the suspicious and N′ trained on the regular action
traces. A new trace is first transformed to the action trace a(k) as
described previously and then matched against both HMMs, yield-
ing the likelihood that it produced the given a(k). If the likelihood
is greater than a threshold the action trace is marked as suspicious.
We tested this approach for Ka = 10. At the threshold value s.t. the
highest F-measure of 18.01 was achieved this approach achieved an
acceptable discovery rate (re = 66.23) and an extremely low pre-
cision (pr = 10.42). Such a performance positions this approach
under the ∃k rule. The overall performance was consistent with our
expectations. Modeling single-agent actions in a multiagent envi-
ronment is not able to capture the interactive behavior.

6.2 Catching a Dangerous Driver
In addition to the airport domain we applied UPR and F-UPR to
the dangerous-driver domain, as introduced in [2]. This domain
also includes behavior that becomes increasingly costly if repeated;
a driver switching a lane once or twice is not necessarily acting
suspiciously, but a driver zigzagging across two lanes is dangerous.
Our goal was to detect such drivers as soon as possible.

We generated 100 observation sequences (each of N observa-
tions) of a zigzagging driver, and 1000 sequences of a safe driver.
The observations were sampled with 10% noise from the trajecto-
ries. If the driver stayed on the same lane as in the previous sample,
the event was considered as normal, otherwise it was considered as
dangerous. For each sequence of trigger events we accumulated the
associated cost using both UPR and F-UPR.

Table 2 reports the performance at the peak F-measure for dif-
ferent lengths of the observation sequence. The results confirm the
experiments on the airport domain for two points. First, F-UPR
performs better than UPR for any selected sequence length. Sec-
ond, the performance of both methods increases as the number of
observations increases, where F-UPR requires fewer observations
than UPR to achieve the same performance.

7. CONCLUSION
This paper successfully addressed the problem of suspicious behav-
ior detection from a set of observations, where no single observa-
tion suffices to make the decision. The paper addresses the problem
in two steps, i.e., the detection of trigger events and a combination
of evidence to reach the final decision. To that end, the main con-
tributions of this paper are: (i) the conditions that a reasonable de-
tector should satisfy; (ii) an analysis of three detectors; (iii) a novel
F-UPR approach that extends the notion of utilities; and (iv) com-
prehensive experiments on two simulated domains. By providing
a new algorithm that outperforms other approaches, this paper has
advanced the state of the art.

Table 2: Performance at the peak F-measure in dangerous
driver domain.

Sequence length N F-UPR UPR
25 0.632 0.540
50 0.720 0.667
75 0.900 0.800
100 0.952 0.857
125 1.000 0.947
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ABSTRACT
Markov Decision Processes are one of the most widely used
frameworks to formulate probabilistic planning problems.
Since planners are often risk-sensitive in high-stake situa-
tions, non-linear utility functions are often introduced to
describe their preferences among all possible outcomes. Al-
ternatively, risk-sensitive decision makers often require their
plans to satisfy certain worst-case guarantees.

We show how to combine these two approaches by consid-
ering problems where we maximize the expected utility of
the total reward subject to worst-case constraints. We gen-
eralize several existing results on the structure of optimal
policies to the constrained case, both for finite and infinite
horizon problems. We provide a Dynamic Programming al-
gorithm to compute the optimal policy, and we introduce
an admissible heuristic to effectively prune the search space.
Finally, we use a stochastic shortest path problem on large
real-world road networks to demonstrate the practical ap-
plicability of our method.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Theory

Keywords
Planning, Utility Functions, Constraints

1. INTRODUCTION
Markov Decision Processes (MDPs) are one of the most

widely used frameworks to formulate probabilistic planning
problems. In these problems, the notion of risk is related
to the fact that, given the stochastic nature of the problem,
each policy can generally produce several possible outcomes,
and some of them might reflect unsatisfactory performance.
In many applications, such as space planning and natural
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(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
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Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

resource management, it is critical to use performance met-
rics that allow the ability to manage the risk, i.e. a certain
level of control over unfavorable outcomes [4, 18].

The problem of managing the risk has been studied ex-
tensively in artificial intelligence, operations research, and
control theory. Many formulations have been proposed (see
Section 2 for more details), among which decision theo-
retic planning and worst-case approaches are the two most
widely used. The former is based on decision theory, more
specifically, on the fact that decision makers accepting a
small number of axioms always choose the course of actions
that maximizes the expected utility of the total reward [16],
where the specific form of the utility function describes the
risk attitude of the planners. The latter is focused on pro-
viding deterministic guarantees for the plans by looking at
worst-case realizations of the random processes involved.

In this paper, we show how to combine these two ap-
proaches by considering problems where the objective is
to maximize the expected utility of the total reward sub-
ject to worst-case, linear constraints. For example, in the
case of a linear utility function, we can maximize the ex-
pected total reward only among those policies whose reward
is larger than a given threshold, even in the worst-case sce-
nario. With a (non-linear) “step” utility function, we can
maximize the probability of reaching a target reward level,
while enforcing the worst-case constraint at the same time.

Our theoretical results extend previous work on MDPs
with non-linear utility functions and show that the optimal
policy for the constrained optimization problem is highly
structured: it is deterministic, and even though generally
not Markovian, it depends on the history only through the
total accumulated reward. Therefore, an optimal policy can
be represented (and approximated) much more effectively
than general history-dependent policies. Furthermore, we
show how to exploit the presence of worst-case constraints
to define an admissible heuristic, which we use in a Dynamic
Programming algorithm to speed up the policy search.

To demonstrate the practical applicability of our method,
we consider stochastic shortest path problems as a special
case of MDPs. We show that our algorithm scales to large
real-world road networks, and it leads to plans that are sig-
nificantly different from the ones obtained with traditional
optimization criteria. We think this type of formulation can
be particularly useful for time-dependent problems, such as
the ones faced by the Green Driver App [2], where traffic
light information are explicitly modeled. In fact, in this
situation it is necessary to consider policies that are non-
Markovian, even when given linear utility functions.
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2. RELATED WORK
Decision theoretic planning has been studied extensively,

mainly in artificial intelligence [18, 14], control theory, and
operations research [10, 15, 1, 7]. Typically, monotonically
non-decreasing utility functions, mapping total rewards to
utility values, are used to to describe the preferences of the
planner. In particular, exponential utility functions [10] are
commonly used because they satisfy a separability property
that allows an efficient Dynamic Programming solution. Re-
cently, researchers have also considered planning problems
with more general non-linear utility functions [12]. The re-
sults in this paper are related to that line of work (and we
use a similar notation whenever possible), but with the novel
introduction of worst-case constraints.

The most conservative approach to account for risk is
worst case planning, where only the worst possible outcome
is optimized. A generalization known as α-value criterion is
introduced in [9], where outcomes that happen with a prob-
ability smaller than α are not considered (when α = 0, it
is equivalent to the worst case). In this work, instead of
optimizing the worst-case scenario, we introduce constraints
that need to be satisfied by the plan, under all possible re-
alizations of the randomness. The relationship of our ap-
proach with worst-case planning is discussed in detail below
in Section 4.1.

There are several existing frameworks for constrained prob-
abilistic planning problems in the literature. Many of them
[1, 7] involve the maximization of an expected (discounted)
reward subject to upper bounds on the total expected (dis-
counted) costs. The main limitation of this approach is that
upper bounding an expected value might provide a guar-
antee in terms of risk that is too weak, because it consti-
tutes only a mild restriction on the possible outcomes (con-
straints are satisfied only on average, while our constraints
are met by all possible realizations). The same holds for
mean-variance analysis [17], where the problem is analyzed
in terms of the tradeoff between expected value and vari-
ance of the total reward (either by imposing constraints on
the variance, or associating a cost with it). The constrained
formulation that is closest to our work is the sample-path
constraint introduced in [15]. In [15], they consider time-
average MDPs, with a reward and cost associated with each
decision. The optimization problem is to maximize the ex-
pected average reward over all policies that meet the sample-
path constraint, where a policy is said to meet the sample-
path constraint if the time-average cost is below a specified
threshold with probability one. Notice that also in this case
the guarantee can be quite weak, because the constraint is
imposed only on an averaged quantity. Finally, in [8] they
derive and solve Dynamic Programming equations for two
special types of worst-case constrained Stochastic Shortest
path problems (in our formalism these correspond to UL

and UK,L utility functions defined in section 6). We empha-
size that the new framework in this paper is significantly
more general and can be applied to general MDPs to provide
worst-case performance guarantees with general non-linear
utility functions.

3. PROBLEM DEFINITION
We consider probabilistic planning problems represented

as Markov Decision Processes. Formally, an MDP is a tuple
(S,A, P, r) where S is a set of states, A is a set of actions, P
is a set of transition probabilities and r : S×A×S 7→ R is an

(immediate) reward function. If an agent executes an action
a ∈ A while in a state s ∈ S, then it receives an immediate
reward r(s, a, s′) and it transitions to a new state s′ ∈ S
with probability P (s′|s, a). We denote by As ⊆ A the set of
actions available while the agent is in state s.

In this paper we consider finite MDP where both the state
space S and action space A are finite sets.

Policies. Let the planning horizon T be the (possibly in-
finite) number of time steps that the agent plans for. A his-
tory at time step t is a sequence ht = (s0, a0, · · · , st−1, at−1, st)
of states and actions that leads from the initial state s0 to
state st at time step t. The set of all histories at time step
t is denoted Ht = (S ×A)t × S.

In a probabilistic setting, a plan is represented by a policy,
where a policy is a sequence of decision rules, one for each
time step in the planning horizon. The most general deci-
sion rules are randomized history-dependent (HR), which are
mappings dt : Ht → P (A), where P (A) is the set of prob-
ability distributions over the set of actions A. A history-
dependent decision rule is called Markovian if it depends
only on the current state st, while it is called deterministic
if it deterministically choses the action to be taken. A policy
is called stationary if dt = d for all time steps t within the
planning horizon and d is a Markovian decision rule. We
denote the class of deterministic stationary (SD) policies by
ΠSD and the class of randomized stationary policies by ΠSR.

Utility Functions. Let wT be the total reward received
by the agent, that is the sum of all the immediate rewards
accrued within the planning horizon

wT =

T−1∑

t=0

rt(st, at, st+1) (1)

A standard approach to model the preferences of the planner
among the possible realizations of wT is to use a monotoni-
cally non-decreasing utility function U : R 7→ R, which maps
total rewards to utility values. Decision theory suggests that
decision makers accepting a small number of axioms always
choose the course of actions that maximizes the expected
utility of the total reward [16].

4. FINITE HORIZON PROBLEMS
First we consider planning problems where the planning

horizon T is finite, and we will later extend the results to
the infinite horizon case. We define the value of a policy
π ∈ ΠHR from an initial state s ∈ S as

vπ
U,T (s) = Es,π

[
U

(
T∑

t=0

rt

)]
= Es,π [U (wT )] (2)

which is the expected utility of the total reward wT . For
standard utility functions, the expected utilities exist and
are finite because there is a finite number of possible finite
trajectories in finite MDPs [14]. The optimal values

v∗
U,T (s) = sup

π∈Π
vπ

U,T (s) (3)

exist since the values exist for every policy π ∈ Π. Proper-
ties of the optimal policy for this case have been studied in
[12]. In particular, the optimal policy is deterministic and
even though it is generally not Markovian, it depends on the
history ht only through the accumulated reward wt.
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4.1 Worst-Case Constraints
Risk-sensitive planners are often interested in worst-case

scenarios. With this perspective, a common approach is to
look for a policy that maximizes the worst case performance
(game against nature). Formally, in the max-min version of
the problem, we seek to optimize

d∗
T (s) = sup

π∈Π
dπ

T (s) (4)

where

dπ
T (s) = min {k|P [wT = k] > 0} (5)

is the worst-case realization of the total reward wT (the def-
inition is well posed since wT is a discrete random variable
with a finite sample space for a finite MDP).

In this paper, we consider situations where the planner
wants to enforce linear worst case constraints on the total
reward wT of the form

wT > L (6)

for all possible realizations of wT (equivalently, (6) has to
hold almost surely, because wT has a finite sample space).
Notice that the game against nature approach is equivalent
to finding the largest value of L such that condition (6) can
be met.

In this paper we combine the problem of finding a policy
that maximizes the expected utility, with the presence of
linear worst-case constraints on the total reward. Formally,
we wish to find

v∗
U,T,L(s) = sup

π∈Π(L)

vπ
U,T (s) (7)

where the optimization is restricted to the set of policies
Π(L) whose corresponding total reward wT satisfies condi-
tion (6), for all possible realizations of wT . The problem is
well defined when the set Π(L) is not empty, that is if and
only if L < d∗

T (s).
As an example, in the simplest case of a linear utility

function U(x) = x, the objective is to maximize the total
expected reward but only among those policies with a guar-
anteed lower bound L on the total reward.

4.2 Extended-Value Utility Functions
We show that the constrained problem defined by Equa-

tion (7) can be solved by considering the original optimiza-
tion problem defined by Equation (3) with a more general
utility function. We introduce the concept of an extended-
value utility function, which can be used to model linear
worst case constraints on the total reward wT . Let R = R∪
{−∞} be the affinely extended real number system, which
turns into a totally ordered set by defining −∞ ≤ a ≤ +∞
for all a ∈ R. We define an extended-value utility function a
monotonically nondecreasing function U : R→ R that maps
wealth levels to the corresponding utility values.

Let us consider the problem previously defined by Equa-
tions (2) and (3) in the more general case where U is an
extended-value utility function. Recall that E[X] exists and
E[X] = E[X+] − E[X−] when E[X+] < ∞ or E[X−] < ∞,
where X+ and X− denote the positive and negative part of
X, respectively. In the more general case of an extended-
value utility function, the expected utilities defined by (2)
exist (but are not always finite), because E[U (wT )+] < ∞
since the number of trajectories is finite for finite MDPs.

Notice that agents acting as though they were maximizing
expected extended utility functions satisfy the Completeness
and Transitivity axioms of the Von Neumann-Morgenstern
Utility Theorem [16], because the extended real number sys-
tem is totally ordered and the order relation is transitive.
Moreover, they satisfy the Indipendence axiom by the lin-
earity of expectation. Notice however that they violate the
Continuity axiom. In fact, given three lotteries such that
A � B � C (A is preferred over B, and B over C) and
where the expected utilities of A and B are finite but the
expected utility of C is −∞, there is no combination of A
and C that gives an expected utility that is equal to the one
of B.

The optimal values defined by (3) need not to be finite,
but they are bounded from above since the total rewards are
bounded and thus the expected utilities of the total reward
for all policies are bounded from above as well. The following
result holds:

Lemma 1. For any extended value utility function U , let
L = sup{w|U(w) = −∞}. Then for any policy π ∈ ΠHR,
vπ

U,T (s) > −∞ if and only if wT > L almost surely.

Proof. If P [wT ≤ L] > 0, it follows vπ
U,T (s) = −∞. If

wT > L almost surely, then it follows by monotonicity that
vπ

U,T (s) > U(L) ≥ −∞.

As a corollary, if the optimal value is finite, then the worst
case constraint wT > L is satisfied by the optimal plan.

Using Lemma 1, we show that we can solve the con-
strained problem defined by Equation (7) for a standard
utility function U by solving the unconstrained problem (3)
with an extended-value utility function Ue defined as follows

Ue(x) =

{
−∞ x ≤ L
U(x) x > L

Lemma 2. For any utility function U and lower bound L
such that Π(L) is non empty, v∗

U,T,L(s) = v∗
Ue,T (s).

Proof. Let π′ be the optimal policy for the constrained
problem. Since π′ ∈ Π(L), we have wT > L almost surely
and therefore

−∞ < v∗
U,T,L(s) = vπ′

U,T,L(s) = vπ′
Ue,T (s) ≤ v∗

Ue,T (s)

Since v∗
Ue,T (s) = vπ∗

Ue,T (s) > ∞, by Lemma 1, π∗ satisfies
the constraint (6) almost surely, so π∗ ∈ Π(L) and

v∗
U,T,L(s) ≥ vπ∗

Ue,T (s) = v∗
Ue,T (s)

We focus now on characterizing the optimal policy for
the unconstrained problem with an extended value utility
function Ue (we drop the subscript for compactness). In
the rest of the paper, we will use subscripts to indicate the
length of the planning horizon T and the utility function U
used. We will use superscripts to indicate the policy π used
and, when relevant, the decision epoch t the value refers to.

4.3 Optimality Conditions
We provide a characterization of the optimal policies for

maximum expected utility planning problems by generaliz-
ing some results obtained in [12] to the more general case of
extended value utility functions.
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Theorem 1. Let π = (d0, . . . , dT−1) ∈ ΠHR be a policy.
The values vπ,t

U,T (ht) = Eπ [U(wT )|ht] of a policy π at time
step t given an history ht ∈ Ht satisfy

vπ,T
U,T (hT ) = U (wT ) , hT ∈ HT

vπ,t
U,T (ht) =

∑

a∈Ast

dt(ht, a)
∑

s′∈S

P (s′|st, a)v
π,t+1
U,T (ht ◦ (a, s′))

where ht ∈ Ht, 0 ≤ t < T , ◦ is the composition operator,
and the last component of ht is st.

Proof. Similar to Theorem 4.1 in [12].

If we define the optimal values for a history ht as v∗,t
U,T (ht) =

supπ∈Π v
π,t
U,T (ht), then we have v∗,0

U,T (s) = v∗
U,T (s) for any

initial state s. Furthermore,

Theorem 2. The values v∗,t
U,T (ht) are the unique solu-

tions to the optimality equations

v∗,T
U,T (hT ) = U (wT ) , hT ∈ HT

v∗,t
U,T (ht) = max

a∈Ast

∑

s′∈S

P (s′|st, a)v
∗,t+1
U,T (ht ◦ (a, s′)) (8)

for ht ∈ Ht, 0 ≤ t < T and where the last component of ht

is st.

Proof. Similar to Theorem 4.2 in [12].

The above results also show that there exists a determinis-
tic history-dependent optimal policy, that for an history ht

chooses a maximizer in Eq. (8) as action. However, the pol-
icy might depend on the entire previous history ht. In the
following sections we use the state-augmentation approach
to show that the policy has more structure, i.e. it depends
on the history only through the total reward accumulated
so far wt =

∑t−1
k=0 rk(sk, ak, sk+1).

4.4 State Space Augmentation
A deeper characterization of the structure of the opti-

mal policy can be obtained by considering a new augmented
MDP where the state space is augmented with wealth levels
(corresponding to the sum of accumulated rewards). As in
[12], let

R = {0} ∪ {r(s, a, s′)|P (s′|s, a) > 0, s, s′ ∈ S, a ∈ As}
be the set of possible rewards. Then the set W t of all pos-
sible wealth levels at time step t is inductively defined as
follows

W 0 = {0},W t+1 = {r + w|r ∈ R,w ∈Wt}
We consider an extended MDP where the augmented states
space is 〈S〉 = (S × W 0) ∪ (S × W 1) ∪ · · · ∪ (S × WT ).
The actions available in an augmented state 〈s〉 = (s, w) are
A〈s〉 = A(s,w) = As for all wealth levels w. The transition

probability from a state 〈s〉 = (s, w) to 〈s〉′ = (s′, w′) is

P (〈s〉′ | 〈s〉 , a) =

{
P (s′|s, a) if w′ = w + r(s, a, s′)

0 otherwise

All augmented rewards r(〈s〉 , a, 〈s〉′) are zero, and there
is a terminal augmented reward J(〈s〉) = U(w) applicable
at time T for an augmented state 〈s〉 = (s, w). There is
no utility function for the augmented model, so the value

〈z〉〈π〉
T (s, w) of an augmented policy 〈π〉 from initial aug-

mented state (s, w) is given by the expected total augmented
reward (equivalently, by the expected augmented terminal
reward, since all other augmented rewards are zero).

Notice that the construction previously used in [12] cannot
be used in our generalized case because it defines rewards
in the augmented model as the difference of two utilities,
which might not be well defined in for an extended value
utility function. Notice also that the augmented MDP is
still finite for a finite planning horizon T .

The original MDP and the augmented one are closely re-
lated, and intuitively the two underlying stochastic processes
are equivalent. Formally, it can be shown as done in [12]
that there is a 1-1 mapping between a history of the original
model and a class of equivalent histories of the augmented
model.

Lemma 3. For any wealth level w, and for any history
of the original model ht = (s0, a0, s1, · · · , st) ∈ Ht, the se-
quence φw(ht) = 〈h〉t = (〈s〉0 , a0, 〈s〉1 , · · · , 〈s〉t) is a history
of the augmented model, where

〈s〉k = (sk, w̃k) = (sk, w + wk), 0 ≤ k ≤ t
Furthermore, for any history of the augmented model 〈h〉t =
(〈s〉0 , a0, 〈s〉1 , · · · , 〈s〉t) ∈ 〈H〉t where 〈s〉k = (sk, w̃k) for all
0 ≤ k ≤ t, there exists a wealth level w such that w̃k = w+wk

and the sequence ψ(〈h〉t) = (s0, a0, s1, · · · , st) is a history of
the original model.

Proof. Similar to Lemmas 4.3 and 4.4 in [12].

Similarly, using Lemma 3, for any policy in the original
model π = (d0, d1, · · · , dT−1) ∈ ΠHR, we define a policy
of the augmented model, Ψ(π) = (〈d〉0 , 〈d〉1 , · · · , 〈d〉T−1),
such that for all augmented histories 〈h〉, 〈d〉t (〈h〉 , a) =
dt(ψ(〈h〉), a).

For any augmented policy (〈d〉0 , 〈d〉1 , · · · , 〈d〉T−1) , we
define a policy in the original model, Φw = (d0, d1, · · · , dT−1),
such that for all histories h ∈ Ht,

dt(h, a) = 〈d〉t (φw(h), a)

Furthermore, the values of the policies in the original and
augmented model are closely related:

Theorem 3. For each policy π ∈ ΠHR in the original
MDP and for all states s ∈ S,

〈z〉Ψ(π)
T (s, w) = Es,π

[
U(w +

T−1∑

t=0

rt)

]

For each policy 〈π〉 in the augmented MDP, for each wealth
level w ∈W ,

〈z〉〈π〉
T (s, w) = Es,Φw(〈π〉)

[
U(w +

T−1∑

t=0

rt)

]

Proof. First, we need to prove the probabilistic equiv-
alence of the stochastic processes induced by policies that
correspond through the mappings Ψ and Φw. The proof is
similar to the one of Theorem 4.5 in [12] and is omitted.
Furthermore,

〈z〉Ψ(π)
T (s, w) = E(s,w),Ψ(π)

[
T−1∑

t=0

〈r〉t + J(s̃T , w̃T )

]
=

E(s,w),Ψ(π) [U(w̃T )] = Es,π

[
U(w +

T−1∑

t=0

rt)

]
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where (s̃T , w̃T ) is the terminal augmented state, because
both policies produce equivalent random processes. For the
second part,

〈z〉〈π〉
T (s, w) = E(s,w),〈π〉

[
T−1∑

t=0

〈r〉t + J(s̃T , w̃T )

]
=

E(s,w),〈π〉 [J(s̃T , w̃T )] = Es,Φw(〈π〉)
[
U(w +

T−1∑

t=0

rt)

]

because of the probabilistic equivalence.

Since the augmented MDP is a standard MDP, it is well
known [3] that the optimal values 〈z〉∗T (s, w) exist (but are
not necessarily finite) for all augmented states (s, w). More-
over, there exists a Markovian, deterministic policy 〈π〉∗T
that is optimal for the augmented model. We show that
Φ0(〈π〉∗T ) is an optimal policy for the original MDP (opti-
mality for the original MDP refers to the maximum expected
utility criterion):

v∗
U,T (s) = v

π∗
T

U,T (s) = 〈z〉Ψ(π∗
T )

T (s, 0)

≤ 〈z〉∗T (s, 0) = 〈z〉〈π〉∗
T

T (s, 0) = v
Φ0(〈π〉∗

T )

U,T (s)

Notice that the optimal policy Φ0(〈π〉∗T ) for the original
model is not Markovian anymore. However, the dependency
on the history ht is limited, since the decision rules dt only
depend on the accumulated reward wt.

It is also very important for the optimal values to be finite.
Policies that do not meet the worst-case requirements (i.e.,
with infinite values for the expected utility) all have the same
value, even though they might not perform equally badly.

4.5 Policy Computation and Pruning
The augmented problem previously described is a stan-

dard Markov Decision Process, where the objective is to
maximize the total expected reward. Therefore, the optimal
policy 〈π〉∗T can be computed using Dynamic Programming
equations, as shown in Algorithm 1.

Algorithm 1 Dynamic Programming equations for the aug-
mented problem

t← T
for all s ∈ S do

Initialize 〈z〉∗,T
T (s, w) = U(w)

for t = T − 1→ 0 do
for all s ∈ S do

for all w ∈W t do

〈z〉∗,t−1
T (s, w) =

max
a∈As

∑

s′∈S

P (s′|s, a)
[
〈z〉∗,t

T (s′, w + r(s, a, s′))
]

Notice also that 〈z〉∗,t
T (s, w) = −∞ whenever

w + d∗
T−t(s) ≤ L (9)

where d∗
k(s) are the optimal max-min values defined by Equa-

tion (4). Intuitively, it means that 〈z〉∗,t
T (s, w) = −∞ when-

ever we cannot meet the worst-case requirement, not even
when optimizing the worst-case performance. Using condi-
tion (9), we can introduce additional pruning in a Forward

Dynamic Programming algorithm, where the optimal values
〈z〉∗,t

T (s, w) are recursively computed according to

〈z〉∗,t
T (s, w) = max

a∈As

∑

s′∈S

P (s′|s, a)
[
〈z〉∗,t+1

T (s′, w + r(s, a, s′))
]

with the two base cases:

〈z〉∗,t
T (s, w) =

{
U(w) if t = T
−∞ if w + d∗

T−t(s) ≤ L

once we precomputed the optimal max-min values d∗
k(s), for

all s ∈ S and 0 ≤ k ≤ T .

5. INFINITE HORIZON
For an infinite horizon planning problem, the value of a

policy π ∈ ΠHR is defined as

vπ
U (s) = lim

T→∞
vπ

U,T (s) = lim
T→∞

Es,π

[
U

(
T∑

t=0

rt

)]
(10)

In general, the limit is neither guaranteed to exists nor to
be finite, even in the standard case of a real-valued utility
function [13].

However, in the special case of Negative MDPs (where all
rewards are non-positive, i.e. r(s, a, s′) ≤ 0), we can prove
the existence of the limit in Equation (10) in the general
case of an extended value utility function. In fact, we al-
ready proved that the expectation exists for each T , and the
existence of the limit derives from the monotonicity of the
utility function U and wT .

As in the finite horizon case, it is crucial that the optimal
values are finite, because otherwise plans cannot be com-
pared in a meaningful way based on their expected utility.
We therefore provide sufficient conditions that guarantee the
finiteness of the optimal values.

We consider a special class of infinite horizon goal directed
MDPs where there is a finite set of goal states G ⊆ S, where
the agent stops to execute actions, and no longer receives
rewards. Further, we restrict ourselves to the case of negative
MDPs, where r(s, a, s′) ≤ 0.

5.1 Finiteness
Let’s consider the infinite horizon version of the max-min

problem previously described. Let

dπ(s) = lim
T→∞

dπ
T (s)

where dπ
T (s) is defined according to Equation (5). Again,

we can prove that the limit exists by monotonicity. Let
d∗(s) = supπ d

π(s) be the optimal worst-case value. By
definition, under the optimal worst-case policy πWC we have
d∗(s) ≤ wT for all T ≥ 0 and initial states s, so for each
T ≥ 0

U (d∗(s)) ≤ vπW C

U,T (s) ≤ v∗
U,T (s) ≤ U(0) (11)

It follows that if U (d∗(s)) is finite, then from (11) we have
that v∗

U (s) exists and is also finite. Intuitively, this con-
dition means that the worst-case constraint encoded with
the extended value utility function cannot be too restrictive,
that is it cannot be more restrictive than what is possible to
achieve using the optimal worst-case policy.
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5.2 Properties of the Optimal Policy
We consider a negative goal-directed MDP that satisfies

condition (11), with the additional condition r(s, a, s′) < 0
for all s ∈ S \G (strictly negative rewards). Let

L = sup{w|U(w) = −∞} > −∞
We show there exists an optimal policy for the Maximum
Expected Utility objective that is stationary, deterministic
and that depends on the history ht only through the accu-
mulated reward wt. Let

r = max
s∈S\G

max
a∈As

max
s′∈S

r(s, a, s′) < 0, T = ⌈L/|r|⌉+ 1

The following result holds:

Lemma 4. For any policy π ∈ ΠHR for the infinite hori-
zon problem (T =∞) with strictly negative rewards, for any
state s ∈ S, and for all T ′ ≥ T ,

vπ
U,T ′(s) = vπ

U,T (s)

Proof. Let wT be defined as in (1). By monotonicity,
vπ

U,T ′(s) ≤ vπ
U,T

(s). If vπ
U,T

(s) = −∞, we are done. Other-

wise, it must be wT ≥ L almost surely. By the definition

of T and L, it must be the case that sT ∈ G almost surely.
This concludes the proof because rk(sk, ak, sk+1) = 0 almost
surely for any k ≥ T , because we must have reached a goal
state.

Using Lemma 4 and taking limits, we have that for any
policy π ∈ ΠHR and for all initial states, limT ′→∞ vπ

U,T ′(s) =
vπ

U,T
(s). Therefore,

sup
π∈Π

lim
T ′→∞

vπ
U,T ′(s) = sup

π∈Π
vπ

U,T (s) = v∗
U,T (s)

which means that we can solve the infinite horizon problem
by planning for a finite horizon of length T , for instance us-
ing Algorithm 1. Using the results in Section 4 and Lemma
4, the optimal policy for the infinite horizon problem is de-
terministic and history-dependent (but the dependency on
the history is only through the accumulated reward). Fur-
thermore, we show it is stationary.

Lemma 5. For any state s ∈ S, and wealth level w in the
augmented MDP problem we have

〈z〉∗,t1
T

(s, w) = 〈z〉∗,t2
T

(s, w)

Proof. Let 〈π〉∗T = (〈d0〉 , · · · ,
〈
dT−1

〉
) be the optimal

policy for the augmented problem. By the optimality prin-
ciple, 〈z〉∗,t

T
(s′, w′) = 〈z〉∗T−t (s′, w′) . Without loss of gener-

ality, let t1 < t2 ≤ T . By previous theorems, monotonicity
of U and negative rewards assumption

〈z〉∗T−t1
(s, w) = E〈s〉,〈π〉∗

T −t1 [U(w +

T−1−t1∑

k=0

rk)] ≤

E〈s〉,〈π〉∗
T −t1 [U(w +

T−1−t2∑

k=0

rk)] ≤ 〈z〉∗T−t2
(s, w)

If 〈z〉∗,t2
T

(s, w) = −∞ then we are done. Otherwise, w̃T−t2
=

w+
∑T−1−t2

k=0 rk ≥ L almost surely when using policy 〈π〉∗T−t2

from the initial state (s, w). If s ∈ G we are done be-
cause 〈z〉∗,t1

T
(s, w) = 〈z〉∗,t2

T
(s, w) = U(w). Otherwise if

s is not a goal state and since w ∈ W t2 , then it must
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Figure 1: San Joaquin County Road Network

be w ≤ t2 ∗ r. If x̃k is the state after k steps when us-
ing policy 〈π〉∗T−t2

from the initial state (s, w), it must be
x̃T−t2

∈ G almost surely, because otherwise the reward
w̃T−t2

would exceed the bound. Then the following policy

〈π〉′T−t1
= (
〈
dT−t2

〉
, · · · ,

〈
dT−1

〉
, · · · ) satisfies

〈z〉∗T−t1
(s, w) ≥ 〈z〉

〈π〉′
T −t1

T−t1
(s, w) = 〈z〉∗,t2

T
(s, w)

because x̃T−t2
∈ G almost surely.

As a corollary, the optimal policy for the augmented MDP is
stationary and therefore the optimal policy for the original
problem is also stationary. Intuitively, since we are given
an infinite number of steps to reach the goal, the number of
steps already taken does not affect the optimal policy.

Notice that under these assumptions (i.e., with a worst
case constraints), we can compute the optimal policy for the
augmented problem using Algorithm 1, which terminates in
a bounded number of steps. In contrast, using the con-
struction in [12], one has to reach a fixed-point using value-
iteration procedures in a (countably) infinite state space,
which in general requires some form of approximation.

6. STOCHASTIC SHORTEST PATHS
IN ROAD NETWORKS

In a Stochastic Shortest Path problem, a planner agent is
given a graph with vertex set V and edge set E, an initial
node s ∈ V , and a set of goal nodes G ⊆ V . From a node
s ∈ V \ G, the agent can move to any neighboring node
(this is the set of available actions), but unlike standard
shortest path problems, the cost of traversing an edge e ∈
E is stochastic and modeled by a random variable ce with
known probability distribution. The planner stops when a
goal node g ∈ G is reached, and no more costs are incurred.
Given an utility function U (see examples below), the goal
of the agent is to find a plan that maximizes the expected
utility of the total reward, which is defined as minus the
total cost. Notice that the problem can be formulated as
a finite MDP when the random variables {ce, e ∈ E} are
discrete with finite sample space.

We consider a real-world road network [11] as the under-
lying graph (see Figure 1 for an example) in our experi-
ments. The edge lengths {we, e ∈ E} are also provided in
the dataset. The edge costs {ce} model travel times, and
are assumed to be discretized Beta-distributed random vari-
ables. This is a common modeling assumption for tasks with
unknown duration in PERT analysis [6]. In particular, we
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assume ce = m+ (M −m)B(α, β) , where B follows a Beta
distribution with shape parameters α and β. M and m are
respectively the upper and lower bound on ce, and are de-
fined as follows:

M = (1 + u1(e)/2)we

m = (1− u2(e)/2)we

where u1(e) and u2(e) are uniformly distributed in [0, 1].
The parameters α and β are chosen such that the expected
edge cost is equal to the edge length for each e ∈ E (i.e.
E[ce] = we), with a variance chosen uniformly at random.
Note that the rewards {re} are a discretized version of {−ce},
so that the finiteness MDP assumption holds.

6.1 Utility Functions for SSPs
In our experiments, we consider several types of utility

functions. A simple linear utility function U(x) = x leads to
the standard maximization of the expected total reward. To
maximize the expected total reward (equivalently, minimize
expected travel time) with a worst case constraint we use

UL(x) =

{
−∞ x ≤ L
x x > L

(12)

In the Stochastic On Time Arrival formulations [5], also
known as MDPs with Target-Level Utility Functions [12],
the utility function has the form UK(x) = 1[K,+∞)(x) where
1A is an indicator function for the set A. This corresponds
to maximizing the probability of reaching a certain target re-
ward K, since it holds that E[UK(wT )] = E[1[K,+∞)(wT )] =
P[wT ≥ K] To maximize the probability of having a total
reward at least as large as K with a guaranteed lower bound
L < K, we can introduce an extended value utility function
UK,L(x) that is defined to be −∞ when x ≤ L, and equal
to UK(x) otherwise. When costs represent travel times, this
corresponds to maximizing the probability of reaching the
destination by a given deadline, with a worst case constraint.
For instance, we might wish to use this criterion in order to
maximize the probability of getting to the airport at least 3
hours before our flight departure, but no later than check-
in closure time. We can also consider a more general case
where the deadline is soft (as in [12]), because partial credit
is given for being late, up to some point D. We introduce
a worst-case constraint L by using the following extended-
value utility function:

UK,D,L(x) =





1 K ≤ x
(x−D)/(K −D) D ≤ x < K

0 L < x < D
−∞ x ≤ L

Finally, we consider a worst-case constrained exponential
utility function Uγ,L(x), by introducing a worst-case lower
bound L in the standard utility function Uγ(x) = eγx.

6.2 Results
For our experiments we use the San Joaquin County Road

Network graph (with 18263 nodes and 23874 edges) repre-
sented in Figure 1. Every policy π ∈ πHR has an associated
probability distribution for the total reward wT . Assuming
the costs {cE} represent travel times, this corresponds to a
probability distribution for the total travel time cT = −wT .

For each utility function previously introduced, we com-
pute the corresponding optimal policy with a worst case con-
straint L using the forward Dynamic Programming method.

The optimal max-min values d∗
k(s) are precomputed solving

a shortest path problem on the original graph with edge costs
given by the worst-case realization. Given a fixed initial po-
sition s ∈ V and destination node G = {g}, each optimal
policy has a different associated probability distribution for
the total travel time cT (notice that they are all optimal,
but according to different criteria). In Figure 2, we compare
the resulting probability distributions (obtained optimizing
different performance metrics), and we also emphasize their
worst-case realization (the dashed vertical line on the right).
For comparison, we also provide the probability distribu-
tion corresponding to the optimal worst-case policy πWC (in
red). For Markovian policies (such as πWC), the probability
distribution is computed exactly (by evaluating a convolu-
tion), while distributions associated with history-dependent
policies are obtained by Monte Carlo sampling with 100,000
samples (in green).

First, we compare the standard linear utility function U(x) =
x with its worst-case constrained version UL(x) defined as in
Equation (12). In Figure 2a we see the results for a source-
destination pair s, g where we improve the worst-case real-
ization of wT , while at the same time maintaining the same
expected value E[wT ]. In other words, the policy for UL(x)
dominates the one for U(x) = x because it achieves the same
expected value but it improves the worst-case performance.
However, it is not always the case. In Figure 2b, we see that
for a different source-destination pair, improving the worst-
case realization of wT leads to a larger expected travel time
E[cT ] = E[−wT ].

Finally, in Figure 2c and 2d we plot the probability distri-
butions corresponding to UK,D,L(x) (maximizing the prob-
ability of reaching the destination by a given soft deadline
with a worst-case constraint L) and Uγ,L(x). In both cases,
the distributions are significantly different from the one ob-
tained minimizing the expected travel time (in black). No-
tice that in Figure 2c the probability of reaching the des-
tination by the deadline is significantly improved, and that
there is a spike around cT = 3800. This is because according
to UK,D,L(x), any realization of cT larger than −D has the
same utility, as long as they satisfy the worst-case require-
ment. Similarly, the exponential utility function Uγ,L(x)
reflects a strong preference for small realizations of cT . This
can be seen in Figure 2d, where for instance the proba-
bility P [cT < 2900] of having a total travel time smaller
than 2900 is 4 times larger when optimizing Uγ,L(x) rather
than U(x) = x (area under the green and black curve, re-
spectively). This experiment empirically demonstrates that
when the planner cares about different objectives (e.g., a
target level criterion), then augmented policies can achieve
significant improvements over standard Markovian ones.

7. CONCLUSIONS
In this paper, we combined aspects of the two most widely

used frameworks to model risk-sensitive planning, i.e. maxi-
mum expected utility and worst-case (games against nature)
formulations. We introduced a new class of problems, where
the goal is to maximize the expected utility of the total re-
ward wT , subject to a linear worst-case constraint on wT .
We showed how to encode this constraint using an extended
value utility function in a maximum expected utility formu-
lation, and we proved several results on the structure of the
corresponding optimal policy.

We showed that for finite planning horizons and for a class
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Figure 2: Resulting probability distributions and worst-case bounds (dashed lines). See pdf for colored version.

of infinite horizon problems, the optimal policy is determin-
istic and although not Markovian, it depends on the history
only through the accumulated reward. Therefore, the pol-
icy can be represented as a set of functions (one for each
state s ∈ S) of the total reward w, which, if necessary, can
be approximated much more effectively than general history
dependent decision rules, i.e. functions defined on the set of
all possible histories Ht.

Although introducing non-linear utility functions allows
the expression of a richer set of planning preferences, it in-
creases the complexity because of the augmentation of the
state space. However, adding worst-case constraints does
not further increase the complexity, and allows us to speed
up the policy search algorithm with additional pruning.

We think this type of formulation can be particularly
useful for time-dependent problems where using the aug-
mented space is unavoidable. For instance, in the Green-
Driver App [2], they face SSPs where the edge costs prob-
ability distributions are dependent on the current time (es-
sentially on wt) because they model traffic lights. Although
we used synthetic edge cost probability distributions, we
showed our approach scales to large real-world networks,
and it leads to significantly different plans with respect to
traditional optimization criteria.
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ABSTRACT

Multiagent planning under uncertainty has seen important
progress in recent years. Two techniques, in particular, have
substantially advanced efficiency and scalability of planning.
Multiagent heuristic search gains traction by pruning large
portions of the joint policy space deemed suboptimal by
heuristic bounds. Alternatively, influence-based abstraction
reformulates the search space of joint policies into a smaller
space of influences, which represent the probabilistic effects
that agents’ policies may exert on one another. These tech-
niques have been used independently, but never together,
to solve larger problems (for Dec-POMDPs and subclasses)
than previously possible. In this paper, we take the logi-
cal albeit nontrivial next step of combining multiagent A*
search and influence-based abstraction into a single algo-
rithm. The mathematical foundation that we provide, such
as partially-specified influence evaluation and admissible heuris-
tic definition, enables an investigation into whether the two
techniques bring complementary gains. Our empirical re-
sults indicate that A* can provide significant computational
savings on top of those already afforded by influence-space
search, thereby bringing a significant contribution to the
field of multiagent planning under uncertainty.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Theory, Performance

Keywords

Multiagent Planning Under Uncertainty, Heuristic Search,
Multiagent A*, Influence-Based Abstraction, TD-POMDP.

1. INTRODUCTION
Computing good policies for agents that are part of a team

is an important topic in multiagent systems. This task, plan-
ning, is especially challenging under uncertainty, e.g., when
actions may have unintended effects and each agent in the
team may have a different view of the global state of the en-
vironment due to its private observations. In recent years,

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

researchers have proposed to gain grip on the problem by
abstracting away from policies of other agents and instead
reasoning about the effects, or influences, of those policies
[1, 2, 22, 23, 25]. However, no methods have been proposed
to effectively search the space of influences other than enu-
meration. In this paper, we fill this void by showing how it
is possible to perform heuristic search of the influence space,
thereby significantly speeding up influence-based planning.

The problem of multiagent planning under uncertainty
can be formalized as a decentralized partially observable
Markov decision process (Dec-POMDP) [3]. However, its
solution is provably intractable (NEXP-complete). As such,
many methods either focus on finding approximate solutions
without quality guarantees [10, 5, 13, 18, 22, 23], or provid-
ing optimal solutions for restricted subclasses. In particular,
more efficient procedures have been developed for problems
that exhibit transition and observation independence [2, 11,
11, 21] or reward independence [1]. Unfortunately, these sub-
classes are too restrictive for many interesting tasks, such as
mobile agents collaborating in the search for a target.

The transition-decoupled POMDP (TD-POMDP) [25] has
recently been introduced as a model that allows for tran-
sition, observation, and reward dependence, while still al-
lowing for more efficient solutions than the general Dec-
POMDP model. The core idea is to exploit independence
between agents by formalizing the influence they can exert
on each other. This abstract representation of interaction-
related behavior parameterizes a search space of joint in-
fluences, which is often significantly smaller than the joint
policy space (cf. [24] chapter 4) and, in principle, cheaper
to search. Nevertheless, like the policy space, the influence
space can still grow exponentially in problem size.

The challenge that we address here is how to search the
influence space efficiently. Whereas previous TD-POMDP
solutions have focused on exhaustive influence-space search,
in general Dec-POMDPs, A* policy-space search guided by
heuristics, i.e., multiagent A* (MAA*), has been shown to
be an extremely powerful method for reducing the computa-
tion required to find optimal solutions [14, 19, 20]. The main
contribution of this paper is to show how the strengths of
heuristic policy-space search can be transferred to influence-
space search.

To accomplish this, we make the following auxiliary con-
tributions: we show how one can define heuristics in influ-
ence space, we prove the admissibility of such heuristics, thus
guaranteeing optimality of A* search, and we provide the
results of an empirical evaluation that shows that our pro-
posed methods can yield significant performance increases,
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Figure 1: HouseSearch environments. ‘1’/‘2’ marks search
robot start positions. ‘t’ marks possible static target loca-
tions.

especially on problems that are hard for exhaustive influence
search. Additionally, we demonstrate how TD-POMDPs
can be used for an important class of problems: locating
objects or targets with a team of agents, which also leads us
to the first application of influence search on problems that
have cyclic dependencies between the agents.

2. INFLUENCE-BASED ABSTRACTION
After describing a motivating problem domain, we review

the TD-POMDP model and influence-based policy abstrac-
tion, and explain how they can be exploited to find optimal
solutions via optimal influence space search.

2.1 Motivating Domain: Locating Targets
Although the TD-POMDP model and the methods pre-

sented in this paper extend to other settings, in this paper
we focus on their application to problems where a team of
agents has to locate a target given a prior probability distri-
bution over its location and a model of its movement. We
assume that the target either remains stationary or moves
in a manner that does not depend on the strategy used by
the searching agents.

More concretely, we consider a problem domain called
HouseSearch in which a team of robots must find a tar-
get in a house with multiple rooms. Such an environment
can be represented by a graph, as illustrated in Fig. 1. At
every time-step, each agent i can stay in its current node n
or move to a neighboring node n′. The location of agent i
is denoted li and that of the target is denoted ltarget. The
movements, or actions ai, of each agent i have a specific
cost ci(li,ai) (e.g., the energy consumed by navigating to a
next room) and can fail; we allow for stochastic transitions
p(l′i|li,ai). Also, each robot receives a penalty ctime for ev-
ery time step that the target is not found. When a robot is
in the same node n as the target, there is a probability of
detecting the target p(detecti|ltarget,li), an event which will
be modeled by a state variable ‘target found by agent i’ (de-
noted fi). When the target is detected, the agents receive
a reward rdetect. Given the prior distribution and model of
target behavior, the goal is to optimize the expected sum of
rewards, thus trading off movement cost and probability of
detecting the target as soon as possible.

2.2 TD-POMDP Model
Here we formalize the planning task for scenarios such as

the HouseSearch task described above. First, we introduce
the single-agent factored POMDP, and then we describe how
a TD-POMDP extends this model to multiple agents.

A factored partially observable Markov decision process for
a single agent (indexed i for consistency with multiagent

NMF MMF

locally affected xl
i ml

i

nonlocally affected N/A mn
i

unaffectable xu
i mu

i

Table 1: Different types of state factors that make up si.

notation later on) is a tuple 〈Si, Ai, Ti, Ri, Oi, Oi〉, where
Si = X1 × · · · × Xk is the set of states si induced by a set
of k state variables or factors, Ai is the set of actions that
the agent can take, Ti is the transition model that specifies
Pr(s′

i|si,ai), Ri(si,ai,s
′
i) is the reward function, Oi is the set

of observations oi, and Oi is the observation function that
specifies Pr(oi|ai,s

′
i). Because the state space is factored,

it is usually possible to specify Ti, Ri and Oi in a com-
pact manner using a Bayesian network called a two-stage
temporal Bayesian network (2TBN) [4]. Given this model,
the planning task for a POMDP is to find an optimal pol-
icy π that maximizes the expected sum of rewards over h
time steps or stages. Such a policy maps from beliefs, prob-
ability distributions over states, to actions. While solving
a POMDP is widely considered to be an intractable prob-
lem, in the last two decades many exact and approximate
solution methods have been proposed (see, e.g., [7]).

Intuitively, a TD-POMDP is a set of factored POMDPs,
one for each agent, where there is overlap in the state fac-
tors of each agent.1 Moreover, the set of state factors can
be divided into factors that occur only in one agent’s local
state space (‘non-mutual’ factors (NMFs)) and factors that
are ‘mutually modeled’ by more than one agent (MMFs). A
TD-POMDP imposes the restriction that each state factor
can be directly affected by the action of at most one agent.
That is, in the 2TBN, each factor can have an incoming edge
from only 1 action variable. This does not mean that state
factors depend on just one agent, since factors can be indi-
rectly (i.e., via a directed path consisting of multiple edges)
influenced by many agents. This leads to different parts of
an agent’s local state, as summarized in Table 1. Using the
notation defined in this table, we will write the local state
of an agent i as si =

〈
xl

i,x
u
i ,ml

i,m
n
i ,mu

i

〉
= 〈xi,,mi〉. The

joint reward function for the TD-POMDP is the summation
of the individual reward functions for each agent’s POMDP:
R(s,a) =

∑
i Ri(si,ai), and we assume an initial joint state

distribution b0. For a more formal introduction of the TD-
POMDP framework, see [24, 25].

The 2TBN representation of the TD-POMDP’s transi-
tion, observation, and reward model for HouseSearch is
illustrated in Fig. 2. Here, two search agent’s local states
overlap such that both model the target location and the
factors f1,f2. Note that the mutually modeled state factors
can only be characterized as (non)locally affected from the
perspective of a particular agent. E.g., f1 is locally affected
for agent 1, but non-locally affected for agent 2. The figure
also shows that, in this domain, each agent’s reward func-
tion Ri can also be factored as the sum of two components
Rdetect and Rmove. The former models the rewards for de-

1Of course, for such a setting to be well-defined means that
different transition models Ti need to be consistent since
the local transition probabilities can depend on other agents
too. One can alternatively consider the existence of a single
transition model T defined over the joint action and the joint
state.
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Figure 2: A TD-POMDP for HouseSearch.

tection, as well as the time cost (ctime) of not detecting.
This component depends on f t+1

1 , f t+1
2 as well as on f t

1, f
t
2:

only when (at least) one of the fi variables switches from
false to true do the agents get the reward, when all four fac-
tors are false the agents get the time penalty and otherwise
the rewards are 0 (but the movement costs remain). The
movement reward components only depend on the agents’
non-mutual locations and local actions.

The TD-POMDP is a non-trival subclass of the factored
Dec-POMDP [15], for which the NEXP-completeness result
still holds [24]. This also means that single-agent POMDP
solution methods do not directly apply. Intuitively, in a
multiagent context, we are now searching for a joint policy
π = 〈π1, . . . ,πn〉. Moreover, an agent can no longer base its
policy on a simple belief over states, as this does not account
for the beliefs and actions of its teammates.

2.3 Influences and Local Models
A well-known solution method for Dec-POMDPs, called

JESP [10], searches for a locally optimal joint policy as fol-
lows: it starts with a random joint policy and then selects
one agent to improve its policy while keeping the other poli-
cies fixed. The improvement of the selected agent is done
by computing a best response via dynamic programming.
From the perspective of a single agent i, by fixing π−i (the
policies of the other agents) the problem can be re-cast as an
augmented POMDP, where the augmented state is a tuple
〈s, ~o−i〉 of a nominal state and the observation histories of
the other agents.

Since a TD-POMDP is a Dec-POMDP, JESP directly
applies. However, because of the special structure a TD-
POMDP imposes, we can account for this structure to com-
pute the best response in a potentially more efficient way:
rather than maintaining a JESP belief bi(s, ~o−i), agent i can
maintain a condensed belief bi(s

t
i, ~mt−1

i ) over just its own lo-
cal state and the history of mutually modeled factors [25].
Intuitively, this is possible, because all information about
~o−i and the state factors that are not in agent i’s local state
(i.e., xj for j 6= i) is captured by ~mt

i.
2 That is, ~mt

i d-
separates the agent’s observation history ~o t

i from those of
other agents ~o t−1

−i . For instance, given the DBN connectiv-

2Note that mt
i is contained in st

i such that we can write
bi(s

t
i, ~mt−1

i ) = bi(x
t
i, ~mt

i).

Figure 3: The Influence DBN for HouseSearch.

ity in Fig. 2, all information agent 2 has about lt1 is inferred
from the history of f t

1 and lttarget.
A second important observation is that an agent i is only

influenced by other agents via its nonlocal mutually modeled
factors mn

i . E.g., in Fig. 2 agent 1 only influences agent 2
via the f1 factor. Therefore, if, during planning, the value
of this factor at all stages is known, agent 2 can completely
forget about agent 1 and just solve its local POMDP (and
similar for agent 1). This line of reasoning holds even if
agent 2 does not know the exact values of f1 ahead of time,
but instead knows the probability that f1 turns to true for
each stage. This insight lies at the basis of influence-based
policy abstraction: all policy profiles π−i that lead to the
same distributions over non-local MMFs mn,0

i , . . . ,mn,h−1
i

can be clustered together, since they will lead to the same
best response of agent i.

To formalize this idea, an incoming influence point of
agent i, denoted I→i, specifies a collection of conditional
probability tables (CPTs): one for each nonlocally affected
MMF, for each stage t = 1, . . . ,h−1.3 We denote a CPT for
f t
1 (from our example) as pft

1
, which specifies probabilities

pft
1
(v|·) for values v ∈ {0,1} of f t

1 given its parents (·). In

this example, I→2 = {pf1
1
, pf2

1
, . . . , p

fh−1
1

}. To specify these

CPTs, it is only necessary to use ~mi, the history of mutual
features, as the parents [25]. I.e., the CPTs are specified as
p

m
n,t+1
i

(v|~mt
i). With some abuse of notation, we also write

Pr(mn,t+1
i |~mt

i, I→i) for the probability of (some value of) a

non-local factor mn,t+1
i according to I→i. Because the CPTs

can only depend on ~mi, an incoming influence point I→i en-
ables the computation of a best response πi independent of
the other agents.

Of course, in general the actions of agent i can also in-
fluence other agents, so in order to find optimal solutions,
we will also need to reason about this influence. We denote
by Ii→ the outgoing influence point of agent i, which speci-
fies a collection of CPTs: one for each of its locally affected
MMFs. Again, these CPTs can depend on only (the history)
of MMFs ~mi. An incoming and outgoing influence point to-
gether form a (complete) influence point Ii = 〈I→i, Ii→〉. A
joint influence point I = 〈I1→, . . . ,In→〉 specifies an outgo-
ing influence point for each agent. Note that I also specifies
the incoming influences, since every incoming influence point
is specified by the outgoing influence points of the other
agents. Fig. 3 illustrates the dependencies of an influence
point in a so-called influence DBN. For instance, the possi-

3For t = 0, the (non-conditional) distribution is specified by
the initial state distribution b0. The CPTs for subsequent
stages may differ (from one another) because they summa-
rize other agents’ policies, which can depend on history.
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ble CPTs p
ft+1
1

are conditioned on ~lttarget, the history of the

target location, as well as f t
1, the value of ‘target found by

agent 1’ at the previous stage.
Given Ii, agent i has an augmented local POMDP with

local states, rewards and transitions. In this local model,
a state is a pair 〈st

i, ~mt−1
i 〉 (or equivalently 〈xt

i, ~mt
i〉), such

that, as discussed above, a belief is of the form bi(s
t
i, ~mt−1

i ).
Given an incoming influence point that dictates the transi-
tion probabilities of its nonlocally-affected MMFs, this local
POMDP is independent of the other agents, but subject to
the constraint that its solution must be a policy that ad-
heres to the probabilities dictated by the outgoing influence
point (specified by Ii). We call such a restricted model to-
gether with the influence point an influence augmented local
model (IALM). Solving the IALM is non-trivial since stan-
dard POMDP solvers will not respect the additional con-
straints. The problem can be solved by reformulating as a
mixed integer linear program (MILP) [24, chapter 5].

2.4 Optimal Influence Search
The key property of these influences is that they can be

used to compactly represent many of the other agents’ poli-
cies. Rather than searching in the larger space of joint poli-
cies, we can search in the space of joint influence points and
for each of them compute the agents’ best responses to com-
pute their value. In particular, the value of a fully specified
joint influence point is:

V (I) =
n∑

i=1

Vi(I), (1)

where Vi(I) = Vi(〈I→i, Ii→〉) is the value of agent i’s best
response against I→i subject to the constraints of satisfy-
ing Ii→, i.e., the value that results from solving its IALM.

Given that we can compute the value of a joint influence
point I, we can optimally solve a TD-POMDP by enumer-
ating all I. Optimal Influence Search (OIS) [25] does this
by constructing a tree, as illustrated in Fig. 4. An outgoing
influence slice It

i→ is that part of agent i’s outgoing influence
point corresponding to a particular stage t. The search tree
contains the outgoing influence slices for all agents for stage
t = 1 on the first n levels, it contains the slices for t = 2
on the next n levels, etc. An influence point is defined by a
complete path from root to leaf. OIS performs an exhaustive
depth-first search to find the optimal joint influence point
from which the optimal joint policy can be reconstructed.

Although an apparently simple search strategy, OIS in fact
demonstrated that influence abstraction can lead to signif-
icant gains in performance, thereby establishing itself as a
state-of-the-art method for computing optimal solutions for
weakly-coupled agents [25].

3. HEURISTIC INFLUENCE SEARCH
The previous section explained how OIS can greatly im-

prove over other methods by searching in the search of joint
influences, which can be much smaller than the space of joint
policies. However, the weakness of OIS is that it needs to
search this space exhaustively. In contrast, for general Dec-
POMDPs, heuristic search methods (in particular A*, see,
e.g., [17]) have shown to be very effective [19]. The main
idea here, therefore, is to extend heuristic search to be able
to search over the joint influence space.

In the subsections that follow, we develop the mechanics
necessary to compute admissible heuristic values for nodes of
the influence search tree. As we describe, this is a non-trivial
extension, due to the fact that an influence summarizes a set
of possible policies.

3.1 Computing Heuristic Values
To guarantee that heuristic search finds the optimal so-

lution we need an admissible heuristic; i.e, a function F
mapping nodes to heuristic values that are guaranteed to be
an over-estimation of the value of the best path from root
to leaf that passes through that node. In our setting this
means that the heuristic F (Ǐ) for a partially specified joint
influence point Ǐ (corresponding to a path from the root of
the tree to a non-leaf node) should satisfy

F (Ǐ) ≥ max
I consistent with Ǐ

V (I). (2)

We will also write I∗|Ǐ for the maximizing argument of the
r.h.s. of (2).

In Dec-POMDPs, it is possible to perform A* search over
partially specified joint policies [14]. For a ‘past joint policy’
ϕ = (π0, . . . ,πt−1) that specifies the joint policy for the
first t stages, it is possible to define F (ϕ) = G(ϕ) + H(ϕ),
where G gives the actual expected reward over the first t
stages 0, . . . ,(t − 1) and where H is a heuristic of the value
achievable for the remaining stages. There are multiple ways
to define H. For instance, one general form [20] is:

H(ϕ) =
∑

s

Pr(s|b0,ϕ)Ht(s), (3)

where Ht(s) is a guaranteed overestimation of the expected
value starting from s in stage t. Such an overestimation can
be obtained, for instance, by solving the underlying MDP
(called QMDP ) or POMDP [5, 14] .

Unfortunately, it is not possible to adapt the above ap-
proach to searching influence space in a straightforward fash-
ion. Given an Ǐ, the past joint policy is not fixed, because

π∗|Ǐ the best joint policy for I∗|Ǐ is unknown. Therefore, we
take a somewhat different approach, as detailed next.

3.2 Restricted Scope Restricted Horizon
We exploit the fact that V (I) in (1) can be additively

decomposed. That is we upper bound (1) by:

F (Ǐ) =
n∑

i=1

Fi(Ǐ). (4)

Clearly, when Fi(Ǐ) ≥ Vi(I
∗|Ǐ) for all agents i, then F (Ǐ) ≥

V (I∗|Ǐ) and F (Ǐ) is admissible.
The problem of computing a heuristic value Fi(Ǐ) is illus-

trated in Figure 5. It shows that for a certain node Ǐ in the
search tree, the influences for the first number (h) of stages

976



... ... ... ...

nonlocal MMFS:

influence promised 

by other agents

local MMFs:

influence promised 

to other agents

nonmutual factors

factors of other 

agents (not part of 

agent i’s local state)

influences specified influences not yet specified

t = 0 t = 1 t = 2 t = 3

m
n,0
i

m
n,1
i

m
n,2
i

m
n,3
i

m
l,0
i

m
l,1
i

m
l,2
i

m
l,3
i

x0
i x1

i x2
i x3

i

oi

ai

Ri oi

ai

Ri oi

ai

Ri oi

ai

Ri

Figure 5: A partially specified joint influence point Ǐ from
the perspective of agent i. Dashed black elipses denote the
agent’s local state. The figure does not include unaffectable
factors. Influences are specified for stage 0,1. Green (dark)
nodes are specified incoming influences, blue (light) nodes
are specified outgoing influences. The dashed boxes denote
the unspecified incoming (green) and outgoing (blue) influ-
ences for stages 2,3.

are specified (up to but not including stage h). For now
we assume that all influences at stage h − 1 are specified,

i.e., we assume that Ǐh−1 is a fully specified influence slice.
Figure 5, in which h = 2, shows that computation of Fi(Ǐ)
depends on only a subset of state factors (i.e., a restricted
scope). In order to actually compute the Fi(Ǐ) , we suggest
a 2-step approach: 1) compute an admissible heuristic for
the stages for which the influence is not yet specified, and
2) subsequently use these heuristic values to solve a con-
strained POMDP over horizon h. We will refer to heuristics
of this form as restricted scope restricted horizon (RSRH)
heuristics.

3.2.1 Step 1: The Unspecified-Influence Stages.

The goal here is to, for each IALM state, to compute a

heuristic value Hh
i , analogous to the term used in (3), that

is an optimistic estimate of the value of that state over the
remaining (unspecified-influence) stages. In particular, we
use an approach similar to QMDP : we compute the value
of the underlying MDP but restricted to local states of the
agent. In order to do so, we make optimistic assumptions on
the unspecified incoming transition influences. Intuitively,
this amounts to assuming that an agent i’s peers will adopt
policies that will exert the most beneficial effect on agent i’s
local state.

Remember that an IALM state 〈st
i, ~mt−1

i 〉 = 〈xt
i,~m

t
i〉, and

that we write xi =
〈
xl

i,x
u
i

〉
and mi =

〈
ml

i,m
n
i ,mu

i

〉
. Now

the overestimation we use is:

Ht
i (xi, ~mi) , max

ai

[
R(si,ai) +

∑

x′
i,ml′

i ,mu′
i

Pr(x′
i,m

l′
i ,mu′

i |si, ai) max
mn′

i

Ht+1
i (x′

i, ~m′
i)

]
, (5)

which upper bounds the value of the underlying restricted-

scope MDP given any incoming influence point I→i:

V I→i
i,MDP (xi, ~mi) = max

ai

[
R(si,ai) +

∑

x′
i,ml′

i ,mu′
i ,mn′

i

Pr(x′
i,m

l′
i ,mu′

i ,mn′
i |xi, ~mi, ai,I→i)V

I→i
i,MDP (x′

i, ~m′
i)

]
. (6)

Also, it is important to note that Pr(x′
i,m

l′
i ,mu′

i |si,ai) in (5)
can be directly computed due to the structure imposed by
the TD-POMDP. As such, our optimistic estimate Ht

i can
be computed via dynamic programming starting at the last
stage h − 1 and working back to stage h.

3.2.2 Step 2: The Specified-Influence Stages.

Here we use Hh
i found in stage 1 to construct a restricted-

horizon constrained POMDP, i.e., the IALM for agent i for
only the first h stages, which we will denote by M (we denote
all quantities of M with bars). For this IALM, we change
the immediate rewards for the ‘last’ stage, stage h − 1, to

include the heuristic Hh
i for the remaining stages:

R
h−1

(xi, ~mi, ai) , R(si,ai) +
∑

x′
i,ml′

i ,mu′
i

Pr(x′
i,m

l′
i ,mu′

i |si,ai) max
mn′

i

Hh
i (x′

i, ~m′
i). (7)

That is, we apply the same optimistic estimate, effectively
transforming the immediate rewards of stage h−1 into opti-
mistic heuristic ‘action-value’ estimates. The result is a com-
pletely specified, restricted-horizon, IALM for agent i that
can be solved in exactly the same way as the full-horizon
IALM. The value it achieves is Fi(Ǐ) , V i(I).

3.2.3 Partially Specified Joint Influence Slices.

So far we assumed that the (outgoing) influences, for all
agents, up to and including stage h−1 were specified. How-
ever, for many nodes in the influence tree in Figure 4 the in-
fluences are only specified for a subset of agents at stage h−1.
However, we can easily overcome this problem by adapting
the computation of Fi(Ǐ) in the following fashion.

If an outgoing influence at stage h − 1 is not specified
we just omit the constraint in the MILP. If an incoming
influence at stage h − 1 is not specified we transform the
transition probability for the last transition in the restricted-
horizon IALM (i.e., the transition from stage h − 2 to h −
1) such that for all 〈xl,h−1

i ,xu,h−1
i ,ml,h−1

i ,mu,h−1
i 〉 the lo-

cal state will always transition to the fully specified local

state 〈xl,h−1
i ,xu,h−1

i ,ml,h−1
i ,mn,h−1

i ,mu,h−1
i 〉 with the high-

est heuristic value.

Theorem 1. Fi(Ǐ) is admissible.

The implication of Theorem 1, whose proof is given in
the appendix, is that our heuristic can be used to prune
those influence assignments that are guaranteed to be sub-
optimal. As such, we will be able to expand potentially
far fewer nodes of the influence-space search tree and still
guarantee optimality.

3.3 A Tighter Heuristic
While the heuristic of the previous section is admissible,

it is not very tight, because the second maximization in (5)
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corresponds to always assuming the most optimistic incom-
ing influences. For instance, in the rectangle example, it will
assume that the other agent finds the target in the second
stage t = 1. However, from the possible locations of the
target, we know that it will never be possible for the other
agent to find the target at t = 1, it will take at least two
steps. Next, we present a new heuristic that exploits this
insight to yield a tighter upper bound to use during search.

Note that V I→i
i,MDP (xt

i, ~mt
i) in (6) can be expanded to

max
ai

[
Ri(si, ai)+

∑

〈xi,ml
i,mu

i 〉t+1

Pr(〈xt
i,m

l
i,m

u
i 〉t+1|xt

i,m
t
i,ai)

∑

m
n,t+1
i

Pr(mn,t+1
i |~mt

i,I→i)V
I→i

i,MDP (xt+1
i ,~mt+1

i )
]

(8)

due to the structure of the TD-POMDP. An important as-
pect in (8) is that Pr(mn,t+1

i |~mt
i,I→i) exactly corresponds

to one of the entries in p
m

n,t+1
i

that I→i specifies.

Our first heuristic picks the heuristic best values for mn
i ,

which we will denote mn⋆
i , and then assumes a optimistic

influence I⋆
→i that prescribes Pr(mn⋆

i |~mt
i,I

⋆
→i) = 1. Here the

idea is to use a more realistic (but still optimistic) influence
I∗

→i by making use of an upper bound on Pr(mn⋆
i |~mt

i,I→i),
which may be precomputed by examining the TD-POMDP
CPT for factor mn

i .
In particular, we compute the following upper bounds on

p
m

n,t
i =v

the probability of each value v of a non-local factor

mn,t
i as follows:

UB
m

n,t
i |~mt−1

i
(v) = max

vp∈PPP (m
n,t
i |~mt−1

i )

Pr(v|vp), (9)

where Pr(·|·) is specified by a CPT of the 2TBN, vp denotes
an instantiation of the parents of mn,t

i in the 2TBN, and
where the positive probability parents, PPP (mn,t

i |~mt−1
i ), is

the set of such instantiations that 1) have positive probabil-
ity of occuring, and 2) are consistent with mn,t−1

i (specified
by ~mt−1

i ).
We now use these bounds to define the more realistic in-

fluence I∗
→i and thus heuristic. In order to compute heuris-

tic value H(xt−1
i , ~mt−1

i ), we first order the possible values of
mn,t

i according to their heuristic next-stage value H(xt
i, ~mt

i).
Next, we define I∗

→i to be such that it defines a CPT p
m

n,t
i

that gives maximal weight to the high-ranked values of mn,t
i .

We create this distribution as follows: first we select the
highest ranked value v∗ of mn,t

i and we assign it probabil-
ity UB

m
n,t
i |~mt−1

i
(v∗), then we select the next best ranked

value v′ and either assign it the remaining probability mass
(if that is less then its upper bound) or we assign it its up-
per bound and continue with the next-best value, etc. The
heuristic is now defined by substituting the thusly obtained
distribution for Pr(mn,t+1

i |~mt
i,I→i) in (8).

4. EXPERIMENTS
We now present a empirical evaluation of our heuristic

influence-space search method. Our primary hypothesis is
that exhaustive optimal influence-space search (OIS), which
has been shown to solve a number of weakly-coupled transit-
ion-dependent problems more efficiently than policy space
search methods, can gain even more traction if combined
with heuristic search methods. Although it would be inter-
esting to additionally compare with optimal Dec-POMDP
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Figure 6: Runtimes on SatelliteRover.

solution methods that employ heuristic search but not in-
fluence abstraction (e.g., [19]), we expect that the problems
considered here are too large, especially in the number of
individual observations (4 × 2 × 2 = 16 for Diamond, 32 for
Rectangle, and 36 for Squares), which are beyond what opti-
mal Dec-POMDP solvers have demonstrated to handle (the
largest of those problems have 5 individual observations).
In order to test our hypothesis, we performed experiments
both on the HouseSearch configurations shown in Fig. 1
as well as on SatelliteRover, a TD-POMDP test set in-
volving two agents that interact through task dependencies
(we use the version where the agents can wait) [25].

For HouseSearch, we experimented with different de-
grees of stochasticity. I.e., we considered problems rang-
ing from deterministic observations and deterministic ac-
tions, labeled “d.o.d.a.”, to stochastic observations (where
the probability of observing no target when in the same room
as the target is 0.25) and stochastic actions (where the prob-
ability that a move action will fail is 0.1), labeled “s.o.s.a”.
For all problems, the parameters were set to ctime = −5,
ci = −1 for each movement action, and rdetect = 0. Ta-
ble 2 compares the runtimes of OIS with those of A* using
the two variants of our restricted scope restricted horizon
heuristic (where A*1 corresponds to that described in Sec-
tion 3.2 and A*2 corresponds to that described in Section
3.3). As shown, using the simplest variant of our heuristic
can lead to significant speed-ups over depth-first search, es-
pecially on the Diamond configuration where we see as much
as two orders of magnitude improvement (e.g., at horizon 3
of Diamond s.o.s.a). It also allows scaling up to larger time
horizons than was previously possible. We also see that
the heuristic A*2 is indeed tighter, allowing for more prun-
ing and hence faster solutions on almost all problems. For
Rectangle and Squares, however, the benefit of A* over ex-
haustive OIS are less pronounced. (Given space restrictions,
we omit the d.o.d.a., d.o.s.a, and s.o.s.a. variations of these
problems, whose trends were the same as in s.o.d.a.)

We also tested A*1 on SatelliteRover, in which the
lengths of task execution windows were systematically var-
ied to affect the level of influence constrainedness [25]. The
less constrained the agents’ interactions, the larger the influ-
ence space, as demonstrated by the exponentially increasing
runtimes plotted on a logarithmic scale in Fig. 6. Evidently,
it is on these less-constrained problems, which are hardest
for OIS, where we get the most speedup from A*. Here,
A* search leads to significant savings of well over an order
of magnitude (573s vs. 19.9s for IC=1/7), thereby comple-
menting the savings achieved by influence-based abstraction.

The differences between the impact of A* in Diamond,
Rectangle, and Squares warrant a more detailed analysis. In
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Diamond (d.o.d.a) Diamond (s.o.d.a) Diamond (d.o.s.a) Diamond (s.o.s.a) Rectangle (s.o.d.a) Squares (s.o.d.a)

h OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2

1 0.28 0.27 0.29 0.19 0.30 0.25 0.22 0.28 0.23 0.25 0.32 0.23 0.08 0.10 0.17 0.21 0.25 0.28
2 1.64 0.83 0.26 2.28 0.92 0.25 3.13 1.86 0.29 8.68 2.41 0.64 0.72 0.71 0.47 1.73 1.33 0.67
3 8.84 1.77 0.68 35.60 5.93 0.89 151.6 11.63 1.38 8,871 52.08 2.37 16.52 17.88 7.85 31.96 34.55 10.22
4 101.6 8.50 1.28 811.4 48.75 2.86 436.0 4.89 3,066 14.39 621.2 412.3 138.6 1,716 1,101 167.5
5 945.0 31.80 7.90 953.1 44.57 178.1 44.52 4,187 6,295

Table 2: Runtimes (in seconds), including heuristic computation (observed to be negligible), on variations of HouseSearch.

the latter two variations, the tighter heuristic appears too
loose to effectively guide heuristic search except on prob-
lems with longer time horizons. Upon closer inspection, we
discovered an inherent bias in the application of our heuris-
tic to HouseSearch problems; it encourages the ‘stay’ ac-
tion. This is because the heuristic evaluation of each agent
makes the optimistic assumption that the other agent will
probably find the target, in which case the agent need not
look itself and incur the associated movement cost. To rem-
edy this problem, we developed a simple specialized adapta-
tion (A*-imc) that ignores the movement cost component of
the factored reward in the first term of Equation 7. While
this modification causes the heuristic to be less tight, it also
takes away the bias against movement actions. Results for
this modification are shown in Table 3. An interesting phe-
nomenon occurs for Rectangle and Squares where for longer
time horizons, runtimes are significantly decreased because
the no-movement bias has been eliminated, but where for for
shorter horizons we see slight increases in runtimes because
here the optimal policy is actually to stay. Likewise, for Dia-
mond, very little movement is required to find the target; in
this case, the search also suffers from the fact that ignoring
movement costs actually loosens the heuristic, causing more
nodes to be expanded. All in all, this demonstrates that us-
ing specialized domain knowledge can significantly increase
the effectiveness of A* influence space search.

Diamond (s.o.d.a) Rectangle Squares

h A*2 A*2-imc A*2 A*2-imc A*2 A*2-imc

1 0.25 0.56 0.17 0.30 0.28 0.50
2 0.25 0.34 0.47 0.57 1.67 1.20
3 0.89 1.10 7.85 7.18 10.22 12.10
4 2.86 3.86 138.6 14.71 167.5 46.95
5 44.57 146.5 4,187 222.0 6,295 422.6

Table 3: Ignoring movement costs in heuristic calculation.

5. RELATEDWORK
Having reviewed Dec-POMDP heuristic search [14, 19, 20]

and TD-POMDP influence-space search [24, 25], which are
most closely related to the work we have developed here, we
now describe connections to other recent models and meth-
ods. For instance, the EDI-CR model [9] makes explicit a
set of joint transition and reward dependencies. The au-
thors propose an MILP-based solution method that is con-
ceptually related to influence abstraction; it clusters action-
observation histories that have equivalent probabilistic ef-
fects so as to reduce the number of joint histories considered.
A significant difference is that, unlike the algorithms we de-
velop here, instead, it entails solving a single joint model
framed as an MILP, instead of decoupling the problem into
influence-abstracted local models.

The DPCL [22, 23] exploits ‘coordination locales’ for ef-

ficient computation of an agent’s response policy by incor-
porating effects of other agents’ policies into a compact lo-
cal model, which is similar the TD-POMDP’s IALM. How-
ever, in contrast to the optimal search methods that we de-
velop, the DPCL has only ever afforded approximate solu-
tions. Other methods have been developed for computing
approximate solutions for general factored Dec-POMDPs,
of which the TD-POMDP could be considered a specialized
instance. Their more general factored structure has been
exploited by using collaborative graphical Bayesian games
in combination with non-serial dynamic programming [15]
and approximate inference [12] in the finite-horizon case. In
the infinite-horizon case finite state controllers and EM [8,
16] have been proposed. In contrast to the work presented
here, these methods search in the policy space rather than
the influence space.

6. CONCLUSIONS & FUTUREWORK
We have introduced heuristic A* search of the influence

space for the optimal solution of multiagent planning prob-
lems formalized as TD-POMDPs. As previous work has
shown, the space of influences can be much smaller than the
space of joint policies and therefore searching the former
can lead to significant improvements in performance. We
illustrated the efficacy of our approach on a optimal decen-
tralized probabilistic search problem, thereby showing the
first application of influence search on TD-POMDPs with
cyclic dependencies between agents. Our empirical evalua-
tion shows that A* search of the influence space can lead
to significant improvements in performance over exhaustive
OIS. In particular, the results indicate that in problems that
are harder (i.e., where there is a high number of possible
influences) A* leads to the most improvements. In other
words, influence abstraction and heuristic search can pro-
vide complementary gains. This suggests that A* search of
influence space can be an important tool in scaling up a large
class of multiagent planning problems under uncertainty.

There are a number of directions for future research. Be-
cause of the connection this paper establishes between search-
ing influence space and MAA* for Dec-POMDPs, it is nat-
ural to try and extend recent improvements in the latter to
the former. One question is whether it is possible to incre-
mentally expand the nodes in the search tree. Such incre-
mental expansion has yielded significant increases in perfor-
mance for Dec-POMDPs [19]. Another interesting question
is whether it is possible to cluster influence points. That is,
it may be possible to characterize when different joint influ-
ence points correspond to best responses that are guaranteed
to be the identical.
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APPENDIX

Proof of Theorem 1. We need to show that

∀Ii
Fi(Ǐ) = V i(I) ≥ Vi(I

∗|Ǐ) (10)

We assume an arbitrary I→i,Ii→ consistent with Ǐ. Since the first
h − 1 stages are identical, (10) clearly holds if

∀bi,ai
Q

h−1
i (bi,ai) ≥ Q

h−1,I→i,Ii→
i (bi,ai). (11)

We choose an arbitrary bi,ai. Expanding both sides, we need to
show that

R
h−1

(bi,ai) ≥ Rh−1(bi,ai) +
∑

b′
P (b′|bi,ai)V

h,I→i,Ii→
i (b′

i).

(12)
Expanding the expectations over IALM states:

∑

xi,~mi

bi(xi, ~mi)R
h−1

(xi, ~mi,ai) ≥
∑

xi,~mi

bi(xi, ~mi)

[
R(si,ai) +

∑

s′
i

∑

oi

Pr(s′
i,oi|si,ai)V

h,I→i,Ii→
i (x′

i, ~m′
i, b

′
i).

]

Substituting the definition of R:

∑

xi,~mi

bi(xi, ~mi)
[
R(si,ai) +

∑

x′
i,ml′

i ,mu′
i

Pr(x′
i,m

l′
i ,mu′

i |si,ai)

max
mn′

i

Hh
i (x′

i, ~m′
i)

]
≥

∑

xi,~mi

bi(xi, ~mi)
[
R(si,ai) +

∑

s′
i

∑

oi

Pr(s′
i,oi|si,ai)V

h,I→i,Ii→
i (xi, ~mi,b

′
i)

]
.

This is proven if we can show that

∀xi,~mi

∑

x′
i,ml′

i ,mu′
i

Pr(x′
i,m

l′
i ,mu′

i |si,ai) max
mn′

i

Hh
i (x′

i, ~m′
i)

≥
∑

s′
i

∑

oi

Pr(s′
i,oi|si,ai)V

h,I→i,Ii→
i (x′

i, ~m′
i, b

′
i) (13)

We assume arbitrary xi, ~mi and now continue with the right hand
side. Since it is well-known that the MDP value function is an
upper bound to the POMDP value function [6], we have

∑

s′
i

∑

oi

Pr(s′
i,oi|si,ai)V

h,I→i,Ii→
i (x′

i, ~m′
i,b

′
i)

≤
∑

s′
i

∑

oi

Pr(s′
i,oi|si,ai)V

h,I→i,Ii→
i,MDP (x′

i, ~m′
i)

≤
∑

s′
i

Pr(s′
i|si,ai)V

h,I→i,Ii→
i,MDP (x′

i, ~m′
i)

≤
∑

s′
i

Pr(s′
i|si,ai)V

h,I→i
i,MDP (x′

i, ~m′
i) (14)

The last term denotes the optimal value under only incoming
influences, and the inequality holds because the set of policies
available to agent i without restrictions due to promised outgoing
influences is a strict superset of those when there are outgoing
influences. Now, by (6) we directly get that the last quantity

≤
∑

s′
i

Pr(s′
i|si,ai)H

h
i (x′

i, ~m′
i) ≤

∑

x′
i,ml′

i ,mu′
i

Pr(x′
i,m

l′
i ,mu′

i |si,ai) max
mn′

i

Hh
i (x′

i, ~m′
i), (15)

which concludes the proof.
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ABSTRACT
Plan generation is important in a number of agent applications, but
such applications generally require elaborate domain models that
include not only the definitions of the actions that an agent can
perform in a given domain, but also information about the most
effective ways to generate plans for the agent in that domain. Such
models typically take a large amount of human effort to create.

To alleviate this problem, we have developed a hierarchical goal-
based planning formalism and a planning algorithm, GDP (Goal-
Decomposition Planner), that combines some aspects of both HTN
planning and domain-independent planning. For example, it allows
the planning agent to use domain-independent heuristic functions
to guide the application of both methods and actions.

This paper describes the formalism, planning algorithm, correct-
ness theorems, and the results of a large experimental study. The
experiments show that our planning algorithm works as well as the
well-known SHOP2 HTN planner, using domain models only about
half the size of SHOP2’s.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Plan execution, formation, and generation

General Terms
Algorithms

Keywords
AI planning, hierarchical planning, goal decomposition

1. INTRODUCTION
The ability to do effective planning is important for a wide vari-

ety of computerized agents. Examples include robotic agents (e.g.,
the Mars rovers [27]), game-playing agents (e.g., in card games [29,
25] and real-time strategy games [5]), web-service agents [19], and
others. To build capable planners for agent environments, generally
the planner must incorporate a domain model that includes not only
the definitions of the basic actions that the agent can perform, but
also information about the most effective ways to generate plans in
the agent’s environment. One way to incorporate domain models
into planning agents is to custom-build a planning module for the

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

application at hand. This approach was used successfully in many
of the examples just mentioned, but it usually requires a huge de-
velopment effort.

Another approach is to use a domain-configurable planner which
reads the domain model as part of its input. Most such planners use
Hierarchical Task Network (HTN) planning, in which the domain
model includes methods for accomplishing tasks by dividing them
into smaller and smaller subtasks. This approach has been used in a
wide variety of planning domains, e.g., [33, 6, 22, 21, 26]. Writing
a new domain model usually is much less work than building a new
domain-specific planner, but in most cases it still requires a great
deal of human effort.

We have developed a Hierarchical Goal Network (HGN) plan-
ning formalism and algorithm similar to the HTN formalism and al-
gorithm in the SHOP planner [24], but with some important differ-
ences that make it easier to develop domain models. In the SHOP
formalism, each task is a separate syntactic entity whose seman-
tics depends entirely on what methods match it. In contrast, HGN
tasks consist of initial conditions and goal conditions with the same
semantics as in classical planning; and HGN methods and actions
have applicability and relevance conditions similar to the ones for
actions in classical planning. Our results are as follows:

Formalism: The HGN formalism provides (provably) as much
expressive power as SHOP’s HTN formalism (or equivalently,
SHOP2’s HTN formalism restricted to totally-ordered subtasks).
Moreover, in contrast to problems with soundness (see Section 2)
in HTN translations of classical planning domains, soundness is
guaranteed for all HGN domain models of classical domains; and
it is easier to analyze whether HGN translations are complete.

Planning algorithm: Our planning algorithm, GDP (Goal De-
composition Planner), is sound and complete. It is similar in sev-
eral ways to SHOP, but the HGN task and method semantics pro-
vide much more flexibility in applying methods and actions. For
example, in writing GDP domain models we don’t have to com-
mit to a task name in the methods: we just specify what should be
achieved instead of how to achieve it, and let the planner decide
which methods and actions are relevant and applicable.

Heuristic function: The HGN task and method semantics en-
able the development of heuristic functions similar to the ones in
classical planners (e.g., FF [16] and HSP [3]). We provide one
such heuristic function, for optional use in GDP, to guide the selec-
tion of both methods and operators. For a domain model to work
well, it is important to specify the order in which a set of methods
and operators should be tried when more than one of them is appli-
cable; and the heuristic function can make this easier by enabling
the planner to deduce the best order on its own.

Experimental results: We have done an extensive experimen-
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tal comparison of three versions of GDP, two versions of SHOP2,
and FF, in five different planning domains. On average, GDP’s do-
main models were only about half as large as the equivalent SHOP2
domain models, yet provided roughly the same performance (i.e.,
planning time and plan lengths). The HGN domain models were
so much simpler because the HGN task and method semantics ob-
viates the need for a plethora of extra methods and bookkeeping
operations needed in SHOP2 domain models.

2. RELATED WORK
Over the years, several well-known researchers (e.g., [10, 17])

have argued for combining HTN planning with other techniques,
and several of the older HTN planners (e.g., SIPE [33, 32] and
O-PLAN [6, 30]) combined hierarchical decomposition with goal-
directed partial-order planning.1 But in Erol et al’s influential HTN
formalism [8] and most subsequent HTN planning research (e.g.,
[14, 23, 22]; a notable exception is [20]), the definition of a solu-
tion is tied so intimately to HTN decomposition that the planning
problems are solvable in no other way.2

The lack of correspondence between tasks and goals makes it
hard to translate classical planning problems correctly into HTN
domain models (e.g., a common error is to translate a goal g1 ∧ g2
into a task sequence 〈achieve(g1), achieve(g2)〉, ignoring the pos-
sibility that the plan for achieve(g2) may delete the previously
achieved goal g1). In the 2000 International Planning Competition,
SHOP [24] was disqualified because of an incorrect HTN transla-
tion that caused SHOP to return an incorrect answer. The lack of
correspondence between tasks and goals has also interfered with
recent efforts to combine HTN planning with classical planning [1,
13], necessitating several ad hoc modifications and restrictions.

3. FORMALISM

Classical planning. Following Ghallab et al. [14, Chap. 2]),
we define a classical planning domain D as a finite state-transition
system in which each state s is a finite set of ground atoms of
a first-order language L, and each action a is a ground instance
of a planning operator o. A planning operator is a triple o =
(head(o), pre(o), eff(o)), where pre(o) and eff(o) are sets of lit-
erals called o’s preconditions and effects, and head(o) includes o’s
name and argument list (a list of the variables in pre(o) and eff(o)).

An action a is executable in a state s if s |= pre(a), in which
case the resulting state is γ(a) = (s − eff−(a)) ∪ eff+(a), where
eff+(a) and eff−(a) are the atoms and negated atoms, respectively,
in eff(a). A plan π = 〈a1, . . . , an〉 is executable in s if each ai
is executable in the state produced by ai−1; and in this case we let
γ(s, π) be the state produced by executing the entire plan.

A classical planning problem is a triple P = (D, s0, g), where
D is a classical planning domain, s0 is the initial state, and g (the
goal formula) is a set of ground literals. A plan π is a solution for
P if π is executable in s0 and γ(s0, π) |= g.

HGN planning. An HGN method m has a head head(m) and
preconditions pre(m) like those of a planning operator, and a se-
quence of subgoals sub(m) = 〈g1, . . . , gk〉, where each gi is
1PRS [12] is also a hierarchical goal-based reasoning system, but
its primary focus is reactive execution in dynamic environments;
the actual planning is rather limited.
2One might expect Erol et al.’s formalism to allow classical goal
achievement, because it allows goal tasks of the form achieve(goal).
But just as with any other task, a goal task’s solution plans can only
be constructed by HTN decomposition: the only difference is a
constraint that the goal must be true after executing the plan.

a goal formula (a set of literals). We define the postcondition
of m to be post(m) = gk if sub(m) is nonempty; otherwise
post(m) = pre(m).

An action a (or method instancem) is relevant for a goal formula
g if eff(a) (or post(m), respectively) entails at least one literal in g
and does not entail the negation of any literal in g.

Some notation: if π1, . . . , πn are plans or actions, then π1 ◦ . . .◦
πn denotes the plan formed by concatenating them.

An HGN planning domain is a pair D = (D′,M), where D′ is
a classical planning domain and M is a set of methods. An HGN
planning problem P = (D, s0, g) is like a classical planning prob-
lem except thatD is an HGN planning domain. The set of solutions
for P is defined recursively:

Case 1. If s0 |= g, then the empty plan is a solution for P .

Case 2. Let a be any action that is relevant for g and executable
in s0. Let π be any solution to the HGN planning problem
(D, γ(s0, a), g). Then a ◦ π is a solution to P .

Case 3. Letm be a method instance that is applicable to s0 and rel-
evant for g and has subgoals g1, . . . , gk. Let π1 be any solu-
tion for (D, s0, g1); let πi be any solution for (D, γ(s0, (π1◦
. . . ◦ πi−1)), gi), i = 2, . . . , k; and let π be any solution for
(D, γ(s0, (π1 ◦ . . . ◦ πk)), g). Then π1 ◦ π2 ◦ . . . ◦ πk ◦ π is
a solution to P .

In the above definition, the relevance requirements in Cases 2
and 3 prevent classical-style action chaining unless each action is
relevant for either the ultimate goal g or a subgoal of one of the
methods. This requirement is analogous to (but less restrictive than)
the HTN planning requirement that actions cannot appear in a plan
unless they are mentioned explicitly in one of the methods. As in
HTN planning, it gives an HGN planning problem a smaller search
space than the corresponding classical planning problem.

The next theorem proves that HGN planning is sound: any HGN
solution is also a solution to the corresponding classical problem.

THEOREM 1 (HGN SOUNDNESS). Let D = (D′,M) be an
HGN planning domain. For every (s0, g), the set of solutions to
the HGN planning problem P = (D, s0, g) is a subset of the set of
solutions to the classical planning problem P ′ = (D′, s0, g).

PROOF. Let π = 〈a1, . . . , an〉 be any solution for P . From
the definition of a solution, it follows that in the HGN domain D,
π is executable in s0 and γ(s0, π) |= g. But D = (D′,M), so
any action that is executable in D is also executable in the classical
domain D′ and produces the same effects. Thus it follows that in
D′, π is executable in s0 and γ(s0, π) |= g.

THEOREM 2 (HGN COMPLETENESS). For every classical
planning domain D, there is a set of HGN methods M such that
the classical planning problem P = (D, s0, g) and the HGN plan-
ning problem P ′ = ((D,M), s0, g) have the same set of solutions.

PROOF. LetX be the set of all simple paths inD. For each path
x in X , suppose M contains methods that will specify goals for
each state on x as subgoals. Thus, each subgoal will be achieved
by a single action such that when the sequence of actions applied
from the start of x, and the result will be the end state. Then the
theorem follows.

The following two theorems prove that the HGN formalism pro-
vides expressive power equal to that of SHOP’s HTN formalism:

THEOREM 3 (HTN EXPRESSIVITY). For any HGN prob-
lem (D, s0, g0), there exists a totally-ordered HTN problem
(D′, s0, tg0) such that (D, s0, g0) is solvable if and only if
(D′, s0, tg0) is solvable.
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Proof Sketch. We proceed to translate an HGN planning problem
(D, s0, g0) into an HTN planning problem as follows: each goal
formula g inD is represented by a task symbol tg; g0 is represented
by the task symbol tg0 . For each HGN method 〈pre, 〈g1, . . . , gk〉〉,
we create a new HTN method accomplishing task tgk with pre-
conditions pre and subtasks 〈tg1 , . . . , tgk 〉. Then for each tg , we
create an HTN method having a precondition of g and no sub-
tasks. Also for every method or operator u relevant to g, we have
a method accomplishing tg having a precondition of ¬g and sub-
tasks 〈tu, tg〉, tu being the task symbol corresponding to u. We
then return the HTN problem (D′ ∪O, s0, tg0) where D′ is the set
of translated HTN methods and O is the set of planning operators.

It is now easy to show that any HGN decomposition trace can
be mapped to a corresponding trace of the HTN problem thus con-
structed and vice-versa. Thus the theorem follows.

THEOREM 4 (HGN EXPRESSIVITY). For any totally-
ordered HTN planning problem (D, s0, t0), there is an HGN
planning problem (D′, s0, gt0) such that (D, s0, t0) is solvable if
and only if (D′, s0, gt0) is solvable.

Proof Sketch. To translate an HTN planning problem3 (D, s0, t0),
we create predicates fint(.) for each task t(.) to represent task
completion. We add an extra predicate lead that is asserted by
an artificial operator with no preconditions. We have artificial
operators assert-fin-t(.) for each task symbol t that has pre-
condition 〈lead〉 and effect 〈¬lead, fint(.)〉 Each HTN method
for task t with subtasks 〈t1, t2, . . . , tn〉 is now converted to an
HGN method with the same preconditions and a sequence of sub-
goals 〈fint1 ,¬fint1 , fint2 ,¬fint2 , . . . fintn ,¬fintn , lead, fint〉. The
¬fin(.) subgoals are used to cleanup the state for future decompo-
sitions. The HGN planning problem is (D′ ∪ O, s0, fint0), where
D′ is the set of translated HGN methods and O is the set of classi-
cal planning operators and additional artificial operators described
above. It is now easy to show that every HTN decomposition trace
can be mapped to a corresponding trace of the HGN planning prob-
lem thus constructed and vice-versa. The theorem follows.

The above theorems provide procedures to translate HGN plan-
ning problems to HTN problems and vice-versa in low-order poly-
nomial time. This proves that HGN planning has the same expres-
sive power as totally-ordered HTN planning.

Let HGN-PLAN-EXISTENCE be the following problem: Given an
HGN planning problem P , is there a plan that solves P?

THEOREM 5. HGN-PLAN-EXISTENCE is decidable.

Proof Sketch. Erol et al. [9] prove that the plan existence prob-
lem for totally-ordered HTN planning is decidable. From this and
Theorem 3, the result immediately follows.

4. PLANNING ALGORITHM
Algorithm 1 is GDP, our HGN planning algorithm. It works as

follows (where G is a stack of goal formulas to be achieved):
In Line 3, ifG is empty then the goal has been achieved, so GDP

returns π. Otherwise, GDP selects the first goal g in G (Line 4).
If g is already satisfied, GDP removes g from G and calls itself
recursively on the remaining goal formulae.

In Lines 7-8, if no actions or methods are applicable to s and
relevant for g, then GDP returns failure. Otherwise, GDP nonde-
terministically chooses an action/method u from U .
3We assume a single task t0 in the initial task network; this is with-
out loss of generality as we can replace a totally-ordered initial task
network with an artificial toptask and add an extra method decom-
posing the toptask to the initial task network.

Algorithm 1: A high-level description of GDP. Initially, D is
an HGN planning domain, s is the initial state, g is the goal
formula, G = 〈g〉, and π is 〈〉, the empty plan.

Procedure GDP(D, s,G, π)1
begin2

if G is empty then return π3
g ← the first goal formula in G4
if s |= g then5

remove g from G and return GDP(D, s,G, π)6

U ← {actions and method instances that are relevant7
for g and applicable to s}

if U = ∅ then return failure8
nondeterministically choose u ∈ U9
if u is an action then10

append u to π and set s← γ(s, u)11
else insert sub(u) at the front of G12
return GDP(D, s,G, π)13

end14

If u is an action, then GDP computes the next state γ(s, u) and
appends u to π. Otherwise u is a method, so GDP inserts u’s sub-
goals at the front of G. Then GDP calls itself recursively on G.

4.1 Formal Properties
The following theorems show that GDP is sound and complete:

THEOREM 6 (GDP SOUNDNESS). Let P = (D, s0, g) be
an HGN planning problem. If a nondeterministic trace of
GDP(D, s0, 〈g〉, 〈〉) returns a plan π, then π is a solution for P .

Proof Sketch. The proof is by induction on n, the length of π. When
n = 0 (i.e. π = 〈〉), this implies that s0 entails g. Hence, by Case
1 of the definition of a solution, π is a solution for P . Suppose
that if GDP returns a plan π of length k < n, then π is a solution
for P . At an invocation suppose GDP returns π of length n. The
proof proceeds by showing the following. When GDP chooses an
action or a method for the current goal at any invocation, then by
induction, the plans returned from those calls are solutions to the
HGN planning problems in those calls. Hence, by definition of
solutions for P , π is a solution for P .

THEOREM 7 (GDP COMPLETENESS). Let P = (D, s0, g)
be an HGN planning problem. If π is a solution for P , then a
nondeterministic trace of GDP(D, s0, 〈g〉, 〈〉) will return π.

Proof Sketch. The proof is by induction on n, the length of π. When
n = 0, this implies that the empty plan is a solution for P and that
s0 |= g. Hence GDP would return 〈〉 as a solution. Suppose that if
P has a solution of length k < n, then GDP will return it. At any
invocation, the proof proceeds to show by induction the following.
If GDP chooses an action a, then one of the nondeterministic traces
of the subsequent call to GDP must return π = a ◦ π′ where π′ is
a solution for the problem P ′ = (D, γ(s0, a), g). If GDP chooses
a method m relevant to g with subgoals g1, g2, . . . gl, then there
must exist a sequence of plans π1, π2, . . . , πl+1 that constitute π
and GDP will return each πi as a solution each goal gi from the
state γ(s0, (π1 ◦ π2 ◦ · · · ◦ πi−1)). Then the theorem follows.

4.2 Domain-Independent Heuristics
GDP can easily be modified to incorporate heuristic functions

similar to those used in classical planning. The modified algorithm,
which we will call GDP-h (where h is the heuristic function) in
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the experiments, is like Algorithm 1, except that Lines 9–13 are
replaced with the following:

sort U with h(u), ∀u ∈ U
foreach u ∈ U do

if u is an action then
append u to π; remove g fromG; s← γ(s, u)

else push sub(u) into G
π ← GDP(D, s,G, π)
if π 6= failure then return π

return failure

Intuitively, this replaces the nondeterministic choice in GDP
with a deterministic choice dictated by h. GDP-h uses h to order
U , then attempts to decompose the current goal g in that order.

As an example, here is how we compute a variation of the Re-
laxed Graphplan heuristic used by the FF planner [16]. At the start
of the planning process, we generate a relaxed planning graph PG
from the start state s0 to its fixpoint. Let lPG(p) be the first proposi-
tional level in which p appears in PG. Then hs,G(u), the heuristic
value of applying action/method u in a state s to achieve the goals
in the list G, is as follows:

hs,G(u) =




1 + max
p∈G

lPG(p)− max
p∈γ(s,u)

lPG(p), if u is an action,

max
p∈G∪sub(u)

lPG(p)−max
p∈s

lPG(p), if u is a method.

Intuitively, what h estimates is the distance between the first level
in which the literals in G are asserted and the first level in which
the current state is asserted. When u is a method, since any plan
generated via u has to achieve sub(u) enroute, it considers the set
G ∪ sub(u) instead as the goal.

Note that this gives weaker heuristic values than the original FF
heuristic since we do not generate a relaxed plan and use its length
as the heuristic value. However, we use this variant of the heuristic
since it is much more efficiently computable without compromising
too much on search control. The strength of the heuristic is not
as critical here as in classical planning, since the HGN methods
themselves constrain what part of the space gets searched.

5. EXPERIMENTAL EVALUATION
We implemented GDP in Common Lisp, and compared it with

SHOP2 and the classical planner FF in five different planning do-
mains:4 These included the well-known Logistics [31], Blocks-
World [2], Depots [11], and Towers of Hanoi [1] domains, and a
new 3-City Routing domain that we wrote in order to provide a do-
main in which the planners’ domain models would not be of much
help. The following questions motivated our experiments:

• How does GDP’s performance (plan quality and running time)
compare with SHOP2’s? In order to investigate this question,
we were careful to use domain models for SHOP2 and GDP
that encoded basically the same control information.5

• What is the relative difficulty of writing domain models for GDP

4We used SHOP2 instead of SHOP for two reasons: (1) its al-
gorithm is identical to SHOP’s when restricted to totally-ordered
subtasks, and (2) since its implementation includes many enhance-
ments and optimizations not present in SHOP, it provides a more
rigorous test of GDP.
5An important aspect of SHOP2’s domain models is the use of
Horn-clause inference to infer some of the preconditions. So that
we could write GDP domain models equivalent to SHOP2’s, we
included an identical Horn-clause inference engine in GDP.

Method for using truck ?t to move crate ?o
from location ?l1 to location ?l2 in city ?c:

Head: (move-within-city ?o ?t ?l1 ?l2 ?c)
Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c)

(in-city ?l2 ?c) (truck ?t ?c) (truck-at ?t ?l3))
Sub: ((truck-at ?t ?l1) (in-truck ?o ?t)

(truck-at ?t ?l2) (obj-at ?o ?l2)))

Method for using airplane ?plane to move crate ?o
from airport ?a1 to airport ?a2:

Head: (move-between-airports ?o ?plane ?a1 ?a2)
Pre: ((obj-at ?o ?a1) (airport ?a1)

(airport ?a2) (airplane ?plane))
Sub: ((airplane-at ?plane ?a1) (in-airplane ?o ?plane)

(airplane-at ?plane ?a2) (obj-at ?o ?a2)))

Method for moving ?o from location ?l1 in city ?c1
to location ?l2 in city ?c2, via airports ?a1 and ?a2:

Head: (move-between-cities ?o ?l1 ?c1 ?l2 ?c2 ?a1 ?a2)
Pre: ((obj-at ?o ?l1) (in-city ?l1 ?c1) (in-city ?l2 ?c2)

(different ?c1 ?c2) (airport ?a1) (airport ?a2)
(in-city ?a1 ?c1) (in-city ?a2 ?c2))

Sub: ((obj-at ?o ?a1) (obj-at ?o ?a2) (obj-at ?o ?l2)))

Figure 4: HGN methods for transporting a package to its goal
location in the Logistics domain.

and SHOP2? We had no good way to measure this directly;6

but as a proxy for it, we (i) measured the relative sizes of the
SHOP2 and GDP domain models, and (ii) examined the domain
models to find out the reasons for the difference in size.

• How useful is GDP-h’s heuristic function when the domain
model is strong? For this, we compared GDP-h with GDP on
the Logistics, Blocks World, and Depots domains.

• When the domain model is weak, how much help does GDP-h’s
heuristic function provide? For this, we compared GDP-h’s
performance with GDP’s on the 3-City Routing domain.

• Since GDP-h’s heuristic function is loosely based on FF’s, how
does GDP-h’s performance compare to FF’s? For this purpose,
we included FF in our experiments.

• Is GDP as sensitive as SHOP2 is to the order in which the meth-
ods appear in the domain model? To investigate this question,
we took our domain models for SHOP2 and GDP, and rear-
ranged the methods into a random order. In experimental re-
sults that follow, we use the names SHOP2-r and GDP-r to
refer to SHOP2 and GDP with those domain models.

The GDP source code, and the HGN and HTN domain models used
in our experiments, are available at http://www.cs.umd.edu/projects/
planning/data/shivashankar12hierarchical/.

5.1 Planning Performance
To compile and execute GDP, GDP-h, and SHOP2, we used Al-

legro Common Lisp 8.0. For FF, we used the open-source C im-
plementation from the FF web site. All experiments were run on
2GHz dual-core machines with 4GB RAM. We set a time limit of

6That would have required a controlled experiment on a large num-
ber of human subjects, each of whom has equal amounts of training
and experience with both GDP and SHOP2. We have no feasible
way to perform such an experiment.
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Figure 1: Average running times (in logscale) and plan lengths in the Logistics domain, as a function of the number of packages. Each
data point is an average of the 10 problems from the SHOP2 distribution. There are no data points for SHOP2-r because it could
not solve any of the problems. GDP and GDP-r performed identically because the methods had mutually exclusive preconditions.
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Figure 2: Average running times (in logscale) and plan lengths in the Blocks World domain, as a function of the number of blocks.
Each data point is an average of 25 randomly generated problems. There are no data points for SHOP2-r because it could not solve
any of the problems. GDP and GDP-r performed identically because the preconditions of the methods were mutually exclusive. FF
was unable to solve problems involving more than 20 blocks.

two hours per problem, and data points not solved within the re-
quired time limit were discarded.

The Logistics Domain. For SHOP2, we used the Logistics do-
main model in the SHOP2 distribution. For GDP and GDP-h, we
wrote the methods in Fig. 4 (these methods are easy to prove com-
plete [28]). For the experiments, we used the Logistics Domain
problems in the SHOP2 distribution. These included ten n-package
problems for each of n = 15, 20, 25, . . . , 60.

Figure 1 shows a comparison of running times and plan lengths
of the planners in this domain. The running times of GDP, GDP-h
and SHOP2 were very similar, showing that even on easy domains
with strong domain models, the heuristic does not add much over-
head to GDP-h’s running time. FF’s running times, however, grew
much faster: with 60 packages, FF was nearly two orders of mag-
nitude slower than SHOP2.

The plans produced by GDP and GDP-hwere of nearly the same
length, and the plans produced by SHOP2 were slightly longer. FF
produced the shortest plans; this indicates that its heuristic function
was slightly stronger than the relaxed version we used in GDP-h.

SHOP2-r did not terminate on any of the instances, while GDP-
r performed identically to GDP. In fact, we observed that the same
was true across all of the domains in our experimental study. We
defer the explanation of this to Section 5.3.

The Blocks World. For SHOP2, we used the domain model
included in SHOP2’s distribution. For GDP and GDP-h we used
a much more compact domain model consisting of three methods
(shown here as pseudocode):

• To achieve on(x, y)

precond: y is in its final position7

subgoals: achieve clear(x), clear(y) and on(x, y)

• To achieve clear(x)
precond: on(y, x)
subgoals: achieve clear(y) and then clear(x)

• To achieve on-table(x)
precond: None
subgoals: achieve clear(x) and then on-table(x)

As shown in Figure 2, GDP and SHOP2 took nearly identical
times to solve the problems, with GDP-h taking slightly longer due
to its heuristic computation overhead. FF, which is known to have
problems with the Blocks World [2], was unable to solve problems
with more than 20 blocks.

As shown in the figure, GDP, GDP-h and SHOP2 produced so-
lution plans of similar length, with GDP-h producing the shortest
plans. FF produced significantly longer plans than the other three
planners, even for the problems it managed to solve.

The Depots Domain. For SHOP2, we used the Depots domain
model from the SHOP2 distribution. For GDP and GDP-h, we
simply stitched together relevant parts of the Logistics and Blocks-
World domain models, and adapted them to obtain an HGN Depots
domain model that encoded the same control information.

As shown in Figure 3, GDP and SHOP2 took similar times to
solve the problems. However, GDP-h’s running times grew much
faster than GDP or SHOP2, indicating that the overhead of the
heuristic can increase with the complexity of the domain. FF was
unable to solve any problems of size greater than 24 crates.
7Inferred using Horn clauses (see footnote 5).
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Figure 3: Average running times (in logscale) and plan lengths in the Depots domain, as a function of the number of crates. Each
data point is an average of 25 randomly generated problems. There are no data points for SHOP2-r because it could not solve any
of the problems. GDP and GDP-r performed identically because the preconditions of the methods were mutually exclusive. FF was
unable to solve problems involving more than 24 crates.
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and GDP-r performed identically because the preconditions of the methods were mutually exclusive.

With respect to plan lengths, GDP and GDP-h produced almost
identical plans, with SHOP2 producing slightly longer plans than
GDP. For the problem sizes it could handle, FF produced signifi-
cantly longer plans than the other three planners.

Towers of Hanoi. We wrote domain models for SHOP2 and
GDP that encoded an algorithm to produce optimal solution plans
(i.e., length 2n − 1 for an n-ring problem).

Figure 5 shows the planners’ runtimes and plan lengths. As ex-
pected, GDP, GDP-h and SHOP2 returned optimal plans whereas
FF returned significantly sub-optimal plans.

However, while GDP, GDP-h, SHOP2 and FF had similar run-
times up to problems of size 12, SHOP2 could not solve the larger
problems due to a stack overflow, and GDP could not solve the 14-
ring problem within the time limit. We believe this is basically an
implementation issue: both GDP and SHOP2 had recursion stacks
of exponential size, whereas FF (since it never backtracks) did not.

3-City Routing. In the four planning domains discussed above,
the GDP and SHOP2 domain models pruned the search space
enough that GDP-h’s heuristic function could not reduce it much
further (if at all). In order to examine the performance of the plan-
ners in a domain with a weak domain model, we constructed the
3-City Routing domain. In this domain, there are three cities c1,
c2 and c3, each containing n locations internally connected by a
network of randomly chosen roads. In addition, there is one road
between a randomly chosen location in c1 and a randomly chosen
location in c2, and similarly another road between locations in c2
and c3. The problem is to get from a location in c1 or c3 to a goal
location in c2.

We randomly generated 25 planning problems for each value of
n, with n varying from 10 to 100. For the road networks, we used
near-complete graphs in which 20% of the edges were removed at
random. Note that while solutions to such problems are typically
very short, the search space has extremely high branching factor,
i.e. of the order of n. For GDP and GDP-h, we used a single HGN
method, shown here as pseudocode:

• To achieve at(b)
precond: at(a), adjacent(c, b)
subgoals: achieve at(c) and then at(b)

By applying this method recursively, the planner can do a backward
search recursively from the goal location to the start location.

To accomplish the same backward search in SHOP2, we needed
to give it three methods, one for each of the following cases: (1)
goal location same as the initial location, (2) goal location one step
away from the initial location, and (3) arbitrary distance between
the goal and initial locations.

As Figure 6 shows, GDP and SHOP2 did not solve the randomly
generated problems except the ones of size 10, returning very poor
solutions and taking large amounts of time in the process. GDP-h,
on the other hand solved all the planning problems quickly, return-
ing near-optimal solutions. The reason for the success of GDP-h
is that the domain knowledge specified above induce an unguided
backward search in the state space and the planner uses the domain-
independent heuristic to select its path to the goal.

FF was able to solve all problems up to n = 60 locations, after
which it could not even complete parsing the problem file. We
believe this has to do with FF grounding all the actions right in the
beginning, which it could not do for the larger problems.
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Figure 6: Average running times (in logscale) and plan lengths in the 3-City Routing domain, as a function of the number of locations
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solve any problems. FF couldn’t solve problems involving more than 60 locations while GDP and SHOP2 could not solve problems
with more than 10 locations. GDP and GDP-r performed identically because there was only one method in the domain model.

5.2 Domain Authoring
When writing the domain models for our experiments, it seemed

to us that writing the GDP domain models was easier than writing
the SHOP2 domain models—so we made measurements to try to
verify whether this subjective impression was correct.

Figure 7 compares the sizes of the HGN and HTN domain de-
scriptions of the planning domains. In almost all of them, the do-
main models for GDP were much smaller than those for SHOP2.
There are three main reasons why:

• To specify how to achieve a logical formula p in the HTN for-
malism, one must create a new task name t and one or more
methods such that (i) the plans generated by these methods will
make p true and (ii) the methods have syntactic tags saying that
they are relevant for accomplishing t. If there is another method
m′ that makes p true but does not have such a syntactic tag, the
planner will never consider usingm′ when it is trying to achieve
p. In contrast, relevance of a method in HGN planning is simi-
lar to relevance of an action in classical planning: if the effects
of m′ include p, then m′ is relevant for p.

• Furthermore, suppose p is a conjunct p = p1∧. . .∧pk and there
are methods m1, . . . ,mk that can achieve p1, . . . , pk piece-
meal. In HGN planning, each of these methods is relevant for
p if it achieves some part of p and does not negate any other
part of p. In contrast, those methods are not relevant for p
in HTN planning unless the domain description includes (i) a
method that decomposes t into tasks corresponding to subsets
of p1, . . . , pk, (ii) methods for those tasks, and (iii) an explicit
check for deleted-condition interactions.8 This can cause the
number of HTN methods to be much larger (in some cases ex-
ponentially larger) than the number of HGN methods.

• In recursive HTN methods, a “base-case method” is needed for
the case where nothing needs to be done. In recursive HGN
methods, no such method is needed, because the semantics of
goal achievement already provide that if a goal is already true,
nothing needs to be done.

The Towers of Hanoi domain was the only one where the HGN
domain model was larger than the corresponding HTN domain

8In the HTN formalism in [7], one way to accomplish (iii) is to
specify t as the syntactic form achieve(p), which adds a constraint
that p must be true after achieving t. But that approach is ineffi-
cient in practice because it can cause lots of backtracking. In the
blocks-world implementation in the SHOP2 distribution, (iii) is ac-
complished without backtracking by using Horn-clause inference
to do some elaborate reasoning about stacks of blocks.
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Figure 7: Sizes (number of Lisp symbols) of the GDP and
SHOP2 domain models.

model. In this domain, the HGN domain model needed two ex-
tra actions, enable and disable, to alternately insert and delete a
special atom in the state. They were needed in order to control the
applicability of the move operator to ensure optimality.

5.3 Discussion
We have seen from our experimental study that HGN domain

models are considerably more succinct than the corresponding
HTN models. We also saw that this compactness came at no extra
cost; GDP’s performance compared favorably to that of SHOP2’s
across all domains. Runtimes of the heuristic-enhanced planner
GDP-h were, for the most part, comparable to those of GDP’s and
SHOP2’s, indicating that our heuristic does not add a significant
overhead to the planning time. Lengths of plans returned by GDP-
h were nearly always better than GDP’s and SHOP2’s. This dif-
ference was especially amplified in cases where the planners had
weak domain models; in such cases, the heuristic provided criti-
cal search control to GDP-h, thus helping it terminate quickly with
good solutions.

In our experiments, SHOP2-r did not solve any of the problems.
The reason for this was SHOP2’s heavy reliance on the method or-
der in its domain model, especially the placement of “base-cases”
for recursion. For GDP-r, shuffling HGN methods had no effect at
all on performance. This was because the methods in our HGN do-
main models had mutually exclusive preconditions, hence at most
one of them was applicable. In domains where more than one
method is applicable at once, GDP-r should (like SHOP2-r) per-
form badly when presented with methods in the wrong order.
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6. CONCLUSIONS
Our original motivation for HGN planning was to provide a task

semantics that corresponded readily to the goal semantics of classi-
cal planning and gave stronger soundness guarantees when applied
to classical planning domains. But our work also produced two
other benefits that we had not originally expected: writing HGN
methods was usually much simpler than writing HTN methods,
and the HGN formalism can easily incorporate HGN extensions
of classical-style heuristic functions to guide the search.

Our proof that HGN planning is as expressive as totally-ordered
HTN planning means that it is capable of encoding complicated
control knowledge, one of the main strengths of HTN planning.
This suggests that HGN planning has the potential to be very useful
both for research purposes and in practical applications.

With that in mind, we have several ideas for future work:

• GDP currently supports only totally ordered subtasks. We in-
tend to generalize HGNs to allow partially-ordered subtasks.

• We intend to generalize HGNs to allow partial sets of methods
analogous to the ones in [1]. This will provide an interesting
hybrid of task decomposition and classical planning. Further-
more, it will make writing HGN domain models even easier
while preserving the efficiency advantages of HGN planning.

• Replanning in dynamic environments is becoming an increas-
ingly important research topic. We believe HGN planning is a
promising approach for this topic.

• HTN planning has been extended to accommodate actions with
nondeterministic outcomes [18], temporal planning [4, 15],
and to consult external information sources [19]. It should be
straightforward to make similar extensions to HGN planning.
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ABSTRACT
We consider the problem of automated planning and control for
an execution agent operating in environments that are partially-
observable with deterministic exogenous events. We describe a
new formalism and a new algorithm, DISCOVERHISTORY, that en-
ables our agent, DHAgent, to proactively expand its knowledge of
the environment during execution by forming explanations that re-
veal information about the world. We describe how DHAgent uses
this information to improve the projections made during planning.
Finally, we present an ablation study that examines the impact of
explanation generation on execution performance. The results of
this study demonstrate that our approach significantly increases the
goal achievement success rate of DHAgent against an ablated ver-
sion that does not perform explanation.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Plan ex-
ecution, formation, and generation; I.2.3 [Deduction and Theo-
rem Proving]: Abductive Reasoning; I.2.11 [Distributed Artifi-
cial Intelligence]: Intelligent Agents

General Terms
Algorithms

Keywords
Planning, execution, abductive reasoning, explanation generation

1. INTRODUCTION
In real-world tasks, perceptions are incomplete and the world is

constantly changing due to exogenous events. Such events often
cause plans to fail, and understanding why they occur is sometimes
necessary to achieve strong performance. Real-world agents do not
necessarily observe such events directly, so they must reason that
changes in the world are explained by events.

Consider the following real-world example of the power of ex-
planation. In May 2005, NASA’s Opportunity rover was crossing a
dune on the surface of Mars when its human operators noticed an
inconsistency with their expectations: Opportunity was not moving
as much as expected [23]. The operators were not able to observe

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the surroundings of the rover fully and precisely, but they never-
theless explained this inconsistency by assuming that the rover was
stuck in loose soil. This explanation enabled the operators to for-
mulate a new plan to escape from the unobserved loose soil and
continue the mission.

The focus of this work is on algorthmically explaining the history
of a partially-observable, dynamic environment in order to under-
stand prediction failures and thereby improve future predictions. To
accomplish this, we have devised an algorithm that models change
in terms of deterministic exogenous events that can be predicted
and reasoned about. This reasoning about prediction failures con-
trasts with typical work on replanning approaches, which focuses
on resolving failures between individual causal links in the plan,
and does not attempt to understand the causes of that failure (e.g.,
[18, 10, 24, 1]). In the diagnosis field, work on constructing plan
diagnoses addresses similar issues of constructing histories during
execution in planning domains (e.g., [6], [4]) and discrete-event
systems (e.g., [20]), but this work is based on a traditional represen-
tation of exogenous events as actions conducted by another agent
or nature. Our work represents events as natural consequences that
occur automatically, rather than by choice, which is not supported
by current replanning or diagnosis systems. Finally, the SDR sys-
tem (e.g., [19]) uses regression to generate causal explanations of
an agent’s history based on a contingent planning domain. In this
work, different possible outcomes of actions are possible, which is
modeled using conditional effects. While this work is similar in
aim to ours, the representation understood by the SDR system is
strictly less expressive than the representation used in our work.

Our contributions are the following:

• We describe a formalism for reasoning about the causes of in-
consistencies between observations and expectations that arise
during plan execution. This formalism includes a novel model
for deterministic exogenous events and their effects on the world
that models partial observability using a distinction between ob-
servable and hidden facts.

• We describe DISCOVERHISTORY, an algorithm that generates
abductive explanations of possible histories during plan execu-
tion.

• We describe DHAgent, a simple planning and execution agent
that uses DISCOVERHISTORY to maintain its description of the
world and reason about hidden state. This allows DHAgent to
(1) discard plans which would fail due to the occurrence of pre-
dicted events and (2) take advantage of opportunities afforded
by future events.

• We discuss experiments in two planning domains, modified ver-
sions of the Rovers and Satellite domains from past International
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Planning Competitions, to show that DHAgent’s performance is
improved by a statistically significant margin when using DIS-
COVERHISTORY for explanation. These experiments do not
compare DISCOVERHISTORY with existing algorithms, which,
as we describe later, do not support these domains.

2. DEFINITIONS AND NOTATION
In this section, we describe a new formalism for explanation gen-

eration. Representations and reasoning in this formalism use obser-
vations, actions, and events as the basic building blocks, so that an
agent can conduct planning and explanation using a single domain
model. This reduces the knowledge engineering burden by making
an additional use of existing knowledge; it works because explana-
tion is an inversion of planning.

Unlike typical formalisms from planning and diagnosis, ours
models events as deterministic. These are somewhat similar to con-
ditional effects on actions, since they occur deterministically fol-
lowing the execution of an action. However, deterministic events
can be triggered by any action, or another event; modeling the same
information as effects of actions would require the domain author
to consider the effects of all series of events that could ever happen
following an action’s execution. Therefore, the size of an equiv-
alent domain model using conditional effects rather than events
would be exponential in the number of events to be represented.

The advantages of representing deterministic exogenous events
are twofold: (1) we can determine (predictively or after the fact)
the exact time when events must occur, reducing the set of potential
explanations for a given series of observations and (2) interacting
effects can combine without causing an explosion in the number of
actions or events considered. Unpredictability in environments un-
der our representation arises only from hidden facts, not a "choice"
made by an environment as to whether an event will occur.

2.1 Basics
We use the standard definitions from classical planning for vari-

able and constant symbols, logical predicates and atoms, literals,
groundings of literals, propositions, planning operators and actions
[3, Chapter 2].

Let P be the finite set of all propositions describing a planning
environment; the state of the environment is described by assign-
ing a value to each proposition in P . A planning environment is
partially observable if an agent only has access to the environment
through observations which do not cover the complete state. We let
Pobs be the set of all propositions that the agent will observe when
true. An observation associates a truth value with each of these
propositions. Let Phidden be a set of hidden propositions repre-
senting aspects of the world an agent cannot observe; for example,
the exact location may be hidden to a robot with no GPS contact.

An event template is defined syntactically the same as a classi-
cal planning operator: (name, preconds, effects), where name, the
name of the event, preconds and effects, the preconditions and ef-
fects of the event, are sets of literals. We use effects− and effects+

to denote the negative and positive literals in effects, respectively.
An event is a ground instance of an event template. We assume that
an event always occurs immediately when all of its preconditions
are met in the world. After each action, any events triggered by
that action occur, followed by events triggered by those events, etc.
When no more events occur, the agent receives a new observation.

2.2 Explanations
We formalize the planning agent’s knowledge about the changes

in its environment as an explanation of the world. We define a finite
set of symbols T = {t0, t1, t2, . . . , tn}, called occurrence points.

An ordering relation between two occurrence points is denoted as
ti ≺ tj , where ti, tj ∈ T .

There are three types of occurrences. An observation occurrence
is a pair of the form (obs, t) where obs is an observation. An action
occurrence is a pair of the form (a, t) where a is an action. Finally,
an event occurrence is a pair (e, t) where e is an event. In all of the
occurrence forms, t is an occurrence point. Given an occurrence
o, we define occ as a function such that occ(o) 7→ t; that is, occ
refers to the occurrence point t of any observation, action, or event.

An execution history is a finite sequence of observations and ac-
tions obs0, a1, obs1, a2, . . . , ak, obsk+1. A planning agent’s ex-
planation of the world given an execution history is a tuple χ =
(C,R) such that C is a finite set of occurrences that includes each
obsi for i = 0, . . . , k − 1 and each action aj for j = 1, . . . , k
for some number k. C may also include zero or more event oc-
currences that happened according to that explanation. R is a par-
tial ordering over a subset of C, described by ordering relations
occ(oi) ≺ occ(oj) such that oi, oj ∈ C. As a shorthand, we
sometimes will say oi ≺ oj if and only if occ(oi) ≺ occ(oj).

We use the definitions knownbefore(p, o) and knownafter(p, o)
to refer to the value of a proposition p before or after an occurrence
o ∈ C occurs. Let o be an action or event occurrence. Then, the
relation knownbefore(p, o) is true iff p ∈ preconds(o). Similarly,
the relation knownafter(p, o) is true iff p ∈ effects(o). If o is an
observation occurrence and p ∈ obs, then both knownbefore(p, o)
and knownafter(p, o) are true, and otherwise are false.

We say that an occurrence o is relevant to a proposition p if the
following holds:

relevant(p, o) ≡ knownafter(p, o) ∨ knownafter(¬p, o)∨
knownbefore(p, o) ∨ knownbefore(¬p, o).

We use the predicates prior(o, p) and next(o, p) to refer to the prior
and next occurrence relevant to a proposition p. That is to say,
prior(o, p) = {o′ | relevant(p, o′) ∧ ¬∃o′′s.t.relevant(p, o′′) ∧
o′ ≺ o′′ ≺ o}. Similarly, next(o, p) = {o′ | relevant(p, o′) ∧
¬∃o′′s.t.relevant(p, o′′) ∧ o ≺ o′′ ≺ o′}.

2.3 Plausibility
The proximate cause of an event occurrence (e, t) is an occur-

rence o that satisfies the following three conditions with respect to
some proposition p: (1) p ∈ preconds(e), (2) knownafter(p, o),
and (3) there is no other occurrence o′ such that o ≺ o′ ≺ (e, t).
Every event occurrence (e, t), must have at least one proximate
cause, so by condition 3, every event occurrence must occur imme-
diately after its preconditions are satisfied.

An inconsistency is a tuple (p, o, o′) where o and o′ are two oc-
currences in χ such that knownafter(¬p, o), knownbefore(p, o′),
and there is no other occurrence o′′ such that o ≺ o′′ ≺ o′ ∈ R
and p is relevant to o′′.

An explanation χ = (C,R) is plausible if and only if the fol-
lowing holds:

1. There are no inconsistencies in χ;

2. Every event occurrence (e, t) ∈ χ has a proximate cause in
χ;

3. For every pair of simultaneous occurrences such that
o, o′ ∈ C and occ(o) = occ(o′), there may be no con-
flicts before or after: for all p, knownafter(p, o) =⇒
¬knownafter(¬p, o′), and knownbefore(p, o) =⇒
¬knownbefore(¬p, o′).

4. If preconds(e) of an event e are all satisfied at an occurrence
point t, e is in χ at t;
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Figure 1: Example of an inconsistent explanation, with occurrence points ordered on the left hand side. Relevant action and event
descriptions are given on the right. Boolean values are the knownbefore and knownafter relations; for example, the value “false” at
top right indicates that the relation knownbefore((¬ (rover-at r L1)), oi) holds.

Algorithm 1: A high-level description of DISCOVERHISTORY.

1 Procedure DISCOVERHISTORY (χ)
2 begin
3 if Inconsistencies(χ) = ∅ then
4 χ←FINDEXTRAEVENTS (χ)
5 if χ = ∅ then return ∅
6 if Inconsistencies(χ) = ∅ then return {χ}
7 arbitrarily select an i ∈ Inconsistencies(χ)
8 X ← REFINE (χ, i)
9 foreach χnew ∈ X do

10 X ←X∪ DISCOVERHISTORY (χnew)
11 return X

EXAMPLE 1. Suppose that a rover r attempts to move after its
wheel has, unobserved, become stuck. Figure 1 illustrates part of
an inconsistent explanation, which includes the prior observation
occurrence at ti, in which the rover is observed at location L0;
followed by a navigate action occurrence, illustrating the rover’s
attempt to move, at ti+1 directing the rover to location L1; followed
by an event occurrence illustrating the predicted event oi+2 at ti+2

that changes the rover’s location from L0 to L1; followed by the
most recent observation occurrence oi+3 at ti+3, which states that
the rover is at L0.

There are two inconsistencies in this explanation, between the
event occurrence and observation occurrence: 〈(rover-at r L0),
oi+2, oi+3〉 and 〈¬(rover-at r L1), oi+2, oi+3〉.

3. GENERATING ABDUCTIVE EXPLA-
NATIONS

This section describes DISCOVERHISTORY, our search algo-
rithm for generating plausible explanations by recursively apply-
ing refinements to implausible explanations. DISCOVERHISTORY
is designed to find possible histories of a partially-observable dy-
namic environment. DISCOVERHISTORY generates successive ex-
planations by attempting to resolve inconsistencies in the current
explanation given its observations.

Algorithm 1 shows a high-level description of DISCOVERHIS-

TORY. The base case occurs when the current explanation is plau-
sible. In the recursive case, REFINE chooses an inconsistency and
generates a set of explanations that resolve it. Each such explana-
tion is then recursively considered by DISCOVERHISTORY to re-
move any remaining inconsistencies.

Let χ be a planner’s current explanation of the world, which in-
cludes obs, the most recent observation received by the agent. DIS-
COVERHISTORY starts by finding all inconsistencies in the current
explanation χ by calling Inconsistencies(χ). If none are present,
then the first condition for plausibility is met, so the other condi-
tions are checked to ensure plausibility (see Section 2.3). Plausi-
bility condition 3 is assumed to be true of the initial explanation,
and are maintained throughout the resolution process by remov-
ing events that contradict any new additions. Once no inconsis-
tencies exist, therefore, FINDEXTRAEVENTS checks plausibility
conditions 2 and 4. Condition 2 requires that any explanation con-
taining events with no proximate cause be rejected; condition 4
requires that any new events caused by the changes to χ be added
to χ as well. These new events may cause new inconsistencies.
Otherwise, all four conditions for a plausible explanation are met
and DISCOVERHISTORY returns the explanation χ in Line 6.

In Line 7, DISCOVERHISTORY selects an inconsistency i from
Inconsistencies(χ) and attempts to resolve it.1 The REFINE sub-
routine (Line 8 of Algorithm 1) finds all explanations that result
from resolving that inconsistency and recursively calls itself on
each. We further describe REFINE below.

We refer to the initial explanation constructed by the agent as
χ0. We use this explanation as the basis for our definition of good-
ness. An explanation χa is better than χb if DISCOVERHISTORY
requires fewer changes to transform χ0 into χa than χb. We use
an iterative deepening search to find all explanations at a minimum
depth. Since each invocation of REFINE adds a single change to
its base explanation, these explanations are the best explanations
by our goodness definition. To prevent searches from continuing
indefinitely, we employ a maximum depth bound (not shown in
pseudocode). The search conducted by DISCOVERHISTORY has a

1Any inconsistency may be selected; it does not affect the correct-
ness of the algorithm. It may affect the algorithm’s efficiency, but
we do not discuss this topic further.
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Algorithm 2: Subroutines REFINE and REMOVEOCC

1 Procedure REFINE (χ = (C,R), i =(p,o,o’))
2 begin
3 X ← ∅

/* Adding a new event occurrence */
4 foreach (t, t′) ∈ T × T : t′ ⊀ t do
5 if occ(o) ≺ t ≺ occ(o′) ∧ occ(o) ≺ t′ ≺ occ(o′)

then
/* (t, t′) is a possible interval in which the */
/* occurrence o could happen */

6 foreach e ∈ E : effects(e) |= p do
7 new symbol t′′
8 o′′ ← (e, t′′) // New event occurrence
9 χnew ← (C + o′′, R+ t ≺ t′′ ≺ t′)

10 X ← X + χnew // New explanation added
/* Removing an occurrence */

11 if o /∈ χ0 ∧ o is an event occurrence then
12 X ← X ∪ REMOVEOCC (χ, o)
13 if o′ /∈ χ0 ∧ o′ is an event occurrence then
14 X ← X ∪ REMOVEOCC (χ, o′)

/* Hypothesizing an initial value */
15 if p ∈ Phidden ∧ o = occ0 then
16 X ← X + (C + (ep, t0), R) // New initial
17 return X // value occurrence
18
19 Procedure REMOVEOCC (χ = (C,R), o)
20 begin
21 X ← ∅
22 foreach p ∈ preconds(o) do
23 X ← X + (C \ o+ (er, occ(o)), R) // New removal
24 return X // occurrence

maximum depth of |C| ∗ (2|E|)2 and a maximum branching factor
of |E|, where E is the finite set of all possible event occurrences.

As shown in algorithm 2, there are three possible ways for RE-
FINE to resolve an inconsistency in an explanation, each of which
has different conditions for applicability. They are: (1) adding a
new occurrence, (2) removing an occurrence, and (3) hypothesiz-
ing a different initial value for some proposition. All applicable
methods must be tried, resulting in multiple explanations. Each
resolution may create or resolve other inconsistencies, so the in-
consistencies found in refined explanations are not necessarily a
subset of those found in the parent. To save space, we omit the
pseudo-code for REFINE. We detail the resolution strategies below.

3.1 The REFINE Subroutine

3.1.1 Adding a New Event Occurrence
Let χ = (C,R) be an explanation with an inconsistency i =

(p, o, o′). One way to resolve an inconsistency is to show that some
occurrence changed the value of a literal in between the preced-
ing occurrence o and the following occurrence o′. This occurrence
must be an event o′′ relevant to p such that o ≺ o′′ ≺ o′.

To find such occurrences REFINE considers every possible con-
secutive ordered pair of occurrence points (t, t′) between occ(o)
and occ(o′), given the partial-orderingR (lines 3-4). For each such
pair (t, t′) and every e such that effects(e) |= p (line 5), REFINE
creates a new occurrence point t′′ (line 5) and a new event occur-
rence o′′ = (e, t′′) . Then the algorithm adds o′′ intoC and updates
the partial ordering R with t ≺ t′′ ≺ t′. This results in one new
explanation that does not contain the inconsistency i for each event

Figure 2: (a) Example of adding an occurrence (left). (b) Ex-
ample of removing an occurrence (right).

e : effects(e) |= p.

EXAMPLE 2. Continuing Example 1, the event Rover-Moves
causes the rover to enter a different location, so it could be added
to resolve the inconsistency (¬ (rover-at r L1), oi+2, oi+3). In
order for this to work, a new occurrence must be added between
ti+2 and ti+3 (see Figure 2(a)). REFINE creates a new explanation
with added occurrence onew = (e, tnew) and new ordering rela-
tions ti+2 ≺ tnew ≺ ti+3. A new inconsistency is also generated
(see Figure 2(a)). The new inconsistency occurs because another
precondition of the Rover-Moves event is the literal (attempting-
move r east), which is false after such an event occurs. The new
inconsistency, ((attempting-move r east), oi+2, onew), will need
to be eliminated in a recursive call to DISCOVERHISTORY.

3.1.2 Removing an occurrence
Another possible way to resolve (p, o, o′), where o and/or o′ is

an event, is to refine the current explanation to generate new expla-
nations in which either o or o′ is removed.

REFINE checks both o and o′ for presence in χ0; if either
was, then removing it would cause a cycle. Otherwise, if it an
event occurrence, each is eligible for removal. REMOVEOCC

992



Figure 3: Example of hypothesizing an initial value.

first creates a new set of occurrences, C′, by removing o from
C. Then, in order to explain why the occurrence does not hap-
pen, one of the preconds(e) must be found not to hold at occur-
rence point t. Therefore, REMOVEOCC creates a new explanation
for each precondition p′ of e by creating a removal occurrence
or = (er, occ(o)). The occurrence or occurs at the same time,
and instead of o; and the new event er has no effects and satisfies
preconds(er) = {¬p′}. Due to the presence of the removal event,
no new occurrence can be added to the resulting explanation which
would cause o to recur.

EXAMPLE 3. The above mechanism resolves the inconsistency
found in example 2 by removing oi+2. Note that no inconsistencies
are generated by removing it (recall from example 1 that the rover
really didn’t move). Finally, the preconditions are examined to look
for a precondition which could explain why oi+2 might not have
occurred. Two preconditions on oi+2 are shown in Figure 2(b):
(rover-at r L0) and ¬ (pit-at L0). A new explanation is created for
each, with a removal occurrence corresponding to the negated pre-
condition. Each dummy occurrence will cause a new inconsistency,
as shown in Figure 2(b).

3.1.3 Hypothesizing an initial value
Given an inconsistency (p, o, o′), where o refers to the initial

observation in the execution history, and p is not observable, a dif-
ferent initial occurrence o may be hypothesized. When this is the
case, REFINE generates a new explanation by adding to χ an event
occurrence op = (ep, t0). The event ep in this occurrence is the
reserved initially-true event ep, which has no preconditions or neg-
ative effects, and satisfies effects+(ep) = {p}. This operation has
no side effects to any other literal, and thus will never cause new
inconsistencies.

EXAMPLE 4. One of the alternate inconsistencies found in ex-
ample 3, (¬ (pit-at L0), occ0, occi+2), has the characteristics re-
quired for hypothesizing an initial occurrence. A pit-at literal is not
observable, and the prior occurrence of the inconsistency is occ0.
Therefore, the discrepancy can be resolved by adding the event oc-
currence o(pit−atL0), as shown in Figure 3.

3.2 The FINDEXTRAEVENTS Subroutine
When an explanation no longer has any inconsistencies, it must

still be checked for missing events and missing causes. This is due

Algorithm 3: The FINDEXTRAEVENTS Subroutine

1 Procedure FINDEXTRAEVENTS (χ = (C,R))
2 begin
3 foreach occi ∈ C do
4 occj ←FINDPROXIMATECAUSE(C)
5 if occj = ∅ then return ∅
6 foreach ti ∈ T do
7 C ← C ∪ ENUMERATECAUSEDEVENTS(χ)
8 return χ

to requirements 2 and 4 of a plausible explanation (see Section 2.3).
Requirements 2 and 4 implement the notion of deterministic event
execution, by requiring that all events fire immediately when their
conditions are met. We now discuss these requirements in more
detail.

According to requirement 2, an explanation that includes an
event for which no proximate cause is implausible (because the
event should have happened earlier). To ensure that such an ex-
planation is not returned, FINDEXTRAEVENTS iterates over each
event occurrence occi in χ, and attempts to find its proximate
cause. This is shown in Algorithm 3, lines 3-5.To do so, it it-
erates over all occurrences in the explanation and execution his-
tory to find the set PO = [occ0 . . . occn] of occurrences where
for every occj ∈ PO, occj ≺ occi and there is no occk such
that occj ≺ occk ≺ occi. If for any occj ∈ PO the set
post(occj)∩ pre(occi) is non-empty, occi has a proximate cause.
If there is an occi that has no proximate cause in the explanation,
then the explanation is faulty and a null explanation is returned.

According to requirement 4, all events that are possible must
occur. FINDEXTRAEVENTS guarantees this, as shown in Algo-
rithm 3, lines 6-7, by adding events that are not in χ but do have
causes in χ. This is done by considering each occurrence point
ti ∈ T , and enumerating all events ej whose preconditions are met
at time ti. If an occurrence occij = (ej , ti) is not already present
in the explanation χ, that occurrence is added to the explanation.

4. DHAGENT
DHAgent is a software agent that operates in planning domains

using a PDDL+ [2] domain definition to represent actions, events,
and predicates. It conducts planning using the SHOP2 PDDL+
planner [13] and automatically maintains a consistent explanation
of the world, which it modifies using the DISCOVERHISTORY al-
gorithm as necessary.

Algorithm 4 shows a high-level description of DHAgent. It takes
as input a set of top-level tasks to be performed. It then receives
the initial observation, which gives the truth value for the initial
state for the observable literals Pobs. Because some literals are not
observable, many possible worlds may be consistent with this ob-
servation. DHAgent creates an initial state according to the closed
world assumption, and creates a plan to accomplish the top-level
task from this initial state. Because of the closed world assumption,
it plans only for the possible world where all unobservable facts are
false. DHAgent then loops over the actions in the plan, executing
them one at a time, adding projected events to its explanation, and
receiving new observations.

When a new observation is inconsistent with its current expla-
nation, DHAgent refines its explanation of the past using DISCOV-
ERHISTORY, as described in Section 3. Although it may some-
times choose an incorrect explanation, it can retract prior assump-
tions and explained occurrences during subsequent execution steps
if they become untenable. Every time the explanation is refined in
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Algorithm 4: DHAGENT

input: A set T of tasks to perform
1 Procedure DHAGENT(T )
2 begin
3 obs0 ←RECEIVEOBSERVATION()
4 π ←PLAN(T, preconds(obs0))
5 χ← ({obs0}, ∅)
6 i← 1
7 while π 6= ∅ do
8 ai ←POP(π)
9 χ← χ+ ai

10 χ←FINDEXTRAEVENTS(χ)
11 EXECUTEACTION(ai)
12 obsi ←RECEIVEOBSERVATION()
13 χ← χ+ obsi
14 if Inconsistencies(χ) 6= ∅ then
15 Xnew ←DISCOVERHISTORY (χ)
16 if Xnew 6= ∅ then χ←FIRST(Xnew)
17 else χ← ({obsi}, ∅)
18 Create a set S of all literals satisfied at occ(obsi)

according to χ
19 p←PLAN(T, S)

20 i← i+ 1

this way, DHAgent replans, because its current plan may no longer
accomplish its task. As part of the explanation refinement process,
DHAgent considers the initial world to have been a different pos-
sible world consistent with the initial observation. However, it still
makes a closed world assumption about the initial state with regard
to all literals not hypothesized to have different initial values in the
explanation; thus it considers only one possible world at any given
time. When no explanations are found, the explanation cannot be
maintained further, because there will always be inconsistencies in
any explanation based on the current one. Therefore, a new expla-
nation is started as if the most recent observation was the initial
observation.

When replanning, DHAgent takes into account the state of the
unobservable literals found by projecting the effects of explanation
events on the current assumed initial world state. The loop exits
only when all actions from a plan have been performed. This occurs
either when each top-level task has either been accomplished or has
become unachievable.

The way DHAgent makes assumptions about the initial possible
world is consistent with the way belief revision is performed in
many BDI agents. In the language of belief revision, DHAgent
initially believes that all facts in the initial observation are true, and
all others are false. Over time it changes its beliefs according to the
actions executed and the events in the explanation. Thus DHAgent
always believes the state to be the projection of some individual
initial world state to the present.

We believe that DHAgent’s policy of making strong assumptions
about the initial state until observations contradict them is reason-
able in domains with many possible worlds and automatic sensing.
In such domains, the high number of hidden facts causes planning
for all possible worlds to be intractable. Furthermore, DHAgent
will be relatively successful in domains where certain literals are
rarely true, and cannot be observed directly; the existence of such
a true literal would be surprising. For example, although sand pits
may be ubiquitous on Mars, a Mars rover could not reason about all
possible such pits. Indeed, by assuming sand pits are everywhere
it might remain stuck in one place, never moving for fear of falling

in. Instead, it initially assumes that the ground is safe and be pre-
pared to revise its assumptions when new evidence arrives. In the
same way, DHAgent is an agent that is prepared for surprises, but
does not consider every possibility that might occur.

5. EXPERIMENTAL EVALUATION
We examined the performance of DHAgent in the context of

planning and execution in two partially-observable domains. These
domains have been engineered to include events that are triggered
by hidden facts. Thus, events will occur at execution time that can
not be predicted due to lack of knowledge at planning time.

Rovers-With-Compass (RWC) is a navigation domain with hid-
den obstacles inspired by the difficulties encountered by the Mars
Rovers. Specifically, individual locations may be windy, sandy,
and/or contain sand pits, which the rover cannot observe directly.
Sandy locations cause the rover to be covered in sand; while cov-
ered in sand, the rover cannot observe its location or perform the
"recharge" action. Sand pits stop the rover from moving; the rover
can dig itself out at a high energy cost. Windy locations clear the
sand off of the rover, but due to a malfunction, may confuse the
rover’s compass, causing it to move in the wrong direction. When
rovers run out of energy, they stop moving.

Satellite-With-Malfunctions (SWM) is based on the Satellites
domain from the 2002 International Planning Competition. The
objective in each scenario is to acquire images of various phe-
nomena and transmit them to earth. Our additions to this domain
include various causes of satellite malfunction: supernova explo-
sions, which can damage sensitive instruments that are pointed
toward them; fuel leaks, which cause fuel reserves to diminish
rapidly; and motor malfunctions, which delay a satellite’s turn to a
new perspective. When fuel reserves are depleted, no further goals
can be accomplished.

We compared the performance of DHAgent with an ablated
version that does not perform explanation, called Non-DHAgent.
Non-DHAgent differs in how it replans; replanning occurs when-
ever the planner incorrectly predicts the new observation. Non-
DHAgent then plans based on a state consisting of the latest obser-
vation, plus those hidden facts consistent with the events predicted
so far by SHOP2. Other systems capable of reasoning about par-
tially observable worlds such as Contingent-FF [5] and SDR[19]
provide no support for deterministic exogenous events, or domains
where no plan or conditional plan is guaranteed success. To our
knowledge, no existing systems can operate in these domains, so
we do not compare with existing work.

We wrote a problem generator for each domain that randomly
creates an initial state including both observable and hidden facts
and goals. For the RWC domain, each starting state contained 3
rovers, and a goal for each rover that required it to move to a new
destination. Goal destinations were generated randomly such that
the rover must cross at least 3 distinct locations to accomplish its
goal. Each scenario took place on a 6 × 6 grid of locations con-
nected in the four compass directions. Hidden state was assigned
independently for each location and condition with probability p.

Each randomly-generated SWM problem included 3 satellites
and required the attainment of 8 image acquisition goals. Each im-
age target was chosen randomly from a set of 20. Targets were as-
sociated with supernovae, fuel leaks, and motor malfunctions based
on a probability p.

We randomly generated 25 problems in each domain; Table 1
shows a comparison of the performance of DHAgent and Non-
DHAgent. Here, performance is defined as a percentage of goals
completed. For the RWC domain, the probability of hidden dif-
ficulties was p = 0.1; in the SWM domain, the probability of
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Table 1: Statistical t-test results, comparing our explanation-
based and non-explanation based systems in the RWC and
SWM domains.

Domain Non-DHAgent DHAgent t-test
Rovers 65.3% 78.7% 0.001

Satellite 52.5% 76.0% < 0.001

Figure 4: Comparison at various difficulty levels.

hidden state that induces malfunctions was p = 0.3. We used a
depth bound of 7 in our experiments, i.e., the search for explana-
tions could not include more than 7 recursive refinements.

We compared the mean performances of DHAgent and Non-
DHAgent using a two-tailed t-test with paired samples, which
showed that DHAgent statistically outperformed Non-DHAgent in
both domains. As the only difference between the two agents is
the use of explanation, it’s clear that the use of DISCOVERHIS-
TORY improved performance. This shows that abductive explana-
tion of state events can improve performance over replanning alone
in partially-observable dynamic environments.

To further examine the impact of hidden state on performance,
we increased the difficulty of the RWC domain by varying the prob-
ability of hidden states. Figure 4 compares the performance of the
two agents at 4 difficulty levels: p = 0.0, 0.1, 0.2, and 0.3. At
p = 0.0, there is no hidden state; as expected, we see perfect per-
formance from both agents since no explanation is necessary. As
the probability of obstacles rises, both agents perform more poorly,
but DHAgent continued to statistically outperform Non-DHAgent.
At p = 0.3, DHAgent accomplished goals 50% more often than
Non-DHAgent. Differences between them were statistically sig-
nificant for all p > 0.0.

6. RELATED WORK
As with many topics in Artificial Intelligence, our work is related

to research conducted in several subfields. We’ve tried to separate
the related work by body of literature below, starting with the most
closely related first.

Planning and Execution. Other work in planning and execu-
tion that involves reconsidering what happened in the past includes
that by Molineaux, Klenk, and Aha [12] and Shani and Brafman
[19]. Our work extends the work from [12] with a more principled
formalism for exogenous events and the capability to reason over
a longer history. In more recent work by Shani and Brafman [19],
the SDR planner maintains beliefs by reconsidering facts from the
past and initial state through a regression process. Unlike our DIS-
COVERHISTORY algorithm, a series of events that explain the ob-
servations is not constructed. Instead, SDR tries to determine what
possible facts are consistent by searching paths through a branching
and/or tree that covers possible histories tracing through executed

sensing actions. SDR considers multiple possible initial states si-
multaneously to find a plan that works under a sample of possible
worlds. The plan will not necessarily execute in the true world,
however. When an action’s preconditions are not known to be true,
the agent replans. In contrast, DHAgent replans when any incon-
sistency is discovered. As a result of this, SDR will execute some
number of actions in an incorrect plan before coming to one that
is no longer possible. In contrast, DHAgent never executes actions
toward a plan that is inconsistent with its knowledge of the world.

CASPER [10] uses a continuous planning approach to achieve a
higher level of responsiveness in dynamic planning situations. The
planner has goals, initial state, current state, and a model of the ex-
pected future state. The goals or current state may change at any
time and invoke the planning process. The planner will then cre-
ate a new plan based on the current information. This can happen
repeatedly and the planner stands ready to continually modify the
plan.

Continuous Planning and Execution Framework (CPEF) is in-
troduced in [18]. CPEF assumes that plans are dynamic, that is,
that they must be evolving in response to the changes in the envi-
ronment. Over the years, there has been a large body of research
on replanning and plan repair during execution in dynamic envi-
ronments. These works focus only on execution-time failures as
discrepancies; that is, an unexpected state observed during execu-
tion triggers a re-planning or plan repair process [24, 9, 1, 22, 21,
18, 17].

In all of the previous works mentioned above, a discrepancy is
defined as based on causal links between the preconditions and ef-
fects of different actions in the plan. In particular, when the ob-
served state of the world violates such causal-links in the plan,
a discrepancy occurs and triggers the re-planning or plan-repair
process. In contrast, our formalism and algorithms are designed
to generate more expressive and informative explanations of the
world, including causal-link failures as well as other changes that
may occur due to exogenous events.

Real-Time Control and Planning. Existing research on real-
time control and execution in Artificial Intelligence typically em-
ploys a reactive planning foundation, where the agent decides on an
action and executes it immediately [14, 15, 16, ?, 8]. Sometimes,
the systems decide on the action to be executed by using planning
heuristics. Sometimes, they generate a complete plan, off-line, that
achieves the goal, and then execute the plan.

The Cooperative Intelligent Real-time Control Architecture
(CIRCA) is an autonomous planning and control system that builds
and executes safety-preserving plans in the face of unpredictable
events [14]. CIRCA includes a Reaction Planner which devises
a plan to accomplish mission goals while avoiding or preventing
failures. The Reaction Planner takes in a problem description that
species the initial state of the world, a set of goal states that the
planner attempts to reach, a distinguished failure state that the plan-
ner must avoid, and a set of transitions that move the world from
one state to another. Unlike most planning systems, CIRCA rea-
sons about uncontrollable sources of changes, such as environmen-
tal disturbances, failures, and adversaries. The transition models
also include timing characteristics that specify how fast the vari-
ous transitions can occur. The Reaction Planner uses formal veri-
fication techniques to check its plans and ensure that failure is not
reachable.

Diagnosis. In the diagnosis literature, some work (e.g., [11],
[20], [7]) has focused on finding action histories that resolve contra-
dictions by assuming the presence of faulty actions and/or missing
assumptions about the initial state. This work differs from ours in
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that it does not take place in the context of an execution framework,
nor does it consider a model of deterministic exogenous events,
which requires both simultaneous event occurrence and the elimi-
nation of explanations in which caused events fail to occur. Other
work in diagnosis (e.g. [6], [4]) has supplemented the diagnosis ca-
pability with an execution component; however, when replanning
in an execution context, re-explanation may also be necessary, and
this earlier work does not support amending earlier explanations by
removing events (or actions) previously believed to have happened.
Finally, none of these authors has considered the capability of ex-
plaining directly based on common planning models as our system
does, to reduce the effort required of experts in creating multiple
domain models.

7. CONCLUSIONS AND FUTURE WORK
We have described a formalism and algorithm to abductively rea-

son about unexpected event occurrences during planning and ex-
ecution. The explanations generated using this approach can be
used by a planning and execution system to proactively expand its
knowledge of the exogenous events and hidden state in the world,
and thereby improve the performance of its re-planning process.
Our experiments in two planning domains showed that the percent-
age of goals achieved was significantly higher when using our ab-
ductive explanation generation algorithm, compared to an identical
system that did not use them. We have shown that this algorithm
can improve performance in environments with repeated exposure
to hidden events and discrepancies.

There are several tasks that we would like to accomplish in the
future based on our results. First, we’ll investigate the theoreti-
cal properties of abductive reasoning in planning and execution in
general. Based on this theory, we intend to generalize our work to
investigate explanatory diagnosis in planning with incomplete ac-
tion and event models, and in temporal planning, where actions and
events may have durative effects.
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ABSTRACT
In this paper, we investigate real-time path planning in
static terrain, as needed in video games. We introduce the
game time model, where time is partitioned into uniform
time intervals, an agent can execute one movement during
each time interval, and search and movements are done in
parallel. The objective is to move the agent from its start
location to its goal location in as few time intervals as possi-
ble. For known terrain, we show experimentally that Time-
Bounded A* (TBA*), an existing real-time search algorithm
for undirected terrain, needs fewer time intervals than two
state-of-the-art real-time search algorithms and about the
same number of time intervals as A*. TBA*, however, can-
not be used when the terrain is not known initially. For
initially partially or completely unknown terrain, we thus
propose a new search algorithm. Our Time-Bounded Adap-
tive A* (TBAA*) extends TBA* to on-line path planning
with the freespace assumption by combining it with Adap-
tive A*. We prove that TBAA* either moves the agent from
its start location to its goal location or detects that this is
impossible - an important property since many existing real-
time search algorithms are not able to detect efficiently that
no path exists. Furthermore, TBAA* can eventually move
the agent on a cost-minimal path from its start location to
its goal location if it resets the agent into its start location
whenever it reaches its goal location. We then show experi-
mentally in initially partially or completely unknown terrain
that TBAA* needs fewer time intervals than several state-of-
the-art complete and real-time search algorithms and about
the same number of time intervals as the best compared
complete search algorithm, even though it has the advan-
tage over complete search algorithms that the agent starts
to move right away.
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1. INTRODUCTION
Game characters in video games can execute one move-

ment per game cycle. We therefore introduce the following
time model, called game time model. Time is partitioned
into uniform time intervals, an agent can execute one move-
ment during each time interval, and search and movements
are done in parallel. The objective is to move the agent
from its start location to its goal location in as few time
intervals as possible. Complete search algorithms, such as
A* [4], search first and only then move the agent along the
resulting path. They typically need several time intervals to
find a complete path from the start location of the agent to
its goal location, resulting in a long delay before the agent
starts to move and a long time until it reaches its goal lo-
cation. Real-time search algorithms avoid both issues by
executing A* searches and movements in parallel.

Most complete and real-time search algorithms can op-
erate in both known and initially partially or completely
unknown terrain. They typically use on-line path planning
with the freespace assumption in initially unknown terrain
by taking all obstacles into account that the agent has ob-
served so far but assuming that unknown terrain is free of
obstacles [11]. For example, Repeated A* is identical to A*
except that Repeated A* starts a new A* search from the
current location of the agent to its goal location whenever
the agent observes obstacles on its current path to its goal
location. Incremental search algorithms, such as Adaptive
A* [9] and D* Lite [7], behave in the same way but speed
up the A* searches by using their experience with prior A*
searches to speed up future ones.

In this paper, we study Time-Bounded A* (TBA*) [1].
TBA* is an existing real-time search algorithm for undi-
rected terrain that performs an A* search from the start
location of the agent to its goal location. At the end of
each time interval, the agent executes a movement towards
a location in the OPEN list with the smallest f-value. We
show experimentally that TBA* moves the agent in known
terrain from its start location to its goal location in fewer
time intervals than two state-of-the-art real-time search al-
gorithms and in about the same number of time intervals
as A*. However, it cannot be used when the terrain is not
known initially. We thus extend it to on-line path planning
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with the freespace assumption in initially partially or com-
pletely unknown (but static) terrain in two steps. In the
first step, we extend TBA* to Restarting Time-Bounded
A* (RTBA*). RTBA* is identical to TBA* except that,
whenever the agent observes obstacles on its current path
to a location in the OPEN list with the smallest f-value,
RTBA* starts a new A* search from the current location of
the agent to its goal location. At the end of each time inter-
val, the agent continues to execute a movement towards a
location in the OPEN list with the smallest f-value. In the
second step, we extend RTBA* to Time-Bounded Adaptive
A* (TBAA*). TBAA* is identical to RTBA* except that
TBAA* updates the h-values of the expanded states after
each A* search to make them more informed and thus focus
future A* searches better, just like Adaptive A* and RTAA*
[10]. We prove that RTBA* and TBAA* correctly either
move the agent from its start location to its goal location or
detect that this is impossible. Many other real-time search
algorithms cannot detect efficiently that this is impossible.
Furthermore, RTBA* and TBAA* can eventually move the
agent on a cost-minimal path from its start location to its
goal location if they reset the agent into its start location
whenever it reaches its goal location. We show experimen-
tally that TBAA* moves the agent in initially partially or
completely unknown terrain from its start location to its
goal location in fewer time intervals than several state-of-
the-art complete search algorithms (including Adaptive A*)
and real-time search algorithms (including RTAA*) and in
about the same number of time intervals as the best com-
pared complete search algorithm (namely, D* Lite), even
though it has the advantage over complete search algorithms
that the agent starts to move right away.

2. GAME TIME MODEL
We now introduce and justify the game time model. Un-

der the game time model, time is partitioned into uniform
time intervals, an agent can execute one movement during
each time interval, and search and movements are done in
parallel. The objective is to move the agent from its start lo-
cation to its goal location in as few time intervals as possible.
The game time model is motivated by video games. Video
games often partition time into game cycles, each of which is
only a couple of milliseconds long [2]. Each game character
executes one movement at the end of each game cycle, which
gives the players the illusion of fluid movement. During each
game cycle, video games perform all computations necessary
to progress the game, which includes the calculation of the
next movement of the agent, before redrawing the visuals.

The game time model addresses the fact that the stan-
dard way of evaluating search algorithms, namely using their
CPU times or path costs, is problematic in real-time situ-
ations. A*, for example, needs the smallest CPU time of
any search algorithm to find cost-minimal paths (up to tie
breaking). Yet, an agent that uses A* might need more
time to move from its start location to its goal location than
an agent that uses some other search algorithm because A*
searches first and only then moves the agent along the result-
ing path. A* typically needs several time intervals to find
a cost-minimal path from the start location of the agent to
its goal location, resulting in a long delay before the agent
starts to move (which makes the agent unresponsive) and a
long time until it reaches its goal location (which makes the
agent inefficient) since there is no parallelism of search and

movement – the agent does not move until the path is found
and does not search afterwards. The advantage of the game
time model is that the time needed by the agent to move
from its start location to its goal location is proportional to
the number of time intervals needed. A search algorithm
that computes a path while moving the agent might be able
to move the agent to its goal location (along a suboptimal
path) in fewer time intervals than A* and thus is more desir-
able than A*, even though both its CPU time and resulting
path cost could be larger than those of A*.

3. NOTATION
A search problem is a tuple (S, A, c, sstart, sgoal), where

(S, A) is a finite digraph. S is the set of states, and A is the
set of edges. Succ(s) = {t | (s, t) ∈ A} is the set of successors
(or, synonymously, neighbors) of state s ∈ S. c : A 7→ R+

is the cost function that associates a cost with each edge.
sstart ∈ S is the start state, and sgoal ∈ S is the goal state.
We assume that the digraph is undirected, meaning that
there is an edge from vertex s to vertex t iff there is one from
t to s, and both edges have the same cost. For simplicity, we
call the edges undirected. We also assume that the reader is
familiar with A* and knows that A*, when searching from
sroot to sgoal, maintains an OPEN list (a priority queue)
and, for every state s ∈ S, a g-value g(s) that is the cost
of the cost-minimal path from sroot to s found so far, an
h-value h(s) that is an approximation of the cost of a cost-
minimal path from s to sgoal, an f-value f(s) = g(s) + h(s),
and a parent pointer parent(s) that points to the parent of
s in the A* search tree, whose root is sroot. H(s) is the
user-provided h-value of s. The h-values are consistent iff
h(sgoal) = 0 and h(s) ≤ c(s, t)+h(t) for all states s ∈ S and
t ∈ Succ(s).

4. TBA*
Given a search problem, the objective is to move an agent

from sstart to sgoal in as few time intervals as possible. Real-
time search algorithms execute one or more A* searches to
determine one movement for the agent per time interval,
that is, after a bounded amount of computation. Time-
Bounded A* (TBA*) [1] is an existing real-time search al-
gorithm for search problems with known cost functions. We
use known four-neighbor grids with blocked and unblocked
cells as examples, where the states are the cells and edges
connect every unblocked cell to its unblocked neighboring
cells to the north, east, south and west with cost one. TBA*
performs an A* search from sroot = sstart to sgoal. At the
end of each time interval, the agent executes the movement
from its current state scurrent towards a state sbest in the
OPEN list with the smallest f-value (where sgoal should be
chosen if possible), as follows: Consider the branch path of
the A* search tree from its root sroot = sstart to sbest, which
is a cost-minimal path from sroot to sbest. If scurrent is on
path (that is, scurrent is encountered when following the
parent pointers from sbest to sroot), then the agent executes
the movement from scurrent towards sbest along path (that
is, moves to the state after scurrent on path). Otherwise,
it executes the movement from scurrent towards sroot along
the branch of the A* search tree from sroot to scurrent (that
is, follows the parent pointer of scurrent), which is possible
since the edges are undirected. The time that it takes to
expand a state depends on the size of the OPEN list, and
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Algorithm 1 TBA*

1: procedure InitializeState(s)
2: if search(s) = 0 then
3: h(s) := H(s);
4: g(s) := ∞;

5: search(s) := searchnumber;

6: procedure InitializeSearch()
7: searchnumber := searchnumber + 1;
8: sroot := scurrent;
9: InitializeState(sroot);
10: g(sroot) := 0;
11: OPEN := ∅;
12: Insert sroot into OPEN;
13: InitializeState(sgoal);
14: goalFoundFlag := 0;

15: function Search()
16: expansions := 0;
17: while OPEN 6= ∅ AND expansions < k AND
18: g(sgoal) + h(sgoal) > mint∈OPEN(g(t) + h(t)) do

19: s := arg mint∈OPEN(g(t) + h(t));

20: Remove s from OPEN;
21: for all t ∈ Succ(s) do
22: InitializeState(t)
23: if g(t) > g(s) + c(s, t) then
24: g(t) := g(s) + c(s, t);
25: parent(t) := s;
26: Insert t into OPEN;

27: expansions := expansions + 1;

28: if OPEN = ∅ then
29: return false;

30: sbest := arg mint∈OPEN(g(t) + h(t));

31: if sbest = sgoal then
32: goalFoundFlag := 1;

33: path := path from sroot to sbest;
34: return true;

35: function MoveToGoal()
36: scurrent := sstart ;
37: InitializeSearch();
38: while scurrent 6= sgoal do
39: print(“a new time interval starts now”);
40: if goalFoundFlag = 0 then
41: if Search() = false then
42: return false;

43: if scurrent is on path then
44: scurrent := state after scurrent on path;
45: else
46: scurrent := parent(scurrent);

47: Execute movement to scurrent;

48: return true;

49: procedure Main()
50: searchnumber := 0;
51: for all s ∈ S do
52: search(s) := 0;

53: if MoveToGoal() = true then
54: print(“the agent is now at the goal state”);
55: else
56: print(“the agent cannot reach the goal state”);

the time that it takes to determine the next movement for
the agent depends on the length of path. In the following,
we make the simplifying assumption that the time per state
expansion is constant and the time per movement determi-
nation is zero, resulting in a constant number k of state
expansions during each time interval. The original version
of TBA* uses an additional parameter and techniques that
make it a true (amortized) real-time search algorithm. We
could do the same for RTBA* and TBAA* but will not do
so for simplicity.

Algorithm 1 shows TBA*. Procedure InitializeState ini-
tializes the h-value of a given state (to the user-provided
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Figure 1: Operation of TBA*

h-value) and the g-value of the state (to infinity) when they
are needed for the first time, to avoid initializing those val-
ues that are not needed later. searchnumber is the num-
ber of the current A* search, and search(s) is the number
of the A* search during which the g-value of state s was
initialized last. It is zero if the g-value has not been ini-
tialized yet. Procedure Search performs an A* search from
sroot to sgoal by expanding states until the OPEN list be-
comes empty (in which case the agent cannot reach sgoal),
until a cost-minimal path from sroot to sgoal has been found
(that is, sbest = sgoal) or until k states have been expanded.
expansions is the number of expanded states in the current
time interval, and goalFoundFlag is true iff the A* search has
found a cost-minimal path from sroot to sgoal. Procedure
Search sets goalFoundFlag and path before it terminates.
Procedure MoveToGoal sets the agent into sstart and calls
procedure InitializeSearch to initialize the A* search from
sroot = scurrent to sgoal. It then repeatedly calls procedure
Search (if goalFoundFlag is false) and then executes a move-
ment on Lines 43-47, until the agent reaches sgoal or the A*
search indicates that the agent cannot reach sgoal. Proce-
dure Main calls procedure MoveToGoal for a given search
problem and reports the results.

Figure 1 shows the operation of TBA* with k = 2 in
the known four-neighbor grid with blocked (black) and un-
blocked (white) cells shown in Figure 1(a). sstart = E3, and
sgoal = E5. The user-provided h-values are the Manhattan
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distances, that is, the costs of cost-minimal paths from the
cells to the goal cell on a four-neighbor grid without blocked
cells. The OPEN list contains the non-expanded cells that
have a neighboring expanded (grey) cell. The bottom-left
and bottom-right corners of each cell show its h- and search-
values, respectively. The top-left and top-right corners of
each cell show its g- and f-values, respectively, iff its g-value
has been initialized. The arrow shows its parent pointer iff
its parent pointer has been initialized. Dotted arrows in-
dicate the cost-minimal path from sroot = sstart to sbest.
Figure 1(b) shows the situation at the end of the first time
interval (but before the first movement of the agent). The
OPEN list contains only D2 with f-value 6. scurrent = E3
is on the branch path of the A* search tree from sroot = E3
to sbest = D2. The agent thus executes the movement along
this branch to E2. Figure 1(c) shows the situation at the
end of the second time interval (but before the second move-
ment of the agent). The OPEN list contains C3 with f-value
8 and B2 with f-value 10. scurrent = E2 is on the branch
path of the A* search tree from sroot = E3 to sbest = C3.
The agent thus executes the movement along this branch to
D2, and so on. Figure 1(e) shows that the A* search finds
a cost-minimal path from sroot = E3 to sgoal = E5 at the
end of the fourth time interval (but before the fourth move-
ment of the agent). The agent then executes movements
along this branch without any further cell expansions until
it reaches sgoal = E5.

5. RTBA*
TBA* does not apply to search problems with unknown

cost functions. We require that the agent observes the cost
of an edge before it traverses it. In cases where a lower
bound on the cost function is known, search algorithms can
use the lower bound when an edge cost is unknown. This
way, the observation of an actual edge cost can change the
assumed edge cost only once, namely from the lower bound
to the actual edge cost, which cannot decrease the assumed
edge cost - properties that we exploit in the following.1 We
use initially unknown four-neighbor grids with blocked and
unblocked cells as examples. The agent knows its start and
goal cells. It does not know the blockage status of the cells
initially but always observes the blockage status of its four
neighboring cells to the north, east, south and west. It can
use path planning with the freespace assumption by assum-
ing that all cells are unblocked, that is, edges connect every
cell to its neighboring cells to the north, east, south and
west with cost one. If, after executing a movement, it ob-
serves that a neighboring cell is blocked, it increases the
costs of all incoming and outgoing edges of that cell to in-
finity, which is equivalent to removing the edges from the
set of edges A. The agent could run TBA* again whenever
edge costs have increased during the current A* search but
would then often abandon the current A* search unnecessar-
ily. Instead, it runs TBA* again only when edge costs on the
path from scurrent to sbest have increased during the current
A* search. We refer to this search algorithm as Restarting
Time-Bounded A* (RTBA*).

Algorithm 2 shows RTBA* without repeating the Initial-
izeSearch, Search and Main procedures from Algorithm 1.
Procedure InitializeState now initializes the h-value of a

1We just refer to edge costs and the context determines
whether we mean the actual or assumed edge costs.

Algorithm 2 RTBA*

1: procedure InitializeState(s)
2: if search(s) = 0 then
3: h(s) := H(s);
4: g(s) := ∞;
5: else if search(s) 6= searchnumber then
6: g(s) := ∞;

7: search(s) := searchnumber;

8: procedure StartNewSearch?()
9: if edge costs on path have increased
10: since the last call to InitializeSearch then
11: InitializeSearch();
12: path := empty;

13: function MoveToGoal()
14: scurrent := sstart;
15: InitializeSearch();
16: Observe edge cost increases (if any);
17: while scurrent 6= sgoal do
18: print(“a new time interval starts now”);
19: if goalFoundFlag = 0 then
20: if Search() = false then
21: return false;

22: StartNewSearch?();

23: if path 6= empty then
24: if scurrent is on path then
25: scurrent := state after scurrent on path;
26: else
27: scurrent := parent(scurrent);

28: Execute movement to scurrent;
29: Observe edge cost increases (if any);
30: StartNewSearch?();

31: return true;

given state (to the user-provided h-value) when it is needed
for the first time. It initializes the g-value of the state (to
infinity) when it is needed by the current A* search for the
first time. Procedure StartNewSearch? checks whether edge
costs on the path from scurrent to sbest have increased dur-
ing the current A* search and, if so, starts a new A* search
from sroot = scurrent to sgoal.

2 Procedure MoveToGoal now
calls procedure StartNewSearch? on Line 30 after the agent
executes a movement since the agent might observe addi-
tional edge costs which result in increases of edge costs on
the path from scurrent to sbest. Procedure MoveToGoal also
calls procedure StartNewSearch? on Line 22 after the call to
procedure Search since it might result in a new path from
scurrent to sbest that contains edge costs increases that have
been ignored earlier.

Figure 2(a,b,d) shows the operation of RTBA* with k = 2
in an initially unknown four-neighbor grid with blocked and
unblocked cells. sstart = E3, and sgoal = E5. The user-
provided h-values are the Manhattan distances. The first
three time intervals are as in Figure 1 except that the agent
observes blocked cell C3 after the third time interval and
movement of the agent, which increases edge costs on the

2Actually, procedure StartNewSearch? checks the branch
path of the A* search tree from sroot to sbest rather than the
path from scurrent to sbest. The agent traverses only edges
that belong to branches of the A* search tree. Consider the
branches of the A* search tree from sroot to scurrent and
from sroot to sbest. There cannot be any edge cost increases
on the branch from sroot to scurrent since the edges are undi-
rected and the agent has traversed the edges of the branch
earlier already. The path from scurrent to sbest is made up
of both branches without their common prefix. Thus, edge
costs increase on the path iff they increase on the branch
from sroot to sbest.

1000



4 10 5 10 6 10

6 1 5 1 4 1 3 0
3 8 4 8 5 8 6 8

5 1 4 1 3 2 1
2 6 6 8

4 1 2 1 1 0
1 4 0 2 � �

3 1 2 1 0 1

2 3

F

B

C

D

E

6

A

4 51

(a) after observing C3 is blocked after 3rd time interval and movement

1 7 5 10 6 10

6 2 5 1 4 1 3 0
0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1
1 5 6 8

4 2 2 1 1 0
2 5 0 2 � �

3 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

1 7 5 10 6 10

6 2 5 1 4 1 3 0
0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1
1 7 6 8

6 2 2 1 1 0
2 9 0 2 � �

7 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

(b) RTBA* after 4th time interval (c) TBAA* after 4th time interval

1 7 5 10 6 10

6 2 5 1 4 1 3 0
0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1
1 5 6 8

4 2 2 1 1 0
2 5 3 5 � �

3 2 2 2 0 2

2 3

F

B

C

D

E

6

A

4 51

1 7 2 7 3 7

6 2 5 2 4 2 3 0
0 5 4 8 5 8 6 8

5 2 4 1 3 1 2 1
1 7 6 8

6 2 2 1 1 0
2 9 0 2 � �

7 2 2 1 0 2

2 3

F

B

C

D

E

6

A

4 51

(d) RTBA* after 5th time interval (e) TBAA* after 5th time interval

Figure 2: Operation of RTBA* and TBAA*

path from scurrent = C2 to sgoal = E5. Thus, RTBA* starts
a new A* search from sroot = scurrent = C2 to sgoal = E6.
Figure 2(b) shows the situation at the end of the fourth time
interval (but before the fourth movement of the agent). The
OPEN list contains E2 with f-value 5 and B2 with f-value
7. scurrent = C2 is on the branch path of the A* search tree
from sroot = C2 to sbest = E2. The agent thus executes the
movement along this branch to D2. Figure 2(d) shows the
situation at the end of the fifth time interval (but before the
fifth movement of the agent). The OPEN list contains only
B2 with f-value 7. scurrent = D2 is not on the branch path
of the A* search tree from sroot = C2 to sbest = B2. The
agent thus executes the movement that follows the parent
pointer of scurrent = D2 to C2.

6. TBAA*
Each time RTBA* starts a new A* search, all informa-

tion from the previous A* search is lost. However, real-
time search algorithms often update the h-values to make
them more informed. We therefore propose Time-Bounded
Adaptive A* (TBAA*). TBAA* works like RTBA* but up-
dates h-values of cells in the way (Lazy) Adaptive A* [9]
and (Lazy) RTAA* do. Each time TBAA* starts a new A*
search, it updates the h-values of all generated states s by
the previous A* search by assigning h(s) := f(sbest) − g(s)
if this increases h(s), which maintains the consistency of the

Algorithm 3 TBAA*

1: procedure InitializeState(s)
2: if search(s) = 0 then
3: h(s) := H(s);
4: g(s) := ∞;
5: else if search(s) 6= searchnumber then
6: if h(s) < pathcost(search(s)) − g(s) then
7: h(s) := pathcost(search(s)) − g(s);

8: g(s) := ∞;

9: search(s) := searchnumber;

10: procedure StartNewSearch?()
11: if edge costs on path have increased
12: since the last call to InitializeSearch then
13: pathcost(searchnumber) := mins∈OPEN(g(s) + h(s));

14: InitializeSearch();
15: path := empty;

h-values. TBAA* performs this h-value update only once
the h-value of a state is needed by the current A* search for
the first time, to avoid computing those h-values that are
not needed later.

Algorithm 3 shows TBAA* without repeating the Initial-
izeSearch, Search and Main procedures from Algorithm 1
and the MoveToGoal procedure from Algorithm 2. Proce-
dure StartNewSearch? now remembers f(sbest) on Line 13
by assigning pathcost(searchnumber) := f(sbest), and Pro-
cedure InitializeState now updates the h-value of the given
state s on Line 7 when it is needed by the current A* search
for the first time by assigning h(s) := pathcost(search(s))−
g(s) if this increases h(s).

Figure 2(a,c,e) show the operation of TBAA* with k = 2
in the same scenario as described for RTBA*. TBAA* sets
pathcost(1) = f(C5) = 8 and starts a new A* search from
sroot = scurrent = C2 to sgoal = E6. Figure 2(c) shows the
situation at the end of the fourth time interval (but before
the fourth movement of the agent). The OPEN list contains
E2 with f-value 9 (four higher than for RTBA*) and B2
with f-value 7. scurrent = C2 is on the branch path of the
A* search tree from sroot = C2 to sbest = B2. The agent
thus executes the movement along this branch to B2 and
needs fewer movements to reach sgoal = E5 than RTBA*,
demonstrating the advantage of updating the h-values.

7. ANALYSIS
We now prove that RTBA* and TBAA* correctly either

move the agent from sstart to sgoal or detect that this is im-
possible. Furthermore, RTBA* and TBAA* can eventually
move the agent on a cost-minimal path from sstart to sgoal if
they reset the agent into sstart whenever it reaches sgoal. We
make use of the following assumptions and properties: The
user-provided h-values are consistent. The h-value updates
of Adaptive A* (and thus also the ones of TBAA*) maintain
the consistency of the h-values [9]. An A* search with con-
sistent h-values correctly finds a path or detects that none
exists [12], and the found path is cost-minimal [12].

Theorem 1. RTBA* and TBAA* correctly either move
the agent from sstart to sgoal or detect that this is impossible.

Proof. Each time the search algorithm starts a new A*
search, it has observed at least one additional edge cost.
Thus, the number of times it starts a new A* search is
bounded. Consider the last A* search, and let sroot be the
root of the A* search tree. This A* search correctly finds a
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Algorithm 4 Repeated Runs of RTBA* and TBAA*

1: procedure Main()
2: searchnumber := 0;
3: for all s ∈ S do
4: search(s) := 0;

5: repeat
6: if MoveToGoal() = false then
7: print(“the agent cannot reach the goal state”);

8: until sroot = sstart ;
9: print(“cost-minimal path from start state to goal state: ”);
10: print(path);

path from sroot to sgoal or detects that none exists. There
exists a path from sroot to sgoal iff there exists a path from
sstart to sgoal since the agent moves along undirected edges.
If the A* search finds a path from sroot to sgoal, then the
agent repeatedly follows the parent pointers of its current
states until it is on the path and then traverses the path to
sgoal. The agent is able to follow the parent pointers since
edges are undirected and the agent has traversed the edges
earlier already during the A* search. The agent reaches the
path this way since the agent moves in the A* search tree
and thus reaches sroot by repeatedly following the parent
pointers if it does not reach the path from sroot to sgoal

earlier already. The agent is able to traverse the path to
sgoal since the A* search correctly found a path from sroot

to sgoal and the search algorithm would have started a new
A* search if edge costs on the path had increased during the
A* search.

The following theorem states that RTBA* and TBAA*
eventually find a cost-minimal path from sstart to sgoal if
they reset the agent into sstart whenever it reaches sgoal.
Algorithm 4 defines this process precisely.

Theorem 2. Algorithm 4 prints a cost-minimal path for
RTBA* and TBAA* if a path from sstart to sgoal exists.

Proof. Each time after the search algorithm resets the
agent into sstart and starts a new A* search, it moves the
agent from sstart to sgoal according to Theorem 1. Each time
the search algorithm starts a new A* search while the agent
moves to sgoal, it has observed at least one additional edge
cost. Thus, the number of times it starts a new A* search
while the agent moves to sgoal is bounded, and it eventually
moves the agent from sstart to sgoal without starting a new
A* search while the agent moves to sgoal (implying that
sroot = sstart). The last A* search finds a cost-minimal
path from sstart to sgoal, and there cannot be any edge cost
increases on the path since edges are undirected and the
agent has traversed the edges earlier already during the A*
search. The agent thus traverses a cost-minimal path if it
moves along this path.

8. EXPERIMENTAL EVALUATION
We compare RTBA* and TBAA* against several state-

of-the-art complete and real-time search algorithms, which
we implemented in a similar way, for example, using a stan-
dard binary heap for the OPEN list and breaking ties among
states with the same f-value in favor of larger g-values. All
complete search algorithms first find a complete path for
the agent from the start state to the goal state (over several
time intervals) and then move the agent along it (again over

several time intervals). All real-time search algorithms per-
form only state expansions during the first time interval. In
each subsequent time interval, they compute a path for the
agent, execute one movement for the agent, and then per-
form repeatedly state expansions until the end of the time
interval is reached, implying that all time intervals have ap-
proximately the same length but not necessarily the same
number of state expansions. All real-time search algorithms
perform an h-value update only once the h-value of a state is
needed by the current A* search for the first time. The scal-
ing behavior of the search algorithms is less important than
the hardware and implementation details since the search
problems are small. It is difficult to compare the search algo-
rithms with proxies, such as the number of state expansions,
instead of the runtime itself since they perform different ba-
sic operations. We thus do not know of any better method
for evaluating them than to implement them as best as pos-
sible and let other researchers validate the results with their
own and thus potentially slightly different implementations.

We use known and initially partially or completely un-
known eight-neighbor grids with blocked and unblocked cells
in the experiments. Four-neighbor grids make for good il-
lustrations since they result in integer-valued g-, h-, and
f-values but we believe that eight-neighbor grids are more
realistic for video games [3]. Also, some incremental search
algorithms speed up A* searches less on eight-neighbor grids.
The user-provided h-values are the octile distances, that is,
the costs of cost-minimal paths from the cells to the goal
cell on an eight-neighbor grid without blocked cells. The
agent knows the dimensions of the grid and its start and
goal cells. It can always move from its current unblocked
cell to one of the eight unblocked neighboring cells with cost
one for horizontal or vertical movements and cost

√
2 for di-

agonal movements. We ran the search algorithms with time
intervals whose lengths ranged from 0.3 to 1.5 milliseconds
and report results for the average number of time intervals
and number of movements until the agent reaches the goal
cell for the first time.

We use six game maps and generated 300 search problems
with randomly chosen start and goal cells for each game
map, for a total of 1,800 search problems.3 In known grids,
it knows the blockage status of all cells initially. In initially
partially or completely unknown grids, it does not know the
blockage status of some or all, respectively, cells initially but
always observes the blockage status of its eight neighboring
cells. Partially unknown grids are motivated by video games
where the layout of the terrain is known to the agent but
other players can build structures which are initially un-
known to the agent [13]. We randomly blocked 15 percent
of the unblocked cells in the game maps. The agent knows
the blockage status of all blocked cells in the game maps but
does not know the blockage status of the additional blocked
cells.

8.1 Known Terrain
In known terrain, we compare TBA* against the complete

search algorithm (forward) A* and the real-time search algo-
rithms RTAA* and daRTAA*. Table 1 shows the following

3We use three Starcraft maps, namely Enigma of size
768 × 768, Inferno of size 768 × 768, and WheelofWar of
size 768 × 768. We use three Dragon Age: Origins maps,
namely orz103d of size 456 × 463, orz702d of size 939 × 718,
and orz703d of size 502 × 652.
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Table 1: Known Terrain
RTAA* daRTAA* TBA* A*

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments

0.3 2,193 2,192 1,729 1,728 568 567 584 545
0.6 1,541 1,540 1,303 1,302 556 555 565 545
0.9 1,362 1,361 1,151 1,150 552 551 558 545
1.2 1,196 1,195 1,057 1,056 550 549 555 545
1.5 1,087 1,086 970 969 549 548 553 545

Table 2: Initially Completely Unknown Terrain
RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments

0.3 3,245 3,244 2,879 2,878 4,613 4,604 2,290 2,286 7,155 2,004 3,230 2,010 2,203 2,027
0.6 2,598 2,597 2,472 2,471 3,368 3,360 2,147 2,144 4,487 2,004 2,572 2,010 2,090 2,027
0.9 2,451 2,450 2,418 2,417 2,918 2,910 2,101 2,099 3,611 2,004 2,361 2,010 2,062 2,027
1.2 2,310 2,309 2,305 2,304 2,695 2,688 2,086 2,083 3,178 2,004 2,260 2,010 2,051 2,027
1.5 2,281 2,280 2,272 2,271 2,560 2,553 2,070 2,068 2,920 2,004 2,202 2,010 2,045 2,027

Table 3: Initially Partially Unknown Terrain
RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite

Length of Time # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move- # Time # Move-
Intervals (ms) Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments Intervals ments

0.3 2,694 2,693 2,460 2,459 2,734 2,730 1,505 1,504 6,324 1,409 2,430 1,399 1,659 1,418
0.6 2,039 2,038 1,863 1,862 2,037 2,034 1,442 1,441 3,812 1,409 1,875 1,399 1,532 1,418
0.9 1,840 1,839 1,779 1,778 1,860 1,857 1,431 1,430 2,979 1,409 1,695 1,399 1,490 1,418
1.2 1,707 1,706 1,643 1,642 1,726 1,724 1,421 1,420 2,564 1,409 1,608 1,399 1,470 1,418
1.5 1,620 1,619 1,642 1,641 1,668 1,666 1,415 1,414 2,316 1,409 1,556 1,399 1,458 1,418

relationships for known terrain.

• The average number of movements until the agent
reaches the goal cell does not depend on the length
of the time intervals for A* since complete search al-
gorithms search first and only then move the agent
along the resulting path.

• The average number of movements until the agent
reaches the goal cell decrease as the length of the time
intervals increases for TBA*, RTAA*, and daRTAA*.

• The average number of time intervals until the agent
reaches the goal cell decreases as the length of the time
intervals increases for all search algorithms.

All real-time search algorithms move the agent in known
terrain from its start cell to its goal cell in about the same
or more time intervals than A*. However, TBA* moves the
agent in known terrain from its start cell to its goal cell in
fewer time intervals than the two real-time search algorithms
RTAA* and daRTAA* and in about the same number of
time intervals as A*. TBA* has the advantage over A* that
the agent moves right away for TBA* (namely, during time
interval 2 in our implementation) rather than only in time
intervals 8 to 40 on average for A*.

8.2 Initially Unknown Terrain
In initially unknown terrain, we compare RTBA* and

TBAA* against the complete search algorithms (forward)
Repeated A*, Adaptive A*, and D* Lite and the real-time
search algorithms RTAA* and daRTAA*. Our implemen-
tation of Repeated A* starts a new A* search only when
edge costs on the path from scurrent to sgoal have increased,
rather than whenever edge costs have increased, different
from [8], which explains the difference in experimental re-
sults compared to [8]. Tables 2 and 3 show the following
relationships for initially completely and partially unknown
terrain, respectively.

• The average number of movements until the agent
reaches the goal cell does not depend on the length of

the time intervals for Repeated A*, Adaptive A* and
D* Lite. Furthermore, they are similar for all search
algorithms, since they execute the same movements
(modulo tie breaking).

• The average number of movements until the agent
reaches the goal cell decreases as the length of the time
intervals increases for RTBA*, TBAA*, RTAA*, and
daRTAA*.

• The average number of time intervals until the agent
reaches the goal cell decreases as the length of the time
intervals increases for all search algorithms.

All real-time search algorithms move the agent in initially
partially or completely unknown terrain from its start cell to
its goal cell in fewer time intervals than Repeated A*. The
game time model is thus able to explain the importance of
real-time search in this case. TBAA* moves the agent in
initially partially or completely unknown terrain from its
start cell to its goal cell in fewer time intervals than the two
complete search algorithms Repeated A* and Adaptive A*,
and the two real-time search algorithms RTAA* and daR-
TAA* and in about the same number of time intervals as the
best compared complete search algorithm D* Lite. TBAA*
seems to have a slight advantage over D* Lite in initially par-
tially unknown terrain and vice versa in initially completely
unknown terrain (although this difference might not be sta-
tistically significant). The reason appears to be that the
h-value surface does not have local minima on grids without
blocked cells, which allows D* Lite to speed up A* searches
significantly during the first searches in initially completely
unknown terrain but not in initially partially unknown ter-
rain. For example, D* Lite is often able to find the very first
path in initially completely unknown terrain in one time in-
terval.

9. SUMMARY
In this paper, we introduced the game time model, where

time is partitioned into uniform time intervals, an agent can
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execute one action during each time interval, and search
and action execution run in parallel. We then extended
Time-Bounded A* (TBA*) to on-line path planning with
the freespace assumption in initially partially or completely
unknown (but static) terrain, resulting in Time-Bounded
Adaptive A* (TBAA*). Similar to TBA*, TBAA* performs
an A* search from the start location of the agent to its goal
location. At the end of each time interval, the agent exe-
cutes a movement towards a location in the OPEN list with
the smallest f-value. TBAA* starts a new A* search when-
ever the agent observes obstacles on its path to this location.
Similar to Adaptive A*, TBAA* updates the h-values of the
expanded states after each A* search to make them more in-
formed and thus focus future A* searches better. We proved
that TBAA* correctly either moves the agent from its start
location to its goal location or detects that this is impossi-
ble. Many other real-time search algorithms cannot detect
efficiently that no path exists. Furthermore, TBAA* can
eventually move the agent on a cost-minimal path from its
start location to its goal location if it resets the agent into its
start location whenever it reaches its goal location. We then
showed experimentally that TBAA* moves the agent in ini-
tially partially or completely unknown terrain from its start
location to its goal location in fewer time intervals than sev-
eral complete and real-time search algorithms and in about
the same number of time intervals as the best compared
complete search algorithm, even though it has the advan-
tage over complete search algorithms that the agent starts
to move right away. In future work, we intend to let TBAA*
use techniques that speed up daRTAA* over RTAA* [6, 5]
to avoid local minima in the h-value surface. Since TBAA*
uses less than 30 percent of the available time on average, we
also intend to let it use more sophisticated h-value update
techniques to make its h-values even more informed.
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ABSTRACT
Memory enables past experiences to be remembered and ac-
quired as useful knowledge to support decision making, espe-
cially when perception and computational resources are lim-
ited. This paper presents a neuropsychological-inspired dual
memory model for agents, consisting of an episodic memory
that records the agent’s experience in real time and a se-
mantic memory that captures factual knowledge through a
parallel consolidation process. In addition, the model incor-
porates a natural forgetting mechanism that prevents mem-
ory overloading by removing transient memory traces. Our
experimental study based on a real-time first-person-shooter
video game has indicated that the memory consolidation and
forgetting processes are not only able to extract valuable
knowledge and regulate the memory capacity, but they can
mutually improve the effectiveness of learning the knowl-
edge for the given task in hand. Interestingly, a moderate
level of forgetting may even improve the task performance
rather than disadvantaging it. We suggest that the interplay
between rapid memory formation, consolidation, and forget-
ting processes points to a practical and effective approach
for learning agents to acquire and maintain useful knowledge
from experiences in a scalable manner.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Algorithms, Design, Experimentation, Theory

Keywords
Memory, Forgetting, Adaptive Resonance Theory

1. INTRODUCTION
Memory plays a key role in reasoning and decision making

by providing past relevant episodes to improve learnt knowl-
edge [10]. An agent with very limited or partial observabil-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c⃝ 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ity can construct a complete picture about its task environ-
ment by remembering all relevant information from its mem-
ory. Some agent architectures have incorporated declarative
memory systems to support different aspects of the agent’s
performance. For example, [10] and [6] demonstrate the use
of episodic memory to improve task performance and sur-
vivability of agents in simulated environments. [2, 8, 1, 7]
also show how memory can improve the realism or human-
likeliness of virtual agents. Most of these architectures con-
sider declarative memory as a flexible information storage
that can perfectly store and accurately retrieve information.

Although episodic memory can provide useful information
about previous experiences at any moment of time, a signifi-
cant amount of computational resources may still be needed
to process specific items in memory to support reasoning and
decision making. As the tasks and the environment become
more complex, it is often impossible to make use of all the
stored information necessary to make the right decision. For
example, in a real-time environment, an agent may not have
enough time to search and recall all relevant information to
support its decision while it is performing some tasks. On
the other hand, the agent may need to obtain enough infor-
mation to acquire more compact, generalized, and efficient
knowledge structure through a particular learning algorithm
in order to make a timely and appropriate decision. Further-
more, most existing memory architectures for agents assume
that all stored information is always relevant and consistent
despite its limited capacity and possible erroneous inputs.
The limitation of memory to keep all relevant and useful in-
formation is an important practical issue for learning agents
but still seldom concerned.

According to neuropsychology, human memory systems
have been known to be as non-unitary and partitioned into
different types. Long-term declarative memory has been di-
vided into episodic memory enabling one to remember per-
sonal experiences in specific manner and semantic memory
that stores concepts, rules, and general facts [15]. It has
also been considered that a consolidation process gradually
transfers the specific items from episodic memory into gen-
eral facts and rules in semantic memory [15, 3]. Episodic
memory (particularly located in hippocampal area in the
brain) and semantic memory (distributed across neo-cortical
area in the brain) are anatomically separated but intercon-
nected. It is suggested that these complementary mem-
ory systems prevent interferences of new information to old
memories [9]. The consolidation between the two memory
systems also implies that some forgetting processes may reg-
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ulate and shape the memorized items to optimize perfor-
mance as if the brain minds about the usefulness of memory
traces rather than fidelity [12, 17]. It may be the case that
perfect memory retrieval would burden the brain with too
much details at the expense of remembering useful informa-
tion.

In this paper, we propose a computational model of such
a dual memory system based on a composition of fusion
Adaptive Resonance Theory (ART) neural networks [14],
which inherently serve learning, categorization, and recall
operations. The dual memory model consists of an episodic
memory that records agent’s experience in real time and a
semantic memory that captures factual knowledge relevant
to the environment. The memory system is designed in such
a way that the agent can store, recall, and playback expe-
rienced episodes in a sequential manner beyond individual
momentary events. The availability of both the episodic and
semantic memory modules enables a resource-bounded agent
to focus on the situation and tasks in hand by capturing
the episodic experience on-the-fly into a temporary memory
store and deferring the resource-intensive learning of factual
knowledge to a later stage through a memory consolidation
process from episodic to semantic memory. In addition, the
use of episodic memory as a buffer allows an agent to select
and iterate through the relevant past cases as many times
as needed at a later time, based on the updated awareness
of the tasks and environment. This naturally leads to more
effective learning comparing with learning the knowledge in
an online manner while performing the task. To prevent
the episodic memory from overloading, we further present
a forgetting mechanism that associates each memory cate-
gory with a time-decaying memory strength and removing
unimportant traces or categories from the model.

The proposed dual-memory model has been evaluated us-
ing a real-time first-person-shooter video game called Unreal
Tournament to support a non-player-character (NPC) agent
to learn from experiences and improve performance. Sur-
prisingly, we find that the memory model not only improves
the task performance but in some cases, a moderate level
of forgetting even results in more effective learning. Further
examinations on the effects of forgetting show that select-
ing and pruning erroneous and outdated patterns promotes
more efficient and robust learning.

The rest of the paper is organized as follows. Section 2
reviews related works in modelling declarative memory for
autonomous agents and discusses some computational and
neuropsychological accounts of consolidation and forgetting
processes. The paper continues to describe the proposed
memory model in Section 3. The section also formulates and
analyses the characteristic of the memory model. Section 4
describes the implementation and the experiments of the
memory system as parts of the non-player character agent
in Unreal Tournament. The last section concludes the paper
with some future directions.

2. RELATED WORK
Various types of declarative memory have been devised in

recent years as parts of agent architectures. Most of them
are developed as unitary systems, serving mainly the func-
tionality of episodic memory to store linearly ordered traces
of experiences or log records. This kind of sequential records
has been demonstrated to optimize the agent’s task per-
formance [10] and improve the survivability of artificial life

beings in virtual environment [6]. In the sequential traces
model of episodic memory, specific mechanisms to search,
retrieve, and recall the appropriate memory items are nec-
essary to support performance. Each entry in episodic mem-
ory may also refer to other cognitive traits like procedural
knowledge (in SOAR) [10] or emotions [1] to enhance the
capability of memory operations and support complex be-
haviour.

To improve realism and interactivity, episodic memory en-
tries can be associated with temporal relationships. For ex-
ample, each entry can be associated with temporal weights
to produce the effect of recency [8, 7] or generating temporal
granurality [2]. This temporal association can emulate for-
getting in which some details of memory item are suppressed
according to time. However, these architectures still exclude
memory consolidation processes to transfer and reorganize
the contents of memory, nor consider the forgetting as ben-
eficial to the overall performance.

On the other hand, it has been known that information
memorized in the brain are subject to consolidation to make
more general experience-independent forms of knowledge [3].
Memory traces from past experiences are played back before
performing actions in similar or relevant contexts [11, 5].
Meanwhile, forgetting may take place removing or suppress-
ing less useful memory items [17]. This forgetting dynamics
of memory has been recognized as computationally benefi-
cial to reduce inconsistency and the complexity of reason-
ing by discarding irrelevant information [16]. In multiagent
systems, forgetting can also be useful for resolving conflicts
between agents [4].

Our work in this paper also explores the role of episodic
memory in agents. However, the main focus is to look at
the memory consolidation process to extract useful knowl-
edge and the discard of irrelevant information through for-
getting. Instead of just applying episodic memory as a uni-
tary flexible storage system, we make dual episodic-semantic
memory systems working together to acquire useful knowl-
edge through the interplay of consolidation and forgetting
processes.

Figure 1: The Episodic-Semantic Memory

3. THE DUAL MEMORY MODEL
The proposed memory model is considered as a part of

the reasoning system of an agent architecture (Figure 1). It
can be assumed that at each point in time, a snapshot of
an agent’s situation and perception can be encoded as an
individual event and held temporarily in working memory.
Episodic memory automatically stores and organizes the
events in a sequential order into cognitive units of episodes,
which are then periodically transferred to semantic memory.

In general, the memory system goes through different stages
of operation as follows:
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• Events captured in working memory are continuously
stored in episodic memory.

• Periodically, traces in episodic memory are readout to
working memory triggering learning in semantic mem-
ory.

• Memory items in episodic and semantic memory can
any time be recalled based on certain memory cues
through a process of pattern completion or reconstruc-
tion.

• Rarely accessed items in episodic memory will be re-
moved (forgotten).

The remaining parts of this section first formulate the
notion of events and episodes before presenting the details
of the model and process as follows.

3.1 Events and Episodes
An event is a snapshot of perceived experience at one mo-

ment in time which can be defined as a collection or a tuple
of attributes.

Definition 1. An event ε is a tuple reflecting a moment of
experience such that ε = (v1,v2, ...,vk). Each attribute vi

is defined as a tuple such that vi = (vi
1, v

i
2, .., v

i
l ) and vi

j is a

normalized real value vi
j ∈ [0, 1].

By normalizing the value of vi
j , an event can represent a

proposition with a binary truth at the extreme values (0 or
1) or a certain degree in between (fuzzy values). To recall a
stored event, an event cue can be expressed with the same
tuple structure. However, some elements of the cue may be
left unspecified and the recall operation would reconstruct
the target event. Figure 2(a) shows an example of an event
representation in the Unreal Tournament domain used in
our experiment (explained later in detail).

Figure 2: (a) Event Encoding; (b) Input (Output)
representation of RLBot NPC in the experiment

An episode, on the other hand, can be defined as a finite
list of events collected in a temporal order.

Definition 2. An episode E is a sequence of events such
that E = [εt0 , εt1 , ..., εtn ], where tj denotes the relative time
point wherein the event εtj occurs.

In contrast to the event structure, which always has the same
length of tuple, the length of the episode sequence may vary.

3.2 Building Blocks
The proposed memory model is based on fusion Adap-

tive Resonance Theory (ART) [14], which applies a myriad
of learning paradigms to recognize and learn an incoming
stream of input patterns across multiple channels in real
time. It employs a bi-directional process of categorization
and prediction to find the best matching category (reso-
nance). It also learns continuously by updating the weights
of neural connections at the end of each search cycle. ART
may also grow dynamically by allocating a new category if
no match can be found. This type of neural network is cho-
sen as the building block of our memory model as it enables
continuous formation of memory with adjustable vigilance
of categorization to control the growth of the network and
the level of generalization. Specifically, a fusion ART model
can be defined as follows:

Definition 3. Suppose F k
1 and F2 are the kth input (out-

put) field and the category field of fusion ART (Figure 3)
respectively for k = 1, .., n. Let xk denote the F k

1 activity
vector and wk

j denote the weight vector associating kth field

with jth node in F2. F k
1 is associated with choice parameter

αk > 0, learning rate βk ∈ [0, 1], contribution parameter
γk ∈ [0, 1], and vigilance parameter ρk ∈ [0, 1].

Definition 4. Choice function Tj returns the activation
value of category j such that:

Tj =

n∑

k=1

γk |xk ∧ wk
j |

αk + |wk
j | (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡
min(pi, qi), and the norm |.| is defined by |p| ≡ ∑

i pi for
vectors p and q.

Definition 5. Template matching mk
j is the matching value

or similarity of category j with the input xk such that:

mk
j =

|xk ∧ wk
j |

|xk| (2)

A category J of F2 field is in resonance condition if and only
if:

TJ = max
{

Tj : ∀k, mk
j ≥ ρk, for all F2 category j

}
(3)

Definition 6. Given the selected category J , Template learn-
ing modifies the weights associated with J such that:

w
k(new)
J = (1 − βk)w

k(old)
J + βk(xk ∧ w

k(old)
J ) (4)

The corresponding weight vector of the chosen F2 node J
can be readout into the input field F k

1 such that xk(new) =
wk

J .

Figure 3: Fusion ART Neural Network

If no existing F2 category can be found in resonance con-
dition with the current input, a new category is recruited
to represent the current input pattern. This implies that
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the ART network can grow to accommodate the incoming
stream of different input patterns. The growth rate of the
categories depends on how much the incoming patterns dif-
fer from one another and is adjustable through adjusting
the vigilance parameters (ρk). Lower vigilance may tolerate
differences more than the higher one and hence lead to a
slower growth.

3.3 Episodic Memory
From Definition 1, it is clear that an event corresponds

directly to the input vector representation in the fusion ART
model. Specifically, an event εk is encoded into an input
vector xk to be learnt by fusion ART. On the other hand,
based on Definition 2 an episode corresponds to the sequence
of selected categories (events) collected in a temporal order.
An episodic memory model can be built to store events and
episodes by combining two fusion ARTs: one for storing
events and the other for episodes. Figure 4 shows that events
are represented and processed by the ART network between
F k

1 and F2 fields. In this case, an event can be learnt and
retrieved by selecting a matching category in F2 and readout
the pattern back to F k

1 . In a word, each F2 category j
represents a single event.

To capture episodes, another layer of ART gets input from
categories selected in F2 from the other network. Let y =
(y0, y1, .., ym) denote the F2 activity vector. If J is the F2

category currently selected by the resonance search, then

yJ = 1 and y
(new)
j = y

(old)
j (1 − τ) for all F2 category j ̸= J

and τ ∈ (0, 1).

Lemma 1. Consider the F2 activity vector y as described
above. If yJ = 1 for J is the currently selected category and

y
(new)
j = y

(old)
j (1 − τ) for all j ̸= J with τ ∈ (0, 1), then

y reflects the relative order of category selection in F2 such
that yjt > yjt−1 > yjt−2 > ..yjt−m for jt is the node selected
at relative time point t.

Proof. Given 0 < (1 − τ) < 1, it is clear that 1 > (1 −
τ) > (1−τ)2 > .. > (1−τ)m. Since yjt = 1 for any category

jt and from y
(new)
j = y

(old)
j (1 − τ) it follows that yjt−m =

(1−τ)m, consequently yjt > yjt−1 > yjt−2 > .. > yjt−m .

The list of events with their relative order expressed as y
vector becomes the input to the upper ART network (be-
tween F2 and F3 fields) to be learnt as an episode. Based on
the bi-directional activation and matching process in ART,
a category I representing an episode is selected in F3 such
that

Ti =
|y ∧ wi|

|wi|
, mi =

|y ∧ wi|
|y| , and

TI = max {Ti, mi ≥ ρ2, for all F3 node i} .

Parameters α, γ, and the field index k are omitted as the
upper network only has a single input field (F2). Given the

selected category I, learning takes place such that w
(new)
I =

(1 − β2)w
(old)
J + β2(y ∧ w

(old)
I ). ρ2 and β2 are the vigilance

and learning rate parameters respectively of the field F2.
If consecutive events are received in F k

1 , a pattern of their
sequence can be formed in F2 as vector y and can be used
as an input to select category I in F3. In this case, the
input patterns act as memory cues. To reproduce the origi-
nal sequence of events of the episode, two stages of readout

Figure 4: The Episodic Memory Model

operation are conducted by firstly reading out the sequen-
tial pattern of the episode into vector y and secondly an
F2 category J is selected such that TJ = max(yj : yj =
1 − yj , for all F2 category j) and readout to the correspond-
ing F k

1 before reset to zero or yJ = 0. The readout cycles
continue until y = 0.

3.4 Semantic Memory
Different from episodic memory, we view that the seman-

tic memory is not unitary, with different fusion ARTs rep-
resenting different structure of knowledge. In contrast to
episodic memory, each entry in semantic memory generalizes
similar inputs into the same category rather than as separate
entries. Each input field of a semantic memory represents
a property or an attribute of a concept. The generalization
can be achieved by lowering the vigilance parameter ρk so
that slightly different input patterns will still activate the
same category. The value of an attribute can be paired, as
described below, so that the ART learning can generalize
the value as a range of values.

Let Ik be the input vector for F k
1 , Ik

i ∈ [0, 1]. Ik is aug-
mented with Īk such that Īk

i = 1 − Ik
i . The activity vector

xk of F k
1 thus augments the input vector Ik with its com-

plement Īk which are learnt as a wk
j . Let (wk

ij , w
k
ij) be the

corresponding pair of wk
j . The value of the connection be-

comes less specified when wk
ij ̸= 1 − wk

ij .

Lemma 2. For the pair (wk
ij , w

k
ij) of wk

j described above,

if wk
ij ̸= 1−wk

ij, any corresponding complemented input pair

(Ik
ij , I

k
ij) will have a maximum matching value or always in

resonance as long as wk
ij ≥ Ik

ij ≥ 1 − wk
ij .

Proof. Let the pair (xk
ij , x

k
ij) ≡ (Ik

ij , I
k
ij). It is clear

that if xk
ij ≤ 1 − wk

ij then xk
ij ≤ wk

ij . Thus, (xk
ij , x

k
ij) ∧

(wk
ij , w

k
ij) = (xk

ij , x
k
ij) such that template matching mk

j =
|xk∧wk

j |
|xk| = |xk

|xk| = 1

It can be considered that a stored value is unspecified if the
values of the corresponding complementary pair (wk

ij , w
k
ij)

are equal.
Similar to episodic memory, the content of semantic mem-

ory can be retrieved by pattern completion based on memory
cues. Figure 5 illustrates various types of semantic memory.
A single fusion ART may consist of domain specific associa-
tive rules (e.g a set of association between a certain object
and its location in the environment, a set of rule associating
the effectiveness of a certain weapon and the distance to the
opponent) or generic causal relations associating a partic-
ular type of event to another that follows. These types of
semantic knowledge can be derived by exposing the played
back items from the episodic memory to the input of the
semantic memory using a lower vigilance parameter ρk and
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a smaller learning rate βk such that similar instances may
gradually be clustered together regardless of their order.

Figure 5: Different types of Semantic Memory and
the Memory Consolidation Process

3.5 Memory Consolidation
Knowledge can be transferred from episodic memory by

playing back stored episodes or reading out category nodes
in F3 field to each corresponding input fields. The readout
events are then passed to the working memory, one at a
time, to be shared by other memory modules. Depending
on the kind of semantic structure and the domain problem,
different subsets of items in working memory are connected
to different input fields in semantic memory.

Definition 7. Let O be the vectors in F1 fields read out
from the selected category in episodic memory as a result of
the playback process. Function M : P → Θ maps the read
out vectors from episodic memory into the corresponding
input vectors of semantic memory, wherein P and Θ are
the vector space of the input fields of episodic memory and
semantic memory respectively.

During the episodic memory playback, x′ = M(O) be-
comes the input vector to learn in semantic memory. The
played back vectors can be the results of the top-down read-
out process or it can be the results of a retrieval operation
based on some memory cues. If x′ = M(ε), it can be said
that semantic memory works standalone by learning directly
from the received events ε bypassing episodic memory. A
standalone version of semantic memory is also presented in
this paper as one configuration to compare with the dual
memory model in our experiment (explained later).

3.6 Forgetting
Forgetting is a mechanism to free up memory space in

episodic memory by removing unnecessary items. Intuitively,
a memory item can be considered unnecessary or obsolete
if it is rarely accessed or recalled for long. The forgetting
mechanism in the proposed model is applied to episodic
memory for both the event layer (F2) and the episode layer
(F3).

Definition 8. Given a category j (representing either an
event or an episode) in a fusion ART structure, a memory
strength St

j reflects how often category j is selected such
that:

St
j =

{ St−1
j + (1 − St−1

j )rs if j is selected at time t

St−1
j (1 − δs) otherwise

(5)

where rs ∈ [0, 1] and δs ∈ [0, 1] are reinforcement and decay
rate parameters respectively. A category j with St

j < θs

will be removed or pruned from memory including all the
associated connections. If j is a new allocated category, it
is assigned with an initial strength Sinit

j .

4. CASE STUDY
The episodic-semantic memory system is implemented and

embedded into an autonomous non-player character (NPC)
in a first-person-shooter video game called Unreal Tourna-
ment (UT). Our objectives are to test if the proposed mem-
ory model can produce useful knowledge for the agent and
whether the forgetting process may sacrifice the agent’s per-
formance. The scenario of the game used in the experiment
is ”Deathmatch”. The objective of each agent is to kill as
many opponents as possible and to avoid being killed by oth-
ers. In the game, two (or more) NPCs are running around
and shooting each other. They can collect objects in the en-
vironment, like health or medical kit to increase its strength
and different types of weapon and ammunition for shooting.
The battle simulation in UT game is a suitable platform for
evaluating memory tasks. Besides complex spatial maps and
terrains, different objects and situations in the game may
have some intricate relationships that should be memorized
and remembered in non-trivial ways.

4.1 Weapon Learning Task
In the first experiment, we task the agent to learn the re-

lationship between the type of weapon and its effectiveness
to kill given the distance of the opponent agent. We com-
pare the performance of different agents with reinforcement
learning and the dual episodic-semantic memory.

4.1.1 The Baseline Agents for Comparison
All agents that we evaluate in the experiment play against

an NPC agent called AdvanceBot that behaves according to
hardcoded rules. There are four different hardcoded behav-
ior modes in AdvanceBot : (1) Running around behaviour,
in which the agent runs around exploring the environment
randomly; (2) Collecting items behavior, in which the agent
goes around and picks up collectible items; (3) Escaping
from the battle situation, in which the agent turns and runs
away from the opponent; (4) Engaging in battle, in which
the agent approaches its opponent and shoots to kill it. Ad-
vanceBot always chooses one of the four behaviors based on
a set of predefined rules.

Under the battle engagement behavior, the agent also al-
ways tries to select the best weapon available for shooting.
The weapon selection rules are based on some heuristics op-
timized for a certain environment map used in the game.

As a performance comparison, another agent (named RL-
Bot) is made to employ the same set of behaviors but its se-
lection is conducted dynamically based on a fusion ART neu-
ral network conducting reinforcement learning algorithm.
The state, action, and reward vectors in Figure 2(b) cor-
respond to the input fields in a fusion ART network of RL-
Bot. The behavior pattern in the state vector represents the
behavior (1 to 4) currently selected. The action vector indi-
cates the next behavior to be selected. Based on the state
field input and the reward cue (set to the maximum), the
network searches the best match category node and reads
out the output to the action field indicating the behavior
type to be selected. The network then receives feedbacks
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in terms of the new state and reward (if any). The net-
work learns by updating the weighted connections according
to the feedback received and applying temporal difference
methods [13] to update the reward field if the immediate
reward is absent. The agent receives the reward signal (pos-
itive or negative) whenever it kills or is killed by another
agent. In contrast to AdvanceBot, RLBot chooses an avail-
able weapon randomly in the battle engagement behavior.
Another agent called RLBot++ is also used to employ the
same reinforcement learning model as RLBot but select the
weapon based on the optimized predefined rules just like in
AdvanceBot.

4.1.2 Episodic-Semantic Memory Based Agent
The proposed model is embedded in an agent with the

same architecture as RLBot, but with the episodic and se-
mantic memory modules running concurrently. The episodic
memory captures episodes based on the event information
in the working memory. An event from the UT game is
encoded as a vector shown in Figure 2(a). There are four
input fields in episodic memory for location, state, selected
behavior, and the reward received. In the experiment, the
vigilance of all input fields (ρe) and the F2 field (ρs) are
set to 1.0 and 0.9 respectively so that it tends to always
store distinct events and episodes in response to the incom-
ing events. At a certain period of time, the contents of the
episodic memory is played back by reading out the events
to the working memory. The reinstatement occurs in the
period between different battles wherein one agent has just
been killed and started to respawn in another place. The
semantic memory then acquires the knowledge by learning
from the recalled events. In the experiment, only one type of
semantic memory about weapon effectiveness is learnt given
the distance towards the enemy. Whenever the value of the
reward field in the event vector is large enough to be consid-
ered as a successful killing (0.5 is the threshold), the values
of weapon selected, opponent distance, and reward (or the
effectiveness to kill) fields are fed and learnt by the semantic
memory.

Figure 5 shows the fusion ART network of the semantic
memory for weapon effectiveness used in the experiment.
The network has three input fields: the Weapon field repre-
senting the identity of the weapon (F a

1 ); the Distance field
representing the distance between the agent and its oppo-
nent at the time of shooting (F b

1 ); and the Effectiveness field
representing the chance to kill the enemy (F c

1 ). In the ex-
periment, the vigilance of the Weapon (ρa), Distance (ρb),
and Effectiveness (ρc) fields are 1.0, 0.9, and 0.8 respectively.
The learning rate βa, βb, and βc are 1.0, 0.1, and 0.2 respec-
tively. The agent reasoning system can use the knowledge
in the semantic memory by providing the current distance
to the opponent while setting up the effectiveness to maxi-
mum (the greatest chance of killing) as memory cues. The
retrieved values support the agent to decide which weapon
to select during the battle. If the cue is not recognized, a
random weapon is selected.

As a comparison, we also implement an agent with a stan-
dalone version of semantic memory as mentioned in the pre-
vious section. The agent, called AssocBot, learn the weapon
selection knowledge by directly associating weapon and en-
emy distance from the incoming events without consolidat-
ing episodic memory or x′ = M(ε). This direct semantic
memory only learn the event whenever the NPC shot hits

Table 1: Sample Rules Learnt in Semantic Memory

IF distance is not so far [1800 2099]
THEN ASSAULT_RIFLE effectiveness 0.07

IF distance is very near [300 599]
THEN ASSAULT_RIFLE effectiveness 0.048

IF distance is extremely near [0 299]
THEN SHOCK_RIFLE effectiveness 0.946

IF distance is very near [300 599]
THEN ROCKET_LAUNCHER effectiveness 0.932

weapon range categorization: extremely near:0-299;
very near:300-599;near:600-899;medium near:900-1199;
not so near:1200-1499;midrange:1500-1799;not so far:1800-2099;
medium far:2100-2399;far:2400-2699;very far:2700-2999;
exremely far:3000 or more

the opponent.
Table 1 illustrates sample learnt rules of weapon effective-

ness translated into symbolic forms. Each rule corresponds
to a category node in F2 layer of the semantic memory. The
generalization employed using Fuzzy operators makes it pos-
sible to represent the rule with a range of values like the
rule antecedents shown above. Table 1 also shows the sym-
bolic categorization of the distance range for interpreting
the rules. The experiment also uses forgetting in episodic
memory with Sinit

j , threshold (θs), and reinforcement rate
(rs) set to 0.5, 0.0001, and 0.5 respectively. To evaluate the
effect of forgetting, different decay rates (δs) in the events
field F2 are used: 0 (no forgetting), 0.005, 0.01, and 0.02.

4.1.3 Results

Figure 6: Memory usage for events, episodes, and
transferred semantic knowledge with different for-
getting decay rate during the game play

Experiments are conducted by letting RLBot, RLBot++
and the memory-based RLBot (called MemBot) with differ-
ent forgetting decay rates (δs=0.005, δs=0.01, and δs=0.02)
to individually play against AdvanceBot. In addition, the di-
rect semantic-memory-based RLBot (AssocBot) is also put
to the test. For practical reason, MemBot without forget-
ting (δs=0) is excluded from performance comparison as the
program overloads the system memory soon after the game
starts causing the system to halt and the agent refrains from
playing. A single experiment run consists of 25 games or tri-
als, which is counted whenever the agent kills or is killed by
another agent.
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Figure 6 shows the memory size taken up in the episodic
memory (in terms of the number of nodes in F2 and F3 of a
MemBot) and the number of nodes created in the semantic
memory with different δs in F2 sampled from a single run
against AdvanceBot. Without forgetting (δs = 0), the mem-
ory space is taken up rapidly into its limit after about three
trials. In contrast, the forgetting mechanism can make the
memory size converge and stabilize at certain points. Hence
the agent can always perform and learn continuously. It
is clearly shown that the larger the decay rate, the smaller
number of categories is produced in episodic memory. Inter-
estingly, a low semantic memory decay rate (e.g δs=0.005)
creates lesser categories comparing with those obtained with
higher rates (e.g δs=0.01 and δs=0.02).

Figure 7: Performance of RLBot, RLBot++, Mem-
Bot, AssocBot over 25 trials

Figure 7 plots the performance of RLBot, RLBot++, Mem-
Bot, AssocBot with different δs in terms of game score dif-
ferences against AdvanceBot averaged over four independent
runs. It shows that incorporating the proposed episodic
and semantic memory model improves the learning which
results in a much better performance than using the rein-
forcement learning alone (with random weapon selection).
This indicates that the semantic memory can learn useful
knowledge about weapon selection. It is also shown that
although AssocBot can learn and improve better than RL-
Bot, it is still marginally inferior than MemBot which ap-
plies consolidation but with the smallest forgetting decay
rate (δs = 0.005). It indicates that the consolidation can
be advantageous for a learning agent. The reason could be
that, with consolidation, the same categories might be acti-
vated or selected in semantic more than once as the result
of the playing back episodic memory. This reactivation of
certain categories shapes and reinforces knowledge in seman-
tic memory, whereas learning the semantic directly without
consolidation may produce over-generalization.

Surprisingly, the results also indicate that with a higher
forgetting rate (e.g δs=0.01 and δs=0.02), the performance
and learning efficiency of MemBot are better than those ob-
tained with the smaller one (δs=0.005) and can eventually
reach the performance using the optimized rules model. In
other words, forgetting less important things faster can make
learning better. One explanation of this beneficial effect of
forgetting is that events in the UT game related to weapon
use are noisy and full of inconsistencies. Thanks to forget-
ting, events that could impair the consolidated knowledge
are filtered out before being generalized in semantic mem-

ory. The semantic memory would thus end up with the
appropriate generalization and some specific but necessary
information.

4.2 Noisy Event Recognition Task
To validate our explanation about the significance of for-

getting in noisy and inconsistent environment, we conduct
another test to see how forgetting contributes to the retrieval
accuracy in a situation where some noise distribution is in-
troduced to the input events. The test is conducted off-line
based on the recorded events of selected UT game sessions.
The forgetting test is applied to episodic memory only.

4.2.1 Testing Configuration
The episodic memory model described above is made to

learn from different sets of events recorded from a UT game
session with the same event structure applied in the above
experiment. The original set of events consists of 77350
events and 1000 game sessions. We assume that, the mem-
ory learns a sequence of events as a single episode at the end
of each session. To simulate the noisy environment, differ-
ent sets of events are generated by introducing two different
rates of noises following a Gaussian distribution. Two sets
of events are used with 5% and 10% noise rates.

Episodic memory learns each noisy data set to generate
the representation of events and episodes in memory. The
evaluation is conducted to obtain the retrieval accuracy by
measuring the difference of the selected episodes with the
ones selected by episodic memory that has learnt the orig-
inal (without noise) data set. It should be noted that the
accuracy is not measured based on recall or reconstruction
of the original episodes but only based on the recognition of
the presented episodes.

The retrieval cues used in the evaluation are one-fifth por-
tions of the target episode taken from the original data set
(without noise). We compare the retrieval accuracy of both
episodic memory configurations that learn different data sets
with and without forgetting. The parameters of event level
forgetting used in the experiment are as follow: initial con-
fidence Sinit

j = 0.5, decay factor δs = 10−4, reinforcement
parameter rs = 0.5, and threshold θs = 0.1. For episode
level forgetting: the parameter values are initial confidence
Sinit

j = 0.5, decay factor δs = 0.008, reinforcement param-
eter rs = 0.5, and threshold θs = 0.1. The vigilance pa-
rameters ρ for events and episodes level are 0.5 and 0.95
respectively.

4.2.2 Results
Figure 8 clearly shows that, in a noisy condition, forget-

ting helps episodic memory to retrieve the correct episodes
despite some learnt events and episodes have been discarded
from memory. In both 5% and 10% level of noises, the per-
formance with forgetting is always superior to the configura-
tions without forgetting. The results support our hypothesis
that forgetting can contribute to the overall performance of
the agent when information perceived from the environment
are noisy and full of inconsistencies.

5. CONCLUSION
We have presented an explicit dual memory model for

agents by integrating two separate modules of episodic and
semantic memory. The stored contents of episodic memory
can be recalled to derive abstract knowledge and general
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Figure 8: Accuracies in retrieval with and without
forgetting in noisy environment

facts, that in turn are transferred to more permanent forms
in semantic memory. The episodic and semantic memory
modules are realized with fusion ART (adaptive resonance
theory) neural networks as two independent but connected
networks operating in different paces of learning. In line
with theories and findings in neuropsychology, the asym-
metrical rate of learning with some periodical consolidation
between the two enables the acquisition of useful knowledge
without risking to loose prior entries. A forgetting mecha-
nism is also applied to regulate the size of memory by re-
moving insignificant entries.

Our experiments confirm that an explicit episodic-semantic
memory model can improve the agent learning and perfor-
mance by acquiring useful knowledge for the task at hand
through memory consolidation, relieving the agent from con-
tinuously reasoning and processing the information for learn-
ing. It is also demonstrated that the forgetting regulates
the memory size while the performance is still improving.
Moreover, the experiment shows faster forgetting can result
in better learning. This indicates that the forgetting can
successfully filter insignificant entries while maintaining the
useful ones. The findings can inspire the exploration of for-
getting as a useful feature of intelligent agents and machine
learning systems in general.

In the future, we shall extend our model to learn more use-
ful and general purpose semantic structures from episodic
memory. We shall also extend our study to look at how
episodic memory model may contribute directly to the per-
formance of the agent rather than just as a transient struc-
ture. The forgetting mechanism can also be extended by ap-
plying different variations of memory strength functions to
include task-related aspects like rewards, risks, or penalties.
This may reveal the potential of the dual episodic-semantic
model as effective memory systems that continuously and
mutually process, learn, and forget information.
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ABSTRACT
Interactive multiagent decision making often requires to pre-
dict actions of other agents by solving their behavioral mod-
els from the perspective of the modeling agent. Unfortu-
nately, the general space of models in the absence of con-
straining assumptions tends to be very large thereby making
multiagent decision making intractable. One approach that
can reduce the model space is to cluster behaviorally equiv-
alent models that exhibit identical policies over the whole
planning horizon. Currently, the state of the art on identify-
ing equivalence of behavioral models compares partial policy
trees instead of entire trees. In this paper, we further im-
prove the use of partial trees for the identification purpose
and develop an incremental comparison strategy in order
to efficiently ascertain the model equivalence. We investi-
gate the improved approach in a well-defined probabilistic
graphical model for sequential multiagent decision making
- interactive dynamic influence diagrams, and evaluate its
performance over multiple problem domains.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
decision making, agent modeling, behavioral equivalence

1. INTRODUCTION
Decision making in interactive multiagent settings becomes

complicated mainly due to unknown actions of other agents

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

from the eyes of the modeling agent. A general solution is
to model other agents using a specific representation and
then solve the models to predict their actions. Unfortu-
nately, the model space ascribed to other agents is often
very large thereby making multiagent decision making in-
tractable. A line of research has exploited the concept of
behavioral equivalence (BE) to reduce the dimensionality of
the model space [2, 12, 13]. A pair of models are behav-
iorally equivalent if the models have identical solutions that
are normally represented as policy trees. We may consider to
group a set of BE models and choose a representative model
for each cluster. Clustering BE models to reduce the model
space will not compromise the solution optimality since it is
the prescriptive aspects of the models and not the descrip-
tive that matter to the modeling agent. Recently, a well-
defined probabilistic decision making framework - interac-
tive dynamic influence diagram (I-DID) [6] - has intensively
exploited BE models for achieving the solution scalability.

I-DIDs are probabilistic graphical models for sequential
decision making in uncertain multiagent settings. They gen-
eralize dynamic influence diagrams (DIDs) [14] to multia-
gent settings analogously to the way that interactive par-
tially observable Markov decision processes (I-POMDPs) [9]
generalize POMDPs. As we may expect, solving I-DIDs is
computationally very hard. This is because the state space
in I-DIDs includes the models of other agents in addition to
the traditional physical states. As the agents act, observe
and update beliefs, I-DIDs must track the evolution of the
models over time. The exponential growth in the number of
models over time also further contributes to the dimension-
ality of the state space. This is further complicated by the
nested nature of the state space.

Previous I-DID solutions, including both exact and ap-
proximate ones, mainly exploit the concept of BE to reduce
the dimensionality of the state space. For example, the pro-
posed technique in [5] updates only those models that lead
to behaviorally distinct models at the next time step. It
results in a minimal model space. A central component of
this technique is the way of identifying equivalence of behav-
ioral models ascribed to other agents. It firstly builds policy
trees for the associated models and then checks the equality
of every path in the entire trees. Since the size of the policy
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tree increases exponentially as the horizon increases, the BE
identification method becomes computationally intractable
in the case of large horizons. Additionally, based on this
identification technique, the current I-DID solution does not
scale desirably to large horizons because it groups only ex-
act BE models thereby still resulting in a large model space.
One leading solution to further reduce the model space is to
cluster models that are approximately BE.

Recently, one efficient way of identifying approximately
BE between models is to compare their partial policy trees
instead of entire ones [19]. The depth of the partial trees
is determined by a given approximate measure of BE. This
defines an approximately BE that could group more models
together resulting in less numbers of BE classes. However,
the proposed method still requires an expansion of a full size
of the partial policy tree that has a symmetric structure with
a uniform length on all paths. This may lead to a strict con-
dition on approximating BE while the identification using
partial trees is not executed efficiently.

In this paper, we present an improved version of using par-
tial trees to identify approximately BE models. We make a
general definition on a partial policy tree that allows dif-
ferent lengths for its paths. The maximum path length is
calculated according to a predefined value on measuring the
approximation between two BE models. The measurement
value quantifies the allowed divergence between updated be-
liefs in the policy trees. To efficiently use partial policy trees
to determine approximately BE, we propose an incremen-
tal identification approach: we expand the trees only when
comparing the updated beliefs at the leaf nodes is not suf-
ficient to ascertain the model equivalence. The comparison
expects to be terminated before it reaches the maximum
length for all paths. By doing this we maintain a rather
small set of policy paths instead of all full paths in the par-
tial trees. Specifically, the incremental method is applicable
even when the maximum length can’t be computed in some
problem domains.

Furthermore, we may group more approximately BE mod-
els by comparing only a subset of policies in the partial trees.
As the comparison of the policy paths may terminate before
it reaches their maximum lengths, the error is introduced
on predicting the future policies. We bound the prediction
error due to the incomplete search of the partial trees on
determining approximately BE. Finally, we evaluate the em-
pirical performance of the proposed approach in the context
of multiple problem domains, and demonstrate its scalability
on solving I-DIDs of significantly large horizons.

2. BACKGROUND: INTERACTIVE DID AND
BEHAVIORAL EQUIVALENCE

We start with a brief review on interactive dynamic in-
fluence diagram (I-DID) and then describe its solutions that
are developed using the technique on clustering behaviorally
equivalent models. More details could be found in this line
of research [6, 5, 19].

2.1 Interactive Dynamic Influence Diagram
I-DIDs extend probabilistic graphical models - dynamic

influence diagrams (DIDs) [14] - to represent how agents
make a sequence of rational decisions while interacting with
other agents over time in an uncertain environment. A
regular DID models sequential decision making for a sin-

gle agent by linking a set of chance, decision and utility
nodes over multiple time steps. To consider multiagent in-
teraction, I-DIDs introduce a new type of node called the
model node (hexagonal node, Mj,l−1, in Fig. 1) that repre-
sent how another agent j acts simultaneously when the mod-
eling agent i reasons its own decisions at level l. The model
node contains a set of j’s candidate models at level l − 1
ascribed by i . A link from the chance node S to the model
node Mj,l−1 represents agent i’s beliefs over j’s models.
Specifically, it is a probability distribution in the conditional
probability table (CPT) of the chance node Mod[Mj ] (in
Fig. 2). Each model, mj,l−1, could be either a level l − 1
I-DID or a DID at level 0. Model solutions are the pre-
dicted behavior of j and are encoded into a chance node
Aj through a dashed link, called a policy link. Connecting
Aj with other nodes in an I-DID structures how agent j’s
actions are engaged in i’s decision making process.

Expanding an I-DID involves the update of the model
node over time as indicated in the model update link - a dot-
ted arrow from M t

j,l−1 to M t+1
j,l−1 in Fig. 1. As agent j acts

and receives observations over time, its models are updated
to reflect their changed beliefs. For each model mt

j,l−1 at
time t, its optimal solutions may include all decision options
and agent j may receive any of the possible observations.
Consequently, the set of updated models at time t + 1 will
have up to |Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the

number of models at time step t, |Aj | and |Ωj | are the largest
spaces of actions and observations respectively. The models
differ in their initial beliefs updated using a configuration of
action and observation. The CPT of Mod[M t+1

j,l−1] specifies

the function, τ (bt
j,l−1, a

t
j , o

t+1
j , bt+1

j,l−1) which is 1 if the belief

bt
j,l−1 in the model mt

j,l−1 using the action at
j and observa-

tion ot+1
j updates to bt+1

j,l−1 in a model mt+1
j,l−1; otherwise it is

0. We may implement the model update link using standard
dependency links and chance nodes, as shown in Fig. 2, and
transform an I-DID into a regular DID. Consequently, any
DID technique can be exploited to solve an I-DID. Details
on algorithms for solving an I-DID are in [6].

S
t

Oi
t

Ai
t

Ri

S
t+1

Oi
t+1

Ai
t+1

Ri

Mj,l-1
t

Aj
t

Mj,l-1
t+1

Aj
t+1

Figure 1: A generic two time-slice level l I-DID for agent

i. Notice the dotted model update link that denotes the

update of the models of j and of the distribution over

the models, over time.

2.2 Behavioral Equivalence and Its Identifica-
tion

As we may expect, the complexity of solving I-DIDs is
mainly due to the growing space of possible models ascribed
to other agents. It is computationally impossible if all mod-
els are considered in the model node. As the modeling agent
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Figure 2: Implementation of the model update link us-

ing standard dependency link and chance nodes e.g. two

models, mt,1
j,l−1 and mt,2

j,l−1, are updated into four mod-

els (shown in bold) at time t + 1.

cares only about the predicted behavior, not the descriptive
models, of the other agent, those models that have identi-
cal solutions need not be distinguished on solving I-DIDs.
In other words, models that are BE [12] – whose behav-
ioral predictions for the other agent are identical – could be
pruned and a single representative model considered. Based
on this strategy on reducing the model space, a set of algo-
rithms have been developed with the purpose of scaling up
solutions to I-DIDs over a large number of horizons [18, 5,
19]. All of the algorithms need to cope with the problem of
identifying BE between a pair of models.

In the I-DID context, the other agent j’s model, mj,l−1

is a level l − 1 I-DID or a DID if l equals to 1. Without
loss of generality, we represent model solutions of T hori-

zons as a policy tree, denoted by OPT (mj,l−1)
△
= πT

mj,l−1

where OPT (·) denotes the solution of the model that forms
the argument. Two models, mj,l−1 and m̂j,l−1, are BE if
and only if πT

mj,l−1
= πT

m̂j,l−1
. The BE identification re-

quires to maintain and compare the entire policy trees each
of which contains (|Ωj |)T−1 possible paths. This is inefficient
on both computational time and memory. To resolve this in-
efficiency, Zeng et al. [19] recently propose one technique to
identify approximately BE by comparing depth-q (q ≤ T )
policies as well as updated beliefs, bq,k

mj,l−1
, at the leaf nodes

of the partial policy trees. Formally, let DKL[p||p′] denote
the KL divergence [11] between probability distributions, p
and p′. The technique defines an approximately BE for a
given measure ǫ (≥ 0).

Definition 1 ((ǫ, q)-BE). Two models of agent j, mj,l−1

and m̂j,l−1, are (ǫ,q)-BE, ǫ ≥ 0, q ≤ T , if their depth-q pol-
icy trees are identical, πq

mj,l−1
= πq

m̂j,l−1
, and if q < T then

beliefs at the leaves of the two policy trees diverge by at most
ǫ: max

k=1...|Ωj |q
DKL[bq,k

mj,l−1
||bq,k

m̂j,l−1
] ≤ ǫ.

More importantly, it is found that the depth q of the par-
tial tree can be determined given some ǫ. Eq. 1 shows the
way of computing q, where γF is a minimal mixing rate in
a stochastic transition and b0,k

mj,l−1
(b0,k

m̂j,l−1
)) initial beliefs

in j’s model mj,l−1 (m̂j,l−1). The computation is based on
the fact: the KL divergence between the distributions over
the same space contacts with the rate (1 − γF ) after one
transition [1]. In the I-DID context, γF is the minimum
probability mass on some state due to the transition, and
is computed by multiplying the state transition probability
and the likelihood of observation for j.

q = min



T, max{0, ⌊

ln ǫ

DKL(b
0,k
mj,l−1

||b0,k
m̂j,l−1

)

ln(1−γF )
⌋}



 (1)

Accordingly, the straightforward implementation for iden-
tifying (ǫ, q)-BE is to firstly build partial policy trees of
depth-q (line 2) and then check the equality between them (line
3). It is called as a plain algorithm for identifying (ǫ, q)-BE
of two models, ǫ-BE-P, as shown in Fig. 3.

ǫ-BE-P (Models, mj,l−1 and m̂j,l−1, Horizon T , and
parameters, γF and ǫ)

1. Compute q according to Eq. 1
2. Build depth-q partial trees: πq

mj,l−1
and πq

m̂j,l−1

3. If πq
mj,l−1

= πq
m̂j,l−1

4. Return True; Else, Return False

Figure 3: A plain algorithm, ǫ-BE-P, for approx-
imate BE identification by comparing the entire
depth-q trees.

3. INCREMENTAL BE IDENTIFICATION
As discussed above, identifying the behaviorally equiva-

lent models of the other agent j plays a central role in the I-
DID solutions. Using partial policy trees provides a promis-
ing direction to scale BE to large horizons since it groups
together more models that could be approximately BE and
simplifies the complexity of identifying BE by comparing
only a subset of the entire policy trees. A plain realization
of this strategy is to compare the partial policy trees that are
symmetric and are fully constructed using a uniform length
for all policy paths. We aim to further enhance the use of
partial policies to cluster more approximately BE models in
a more efficient way. We firstly define approximately BE
models using asymmetric policy trees and then propose an
incremental technique to identify the models.

3.1 Approximate BE
A q-length policy path is an action-observation sequence

describing what agent j acts and observes over q time steps.
It is denoted by, hq

j = {at
j , o

t+1
j }q

t=1, where oT+1
j is null for

a T (q ≤ T − 1) horizon planning problem. If at
j ∈ Aj

and ot+1
j ∈ Ωj , where Aj and Ωj are agent j’s action and

observation sets respectively, then a depth-q policy tree is
a set of all q-length paths: πq

j = Πq
1(Aj × Ωj) where oq

j

is null. As we may notice, the tree is symmetric since all
paths have the same length q. For an asymmetric policy
tree, we need to enumerate the set of policy paths and some
paths may differ in the length. We index paths of the same
length by imposing an order on the observations in the pol-
icy tree. Formally, let πqL,qU

j =< hq1,1
j , · · · , hqr ,k

j > be the
asymmetric policy tree of depth-(qL, qU ) where qL is the
minimum length, qL = Min(q1, · · · , qr), qU the maximum
one, qU = Max(q1, · · · , qr), and k an index number.

Notice that beliefs updated using an action-observation
sequence in a partially observable stochastic process is a
sufficient statistic for the history. Consequently, future poli-
cies are predicted only on the updated beliefs. If b0,k

j,l−1 is

1017



the initial belief in the model, mj,l−1, then let bq,k
j,l−1 be the

new belief on updating it using the q-length policy path
hq,k

j . The policies, ΠT
q+1(Aj × Ωj), succeeding to the path

hq,k
j can be predicted using the belief bq,k

j,l−1. Using the
partial trees and updated beliefs, we may re-write the full
policy tree as follows: πT

mj,l−1
= < πqL,qU

mj,l−1 , BqL,qU
mj,l−1 >=<

(hq1,1
j , bq1,1

mj,l−1
), · · · , (hqr ,k

j , bqr ,k
mj,l−1

) >, where BqL,qU
mj,l−1 is the

set of updated beliefs. Consequently, comparing a small
number of policy paths and beliefs is sufficient to identify
BE. We modify Def. 1 to formulate an approximately BE,
called (ǫ, qL, qU )-BE, between models as follows.

Definition 2 ((ǫ, qL, qU )-BE). Two models of agent j,
mj,l−1 and m̂j,l−1, are (ǫ, qL, qU )-BE, ǫ ≥ 0, qU ≤ T , if their
depth-(qL, qU ) policy trees are identical, πqL,qU

mj,l−1 = πqL,qU
m̂j,l−1

,

and if qU < T then updated beliefs for the two policy trees
diverge by at most ǫ:

max
(q1,1),··· ,(qr ,k)

DKL[bqr ,k
mj,l−1

||bqr ,k
m̂j,l−1

] ≤ ǫ.

Intuitively, two models are (ǫ, qL, qU )-BE if they have iden-
tical solutions of depth-(qL, qU ) trees and the divergence
of pairs of the updated beliefs at the leaves of the depth-
(qL, qU ) tree is not larger than ǫ. Two (ǫ, qL, qU )-BE models
become exact BE as ǫ approaches zero. If the partial tree is
symmetric in the setting of qL = qU , (ǫ, qL, qU )-BE is equiv-
alent to the notion of approximately BE in Def. 1. Hence
(ǫ, qL, qU )-BE provides a general definition of approximately
BE using asymmetric partial trees. The remaining question
is how to compute values for the parameters, qL and qU ,
given some ǫ.

As mentioned in Sec. 2.2, the mixing rate is computed as
the minimal one for the transitions of all possible action-
observation pairs. Eq. 1 provides a principled way of deter-
mining the maximum length qU for all policy paths given the
amount of approximation ǫ. Meanwhile, we observe that the
divergence of updated beliefs using some paths may turn out
to be much less than ǫ before the paths are fully extended
into the length qU . This may occur due to the fact that the
KL divergence of belief distributions contracts monotoni-
cally over time [1]. The minimum length qL is the earliest
time when the belief divergence is known to be smaller than
ǫ. Its value is found during the BE identification.

3.2 Incremental Comparison
(ǫ, qL, qU )-BE provides a novel way to identify approxi-

mately BE and compares partial trees with an asymmetric
structure. This differs from (ǫ, q)-BE that needs to com-
pare a full size of partial trees. Due to the unknown value
for the minimum length, the size of asymmetric trees can’t
be decided given a single input of approximation measure
ǫ. However, we are able to bound the tree size using the
maximum path length, which avoids an arbitrary expansion
on the tree. For the purpose of identifying (ǫ, qL, qU )-BE,
we propose an incremental technique below.

We compare both partial trees and updated beliefs at the
leaves of the trees when we expand the policy tree at every
time step. We terminate the comparison once there is any
unmatched behavior in the paths; otherwise, we expand the
trees until the depth of the partial trees reaches the max-
imum value qU . In addition, we do not further expand a
partial tree at the end of a policy path if the path is identi-
cal and the divergence of updated beliefs is not larger than
ǫ. This is because the equivalence of future behavior can

be sufficiently determined without checking the unexpanded
partial trees. The qL value is the minimum length of all
paths when the comparison terminates. The procedure is an
incremental policy comparison for the (ǫ, qL, qU )-BE identi-
fication, called ǫ-BE-I. We illustrate the procedure using an
example in Fig. 4. The example is constructed in the T iger
problem domain - well studied in the POMDP literature.
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Figure 4: ǫ-BE-I, (a)-(c), and ǫ-BE-P, (d), for
(ǫ, qL, qU )-BE identification.

Example: We are checking whether two models of agent
j, m1 and m2, are (ǫ, qL, qU )-BE given the approximation
amount ǫ. Assuming that b0

1 and b0
2 are their initial beliefs

and the mixing rate γF is computed in the domain, we cal-
culate the qU value 1 in Eq. 1 that will serve as the upper
bound for iterating the comparison. Since DKL(b0

1||b0
2) is

larger than ǫ, we need to build the root nodes for the policy
trees that are solutions of two models respectively. We then
update their initial beliefs into new ones given possible ob-
servations (GL and GR) because both trees have identical
actions L at time t=1 (Fig. 4(a)). We compute the diver-
gences of each pair of new beliefs given the same observa-
tion like DKL(b1,1

1 ||b1,1
2 ) and DKL(b1,2

1 ||b1,2
2 ). Suppose that

DKL(b1,1
1 ||b1,1

2 ) is still larger than ǫ while DKL(b1,2
1 ||b1,2

2 ) is
less than ǫ. We must expand the policy tree following the
path {L, GL}, but will not continue the expansion in the
other path {L, GR} at t=2 (Fig. 4(b)). We say that this
path is blocked (denoted by ×) and will not be considered
for a further expansion. The minimum path length qL is now
found and is equal to 1. We compare the policies following
the path {L, GL}, and update their beliefs if the policies are
equivalent at t=2. We repeat the same procedure at t=3
and so on until either the maximal depth qU is approached
or no policy paths can be further expanded (Fig. 4(c)). The
incremental procedure may generate a small size of the par-
tial policy trees for identifying the equivalence between m1

and m2. For the same identification purpose, the previous
algorithm, ǫ-BE-P, needs to construct and compare the par-
tial policy trees that expand all paths to the maximal length

1We may predefine the qU value if it can’t be computed in
Eq. 1

1018



qU (Fig. 4(d)).
In addition, we observe that the depth value q can’t be

calculated in Eq. 1 if the mixing rate γF becomes zero. To
run the ǫ-BE-P algorithm, we need to specify the q value
even given the known approximation amount ǫ. This results
in a partial policy tree that is arbitrarily large. We need to
check the equality for all paths in the partial tree for the
identification purpose. On the other hand, the incremental
algorithm, ǫ-BE-I, employs ǫ as the threshold value to prune
the partial trees while it performs the path comparison and
expands the trees. The predefined depth qU acts as an up-
per bound value to terminate the identification process if it
is necessary. In summary, the incremental policy compari-
son algorithm becomes a universal approach for identifying
approximately BE models.

3.3 Algorithm
We present the incremental policy comparison algorithm

for identifying (ǫ, qL, qU )-BE between two models in Fig. 5.
As mentioned in the previous section, the algorithm ter-
minates the identification process when any of the follow-
ing conditions is met: (a) Initial beliefs diverge at most
ǫ and (ǫ, qL, qU )-BE of two models are immediately ascer-
tained (line 6); (b) Any unmatched policy is detected and
the models are not (ǫ, qL, qU )-BE (line 11); (c) (ǫ, qL, qU )-BE
is confirmed for two models when either no path can be fur-
ther expanded or the depth qU is approached (lines 12-14).
By doing this, we can avoid the expansion of entire depth-
qU trees while achieving the identification of (ǫ, qL, qU )-BE
between two models.

ǫ-BE-I (Models, mj,l−1 and m̂j,l−1, Horizon T , and
parameters, γF and ǫ)

1. Case γF ∈ (0, 1]: Compute qU according to Eq. 1
2. Case γF =0: Specify qU ≤ T
3. For t=1 to qU do

4. If DKL(bt−1,k
mj,l−1

||bt−1,k
m̂j,l−1

) ≤ ǫ

5. Case t >1: Block the path ht,k
mj,l−1

(ht,k
m̂j,l−1

)

6. Case t=1: Return True and Break
7. else

8. If ht,k
mj,l−1

= ht,k
m̂j,l−1

9. Case t<T : Expand the t-length paths and

compute the updated belief bt,k
mj,l−1

(bt,k
m̂j,l−1

) given

the path ht,k
mj,l−1

(ht,k
m̂j,l−1

)

10. Case t=T : Return True
11. else Return False and Break

12. If All paths ht,k
mj,l−1

(ht,k
m̂j,l−1

) are blocked

13. Return True
14. Return True

Figure 5: An incremental algorithm, ǫ-BE-I, for de-
termining the equivalence of two models given the
approximate amount ǫ.

ǫ-BE-I differs from ǫ-BE-P since it compares only a sub-
set of depth-qU trees. It blocks the path hqr ,k

mj,l−1
(hqr ,k

m̂j,l−1
)

for a further comparison when the divergence of beliefs,
DKL(bqr ,k

mj,l−1
||bqr ,k

m̂j,l−1
), is smaller than ǫ at time step qr. No-

tice that the partial trees succeeding to hqr ,k
mj,l−1

(hqr ,k
m̂j,l−1

)

may not be identical although the updated beliefs have a

small amount of divergence. Consequently, ǫ-BE-I may re-
sult in grouping more approximately BE than ǫ-BE-P.

4. COMPUTATIONAL SAVINGS AND ER-
ROR BOUND

Algorithms for determining (ǫ, qL, qU )-BE of a pair of mod-
els mainly perform the path comparison in policy trees. The
complexity is proportional to the number of comparisons re-
quired to approximately decide the equivalence. For the
ǫ-BE-P algorithm, we need to compare every path in partial
trees of depth-q. Since there are a maximum of |Ωj |qU −1

leaf nodes in a depth-qU tree, the complexity of ǫ-BE-P is
O(|Mj,l−1|2|Ωj |qU ) where |Mj,l−1| is the number of can-
didate models. On the other hand, the ǫ-BE-I algorithm
prunes the paths while it traverses a depth-qU tree from
the root. This may result in an asymmetric partial tree
where the number of leaf nodes is N where N ≪ |Ωj |qU −1.
Meanwhile the ǫ-BE-I algorithm needs to compare beliefs for
which the number is also bounded by N . Consequently, the
complexity of ǫ-BE-I becomes O(2|Mj,l−1|2N). In addition,
ǫ-BE-I involves the belief calculation in the procedure that
costs little on propagating beliefs in solved models.

Both algorithms preclude storing entire policy trees that
contain (|Ωj |)T−1 possible paths. For the ǫ-BE-P algorithm,
we maintain at most 2(|Ωj |)qU −1 paths (qU ≤ T ) at each
time step when a pair of models are under the identification.
For the ǫ-BE-I algorithm, we need to store only 2N paths
each of which has the length bounded by qU . Hence ǫ-BE-I
achieves much better memory efficiency compared to ǫ-BE-
P.

We analyze the error in the value of j’s predicted behavior.
An error occurs when a behaviorally distinct model, mj,l−1,
is grouped with the model, m̂j,l−1, given an approximation
amount ǫ. Let mj,l−1 be the model associated with m̂j,l−1,
resulting in the worst error. Let αT and α̂T be the exact
entire policy trees obtained by solving the two models, re-
spectively. Then, the error is: ρ = |αT ·b0

mj,l−1
−αT ·b0

m̂j,l−1)|.
As ǫ-BE-I starts to prune the path at the length qL. The
error in the worst case becomes:

ρ = |αT−qL · b
qL
mj,l−1

− αT−qL · b
qL
m̂j,l−1

|
= |αT−qL · b

qL
mj,l−1

+ α̂T−qL · b
qL
mj,l−1

− α̂T−qL · b
qL
mj,l−1

−αT−qL · b
qL
m̂j,l−1

| (add zero)

≤ |αT−qL · b
qL
mj,l−1

+ α̂T−qL · b
qL
m̂j,l−1

− α̂T−qL · b
qL
mj,l−1

−αT−qL · b
qL
m̂j,l−1

| (α̂T−qL · b
qL
m̂j,l−1

≥ α̂T−qL · b
qL
mj,l−1

)

= |(αT−qL − α̂T−qL ) · (b
qL
mj,l−1

− b
qL
m̂j,l−1

)|
(Hölder’s ineq.)

≤ |αT−qL − α̂T−qL |∞ · |(bqL
mj,l−1

− b
qL
m̂j,l−1

)|1
(Pinsker’s ineq.)

≤ |αT−qL − α̂T−qL |∞ · 2DKL(b
qL
mj,l−1

||bqL
m̂j,l−1

)

≤ (Rmax
j − Rmin

j )(T − qL) · 2ǫ (by definition)

Here, Rmax
j and Rmin

j are the maximum and minimum
rewards of j, respectively. This error bound is not tight as
that of ǫ-BE-P which is (Rmax

j −Rmin
j )(T−qU )·2ǫ when qL <

qU . The gap is due to the utilization of ǫ on approximating
BE at different depths as previously mentioned. We expect
that the subtle difference has a limited impact on the I-DID
solutions by clustering approximately BE models.
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Figure 6: Performance profile obtained by solving level 1 I-DIDs for the different problem domains using ǫ-BE-I,

ǫ-BE-P and DMU. (a) Average rewards; (b) Efficiency comparison; and (c) Reduced model space.

5. EXPERIMENTAL RESULTS
We implemented ǫ-BE-I algorithm for determining (ǫ, qL, qU )-

BE of models and use it to group models into a class. We
then select one representative model for each class while
pruning others, similarly to using exact BE. We embed the
procedure into the algorithm for solving I-DIDs. We also
compare it with ǫ-BE-P algorithm (letting q=qU=qL) which
serves as a baseline on approximating (ǫ, qL, qU )-BE. In ad-
dition, we compare both algorithms with one exact BE ap-
proach, called discriminative model update (DMU), previ-
ously proposed to solve I-DIDs [5]. DMU approach clus-
ters BE models by comparing their entire policy trees and
updates only those models that will be behaviorally dis-
tinct from existing ones. We evaluate all of these three ap-
proaches (namely ǫ-BE-I, ǫ-BE-P and DMU) when they are
used to solve level 1 I-DIDs of increasing horizons over four
problem domains. Relevant information on domain dimen-
sions and minimal mixing rates are listed in Table 1. Note
that UAV5 - an extended version of the two-agent unmanned
aerial vehicle (UAV) problem [4, 19] - is the largest domain
so far used to evaluate the I-DIDs.

We formulate level 1 I-DIDs of increasing horizons for the
problems and solve them using the three approaches. We
show that the quality of the policies generated by ǫ-BE-I ap-
proaches that of ǫ-BE-P given the same approximation mea-
sure. Meanwhile, the solution quality generated by both ap-
proximate techniques converges to that of the exact DMU as

Domains γF |S| |Ai| |Aj | |Ωi| |Ωj |
Tiger [9] 0 2 3 3 6 3

UAV3 [4, 19] 0.2 25 5 5 4 5
Concert [19] 0.5 2 3 3 4 2

UAV5 0.2 81 5 5 4 5

Table 1: Domains used to evaluate algorithms for solv-

ing I-DIDs.

ǫ decreases (with the corresponding increase in qU ). We also
show that in most cases ǫ-BE-I is able to identify approxi-
mately BE models without constructing the partial trees of
a full size. This verifies the utility of using the incremental
technique for the BE identification purpose. In addition, we
demonstrate that ǫ-BE-I further reduces the model space
and performs better than ǫ-BE-P on the issue of solution
scalability.

In Fig. 6(a), we report the average rewards gathered by
simulating the I-DID solutions over 1,000 runs. Each run
of simulation is executed by randomly picking up the true
model of j according to i’s belief. We used a horizon of
10 for the Concert domain, 8 for the Tiger and 6 for the
UAV3. For a given number of initial models Mj,0, ǫ-BE-I
obtains similar average rewards in comparison to ǫ-BE-P. As
expected, their solutions improve and converge toward the
exact method DMU as ǫ reduces.
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Figure 7: Likelihood that ǫ-BE-I terminates at qL in the setting of (a) qU=5; (b) qU=6; and (c) qU=4.

Fig. 6(b) confirms our intuition on the favorable efficiency
of ǫ-BE-I technique. For a given allocated time, ǫ-BE-I ob-
tains larger rewards than other approaches including both
DMU and ǫ-BE-P. As we show in Fig. 6(c), the number of
models in a model node drops when ǫ-BE-I is employed to
prune the model space. This is because ǫ-BE-I clusters more
approximately BE models using a small set of policies.

In Fig. 7, we show the likelihood that ǫ-BE-I terminates
the comparison before reaching the maximum length, qU ,
of all paths in the partial policy trees. We compute this
likelihood as the percentage of occurrences for each qL value
under a given ǫ. The cases, qL < qU , are often observed
to terminate the policy comparison especially for a small ǫ
value (with the corresponding large qU value).

In Table 2, we show the running times of three techniques
for solving problems of increasing horizons. In obtaining
the run times for the approximations, we adjusted the cor-
responding parameters so that the quality of the solution by
each approach was similar to each other. ǫ-BE-I achieves
the reduced running times and improved scalability over all
domains. In particular, for the large UAV5 domain, we were
able to solve the I-DIDs for more than 8 time steps.

Level 1 T Time (s)
DMU ǫ-BE-I ǫ-BE-P

Concert 6 0.29 0.11 0.31
10 2.3 0.22 1.9
25 * 9.1 13.1

Tiger 6 0.34 0.16 0.21
8 1.3 0.21 0.37
20 * 2.49 3.1

UAV3 6 13.1 8.1 8.9
8 161 19 27
10 * 48 55
20 * 76 98
25 * 132 *

UAV5 4 19.3 7.9 9.8
6 * 16 31
8 * 60 *

Table 2: ǫ-BE-I scales better than other approaches.

Experiments were run on a Linux platform with Intel

Core2 2.4GHz with 4GB of memory.

6. RELATED WORK
I-DIDs [6] emerge as an important framework on modeling

multiagent decision making problems. Models for the similar
purpose include multiagent influence diagrams (MAIDs) [10],
and networks of influence diagrams (NIDs) [7, 8]. These for-
malisms structure the complex problem domains by decom-

posing the situation into chance and decision variables, and
the dependencies between the variables. MAIDs objectively
analyze the game, efficiently computing the Nash equilib-
rium profile by exploiting the independence structure. NIDs
extend MAIDs to include agents’ uncertainty over the game
being played and over models of the other agents. Both
MAIDs and NIDs provide an analysis of the game from an
external viewpoint, and adopt Nash equilibrium as the so-
lution concept. However, equilibrium is not unique – there
could be many joint solutions in equilibrium with no clear
way to choose between them – and incomplete – the solu-
tion does not prescribe a policy when the policy followed by
the other agent is not part of the equilibrium. Specifically,
MAIDs do not allow us to define a distribution over non-
equilibrium behaviors of other agents. Furthermore, their
applicability is limited to static single play games. Interac-
tions are more complex when they are extended over time,
where predictions about others’ future actions must be made
using models that change as the agents act and observe. I-
DIDs seek to address this gap by offering an intuitive way
to extend sequential decision making as formalized by DIDs
to multiagent settings.

As we mentioned before, the complexity of I-DIDs is mainly
due to the exponential growth in the candidate models over
time. Using the insight that models whose beliefs are spa-
tially close are likely to be behaviorally equivalent, Zeng
et al. [18] employed a k-means approach to cluster models
together and select K representative models in the model
node at each time step. This approach needs to expand all
models before clustering is applied, which consumes a large
amount of memory on storing the models. A recent ap-
proach [5] preemptively avoids expanding models that will
turn out to be behaviorally equivalent to others in the new
time step. By discriminating between model updates, the
approach generates a minimal set of models in each non-
initial model node. This line of work exploits the concept
of BE, introduced earlier [13, 12]. The developed method
quickly turns to be inefficient since it requires to maintain
and compare the entire policy trees for identifying BE mod-
els. In parallel, Zeng et al. [15] attempted to cluster models
using K most probable paths in the policy tree. However,
the proposed technique is facing an unsolved problem on
computing path probabilities. Similarly, the attempt using
subjectivly equivalent models to cluster models requires the
prediction on behavior of the modeling agent [3]. Another
efficient way to reduce the model space is achieved by clus-
tering models that are actionally equivalent [16]. Recently,
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Zeng and Doshi [17] compare various I-DID solutions and
demonstrate their utilities in more problem domains.

7. DISCUSSION
I-DIDs provide a graphical formalism for modeling the

sequential decision making of an agent in an uncertain mul-
tiagent setting. The increased complexity of I-DIDs is pre-
dominantly due to the large space of candidate models and
its exponential growth over time. Previous solutions to I-
DIDs limit the model growth mainly by clustering BE mod-
els at each step. We presented an improved version of using
partial policies to identify BE models. We defined approxi-
mately BE based on a partial policy tree that has an asym-
metric structure and allows different lengths for its paths.
Our definition avoids building a full size of the partial trees
and clusters more models that are approximately BE. We
showed that our new approach gains much computational
savings and achieves better scalability over the state of the
art approach. As we note that our approach is developed
based on the contraction property of problem domains, we
may further refine the approach by exploiting the relevant
property.

8. ACKNOWLEDGMENT

The authors acknowledge the supports from NSFC (#60974089
and #60975052). Yifeng thanks Dr. Prashant Doshi (in the
University of Georgia) for useful comments on the first draft.

9. REFERENCES
[1] X. Boyen and D. Koller. Tractable inference for

complex stochastic processes. In The 14th Conference
on Uncertainty in Artificial Intelligence(UAI), pages
33–42, 1998.

[2] E. Dekel, D. Fudenberg, and S. Morris. Topologies on
types. Theoretical Economics, 1:275–309, 2006.

[3] P. Doshi, M. Chandrasekaran, and Y. Zeng.
Epsilon-subject equivalence of models for interactive
dynamic influence diagrams. In WIC/ACM/IEEE
Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), pages 165–172, 2010.

[4] P. Doshi and E. Sonu. Gatac: A scalable and realistic
testbed for multiagent decision making. In AAMAS
2010 Workshop on Multi-agent Sequential
Decision-Making in Uncertain Domains, pages 64–68,
2010.

[5] P. Doshi and Y. Zeng. Improved approximation of
interactive dynamic influence diagrams using
discriminative model updates. In International
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 907–914, 2009.

[6] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for
interactive pomdps: Representations and solutions.
Journal of Autonomous Agents and Multiagent
Systems (JAAMAS), 18(3):376–416, 2009.

[7] K. Gal and A. Pfeffer. Networks of influence diagrams:
A formalism for representing agents’ beliefs and
decision-making processes. Journal of Artificial
Intelligence Research, 33:109–147, 2008.

[8] Y. Gal and A. Pfeffer. A language for modeling
agent’s decision-making processes in games. In
Autonomous Agents and Multi-Agents Systems
Conference (AAMAS), pages 265–272, 2003.

[9] P. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multiagent settings. Journal of
Artificial Intelligence Research (JAIR), 24:49–79,
2005.

[10] D. Koller and B. Milch. Multi-agent influence
diagrams for representing and solving games. In
International Joint Conference on Artificial
Intelligence (IJCAI), pages 1027–1034, 2001.

[11] S. Kullback and R. A. Leibler. On information and
sufficiency. Ann. Math. Statist., 22(1):79–86, 1951.

[12] D. Pynadath and S. Marsella. Minimal mental models.
In Twenty-Second Conference on Artificial Intelligence
(AAAI), pages 1038–1044, Vancouver, Canada, 2007.

[13] B. Rathnas., P. Doshi, and P. J. Gmytrasiewicz. Exact
solutions to interactive pomdps using behavioral
equivalence. In Autonomous Agents and Multi-Agents
Systems Conference (AAMAS), pages 1025–1032,
2006.

[14] J. A. Tatman and R. D. Shachter. Dynamic
programming and influence diagrams. IEEE
Transactions on Systems, Man, and Cybernetics,
20(2):365–379, 1990.

[15] Y. Zeng, Y. Chen, and P. Doshi. Approximating
behavioral equivalence of models using top-k policy
paths. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages
1229–1230, 2011.

[16] Y. Zeng and P. Doshi. Speeding up exact solutions of
interactive influence diagrams using action
equivalence. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 1996–2001, 2009.

[17] Y. Zeng and P. Doshi. Exploiting model equivalences
for solving interactive dynamic influence diagrams.
Journal of Artificial Intelligence Research (JAIR),
43:211–255, 2012.

[18] Y. Zeng, P. Doshi, and Q. Chen. Approximate
solutions of interactive dynamic influence diagrams
using model clustering. In Twenty Second Conference
on Artificial Intelligence (AAAI), pages 782–787,
Vancouver, Canada, 2007.

[19] Y. Zeng, P. Doshi, Y. Pan, H. Mao,
M. Chandrasekaran, and J. Luo. Utilizing partial
policies for identifying equivalence of behavioral
models. In The Twenty-Fifth Conference on Artificial
Intelligencee(AAAI), pages 1083–1088, 2011.

1022



Learning and Reasoning about Norms
using Neural-Symbolic Systems

Guido Boella1, Silvano Colombo Tosatto1,2, Artur D’Avila Garcez3,

Valerio Genovese1,2, Alan Perotti1, and Leendert van der Torre2

1University of Turin, Italy. {guido, genovese, perotti}@di.unito.it

2CSC, University of Luxembourg. {silvano.colombotosatto, leon.vandertorre}@uni.lu

3City University London. aag@soi.city.ac.uk

ABSTRACT
In this paper we provide a neural-symbolic framework to
model, reason about and learn norms in multi-agent systems.
To this purpose, we define a fragment of Input/Output (I/O)
logic that can be embedded into a neural network. We ex-
tend d’Avila Garcez et al. Connectionist Inductive Learning
and Logic Programming System (CILP) to translate an I/O
logic theory into a Neural Network (NN) that can be trained
further with examples: we call this new system Normative-
CILP (N-CILP). We then present a new algorithm to han-
dle priorities between rules in order to cope with norma-
tive issues like Contrary to Duty (CTD), Priorities, Excep-
tions and Permissions. We illustrate the applicability of the
framework on a case study based on RoboCup rules: within
this working example, we compare the learning capacity of a
network built with N-CILP with a non symbolic neural net-
work, we explore how the initial knowledge impacts on the
overall performance, and we test the NN capacity of learn-
ing norms, generalizing new Contrary to Duty rules from
examples.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

General Terms
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systems (MAS). An open problem in AI is how to equip
agents to deal effectively with norms that change over time
[3], either due to explicit changes made by legislators or due
to different interpretations of the law by judges and referees.

In this paper we combine Input/Output (I/O) logic [11]
with the neural-symbolic paradigm [7] in order to address
the following research question:

- How to define a formal framework for reasoning and learn-
ing about norms in a dynamic environment?

Input/Output (I/O) logic [11] is a symbolic formalism
used to represent and reason about norms. I/O logic pro-
vides some reasoning mechanisms to produce outputs from
the inputs, and each of them bears a specific set of features.

The neural-symbolic paradigm of [7] embeds symbolic logic
into neural networks. Neural-symbolic systems provide trans-
lation algorithms from symbolic logic to neural networks and
vice-versa. The resulting network is used for robust learn-
ing and computation, while the logic provides (i) background
knowledge to help learning (as the logic is translated into the
NN) and (ii) high-level explanations for the network models
(when the trained NN is translated into the logic).CILP is
an advanced neural-symbolic systems and it has been shown
an effective tool in exploiting symbolic background knowl-
edge (i.e. on incomplete domain theory) with learning from
examples.

We study how to represent I/O within the computational
model of neural networks (NNs). We choose I/O logic be-
cause it presents a strong similarity with NNs: both have a
separate specification of inputs and outputs. We exploit this
analogy to encode symbolic knowledge (expressed in terms
of I/O rules) into NNs, and then we use the NN to reason
and learn new norms in a dynamic environment.
Hence two Research sub-Questions are:

- How to represent I/O logic rules in neural networks?
- How to refine normative rules and learn new ones?

Below, we define the language used to express norms and
we present an extension of the“Connectionist Inductive Learn-
ing and Logic Programming” system (CILP) [7], called
Normative-CILP (N-CILP).
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With the exception of game-theoretic approaches [17, 5,
18], few machine learning techniques have been applied to
tackle open problems like learning and/or revising new norms
in open and dynamic environments.

We show how to use NNs to cope with some of the un-
derpinnings of normative reasoning: permissions, contrary
to duties (CTD) and exceptions by using the concept of pri-
orities between the rules.

We also tested our tool on a case study based on the
RoboCup competition, representing a significant set of the
rules of the game from [13] in I/O logic and then studying
the capability of the tool in learning new norms and per-
forming reasoning. The results show that the I/O encoding
improves the capacity of the NN of learning norms.

The contribution of this work is in studying and combin-
ing symbolic and sub-symbolic representations to provide
a flexible and effective methodology for learning, normative
reasoning and specification in MAS. In this process, we have
also made a contribution to the area of neural-symbolic inte-
gration: by studying neural-symbolic systems from the point
of view of normative reasoning we have been able to propose
a new translation of priorities into object-level negation.
From a theoretical perspective, we are interested in study-
ing the similarities between I/O logic and neural networks.
From a practical point of view, it is hoped that the network
model will lead directly to an efficient hardware implemen-
tation. The normative CILP tool has been implemented
in Java and is available for download (together with the
dataset) at http://www.di.unito.it/∼genovese/tools/NNSS.zip.
The experiments reported here indicate how promising is
this line of research.

The paper is structured as follows: In section 2 we de-
scribe the relevant background about the neural-symbolic
approach, I/O logic and normative agents. In Section 3 we
introduce our approach and a motivating example. In Sec-
tion 4 we show how to encode I/O logic into a neural-network
using the Normative-CILP translation algorithm. In Sec-
tion 5 we present and discuss the results obtained from the
experiments. Section 6 concludes the paper and discusses
directions for future work.

2. RELATED WORK

2.1 Neural-Symbolic approach
The main purpose of a neural-symbolic approach is to

bring together connectionist and symbolic approaches [7].
In this way it is possible to exploit the strengths of both
approaches and hopefully avoid their drawbacks. With such
approach we are able to formally represent the norms gov-
erning the normative system in a neural network. In addi-
tion we are also capable of exploiting the instance learning
capacities of neural networks and their massive parallel com-
putation.

Algorithms like KBANN [19] and CILP [8] provide a trans-
lation of a symbolic representation of knowledge into a neu-
ral network. The advantage of CILP is that it uses a prov-
ably sound translation into single-hidden layer networks with
sigmoid activation functions. This allows the efficient use of
backpropagation for learning. In what follows, we use a vari-
ant of CILP since we are interested in the integration of
reasoning and learning capabilities.

2.2 I/O Logic
To describe the norms regulating the system we use I/O

Logic [11]. Rules used in I/O logic are defined as couples
R1 = (A, B), where both A and B represent sets of lit-
erals that can be in disjunctive or conjunctive form. A is
called the antecedent of the rule, while B is the consequent:
A must hold for the rule to be activated, and B is conse-
quently activated. I/O logic provides some reasoning mecha-
nisms to produce outputs from the inputs, and each of them
bears a specific set of features. The simple-minded output
does not satisfy the principle of identity, but it allows the
strengthening input, conjoining output and weakening out-
put features. The basic output and reusable output mecha-
nisms allow the additional features of input disjunction and
reusability, while the reusable basic output approach satisfies
both of the above. A detailed description of the I/O logic
mechanisms and features can be found in [11], [12].

Boella et al. [1] described how a connectionist approach
like neural networks can embed the different features of I/O
logic: within this perspective, it is possible to use translation
algorithms (like KBANN or CILP) to reproduce the mecha-
nisms of I/O logic. In many examples of this paper, since we
are dealing with normative reasoning, the consequents of the
rules will be expressed using the O operator: for instance,
(getF ine, O(payF ine)) represent the norm If you are given
a fine, you ought to pay it.

2.3 Normative agent
In this paper we focus on modeling and reasoning about

what a normative agent [2] is obliged or allowed to do in
given states of the surrounding environment. Normative rea-
soning requires agents to deal with specific problems such as
dilemmas, exceptions and contrary to duties.

Dilemmas: two obligations are said to be contradictory
when they can not be accomplished together. A possible
example of contradictory normas is the dilemma. This usu-
ally happens when an agent is subject to different normative
codes (i.e. when an agent has to follow the moral and the
legal code). Anyway it is outside the scope of this paper to
discuss about how to overcome dilemmas, as we are focusing
on how to use priorities to regulate exceptions and contrary
to duties.

Priorities are used to give a partial ordering between
norms. This is useful when, given two applicable norms, we
always want one to preempt the other, for instance when
dealing with exceptions.

We encode priorities among the norms by using negation
as failure (∼). Given two norms R1 = (A1 ∧ A3,O(β1))
and R2 = (A2 ∧A3,O(β2)) and a priority relation R1 � R2

between them (such that the first norm has priority), we
encode the priority relation by modifying the antecedent of
the norm with lower priority. Specifically, we include in the
antecedent of the norm with the lower priority the negation
as failure of the literals in the antecedent of the higher pri-
oritized norm that does not appear in the antecedent of the
lower priority norm. We do so in order to ensure that, in
a situation where both (unmodified) norms would be appli-
cable, the newly inserted negation-as-failure atoms in the
antecedent of the modified lower-prioritize rule evaluate to
false and make the whole rule not applicable. Considering
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for example the two rules given above, we have to modify
R2. The only atom appearing in R1’s antecedent and not in
R2’s antecedent is A1, and therefore we introduce ∼ A1 as
a conjunct in R2’s antecedent. After embedding the prior-
ity, the second rule becomes R�2 = (A2∧ ∼ A1 ∧A3,O(β2)).
Note that in a potentially conflicting situation when A1, A2

and A3 hold, R1 and R2 are applicable, but R�2 is not, thus
avoiding the conflict.

Exceptions occur when, due to particular circumstances,
a norm should be followed instead of another one. Suppose
that a norm R1 = (α,O(β)) should be applied in all the
situations containing α. For exceptional situations we con-
sider an additional norm R2 = (α ∧ γ,O(¬β)). The latter
norm should be applied in a subset of situations w.r.t. R1:
specifically all those when, in addition to α, also γ holds.
We can call situations where both α and γ hold exceptional
situations. In these exceptional situations both norms could
be applied. This would produce two contrasting obligations:
O(β) and O(¬β). To avoid this we add the following prior-
ity relation: R2 � R1. Therefore we modify the antecedent
of the norm with lower priority as described earlier. The re-
sult is a new norm R�1 = (α∧ ∼ γ,O(β)), that would not be
applied in the exceptional situations, avoiding the problem
of contrasting obligations.

Contrary to Duties: an important property of norms
is that they are soft constraints. Accordingly to this feature
they can be violated. Contrary to duties provide additional
obligations to be fulfilled when a violation occurs.

For example, consider a norm R1 = (α,O(β)) that should
be applied in all situations containing α and producing the
obligation O(β). As mentioned, norms can be violated,
therefore we can also define a norm that produces alterna-
tive obligations to be followed in case of a violation. Let this
new norm be R2 = (α∧¬β,O(γ)). The latter norm contains
in its antecedent both the antecedent of R1 and the negation
of its consequent. In this way it describes which should be
the alternative obligation to O(β) in the case that it can not
be achieved, in this example O(γ).

We use a priority relation between the two norms in order
to avoid the generation of the obligation O(β) in case it is
already known that it is not satisfiable. We add then the
following priority relation R2 � R1 that modifies the first
norm as follows: R�1 = (α∧ ∼ ¬β,O(β)).

Permissions: an important distinction between oughts
and permissions is that the latter will not be explicitly en-
coded in the neural network. In our approach we consider
that something is permitted to the agent if not explicitly for-
bidden (note that we consider the ought of a negative literal
as a prohibition). Due to this we consider that rules with a
permission in their consequent implicitly have priority over
the rules that forbid the same action. For example, consider
two rules R1 = (A1,P(β1)), R2 = (A2,O(¬β1)). The first
rule permits β1 and the second forbids it. In this case we
assume the following priority relation R1 � R2 holds.

3. ARCHITECTURE AND CASE STUDY
Our goal is to allow the agent to learn from experience

and take decisions which respect the norms she is subject
to. Thus, the agent needs to know what is obligatory and
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Figure 1: Normative agent architecture.

forbidden according to norms (conditional rules) in any situ-
ation in real time. What is obligatory can eventually become
an action of the agent, while what is forbidden inhibits such
actions, like in agent architectures [6].

Rules may change: the normative environment changes
over time so the agent should be flexible enough to adapt its
behavior to the context using as information the instances
of behaviors which have been considered illegal.

Figure 1 describes our approach. It starts from the sym-
bolic knowledge-base (KB) of norms contained in the agent,
transforming it into a neural network (NN) using an exten-
sion of the CILP algorithm (introduced below). The NN
is structured as follows: input neurons of the network rep-
resent the state of the world (e.g., in the robocup domain,
kickoff, have ball, etc.), while the output neurons represent
the obligations of the agent, e.g., pass the ball (i.e. cooper-
ate), minimize impact, etc., or the prohibitions, e.g., do not
pass, do not score own goal, etc. The NN is used as part of
the controller for the agent and, given its ability to learn, it
is hoped to give the agent the required flexibility.

We then train the NN on instances of robocup match be-
haviors to adapt the agent to the current context. E.g.,
given a set of situations where the referee punishes an agent
for kicking the ball backwards, we specify them as learning
instances where there is the prohibition to kick the ball back-
wards. The NN can generalize the conditions under which
this prohibition holds. To learn from behaviors which are
regulated by norms, the NN must be able to cope with the
peculiarities of normative reasoning.

In our tests we used a version of the RoboCup rules from
the 2007 competition where, for simplicity, teams are com-
posed of two players. To make things more interesting, in
addition to those rules, we have added to the KB some norms
representing the coach’s directions that regulate the behav-
ior of the robots during the match.

Each rule is of the form IF α THEN β. The precondition α
is a set of literals in conjunctive form while the postcondition
β can be either an obligation or a permission concerning a
single literal. Rules like IF � THEN O(¬impact opponent)
and IF have ball ∧ opponent approaching THEN O(pass)
contain obligations in their postconditions. Differently, a
rule like IF goalkeeper∧inside own area THEN P(use hands)
contains a permission.

It is possible, however, that the environment requires the
agent to adopt some sub-optimal behavior in circumstances
when the optimal solution is not available. We use priorities
to manage general and specific rules, creating a general-to-
specific superiority relation and dealing with sub-optimal
and exceptional situations. The two rules that compose an
instance of contrary to duty are in the following configu-
ration: the first one IF α THEN O(β) and IF ¬β THEN
O(γ); β represents the obligation to be fulfilled in an or-
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Figure 2: Example of I/O logic embedding in a NN

dinary situation α. If the agent is in a state of the world
where β cannot be fulfilled, the second rule overcomes the
first one through the use of priorities. For instance, IF �
THEN O(¬impact opponent) ≺ IF impact opponent THEN
O(minimize impact). Intuitively, we use (≺) such that
(y) ≺ (x) means that, whenever the conclusion of rule (x)
holds, the conclusion of (y) does not hold.

Figure 2 shows a neural network built from four rules:
R1 = (¬α ∧ β ∧ γ,O(¬φ)), R2 = (γ ∧ ρ,O(φ)), R3 =
(γ,O(¬ψ)) and the permission rule R4 = (γ ∧ σ,P(ψ)).
In addition, a priority ordering R2 � R1 is expected to in-
hibit the activation of the first rule whenever the second rule
applies. This priority is embedded within the rules as de-
scribed earlier and, as a result, we obtain a new first rule:
R�1 = (¬α ∧ β ∧ γ∧ ∼ ρ,O(¬φ)). Further, the implicit
priority of R4 over R3 embeds in R3 a negative literal ob-
taining a new rule, as follows: R�3 = (γ∧ ∼ σ,O(¬ψ)). The
neural network is built, then, from rules R�1, R2 and R�3
(permission rules are not encoded in the network and are
only used to define the priorities). Dotted lines in the figure
indicate links with negative weighted which, in turn, imple-
ment the negation in the rules R�1 and R�3. Notice how
input and output neurons in the network have a natural
correspondence with inputs and outputs in I/O logic. Each
hidden neuron represents a rule, e.g. R1, and the network,
sometimes called an AND/OR network, is supposed to com-
pute conjunctions in its hidden layer and disjunctions in its
output layer. In what follows, we detail the algorithm that
achieves this translation and its proof of soundness w.r.t. an
answer set semantics. Notice that, although the network is
associated with a logic programming semantics, it has very
naturally an input and output layer that make it appropri-
ate, rather like I/O logic, for normative reasoning. This will
be exemplified later.

4. NEURAL NETWORKS FOR NORMS
In this section we introduce a new approach for coding

(a fragment of) I/O logic into a neural network. The main
intuition behind this methodology is that, although logic
programs do not capture the concepts of inputs and out-
puts, an extended logic program-based neural network does,
on a purely structural level: inputs and outputs in I/O log-
ics correspond to the input and output layers of the neural
network.

Neural-symbolic algorithms (like CILP) provide a sound
and complete translation of logic programs (LP) into a neu-
ral network (NN). Unfortunately, LP is not directly suitable
for reasoning about normative systems (in particular about
CTD and dilemmas). This is due to the fact that LP does

not have an explicit representation of inputs.
A fact a in an LP could be mapped, at first sight, as

the input of the NN, so to make rules like a → b fire to
produce output b. At the same time, a should be also among
the output of the network, due to identity property of the
underlying logic: a follows from a. But this would require
to implement identity property in the NN, making it more
complicated.

CILP does not need to represent a fact as an initial input,
thanks to transitivity property of logic, which is expressed
by the fact that the NN is recurrent: every output neuron
is connected to the corresponding input neuron.

If the fact a was directly represented as an output, it would
not need to be represented as an explicit input, since the
transitivity property allows to propagate output to input.

To minimize the structure of the network, CILP translates
a fact a (representing the input to other rules) directly as
an output a of the neural network and, given a rule like
a → b, to derive b as output, the output a becomes the
”input” of the NN due to the fact that the NN is recurrent:
every output becomes an input subsequently, rather than at
the initial iteration. So in a sense the NN resulting from
CILP given an LP returns always the same output after the
network stabilizes, since it has no explicit input.

In normative reasoning, as captured by IO logic, the in-
put does not become necessarily an output, since identity
does not hold. The reason is that the output is interpreted
as what is obligatory, thus, if a is in the input, it is not
necessarily the case that a is obligatory as well. Differently
from LP, what is in the input must be distinguished from the
output: a fact a cannot be modeled as an output which be-
comes an input due to transitivity. As an example, the logic
programs P1 = {∅} and P2 = {a→ b} both have the empty
set as model, this is because LP semantics do not reflect the
meaning of the program rule. However, if we translate P1

and P2 with CILP we get two different networks, one with
an empty set of input and output nodes and the other with
a as the input note and b as output. The need to explicitly
reason about inputs and outputs of rules in normative sys-
tems has been put forward by Makinson and van der Torre
[11] in their Input-Output (I/O) Logic framework. In I/O
logic, norms are represented as ordered pairs of formulas like
(α,β), read as: if α is present in the current situation then
β should be the case. These two formulae are also named
correspondingly the input and the output, to make it clear
that the input of the norm is the current situation and what
is desirable for this situation is the output. A peculiarity of
I/O logic (shared with conditional logics) is that it does not
have (α,α) for any α (i.e. identity is not an axiom), while
in LP we always have α ← α. This input/output perspec-
tive corresponds straightforwardly to the intuition behind a
NN. However, to take advantage of the existing CILP algo-
rithm and its proof of soundness we translate (a simplified)
IO logic into LP to be processed by CILP without mapping
the input into atoms translated as output. Rather the input
is subsequently passed as input of the network producing an
output representing what is obligatory, where some input
appears in the output only if it is made obligatory by some
rule.

In CILP output nodes are always connected to input nodes
creating a recurrent network, to represent the transitivity
property. In normative reasoning transitivity is not always
accepted (since if you are obliged to do a and if a then you
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are obliged to b, does not imply that you are obliged to do
b), thus the normative CILP thus extends CILP to account
for the fact that certain outputs should not be connected to
their corresponding inputs.

4.1 Mapping I/O Logic into Neural Networks
In this section, we first introduce a fragment of I/O logic,

then we present an embedding of such fragment into ex-
tended logic programs and finally, we discuss how to repre-
sent priorities between rules within extended logic programs.

Definition 1. An extended logic program is a finite set
of clauses of the form L0 ← L1, . . . ,∼ Ln,∼ Ln+1, . . . ,∼
Lm, where Li (0 ≤ i ≤ n) is a literal i.e., an atom or a
classical negation of an atom denoted by ¬ and ∼ LJ (n+1 ≤
j ≤ m) is called default literal where ∼ represents negation
as failure.

Given an extended logic program P we identify its answer
sets [9] as EXT (P ).

Definition 2 (I/O Normative Code). A normative
code G = �O, P,�� is composed by two sets of rules r : (α,β)
and a preference relation � among those rules. Rules in
O are called obligations, while rules in P are permissions.
Rules in O are of the type (α,β) where

• α = α1 ∨ . . . ∨ αn is a propositional formula in dis-
junctive normal form i.e., αi (for 0 ≤ i ≤ n) is a con-
junction of literals (¬aαi1 ∧ . . . ∧ ¬aαim ∧ aαi(m+1)

∧
. . . ∧ aα1(m+p)

). Without loss of generality we assume
that the first m literals are negative while the others
(m + p)− 1 are positive.

• β = ¬bβ1 ∧ . . .∧¬bβm ∧ bβm+1 ∧ . . .∧ bβm+p is a finite
conjunction of literals.

While rules in P are of type (α, l) where α is the same as for
obligations but l is a literal.

As put forward in [4] the role of permissions is to undercut
obligations. Informally, suppose to have a normative code
G composed of two rules:

1. b is obligatory (i.e., (�, b) ∈ O).
2. If a holds, then ¬b is permitted (i.e., (a, ¬b) ∈ P).

We say that the rule (a, ¬b) has priority over (�, b), i.e.,
b is obligatory as long as a does not hold, otherwise ¬b is
permitted and, therefore b is not obligatory anymore.

The semantics of such fragment of I/O is defined by the
rules in Fig 3. I(G) is the set of literals in the antecedent
of rules in G. The rules are a syntactical restriction of the
those presented in [11].

The fact that we consider only I/O rules as defined in
Definition 2 permits us to define a natural embedding of
I/O rules and extended logic programs.

Definition 3. We define a function �·� which embeds
I/O logic rules into extended logic programs

�r : (α1 ∨ . . . ∨ αn,β1 ∧ . . . ∧ βm)� =
{r11 : (�β1�out ← �α1�in); . . . ; r1m : (�βm�out ← �α1�in)

; . . . ;
rn1 : (�β1�out ← �αn�in); . . . ; rnm : (�βm�out ← �αn�in)}

�l1 ∧ . . . ∧ ln�in/out = �l1�in/out, . . . , �ln�in/out

�a�in = in a �a�out = out a
�¬a�in = ¬in a �¬a�out = ¬out a

we call rules rij as instances of r and we informally write
rij ∈ Ints(r).

Notice that the program resulting from the application of
�·� has a unique model because it is negation-as-failure-free
(NAF). Given a set of obligations O, its closure O� under
the rules of Fig. 3 exists and is finite.

Lemma 1. Given a set of obligations O = {(α1,β1), . . . , (αn,βn)}
and its closure O� under the rules defined in Fig. 3 we have

If (α,β) ∈ O� then �β�out ∈ E ∈
EXT ({�(α1,β1)�; . . . ; �(αn,βn)�} ∪ �α�in)

Proof. First, we notice that E is unique (see Corollary
4.1). The if direction is trivial while the only if can be proved
by showing that every application of the immediate conse-
quence operator T (as defined in [9]) can be encoded into an
application of the rules in Fig. 3.

We now show how to extend the preference relation � w.r.t.
rules generated with �·� as in Def. 3

Definition 4. Given a normative code G = �O, P,�� we
define a transformation Tro(·) such that Tro(G) = ��O�, P,��
� where �� is defined as follows:

• tij �� t�i�j� , for all tij ∈ Inst(t) and t�i�j� ∈ Inst(t�) for

t, t� ∈ O such that t � t�.

For this reason, for a given normative code Tro(G), we de-
fine a further transformation Trp(·) defined as follows

Definition 5. Given a normative code Go = Tro(G) =
��O�, P,��� we define Trp(Go) = ��O�, P,����, where ��� is
defined as follows:

• For all p : (α, l) ∈ P, p ��� tij , for all tij : (α, ¬l) ∈ �O�

We now discuss how to encode priorities between rules into
extended logic programs [15].

Definition 6. Given a preference relation between ri and
r such that ri � r for 1 ≤ i ≤ j,
Replace the clause r : L1, ..., Lp → Lq+1 by clause L1, ..., Lp,∼
L1

p+1, ...,∼ L1
q, ...,∼ Lj

p+1, ...,∼ Lj
q → Lq+1,

where ri(1≤i≤j) : Li
p+1, ..., L

i
q → Li

q+1;

Example 1. Suppose to have the following normative code
G = �{r : (a, ¬b ∧ c)}, {p : (d, b)}, {}�, then Tro(G) = {�r11 :
(a, ¬b); r12 : (a, c)}, {p : (d, b)}, {}� and Trp(Tro(G)) =
{�r11 : (a, ¬b); r12 : (a, c)}, {p : (d, b)}, {p � r11�}.

Rules with permissions in the consequent, which are of
the form pi : Li1 ; . . . ; Lin ; Lin+1 ; . . . ; Lim → Lim+1 such
that, for any other rule r : Li1 ; . . . ; Lin → ¬Lim+1 (resulting
from the application of �G�) we impose pi � r. The role
of permission rules is to undercut (obligations rules) in �G�
and will not be encoded into the symbolic neural network
(every output encoded in the NN counts as an obligation,
permission are not represented in the network but something
is permitted if the contrary is not obligatory, see Section
4.2).

Lemma 2. Let P� = {r1, r2, ..., rn} be an extended pro-
gram with an explicit superiority relation � . Let P denote
the translation of P� into a program without �. We have
that EXT (P�) = EXT (P ).
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(αi1 ∧ . . . ∧ αin
,αo1

)
(SI)

(αi1 ∧ . . . ∧ αin ∧ βi1 ,αo1)

(αi1 ∧ . . . ∧ αin
,αo1

) (αi1 ∧ . . . ∧ αin
,αo2

)
(CO)

(αi1 ∧ . . . ∧ αin ,αo1 ∧ αo2)

(α,αo1
∧ αo2

∧ . . . ∧ αon
)

(WO)
(α,αo2 ∧ . . . ∧ αon)

(αi1 ∧ . . . ∧ αin
, γo1

) (βi1 ∧ . . . ∧ βin
, γo1

)
(DI)

((αi1 ∧ . . . ∧ αin) ∨ (βi1 . . .βin), γo1) with βi1 ∈ I(G)

(α1 ∨ α2 ∨ . . . ∨ αn,β)
(WI)

(α2 ∨ . . . ∨ αn,β)

Figure 3: Semantics for I/O Logic

We are interested in the translations above between P�
and P because it is well-known that CILP networks will al-
ways settle down in the unique answer set of P provided P is
well-behaved (i.e. locally stratified or acyclic or acceptable,
see [7]). This result will be explored further in what follows.

4.2 The N-CILP algorithm
In this section we introduce the translation algorithm we

have implemented in order to encode a normative code into
a feed-forward NN (with semi-linear neurons), namely the
Normative-CILP (N-CILP) algorithm. The proposed algo-
rithm differs from standard CILP [7] in how priorities are en-
coded into the resulting neural network and does not connect
input and output neurons that represent the same atom.

N-CILP
Given a normative code G

1. G� = Tro(G); G�� = Trp(G�)

2. Apply the encoding of priorities as described in Definition
6 to G��.

3. For each rule Rk = βo1 ← αi1 ; . . . ;αin ;∼ αin+1; . . . ;∼
αim /∈ P.

(a) For each literal αij (1 ≤ j ≤ m) in the input of the

rule. If there is no input neuron labeled αij in the

input level, then add a neuron labeled αij in the input

layer.

(b) Add a neuron labeled Nk in the hidden layer.

(c) If there is no neuron labeled βo1 in the output level,
then add a neuron labeled βo1 in the output layer.

(d) For each literal αij (1 ≤ j ≤ n); connect the respec-

tive input neuron with the neuron labeled Nk in the
hidden layer with a positive weighted arc.

(e) layer with a negative weighted arc (the connections
between these input neurons and the hidden neuron
of the rule represents the priorities translated with the
NAF ).

(f) Connect the neuron labeled Ni with the neuron in the
output level labeled βo1 with a positive weighted arc
(each output in the rules is considered as a positive
atom during the translation, this means that if we
have a rule with a negative output ¬β, in the network
we translate an output neuron labeled β� that has the
same meaning of ¬β but for the translation purpose
can be treated as a positive output).

Proposition 1. For any normative code in the form of
an extended logic program there exists a neural network ob-
tained from the N-CILP translation algorithm such that the
network computes the answer set semantics of the code.

Proof. Def. 3.3 translates a normative code into an ex-
tended logic program having a single extension (or answer

set). From Lemma 3.11, the program extended with a pri-
ority relation also has a single extension. In [7] it is shown
that any extended logic program can be encoded into a neural
network. N-CILP performs one such encoding using network
weights as defined in [7]. Hence, N-CILP is sound. Since the
program has a single extensions, the iterative recursive appli-
cation of input-output patterns to the network will converge
to this extension, which is identical to the unique answer set
of the program, for any initial input.

5. EXPERIMENTAL RESULTS
The N-CILP algorithm was implemented as part of a sim-

ulator which is available online. In the simulator, the KB
contains the rules that an agent knows. We assume that the
priorities are embedded in the rules following the description
used in the previous section. The KB is then read as input
for the N-CILP translation which produces a standard NN
for training. The network can be then trained within the
simulator by backpropagation.

In this section, we describe the results of experiments car-
ried out using the N-CILP simulator for network translation
and training.

To evaluate the performance of the network, we use two
distinct measures: tot and part.

tot =

�n
i=1 I(

�k
j=1(cij == oij))

n

part =

�n
i=1

�k
j=1 I(cij == oij)

n ∗ k

where n refers to the cardinality of the test set, k is the
number of output neurons in the network, oij is the value
of the j-th output of the NN for the i-th test instance, cij

is the true value (desired value) of the j-th literal for the
i-th test instance, I(·) is the indicator, a function returning
1 if the argument is true and zero otherwise. The tot mea-
sure evaluates how many instances were processed entirely
correctly, whle part considers the number of single output
neurons correctly activated.

In our experiments we train the network using a 10fold
cross validation. We divide the initial data set of instances
in ten distinct subsets. Each subset is then used as test
set while the others are used together as training set. In
this way the instances seen during training are left out of
the testing phase, ten networks are trained and the results
are averaged. The test-set performance provides us with
an estimate of the network’s generalization capability, i.e.
its ability to predict the results (network output) for new
instances (inputs), not seen during training. In all the ex-
periments, we set the training parameters for the networks
as follows: learning rate: 0.8, momentum: 0.3 and training
cycles: 100. The reader is referred to [10] for the details of
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the backpropagation learning algorithm with momentum.

Non-symbolic approach comparison: we compare
the learning capacity of a network built with N-CILP with a
non-symbolic neural network. One of the well known issues
in neural-network training is how to decide the number of
neurons in the hidden layer. In the case of N-CILP, this
number is given by the number of symbolic rules. We adopt
the same number of hidden neurons for both networks, in
order to avoid the risk of an unfair comparison with a ran-
domly assessed topology for the non-symbolic network. The
difference between the networks involved in this test lies in
their connection weights. The neural network built with
N-CILP sets its weights according to the rules in the KB.
Instead, the non-symbolic network has its weights randomly
initialized. One advantage of a network built with N-CILP
is that even without any training, it is capable of correctly
processing certain instances by applying the rules contained
in the KB (if the rules are correct).

The network built with N-CILP has the head-start of a
KB containing 20 rules. During the training phase, the net-
work tries to learn 9 additional rules provided in the form of
training instances (examples of input/output patterns). The
non-symbolic network is provided with the same instances,
including the instances for the initial 20 rules, but has to
learn all the 29 rules using backpropagation.

The results from this little experiment show that the non-
symbolic neural network is not able to achieve the same level
of accuracy as the N-CILP network. For the non-symbolic
network tot = 5.13% and part = 45.25%. For the N-CILP
network tot = 5.38% and part = 49.19%. We can see that
with the same knowledge provided as rules or instances, the
networks achieve different results with the N-CILP network
showing an improved performance.

Enhancing the knowledge base: the second experi-
ment measures how the neural network performs by increas-
ing the number of rules in the knowledge base. This test is
important because the goal of a Neural-Symbolic System, is
not only to construct a neural network capable to compute
the same semantics as rule into the knowledge base. Another
important objective is to exploit the learning capabilities of
the neural networks, allowing the agent to increase the num-
ber of rules in its knowledge base from what it learned[7].

The test is done incrementally. From the full set of 29
rules, the experiment first step starts with a knowledge base
containing 20 rules and tries to learn the remaining 9. Suc-
cessively 2 rules are incrementally added into the initial
knowledge base during each step. In this way the unknown
rules that the network has to learn decreases by 2 each step.
In example at the second step of the experiment the starting
knowledge base contains 22 rules and the network tries to
learn 7 rules during the training phase.

During each step the neural network is tested over in-
stances where the full set of rules is applied. In this way the
network continues to process using the rules already known,
reducing the risk to forget them and in the meantime it tries
to learn of the unknown rules.

The results of this experiment are shown in Figure 4. We
can see that for the first two steps of the experiment the
accuracies measured quite low. instead for the last two steps
the performance of the neural network increases, reaching an
accuracy peak of 98,01% for the part measure and 91,18%
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Figure 4: Accuracy of tot and part measures increas-
ing the number of rules

for the tot.
From the experiment proposed we observed a direct corre-

lation between the number of the rules in the starting knowl-
edge base and the performance of the neural network. An-
other thing that can be noticed is that the smaller becomes
the number of rules that the network does not know, w.r.t.
the number of rules in the initial knowledge base can impact
the performances of the network, also due to the fact that a
network built from a larger knowledge base possesses more
connections.

Learning Contrary to Duties: in this test we measure
the capacity of a neural network built with N-CILP to learn
new contrary to duties. In this case we use a starting knowl-
edge base where the priority-based orderings regulating the
contrary to duties were missing.

We tested the network on learning three different contrary
to duties. The first refers to a situation where a robot player
should never impact on an opponent. But if a collision route
is inevitable, then the robot should make its best to mini-
mize the impact. The second manages the situation where
the robot is in physical contact with an opponent, which is
forbidden by the RoboCup rulings. The robot should then
try to terminate the contact. The third handles the situa-
tion where the robot is touching the ball with his hands, but
he is not supposed to.

By removing the priority based orderings what is obtained
is an incomplete system that produces, in similar situations,
both the unfulfillable obligation and the relative obligation
to handle the suboptimal situation that is being analyzed.
What we expect from this test is that our approach is capa-
ble to learn from the examples, the priority based orderings
that regulates the contrary to duties.

The neural network is trained with a set of instances that
contain both normal situations and situations in which the
contrary to duty is applied. The resulting network is tested
with a test set containing sub-optimal situations, where an
application of the contrary to duty is necessary. From the
results of this test we verify that regarding the first contrary
to duty, in the test set 95% of the instances were processed
correctly and generating only the output obligation for the
suboptimal situation that is what is desired on those situ-
ations. For the two other contrary to duties, we obtain an
accuracy equal to 93% and 87% with their respective test
sets.

Our approach is capable to learn contrary to duties not
included in the construction of the neural network. This is
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a strength of the neural-symbolic architecture, that allows
to avoid a total description of the investigated domain that
could be, in some cases, very expensive and infeasible.

6. CONCLUSION
To the best of our knowledge this paper is the first to

combine normative reasoning and learning with connection-
ist systems. Concerning the learning of normative systems
in general, it is possible – as this paper also shows through
the proposed translation of I/O logic into extended logic
programs – to use a purely symbolic set-up. In the ex-
periments proposed we see that a neural-symbolic approach
has some advantages w.r.t. a pure connectionist one. This
approach solves problems like the decision a priori of the
NN size. From the results obtained in the tests, we empir-
ically show that embedding previous knowledge in the NN
increases its learning and processing performances. Notably,
it should be possible to learn the kind of extended programs
that we are considering here through the use of Inductive
Logic Programming (ILP) [14] (or some adaptation of it to
accommodate the use of negation, for example [16]). ILP
has been used successfully in bioinformatics, but we are not
aware of its application in normative systems. It would be
interesting to compare and contrast the performance of the
symbolic and connectionist approaches in the context of a
real normative-systems application. Measurable criteria for
comparison would include: accuracy, learning performance
and noise tolerance indexes.
In this paper we chose to focus on the translation in one di-
rection, as this can be used for tasks such as creating adapt-
able controllers. As future work, we’ll be working on exten-
sions of the tool to include an extraction module so it can
be used when explicit explanations are required.
The system described thus far considers only one type of
norms: the so called regulative norms, i.e., the norms pre-
scribing the behavior of agents, in terms of what is obliga-
tory, forbidden or permitted. Future work is also introducing
constitutive rules besides regulative ones prescribing what is
obligatory, forbidden or permitted. Constitutive rules pro-
vide a classification of reality in terms of the so called in-
stitutional facts, like marriages, licences, authorizations, in-
stitutions, etc. In the antecedents of regulative rules refer
to the situation in which the norm should apply not only
in terms of the brute facts (i.e., to the physical world) but
also to institutional facts. Institutional facts are also inputs
of constitutive rules meaning that differently than regula-
tive rules, constitutive rules respect cumulative transitivity.
Constitutive rules can be seen as a component whose out-
put is fed as input to the component of regulative rules. The
challenge is to study the interaction between the learning of
the two components.
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ABSTRACT
We investigate agent supervision, a form of customization, which
constrains the actions of an agent so as to enforce certain desired
behavioral specifications. This is done in a setting based on the
Situation Calculus and a variant of the ConGolog programming lan-
guage which allows for nondeterminism, but requires the remainder
of a program after the execution of an action to be determined by
the resulting situation. Such programs can be fully characterized
by the set of action sequences that they generate. Hence operations
like intersection and difference become natural. The main results
of the paper are a characterization of the maximally permissive su-
pervisor that minimally constrains the agent so as to enforce the
desired behavioral constraints when some agent actions are uncon-
trollable, and a sound and complete technique to execute the agent
as constrained by such a supervisor.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods

General Terms
Languages, Theory, Verification

Keywords
Agent Reasoning::Knowledge representation, Agent theories,
Models and Architectures::Logic-based approaches and methods,
Agent Reasoning::Reasoning (single and multi-agent)

1. INTRODUCTION
There has been much work on process customization, where a

generic process for performing a task or achieving a goal is cus-
tomized to satisfy a client’s constraints or preferences [9, 11, 16].
Process customization gained special momentum in the context of
web service composition [17]. For example in [12], a generic pro-
cess provides a wide range of alternative ways to perform a task.
During customization, alternatives that violate the constraints are
eliminated. Some parameters in the remaining alternatives may be
restricted or instantiated so as to ensure that any execution of the
customized process will satisfy the client’s constraints. A related
approach to service composition synthesizes an orchestrator that

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4–8, 2012,
Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Agent

Supervisor

action sequence 
executed so far

actions allowed
next

Figure 1: Supervised execution loop.

controls the execution of a set of available services to ensure that
they realize a desired service [15, 1].

In this paper, we develop a framework for a similar type of pro-
cess refinement that we call supervised execution (see Figure 1).
We assume that we have a nondeterministic process that specifies
the possible behaviors of an agent, and a second process that spec-
ifies the possible behaviors that a supervisor wants to allow (or al-
ternatively, of the behaviors that it wants to rule out). For example,
we could have an agent process representing a child and its possi-
ble behaviors, and a second process representing a babysitter that
specifies the behaviors by the child that can be allowed. If the su-
pervisor can control all the actions of the supervised agent, then it
is straightforward to specify the behaviors that may result as a kind
of synchronized concurrent execution of the agent and supervisor
processes. A more interesting case arises when some agent actions
are uncontrollable. For example, it may be impossible to prevent
the child from getting muddy once he/she is allowed outside. In
such circumstances, the supervisor may have to block some agent
actions, not because they are undesirable in themselves (e.g., going
outside), but because if they are allowed, the supervisor cannot pre-
vent the agent from possibly performing some undesirable actions
later on (e.g., getting muddy).

We follow previous work [12, 9] in assuming that processes are
specified in a high level agent programming language defined in
the Situation Calculus [14].1 In fact, we define and use a restricted
version of the ConGolog agent programming language [3] that we
call Situation-Determined ConGolog (SDConGolog). In this ver-
sion, following [4] all transitions involve performing an action (i.e.,
there are no transitions that merely perform a test). Moreover, non-
determinism is restricted so that the remaining program is a func-
tion of the action performed, i.e., given a program δ in a situation

1Clearly, there are applications where a declarative formalism is
preferable, e.g., linear temporal logic (LTL), regular expressions
over actions, or some type of business rules. However, there has
been previous work on compiling such declarative specification
languages into ConGolog, for instance [9], which handles an ex-
tended version of LTL interpreted over a finite horizon.
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s, executing an action a (allowed by the program and the situation)
results in a unique successor situation s′ = do(a, s) and a unique
remaining program δ′ = next(δ, s, a), where next is a function
(formally defined later in this paper) that takes as arguments only
δ, s, and a. This means that a run of such a program starting in
a given situation can be taken to be simply a sequence of actions,
as all the intermediate programs one goes through during the ex-
ecution are functionally determined by the starting program and
situation and the actions performed. Thus we can see a program in
a situation as specifying a language formed by all the sequences of
actions that are runs of the program in the situation. This allows us
to define language theoretic notions such as union of languages, in-
tersection, and difference/complementation in terms of operations
on the corresponding programs, which has applications in many
areas (e.g., programming by demonstration and programming by
instruction [8], and plan recognition [6, 10]). We note that in [4],
it is (implicitly) shown that any ConGolog program can be made
situation-determined by recording nondeterministic choices as ad-
ditional actions. Working with situation-determined programs also
facilitates the formalization of supervision/customization. In par-
ticular it allows us to build on on the well-known Wonham and Ra-
madge framework for supervisory control of discrete event systems
[13, 19, 2, 18].

Based on such a framework, we provide a general characteriza-
tion of the maximally permissive supervisor that minimally con-
strains the actions of the agent specified in SDConGolog so as to
enforce the desired behavioral specifications, showing its existence
and uniqueness; secondly, we define a special program construct
for supervised execution that takes the agent program and super-
visor program, and executes them to obtain only runs allowed by
the maximally permissive supervisor, showing its soundness and
completeness.

The rest of the paper proceeds as follows. In the next section, we
briefly review the Situation Calculus and the ConGolog agent pro-
gramming language. In Section 3, we define SDConGolog, discuss
its properties, and introduce some useful programming constructs
and terminology. Then in Section 4, we develop our account of
agent supervision, and define the maximally permissive supervisor
and supervised execution. Finally in Section 5, we conclude the
paper also discussing implementation.

2. PRELIMINARIES
The situation calculus is a logical language specifically designed

for representing and reasoning about dynamically changing worlds
[14]. All changes to the world are the result of actions, which are
terms in the logic. We denote action variables by lower case letters
a, action types by capital letters A, and action terms by α, possi-
bly with subscripts. A possible world history is represented by a
term called a situation. The constant S0 is used to denote the initial
situation where no actions have yet been performed. Sequences of
actions are built using the function symbol do, such that do(a, s)
denotes the successor situation resulting from performing action a
in situation s. Predicates and functions whose value varies from
situation to situation are called fluents, and are denoted by symbols
taking a situation term as their last argument (e.g.,Holding(x, s)).
Within the language, one can formulate action theories that de-
scribe how the world changes as the result of actions [14].

To represent and reason about complex actions or processes
obtained by suitably executing atomic actions, various so-called
high-level programming languages have been defined. Here
we concentrate on (a fragment of) ConGolog that includes the
following constructs:

α atomic action
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters, and ϕ
is situation-suppressed formula, that is, a formula in the language
with all situation arguments in fluents suppressed. As usual, we
denote by ϕ[s] the situation calculus formula obtained from ϕ by
restoring the situation argument s into all fluents in ϕ. Program
δ1|δ2 allows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeterministic
choice of a legal binding for variable x (observe that such a choice
is, in general, unbounded). δ∗ performs δ zero or more times. Pro-
gram δ1‖δ2 expresses the concurrent execution (interpreted as in-
terleaving) of programs δ1 and δ2.

Formally, the semantics of ConGolog is specified in terms of
single-step transitions, using the following two predicates [3]: (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ in situ-
ation s may lead to situation s′ with δ′ remaining to be executed;
and (ii) Final(δ, s), which holds if program δ may legally termi-
nate in situation s. The definitions of Trans and Final we use
are as in [4]; these are in fact the usual ones [3], except that the test
construct ϕ? does not yield any transition, but is final when satis-
fied. Thus, it is a synchronous version of the original test construct
(it does not allow interleaving). As a consequence, in the version
of ConGolog that we use, every transition involves the execution of
an action (tests do not make transitions), i.e.,

Σ ∪ C |= Trans(δ, s, δ′, s′) ⊃ ∃a.s′ = do(a, s).

Here and in the remainder, we use Σ to denote the foundational ax-
ioms of the situation calculus from [14] and C to denote the axioms
defining the ConGolog programming language.

3. SD-PROGRAMS
We focus on a restricted class of ConGolog programs to describe

processes, namely “situation-determined programs”; we call this
class SDConGolog. A program δ is situation-determined in a situ-
ation s if for every sequence of transitions, the remaining program
is determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

where Trans∗ denotes the reflexive transitive closure of Trans.
Thus, a (possibly partial) execution of a situation-determined pro-
gram is uniquely determined by the sequence of actions it has pro-
duced. This is a key point. In general, the possible executions of
a ConGolog program are characterized by sequences of configura-
tions formed by the remaining program and the current situation.
In contrast, the execution of a SDConGolog program in a situation
can be characterized in terms of a set of sequences (or language)
of actions. Such sequences correspond to situations reached from
the situation where the program started.

For example, assuming for simplicity that all actions are exe-
cutable in every situation, the ConGolog program (a; b) | (a; c) is
not situation-determined in situation S0 as it can make a transition
to a configuration (b, do(a, S0)), where the situation is do(a, S0)
and the remaining program is b, and it can also make a transition to
a configuration (c, do(a, S0)), where the situation is also do(a, S0)
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and the remaining program is instead c. It is impossible to deter-
mine what the remaining program is given only a situation, e.g.
do(a, S0), reached along an execution. In contrast, the program
a; (b | c) is situation-determined in situation S0. There is a unique
remaining program (b | c) in situation do(a, S0) (and similarly for
the other reachable situations).

When we restrict our attention to situation-determined programs,
we can use a simpler semantic specification for the language;
instead of Trans we can use a next (partial) function, where
next(δ, a, s) returns the program that remains after δ does a tran-
sition involving action a in situation s (if δ is situation determined,
such a remaining program must be unique). We will axiomatize the
next function so that it satisfies the following properties:

next(δ, a, s) = δ′ ∧ δ′ 6= ⊥ ⊃ Trans(δ, s, δ′, do(a, s)) (N1)

∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃
∀δ′.(Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = δ′) (N2)

¬∃!δ′.Trans(δ, s, δ′, do(a, s)) ⊃ next(δ, a, s) = ⊥ (N3)

Here ∃!x.φ(x) means that there exists a unique x such that φ(x);
this is defined in the usual way. ⊥ is a special value that stands for
“undefined”. The function next(δ, a, s) is only defined when there
is a unique remaining program after program δ does a transition
involving the action a; if there is such a unique remaining program,
then next(δ, a, s) denotes it.

We define the function next inductively on the structure of pro-
grams using the following axioms.

Atomic action:

next(α, a, s) =

{
nil if Poss(a, s) and α = a

⊥ otherwise

Sequence: next(δ1; δ2, a, s) =



next(δ1, a, s); δ2 if next(δ1, a, s) 6= ⊥ and
(¬Final(δ1, s) or next(δ2, a, s) = ⊥)

next(δ2, a, s) if Final(δ1, s) and next(δ1, a, s) = ⊥
⊥ otherwise

Conditional:

next(if ϕ then δ1 else δ2, a, s) =

{
next(δ1, a, s) if ϕ[s]

next(δ2, a, s) if ¬ϕ[s]

Loop:

next(while ϕ do δ, a, s) =





next(δ, a, s); while ϕ do δ
if ϕ[s] and next(δ, a, s) 6= ⊥

⊥ otherwise

Nondeterministic branch:

next(δ1|δ2, a, s) =





next(δ1, a, s) if next(δ2, a, s) = ⊥ or
next(δ2, a, s) = next(δ1, a, s)

next(δ2, a, s) if next(δ1, a, s) = ⊥
⊥ otherwise

Nondeterministic choice of argument:2

next(πx.δ, a, s) =

{
next(δxd , a, s) if ∃!d.next(δxd , a, s) 6= ⊥
⊥ otherwise

2Notice that d in δxd depends on a and s. In particular d may be
instantiated by the action a in s. Read on for an example.

Nondeterministic iteration:

next(δ∗, a, s) =

{
next(δ, a, s); δ∗ if next(δ, a, s) 6= ⊥
⊥ otherwise

Interleaving concurrency: next(δ1‖δ2, a, s) =



next(δ1, a, s)‖δ2
if next(δ1, a, s) 6= ⊥ and next(δ2, a, s) = ⊥

δ1‖next(δ2, a, s)
if next(δ2, a, s) 6= ⊥ and next(δ1, a, s) = ⊥

⊥ otherwise

Test, empty program, undefined:
next(ϕ?, a, s) = ⊥ next(nil, a, s) = ⊥ next(⊥, a, s) = ⊥

The undefined program is never Final: Final(⊥, s) ≡ false.
Let Cn be the set of ConGolog axioms extended with the above

axioms specifying next and Final(⊥, s). It is easy to show that:

PROPOSITION 1. N1, N2, and N3 are entailed by Σ ∪ Cn.

Note in particular that as per N3, if the remaining program is not
uniquely determined, then next(δ, a, s) is undefined. Notice that
for situation-determined programs this will never happen, and if
next(δ, a, s) returns ⊥ it is because δ cannot make any transition
using a in s:

COROLLARY 2.

Σ ∪ Cn |= ∀δ, s.SituationDetermined(δ, s) ⊃
∀a [(next(δ, a, s) = ⊥) ≡ (¬∃δ′.Trans(δ, s, δ′, do(a, s)))].

Let’s look at an example. Imagine an agent specified by δB1

below that can repeatedly pick an available object and repeatedly
use it and then discard it, with the proviso that if during use the
object breaks, the agent must repair it:

δB1 = [π x.Available(x)?;
[use(x); (nil | [break(x); repair(x)])]∗;
discard(x)]∗

We assume that there is a countably infinite number of available
unbroken objects initially, that objects remain available until they
are discarded, that available objects can be used if they are unbro-
ken, and that objects are unbroken unless they break and are not
repaired (this is straightforwardly axiomatized in the situation cal-
culus). Notice that this program is situation-determined, though
very nondeterministic.

Language theoretic operations on programs. We extend the
SDConGolog language so as to close it with respect to lan-
guage theoretic operations, such as union, intersection and differ-
ence/complementation of sets of sequences of actions. We can al-
ready see the nondeterministic branch construct as a union operator,
and intersection and difference can be defined as follows.
Intersection/synchronous concurrency:

next(δ1 & δ2, a, s) =





next(δ1, a, s) & next(δ2, a, s)
if both are different from ⊥

⊥ otherwise

Difference: next(δ1 − δ2, a, s) =



next(δ1, a, s)− next(δ2, a, s) if both are different from ⊥
next(δ1, a, s) if next(δ2, a, s) = ⊥
⊥ if next(δ1, a, s) = ⊥

For these new constructs, Final is defined as follows:

Final(δ1 & δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(δ1 − δ2, s) ≡ Final(δ1, s) ∧ ¬Final(δ2, s)
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We can express the complement of a program δ using difference as
follows: (πa.a)∗ − δ.

It is easy to check that Proposition 1 and Corollary 2 also hold
for programs involving these new constructs.3

As we will see later, synchronous concurrency can be used to
constrain/customize a process. Difference can be used to prohibit
certain process behaviors: δ1 − δ2 is the process where δ1 is ex-
ecuted but δ2 is not. To illustrate, consider an agent specified by
program δS1 that repeatedly picks an available object and does any-
thing to it provided it is broken at most once before it is discarded:

δS1 = [π x.Available(x)?;
[π a.(a−(break(x) | discard(x)))]∗;
(nil | (break(x)); [π a.(a−(break(x) | discard(x)))]∗);
discard(x)]∗

Sequences of actions generated by programs. We now character-
ize situation determined programs in terms of sequences of actions
(runs) that may be performed from a given starting situation. This
allows us to associate to such programs a language formed by such
sequences of actions. Notice that in most cases not only the lan-
guage will be infinite, but even the alphabet on which the language
is defined will be infinite, since it is formed by all actions obtained
by substituting values for parameters in the action types.

We start by extending the function next to deal with sequences
of actions. We assume sequences of actions to be inductively de-
fined on their length as follows: (i) ε is the sequence of action of
length 0; (ii) given a sequence of actions ~a of length n, and an ac-
tion a the sequence a~a is a sequence of actions of length n + 1.
(Notice that we are considering only finite sequences of actions in
this way.)4 When convenient, we will use the notation ~a~b to denote
the sequence of actions formed by concatenating the two subse-
quences ~a and ~b. As a special case we use also ~aa where a is an
action.

The extension of the function next to sequences of actions is a
function next∗(δ,~a, s) that takes a program δ, a sequence of ac-
tions ~a, and a situation s, and returns the remaining program δ′

after executing δ in s producing the sequence of actions ~a, defined
by induction on the length of the sequence of actions as follows:

next∗(δ, ε, s) = δ
next∗(δ, a~a, s) = next∗(next(δ, a, s),~a, do(a, s))

where ε denotes the empty sequence. Note that if along ~a the pro-
gram becomes ⊥ then next∗ returns ⊥ as well.

Runs. We define the setRR(δ, s) of (partial) runs of a program δ
in a situation s as the sequences of actions that can be produced by
executing δ from s:5

RR(δ, s) = {~a | next∗(δ,~a, s) 6= ⊥}
Note that if ~a ∈ RR(δ, s), then all prefixes of ~a are in RR(δ, s)
as well.
3We may extend the definition of Trans to the new constructs ◦ ∈
{&,−} as follows Trans(δ1 ◦ δ2, s, δ′, s′) ≡ ∃a.s = do(a, s) ∧
δ′ = next(δ1 ◦ δ2, a, s) 6= ⊥.
4Notice that such sequences of actions have to be axiomatized in
second-order logic in a standard way, similarly to situations. Also
as an alternative, sequences of actions could also be characterized
directly in terms of “difference” between situations. For sake of
brevity, we leave out the formalization of sequences of actions here,
and just assume that such sequences have been fully characterized.
5Here and in what follows, we use set notation for readability; if
we wanted to be very formal, we could introduceRR as a defined
predicate, and similarly for CR, etc.

Complete runs. Notice that not all runs inRR reach eventually a
final configuration. We are interested in distinguishing those runs
that do. Hence we define the set of complete runs and that of their
prefixes, called the good runs. We define the set CR(δ, s) of com-
plete runs of a program δ in a situation s as the sequences of actions
that can be produced by executing δ from s until a Final configura-
tion is reached:

CR(δ, s) = {~a | Final(next∗(δ,~a, s), do(~a, s))}
As an alternative characterization, we observe that for every se-
quence of actions ~a, we have ~a ∈ CR(δ, s) iff Do(δ, s, do(~a, s))
using the usual terminology of [14, 3].

Good runs. We define the set GR(δ, s) of good runs of a program
δ in a situation s as the sequences of actions that can be produced
by executing δ from s which can be extended until a Final configu-
ration is reached:

GR(δ, s) = {~a | ∃~b.Final(next∗(δ,~a~b, s), do(~a~b, s))}
In other words ~a ∈ GR(δ, s) if ~a is a prefix of a sequence of action
~a′ = ~a~b such that ~a′ ∈ CR(δ, s).

RR(δ, s), CR(δ, s), and GR(δ, s) can be considered as three
languages (of sequences of actions) generated by the program δ in
s. This allows us to apply language theoretic notions to situation-
determined programs, and we exploit this possibility for studying
supervision.

Before turning to that, let’s make a few observations. First, it
is easy to see that CR(δ, s) ⊆ GR(δ, s) ⊆ RR(δ, s), i.e., com-
plete runs are good runs, and good runs are indeed runs. Moreover,
CR(δ, s) = CR(δ′, s) implies GR(δ, s) = GR(δ′, s), i.e., if two
programs in a situation have the same complete runs, then they
also have the same good runs; however they may still differ in their
sets of non-good runs, since CR(δ, s) = CR(δ′, s) does not imply
RR(δ, s) = RR(δ′, s). We say that a program δ in s is non-
blocking iff RR(δ, s) = GR(δ, s), i.e., if all runs of the program
δ in s can be extended to runs that reach a Final configuration.

Search construct. Interestingly in the literature on Situation Cal-
culus based programs, a special construct Σ(δ) was introduced to
ensure that the only actions produced by a program δ are those that
eventually lead to a final state. This is the so called “search con-
struct” [5].

We can add such a construct to SDConGolog, and use it to gen-
erate only good runs. The search construct Σ is characterized in
terms of next as follows:

next(Σ(δ), a, s) =





Σ(next(δ, a, s)) if there exists ~a s.t.
Final(next∗(δ, a~a, s))

⊥ otherwise

Final(Σ(δ), s) ≡ Final(δ, s).
Intuitively, next(Σ(δ), a, s) does lookahead to ensure that action a
is in a good run of δ in s, otherwise it returns ⊥.

Notice that: (i) RR(Σ(δ), s) = GR(Σ(δ), s), i.e., un-
der the search construct all programs are non-blocking; (ii)
RR(Σ(δ), s) = GR(δ, s), i.e., Σ(δ) produces exactly the good
runs of δ; (iii) CR(Σ(δ), s) = CR(δ, s), i.e., Σ(δ) and δ produce
exactly the same set of complete runs. Thus Σ(δ) trims the behav-
ior of δ by eliminating all those runs that do not lead to a Final
configuration.

Note also that if a program is non-blocking in s, then
RR(Σ(δ), s) = RR(δ, s), in which case there is no point in
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using the search construct. Finally, we have that: CR(δ, s) =
CR(δ′, s) impliesRR(Σ(δ), s) = RR(Σ(δ′), s), i.e., if two pro-
grams have the same complete runs, then under the search construct
they have exactly the same runs.

4. SUPERVISION
Let us assume that we have two agents: an agentB with behavior

represented by the program δB and a supervisor S with behavior
represented by δS . While both are represented by programs, the
roles of the two agents are quite distinct. The first is an agent B
that acts freely within its space of deliberation represented by δB .
The second, S, is supervisingB so that asB acts, it remains within
the behavior permitted by S. This role makes the program δS act
as a specification of allowed behaviors for agent B.6

The behavior of B under the supervision of S is constrained so
that at any point B can execute an action in its original behavior,
only if such an action is also permitted in S’s behavior. Using the
synchronous concurrency operator, this can be expressed simply as:

δB & δS .

Note that unless δB & δS happens to be non-blocking, it may get
stuck in dead end configurations. To avoid this, we need to ap-
ply the search construct, getting Σ(δB & δS). In general, the use
of the search construct to avoid blocking, is always needed in the
development below.

We can use the example programs presented earlier to illustrate.
The execution of δB1 under the supervision of δS1 is simply δB1 &
δS1 (assuming all actions are controllable). It is straightforward to
show that the resulting behavior is to repeatedly pick an available
object and use it as long as one likes, breaking it at most once,
and repairing it whenever it breaks, before discarding it. It can be
shown that the set of partial/complete runs of δB1 & δS1 is exactly
that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x);use(x)∗)];
discard(x)]∗

Uncontrollable actions. In the above, we implicitly assumed that
all actions of agentB could be controlled by the supervisor S. This
is often too strong an assumption, e.g., once we let a child out in
a garden after rain, there is nothing we can do to prevent her/him
from getting muddy. We now want to deal with such cases.

To do this, we follow the general approach of the well-known
Wonham and Ramadge (W&R) framework for supervisory control
of discrete event systems [13, 19, 2, 18], suitably extended to deal
with rich languages such as those generated by SDConGolog pro-
grams.

We start by distinguishing between actions that are controllable
by the supervisor and actions that are uncontrollable. The super-
visor can block the execution of the controllable actions, but can-
not prevent the supervised agent from executing the uncontrollable
ones.

To characterize the uncontrollable actions in the situation cal-
culus, we use a special fluent Au(au, s), which we call an action
filter, that expresses that action au is uncontrollable in situation s.

6Note that, because of these different roles, one may want to as-
sume that all configurations generated by (δS , s) are Final, so
that we leave B unconstrained on when it may terminate. This
amounts to requiring the following property to hold: CR(δS , s) =
GR(δS , s) = RR(δS , s). While reasonable, for the technical de-
velopment below, we do not need to rely on this assumption.

Notice that, unlike in the W&R framework, we allow controllabil-
ity to be context dependent by allowing an arbitrary specification
of the fluent Au(au, s) in the situation calculus.

While we would like the supervisor S to constrain agent B so
that δB & δS is executed, in reality, since S cannot prevent un-
controllable actions, S can only constrain B on the controllable
actions. When this is sufficient, we say that the supervison spec-
ification δS is “controllable”. Technically, following again W&R,
this can be captured by saying that the supervision specification δS
is controllable wrt δB in situation s iff:

∀~aau.~a ∈ GR(δS , s) and Au(au, do(~a, s)) implies
if ~aau ∈ GR(δB , s) then ~aau ∈ GR(δS , s).

What this says is that if we postfix a good run ~a for S with an
uncontrollable action au that is good for B (and so ~a must be
good for B as well), then this uncontrollable action au must also
be good for S. By the way, notice that ~aau ∈ GR(δB , s) and
~aau ∈ GR(δS , s) together imply that ~aau ∈ GR(δB & δS , s).

What about if such a property does not hold? We can take two
orthogonal approaches: (i) simply relax δS so that it places no con-
straints on the uncontrollable actions; (ii) require that δS be indeed
enforced, but also disallow those runs that prevent δS from being
controllable. We look at both approaches below.

Relaxed supervision. To define relaxed supervision we first need
to introduce two operations on programs: projection and, based on
it, relaxation. The projection operation takes a program and an
action filter Au, and projects all the actions that satisfy the action
filter (e.g., are uncontrollable), out of the execution. To do this,
projection substitutes each occurrence of an atomic action term αi
by a conditional statement that replaces it with the trivial test true?
when Au(αi) holds in the current situation, that is:

pj (δ,Au) = δαiif Au(αi) then true? else αi
for every occurrence of an action term αi in δ.

(Recall that such a test does not perform any transition in our vari-
ant of ConGolog.)

The relaxation operation on δ wrt Au(a, s) is as follows:

rl(δ,Au) = pj (δ,Au)‖(πa.Au(a)?; a)∗.

In other words, we project out the actions in Au from δ and run
the resulting program concurrently with one that picks (uncon-
trollable) actions filtered by Au and executes them. The result-
ing program no longer constrains the occurrence of actions from
Au in any way. In fact, notice that the remaining program of
(πa.Au(a)?; a)∗ after the execution of an (uncontrollable) filtered
action is (πa.Au(a)?; a)∗ itself, and that such a program is always
Final.

Now we are ready to define relaxed supervision. Let us consider
a supervisor S with supervision specitfication δS for agent B with
behavior δB . Let the action filter Au(au, s) specify the uncontrol-
lable actions. Then the relaxed supervision of δS (for Au(au, s))
in s is the relaxation of δS so as that it allows every uncontrollable
action, namely: rl(δS , Au). So we can characterize the behavior
of B under the relaxed supervision of S as:

δB & rl(δS , Au).

The following properties are immediate consequences of the def-
initions:

PROPOSITION 3. The relaxed supervision rl(δS , Au) is con-
trollable wrt δB in situation s.

PROPOSITION 4. CR(δB & δS , s) ⊆ CR(δB &
rl(δS , Au), s).
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PROPOSITION 5. If CR(δB & rl(δS , Au), s) ⊆ CR(δB &
δS , s), then δS is controllable wrt δB in situation s.

Notice that, the first one is what we wanted. But the second one
says that rl(δS , Au) may indeed by more permissive than δS : some
complete runs that are disallowed in δS may be permitted by its
relaxation rl(δS , Au). This is often not acceptable. Proposition 5
says that when the converse of Proposition 4 holds, we have that the
original supervision δS is indeed controllable wrt δB in situation s.
Notice however that even if δS is controllable wrt δB in situation s,
it may still be the case that CR(δB & rl(δS , Au), s) ⊂ CR(δB &
δS , s).

Maximally permissive supervisor. Next we study a more interest-
ing, more conservative approach: we require the supervision speci-
fication δS to be fulfilled, and for getting controllability we further
restrict the specification if needed. This is the classical approach
adopted in the W&R framework, and indeed, we are able to show
that the key result of the W&R framework is preserved in our gener-
alized setting: there is, in principle, a unique maximally permissive
way of restricting the supervision specification so that it still ful-
fills δS while being controllable. We call the resulting supervisor
the maximally permissive supervisor.

To phrase this result in our setting, however, we need to augment
our programming language with a new construct set(E) that takes
an arbitrary set of sequences of actions E and makes it a program.
For such a construct next and Final are defined as follows:

next(set(E), a, s) =





set(E′) with E′ = {~a | a~a ∈ E}
if E′ 6= ∅

⊥ if E′ = ∅
Final(set(E), s) ≡ (ε ∈ E)

Thus set(E) can be executed to produce any of the sequences of
actions in E.

Notice that for every program δ and situation s, we can define
Eδ = CR(δ, s) such that CR(set(Eδ), s) = CR(δ, s). The con-
verse does not hold in general, i.e., there are programs set(E)
such that for all programs δ, not involving the set(·) construct,
CR(set(Eδ), s) 6= CR(δ, s). That is, the syntactic restrictions in
SDConGolog may not allow us to represent some possible sets of
sequences of actions.7

With the set(E) construct at hand, following [19], we may de-
fine the maximally permissive supervisor mps(δB , δS , s) of the
agent behavior δB which fulfills the supervision specification δS
in situation s, as:

mps(δB , δS , s) = set(
⋃
E∈E E) where

E = {E | E ⊆ CR(δB & δS , s)
and set(E) is controllable wrt δB in s}

Intuitively mps denotes the maximal set of runs that are effec-
tively allowable by a supervisor that fulfills the specification δS ,
and which can be left to the arbitrary decisions of the agent behav-
ing as δB on the uncontrollable actions. A quite interesting result
is that, even in the general setting we are presenting, such a max-
imally permissive supervisor always exists and is unique. Indeed,
we can show:

THEOREM 6. For the maximally permissive supervisor
mps(δB , δS , s) the following properties hold:
7Obviously there are certain sets that can be expressed directly in
SDConGolog , e.g., when E is finite. However notice that in the
general case the object domain may be infinite, and set(E) may
not be representable as a finitary SDConGolog program.

1. mps(δB , δS , s) always exists and is unique;

2. mps(δB , δS , s) is controllable wrt δB in s;

3. For every possible controllable supervision specification δ̂S
for δB in s such that CR(δB & δ̂S , s) ⊆ CR(δB &

δS , s), we have that CR(δB & δ̂S , s) ⊆ CR(δB &
mps(δB , δS , s), s).

PROOF. We prove the three claims separately.

Claim 1. It follows directly from the fact set(∅) satisfies the con-
ditions to be included in mps(δB , δS , s).

Claim 2. It suffices to show that ∀~aau.~a ∈ GR(δB &
mps(δB , δS , s), s) and Au(au, do(~a, s)) we have that if ~aau ∈
GR(δB , s) then ~aau ∈ GR(mps(δB , δS , s), s). Indeed, if
~a ∈ GR(δB & mps(δB , δS , s), s) then there is an control-
lable supervision specification set(E) such that ~a ∈ GR(δB &
set(E), δS , s), s). set(E) being controllable wrt δB in s, if
~aau ∈ GR(δB , s) then ~aau ∈ GR(set(E), s), but then ~aau ∈
GR(mps(δB , δS , s), s).

Claim 3. It follows immediately from the definition of
mps(δB , δS , s), by noticing that CR(δB & δ̂S , s) = CR(δB &
set(Eδ̂S ), s), and observing that mps(δB , δS , s) is essentially the
union of such controllable set(Eδ̂S ).

Returning to our running example, if we assume that the break
action is uncontrollable (and the others are controllable), the su-
pervisor S1 can only ensure that its constraints are satisfied if it
forces B1 to discard an object as soon as it is broken and re-
paired. This is what we get as maximally permissive supervisor
mps(δB1, δS1, S0), whose set of runs can be shown to be exactly
that of:

[π x.Available(x)?;
use(x)∗;
[nil | (break(x); repair(x))];
discard(x)]∗

By the way, notice that (δB1 & rl(δS1, Au)) instead is completely
ineffective since it has exactly the runs of δB1.

Unfortunately, in general, mps(δB , δS , s) requires the use of the
program construct set(E) which is mostly of theoretical interest.
For this reason the above characterization remains essentially math-
ematical. So next, we develop a new construct for execution of
programs under maximally permissive supervision, giving up on
precomputing the maximally permissive supervision specification
a priori and instead directly computing it online while the agent is
operating.

Maximally permissive supervised execution. To capture the no-
tion of maximally permissive execution of agent B with behavior
δB under the supervision of S with behavior δS in situation s, we
introduce a special version of the synchronous concurrency con-
struct that takes into account the fact the some actions are uncon-
trollable. Without loss of generality, we assume that δB and δS
both start with a common controllable action (if not, it is trivial to
add a dummy action in front of both so as to fullfil the require-
ment). Then, we characterize the construct through next and Final
as follows:
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next(δB &Au δS , a, s) =



next(δB , a, s) &Au next(δS , a, s) if
next(δB , a, s) 6= ⊥ and next(δS , a, s) 6= ⊥ and
if ¬Au(a, s), then

for all ~au such that Au( ~au, do(a, s))
if next∗(Σ(δB), a ~au, s) 6= ⊥,
then next∗(Σ(δS), a ~au, s) 6= ⊥

⊥ otherwise

where Au( ~au, s), meaning that action sequence ~au is uncontrol-
lable in situation s, is inductively defined on the length of ~au
as the smallest predicate such that: (i) Au(ε, s) ≡ true; (ii)
Au(au ~au, s) ≡ Au(au, s) ∧ Au( ~au, do(au, s)). Thus, the max-
imally permissive supervised execution of δB for the specification
δS is allowed to perform action a in situation s if a is allowed by
both δB and δS and moreover, if a is controllable, then for every
sequence of uncontrollable actions ~au, if ~au may be performed by
δB right after a on one of its complete runs, then it must also be
allowed by δS (on one of its complete runs). Essentially, an action
a by the agent must be forbidden if it can be followed by some
sequence of uncontrollable actions that violates the specification.

Final for the new construct is as follows:

Final(δB &Au δS , s) ≡ Final(δB , s) ∧ Final(δS , s).

This new construct captures exactly the maximally permissive su-
pervisor; indeed the theorem below shows the correctness of maxi-
mally permissive supervised execution:

THEOREM 7.

CR(δB &Au δS , s) = CR(δB & mps(δB , δS , s), s).

PROOF. We start by showing: CR(δB &Au δS , s) ⊆
CR(δB & mps(δB , δS , s), s). It suffices to show that δB &Au δS
is controllable for δB in s. Indeed, if this is the case, by considering
that δB & mps(δB , δS , s) is the largest controllable supervisor for
δB in s, and that RR(δB & (δB &Au δS), s) = RR(δB &Au

δS , s), we get the thesis.
So we have to show that: ∀~aau.~a ∈ GR(δB &Au δS , s) and
Au(au, do(~a, s)) we have that if ~aau ∈ GR(δB , s) then ~aau ∈
GR(δB &Au δS , s).
Since, wlog we assume that δB and δS started with a com-
mon controllable action, we can write ~a = ~a′ac ~au, where
¬Au(ac, do(~a′, s)) and Au( ~au, do(~a′ac, s)) holds. Let δ′B =

next∗(δB , ~a′, s), δ′S = next∗(δS , ~a′, s), and s′ = do(~a′, s).
By the fact that ~a′ac ~au ∈ GR(δB &Au δS , s) we know that
next(δ′B &Au δ′S , do(ac, s

′)) 6= ⊥. But then, by de definition
of next , we have that for all ~bu such that Au( ~bu, s

′) if ~bu ∈
GR(δ′B , do(ac, s

′)) then ~bu ∈ GR(δ′S , do(ac, s
′)). In particular

this holds for ~bu = ~auau. Hence we have that if ~aau ∈ GR(δB , s)
then ~aau ∈ GR(δS , s).

Next we prove: CR(δB & mps(δB , δS , s), s) ⊆ CR(δB &Au

δS , s). Suppose not. Then there exist a complete run ~a such that
~a ∈ CR(δB & mps(δB , δS , s), s) but ~a 6∈ CR(δB &Au δS , s).
As an aside, notice that ~a ∈ CR(δ, s) then ~a ∈ GR(δ, s) and for
all prefixes ~a′ such that ~a′~b = ~a we have ~a′ ∈ GR(δ, s).

Hence, let ~a′ = ~a′′a such that ~a′ ∈ GR(δB &Au δS , s) but
~a′′a 6∈ GR(δB &Au δS , s), and let δ′′B = next∗(δ′′B , ~a′′, s),
δ′′S = next∗(δS , ~a′′, s), and s′ = do( ~a′′, s).

Since ~a′′a 6∈ GR(δB &Au δS , s), it must be the case that
next(δ′′B &Au δ′′S , a, s

′′) = ⊥. But then, considering that both

A2

U1A3

A1 A2

U1A3

A2

U1A3

A1

A4

(a) (b) (c)

Figure 2: Diagrams of agent behavior specifications δB1 in (a),
δB2 in (b), and δB3 in (c).

next(δ′′B , a, s
′′) 6= ⊥ and next(δ′′S , a, s

′′) 6= ⊥, it must be the
case that ¬Au(a, s′′) and exists ~bu such that Au( ~bu, do(a, s

′′)),
and a ~bu ∈ GR(δ′′B , s

′′) but a ~bu 6∈ GR(δ′′S , s
′′).

Notice that ~bu 6= ε, since we have that a ∈ GR(δ′′S , s
′′). So ~bu =

~cubu ~du with a ~cu ∈ GR(δ′′S , s
′′) but a ~cubu 6∈ GR(δ′′S , s

′′).

Now ~a′ ∈ GR(δB & mps(δB , δS , s), s) and since
Au( ~cubu, do(~a′, s)), we have that ~a′ ~cubu ∈ GR(δB &
mps(δB , δS , s), s). Since, mps(δB , δS , s) is controllable for δB
in s, we have that, if ~a′ ~c′ubu ∈ GR(δB , s) then ~a′ ~cubu ∈
GR(mps(δB , δS , s), s). This, by definition of mps(δB , δS , s), im-
plies ~a′ ~cubu ∈ GR(δB & δS , s), and hence, in turn, ~a′ ~cubu ∈
GR(δS , s). Hence, we can conclude that a ~c′ubu ∈ GR(δ′′S , s

′′),
getting a contradiction.

Examples. Let us illustrate what is involved in obtaining a max-
imally permissive supervisor in the presence of uncontrollable ac-
tions. Suppose that we are in situation S1 with an agent that has the
following behavior (see Figure 2a):

δB1 = A1 | (A2; (A3 | U1)),

where action U1 is uncontrollable (i.e. Au(a, s) ≡ a = U1); we
also assume that all actions are always executable. Suppose as well
that we have the following supervision specification:

δS = (πa.(a 6= A1 ∧ a 6= A3 ∧ a 6= U1)?; a)∗; (A1 | A3),

i.e., eventuallyA1 orA3 should be performed, andU1 should never
occur. If we let the agent perform action A2, we get to situation
do(A2, S1) with the remaining agent behavior (A3 | U1) and de-
sired behavior δS , where we clearly can no longer effectively con-
trol the agent to ensure that it continues to behave as desired. Thus
in situation S1, we have to force the agent to perform A1. We can
in fact do this since A1 and A2 are controllable. The maximally
permissive controllable supervisormps(δB1, δS , S1) for this agent
in S1 is simply set({A1}) (since CR(δ, s) = {A1, (A2;A3)} and
set({(A2;A3)}) is not controllable wrt δB1 in S1).

If instead the agent’s behavior in S1 had been (see Figure 2b):

δB2 = A2; (A3 | U1),

there would have been no way to ensure that the agent behaved
as desired other than ruling out all actions, because even if we
can control the agent in S1, we are not be able to ensure that it
continues to behave as desired once it gets to do(A2, S1). Indeed
mps(δB2, δS , S1) = set(∅).

The point of the example is that the supervisor must look
ahead and always steer the agent away from paths where
it cannot be prevented from eventually doing undesirable ac-
tions. Our definitions of mps and &Au ensure this. In-
deed, for our example, we have that next((δB1 &Au
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δS), A2, S1) = ⊥ since next∗(Σ(δB1), [A2, U1], S1) 6= ⊥ and
next∗(Σ(δS), [A2, U1], S1) = ⊥. Thus

next((δB1 &Au δS), a, S1) 6= ⊥ ≡ a = A1.

Moreover, next((δB1 &Au δS), A1, S1) = (nil &Au nil) and
Final((nil &Au nil), do(A1, S1)). Thus the only way execute
(δB1 &Au δS) in S1 is to perform A1, after which one terminates
successfully. For agent behavior δB2 on the other hand, we have

∀a.next((δB1 &Au δS), a, S1) = ⊥,
i.e., all we can do is block.

Note also that in general, one must do lookahead search over
the program to find complete executions using &Au . Consider the
following variant of the above example (see Figure 2c):

δB3 = A1 | (A2;A4; (A3 | U1)).

In this case, next((δB3 &Au δS), A2, S1) = ((A4; (A3 |
U1) &Au δS); the resulting program is not final in do(A2, S1),
yet next(((A4; (A3 | U1) &Au δS), a, do(A2, S1)) = ⊥ for all
a. However if we do looakead search, we get that

next(Σ(δB3 &Au δS), a, S1) 6= ⊥ ≡ a = A1,

as well as next(Σ(δB3 &Au δS), A1, S1) = Σ(nil &Au nil) and
Final(Σ(nil &Au nil), do(A1, S1)).

5. CONCLUSION
We have investigated agent supervision in Situation-Determined

ConGolog, or SDConGolog, programs. Our account of maximally
permissive supervisor builds on the well-established Wonham and
Ramadge framework for supervisory control of discrete event sys-
tems. However, virtually all work on this framework deals with
finite state automata [2, 18], while we handle infinite state systems
in the context of the rich agent setting provided by the situation
calculus and ConGolog. We used ConGolog as a representative of
an unbounded-states process specification language, and it should
be possible to adapt our account of supervision to other related
languages. We considered a form of supervision that focuses on
complete runs, i.e., runs that lead to Final configurations. We can
ensure that an agent finds such executions by having it do looka-
head/search. Also of interest is the case in which agents act boldly
without necessarily performing search to get to Final configura-
tions. In this case, we need to consider all partial runs, not just
good ones. Note that this would actually yield the same result if we
engineered the agent behavior such that all of its runs are good runs,
i.e. if RR(δB , s) = GR(δB , s), i.e., all configurations are final.
In fact, one could define a closure construct cl(δ) that would make
all configurations of δ final. Using this, one can apply our specifi-
cation of the maximally permissive supervisor to this case as well
if we replace δB & δS by cl(δB & δS) in the definition. Observe
also, that under the assumption that RR(δB , s) = GR(δB , s), in
next(δB &Au δS , a, s) we no longer need to do the search Σ(δB)
and Σ(δS) and can directly use δB and δS .

We conclude by mentioning that if the object domain is finite,
then ConGolog programs assume only a finite number of possible
configurations. In this case, we can take advantage of the finite
state machinery developed for discrete event systems on the basis
of [19] (generalizing it to deal with situation-dependent sets of con-
trollable actions), and the recent work on translating ConGolog into
finite state machines and back [7], to obtain a program that actually
characterizes the maximally permissive supervisor. In this way, we
can completely avoid doing search during execution. We leave an
exploration of this notable case for future work.
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ABSTRACT
Policy iteration algorithms for partially observable Markov
decision processes (POMDP) offer the benefits of quick con-
vergence and the ability to operate directly on the solution,
which usually takes the form of a finite state controller. How-
ever, the controller tends to grow quickly in size across iter-
ations due to which its evaluation and improvement become
costly. Bounded policy iteration provides a way of keeping
the controller size fixed while improving it monotonically un-
til convergence, although it is susceptible to getting trapped
in local optima. Despite these limitations, policy iteration
algorithms are viable alternatives to value iteration.

In this paper, we generalize the bounded policy iteration
technique to problems involving multiple agents. Specifi-
cally, we show how we may perform policy iteration in set-
tings formalized by the interactive POMDP framework. Al-
though policy iteration has been extended to decentralized
POMDPs, the context there is strictly cooperative. Its gen-
eralization here makes it useful in non-cooperative settings
as well. As interactive POMDPs involve modeling others, we
ascribe nested controllers to predict others’ actions, with the
benefit that the controllers compactly represent the model
space. We evaluate our approach on multiple problem do-
mains, and demonstrate its properties and scalability.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.8 [Problem Solving, Control Methods, and
Search]: Dynamic Programming

General Terms
Theory, Performance

Keywords
policy iteration, decision making, multiagent settings

1. INTRODUCTION
Decision making in sequential and partially observable,

single-agent settings is typically formalized by partially ob-
servable Markov decision processes (POMDP) [11, 19]. In

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the multiagent context, the decision making is exponentially
harder, and depending on the type and perspective of the
interaction, is formalized by one of multiple frameworks. In
cooperative settings requiring solutions for all agents, decen-
tralized POMDPs [2] sufficiently model the joint decision-
making problem. Additionally, interactive POMDPs [7] for-
malize the decision-making problem of an individual agent
in a multiagent setting, which need not be cooperative. Both
these frameworks generalize POMDPs in different ways and
have relied on extending approximation techniques for POM
DPs to their own formalizations for tractability.

One such technique involves searching the solution space
directly. Initially proposed in the context of POMDPs [9],
the technique represents the solution, called the policy, as a
finite state controller and iteratively improves it until con-
vergence. The benefit is that the controller typically con-
verges before its value converges across all states and it is
useful for an infinite horizon. However, nodes in the con-
troller grow quickly making it computationally difficult to
evaluate the controller and continually improve it. Bounded
policy iteration (BPI) avoids this growth by keeping the size
of the controller fixed as it seeks to monotonically improve
the controller’s value by replacing a node and its edges with
another one [15]. Expectedly, this scales POMDP solutions
to larger problems, but the controllers often converge to a
local optima. Nevertheless, the benefits of this approach are
substantial enough that it has been extended to decentral-
ized POMDPs [3] leading to improved scalability.

In this paper, we introduce a generalization of BPI to the
context of finitely-nested interactive POMDPs (I-POMDP)
thereby improving on previous approximation techniques on
two important fronts: we may solve larger problem domains
and generate solutions of much better quality. In contrast to
decentralized POMDPs, I-POMDPs do not assume common
knowledge of initial beliefs of agents or common rewards,
due to which others’ beliefs, capabilities and preferences are
modeled. They allow for others modeling other agents, and
terminate the nesting at some finite level. Recent applica-
tions of I-POMDPs testify to its significance and growing
appeal. They are being used to explore strategies for coun-
tering money laundering by terrorists [12, 13] and enhanced
to include trust levels for facilitating defense simulations [17,
18]. They have been used to produce winning strategies for
playing the lemonade stand game [21] and even modified to
include empirical models for simulating human behavioral
data pertaining to strategic thought and action [6].

Being a generalization of POMDPs, solutions of I-POMDPs
are also affected by the curses of dimensionality and history
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that affect POMDPs [14]. The dimensionality hurdle is fur-
ther aggravated because an agent maintains belief not only
over the physical state but also over the models of the other
agents, which grow over time as the agents act and observe.
Previous approximations for finitely-nested I-POMDPs in-
clude interactive particle filtering [4] and interactive point-
based value iteration [5]. Particle filtering seeks to mitigate
the adverse effect of the curse of dimensionality by form-
ing a sampled, recursive representation of the agent’s nested
belief, which is then propagated over time. However, its effi-
ciency is still impacted by the number of models because this
increases the need for more samples, and it is better suited
for solving I-POMDPs with a given prior belief. Interactive
point-based value iteration generalizes point-based value it-
eration [14] to multiagent settings, and reduces the effect of
the curse of history. While this approach significantly scales
I-POMDPs to longer horizons, we must include all reachable
models of the other agent in the state space, which grows
exponentially over time, thereby making it susceptible to the
dimensionality hurdle. We may also group together models
that are behaviorally equivalent resulting in a partition of
the model space of the other agent into a finite number of
equivalence classes [16]. This approach, analogously to us-
ing finite state controllers, allows a compact representation
of the model space but computing the exact equivalence re-
quires solving the models.

In generalizing BPI, the interactive state space of the sub-
ject agent is reformulated to include the physical states and
the set of nodes in a controller without loss of generality. For
multiple other agents with differing capabilities and prefer-
ences, we include multiple controllers, one for each other
agent. Each iteration involves evaluating and possibly im-
proving the nested controller of the other agent followed by
improvement of the subject agent’s controller. In order to
account for the dynamically changing state space, we in-
terleave the evaluation and improvement of controllers at
different levels. This approach differs from BPI’s implemen-
tation in decentralized POMDPs where controllers for each
agent are improved independently, but a correlation device
is introduced for coordination among them. Such a shared
source of randomness may not be feasible in non-cooperative
settings. Importantly, we observe that convergence of the
subject agent’s controller is often dependent on the lower-
level controllers converging first.

As we mentioned previously, the benefit is that the space
of possible models may be compactly represented using the
set of nodes in a controller. On the other hand, the presence
of controller(s) embedded in the state space makes evalu-
ation and improvement for the subject agent much more
expensive than in the context of POMDPs or decentralized
POMDPs. We call our approach interactive BPI and experi-
mentally evaluate its properties using benchmark problems.
In particular, we show that the converged controller for the
subject agent generates solutions of good quality in propor-
tionately less time compared to results reported by the pre-
vious best I-POMDP approximation. Ultimately, this allows
the application of I-POMDPs to scale to more realistic do-
mains with reduced trade off, as we demonstrate by applying
the technique to larger problem domains.

2. BACKGROUND
We briefly review the framework of finitely-nested I-POMDPs

and outline previous policy iteration in the context of POMDPs.

2.1 Interactive POMDP
A finitely-nested I-POMDP [7] for an agent i with strategy

level, l, interacting with another agent j is defined using the
tuple:

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri, OCi〉
where:

• ISi,l denotes the set of interactive states defined as,
ISi,l = S ×Mj,l−1, where Mj,l−1 = {Θj,l−1 ∪ SMj},
for l ≥ 1, and ISi,0 = S, where S is the set of physi-
cal states. Θj,l−1 is the set of computable, intentional

models ascribed to agent j: θj,l−1 = 〈bj,l−1, θ̂j,l−1〉,
where bj,l−1 is agent j’s level l − 1 belief, bj,l−1 ∈
△(ISj,l−1), and θ̂j,l−1 = 〈A, Tj , Ωj , Oj , Rj , OCj〉, is
j’s frame. Here, j is assumed to be Bayes-rational.
For simplicity, we assume that the frame of agent j
is known and remains fixed; it need not be the same as
that of agent i. SMj is the set of subintentional models
of j. For the sake of simplicity, in this paper we focus
on ascribing intentional models only.

• A = Ai ×Aj is the set of joint actions of all agents.

The remaining parameters – transition function, Ti,
observations, Ωi, observation function, Oi, preference
function, Ri, and the optimality criterion, OCi – have
their usual meaning as in POMDPs [11]. Note that
the optimality criterion here is the discounted infinite
horizon sum.

An agent’s belief over its interactive states is a sufficient
statistic, fully summarizing the agent’s observation history.
Beliefs are updated after the agent’s action and observa-
tion using Bayes rule. Two differences complicate the belief
update in multiagent settings. First, since the state of the
physical environment depends on the actions performed by
both agents the prediction of how it changes has to be made
based on the probabilities of various actions of the other
agent. Probabilities of other’s actions are obtained by solv-
ing its models. Second, changes in the models of other agents
have to be included in the update. The changes reflect the
other’s observations and, if they are modeled intentionally,
the update of other agent’s beliefs. In this case, the agent has
to update its beliefs about the other agent based on what it
anticipates the other agent observes and how it updates.

Given the extended belief update, solution to an I-POMDP
is a policy, analogous to that in a POMDP. Using the Bell-
man equation, each belief state in an I-POMDP has a value
which is the maximum payoff the agent can expect starting
from that belief state and over the future. Gmytrasiewicz
and Doshi [7] provide additional details on I-POMDPs and
how they compare with other multiagent frameworks.

2.2 Policy Iteration
Policy iteration provides an alternative to iterating over

the value function, by searching directly over the policy
space. While the traditional representation of a policy is as
a function from beliefs to actions and iterating over these
functions is indeed possible [20], a more convenient repre-
sentation for the purpose of policy iteration is as a finite
state controller. At any point in the iteration, the controller
represents the infinite horizon policy of the agent.

1040



We may define a simple controller for an agent i, as:

πi = 〈Ni, Ei,Li, Ti〉

where Ni is the set of nodes in the controller, Ei is the set
of edge labels which are observations, Ωi, in a POMDP, Li

is the mapping from each node to an action, Li : Ni → Ai,
and Ti is the edge transition (successor) function, Ti : Ni ×
Ai × Ωi → Ni. For convenience, we group together Ei, Li

and Ti in f̂i.
Policy iteration algorithms improve the value of the con-

troller by interleaving steps of evaluating the policy with
improving it by backing up the linear vectors that make up
the value function. We may view each node in the controller
as representing the action and value associated with a vec-
tor. As the value function is improved, new vectors may be
introduced causing additional nodes in the controller, while
some nodes may be dropped if their corresponding vectors
are dominated at all states by some other vector [9].

ε

ε

Figure 1: Value vector (solid line in bold), represent-
ing a node in the improved controller, is a convex
combination of the two dashed backed-up vectors in
bold and point-wise dominates a vector that consti-
tutes the value function of the previous controller by
ǫ. The dashed vectors constitute the optimal, backed
up value function.

Controllers often grow exponentially in size during im-
provement making evaluation and further improvement in-
tractable. Poupart and Boutilier [15] show that the con-
troller size may be minimized and, in fact kept bounded, in
two ways: First, we may replace a node whose correspond-
ing vector is dominated by a convex combination of updated
vectors. A convex-combination vector passing through the
point of intersection of the combined vectors and parallel to
the dominated vector is selected, as we illustrate in Fig. 1.
This replaces multiple vectors with a single one and allows
us to prune nodes, which previously would not have been
removed. This leads to a controller whose transitions due
to observations, Ti, may be stochastic. Second, note that if
the controller hasn’t converged, a backup is guaranteed to
improve it. Thus, we may replace some node with another
that represents a convex combination of backed up vectors,
and whose value is better. This causes the action mapping,
Li, to be stochastic as well. Of course, the technique is sus-
ceptible to local optima.

3. GENERALIZED POLICY ITERATION
We generalize the bounded policy iteration technique to

the context of I-POMDPs nested to a finite level, l. Notice
that a finite state controller partitions the intentional model
space, Θj,l−1, among its nodes. This is because for a belief
in any model in Θj,l−1, a node exists in the controller that
will provide the (boundedly) optimal action(s). Therefore,
the interactive state space, ISi,l = S ×Θj,l−1, becomes:

ISi,l = S ×Fj,l−1

where fj,l−1 ∈ Fj,l−1 is, fj,l−1 = 〈nj,l−1, f̂j,l−1, θ̂j,l−1〉. Here,
nj,l−1 is a node in the set of nodes in the controller, nj,l−1 ∈
Nj,l−1; f̂j,l−1 is as defined previously in Section 2.2 for a con-

troller; and θ̂j,l−1 is j’s frame and is fixed. Notice that the
controller represents an initial solution for the entire inten-
tional model space. If there are K other agents with differ-
ing capabilities and preferences, the interactive state space
becomes, ISi,l = S ×K

k=1 Fk,l−1, where Fk,l−1 represents a
different controller for each k. This is because the agents
differ in their frames and consequently, how their controllers
evolve.

Because the set of nodes in Fj,l−1 is finite, an important
benefit of the above representation is that the infinite model
space is represented using a finite node space, thereby mak-
ing the interactive state space finite as well (assuming that
the physical state space is finite). The large model space is
often a hurdle for previous approximation techniques that
operate on it, such as the interactive point-based value iter-
ation [5]. This motivated arbitrary limitations on the mod-
els and on how they evolve, which are no longer necessary.
Other, parameterized representations of the model space are
also under investigation [8].

Let Fi,l be an initial, level l controller for the subject agent
i. Next, we move to evaluating and improving agent i’s con-
troller iteratively. Because the controller of the other agent
is embedded in i’s state space, these steps utilize updated
controllers at the lower levels as well thereby generalizing
the iterations to multiagent settings.

3.1 Policy Evaluation
As we mentioned previously, each node, ni,l, in the con-

troller is associated with a vector of values, V (·, ni,l), that
gives the expected (converged) value, at each interactive
state, of following the controller beginning from that node.
In the context of I-POMDPs, this is a |S×Nj,l−1|-dimensional
vector for each node. A step of policy evaluation involves
computing this vector for each node in the controller. We
may do this by solving the following system of linear equa-
tions:

V (s, nj,l−1, ni,l) =
P

ai∈Ai

Pr(ai|ni,l)
P

aj∈Aj

Pr(aj |nj,l−1)

×

8

<

:

Ri(s, ai, aj) + γ
P

oi

P

s′

P

n′
j,l−1

Ti(s, ai, aj , s
′) Oi(s

′, ai, aj ,

oi)×
P

oj

Oj(s
′, ai, aj , oj) Pr(n′

j,l−1|nj,l−1, aj , oj)

× P

n′
i,l

Pr(n′
i.l|ni,l, ai, oi) V (s′, n′

j,l−1, n
′
i,l)

9

=

;

∀s, nj,l−1, ni,l

(1)
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In Eq. 1, we compute the expectation over i’s actions be-
cause multiple actions are possible from a single node of
the stochastic controller. Given the multiagent setting, ac-
tions of both agents appear in the transition, observation
and reward functions in the equation. The terms Pr(ai|ni,l),
Pr(n′

i.l|ni,l, ai, oi) and Pr(aj |nj,l−1), Pr(n′
j.l−1|nj,l−1, aj , oj)

are obtained from f̂i,l and f̂j,l−1, respectively, and Oj is
obtained from j’s frame; all of which are present in fj,l−1.
Equation 1 is defined for each physical state, s, j’s controller
node, nj,l−1, and i’s controller node, ni,l. Notice that the up-
date of the other agent’s belief is represented using a transi-
tion from one node to another by the term, Pr(n′

j.l−1|nj,l−1,
aj , oj).

Solution of the system results in a vector of values for each
node in agent i’s controller. In the next step, we improve the
controller by introducing new nodes with updated value vec-
tors that may uniformly dominate, possibly in combination,
those of an existing node and prune the dominated node.

3.2 Policy Improvement
The controller is improved by evaluating whether a node,

ni,l, in i’s controller may be replaced with another whose
value, possibly a convex combination of the updated vectors,
is better at all interactive states. Instead of first updating the
value vectors using the backup operation and then checking
for pointwise dominance, Poupart and Boutilier [15] pro-
posed to integrate the two in a single linear program. Our
linear program differs from that for a POMDP in involv-
ing additional terms related to j’s controller. We show this
linear program below:

max ǫ
s.t. V (s, nj,l−1, ni,l) + ǫ ≤P

ai

cai

P

aj

Pr(aj |nj,l−1)

×

8

<

:

Ri(s, ai, aj) + γ
P

oi

P

s′

P

n′
j,l−1

Ti(s, ai, aj , s
′)

× Oi(s
′, ai, aj , oi)

P

oj

Oj(s
′, ai, aj , oj)

×Pr(n′
j,l−1|nj,l−1, aj , oj)

P

n
oi
i,l

cai,n
oi
i,l

V (s′, n′
j,l−1, n

oi
i,l)

9

=

;

∀ s, nj,l−1;

P

ai

cai = 1;
P

n
oi
i,l

cai,n
oi
i,l

= cai ∀ai, oi, n
oi
i,l;

cai,n
oi
i,l
≥ 0 ∀ai, oi, n

oi
i,l; cai ≥ 0 ∀ai

(2)
The value function terms in Eq. 2 are obtained from the

previous policy evaluation step. We run this linear program
for each of i’s nodes until a positive ǫ is obtained for a node.
ǫ > 0 signals that node, ni,l, may be pruned because a con-
vex combination of the backed up value vectors dominate
it at least by ǫ at all physical states and nodes of j’s con-
troller. Because a single ǫ value is sought for all s, nj,l−1,
the dominating value vector will be parallel to the pruned
one. The solution of the program allows us to construct a
new node (say, n′

i,l) with stochastic actions of agent i as,
Pr(ai|n′

i,l) = cai , and the transition probability to a node
(noi

i,l) on performing action ai and receiving observation oi

as, Pr(noi
i,l|n′

i,l, ai, oi) = cai,n
oi
i,l

.

We iterate over the evaluation and improvement steps un-
til a positive ǫ is not obtained for any node in i’s current
controller and the value vectors from Eq. 1 have fixated for
every node. Because of the strategy of obtaining a value
vector that is parallel to the pruned one, the iterations may
converge on a peculiar local optima in which all the value
vectors are tangential to the intersections of the exact value
function at that step, due to which no further improvement
using Eq. 2 is possible. Poupart and Boutilier [15] mention
a simple approach of potentially dislodging from the local
optima, which is applicable in the context of I-POMDPs as
well. Specifically, we pick a belief reachable from the tangen-
tial belief and add a node to the controller that corresponds
to the value vector associated with the reachable belief. This
allows the value of the node representing the tangential vec-
tor to improve.

3.3 Nested Controllers
Given that the other agent’s controller is embedded in

agent i’s interactive state space, a naive but efficient ap-
proach would be to iteratively improve i’s controller while
holding j’s controller in the state space fixed. However, the
corresponding solution will likely be poor as better qual-
ity controllers may be available to predict the other agent’s
actions. This is particularly relevant because I-POMDPs
model the other agent as being rational. Subsequently, a
more sophisticated approach is to interleave improvements
of the other agent’s controller with improvements of agent
i’s controller. However, not only is this approach computa-
tionally more intensive, but agent i’s interactive state space
may change dynamically at every iteration.

Fortunately, the previously detailed approach of BPI keeps
the number of nodes fixed as it seeks to improve the con-
troller. Consequently, the size of agent i’s interactive state
space – and that of j if the level of nesting is greater than
1 leading to embedded controllers in j’s interactive state
space – remains fixed. Although nodes may be added to
j’s controller initially or to escape local optima, we per-
form these iterations before beginning the improvement of
the higher-level, agent i’s, controller. After this point, the
subject agent’s interactive state space remains fixed in size,
although the individual states may change across iterations
due to updates in the stochastic distributions, f̂j,l−1.

Finally, at level 0 the I-POMDP collapses into a POMDP.
Consequently, we may utilize the traditional BPI [15] for
POMDPs in order to evaluate and improve the level 0 agent’s
controller.

4. ALGORITHM
Algorithm 1 outlines the procedure, labeled Interactive BPI

(I-BPI), for performing BPI in the context of finitely nested
I-POMDPs. It begins by creating a trivial controller having
a single node with a randomly selected action, at each level
for agent i or j as appropriate. The interactive state space
is then reformulated to include the nodes from the other
agent’s controller (lines 1-2) as we mentioned previously. In
order to apply BPI on a controller of reasonable size, we per-
form a single full backup at each level to obtain controllers
of size |Ai| or |Aj |, as appropriate (line 3). If there are more
agents with differing frames, then a controller is initialized
for each other agent. Subsequent steps are performed for
each of these controllers.

Algorithm 2, Evaluate&Improve, then recursively performs
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Figure 2: Recursive invocations lead to evaluation and improvement beginning at the bottom and up the
nesting levels. Controllers were initialized with a single node and a full backup takes place in the previous
iteration (shown dashed and greyed out). Current iteration involves evaluation and bounded improvement
of the nested controller bottom up as the recursion unwinds. We demonstrate this process in the context of
an example: the well-known multiagent tiger problem. The node labels represent actions of the agents: listen
(L), open the left door (OL), and open the right door (OR).

Algorithm 1 Interactive BPI for I-POMDPs

Interactive BPI (I-POMDP: θi,l) returns solution,
π∗

i,l

1: Recursively initialize controllers, πi(j),l, for both agents,
such that |Ni(j),l| = 1, down to level 0

2: Reformulate, ISi(j),l = S ×Fj(i),l at each l in θi,l

3: Beginning with level, l = 0, perform a single-step full
backup at each level, l, resulting in |Ni(j),l| ≤ |Ai(j)|
nodes in a controller, πi(j),l

4: repeat
5: repeat
6: πi,l ← Evaluate&Improve (πi,l)
7: until no more improvement is possible
8: Push controllers at each level from local optima
9: until no more escapes are possible

10: return converged (nested) controller, π∗
i,l

a single step of evaluation of the nested controller and its
bounded improvement (lines 1-2). For the lowest-level con-
troller, the evaluation and improvement proceeds as outlined
by Poupart and Boutilier [15] in the context of POMDPs.
At levels 1 and above, we evaluate the controller using Eq. 1
and improve it while keeping the number of nodes fixed using
Eq. 2.

The presence of a nested controller leads to novel chal-
lenges. Observe that I-BPI interleaves the evaluation and
improvement of the controllers at the different levels. The
alternate technique would be to evaluate and improve the

Algorithm 2 Evaluation and bounded improvement of the
nested controllers
Evaluate&Improve (nested controller: πi(j),l) returns con-
troller, π′

i(j),l

1: if l ≥ 1 then
2: πj(i),l−1 ← Evaluate&Improve (πj(i),l−1)
3: if l=0 then
4: Evaluate controller, πi(j),0 = 〈Ni(j), Ei(j), Li(j), Ti(j)〉
5: Improve controller, if possible, analogously to a

POMDP [15]
6: else
7: Evaluate controller, πi(j),l = 〈Ni(j),l, Ei(j),l, Li(j),l,

Ti(j),l〉, using Eq. 1
8: Improve controller, if possible, while keeping |Ni(j),l|

fixed using Eq. 2
9: return improved controller, π′

i(j),l

controller of the lower level until convergence. The former
approach better facilitates anytime behavior in comparison
to the latter in which the higher-level controller may not
be improved for many iterations until the lower-level con-
troller has converged. Of course, the higher-level controllers
in the two approaches may not converge to the same local
optima. Furthermore, notice that the bounded improvement
of j’s or i’s lower-level controller while keeping the number
of nodes fixed still alters the interactive state space because
f̂j,l−1 or f̂i,l−2 changes. Consequently, ISi,l or ISj,l−1 may
dynamically change at each iteration. Therefore, an alter-

1043



nate technique of evaluating the controllers at all levels first
followed by recursively improving them is not feasible be-
cause the previous value evaluation of a level l controller is
invalidated when lower-level controllers improve.

We illustrate a step within I-BPI on a level l I-POMDP
in Fig. 2. On convergence, Algorithm 1 attempts to push
the nested controller past any local optima, by escaping it
for the lower-level controllers first (line 8). When this is no
longer possible, the converged nested controller is returned
as the solution of the level l I-POMDP.

Computational Savings In general, the space of mod-
els ascribed to the other agent is continuous because each
candidate model includes a possible belief as well. I-BPI re-
formulates the interactive state space by mapping the space
of models to a finite set of nodes in the other agent’s con-
troller, without loss of generality. However, if we limit the
model space and let |Θ| be a bound on the number of models
acribed to one other agent. Then, the interactive state space
for K other agents contains (K|Θ|)l models at all levels of
the nesting. Mapping |Θ| to |N | nodes of a controller, whose
size remains fixed, we obtain a set of size (K|N |)l. This space
is significantly smaller because usually, |N | ≪ |Θ|, leading
to much mitigated impacts of the curses of both dimension-
ality and history. We empirically demonstrate the effect of
these savings next.

5. EXPERIMENTS
We implemented Algorithms 1 and 2 for I-BPI shown in the

previous section, and evaluated its properties on two bench-
mark problem domains: a non-cooperative version of the
multiagent tiger problem and a cooperative version of the
multiagent machine maintainence (MM) problem, each of
which has two agents, i and j. Doshi and Gmytrasiewicz [4]
provide details on these problem domains. While these prob-
lems have small dimensions, they have been used as bench-
marks for previous I-POMDP approximation techniques, such
as the interactive particle filter [4] and interactive point-
based value iteration (I-PBVI) [5], which employ value it-
eration. In addition to these toy problems, we evaluate I-
BPI’s performance and demonstrate scalability using two
larger problem domains: autonomous unmanned aerial ve-
hicle (AUAV) reconnaissance problem on a 5 × 5 grid and
the money laundering problem [13], both of which are non-
cooperative.

The AUAV problem involves reconnaissance in a 5×5 grid
in which an AUAV is tasked with capturing a fugitive who
seeks to escape to a safe house (fixed at a predetermined grid
location). We model the AUAV as a level 1 I-POMDP. The
physical state of the fugitive at any given time is its relative
position to the safe house and that of the UAV is its rela-
tive position w.r.t. the fugitive. This formulation leads to a
physical state space of 81 states for the AUAV and 25 for
the fugitive. Each agent may take one of 5 actions of moving
in one of the four cardinal directions or listening to get ob-
servation about the target’s location. We assumed that the
actions taken by both agents on the grid are deterministic.
The 4 observations for each agent allow it to sense the car-
dinal direction of its target relative to its own location. We
assume that the observations are noisy.

The money laundering problem, introduced by Ng et al.
[13], is a game between law enforcement (blue team) and the
money launderers (red team) who aim to move their assets

from a ‘dirty’ pot to a ‘clean’ one through a series of finan-
cial transactions while evading capture by the blue team.
The blue team can place sensors at various locations such
as bank accounts, trusts and real estate to detect the pres-
ence of the ‘dirty’ money. The physical state is defined by
the joint location of the dirty money and that of the sensor.
The red team may perform any of the three nondetermin-
istic actions of placement, layering or integration to move
its assets from one location to another or it could listen to
gain noisy information about the location of the blue team’s
sensor. The blue team may place its sensors in one of eight
locations or it could confiscate the assets of the red team.
This problem exhibits a physical state space of 99 states
for the subject agent (blue team), 9 actions for the subject
agent and 4 for the opponent, and 11 observations for the
subject and 4 for the other.
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Figure 3: Average rewards for the multiagent tiger
problem generally improve until convergence as we
allocate more nodes to controllers to facilitate es-
caping local optima, in I-BPI. As we may expect,
controllers generated for more strategically nested
I-POMDPs eventually lead to better rewards. Al-
though we do not show the variance for clarity, it
tends to be small.

We begin by focusing on the tiger problem, and noting
the average reward obtained from simulating converged con-
trollers of different node sizes, and of different levels, in
Fig. 3. Observe the generally increasing trend of the average
rewards as the controllers increase in size on escaping from
local optima. This property lends itself to an anytime be-
havior for I-BPI. Each reward data point is averaged over 5
trials each involving 100 initial beliefs randomly generated,
and for each belief, between 100 and 1000 simulation runs
were carried out.

Next, in Table 1, we report the average discounted re-
wards obtained from simulating the controllers that I-BPI
generates along with the associated I-BPI run times, as we
scale in the context of the number of nesting levels. We com-
pare these rewards with those reported using the previous
best I-POMDP approximation technique, I-PBVI [5], where
the latter are obtained from actual simulation runs as well.
Although I-BPI’s controller is for an infinite number of time
steps, we limit our runs in the simulations to a finite num-
ber of steps in order to compare with I-PBVI. Notice that
I-PBVI is able to reasonably scale up to two levels only and
the corresponding rewards are significantly lower than those
obtained by I-BPI.

As we see from Table 1, I-BPI allows scaling solutions of
I-POMDPs up to four levels deep in time duration that is
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Problem Level Method Time(s) Avg. Rwd

Mult. tiger
1

I-BPI 69 11.34
I-PBVI 2,000 5.34

2
I-BPI 1,109 12.48
I-PBVI 696 3.15

3
I-BPI 3,533 13.00
I-PBVI — —

4
I-BPI 3,232 13.22
I-PBVI — —

MM
1

I-BPI 15 20.22
I-PBVI 815 4.86

2
I-BPI 39 20.55
I-PBVI 431 3.27

3
I-BPI 117 21.28
I-PBVI — —

4
I-BPI 157 21.36
I-PBVI — —

AUAV† 1 I-BPI 7,979 74.08
I-PBVI — —

Money Laun.† 1 I-BPI 1,354 -156.21
I-PBVI — —

Table 1: Average rewards of the controllers at var-
ious levels for multiple problem domains. ‘—’ indi-
cates that the corresponding values are not avail-
able likely because of scalability issues. †Rewards
reported for these larger problem domains are the
expected rewards (values) of the corresponding con-
trollers. These results were generated on a RHEL 5
system with Xeon Core2 duo, 2.8GHz each and 4
GB of RAM.

within one hour. It also scales to larger, realistic problem
domains. This improvement is primarily due to representing
the model space using a finite number of nodes. Comparison
with I-PBVI reveals that the quality of the controllers is sig-
nificantly improved. Furthermore, previous approaches have
not scaled solutions beyond two levels.

Next, we demonstrate the performance and scalability of
the algorithm on the two large and realistic problems, AUAV
reconnaissance and money laundering, in Table 1. Although
the latter has been solved previously using the interactive
particle filtering [13], the approach assumed an initial be-
lief over the interactive state space and reported run times
were more than an order of magnitude greater compared to
the time taken by I-BPI. Furthermore, our approach pro-
vides a general solution valid over the entire belief space.
Table 1 shows the run times for generating converged con-
trollers of good quality for the larger problem domains. The
rewards are the expected rewards (values) averaged over
100,000 randomly-generated belief points. While the AUAV
problem consumes slightly more than two hours, the money
laundering problem takes well within one hour. Converged
controllers consisted of 45 nodes for the AUAV problem and
12 nodes for the money laundering problem. Although scal-
ing in the nesting to level two is possible, the corresponding
time taken is well beyond our cutoff of two hours. Neverthe-
less, the reported expected reward is competitive in compar-
ison to those reported by Ng et al. [13] for particular initial
beliefs and parameter configurations for money laundering.

An interesting empirical observation in all of these prob-
lem domains is that the level l controller, πi,l, converged –
it stops improving and its value vectors obtained by solving
the system of linear equations given by Eq. 1 fixate – after
the lower-level controller, πj,l−1, converges.

6. DISCUSSION
As applications emerge for I-POMDPs, approaches that

allow its solutions to scale become even more crucial. We
introduced a generalized policy iteration algorithm for mu-
tiagent settings in the context of I-POMDPs. This is, to
the best of our knowledge, the first policy iteration algo-
rithm proposed for I-POMDPs. We construct a finite state
controller for each differing frame of other agents, and mod-
els of the other agents get naturally mapped to nodes in
the respective controllers. The application of generalized
BPI to these controllers ensure that the size of the model
space doesn’t increase rapidly thereby subduing the effect
of the curse of dimensionality, which excessively impacts I-
POMDPs.

A limitation of interactive BPI is its convergence to local
optima leading to controllers whose quality is unpredictable.
While techniques for escaping from local optima may help,
this is not guaranteed and the globally optimal value may
not be achieved. In particular, the approach of seeking an im-
proved value vector that is uniformly greater than a previous
vector leads to multiple local optima; relaxing the constraint
of uniform improvement may help.

Another, more practical hurdle was our use of LAPACK++
(http://math.nist.gov/lapack++) to solve the system of
linear equations in the policy evaluation step. Although LA-
PACK++ is a popular linear algebra package, it’s not opti-
mized for exploiting sparseness in matrices, which we often
encountered. We think that further scalability is immedi-
ately possible by exploiting the sparsity of the matrices dur-
ing evaluation. Furthermore, as the number of variables in
the linear programs with non-zero values is often low, sparse-
ness may be further exploited in the policy improvement step
analogously to the proposal by Hansen [10] in the context of
POMDPs. It also seems possible to further improve the per-
formance by accounting for the structure of the controllers.
If the controller contains a strongly-connected component,
we can evaluate it first thereby focusing on a subset of the
nodes, followed by evaluating the rest of the nodes.

Another line of future work is to evaluate the performance
of this approach on problem domains having more than two
agents. Additionally, the finite state controllers that we use
are a type of automata called Moore machines. Recently,
Mealy machines were utilized in the context of decentral-
ized POMDPs to good effect [1]. Therefore, another avenue
is to investigate the utility of different types of controllers
including Mealy machines in our context.
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ABSTRACT
In Belief Desire Intention (BDI) agent systems it is usual for goals
to have a number of plans that are possible ways of achieving the
goal, applicable in different situations, usually captured by a con-
text condition. In Agent Oriented Software Engineering it has been
suggested that a designer should be conscious of whether a goal has
complete coverage, that is, is there some plan that is applicable for
every situation. Similarly a designer should be conscious of over-
lap, that is, for a given goal, are there situations where more than
one plan could be applicable for achieving that goal. In this paper
we further develop these notions in two ways, and then describe
how they can be used both in agent reasoning and agent system de-
velopment. Firstly we replace the boolean value for basic coverage
and overlap with numerical measures, and explain how these may
be calculated. Secondly we describe a measure that combines these
basic measures, with the characteristics of the coverage/overlap in
the goal-plan tree below a given goal. We then describe how these
domain independent measures can be used for both plan selection
and intention selection, as well as for guidance in agent system de-
velopment.

Categories and Subject Descriptors
I Computing Methodologies [I.2 Artificial Intelligence]: I.2.11 Dis-
tributed Artificial Intelligence—Intelligent Agents

General Terms
Algorithms, Measurement, Design

Keywords
Agent reasoning, intention selection, coverage, overlap, goals, plans

1. INTRODUCTION
In this paper we explore and refine the notions of coverage and

overlap as used in Agent Oriented Software Engineering [8] and
describe how they can be used for domain independent agent rea-
soning. The primary motivation for this work was the search for
general purpose characteristics that could sensibly be used to guide
intention selection in a BDI (Belief, Desire, Intention) agent sys-
tem. Typically an agent may well be pursuing multiple goals, and
at any point in time it must decide which intention it will progress
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in the next step. Importantly, the approach we take allows all com-
plex computations to be done at compile time, thus retaining the
important soft real-time aspect of agent systems.

Existing agent platforms such as JACKT M1 offer a choice be-
tween round robin which does a fixed number of steps on each in-
tention in turn, or FIFO which basically uses a queue, finishing one
intention and then moving to the next. Some systems such as JAM
[6] also allow a priority or utility on goals and/or plans which can
be used to order the intention queue. AgentSpeak(XL) [1], AgentS-
peak(RT) [13] and TAEMS [5] all use time related information to
prioritise the scheduling of intentions, while [15] explores dynamic
changes to the priority depending on temporal information. How-
ever many standard agent programming languages do not include
temporal information - neither when a goal should be achieved by,
nor how long a plan or goal can be expected to take. Utility infor-
mation is also typically unavailable, and requiring a programmer
to provide this can be problematic. To our knowledge there is no
work which provides any non-temporal general purpose heuristic
for intention selection, which does not require user provided prior-
ities or utilities. Agent programming language definitions such as
AgentSpeak [9] or CANPLAN [10] typically define only how to
step individual intentions and remain agnostic about how to select
the particular intention to be progressed.

The intuition behind this piece of work is that (all else being
equal) if we have a number of intentions which we are able to
progress at any time point, we will prefer to progress the one which
we believe has fewest possible successful executions. That is, the
one most vulnerable to becoming unable to be successfully exe-
cuted due to decisions taken in executing other intentions. Prefer-
ring such intentions ensures that choices made in pursuing an alter-
native intention do not eliminate the relatively fewer available ways
to achieve such an intention. In order to realise this intuition we use
the concept of coverage. In the Agent Oriented Software Engineer-
ing context, the Prometheus methodology [8] encourages develop-
ers to specify whether a goal has full coverage or not by considering
whether for any situation, there can be no applicable plan. In this
work we specify coverage as a fraction of the space of all possible
models – that portion of the state space for which there is some
applicable plan. We calculate this fraction using model counting to
ascertain firstly the total number of models in the domain of con-
cern; and secondly the number of models in which a single plan
and a set of plans are applicable in using the context conditions of
the relevant plans.

As we will discuss in section 3, this Basic Coverage must be
further refined to give a Coverage Measure based on the hierarchy
below the goal as well as the immediate relevant plans. As plans
are selected, and paths followed, it may be the case that additional

1http://aosgrp.com/products/jack/
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constraints are introduced in sub-plans which in fact means that the
applicability space indicated by the context of a plan is reduced fur-
ther. For example (see figure 2), consider a goal to Travel, with 3
plans: WalkPlan, TramPlan and FlyPlan. Walk has the context con-
dition distance is short and weather is fine; Tram has the context
condition distance is short and weather is not fine; Fly has the con-
text condition distance is long. Now assume the TramPlan has a
sub-goal GetTimetable which has 3 possible plans: one with con-
text that it is a weekday and not a public holiday, one with context
that it is a weekend but not Christmas or Good Friday, and another
that it is a public holiday but not Christmas or Good Friday. Here
we see that once plans are decomposed there is no decomposition
possible for the case of short distance, not-fine weather and Christ-
mas day. Thus the apparent full coverage at the top level goal is
compromised. Our Coverage Measure modifies the Basic Cover-
age to account for such compromises in the tree below.

In section 4, we define a measure of overlap to capture the in-
tuition that in the case where coverage is identical, we are more
likely to succeed if a larger part of the state space has alternative
plans available in the event that the chosen plan fails (perhaps due
to stochastic causes, or maybe because of environmental changes
outside of the agent’s control).

In section 5, we discuss how these measures can be used for
several reasoning tasks, including the intention selection which was
the original motivation for the work. The more refined approach to
coverage can also enable analysis of agent software to identify and
alert the developer to places where the apparent Basic Coverage is
substantially reduced once the Coverage Measure which takes into
account the hierarchy below is considered. Plan selection is another
task which can utilise these measures.

Identification and careful specification of domain independent
characteristics can provide the basis for additional power in the
next generation of agent systems. Coverage and overlap are im-
portant such characteristics and this work provides the foundations
for understanding both how to compute them and how they can be
used.

2. MEASURING BASIC COVERAGE
We assume the basic standard plan rules typical for agents in the

BDI paradigm where G : ψ ← P, meaning that plan P is a rea-
sonable plan for achieving goal G when (context) condition ψ is
believed true. Though different BDI languages offer different con-
structs for crafting plans, most allow for sequences of domain ac-
tions that are meant to be directly executed in the world (e.g., lifting
an aircraft’s flaps), and the posting of (intermediate) sub-goals !G′

(e.g., obtain landing permission) to be resolved. Sub-goals posted
during the execution of a plan are resolved via the plan library.
When a plan is selected for realising the achievement of a partic-
ular goal, it is placed into the intention base2 for execution. The
execution of a BDI system can be seen then as a context sensitive
sub-goal expansion, allowing agents to “act as they go” by making
plan choices at each level of abstraction with respect to the current
situation.

There are then two key decisions an intelligent BDI agent is re-
quired to make on an ongoing basis. The first is, which intention
from the intention base to progress at each execution cycle. The
second is, given a pending goal to be addressed (either completely
new or arising from an existing intention), which plan among the
available ones in the library to select for execution.

In deciding which plan to select to address a given goal, a BDI
system relies on the context condition of plans. The context con-

2we describe the structure of the intentions further in section 5.

dition ψ of a plan G : ψ ← P encodes the domain knowledge of
when procedure P is an adequate approach to address G. Context
conditions are generally formulae in some logical language. For
simplicity, at this point, we consider a BDI agent system that is
programmed relative to some finite propositional language P.

Given a goal G, let Pl(G) be the set {P1, . . . , Pn} of alternative
plans for achieving G, the so-called relevant plans for G. The first
thing we are interested in is to know, and compute the coverage of
each relevant plan (and even of the goal G itself), that is, in how
many world situations an agent will be able to use a plan (or re-
solve a goal). To make this notion concrete, we recast the cover-
age problem as that of model counting (or #SAT) problem [4], that
is, the problem of computing the number of models for a given
(propositional) formula – the number of distinct truth assignments
to variables for which the formula evaluates to true. As standard,
for a propositional formula ϕ, we will use #ϕ to denote the model
count of ϕ. The model counting problem generalizes SAT and is
the canonical #P-complete problem.

Coverage:
So, given a plan-rule G :ψ← P, we define

A(P) = #ψ

to be the number of models in which P is applicable (when no am-
biguity arises, we use the plan-body P to refer to the whole plan-
rule and ψP to refer to the corresponding context condition). For
example, for plan P1 in Figure 1,A(P) denotes the area a+e. When
P is the language in which context conditions are written, we use
S T = 2P to denote the set of all possible worlds (i.e., models), in
the domain of concern. Hence, a single plan as above has a Basic
Coverage:

C(P) =
A(P)

S T

Note that 0 ≤ C(.) ≤ 1.
The Basic Coverage can be generalized to a set of plans S in a

straightforward manner as follows (recall ψX refers to the context-
condition of plan X):

A(S ) = #(
∨

P∈S
ψP).

Considering Figure 1, A({P1, P2, P3}) denotes the areas a + c +

d + e + f + g + h. As before, the Basic Coverage of a set of plans S
is defined as:

C(S ) =
A(S )

S T

Overlap:
Besides the coverage, we are also interested in overlap, which in
terms of Agent Oriented Software Engineering is when there are
two or more plans applicable in the same situation to achieve a
particular goal. For example, in Figure 1 the region ‘e’ is the state
space covered by both plan P1 and P4. The greater the overlap,
the greater the chance of another plan being applicable in the event
that one fails, thus providing flexibility and robustness to the whole
system. The Basic Overlap of a set of plans can be easily defined
as:

O({P1, . . . , Pn}) = #(φ1 ∧ . . . ∧ φn)

It is not difficult to see that all above definitions for coverage
and overlap can be computed using model counting solvers. Be-
cause the reasoning we are interested in will be done offline and
not at BDI execution time, one could make use of exact counting
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Figure 1: Illustration of state coverage and overlap of 4 alter-
nate plans for achieving a goal.

algorithms, either DPLL-style exhaustive search or those based on
“knowledge compilation" [4]. In addition, we observe that, unlike
in many SAT/#SAT applications, context conditions in a BDI appli-
cation are not of a combinatoric nature, and hence we expect exact
model counting algorithms to perform well enough for offline pre-
processing. Nonetheless, if time is an issue, one could always rely
on available approximate counting techniques that provide fast es-
timates. Some of those techniques come with no guarantees (e.g.,
ApproxCount [14]), while some methods provide lower or upper
bounds with a correctness guarantee, often in a probabilistic or sta-
tistical sense (e.g., SampleCount [3]).

We close this section by noting that what we have done so far is
to define the coverage and overlap of BDI plans as a model counting
problem at the basic level. That is, we have not considered the fact
that BDI plans can, and most often will, have sub-goals. This calls
for a more adequate measure that considers the plans relevant for
those sub-goals and that is defined in terms of the whole goal-plan
hierarchy implicit in every BDI plan library. This is the subject of
the next section.

3. COVERAGE MEASURE OF GOAL-PLAN
HIERARCHIES

In this section, we describe the algorithms for calculating a mea-
sure of coverage for goals (and plans) considering the goal-plan
hierarchies. By goal-plan hierarchy we refer to the implicit goal-
plan structure that is present in the plan library of BDI systems –
goals are achieved by a set of alternate plans, and each plan con-
tains sub-goals or actions,3 where each sub-goal in turn is handled
by a set of plans. Figure 2 illustrates an example of a goal-plan tree
structure based on our motivating example from Section 1. We note
we restrict our attention to plan libraries having no cycles.

We want to calculate a Coverage Measure for goals which mod-
ifies the Basic Coverage defined in the previous section based on
the goal-plan hierarchy beneath each plan of the goal. As men-
tioned previously, an apparently high Basic Coverage may be com-
promised by lower coverage in the underlying tree. We take this
into account when determining the Coverage Measure of a goal as
follows (we use the diagram illustrated in Figure 1).

Exclusive Coverage and Exclusive Overlap.
Firstly we define two notions to allow us to speak about the num-

3Messages to other agents are regarded as actions for the purpose
of this paper.

ber of models in each of the types of region a–h in Figure 1. We
define the notion of Exclusive Coverage (EC(G, P)) of a plan, P,
with respect to a goal, G, to capture the number of models in which
P is exclusively applicable (i.e. ψP is exclusively true), as defined
as in Equation 1. For example, regions ‘a’, ‘b’, ‘c’ and ‘d’ in Figure
1.

We define Exclusive Overlap(EO(G, S )) in Equation 2 to capture
the number of models in the overlapping area of all plans in some
group S with respect to a goal G. Note that the exclusive overlap for
a group of plans refers to the number of models in the region that
is exclusively covered by all of the plans in that group only and
no other plan. For example, for the group {P2,P3} the exclusive
overlap region is ‘g’ and for the group {P2,P3,P4} it is ‘h’.

Recall from the previous section thatA(P) is the number of mod-
els in which the plan P is applicable (similarly,A({P1, . . . , Pn}) for
a set of plans), and that S T is the total number of models in the
domain of concern.

EC(G, P)4 =
A(Pl(G)) −A(Pl(G) \ {P})

S T
(1)

EO(G, S )5 =
A(Pl(G))) −A(Pl(G) \ S ) −∑

P ∈ S EC(G, P)
S T

(2)

Note that if a plan has no overlap with the other plans, then its
basic and exclusive coverage measures coincide.

Coverage Measure for Goals and Plans.
We now wish to define a Coverage Measure for a goal by sum-

ming these separate regions, appropriately discounted with regard
to the Coverage Measure of the underlying tree.

The exclusive coverage areas are discounted by the Coverage
Measure of the relevant plan (which captures the Coverage Mea-
sure of its sub-goals). The exclusive overlap areas (regions ‘e’,‘f’,‘g’
and ‘h’) are discounted by the Coverage Measure of the plan with
the highest Coverage Measure of that group. This is because when
there is an overlap between plans all of them are applicable for that
space and the agent would always choose the plan with the highest
Coverage Measure (i.e. highest chance of success). The Coverage
Measure of a goal G, denotedCM(G), is therefore the addition of the
Coverage Measures of the exclusive coverage regions of each plan
of G and the Coverage Measures of the exclusive overlap regions
of each grouping of plans, with the appropriate discount factors de-
scribed above. This is defined as follows:

CM(G) =∑

P ∈ Pl(G)
EC (G, P) × CM(P) +

∑

S ∈ P≥2 Pl(G)
EO (G, S ) ×max ({CM (P) | P ∈ S }).

(3)

The Coverage Measure of a plan P, denoted CM(P) and shown
in Equation 4, is defined as the product of the Coverage Measures
of its sub-goals, where Sg(P) is the set of sub-goals within the body
of plan P. We take the product since for a plan to succeed all the
sub-goals must be achieved, and we assume that the success (with
respect to coverage) of each sub-goal is independent of each other’s
success. Using probability theory, the probability of two indepen-
dent events occurring together (in parallel or in sequence) is the
4In terms of model counting, as presented in Section 2, EC(G, P)
can be expressed as #(ψP ∧∧

P′∈Pl(G)\{P} ¬ψP′ ).
5In terms of model counting EO(G, S ) can be expressed as
#(

∧
P∈Π ψP ∧∧

P′∈Pl(G)\Π ¬ψP′ ).
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Figure 2: Example coverage calculation for a goal. 7

product of the individual probabilities of each event. A plan with
no sub-goals (that is, a leaf plan in a goal-plan tree with only ac-
tions) has a Coverage Measure of 1.

CM(P) =



1 if Sg(P) = {}
∏

G ∈ Sg(P)
CM(G) otherwise (4)

In the above Coverage Measure for a plan, except for the case
where the sub-goals have a Coverage Measure of 1, the more sub-
goals a plan has the lower the Coverage Measure of that plan. As
stated above, this is due to the fact that the more the agent has to
achieve the lesser the chance of success. This highlights the impor-
tance that as plans are modularized into sub-goals6, it is important
to consider the individual coverage of each of the sub-goals striving
to achieve full coverage whenever possible.

Figure 2 illustrates the above calculations applied to the travel
goal example introduced in Section 1. As mentioned then, if we
only considered the coverage of the immediate plans of the top level
goal, the goal would have full coverage (0.25 + 0.25 + 0.5 = 1).
However, due to the incomplete coverage at the lower levels (there
is no ‘Tram’ plan decomposition for ChristmasDay or GoodFriday)
this value is reduced when Coverage Measures are calculated.

4. OVERLAP MEASURE OF GOAL-PLAN
HIERARCHIES

We now consider how an Overlap Measure should be calculated,
using a similar notion of influence from the underlying goal-plan
tree, as with our Coverage Measure. We recall that overlap is useful
in the case of plan failure, so an alternative plan can be tried in the
event that one fails. Hence, overlap can be seen as a measure related
to likely success of the goal with respect to failure recovery.

Recall from Section 2 that the overlap of a goal is the overlap
between the plans of the goal. That is, the models in which more
than one of the plans are applicable in. We recall also that Exclusive

6This is often the case when developing agent systems.
7Note that this is not a complete example and is a simplified ver-
sion for illustration and clarity of the Coverage Measure calcula-
tions. Similarly, we have made assumptions about the number of
public holidays in the year and the overlap of public holidays with
weekends and weekdays.

Overlap of a set of plans relative to a particular goal (EO(G, S )) is
defined in Equation 2.

In order now to calculate our Overlap Measure for a goal, taking
account of the underlying tree, we will:

1. Firstly, sum the Exclusive Overlap count of the individual re-
gions in all combinations of plans in Pl(G), relative to
A(Pl(G))8, multiplied by the average of the Coverage Mea-
sure of the plans involved. We discount using the Cover-
age Measure, as the overlap is only of value to the extent
that there is coverage, and we consider the average Coverage
Measure of the group of plans and not the maximum Cover-
age Measure, since overlap is beneficial in the event of plan
failure hence the success of all the plans needs to be consid-
ered.

2. Secondly, in order to capture the amount of overlap in the tree
below each plan of the goal, we add the sum of the Overlap
Measures of the plans of the goal (Pl(G)). The Overlap Mea-
sure of each plan (Equation 6) is determined by the sum of
the Overlap Measures of the sub-goals of the plan (if any).

This is defined as follows:

OM(G) = (5)
∑

S ∈ P≥2 Pl(G)

EO(G, S )
S T

× AVG
(
{CM(P) | P ∈ S }

)
+

∑

P∈Pl(G)

OM(P)

Equation 6, defines the Overlap Measure of a plan. Unlike in
coverage, where the coverage measure of sub-goals discount the
coverage measure of the plan, in overlap we are concerned with
the total overlapping spaces in all the sub-goals (that is, the tree
beneath the plan) to provide a measure related to success in the
event of failure.

OM(P) =
∑

G ∈ Sg(P)
OM(G) (6)

We note that whereas CM is always between 0 and 1, the Overlap
Measure is ≥ 0.

In the above Overlap Measure we do not distinguish between the
number of plans that overlap a particular region of the state space
(for example, in Figure 1 region ‘e’ is overlapped by 2 plans, and
region ‘h’ is overlapped by 3 plans). Although having more plans
overlapping the same space may seem better in terms of recover-
ing from multiple failures, this depends on how much failure is
expected and it is not clear that it makes sense to consider such
a level of detail. However, if desired or considered important for
a particular application, Equation 5 can be modified to weight the
Overlap Measure of each exclusive overlap region proportionally
to the number of plans in the overlap, by replacing term EO(G, S )
with |S | × EO(G, S ).

We note that a property of our definition of the Overlap Measure
is that, under the assumption of complete coverage for each goal, it
does not matter how the overlap is distributed within the tree; nor
is the Overlap Measure affected by the form of the goal-plan tree
(i.e. depth or breadth). For example, in Figure 3 we assume that
the plans P3 and P4 overlap 30% of the relevant space for G2, but
have no sub-goals. In the tree under G1 this same overall amount
of overlap is distributed with 10% overlap between P1 and P2, and

8Note that we are concerned with a measure relative to the models
covered by (the plans of) the goal, not relative to S T as in coverage.
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Figure 3: Example of possible distribution of overlap.

20% overlap between P2a1 and P2a2. Applying our formulae9 we
see that OM(G1) is equal to OM(G2).

If we assume constant, but less than full coverage then the Over-
lap Measure will be affected by the shape of the tree, and the dis-
tribution of the overlap within that tree, in a similar way to how
the Coverage Measure is affected. With trees such as are shown
in Figure 3 an overlap of say 40% in the tree of G2 will give a
greater Overlap Measure than the same size overlap at G2a, when
the Overlap Measure is propagated up to G1.

5. COVERAGE & OVERLAP FOR AGENT
REASONING

In this section we discuss the usage of the Coverage and Overlap
Measures that we have introduced in the previous section in agent
reasoning. In particular, how they may be used for plan selection,
intention selection and in agent design and development.

In order to perform some of the above reasoning, the goal-plan
structures for each top level goal and the Basic Coverage counts
(as defined in Section 2) can be constructed at compile time. (For
details on constructing goal-plan trees with annotations see [11].)

5.1 Plan Selection
The most straightforward use of the Coverage and Overlap Mea-

sures at execution time would be to select between a set of appli-
cable plans, that is, when there is more than one plan applicable
in the current state to achieve a goal. Intuitively, we would pre-
fer to choose the plan with the highest Coverage Measure, and if
Coverage Measures were equal, then the one with a higher Overlap
Measure. We capture this below.

Let App(G) be set of applicable plans of G ( App(G) ⊆ Pl(G) )
and Pref(P) be the preference of plan P. The Pref partial ordering of
plans within an applicable plan set is then defined by the following
rules.

1. ∀P, P′ ∈ App(G) CM(P) > CM(P′) =⇒ Pref(P) > Pref(P′);

2. ∀P, P′ ∈ App(G) CM(P) = CM(P′) ∧ OM(P) > OM(P′) =⇒
Pref(P) > Pref(P′).

These can readily be incorporated into a plan selection rule of an
agent language such as that of CAN [10].

9We note that the Coverage Measure of all the plans will always
be 1, because leaf plans are 1, and under the assumption of full
coverage at each goal, there is no discounting as one goes up the
tree.

5.2 Intention Selection
Intention selection is the issue of, if an agent has a number of in-

tentions (instantiated plan structures for achieving high level goals)
that are active, how should these be interleaved, and in particular
which one should be progressed at the next step. Programming lan-
guages such as AgentSpeak [9] typically define when an intention
is in a state that it can be progressed, along with how to progress it,
but do not define how to select between multiple intentions. As one
intention is progressed and its goals realised, it is of course possi-
ble that things are changed in such a way that other intentions are
unable to be successfully realised.

Current implementations of BDI agents typically use one of sev-
eral defaults in progressing intentions. One method (“FIFO”) is
to simply place intentions in a queue, and execute each in turn -
though moving to the next if one becomes idle for some reason.
Another approach is what is known as “round robin” where each
intention in the queue is progressed a fixed number of steps be-
fore moving onto the next. An additional option is to (somehow)
assign a priority or utility to intentions and order the queue accord-
ing to that “priority”. However, using priorities or utilities typically
requires substantial information to be provided by the developer,
which is generally onerous for anything more than a simple pri-
ority on high level goals. To our knowledge there is no principled
mechanism for determining this priority, that does not rely on either
temporal information, or programmer provided utilities.

We explain below how our Coverage Measure can be used to
select which intention to work on next, when the current intention
either finishes or becomes unprogressable.

When a goal is adopted as an intention, an instance of its goal-
plan tree is created and placed into the set of intentions (Γ) that the
agent wishes to accomplish. We refer to this instantiated goal-plan
tree as the execution-tree (ExTree) of that goal. As an intention
(that is, the adopted goal) is progressed10 the nodes of its execution-
tree are annotated as follows:

• When a plan is selected.

• When a plan completes. That is, when all its sub-goals and
actions complete.

• When a goal completes. That is, when at least one of its plans
completes.

• When a plan fails. That is, for an abstract plan when one of its
actions fail, and for a concrete plan when one of its sub-goals
fail.11

Figure 4 shows an example of a goal-plan tree (a) and a corre-
sponding execution-tree (b) that is partially executed with the above
annotations.

We define the function next(I), where I = ExTree(G), to return
the next step in the execution-tree of the adopted goal G. For ex-
ample, in Figure 4(b) the next(I) function would return the action
a4.

The intention structure Γ is then a set of execution-trees of the
corresponding top level goals, each execution-tree representing an
intention. An intention is said to be progressable if the next step of
the execution is either an action or a sub-goal for which there is at
least one applicable plan in the current state.

10or executed.
11In the interest of space we do not go into a definition of the various
reasons a goal could fail. For a fully usable language this requires
language constructs which are outside the scope of this paper, such
as tests on beliefs, which in turn require updates of beliefs, etc.
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Figure 4: Illustration of goal-plan tree and execution tree.

When an intention I is progressed this involves processing the
next(I) in the execution-tree. If that item is an action, it is simply
executed. If it is a goal, then a plan is selected from the applicable
plan set for that goal and the next(I) becomes the first sub-goal
or action of that plan. It is here that when more than one plan is
applicable the coverage based plan selection mechanism described
earlier in this section may be used.

An intention is said to be finished when the root goal of the
execution-tree completes as described above, or fails.12 An inten-
tion is said to be unprogressable if it is in a waiting state. This can
be due to a wait for a message response, or some action executing
externally that needs to complete before proceeding. It may also in-
clude such things as an intention being blocked [10] or suspended
for some reason [12].

Once an agent has selected an intention for execution we assume
it will continue to be progressed until it is either finished, or be-
comes unprogressable. When this happens, a new intention must
be chosen to start executing. It is here that we will use our Cover-
age Measures.

The intention selection question is then, when the current inten-
tion finishes or becomes unprogressable, which progressable inten-
tion should be made current - or which progressable intention has
the highest priority. Our intuition is that we will prefer to prioritise
things with least coverage, as these are the ones that have fewer pos-
sibilities for success. The Coverage Measure for an intention that
has not yet started to execute is simply the Coverage Measure of the
goal, relevant to that intention, as described in Section 3. However,
we also need a Coverage Measure for a partially executed intention,
that is an execution-tree that has been progressed, which we obtain
by building on our previous definitions as follows:

1. The Coverage Measure of a goal, if a plan has been selected,
is the Basic Coverage of the chosen plan (C(P)), multiplied
by the Coverage Measure of that plan (CM(P)).

CM(G) =
(
C(P)•CM(P)

)
if ∃P : chosen-plan(G, P) (7)

2. The Coverage Measure of a (possibly partially executed) plan
is the product of the Coverage Measures of the goals still to

12As with goal failure, due to space limitations and the focus of
this paper, we do not go into a precise definition of failure of an
intention.

be achieved of that plan.

CM(P) =



1 if Sg(P) = {}∏

g ∈ Sg(P) ∧ not complete(g)
CM(g) otherwise.

(8)

This Coverage Measure for partially executed intentions (Equa-
tion 7 ) captures our strong preference, once we have made a plan
selection, to succeed that plan without failure or backtracking. Thus
we no longer consider the coverage of alternative plans in measur-
ing the coverage of a goal, where a plan selection has been made.
It also captures the fact (in Equation 8) that coverage of sub-goals
which have already succeeded is irrelevant. For example, in Figure
4(b), the shaded region indicates the part of the goal-plan which is
considered when calculating the Coverage Measure of the partially
executed intention.

The following rules now provide a priority ordering on progress-
able intentions which can be applied as needed, but in particular
for choosing a new current intention when an intention finishes or
becomes unprogressable.

Recall Γ is the set of intentions (execution-trees) and that the next
step of an intention (progressed in the corresponding execution-
tree) is either an action or sub-goal. So, let

• Act(next(I)) be true when the next step of intention I is an
action;

• S g(next(I)) be true when the next step of intention I is a sub-
goal;

• Current(I) be true when I is the current intention being pro-
gressed;

• G(I) be the top level goal of the intention I, and Pr(I) be the
priority of intention I.

The relative priority ordering of intentions are established by the
following rules applied in the oder specified below:

1. ∀I, I′ ∈ Γ Current(I) =⇒ Pr(I) > Pr(I′).

2. ∀I, I′ ∈ Γ Act(next(I)) ∧ S g(next(I′)) =⇒ Pr(I) > Pr(I′).

3. ∀I, I′ ∈ Γ CM(G(I)) > CM(G(I′)) =⇒ Pr(I) > Pr(I′).

4. ∀I, I′ ∈ Γ OM(G(I)) > OM(G(I′)) =⇒ Pr(I) > Pr(I′).

Our first priority is then to maintain focus as long as is possi-
ble while the second is to execute any actions that are pending, as
it makes no sense to keep decomposing plans without executing
the actions in as timely manner as possible. The third priority then
captures the intuition that if one has an intention that has relatively
fewer spaces/models in which it can be progressed through to com-
pletion, then we prefer to progress it when we have the opportunity,
as opposed to an intention which has a higher Coverage Measure,
representing a larger number of models incorporating successful
completion. Finally, if other things are equal, we prioritise doing
first the one that has a smaller Overlap Measure - i.e. the one with
fewer options for recovery.

5.3 Agent Design and Development
When specifying events (goals) within an agent design, using

the Prometheus methodology [8] and the supporting Prometheus
Design Tool (PDT) [7] developers specify (amongst other things)
the goal-plan trees for each agent. During this process they are
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prompted to consider the coverage and overlap properties of the
goal. It is suggested developers note if there is overlap, on what
basis one of the overlapping plans will be chosen, and if there is
not full coverage, which are the situations where there will be no
applicable plan. This is because both lack of full coverage, and un-
intended overlap are common causes of bugs in implementations
of BDI agents systems. In this section we identify areas in which
the the coverage and Overlap Measures we have defined may be
beneficial.

Coverage Measures to identify potential flaws in the design:
With the new measures defined in this paper it is now possible to
alert developers to cases where lack of coverage elsewhere in the
goal-plan tree compromises full (or a partial high level) coverage
at a top level goal. Areas where there is a significant difference
between the Basic Coverage of a goal, and the Coverage Measure
would be candidates for further investigation.

Overlap as a measure of robustness of goals:
Overlap, as discussed, is related to the potential to recover from
failure during execution, selecting an alternative plan to try to achieve
some failed sub-goal. Once overlap figures are obtained, at compile
time, it becomes possible to report which goals have a relatively
low Basic Overlap and/or Overlap Measure. Alternative overlap-
ping plans are one way of making a system robust to stochastic
failure. While an important high level goal may have a high Basic
Overlap to support such failure recovery, a low Overlap Measure
may indicate potential for increasing robustness in the tree below.

Overlap for debugging:
Overlap measures can also be useful in potential debugging. As
noted previously, the reason for prompting developers to consider
overlap is partly because unintended overlap is a common cause of
error. If a system is failing at some top level goal, a non-zero Over-
lap Measure may indicate that the tree below that goal is a potential
place to examine for error.

5.3.1 Abstract Coverage Measures
As mentioned above during the detailed design phase of develop-

ing agent systems, the developer specifies the goal-plan tree and for
each goal indicate whether full coverage and overlap is expected.
However, currently these attributes are not used for any automated
reasoning during design, although they are used for testing and de-
bugging. The coverage and overlap measures as we have defined
them in this paper require at least a precise specification of context
conditions, along with the domain and range of all variables used,
which is not necessarily available at design time.

However, the Coverage Measure that we have defined can be
abstracted to give some useful information at design time, using
only boolean values (True, False as currently provided by the
developer) for initial measures, and three values (True, False,
Uncertain) for calculated measures. These measures can then in-
dicate places where full Basic Coverage is compromised by the
tree below and can call the designer’s attention to possible areas for
further examination prior to any implementation. We describe this
abstraction below.

In order to specify the rules for this more Abstract Coverage
Measure (CA

M(.)) we first define an ordering over the three values
we will use:

True > Uncertain > False

The rules are then as follows:

1. The Abstract Basic Coverage of a goal is True, for full cov-

Figure 5: Example Abstract Coverage Measures for design

erage or False otherwise.

CA(G) =


True if there is full coverage indicated
False otherwise

(9)

2. The Abstract Coverage Measure of an plan is the minimum
of the Coverage Measure of its sub-goals or True if the plan
has no sub-goals.

CA
M(P) =


True if Sg(P) = {}
MIN

{
CA

M(g) | g ∈ S g(PA)
}

otherwise
(10)

3. The Coverage Measure of a goal is as follows (here, T=True,
F=False, and U=Uncertain):

CA
M(G) =



T if ∀P ∈ Pl(G) CA
M(P) = T ∧ CA(G) = T

F if ∀P ∈ Pl(G) CA
M(P) = F ∨ CA(G) = F

U otherwise
(11)

Figure 5 illustrates the propagation of these simplified Coverage
Measures in a goal-plan tree. The Uncertain Coverage Measure
value thus identifies the case where there is some path(s) with full
coverage through the entire tree, but ensuring full plan coverage
is dependent on plan selections. For example, in Figure 5 the path
containing plan P2 has full coverage.

6. CONCLUSION
BDI Agent programming languages provide a powerful platform

for developing complex applications. They support the use of do-
main specific information, which makes them very suitable for real
and complex applications. However, their value also lies in the
generic reasoning that is incorporated into the execution engine,
independently from the domain based program. The key standard
features on which much of the success of the paradigm is based,
are hierarchical plan selection based on context conditions and per-
sistent goals with failure recovery. Additional generic mechanism
that can be incorporated into the execution engine to make these
systems smarter, without requiring application specific coding, are
of interest to the agent development community. In trying to iden-
tify such opportunities it is also important to be cognisant of the
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need to avoid overloading the developer with requirements to pro-
vide details which are not readily available.

In this work we have taken the concepts of coverage and overlap
that have been used in Agent Oriented Software Engineering and
refined these to support smarter agent systems. Importantly we do
not require any additional information from the developer or the
domain, beyond what is required in typical BDI agent development.
Also importantly, all the complex calculation can be done offline at
compile time, leaving only simple computational update processes
during execution.

The basis of our approach is the process to calculate, using model
counting, a numerical measure of the extent to which the set of
plans for a goal cover the relevant state space. We recognise how-
ever that apparently high coverage at the immediate level can be
compromised by lack of coverage in the sub-goals below. Conse-
quently we define a measure which takes account of this factor,
and discounts the immediate coverage based on the characteristics
of the underlying goal-plan tree. We apply a similar approach to
measuring overlap.

Having defined these measures we then show how they can be
used for both plan selection and intention selection at execution
time. In addition, we indicate how the measures can be used to
identify potential Software Engineering issues. Based on the quan-
titative approach developed we then abstract back to a qualitative
approach suitable for use during design, prior to full details being
available to calculate numerical Coverage Measures. This provides
better information than what is currently provided in agent design
methodologies.

In this work we use an idealised and simplified agent program-
ming language, and in particular we do not account for any de-
cisions coded within plan bodies. Consequently it is possible that
actual coverage is less than what is calculated with our method.
However, we do not consider this a substantial disadvantage, as it is
possible to replace test and action steps with new sub-goals whose
plans have the test condition and action precondition, respectively,
as context conditions. This would allow the coverage measure to
detect the otherwise hidden constraints. Under certain assumptions,
also, constraints in plan bodies could be automatically regressed to
plans’ context conditions (e.g., see [2]), though this is an orthogo-
nal problem and is out of the scope of this work.

We also acknowledge that we have not yet implemented the rea-
soning described, based on these measures, and so do not yet have
experience of their value in practice. Nevertheless, based on many
years practical experience, and work with industry partners, we are
convinced that these measures provide valuable information which,
either alone, or in combination with additional aspects, can further
improve the behaviour of autonomous intelligent agents.
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ABSTRACT
Normative organisations provide a means to coordinate the activ-
ities of individual agents in multiagent settings. The coordina-
tion is realized at run time by creating obligations and prohibitions
(norms) for individual agents. If an agent cannot meet an obligation
or violates a prohibition, the organisation imposes a sanction on the
agent. In this paper, we consider norm-aware agents that deliberate
on their goals, norms and sanctions before deciding which plan to
select and execute. A norm-aware agent is able to violate norms
(accepting the resulting sanctions) if it is in the agent’s overall in-
terests to do so, e.g., if meeting an obligation would result in an
important goal of the agent becoming unachievable. Programming
norm-aware agents in conventional BDI-based agent programming
languages is difficult, as they lack support for deliberating about
goals, norms, sanctions and deadlines. We present the norm-aware
agent programming language N-2APL. N-2APL is based on 2APL
and provides support for beliefs, goals, plans, norms, sanctions and
deadlines. We give the syntax and semantics of N-2APL, and show
that N-2APL agents are rational in the sense of committing to a
set of plans that will achieve the agent’s most important goals and
obligations by their deadlines while respecting its most important
prohibitions.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Languages, Theory

Keywords
Agent programming languages, Normative systems

1. INTRODUCTION
Normative organisations, e.g., [5], provide a means to coordinate

the activities of individual agents in a multiagent system. In a nor-
mative organisation, coordination is realised at run time by creat-
ing obligations and prohibitions (norms) for individual agents. An
obligation requires an agent to bring about a particular state of the
environment by a specified deadline, while a prohibition requires

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the agent to avoid bringing about a particular state before a dead-
line. If an agent cannot meet an obligation or violates a prohibition,
the organisation imposes a sanction on the agent.

In general, norms imposed on an agent by a normative organisa-
tion may conflict with the agent’s existing goals. In such a situa-
tion, a rational agent must choose between its existing goals and the
norms imposed by the organisation. We say an agent is norm-aware
if it can deliberate on its goals, norms and sanctions before deciding
which plan to select and execute. A norm-aware agent is able to vi-
olate norms (accepting the resulting sanctions) if it is in the agent’s
overall interests to do so, e.g., if meeting an obligation would re-
sult in an important goal of the agent becoming unachievable. As
an example, consider an agent that has agreed to review papers for
a conference. The normative system in this case is the conference
organisation, and the sanction for not discharging reviewing obli-
gations by the review deadline may be reputational damage (e.g.,
being put on a blacklist). Let us further assume that the reputational
damage for being late with reviews for an important conference
such as AAMAS is greater than that incurred for being late with
reviews for informal workshops. A norm-aware rational agent may
still consider defaulting on its obligations to review for AAMAS if
it acquires a more important goal with a tighter deadline, such as
attending to some family emergency. Note that while we assume
the severity of sanctions (and hence the priority or importance of
obligations and goals) can be compared, their values are not nec-
essarily commensurable in the sense that we cannot say whether
being late with AAMAS reviews incurs the same sanction as being
late with reviews for, e.g., two informal workshops.

There has recently been considerable work on programming frame-
works for developing normative organisations [5, 14, 9]. Such
frameworks are often designed to inter-operate with existing BDI-
based agent programming languages, e.g., [2, 4]. However, pro-
gramming norm-aware agents in conventional BDI-based agent pro-
gramming languages remains difficult, as such languages typically
lack support for deliberating about goals, norms, sanctions and
deadlines.

In this paper we present a BDI-based agent programming lan-
guage N-2APL for norm-aware agents. N-2APL extends 2APL
[4] with support for normative concepts including obligations, pro-
hibitions, sanctions, deadlines and durations. We give the syntax
and operational semantics of N-2APL and explain how it supports
norm-aware deliberation. We show that agents programmed in N-
2APL are norm-aware rational, and that key assumptions under-
lying the design of N-2APL are necessary in the sense that if they
are relaxed, a N-2APL agent is either no longer norm-aware ratio-
nal, or the agent’s deliberation about goals, norms and sanctions is
intractable.
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2. NORMATIVE SYSTEMS
We conceive a multiagent system as consisting of a set of agents

interacting with each other and with a shared environment. In nor-
mative multiagent systems, the interaction between agents and the
environment is governed by a normative exogenous organisation,
which is specified by a set of conditional norms with their associ-
ated deadlines and sanctions. Individual agents decide which ac-
tion to perform in the environment after which the state of the en-
vironment changes. Subsequently, the organisation evaluates the
environmental changes with respect to the conditional norms to:
determine any obligations to be fulfilled or prohibitions that should
not be violated by the agents (termed detached obligations and pro-
hibitions); determine any violations based on the deadlines of the
detached obligations and prohibitions; and impose any correspond-
ing sanctions. The role of the exogenous organisation is thus to
continuously 1) monitor the behaviour of agents, 2) evaluate the ef-
fects they bring about in the environment, 3) determine norms that
should be respected, 4) check if any norm is violated, and 5) take
necessary measures (i.e., imposing sanctions) when norms are vio-
lated. This continuous process is often implemented by a so-called
control cycle [5].

A conditional obligation is expressed as a tuple

〈c,O(ι, o), d, s〉
with the intuitive reading “if condition c holds in the current state
of the environment then there is an obligation for agent ι to estab-
lish an environment state satisfying o before deadline d, otherwise
agent ι will be sanctioned by updating the environment with s”.
In the conference reviewing example, a possible norm is to return
reviews for a paper assigned to a reviewer. An instance of such a
conditional norm could be represented as:

〈collect & pidAri, O(ri, pidRev),notify , BLri〉
which indicates that when a conference is in the review collection
phase (collect) and paper pid is assigned to reviewer ri (pidAri),
then the reviewer ri is obliged to return the review of paper pid
(pidRev) before the notification phase (notify) starts. Violating
this norm results in the reviewer being put on a blacklist (BLri),
damaging its reputation.

A conditional prohibition is expressed as a tuple

〈c, F (ι, p), d, s〉
with the intuitive reading “if condition c holds in the current state
of the environment, then it is forbidden for agent ι to establish an
environment state satisfying p before deadline d, otherwise sanc-
tion s will be imposed.” Unlike obligations, where a sanction is
incurred once if the obligation is not discharged by the deadline, in
the case of prohibitions, the agent incurs a sanction each time the
prohibition is violated. For example, if it prohibited to submit a
paper longer than 8 pages, the agent will incur a sanction (e.g., the
paper being rejected without review) each time it submits a paper
longer than 8 pages. In what follows, we consider the simpler case
of prohibitions without deadlines (i.e., prohibitions with an indefi-
nite deadline or with ⊥ as deadline).

As our focus is on an agent’s decision problem when operating in
a normative multiagent system, we ignore the working of the nor-
mative exogenous organisation, and simply assume an additional
step in the control cycle through which the organisation broadcasts
detached obligations and prohibitions in the form of events (i.e., a
set of normative events) to each agent to whom the norms are di-
rected. A detached obligation event broadcast to agent ι has the
form:

obligation(ι, o, d, s)

with the intuitive reading “agent ι is obliged to establish an en-
vironment state satisfying o before deadline d, otherwise it will
be sanctioned by updating the environment with s”. For example,
when a paper is assigned to a reviewer during the collection phase,
the organisation generates and sends the following (singleton) set
of detached obligations to the corresponding reviewer ri:

{obligation(ri, pidRev,notify , BLri)}
We assume that deadlines associated with detached obligations can
be mapped to real time values expressed in some appropriate units
that specify the time by which the obligation should be discharged.
For example, notify might map to the real time value “5pm on Fri-
day” which specifies the time by which the review should be re-
turned. Similarly, a detached prohibition event broadcast to agent ι
has the form:

prohibition(ι, p, s)

with the intuitive reading “the agent ι is prohibited from establish-
ing an environment state satisfying p, otherwise it will be sanc-
tioned by updating the environment with s”

Of course, obligations or prohibitions from a normative organi-
sation may conflict with an agent’s goals or with other obligations
or prohibitions it has already received (possibly from another nor-
mative organisation). For example, if paper reviewing and family
emergencies cannot be attended to concurrently, the agent needs to
schedule its intentions in some order, such as: first deal with the
emergency, then review paper 1, then review paper 2, etc. Some
schedules will be better than others. For example, if paper 1 has
an earlier review deadline than paper 2, and the agent still has suf-
ficient time after dealing with the emergency to review paper 1,
and (after reviewing paper 1) it still has time to review paper 2, the
schedule above may be optimal. On the other hand, if the agent
does not have enough time left to review both papers by their dead-
lines and reviewing paper 2 is a more important obligation (incurs
a greater sanction), then rationally it should review paper 2 rather
than paper 1 next.

We assume that an agent has a preference or priority ordering
over goals and sanctions that determines whether it is more impor-
tant (from the point of view of the agent) to, e.g., achieve a goal g or
to avoid the sanction s associated with an obligation or prohibition.
In the case of goals, the priority indicates the importance of achiev-
ing the goal state, while in the case of sanctions, the priority indi-
cates the importance of avoiding the sanction state, i.e., sanctions
that entail a smaller penalty for the agent will have lower priority.
Sanctions thus induce an order on obligations and prohibitions: the
priority of an obligation or prohibition is determined by the prior-
ity of the sanction that would be incurred if the obligation is not
discharged by its deadline or the prohibition violated.1 We assume
that an agent’s preferences over goals and sanctions are ordered on
an ordinal scale, i.e., that it is always preferable to achieve a higher
priority goal (or avoid a high priority sanction) than to achieve any
number of lower priority goals (or avoid any number of lower pri-
ority sanctions). (As we show in section 5, if this is not the case,
the agent’s deliberation about norms is intractable.)

If the agent’s goals and obligations are not jointly achievable or
its goals cannot be achieved without violating one or more prohi-
bitions, the agent uses the relative priority of goals and sanctions
to determine which goal(s) to drop or which sanction(s) to incur.
Following BOID [3], we will consider special cases of the priority
ordering and define them as specific agent types. For example, a
1Note that we do not assume that obligations are preferred or desir-
able states for agent; rather the agent is motivated by the avoidance
of sanctions rather than the achievement of obligations.
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social agent can be characterized by a priority ordering that prefers
all obligations to its goals and a selfish agent can be characterized
by a priority ordering that prefers its goals over its obligations.

If the agent’s goals and obligations are not jointly achievable, a
norm-aware rational agent should schedule its intentions so as to
achieve goal and obligation states with highest priority. Program-
ming norm-aware rational agents is non-trivial, as it depends on
the deadlines of the goals and obligations, the plans the agent has
to achieve its goals and obligations, whether its plans violate any
prohibitions, the expected execution time of the agent’s plans and
the extent to which the plans can be executed in parallel.

3. THE LANGUAGE N-2APL
In this section we present N-2APL, an agent programming lan-

guage for norm-aware rational agents. N-2APL is a modification of
the agent programming language 2APL [4] which supports norma-
tive concepts including obligations, prohibitions, sanctions, dead-
lines and durations. We first briefly present 2APL, focusing on
those elements modified in N-2APL, before describing the extended
programming constructs of N-2APL and how it supports norm-
aware deliberation.

3.1 2APL: a Brief Summary
2APL is a BDI-based agent programming language that allows

the implementation of agents in terms of cognitive concepts such
as beliefs, goals and plans. A 2APL agent program specifies an
agent’s initial beliefs, goals, plans, and the reasoning rules it uses
to select plans (PG-rules), to respond to messages and events
(PC-rules), and to repair plans whose executions have failed
(PR-rules). The initial beliefs of an agent includes the agent’s
information about itself and its surrounding environment. The ini-
tial goals of an agent consists of formulas each of which denotes
a situation the agent wants to realize (not necessarily all at once).
The initial plans of an agent consists of tasks that an agent should
initially perform.

In order to achieve its goals, an 2APL agent adopts plans. A
plan consists of basic actions composed by sequence, conditional
choice, conditional iteration and non interleaving operators. The
non interleaving operator, [π] where π is a plan, indicates that π is
an atomic plan, i.e., the execution of π should not be interleaved
with the execution of any other plan. Basic actions include exter-
nal actions (which change the state of the agent’s environment);
belief update and goal adopt actions (which change the agent’s be-
liefs and goals), and abstract actions (which provide an abstraction
mechanism similar to procedures in imperative programming).

Planning goal rules allow an agent to select an appropriate plan
given its goals and beliefs. A planning goal rule 〈pgrule〉 consists
of three parts: the head of the rule, the condition of the rule, and
the body of the rule. The body of the rule is a plan that is generated
when the head (a goal query) and the condition (a belief query) of
the rule are entailed by the agent’s goals and beliefs, respectively.
Procedure call rules are used to select a plan for an abstract action
and to handle external events. Plan repair rules are used to revise
plans whose executions have failed.

3.2 N-2APL Extensions and Restrictions
To support norm-aware agents, N-2APL extends some key con-

structs of 2APL and restricts or changes the semantics of others.
We briefly describe these changes below. The syntax of N-2APL is
shown in Figure 1 in EBNF notation. Programming constructs in
bold are exactly the same as in 2APL. Due to lack of space, we omit
the detailed specification of these programming constructs, which
can be found in [4].

Beliefs in N-2APL are exactly the same as in 2APL and consist
of Horn clause expressions. Goals in 2APL may be conjunctions of
positive literals. In N-2APL we restrict goals to single atoms and
extend their syntax to include optional deadlines. A deadline is a
real time value expressed in some appropriate units which specifies
the time by which a goal should be achieved. We write a goal g
with a deadline d as g : d. If no deadline is specified for a goal as
part of the agent’s program, we assume a deadline of infinity.

In N-2APL, non-atomic plans are the same as in 2APL and con-
sist of basic actions composed by sequence, conditional choice, and
conditional iteration operators. However in N-2APL we change the
interpretation of the non interleaving operator: [π] indicates that
the execution of π should not be interleaved with the execution
of other atomic plans (rather than not interleaved with the execu-
tion of any other plan as in 2APL). In N-2APL, atomic plans are
assumed to contain basic actions that may interfere only with the
basic actions in other atomic plans, e.g., belief update actions that
update the same belief(s), or external actions that change the posi-
tion of the agent etc. For example, for a particular agent, reviewing
a paper may require the agent’s undivided attention and cannot be
executed in parallel with reviewing another paper. However other
plans, such as having lunch and taking a train can be executed in
parallel (the agent can have a sandwich on the train while review-
ing the paper). As illustrated by the example, in N-2APL, we also
allow external actions in different non-atomic plans to be executed
in parallel, rather than interleaved as in 2APL (see section 4 for de-
tails). Lastly, we restrict the scope of the non interleaving operator
such that non-atomic plans cannot contain atomic sub-plans, either
directly or through the expansion of an abstract action, i.e., plans to
achieve top-level goals are either wholly atomic or non-atomic. As
we show in section 5, these changes are necessary for the agent’s
deliberation about norms to be tractable.

We extend the syntax of plans in the body of a PG rule to include
an optional field specifying the time required to execute the plan
proposed by the PG rule. In N-2APL, a PG rule has the form:

κ← β | π : t

where κ is a goal query, β is a belief query, π is a plan and t is
the time required to execute π. We assume that the time required
to execute a plan is primarily determined by the time required to
execute the external actions it contains, i.e., that the amount of time
required to execute internal actions (belief update, goal adopt, ab-
stract actions etc.) is small compared to the time required to exe-
cute external actions. The problem of determining t for a plan π
therefore reduces to the problem of determining the sequence of
external actions that will be executed, and estimating the time re-
quired to execute each of these external actions. For simplicity, we
assume that the time required to execute each plan π is fixed and
known in advance.

As explained in section 2, the creation of an obligation or prohi-
bition by an external organisation causes an event to be sent to the
agent. An obligation event, represented as obligation(ι, o, d, s),
specifies the time d by which the obligation o must be discharged,
i.e., its deadline, and the sanction, s, that will be applied if the
obligation is not discharged by the deadline. A prohibition event,
represented as prohibition(ι, p, s), specifies a prohibition p that
must not be violated and the sanction s that will be applied if ex-
ecution of the agent’s plans violates the prohibition. Obligations
and prohibitions are added to the agent’s goal and event bases, re-
spectively. In particular, an obligation is adopted as a goal o : d
with priority corresponding to (the importance of avoiding) s, and a
prohibition is represented by a prohibition event prohibition(p, s)
where the priority of p corresponds to (the importance of avoiding)

1059



〈Agent_Prog〉 = [ "Beliefs:" { 〈belief〉 } ] ,
[ "Goals:" 〈goals〉 ] ,
[ "Plans:" 〈plans〉 ] ,
[ "PG-rules:" { 〈pgrule〉 } ] ,
[ "PC-rules:" { 〈pcrule〉 } ]
[ "PR-rules:" { 〈prrule〉 } ]

〈goals〉 = 〈goal〉 { ","〈goal〉 } ;
〈goal〉 = 〈atom〉 ":" 〈deadline〉;
〈pgrule〉 = 〈goalquery〉 "<-" 〈belquery〉 "|" 〈plan〉 ":" 〈duration〉;
〈goalquery〉 = 〈goalquery〉 "and" 〈goalquery〉 | 〈goalquery〉 "or" 〈goalquery〉 | "(" 〈goalquery〉 ")" | 〈atom〉 ;
〈belquery〉 = 〈belquery〉 "and" 〈belquery〉 | 〈belquery〉 "or" 〈belquery〉 | "(" 〈belquery〉 ")" | 〈literal〉 ;
〈plan〉 = 〈atomic-plan〉 | 〈non-atomic-plan〉;
〈atomic-plan〉 = "["〈non-atomic-plan〉"]";
〈sanction〉 = 〈atom〉;
〈deadline〉 = 〈time〉;
〈duration〉 = 〈int〉;

Figure 1: EBNF syntax of N-2APL.

the sanction s (see section 4). We assume the programmer provides
a binary relation pref (x, y) where x, y may be goals, obligations
or prohibitions that returns true if the goal (sanction) x has higher
priority than the goal (sanction) y, and that the order induced by
pref is stable. Finally, we assume that it is possible to define a
function effects(π) which returns the set of literals appearing in
the postconditions of all external actions in π. A plan π violates a
prohibition p iff p ∈ effects(π), i.e., if executing the plan would
cause p to become true.

3.3 Norm-aware Deliberation
In determining which plan to adopt for a goal, a norm-aware

agent must take into account (and possibly revise) plans to which it
is currently committed. In addition it must decide when each plan
to which it is committed should be executed, i.e., it must schedule
the execution of its plans. Informally, a schedule is an assignment
of a start or next execution time to a set of plans which ensures
that: all plans complete by their deadlines, at most one atomic plan
executes at any given time, and where the goals achieved and the
prohibitions avoided are of the highest priority.2

To define a schedule, we first define a set of feasible plans. A set
of plans Π = {π1, . . . , πn} is feasible iff:

1. it is possible for each plan to complete execution before its
deadline, that is, for each plan πi ∈ Π

ne(πi) + et(πi)− ex(πi) ≤ dl(πi)
where ne(πi) is the time at which πi will next execute, et(πi)
is the time required to execute πi, ex(πi) is the time πi has
spent executing up to this point and dl(πi) is the deadline
for πi (we assume that all plans πi complete by et(πi) and
hence et(πi)− ex(πi) is always non-negative);

2. if πi is an atomic plan, then no other atomic plan is scheduled
to execute concurrently with πi, namely the set {πj ∈ Π \
{πi} | (ne(πi) < ne(πj) + et(πj))∧ (ne(πj) < ne(πi) +
et(πi))} contains no atomic plans; and

3. if πi is a currently executing atomic plan whose deadline
has not passed, for any plan πj ∈ Π \ {πi}, ne(πj) >

2In what follows, in the interests of brevity we shall often refer to
the ‘deadline’ and ‘priority’ of a plan π rather than the deadline of
the goal achieved by π or the priority of the goal achieved or the
sanction avoided by executing π.

now + et(πi)− ex(πi), i.e., an atomic plan cannot preempt
a currently executing atomic plan.

Feasibility determines which sets of plans can be executed by their
deadlines without violating atomicity constraints.

The agent commits to a feasible set of plans that is preference-
maximal. If it is not possible to execute all plans by their deadlines
it will drop plans that achieve goals of lower priority in preference
to plans which achieve goals of higher priority. Similarly, it will
drop plans that violate prohibitions of higher priority than the goal
achieved by the plan.

To make this precise, we define a preference-maximal set of
plans as follows. Consider a set of plans Π = {π1, . . . , πn} and
prohibitions ∆ = {p1, . . . , pm}. Γ ⊆ Π is preference-maximal
(with respect to Π and ∆) iff:

1. Γ is feasible;

2. ∀πi ∈ Π such that πi /∈ Γ, either

• {πi} is infeasible, or
• ∃Γ′ ⊆ Γ: the minimal priority of a plan in Γ′ is greater

than or equal to the priority of πi, and {πi} ∪ Γ′ is
infeasible; or
• ∃pj ∈ ∆, pj ∈ effects(πi) and the priority of pj is

greater than or equal to the priority of πi

Intuitively, this definition describes a subset of Π which is ‘max-
imally feasible’ (no more plans from Π can be added if the plans
are to remain feasible) and moreover, plans in Π \ Γ cannot be
scheduled together with some subset of Γ that contains plans(s) of
higher priority or they violate a prohibition in ∆ of the same or
higher priority.

A schedule is a preference-maximal set of plans together with
their start (next execution) times.

The agent uses a schedulability criterion when deliberating about
which plan to adopt for a goal, and which plans to drop. In order to
decide if a PG-rule

κ← β | π : t

is applicable, we check that: γ |=g κ (i.e., that g τ |= κ for some
g :d ∈ γ and substitution τ ), σ |= β and ∃Γ ⊆ Π such that Γ∪{π}
is preference-maximal relative to Π,∆, where γ is the agent’s goal
base, σ is the agent’s belief base, Π is the agent’s plan base and ∆
is the agent’s prohibitions. The first two conditions are straightfor-
ward and simply check that the agent has a plan which will achieve
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the goal and that plan is applicable in the current belief context.
The third condition is more complex: it checks whether adopting
the plan π is rational for the agent. Adopting π is rational if π to-
gether with some subset Γ of the agent’s plan base is feasible, and
any plans π′ ∈ Π\Γ that must be dropped in order to schedule π by
its deadline have strictly lower priority than the goal or obligation
achieved by π.

A N-2APL agent thus adopts an open-minded commitment strat-
egy — at any given point in its execution its plan base comprises
a preference-maximal set of plans. Observe that if an agent is ‘so-
cial’ and orders its obligations before any of its own goals, then all
obligations will be discharged by the agent provided it has feasible
plans to achieve them. On the other hand, selfish agents which pri-
oritize their own goals, may incur (in the worst case, when they do
not attend to any of the obligations and violate all prohibitions) all
the sanctions possible in the normative system.

3.4 Scheduling Algorithm

Algorithm 1 Scheduling Algorithm
1: function SCHEDULE(Π,∆)
2: Γs := ∅, Γp := ∅,
3: for all π ∈ Π in descending order of priority do
4: V := effects(π) ∩∆
5: if ¬atomic(π) then
6: if now + rt(π) ≤ dl(π) ∧
7: pr(π) ≥ argmax pr(p), p ∈ V then
8: ne(π) := now
9: Γp := Γp ∪ {π}

10: end if
11: else
12: if executing(π) then
13: ne(π) := now
14: Γ′s := Γs
15: else
16: t := now
17: Γ′s := ∅
18: for all π′ ∈ Γs do
19: if dl(π′) ≤ dl(π) then
20: Γ′s := Γ′s ∪ {π′}
21: t := max(ne(π′) + rt(π′), t)
22: else
23: ne(π′) := ne(π′) + rt(π)
24: Γ′s := Γ′s ∪ {π′}
25: end if
26: end for
27: ne(π) := t
28: end if
29: if ∀πi ∈ Γ′s∪{π} : now +

P
ne(j)≤ne(i)

rt(πj) ≤ dl(πi) ∧

30: pr(π) ≥ argmax pr(p), p ∈ V then
31: Γs = Γ′s ∪ {π}
32: end if
33: end if
34: end for
35: return Γp ∪ Γs
36: end function

Scheduling in N-2APL is pre-emptive in that the adoption of
a new plan π may prevent previously scheduled plans with prior-
ity lower than π (including currently executing plans) being added
to the new schedule. Plans that would exceed their deadline are
dropped. In the case of obligations, a sanction will necessarily be
incurred, so it is not rational for the agent to continue to attempt to
discharge the obligation. In the case of goals, it is assumed that the
deadline is hard, and there is no value in attempting to achieve the
goal after the deadline.

The scheduling algorithm is shown in Algorithm 1. ne(π) is
the time at which πi will next execute, ex(π) is the time πi has
spent executing up to this point, dl(π) is the deadline for π, and
rt(π) = et(π)− ex(π) is the remaining execution time of π.

Non-atomic and atomic plans are scheduled separately in Γp and
Γs respectively. The set of candidate plans is processed in descend-
ing order of priority. For each plan π, if π is non-atomic an attempt
is made to schedule it in parallel with other non-atomic plans in Γp
(lines 6–10). To determine feasibility for non-atomic plans it is suf-
ficient to check that the plan can be executed by its deadline. If the
plan is atomic, it is added to the schedule Γs if it can be inserted
into the schedule in deadline order while meeting its own and all
currently scheduled deadlines (lines 12–32). A set of atomic plans
is feasible iff they can be scheduled earliest deadline first [10]. If a
non-atomic or atomic plan violates a prohibition of higher priority
than the plan, the plan is dropped. The resulting schedule can be
computed in polynomial time (in fact, quadratic time) in the size of
Π, and (as we show in section 5) is preference-maximal.

4. OPERATIONAL SEMANTICS
In this section, we sketch the operational semantics of N-2APL

in terms of a transition system. Each transition transforms one
configuration into another and corresponds to a single computa-
tion/execution step. In the following subsections, we first present
the configuration of individual N-2APL agent programs (hence-
forth agent configuration) then the configuration of multiagent sys-
tem programs (henceforth multiagent system configuration), before
finally presenting transition rules from which possible execution
steps (i.e., transitions) for both individual agents as well as multia-
gent systems can be derived.

4.1 N-2APL Configuration
The configuration of an individual agent consists of its identi-

fier, beliefs, goals, prohibitions, planning goal rules, procedure call
rules, plans, events, and a preference ordering on goals and sanc-
tions. Each plan is associated with the goal and practical reasoning
rule that gave rise to the plan (in order to avoid redundant applica-
tions of practical reasoning rules, e.g., to avoid generating multiple
plans for one and the same goal). It should be noted that the belief
base and each goal in the goal base are consistent as only positive
atoms are used to represent them.

DEFINITION 1 (AGENT CONFIGURATION). The configuration
of a N-2APL agent is defined asAι = 〈ι, σ, γ,Π, ξ,�, PG, PC, PR〉
where ι is the agent’s identifier, σ is a set of belief expressions
〈belief〉 representing the agent’s belief base, γ is a list of goal ex-
pressions 〈goal〉representing the agent’s goal base, Π is the agent’s
plan base consisting of a set of plan entries (〈plan〉, 〈goal〉, 〈pgrule〉)
representing the agent’s plans together with their next execution
times, ξ is the agent’s event base containing also elements of the
form prohibition(p, s), � is the preference ordering, PG is the
set of planning goal rules, PC is a set procedure call rules, and
PR is a set of plan repair rules.

Since the agent’s practical reasoning rules and preference ordering
do not change during an agent’s execution, we do not include them
in the agent’s configuration and use Aι = 〈ι, σ, γ,Π, ξ〉 to denote
an agent’s configuration.

The configuration of a multiagent system is defined in terms of
the configuration of individual agents and the state of their organ-
isation. The state of the agents’ organisation is a set of facts that
hold in that organisation.
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DEFINITION 2 (MULTIAGENT SYSTEM CONFIGURATION). Let
Aι be the configuration of agent ι and let χ be the state of the
agents’ organisation. The configuration of a N-2APL multiagent
system is defined as 〈A1, . . . , An, χ〉.

The initial configuration of a multiagent system is determined by
its corresponding multiagent system program and consists of the
initial configuration of its individual agents (determined by their
corresponding N-2APL programs) and the initial state of their or-
ganisation.

DEFINITION 3 (INITIAL CONFIGURATION). Let ι be the iden-
tifier of an agent that is implemented by a N-2APL program. Let
σ be the set of 〈belief〉-expressions specified in the N-2APL pro-
gram and γ be the list of 〈goal〉-expressions from the same pro-
gram. Then, the initial configuration of agent ι is defined as tuple
〈ι, σ, γ, ∅, ∅〉. Let also χ be a set of facts and A1, . . . , An be the
initial configurations of agents 1, . . . , n that are specified in the
multiagent system program. The initial configuration of the multi-
agent systems is defined as tuple 〈A1, . . . , An, χ〉.

4.2 Transition Rules
The execution of a N-2APL multiagent program modifies its ini-

tial configuration by means of transitions that are derivable from
the transition rules given below. Due to lack of space, we do not
provide transition rules for the execution of plans, see e.g., [4].

4.2.1 Receiving Detached Norms
As explained in section 2, a normative organisation can broad-

cast an obligation or a prohibition event to a specific agent. We
assume transition rules from which a transition of a normative or-
ganisation is derivable, i.e., we assume transition rules that can be
used to derive transitions χ n-event−−−−−→ χ′, where n-event is an event
such as obligation(ι, o, d, s) or prohibition(ι, p, s). Such transi-
tion rules specify under which conditions an obligation or a pro-
hibition should be issued for a specific agent. The study of such
conditions is out of the scope of this paper and can be found in,
e.g., [5]. The following transition rule allows a normative organi-
sation to broadcast normative events (e.g, obligation(ι, o, d, s) or
prohibition(ι, p, s)) and ensures that the events are delivered to
the appropriate agent. An obligation event is added to the agent’s
goal base and a prohibition event is added to its event base.

χ
n-event−−−−−→ χ′

〈A0, . . . , Aι, . . . , An〉 −→ 〈A0, . . . , A′ι, . . . , An〉
(1)

where
Aι = 〈ι, σ, γ,Π, ξ〉,
A′ι = 〈ι, σ, γ∪{o :d},Π, ξ,�′〉 if n-event = obligation(ι, o, d, s),
A′ι = 〈ι, σ, γ,Π, ξ∪{prohibition(p, s)},�′〉 if n-event = prohi-
bition(ι, p, s).

4.2.2 Planning Goal Rules
A N-2APL agent generates plans by applying PG-rules of the

form κ ← β | π : t. An agent can apply one of its PG-rules κ ←
β|π : t, if κ is entailed (with some substitution τ1) by one of the
agent’s goals, namely by some g such that g : d ∈ γ, β is entailed
(with substitution τ1τ2) by the agent’s belief base, and there is no
plan in the plan base that has been generated (and perhaps partially
executed) by applying the same PG-rule to achieve the same goal.
Applying the PG-rule κ ← β | π : t attempts to add π τ1τ2 with
deadline d and execution time t to the agent’s plan base.

∃ (g :d) ∈ γ : g |=g κ τ1 & σ |= β τ1τ2

& ¬∃π′ ∈ P : (π′, g :d, (κ τ1 ← β | π : t)) ∈ Π

〈ι, σ, γ,Π, ξ〉 −→ 〈ι, σ, γ,Π′, ξ〉 (2)

where τ1, τ2 are substitutions, P is the set of all possible plans
and Π′ = SCHEDULE(Π ∪ {(π τ1τ2, g : d, (κ τ1 ← β | π :
t))}, prohibitions(ξ)). Here, SCHEDULE is defined as in Algo-
rithm 1 and prohibitions is a function that takes a set of events and
returns all prohibition events in that set.

4.2.3 Concurrent Plans
The applications of planning goal rules may generate both atomic

and non atomic plans. External actions in different non-atomic
plans can be executed in parallel. Atomic plans are executed in
sequence, rather than in parallel. Actions within each plan are ex-
ecuted in strict sequence, i.e., the next action in the plan is not ex-
ecuted until the previous action has completed execution or failed.
We say a plan is executable if its next execution time is now and the
previous action in the plan has successfully completed execution,
otherwise it is not executable (i.e., an action initiated at a previ-
ous deliberation cycle is still executing, or has failed, or the plan is
atomic and scheduled for execution at a later time). Execution of
internal actions is assumed to occur in the main interpreter thread,
whereas execution of external actions is assumed to occur in sepa-
rate threads (otherwise the actual execution time of a plan π would
bear little relation to its expected execution time, et(π)) .

An agent executes its plans concurrently by interleaving the ex-
ecution of the next action (or the initiation of the execution of the
action in a separate thread in the case of external actions) of all
executable plans whose next execution time is now

〈ι, σ, γ, ρ, ξ〉 −→ 〈ι, σ′, γ′, ρ′, ξ′〉
〈ι, σ, γ,Π, ξ〉 −→ 〈ι, σ′, γ′,Π′, ξ′〉 (3)

where ρ is executable and Π′ = (Π \ ρ) ∪ ρ′.

5. NORM-AWARE RATIONALITY
In this section, we justify the adoption of a preference-maximal

set of plans as an appropriate standard of rationality for a norm-
aware agent. We show that key assumptions underlying the design
of N-2APL are necessary in the sense that if they are relaxed, a N-
2APL agent is either no longer a norm-aware rational agent, or its
deliberation about goals, norms and sanctions is intractable.

In what follows, we assume that the agent’s plans have a posi-
tive expected execution time and a deadline, and that atomic plans
are scheduled on a single processor. We also assume that plans
and prohibitions have priorities, which are either ordered by a total
preference pre-order, or have numerical values. The definition of a
feasible set of plans is given in section 3.3. Note that in order to be
able to establish whether a set of plans is feasible, the agent needs
to know expected execution times of the plans.

We call a set of plans optimal if it is feasible and has maximal
utility; namely, if the preferences over goals and sanctions are or-
dered by a preference pre-order, then it contains the highest number
of the high priority plans; if priorities are numerical, then their sum
is maximal.

DEFINITION 4. An agent is perfectly norm-aware rational if it
commits to an optimal set of plans.

The problem of finding an optimal schedule is NP-complete (e.g.,
the special case in which all tasks have the same deadline can be
reformulated as a 0-1 knapsack problem [7]).
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Since the problem of scheduling an optimal set of plans is not
tractable, we have the following theorem:

THEOREM 1. A perfectly norm-aware rational agent cannot have
a tractable deliberation procedure.

In this paper, we assume a weaker definition of norm aware ratio-
nality. This definition relies on the notion of a preference-maximal
set of plans given in Section 3.3 and requires that preferences are
ordered on an ordinal scale. Note that in this case every optimal
set of plans is preference-maximal, but not vice versa. For exam-
ple, for three atomic plans with the same priority, π1, π2 and π3,
such that π1 is not feasible with either of π2 or π3 and {π2, π3}
is feasible, the only optimal set is {π2, π3}. However, {π1} is a
preference-maximal set of plans.

DEFINITION 5. An agent is norm-aware rational if it commits
to a preference-maximal set of plans.

The set of goals achieved by a norm-aware rational agent is de-
termined by its program. If the program is such that the belief con-
texts of PG rules are disjoint, then the set of goals achieved by the
successful execution of a preference-maximal set of plans is also
‘preference-maximal’, in the sense that the agent will only fail to
achieve a goal if it has no applicable plan for a goal, or the plan to
achieve the goal is not feasible together with the plans to achieve
goals of the same or higher priority.

THEOREM 2. A N-2APL agent is norm-aware rational and its
deliberation procedure is tractable.

PROOF. We show that the N-2APL scheduling algorithm returns
a preference-maximal schedule; tractability is obvious. The N-
2APL scheduling algorithm builds two separate schedules, a paral-
lel and a sequential one. The set of plans Γp in the parallel schedule
contains all non-atomic plans which are individually feasible (the
time remaining to their deadline is greater than their expected exe-
cution time) and do not violate prohibitions of higher priority. This
set of plans is clearly maximal given the prohibitions. Note that the
feasibility of Γp is not affected by the membership of the sequential
schedule Γs and vice versa.

For the sequential schedule, the algorithm constructs a sequence
of sets starting with Γ0 = ∅, and sets Γi to be Γi−1 ∪ {πi}, if
Γi−1 ∪ {πi} is feasible in deadline order, or Γi−1 otherwise. The
last set Γn is Γs. By construction, Γs is a feasible set of plans. Γ
is also clearly a maximally feasible subset of Π: there is no atomic
π ∈ Π such that π /∈ Γs and Γs ∪ {π} is feasible. To prove
that it is preference-maximal, let πi ∈ Π, {πi} feasible, and πi /∈
Γs. We need to show that πi is incompatible with some subset of
Γs which contains only plans of the same or higher priority, or is
incompatible with a higher priority prohibition. Since the plans are
added to Γs in descending order of priority, when πi is considered
and found incompatible with Γi−1, the priority of πi is at most the
lowest priority in Γi−1.

In the rest of this section, we show that the assumptions we made
concerning the normative system and the agent programming lan-
guage semantics are essential to guarantee tractability of a norm
aware rational agent’s deliberation.

THEOREM 3. If a normative system has prohibitions with real-
time deadlines, then a norm-aware rational agent cannot have a
tractable deliberation procedure.

PROOF. If prohibitions have real-time deadlines, the schedul-
ing problem is equivalent to the ‘sequencing with release times

and deadlines’ problem (SRTD), which is known to be strongly
NP-complete [7]. SRTD is intractable in the sense that it admits
no bounded approximation computable in time polynomial in the
problem size and the bound (unless P = NP ).

N-2APL also places certain restrictions on the syntax of 2APL
programs, and changes the semantics of key constructs such as the
non interleaving (atomic) operator. If these assumptions are re-
laxed, the agent is no longer norm-aware rational or deliberation
about norms is intractable. We now make these assumptions pre-
cise.

THEOREM 4. If an agent’s plans may have atomic sub-plans
the agent is not norm-aware rational, or its deliberation procedure
is intractable.

PROOF. Note that if an agent’s plans may contain atomic sub-
plans π = π1; [π2];π3; [π4], the agent must schedule the atomic
sub-plans [π2] and [π4] together with its other atomic plans, but
subject to the constraint that the preceding non-atomic sub-plans π1

(in the case of [π2]) and π2 (in the case of [π4]) of π have finished
executing. If information about the execution times of each atomic
and non-atomic sub-plan is not available, the agent is not norm-
aware in the sense that it may commit to plans that it subsequently
has to abandon, even if its goals and norms do not change. In effect,
the agent is unable to tell when the execution of an atomic sub-plan
may have to be scheduled, and so may adopt a non preference-
maximal schedule. If, on the other hand, we assume that informa-
tion about the execution times of each plan segment is available
(and is used in scheduling), the scheduling problem is again equiv-
alent to SRTD and is intractable.

THEOREM 5. If atomic plans cannot be executed in parallel
with non-atomic plans, an agent is not norm-aware rational or its
deliberation procedure is intractable.

PROOF. If we adopt the 2APL semantics for the non interleav-
ing operator,3 i.e., the execution of an atomic plan should not be
interleaved with the execution of any other plan, we again get a
combinatorial scheduling problem because non-atomic plans can
be split in various groups depending on their end times. This prob-
lem reduces to the batch scheduling problem which is NP-hard
[12].

THEOREM 6. If external actions cannot be executed in parallel,
an agent is not norm-aware rational or its deliberation procedure
is intractable.

PROOF. If external actions are interleaved, the expected execu-
tion time of a plan is dependent on the other plans in the agent’s
schedule. If the execution times of each external action in a plan are
not known, the resulting schedule is not guaranteed to be preference-
maximal. If the execution time of each external action are known
(and is used in scheduling), the scheduling problem is again re-
ducible to SRTD, for both atomic and non-atomic schedules.

6. RELATED WORK
Our notion of norm-awareness is related to, e.g., [14], where it

is argued that the ability of agents to reason about the norms of an
organisation in which they operate is crucial for their decisions to
enter and leave organisations or to respect/violate norms.

There has been considerable recent work on approaches to pro-
gramming normative systems. The JaCaMo programming frame-
work combines the Jason [2], Cartago [13], and MOISE+ [8] plat-
forms. In this integrated approach, the organisational infrastruc-
ture of a multiagent system consists of organisational artefacts and
3This semantics is also used by Jason.
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agents that together are responsible for the management and en-
actment of the organisation. An organisational artefact employs a
normative program which in turn implements a MOISE+ specifi-
cation. A programming language for the implementation of nor-
mative programs as well as a translation of MOISE+ specifications
into normative programs is described in [9]. JaCaMo allows Jason
agents to interact with organisational artefacts, e.g., to take on a
certain role. (As the idea of organisational artefacts based on nor-
mative programs is closely related to the 2OPL architecture for nor-
mative systems [5] used in this paper, we believe that our N-2APL
agents could also be used in the JaCaMo framework.) In contrast to
N-2APL, the Jason agents in this combined model have no explicit
mechanisms to reason about norms (obligations and prohibitions)
and their deadlines and sanctions in order to adapt their behaviour
at run time. Another approach that integrates norms in a BDI-
based agent programming architecture is proposed in [11]. This ex-
tends the AgentSpeak(L) architecture with a mechanism that allows
agents to behave in accordance with a set of non-conflicting norms.
As in N-2APL, the agents can adopt obligations and prohibitions
with deadlines, after which plans are selected to fulfil the obliga-
tions or existing plans are suppressed to avoid violating prohibi-
tions. However, unlike N-2APL, [11] does not consider scheduling
of plans with respect to their deadlines or possible sanctions.

There are also several agent languages which incorporate dead-
lines, including the Soft Real-Time Agent Architecture [16] and
AgentSpeak(XL) [1]. These architectures use the TÆMS (Task
Analysis, Environment Modelling, and Simulation) framework [6]
together with Design-To-Criteria scheduling [17] to schedule inten-
tions. TÆMS provides a high-level framework for specifying the
expected quality, cost and duration of of methods (actions) and re-
lationships between tasks (plans). Like N-2APL, tasks (and meth-
ods) can have deadlines, and TÆMS assumes that the expected ex-
ecution times (and quality and costs) of tasks are available. As in
N-2APL DTC can produce schedules which allow interleaved or
parallel execution of tasks. However the view of ‘deadline’ used in
these systems is different from that used here, in that deadlines are
not hard (tasks still have value after their deadline), and they pro-
vide no support for normative concepts such as obligations, prohi-
bitions and sanctions. To the best of our knowledge, they have not
been used to develop norm-aware agents. AgentSpeak(RT) [15] is
a version of AgentSpeak(L) which allows the specification of dead-
lines and priorities for tasks. However, as with SRTA and AgentS-
peak(XL) it provides no support for normative concepts.

7. CONCLUSIONS
We have presented N-2APL, a programming language for norm-

aware agents. N-2APL provides support for obligations with dead-
lines, prohibitions, and sanctions. N-2APL agents are guaranteed
to be norm-aware rational, that is, to commit to a set of plans of
the highest priority which do not violate higher priority prohibi-
tions, and which are feasible. We believe that N-2APL represents
a good compromise in the design of a norm-aware agent program-
ming language. If the key assumptions underlying the design of N-
2APL are relaxed, an agent either no longer satisfies norm-aware
rationality, or its deliberation about goals, norms and sanctions is
intractable. Although we have developed our ideas in the context of
the 2APL agent programming language, the extensions to support
norm-aware deliberation could be incorporated in a straightforward
way to other BDI-based agent programming languages.
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ABSTRACT
A great number of methodologies has been already intro-
duced in the agent-oriented software engineering field. Re-
cently many of the authors of these methodologies also worked
on their fragmentation thus obtaining portions (often called
method or process fragments) that may be composed into
new methodologies. The great advancement in this field,
however does not correspond to equivalent results in the
evaluation of the methodologies and their fragments. It is,
for instance, difficult to select a fragment in the composition
of a new methodology and to predict the methodology’s re-
sulting features. This work introduces a suite of metrics
for evaluating and comparing entire methodologies but also
their composing fragments. The proposed metrics are based
on the multi-agent system metamodel. The metrics have
been applied to the ADELFE and PASSI methodologies,
results prove the usefulness of the proposed approach and
encourage further studies on the matter.

1. INTRODUCTION

The interest for the concept of agent as the composing ele-
ment of an autonomous system, capable of interacting with
other agents in order to satisfy its design objectives, has
grown since the 1980s. Nowadays, a great number of Agent
Oriented Methodologies1 (AOM) have been proposed [1].
These methodologies focus on different aspects and, offering
different functionality with different levels of detail, address
a scale of Multi-Agent Systems (MAS). The diversity of ap-
proaches offers rich resources for developers to draw on, but
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Université Paul Sabatier, Toulouse, France
†Dipartimento di Ingegneria Chimica Gestionale Informat-
ica Meccanica
Università degli Studi di Palermo, Italy
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1In this paper we consider the term methodology and design
process as synonyms
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June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

can also be a hindrance to progress if their commonalities
and divergences are not readily understood. Moreover, an
attempt from the wide range of AOMs is to benefit from
different methodologies by combining their particular fea-
tures. Several methodologies have been already combined
before they were split up into fragments in order to adapt
and/or design new methodologies [16]. It is therefore nec-
essary to provide a way of comparison that would help to
choose the suited method. In the last few years, the evalu-
ation of MAS software engineering techniques has been one
of the most active areas of research and some comparison
frameworks have been proposed taking into account what
concepts are manipulated, notations used, and development
process or pragmatics adopted [2] [23]. Despite this, there
is no objective, complete and systematic way to evaluate
MAS development methods and tools. Besides, it is difficult
to select a fragment in the composition of a new methodol-
ogy and to predict the methodology’s resulting features [8].
In this work, we propose some metrics measuring relevant
features of AOM that deal with objective criteria for eval-
uating and comparing entire methodologies but also their
composing fragments.

All methods of evaluation are influenced by the same fac-
tors, some affecting the evaluation of the structural features
of the methodology itself, some others its enactment per-
formances. The evaluation of static aspects is mainly in-
fluenced by the appreciation of: the importance given to
designer’s experience (a huge availability of guidelines, for
instance, minimize that), the work to be done, the artefacts
to be produced. These elements correspond to the typi-
cal triangle stakeholder-activity-work product considered as
central by many design process composition and modelling
approaches (for instance SPEM [18]). As regards methodol-
ogy enactment, factors like problem complexity, designers’
experience/number and the development context are crucial.
All these variables are connected together. The study of all
the variables at the same time is far too complex. Different
approaches have proposed separate studies of some of these
variables, for instance [4][22][9][15][10].

In the proposed approach, we base the evaluation on the
assumption that the MAS metamodel (MMM hence after)
adopted in a methodology directly influences the three cru-
cial elements of the methodology (stakeholders, activities,
work products) and it is conversely influenced by them. As
a result, we think that some useful indications about the
methodology features may be obtained by the application of
metrics based on the MMM.

For this reason, this work starts analysing the metamodel
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of the fragments obtained by the fragmentation of the method-
ology. Such fragments (sometimes addressed as process frag-
ments, method fragments or chunks) constitute the root con-
structs of the methodology itself and they have been ex-
tracted by considering a precise granularity criterion: each
group of activities (composing the fragment) should signifi-
cantly contribute to the production/refinement of one of the
main artefacts of the methodology (for instance, a diagram
or a set of diagrams of the same type). Following this as-
sumption, fragments obtained from different methodologies
are based on a similar level of effort (although with some ob-
vious differences among them) and produce results of similar
complexity (a work product like a diagram). The approach
is also based on some other assumptions we made: (1) The
fragments included in a possible loop of methodology process
are counted only one time. This ensures that the different
methodologies (and related fragments) can be fairly com-
pared. (2) Finally, in order to be comparable, some rules
have to be followed in the description of the fragment meta-
model. Such rules ensure that different methodologies (and
composing fragments) refer to metamodels described with a
comparable level of detail.

The proposed metrics are: fragment input (measuring
the dependency of a fragment on the others), fragment
output (measuring the complexity of the output work prod-
uct), fragment creative effort (measuring the complexity
of the design effort spent on the fragment), fragment free-
dom degree (measuring the degree of freedom offered to
the designer while working in the fragment activities). The
metrics have been applied to the ADELFE [20] and PASSI
[6] methodologies. The results have been used to validate
the proposed metrics.

The paper is organized as follows: details about the def-
inition of MAS metamodels and the process fragments are
introduced in section 2. In section 3, the proposed metrics
are defined specifying the evaluation criteria and the for-
mulas that allow obtaining quantitative results. Section 4
shows and discusses some results coming from the applica-
tion of the metrics to two methodologies. Some works are
related in section 5 before concluding with some prospects.

2. BACKGROUND
Before discussing the proposed metrics we describe all the

constructs used for their creation and their application. In
this section we first introduce the concept of MAS meta-
model and what is its importance in a design process, how
we model a design process using the IEEE FIPA styles [13]
also including the concept of fragments and finally which
diagrams are useful for applying the proposed metrics.

2.1 Multi-Agent System Metamodel
Metamodelling techniques lie in creating a set of concepts

used for describing the properties of models. In the same
way a model is an abstraction of real world’s elements, phe-
nomena, etc. , a metamodel is a further abstraction of a
model. A model is always into compliance with its meta-
model that rules the way in which a model has to be con-
structed.

Metamodelling is an essential foundation of Model Driven
Engineering (MDE) proposed by OMG2 where the language
for describing metamodels is Meta Object Facility (MOF)

2http://www.omg.org/index.htm

[17].
The traditional modelling infrastructure proposed by OMG

is made by four layers each one characterised by an in-
stance of relationship with the above layer. The bottom
level is the level M0, it contains the user data and is called
the instance model. The system solving a specific problem
is that running on a platform, it represents the elements that
exist while the system runs on the real-world platform and
manages the user data. In this work, a system corresponds
to a MAS. The instance model is created by instantiating
what is held in the so called user model (level M1); level
M2 contains the model of information for instantiating the
M1 models and for this purpose it is called metamodel
layer. Finally level M3 contains the model information
for creating metamodels; hence the meta-metamodels that
is usually reported as MOF.

The MAS metamodel we consider for this work is the one
defined in [7]. It presents a multi-layer structure in the same
way of OMG and is composed of constructs. We define a con-
struct as a general term referring to one of the following en-
tities: elements, relationships, attributes and operations. We
therefore define a MAS Metamodel Construct (MMMC) as
one of the previously mentioned entity of the metamodel.

A MAS Metamodel Element (MMME) is an entity of
the metamodel (M2 level) that is instantiable into an entity
of the system model (M1 level). Examples of MMME are:
classes, use cases,. . . Such elements may be instantiated in
the corresponding model element.

A MAS Metamodel Relationship (MMMR) is the con-
struct used for representing the existence of a relationship
between two (or more) instances of MMMEs. For instance,
the aggregation relationship among two instances of a MMME
class is an instance of the MMMR association.

A MAS Metamodel Operation (MMMO) is a behavioural
feature of a classifier that specifies the name, type, parame-
ters, and constraints for invoking an associated behaviour.

A MAS Metamodel Attribute (MMMA) is a particular
kind of elements used for adding properties to MMMEs. A
MMMA is a structural feature and it relates an instance of
the class to a value or collection of values of the type of the
attribute. The attributes type is a MMME. It is worth to
note that several metamodels do not list any MMMA. This
is the consequence of the fact that, according to MMMA
definition, an attribute is a relationship between the class
and another element of the metamodel. It is a choice of
the designer to represent such relationship using attributes
or other strategies (an explicit relationship with the owned
element). In order to support all metamodelling style, MM-
MAs are included in the set of MMMCs supported by our
approach.

We claim that every design process is underpinned by a
system metamodel, therefore each time a designer is develop-
ing her/his MAS (s)he has at his disposal a set of elements,
relationships, attributes and operations (s)he can manage
for creating the system models; hence for drawing all the
work products composing the system model.

In order to provide means for understanding the metrics
presented in this work, in the following subsections we will
provide an overview on the modelling actions made on the
system metamodel constructs during design and the mutual
relationships between system metamodel and work product
by means of what we call wp content diagram.
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2.2 Modelling Actions
While composing a work product four different kinds of

action can be made on the metamodel constructs; the de-
signer may:

• Instantiate an element in the work product. This cor-
responds to create a new model element. This mod-
elling action is labelled Define (D).

• Instantiate a relationship in the work product. This
corresponds to create a new relationship among two
model elements according to what is permitted by the
metamodel. This modelling action is labelled Relates
(R).

• Refine an already defined element in the work prod-
uct. This corresponds to instantiate a new attribute
or operation. Refining an element corresponds to per-
forming the following modelling actions: Refine At-
tribute (RFA) or Refine Operation (RFO). We note
that in both cases it includes the quotation of that el-
ement.

• Use an already defined construct in the work prod-
uct. New work products often relate the new elements
to other elements that have been introduced in pre-
vious process activities and therefore reported in their
corresponding output work products. Reporting an al-
ready defined metamodel construct corresponds to per-
forming the following modelling actions: Quote (Q),
Quote Relationship (QR), Quote Attribute (QA)
or Quote Operation (QO).

2.3 Fragment and Relevant Diagrams
When we talk about “portion of work” we explicitly refer

to the way of representing design processes established by
IEEE FIPA [13] that founds on some underlying ideas: de-
sign process is a set of activities performed in order to reach
design goals and the whole design process can be divided in
phases which in turn are composed of activities and tasks.
Each portion of work is devoted to deliver work products, for
instance activity is devoted to produce a finer grained arte-
fact, one single work product like a diagram possibly com-
plemented by a text description whereas phase delivers ma-
jor artefacts, for instance requirements analysis documents.
Therefore design process is composed of portion of works to
be performed by stakeholders (or process role) in order to
deliver work products (models of the system). Each work
product represents a set of elements of the whole system
metamodel the design process underpins. Moreover a por-
tion of work is usually referred to as“fragment” [12][3][5][19].
The way to describe fragment is still a work in progress and
descends from the approved IEEE FIPA standard on process
documentation.

What is important now is that the system metamodel as-
sumes a very central role in designing and it is the most
important design process component enabling, among oth-
ers, tracking all the transformations and actions designer
does while producing a work product. Besides we have to
consider that design process can be seen as a sequence of
fragments. In order to calculate the metrics that we propose
in this paper it is important to have a look to two important
diagrams used in the documentation of design process, hence
of each fragment composing it. They are the Work Product
Content diagram and the System Metamodel diagram.

(a)

(b)

Figure 1: An Example of the Workproduct Content
Diagram and of MAS metamodel diagram

The first is a specific kind of diagram (see [7] for more de-
tails) devoted to collect all the metamodel constructs that
are managed during the design process enactment and are
also reported in the work product. It represents the rela-
tionships between each work product produced during the
design process and all the constructs of the metamodel that
are here drawn. An example is given in Fig.1.(a) showing
the elements and the relationships between them. They are
footnoted with a specific label that represents the kinds of
action made on it. The labels correspond to the modelling
actions presented previously (cf. 2.2). In addition, the pack-
age with an icon on the left uppermost corner points out the
work product and its kind (see [21] for the complete list and
an explanation on work product kinds).

The second diagram is the MAS Metamodel diagram that
shows all the system metamodel constructs that are man-
aged by the designer in using a specific design process. This
also includes all the constructs that are accepted as external
inputs of the overall process whereas in the work product
content diagram only the constructs reported in the work
product are shown. Fig.1.(b) shows the MAS Metamodel of
the Communication Ontology Description of PASSI.

3. FRAGMENT METRICS
As opposed to object-oriented methodologies, there has

not been much work in comparing agent-oriented method-
ologies because of the intrinsic features in different MASs
and their application context. There is therefore a real dif-
ficult in evaluating them. The following section presents a
set of criteria based on the agent-oriented metamodel of each
process fragment. Actually, four metrics are defined: frag-
ment input, fragment output, fragment creative effort and
fragment freedom degree.
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3.1 Fragment Input
The Fragment Input (FI) is an architectural metric. It

represents the input data required by a fragment i.e. a kind
of constraints representing a guard condition. It measures
the dependency of a fragment to another in a method. Ac-
tually, the input of a fragment is the number of its imme-
diately needed constructs. High fragment input identifies
fragments with a relevant dependency on other portions of
the design process. Besides, a low fragment input is desir-
able for relating fragments because the probability to find
needed constructs is higher. Thus, a fragment can be more
reused, which is usually a good objective. For instance, it is
common to find fragments with a low FI at the beginning of
the process while this number is often higher going on inside
the lyfe-cicle.

Let F be all fragments from a design process and If be the
set of constructs required by the fragment f . We calculate:

∀f ∈ F, FI(f) = |If |

Usually, the fragment input shows the most specific frag-
ments of a process, i.e. the fragments that are related each
other by tight dependency relationships.

3.2 Fragment Output
The Fragment Output (FO) measures the work product

complexity of the output constructs. Actually, work product
complexity represents the complexity in reading and under-
standing a work product. We think this is mainly affected
by two numbers: the number of different types of MMMC
that can be represented in the work product (according to
what specified in the process) and the number of instances of
these MMMC actually represented in a specific work prod-
uct. This latter number belongs to the M1 level of repre-
sentation and therefore it is out of the scope of our study.
The previous number is composed by the number of the dif-
ferent MMMC that, in the specific work product, may be
represented, whatever action the designer performs on them
in the fragment.

Let F be all fragments from a design process and Of be
the set of constructs in the fragment f . The constructs can
be instantiated or quoted or refined. We calculate:

∀f ∈ F, FO(f) = |Of |

The fragment output shows the most complex fragments
of the process. Actually, the more components are outputted
in a fragment the more complex is to understand the frag-
ment.

3.3 Fragment Creative Effort
The Fragment Creative Effort (FCE) is a part of the com-

plexity design effort. Actually, the complexity design effort
depends on the specific problem, the skills of the designers
and the used design process. The problem complexity is in-
conveniently informal and heterogeneous and it is treated
implicitly by folding it into the solution design in software
engineering approach. Because some engineers are multi-
disciplined, process design is divided into different phases.
Process design however, is not a formula exercise and as a
engineer in any discipline, once the designer has familiarized
her/himself with these skills, (s)he will be able to develop
her/his own system. Therefore, the skills and knowledge of

an engineer influence the design effort of the produced sys-
tem. Measuring this influence is a complex task that will
be studied later. In this first method evaluation, we do not
take into account the designer profile, we suppose a unique
user. Finally, the analysing method and more specifically
the meta-model provides a part of the complexity design ef-
fort. Therefore, the fragment creative effort measures the
effort done by the design in performing the definition of the
portion of system related to a specific fragment. This effort
is related uniquely to the introduction of new elements, re-
lationships, attributes and operations in the system model.

The fragment creative effort is measured for each frag-
ment. It is the number of defined or related or refined con-
structs in a fragment. Let F be all fragments from a method
and Df be the set of defined or related or refined constructs
in the fragment f , then:

∀f ∈ F, FCE(f) = |Df |

The fragment creative effort shows the most complex frag-
ments of the method in term of design. This metric is
strongly related to the fragment output but while the FCE
addresses the creative part of the work, the FO measures
the complexity of the whole resulting work product. In
other words, no contribution to FCE comes, for instance,
from constructs reported unchanged from previous portions
of work, but these constructs are counted in the FO. As a
consequence, this formula expresses the relationship between
the two:

∀f ∈ F, FO(f) ≥ FCE(f)

3.4 Fragment Freedom Degree
The Fragment Freedom Degree (FFD) represents the de-

gree of freedom granted to designer for a fragment. It is
calculated by the ratio of the fragment creative effort over
the fragment input. This metric enables to define for a frag-
ment if the introduction of the new constructs is strongly
conditioned or not. In a method, high fragment freedom de-
gree is ideally required in the first fragments of the method.
In fact, these fragments usually imply designers’ own mind
and creativity. Then, the fragment freedom degree of the
following fragments progressively decreases until to obtain a
low fragment freedom degree for the last fragments. Actu-
ally, the designer is generally strongly conditioned at the end
of the process because during the life-cycle, (s)he is guided
in order to converge towards a well defined system.

Let F be all fragments from a design process, then:

∀f ∈ F, FFD(f) = FCE(f)/FI(f)

The fragment creative effort shows the process structure.
The ideal process structure might present a high value of
FFD at the beginning of the process and a progressive decade
of it to a low ration.

4. EXPERIMENTAL RESULTS
Currently, these metrics are evaluate on several Agent-

Oriented Methodologies: ADELFE, PASSI, INGENIAS [14]
and TROPOS [11]. In this section we present the results
obtained for every fragment and gathered by ADELFE and
PASSI. We also study the results comparatively for the two
methods. This experiment enables us to give an analysis on
the intrinsic relevancy of the metrics in subsection 4.1. We
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Figure 2: Evaluation of ADELFE

see in subsection 4.2 how process evaluation and fragment
evaluation become both possible but are quite different. Fi-
nally, we discuss the metrics and the factors that could im-
pact their results.

4.1 Metric Relevancy
It is firstly important to measure the indicators’ intrinsic

quality and see what kind of correlated analysis they enable.
As mentioned in section 3.1, FI gives an idea of the depen-
dencies of each fragment one with another. Therefore, it
is natural to find in Fig.2.(a) that higher values are at the
ended fragments. It shows their specificity in the ADELFE
process and that they will probably induce a difficult reuse.
In the same way, for PASSI, we can see in Fig.3.(a) that
the first and the fifth fragments (Domain Requirement De-
scription and Domain Ontological Description) present the
lowest values. This is explained by the fact that both analyse
the problem domain in terms of the requirements it provides
(the first) and of its ontological representation (the second);
for this reason, the designer faces a kind of work which is
not constrained by other metamodel constructs but it is the
result of her/his own observation and reasoning.

Concerning the FO metric, the high values correspond to
fragments deliverying heavy weight models of the system.
Usually they correspond to the most significant fragments
in the process. The usefulness of the fragment low value
within the process might be reappraisal. In the ADELFE re-
sults in Fig.2.(b), the greatest values are obtained for Agent
Definition and Non Cooperative Situation Definition which
indeed are the most significant activities in ADELFE. It is
also interesting to note that all fragments settled in the de-
sign phase and in the implementation phase (from Architec-
ture Definition to Behaviour Implementation) have a rather
important value except for Interaction Language Definition
fragment and Fast Prototyping fragment. They are two sin-
gularities comparatively with the surrounding fragments. It
clearly shows the lack in the metamodel of elements to take
these activities into account with as much quality as other

design or implementation fragments. The PASSI curve re-
veals an interesting confirmation of these considerations, for
instance in the presence of the maximum value for the Single
Agent Structure Definition fragment which is quite intuitive
for an AOSE design process.

The FCE metric also reveals itself to be a very relevant
indicator. For ADELFE, three peaks are distinctly drawn
above the average value (which is of five constructs) on the
FCE plot (cf. Fig.2.(c)). These three peaks correspond to
the definition of the most important constructs in ADELFE
where the highest efforts are provided to define the environ-
ment (Environment Definition fragment), the cooperative
agent behaviour (Agent Definition fragment) and the archi-
tecture (Architecture Extraction fragment). We will address
this discussion in a following subsection. In PASSI, we can
note low values of creative effort (cf. Fig.3.(c)) in the Single
Agent Behaviour Description, in the Code Reuse and in the
Code Production. We were expecting to find these values
because these fragments are in the implementation phase of
the design process so, because of the nature of PASSI that
commits a great effort and a lot of work in the design phase,
all the information needed for defining the implementation
constructs can be inferred from the previous phase without
spending too much effort. Besides another result we imag-
ined is that regarding the Code Production and Code Reuse
creative effort, although these two fragments presents the
same value of FO and both the two deals with code con-
cerns, Code Reuse has a higher creative effort. During Code
Reuse, the designer analyses and then reuses patterns of
agent and this activity is obviously more demanding than
simply writing code on the base of previously drawn struc-
tural and behavioural diagrams.

With our experimentation on ADELFE and PASSI, we
found these metrics very relevant to show the complexity
and the specificity of evaluated methodologies.
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Figure 3: Evaluation of PASSI

4.2 Process Evaluation vs. Fragment Evalua-
tion

As we saw in the previous subsection, the metrics that are
proposed in this paper are of a good accuracy to evaluate
fragment intrinsic characteristics but the correlated metric
values are also of high interest for every single fragment.

A high value of FI is often accompanied by a high value
of FCE and of FO, because the more constructs one has to
design, and the more constructs are needed, the more is the
effort spent in doing the design activity. This general rule
is however not always respected, for instance for the Agent
Identification fragment of PASSI. Although the FI and FO
values are rather high, the FCE is rather low, particularly
in the PASSI context, because of the fact that this portion
of work only requires to group use cases in order to identify
agents. All the information is already present in the previous
fragment with which, in fact, there is a tight dependency also
shown by the value of FI.

As the figures show, the metrics give also information on
the global method characteristics. Some singularity points
can be observed or comparative values of metrics can only
be explained by a global view of the process. Let us illus-
trate this with some examples. The first one is about the
singularities that were already mentioned on some ADELFE
fragments that have very low values compared to their neigh-
bourhood. The second one is for FI and FFD values of
the Domain Ontological Description fragment in PASSI (cf.
Fig.3.(a)(d)). As it can be seen, they are offbeat with the
rest of the curve; this is because this fragment is not well po-
sitioned in the PASSI design process. This can be seen above
all from the FFD where we expected to have a decreasing
trend for the reasons said before. This result confirms what
we thought about the position of this fragment and validate
the accuracy of the proposed metrics. A last example is ob-
served on the FFD curve for ADELFE (cf. Fig.2.(d)). As
expected, the FFD flatten out at a low level during the re-
quirement analysis phase (ended by the UI Prototyping frag-
ment). However the FFD has a slight rise during the Agent

Identification fragment and the Agent Definition fragment.
Actually, the Agent Identification fragment aims at finding
what agents will be considered in the system and the Agent
Definition fragment aims to define the behaviour: skills, ap-
titudes, an interaction language, a world representation, etc.
for every agent previously identified. In these fragments, de-
signers have a high responsibility in the choice they make.
As the figure shows, they have high freedom degree with lit-
tle constructs already defined to guide them or to constraint
them. All these examples find explanation in the relative
values of the fragments of a same process rather than in the
individual value of each one.

4.3 Discussion
A first difficulty occurring while comparing several method-

ologies is the lack of normalization. ADELFE is defined with
17 fragments while PASSI only contains 15 ones. And of
course, they do not address the same phases with the same
granularity. For this reason, we were obliged to normalize
the curves in order to present ADELFE and PASSI with
comparable values (cf. Fig.4). This was done by aligning
fragments according to analysis, design and implementation
phases. This alignment may also be needed on the Y axis
that is the number of constructs. Obviously, the more con-
structs the metamodel contains, the higher the values will
be in the metrics (except for FFD which is a ratio, natu-
rally). This factor, which can be called the granularity of
the metamodel, may happen when methods are using Model-
Driven Development. In that case, metamodels are very big
with plenty of details needed to tackle with accuracy re-
quired by model transformation algorithms. For this rea-
son, it is important to normalize also the granularity with
which a process is described and therefore the level of ab-
straction. None of the metrics takes the presence/adoption
of Computer-Aided Software Engineering (CASE) tools into
account. However, tools for guiding the engineer during the
design are an advantage that should be evaluated by metrics.
We will discuss about that in the following section.
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Figure 4: Comparison of ADELFE and PASSI

5. RELATED WORKS
Recently several AOM have been proposed. Thus far,

however, software designers have not embraced any single
methodology. In order to develop better solutions, design-
ers need to understand advantages and limitations of exist-
ing methodologies. Therefore some works focus their efforts
on the analysis of methodologies.

Cernuzzi’s approach uses goal-question-metric to deter-
mine what factors are important to measure for comparing
methods [4]. A qualitative analysis followed by a quan-
titative rating is proposed. Sturm and Shehory [22] de-
velop a catalog of criteria for feature-based analysis of AOSE
methodologies. Agent-Based Characteristics and Software-
Engineering Criteria are differenciated. Their set of crite-
ria is suitable to show the drawbacks of methodologies and
therefore gives suggestions for further development. The
above described approach compares the methodologies by a
screening of the criteria. Dam and Winikoff [9] divided their
found criteria into four dimensions to examine: (1) concepts
and properties, (2) notations and modeling, (3) process, and
(4) pragmatics. During the methodology evaluation, the
correctness of a notation and the referenced characteristics
is difficult to judge. The survey approach proposed here
successfully reflects it. Moreover, based on both software
engineering process principles and agent characteristics, Lin
et al. [15] approach determines whether criteria have been
met by the method and provides answers as statements for
comparison from questions at the detailed level concerning
logical relationships among these criteria.

The main lack of these approaches is that they only evalu-
ate methodologies and do not take into account the portions
which compose them. Currently, there is no tool that im-
plements and simplifies the evaluation of the entire method
process and their fragments.

6. CONCLUSIONS AND FUTURE WORKS
Despite all papers related to this topic there is no general

and commonly adopted evaluation process of method. There
is a fundamental need to have evaluation process in order to
get a measurement of comparing completed activities of a
method. In this paper, four objective dynamic metrics have
been defined. These metrics enable analysing and compar-
ing methods process and their fragment. Based on MAS
metamodel, for each method fragment, particular numbers
of constructs from the modelling actions performed on them
are measured. Each measure enables to show some specifici-
ties of the fragments or some particularities of the method
process. In order to illustrated the metrics, quantitative re-
sults of the agent-oriented method evaluation have been pre-
sented. This example usage illustrated how to derive method
process features from the method fragment metamodels.

Future improvements to the presented metrics may result
from an examination whether it is useful to consider different
kinds of actions in workflow activity: (i) GUI action which
is an activity performed by the designer using a GUI; (ii)
automated action which is an activity performed by the tool
to create a new constructs e.g. a model transformation; (iii)
user action which is an activity not supported by a tool such
as using a blackboard.

Currently, these metrics are basically used in a work of
designed processes from self-combining method fragments.
They enable the designed process evaluation at two levels:
the evaluation of similar fragments and the evaluation of
different processes.
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ABSTRACT
We introduce Comma, a methodology for developing cross-organi-
zational business models. Comma gives prime position to patterns
of business relationships understood in terms of commitments. In
this manner, it contrasts with traditional operational approaches
such as RosettaNet that are commonly used in industry.

We report the results of a developer study comparing Comma
with a methodology recommended by the RosettaNet Consortium.
Ours is one of the only evaluations of an agent-oriented methodol-
ogy that (1) involves developers other than the proposing researchers
and (2) compares against a traditional nonagent approach.

We found that Comma yields improved model quality, a greater
focus in relative effort on the more important aspects of modeling,
and a general reduction in total time despite yielding more compre-
hensive models. Certain anomalies in effort expended point toward
the need for improved tooling.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—General;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Design, Experimentation

Keywords
Commitments, Business modeling, Methodology

1. INTRODUCTION
Real-world organizations seldom operate in isolation. To stay

competitive, organizations develop deep expertise in core business
functions, and outsource the rest to business partners. This results
in a network of organizations with complex business relationships.
Existing approaches for business modeling are of two broad types.
The low-level approaches use concepts such as message ordering
and control flow, and yield highly rigid models. The high-level
approaches use concepts such as goals and values, and cannot be
easily operationalized. Recently, researchers have begun to use so-
cial commitments for business modeling, e.g., [4], since they lead
to flexible yet operationalizable models.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

We introduce Comma, a novel commitment-based business mod-
eling methodology, which builds on a recent business metamodel
[19]. Unlike traditional approaches, Comma gives prominence to
patterns of business relationships. The motivation for developing
abstractions such as commitments is that they would facilitate the
engineering of superior solutions by helping build richer models of
interaction. This is the main claim that we investigate here along
with associated claims of ease of use and efficiency.

Two shortcomings of previous approaches are that, first, they do
not adequately describe how to put concepts such as commitments
into modeling practice, especially for the benefit of practitioners
who are not multiagent systems specialists. And, second, previ-
ous approaches have not empirically evaluated their benefits in a
controlled study, involving participants other than the authors. The
same shortcomings, especially the second, might be said to apply
on AOSE research broadly.

Contributions and Organization
The main contributions of this paper are the Comma methodol-
ogy and a developer study comparatively evaluating it with respect
to RosettaNet [14], a well-known traditional approach for cross-
organizational processes. Our results confirm the relative effective-
ness of Comma for the quality of modeling cross-organizational
processes, and some benefits in ease of modeling and time ex-
pended. Further, the results yield insights for future improvements.

The rest of the paper is organized as follows. Section 2 describes
the necessary background. Section 3 describes the Comma method-
ology. Section 4 outlines the design of the study, and Section 5
describes the study results. Section 6 discusses related work, and
Section 7 concludes the paper with a discussion of future directions.

2. BACKGROUND
RosettaNet, a consortium of over 500 organizations, is a leading

industry effort that develops standards for Business-to-Business in-
tegration that support business transactions worth billions of dol-
lars. In RosettaNet, a Partner Interface Process (PIP) specifies a
two-party interaction for a specific business intent. The PIPs are
organized in a two-level hierarchy of cluster and segment. For ex-
ample, Request Purchase Order PIP 3A4 is from Cluster 3 (Or-
der Management) and Segment A (Quote and Order Entry). Using
3A4, a buyer sends a purchase order to a seller. Most PIPs define a
two-party interaction involving a request and a response message.
A modeler prepares a list of the necessary PIPs as the RosettaNet
model of a business scenario. Next the modeler designs what we
term RosettaNet MSCs: message sequence charts (MSCs) whose
messages are derived from the PIPs.

We now describe some relevant concepts from Telang and Singh’s
[19] business metamodel. An agent models a real-world organiza-
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tion. The agent can play one or more roles in a business relation-
ship. A role abstracts over the agents, and specifies, in a templatic
form, the commitments that an agent adopting the role must partic-
ipate in. A task is a business activity that an agent performs.

A commitment C(DEBTOR, CREDITOR, antecedent, consequent)
means that the DEBTOR commits to the CREDITOR to bring about
the consequent if the antecedent holds. The antecedent and the con-
sequent are logical expressions over the tasks. When the antecedent
of a commitment holds, the commitment detaches, and the debtor
becomes unconditionally committed to the creditor to bring about
the consequent. Regardless of the antecedent, if the debtor brings
about the consequent, the commitment is satisfied [15]. For exam-
ple, C = C(BUYER, SELLER, goods, pay) means that the buyer
commits to the seller to paying if the seller ships the goods. C de-
taches if the seller ships the goods, and satisfies if the buyer pays
regardless of when the seller ships the goods. Singh [16] explains
commitments further.

Telang and Singh [19] define several business (modeling) pat-
terns, of which our study used commercial transaction, and out-
sourcing patterns. We briefly describe the outsourcing pattern, and
refer the reader to [19] for further details.

Outsourcer Contractor

create (C2)
payCon

C3

payCon
create (C2)

C4

payOut
task

C1

Client

T
task

C2

C1 C(OUTSOURCER, CLIENT, payOut, task)
C2 C(CONTRACTOR, CLIENT, >, task)
C3 C(OUTSOURCER, CONTRACTOR, create(C2), payCon)
C4 C(CONTRACTOR, OUTSOURCER, payCon, create(C2))

Figure 1: Outsourcing business pattern [19].

Figure 1 shows the outsourcing pattern in Telang and Singh’s
notation. An oval represents a role; the label in the oval is the role
name. A rounded rectangle represents a commitment. The rectan-
gle shows the commitment name in the left-hand side, and in the
right-hand side it shows the antecedent on the top and the conse-
quent on the bottom. Two directed edges connect a commitment
to roles: from the debtor to the commitment and from the com-
mitment to the creditor. In the outsourcing pattern, an outsourcer
delegates a task to a subcontractor. Here, C1 is the original commit-
ment from the outsourcer to a client to execute a task if the client
pays the outsourcer (payOut). C2 is the outsourced commitment
from the contractor to the client to execute the same task. The an-
tecedent of C2 is true (>), which means that it is unconditional.
C3 and C4 are the commitments in which the outsourcer and the
contractor commit to pay (payCon) and to create C2, respectively.

3. COMMA
For each business pattern, such as those proposed by Telang and

Singh [19], we develop a set of generalized (templatic) message
sequence charts that operationalize that pattern.

Figure 2 shows the MSCs for the outsourcing pattern using UML
2.0 sequence diagram [11] operators OPT(ion) and ALT(ernative).

m1 create(C1)

Outsourcer Client

alt

Outsourcer Contractor

m2

m3

m3

m2 create(C3)

create(C4)

create(C4)

create(C3)

[ m1 ]

[ m1 ]

opt
task

Contractor Client

[ m4 ]

alt

Outsourcer Contractor

payCon

m4

m4

payCon

create(C2)

create(C2)

[ m2 & m3 ]

[ m2 & m3 ]

payOut

(a)

(b)

(c) (d)

Figure 2: Message sequence charts for outsourcing.

We go beyond UML in labeling each message with its mean-
ing. A message labeled with a proposition, usually part of the an-
tecedent or consequent of some commitment, simply brings about
that proposition. A message labeled mi for some imeans an opera-
tion on some commitment (such as its creation), which we annotate
on the side. In Figure 2(a), the outsourcer sends m1 to the client,
which creates commitment C1. The client sends payOut to the out-
sourcer upon receiving m1, which detaches C1 since it is C1’s an-
tecedent. In Figure 2(b), after receiving m1, the outsourcer sends
m2 to the contractor, and after receiving m2 the contractor sends m3

to the outsourcer. Alternatively, the contractor first sends m3 to the
outsourcer, and after receiving m3, the outsourcer sends m2 to the
contractor. m2 creates C3 and m3 creates C4. In Figure 2(c), after
m2 and m3 are exchanged, the outsourcer sends payCon to the con-
tractor and the contractor sends m4 to the outsourcer in either order.
Now payCon satisfies C3 and detaches C4; and, m4 creates C2 and
satisfies C4. In Figure 2(d), after m4 is exchanged, the contractor
sends task (message) to the client. This satisfies C1 and C2 since
task is their consequent. As part of creating a model, a modeler
substitutes the message labels mi with domain-specific terms.

The Comma methodology begins from an informally described
real-life cross-organizational scenario and produces formal busi-
ness and operational models. Table 1 summarizes Comma.
Step 1 A subscenario is a fragment of the given scenario. From

the given scenario description, extract subscenarios such that
each match a pattern from the Comma pattern library.

Step 2 For each subscenario, identify its roles. A subscenario usu-
ally describes participants using a combination of generic
terms (e.g., Company, Partner, and Organization) and spe-
cific names (e.g., FedEx). This step involves creating roles
based on business function (e.g., Shipper) that remove any
ambiguity, such as if Partner and Organization refer to the
same entity.

Step 3 For each subscenario, identify business tasks (e.g., goods
and payment) that a role executes. A scenario typically spec-
ifies the tasks as actions executed by the participants.

Step 4 From the Comma pattern library, introduce into the busi-
ness model a pattern corresponding to each subscenario. Re-
name the pattern characters with the roles from Step 2, and
introduce the tasks from Step 3 as the antecedents and con-
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Table 1: Comma methodology steps.

Step Description Input Output

1 Extract subscenarios corresponding to Comma patterns Real-life cross-organizational scenario Subscenarios
2 Identify roles from each subscenario Subscenario Roles
3 Identify business tasks from each subscenario Subscenario Tasks
4 Introduce a Comma pattern for each subscenario Comma pattern, subscenario, roles, tasks Business model
5 Introduce MSCs for each Comma pattern Comma pattern MSCs, subscenario, roles, tasks Operational model

sequents of the appropriate commitments. The patterns com-
pose naturally when the same roles are referenced by more
than one pattern.

Step 5 For each Comma pattern, introduce its MSC into the oper-
ational model. Rename the roles and messages in the MSCs
to align them with those determined in Steps 2 and 3. Cus-
tomize the MSCs to capture any subscenario-specific opera-
tional details, such as additional messages, guards, and loops.

4. DESIGN OF THE STUDY
Our study used an initial scenario based on real-life cross-organi-

zational business processes, inspired by the Oracle Quote-To-Cash
(QTC) process [12, 19], and two modifications of the scenario.
Si, the initial scenario, involves MedEq, a company that sells

medical equipment. MedEq designs the equipment in house, and
out-sources manufacturing to two contract manufacturers, FlexMan
and SoleMan, and shipping to two shippers, FedUp and UpFed.
To purchase the equipment, a customer submits its requirements to
MedEq. MedEq analyzes the requirements, and creates a proposal
containing the equipment details, and a quoted price. The customer
may accept the proposal or negotiate for a better price. There can be
up to two iterations between MedEq and the customer before they
either agree upon the price, or abort the transaction. If MedEq and
a customer reach an agreement, the customer proceeds to placing
an order and specifying the equipment, shipping address, contact
information, and payment information. Upon receiving the order,
MedEq validates the order. MedEq accepts the order if it is valid
and rejects it otherwise. MedEq maintains warehouses in which it
stocks the equipment. In case the ordered equipment is in stock,
MedEq requests a shipper to ship the equipment to the customer.
MedEq pays the shipping charges to the shipper.

If the equipment necessary to fulfill an order is not in stock,
MedEq places a stock replenishment order with a contract man-
ufacturer. The contract manufacturer employs a shipper to ship the
equipment to MedEq’s warehouse. MedEq pays the contract manu-
facturer for the equipment. Once the equipment is in stock, MedEq
fulfills the customer’s order.
Sf , the first modification, adds a new participant, a value-added

reseller, MedRes. MedRes sells, installs, and supports (i.e., ser-
vices) medical equipment. The customer now places its order with
MedRes, who orders the equipment from MedEq and provides the
installation and support itself. The customer pays MedRes, and
MedRes pays MedEq. MedRes supports the equipment as needed.
The rest of the scenario remains unchanged.
Ss, the second modification, removes the contract manufacturers

SoleMan and FlexMan from the original scenario. The rest of the
scenario is unchanged.

4.1 Study Solution
Figure 3 shows the solution Comma model for the initial sce-

nario, Si. For brevity, we present only the final Comma model and

Shipper 1

create(C5)
payShip1

C3

payShip1
create(C5)

C4

Customer

payComp
goodsCust

C2

T
goodsCust

C5

Manufacturer Shipper 2

create(C10)
payShip2

C8

payShip2
create(C10)

C9

Company

payMfg
goodsComp

C7 T
goodsComp

C10

goodsCust
payComp

C1

goodsComp
payMfg

C6

Figure 3: Comma model for Si.

opt

goodsCust

Shipper1 Customer

[ confirmShip ]

alt

Company Shipper1

payShip1

confirmShip

confirmShip

payShip1

create(C5)

create(C5)

[ reqShip & ackShip ]

[ reqShip & ackShip ]

order create(C1)

Customer Company

ackOrder

(a)

create(C2)

alt

Company Shipper1

reqShip
ackShip

ackShip

reqShip
create(C3)
create(C4)

create(C4)
create(C3)

[ ackorder ]

payComp
[ ackorder ]

(b)

(c)

(d)

Figure 4: Example Comma MSCs for Si.

omit the outputs of the intermediate methodology steps. The model
is composed from the commercial transaction and the outsourcing
patterns. For example, the commercial transaction pattern captures
MedEq (Company) and the customer agreeing to exchange medical
equipment for certain price. The model commitments C1 and C2

correspond to this pattern: in C1, the customer commits to paying
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the company (payComp) if the company provides the equipment
(goodsCust), and in C2, the company commits to providing the
equipment if the customer pays. The outsourcing pattern models
MedEq employing a shipper (Shipper 1) to ship the medical equip-
ment to the customer. The model commitments C2,C3,C4, and C5

correspond to this pattern: C2 is the original commitment, C5 is
the outsourced commitment, and C3 and C4 are the commitments
in which the company and the shipper commit to paying and to
creating C5, respectively. Figure 4 shows four of the ten MSCs
for the initial scenario, Si, developed using Comma. These MSCs
correspond to MedEq outsourcing the shipping to a shipper. We
omit further description of these MSCs since Section 3 describes
the outsourcing MSCs in detail.

Table 2: RosettaNet model PIPs for Si.

PIP Name (shortened) Subscenario

3A1 Request quote Customer, MedEq negotiate
3A4 Purchase order Customer orders from MedEq
3B12 Request shipping MedEq ships to Customer
3C3 Notify of invoice Shipper invoices MedEq, MedEq

invoices customer, shipper
invoices manufacturer,
manufacturer invoices MedEq

3C4 Reject invoice MedEq, customer, or
manufacturer reject invoice

3C6 Remittance advice MedEq pays the shipper, customer
pays MedEq, manufacturer pays
shipper, MedEq pays
manufacturer

7B5 Manufacturing order MedEq orders from manufacturer
3B12 Request shipping Manufacturer ships to MedEq

alt

MedEq Shipper

3B12 reqShip 

3B12 accept

3B12 reject

[ T ]

[ T ]

3C3 invoice

opt 3C4 reject invoice
[ T ]

Shipper MedEq

3C6 remit advice

MedEq Shipper

(a)

(b)

(c)

Figure 5: Example RosettaNet MSCs for Si.

Table 2 shows the RosettaNet model PIPs for the initial scenario,
Si. For example, the customer uses PIP 3A1 to request a quote
from MedEq. Figure 5 shows three of the thirteen MSCs for the
initial scenario, Si, developed using RosettaNet. Figure 5(a) is the
MSC for PIP 3B12 in which MedEq requests the shipper to ship
the equipment to the customer. The shipper either accepts or re-
jects the request. The shipper invoices MedEq using PIP 3C3 in
Figure 5(b). MedEq may reject the invoice using PIP 3C4. In Fig-
ure 5(c), MedEq notifies the shipper of remittance advice using PIP
3C6.

4.2 Study Mechanics and Threat Mitigation
We conducted a developer study with 34 subjects (graduate com-

puter science students). Three exercises, corresponding to the three

scenarios, Si, Sf , and Ss, comprised the study. The study used
a between-subject experimental design [9]. For each exercise, the
study divided the subjects into two groups who applied different
methodologies to model the same scenario. We carefully designed
the study to mitigate the well-known threats [9] to its validity.

To mitigate the threat of skill differences between the partici-
pants, prior to the exercises, we surveyed the study subjects to
gather information on their educational background, and experi-
ence in process modeling and software engineering. We then di-
vided the participants into two groups, A and B, of approximately
equal skill levels. The first exercise compared groups A and B, and
the subsequent exercises split and merged the same groups. For the
first exercise, the subjects in groups A and B developed a model and
MSCs for Si using RosettaNet and Comma, respectively.

For the second and third exercises, a primary threat was the
learning effect, because after the first exercise, subjects would be
familiar with the methodology they used. To mitigate this threat,
we divided each group into two subgroups of equal size and com-
bined a subgroup from each group to form new groups A’B’ and
A”B”. A secondary threat was variance in the initial models devel-
oped by different subjects and their lack of familiarity with models
developed by others. To mitigate this threat, we developed C and
R, respectively, Comma and RosettaNet model and MSCs for the
initial scenario Si.

In the second exercise, group A’B’ began from C and applied
Comma, and group A”B” began from R and applied RosettaNet,
both to account for Sf .

Study Subjects

Group A Group B

Group A' Group A'' Group B' Group B''

Si : Divide into groups of equal size 
and  equal skill level

Sf and Ss : Divide into 
groups of equal size 

Sf and Ss : Divide into 
groups of equal size 

Figure 6: Our approach of grouping the subjects.

In the third exercise, we swapped the two groups. Group A’B’
reviewed R and applied RosettaNet, and group A”B” reviewed C
and applied Comma, both to account for Ss.

Figure 6 summarizes how the study divided the subjects into
groups, and Table 3 summarizes the exercises.

The subjects self-reported the time and difficulty for each method-
ology in a work log. To mitigate the threat of a subject forgetting
to report relevant information, we required each subject to submit
his or her work log three days a week, regardless of the effort they
spent in that period.

4.3 Dependent Variables
This section describes the dependent variables of the study that

we use to compare Comma and RosettaNet.
Quality of the models, assessed by experts, using the measures of

Table 4. (A higher value is better for each.)
Difficulty in completing a methodology step as (subjectively) re-

ported by a subject. Difficulty ranges over extremely easy,
easy, neutral, difficult, and extremely difficult. Subjects re-
ported the difficulty in a work log; we calculate the percent-
age of responses for each difficulty level. In most reports, we
combine best two as easy and the worst two as difficult.
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Table 3: Study exercises.

Exercise Group A Group B
Group A’ Group A” Group B’ Group B”

1 Develop RosettaNet model and MSCs for Si Develop Comma model and MSCs for Si
2 Modify C to model Sf ModifyR to model Sf Modify C to model Sf ModifyR to model Sf
3 ModifyR to model Ss Modify C to model Ss ModifyR to model Ss Modify C to model Ss

Table 4: Quality measures, as judged by experts.

Measure Captures a
methodology’s

Model Coverage. Percentage of models that
fully cover the problem scenario

Completeness in
modeling a scenario

Model Precision. Percentage of models that
include no aspects unrelated to the
problem scenario

Effectiveness in avoiding
bloated models

MSC Structure. Percentage of MSCs with
correct and complete guards

Soundness: fewer errors
in outcomes

MSC Flexibility. Average number of
ALT(ernative) blocks per MSC

Support for participants’
flexibility

MSC Abstraction. Percentage of MSCs that
use a role, not an agent, name

Support for reusability of
models

Time taken to complete a methodology step as reported by a sub-
ject: a continuous variable in the unit of hours. Subjects
reported the time they spent in a work log; we summed up
the time for each subject.

5. STUDY RESULTS
This section describes the key findings from the study.

5.1 Quality
Figures 7 and 9 show the quality measurements of the two method-

ologies from the initial exercise Si.

Coverage Precision Structure Abstraction
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Comma (left) RosettaNet (right)

Figure 7: Quality of the models of Si.

Observation 1: As Figure 7 shows, both model coverage and model
precision are superior for Comma (93% and 87%, respectively)
than for RosettaNet (77% and 44%, respectively).

Observation 1 suggests that Comma is more effective than Ro-
settaNet in creating complete and precise models. We credit this to
the systematic nature of Comma and the fact that it focuses atten-
tion on the relevant commitments and MSCs. On the contrary, the
RosettaNet models tend to contain several superfluous PIPs.

Observation 2: As Figure 7 shows, the percentage of models in
which MSCs do not miss any necessary guards is higher for Comma
(81%) than for RosettaNet (33%).

Since RosettaNet focuses on individual interactions in the form
of PIPs, a modeler often loses an overall perspective on the sce-
nario. The modeler develops an MSC for each PIP, but fails to
relate the MSCs to each other via appropriate guards. In contrast,
Comma forces a modeler to think in terms of the commitment life
cycle. For example, a message that satisfies a commitment should
be preceded by a message that creates the commitment.

0 2 4 6 8 10 12 14 16 18

RosettaNet

Comma

Number of ALTs

Figure 9: Flexibility of the MSCs produced for Si.

Observation 3: As Figure 9 shows, Comma MSCs use a higher me-
dian number of ALTs per model (six) than RosettaNet MSCs (four).

RosettaNet tends to lead to rigid MSCs, i.e., those with only a
few alternative paths. The MSCs included with Comma patterns
promote flexibility, which is inherent in the commitment-based ap-
proach. As a telling example, almost all subjects developed Ro-
settaNet MSCs in which the Customer pays MedEq strictly after
MedEq ships the ordered equipment. In contrast, many subjects
developed Comma MSCs in which the Customer may pay MedEq
either before or after MedEq ships the ordered equipment, a situa-
tion that has been discussed since the earliest works on commitment
protocols [21].
Observation 4: The percentage of models in which MSCs use a role
name instead of a participant name is higher for Comma (100%)
than for RosettaNet (88%).

Observation 4 supports the idea that Comma emphasizes role
abstraction and more naturally yields reusable MSCs.

Since the second and the third exercises began from the mod-
els that we provided, the resulting models are of higher quality,
and without perceptible difference between the two methodologies.
Therefore, we present quality results only for the first exercise.

5.2 Difficulty
Figure 8 shows the percentage of work log responses correspond-

ing to each difficulty level for the three exercises.
Observation 5: In Si, the percentage of easy responses is smaller
for RosettaNet (21.6%) than for Comma (27.5%), and the percent-
age of difficult responses is higher for RosettaNet (28.3%) than for
Comma (23.7%).

Observation 5 suggests that Comma modeling is relatively easier
as compared to RosettaNet modeling.
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Figure 8: Difficulty of modeling, as percentage of responses by the subjects.

To identify the underlying cause of the extreme difficulty reports
about Comma modeling, we analyzed the reported difficulty for
each step. The analysis revealed that Comma Step 4, composing
patterns to create a model, significantly contributes to the difficulty.
This finding indicates the need for simplifying Step 4.
Observation 6: In Si, the percentage of difficult responses in de-
veloping MSCs using Comma (18.3%) is smaller than using Ro-
settaNet (23.0%). However, the percentage of extremely difficult
responses to developing MSCs using Comma (3.3%) is larger than
using RosettaNet (0%).

Observation 6 is mixed. Although Comma appears to have been
easier than RosettaNet overall, the number of subjects who found
Comma extremely difficult was greater than the corresponding num-
ber for RosettaNet. This emphasizes the need for simplifying Comma
Step 5, developing MSCs. A modeling tool, already under devel-
opment, can assist a modeler by creating a base MSC model using
the pattern MSCs.
Observation 7: Comma modeling has 0% extremely difficult re-
sponses, and 9.9% somewhat difficult responses in Sf , as compared
to 2.8% extremely difficult responses, and 20.9% percent somewhat
difficult responses in Si.

We explain Observation 7 based on two factors. First, some of
the subjects gained experience modeling using Comma in the initial
exercise. Second, the subjects started the first modification Sf from
a solution that we provided.

Relative to Si and Sf , Ss has increased responses with lower
difficulty levels. This is partially due to the learning that the sub-
jects gained from the first two exercises, and partially since Ss was
a relatively easy exercise.
Observation 8: In Ss, the percentages of easy responses for modi-
fying the Comma model (56.2%) and MSCs (50%) are higher than
for modifying the RosettaNet model (22.1%) and MSCs (33.3%).

Observation 8 suggests that with some experience, Comma be-
comes simpler than RosettaNet.

5.3 Time
Figure 10 shows boxplots of the time taken by the subjects to

develop Comma and RosettaNet models and MSCs in the three ex-
ercises. Throughout, we remove each outlier: a point that is greater
than the third quartile or smaller than the first quartile by 1.5 times
the interquartile range—i.e., the difference between the third and
first quartiles.
Observation 9: In Si, the median time to develop a model is smaller
for Comma (6.7 hours) than for RosettaNet (10 hours).

Observation 9 suggests that Comma is more efficient than Ro-
settaNet for creating a business model.
Observation 10: In Si, the median time to develop MSCs is some-
what greater for Comma (6 hours) than for RosettaNet (5.5 hours).

Although Comma appears less efficient than RosettaNet, as Sec-
tion 5.1 shows, the MSCs produced from Comma are of higher
quality than those produced from RosettaNet.
Observation 11: In Si, the spreads of the times for developing the
model and MSCs are smaller for Comma than for RosettaNet.

Observation 11 indicates that Comma is more predictable than
RosettaNet in terms of development effort.
Observation 12: Using Comma, the median modeling time for the
first modification Sf (6.6 hours) is about the same as that for the
initial exercise Si (6.7 hours).

Observation 12 is surprising to us. We expected the Comma
modeling time for Sf to be smaller than for Si. We attribute this
result to a couple of key factors. First, the subjects needed time to
comprehend the solutions we provided. Second, the subjects fol-
lowed the same steps for modifying the model as the steps they
followed for creating the model in the initial exercise. Comma
should be improved to guide modelers in modifying existing busi-
ness models.
Observation 13: In Sf , the median modeling time is higher for
Comma (6.6 hours) than for RosettaNet (4 hours).

Observation 13 conflicts with Observation 9 from the initial ex-
ercise Si. A primary reason for this result is the difference in the
nature of the artifacts involved. A RosettaNet model is expressed as
a textual list of PIPs, modifying which is easy. A Comma model is
expressed as a graph of business relationships, modifying which is
time consuming. Indeed, since we did not provide a Comma mod-
eling tool, subjects expended considerable effort in developing the
graphical models using drawing tools such as Visio.
Observation 14: In Sf , the median time to modify MSCs is lower
for Comma (1 hour) than for RosettaNet (2.3 hours).

Observation 14 suggests that the Comma methodology is more
efficient as compared to the RosettaNet methodology for develop-
ing MSCs. Note that this result is an improvement over Observa-
tion 10 from the initial exercise Si in favor of Comma, indicating
the benefit of learning.
Observation 15: In Ss, the median times to modify the Comma
model (2.75 hours) and MSCs (0.75 hours) are slightly smaller than
the median times to modify the RosettaNet model (3 hours) and
MSCs (1 hour), respectively.

Observation 15 suggests that Comma is slightly more efficient
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Figure 10: Time in hours expended in creating models, as reported by subjects.

Table 5: Hypothesis testing for model and MSC development times.

ID Time for
Exercise

Comma
Mean (µc)

RosettaNet
Mean (µr)

Alternative
Hypothesis

Null Hypothesis
[µc = µr] p-value

Accepted at p-value
of 5%?

H1 Si-Model 7.19 10.05 µc < µr 0.046 ×
H2 Si-MSC 6.22 6.73 µc < µr 0.610 X
H3 Sf -Model 7.59 4.84 µc > µr 0.026 ×
H4 Sf -MSC 1.42 2.26 µc < µr 0.062 X
H5 Ss-Model 2.77 3.74 µc < µr 0.290 X
H6 Ss-MSC 0.70 1.29 µc < µr 0.053 X

than RosettaNet for modifying models. This agrees with Observa-
tion 9 from the initial exercise Si.
Observation 16: In Ss, the spreads of times taken in modifying the
model and MSCs are smaller for Comma than for RosettaNet.

Observation 16 agrees with Observation 11, and reconfirms that
Comma is more predictable than RosettaNet.

The above observations are from the descriptive statistics sum-
marized by the box plots. We now present the results of formal hy-
pothesis testing that checks if the difference between the timings of
the two methodologies is statistically significant. Table 5 summa-
rizes the hypotheses and the outcome of the independent samples t-
test for each of them. H1, H3, and H5 test the statistical significance
of the difference between the modeling time of the two methodolo-
gies in Si, Sf , and Ss, respectively. H2, H4, and H6 test the statis-
tical significance of the difference between the MSC development
time of the two methodologies in Si, Sf , and Ss, respectively. In
H1, the alternative hypothesis is µp < µr , that is, the mean time
to develop the Comma model µp is less than the mean time to de-
velop the RosettaNet model µr . The corresponding null hypothesis
is µp = µr , that is, the mean time to develop the Comma model is
the same as the mean time to develop the RosettaNet model. The
t-test rejects the null hypothesis with p value of 0.046 at the 0.05
level of significance. This confirms that Comma is more efficient
than RosettaNet in Si, which agrees with Observation 9.

The t-test rejects the null hypothesis in H3. This indicates that
RosettaNet is more efficient than Comma in the first modification
Sf . We discuss the reasons behind this result in Observation 13.

Since the t-test accepts H2, H4, H5, and H6, we conclude that the
time differences for (1) modeling in Ss and (2) developing MSCs
in all exercises is not statistically significant.

6. RELATED WORK
Researchers have proposed several agent-oriented software de-

velopment methodologies [5, 13, 3, 20]. Many of these method-

ologies focus on modeling a multiagent system that is under the
control of a single organization. In contrast, Comma models cross-
organizational relationships. In Comma, a high-level model based
on commitments captures the social relationship among agents (the
organizations that are business partners). Unlike Comma, many of
the current AOSE methodologies lack an appropriate abstraction
for modeling social relationship between the agents.

Tropos [2] resembles Comma in terms of employing high-level
concepts. A key difference between the two is how they model
social relationships: Tropos employs goal and other dependencies
whereas Comma employs commitments. Unlike dependencies, com-
mitments are flexible as they can be manipulated. Commitments
reflect the autonomy of the partners since each debtor adopts its
commitments through its autonomous actions (communications).

Amoeba [6] employs commitment protocols for process mod-
eling. Amoeba and Comma share the same underlying notion of
commitments. In contrast to Comma, which is a methodology
for business relationship modeling, Amoeba is a methodology for
lower-level interaction modeling, and seeks to specify the protocols
whose composition corresponds to the given business process.

Telang and Singh [18] approach RosettaNet from the opposite
end to the present paper. They abstract out business modeling pat-
terns from RosettaNet PIPs, in essence by identifying the commit-
ments of the business partners involved that are implicitly under-
stood in each PIP. That is, Telang and Singh discuss how to create
and apply patterns that could be included in the Comma library.
They use the commitment life cycle as a basis for verifying process
specifications.

Mazouzi et al. [10] model agent interaction protocols using Agent
UML (AUML), and subsequently translate them into Colored Petri
Nets (CPN) to verify low-level properties such as liveness. In con-
trast, in Comma, a modeler first develops a high-level business
model, which provides the correctness properties at a business level
[19]. Starting from a business model, the modeler develops agent
interaction MSCs. Comma employs model-checking to verify if
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the MSCs satisfy the business model [19].
Spanoudakis et al. [17] and Garcia-Magarino et al. [7] describe

an application of Model-Driven Engineering (MDE) for AOSE.
MDE can significantly improve the efficiency of Comma. A mod-
eler can transform a Comma business model into an operational
model, such as MSC, using automated model transformation.

Hofreiter et al. [8] describe UMM, UN/CEFACT’s Modeling
Methodology, a methodology to model inter-organizational busi-
ness processes as global choreographies. Unlike Comma, UMM
fails to capture the high-level business relationships between the
process participants. Instead it focuses on the low-level message
exchanges, and thus leads to rigid models.

7. CONCLUSIONS AND DIRECTIONS
We introduced Comma, a novel commitment-based methodol-

ogy for business modeling. We carried out a substantial empirical
evaluation of the effectiveness of Comma. We note in passing that
such evaluations are not yet common in AOSE, though they are
quite prevalent in the broader software engineering community.

Let us summarize the lessons we learned. Our study confirmed
the benefits in quality that we expected from Comma because of
its foundation in commitments. Specifically, Comma does better
on every quality measure: model coverage and precision, and MSC
structure (guards), flexibility, and abstraction. The study demon-
strated gains in ease of use from Comma in producing models but
yielded mixed results with respect to MSCs. Comma yields a supe-
rior MSC product, but with a slightly greater difficulty. We expect
to see benefits from improving the tooling and training materials
supporting Comma. The time spent shows an improvement for
Comma though with anomalies. Here too we conjecture that im-
proved tooling and training will prove crucial.

Some important future directions follow naturally from this re-
search. First, on the theoretical side, we are considering expanding
Comma to account for a richer variety of norms, e.g., in the spirit
of Aldewereld et al. [1], than just commitments. Second, on the
practical side, enhanced tooling is an obvious theme. A natural
extension would be to support MDE using Comma, as remarked
above. Further, we will enhance Comma so it provides guidance
for situations where a model must be modified to accommodate
evolving requirements.

Third, on the empirical side, we will conduct additional devel-
oper studies. Specifically, although our study design mitigated many
important threats to validity that can arise in a comparative study,
it did not consider important challenges to business interoperation
in practice, such as dealing with a legacy system. We conjecture
that increasing the complexity of a scenario will tilt the balance
further in favor of commitment-based approaches: we defer such
evaluations to future research. Further, a threat to validity of any
empirical evaluation is whether the subjects correspond closely to
the target population (industry practitioners, in our case) in their
expertise, experience, and motivation. In their broadest scope, such
problems are not readily amenable to comparative research studies,
but we plan to explore simplified versions of them.
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ABSTRACT
Autonomous agents typically have several goals they are pursuing
simultaneously. Even if the goals themselves are not necessarily
inconsistent, choices made about how to pursue each of these goals
may well result in a set of intentions which are conflicting. A ra-
tional autonomous agent should be able to reason about and mod-
ify its set of intentions to take account of such issues. This paper
presents the semantics of some preferences regarding modified sets
of intentions. We look at the possibility of simply deleting some
intention(s) but more importantly we also look at the possibility of
modifying intentions, such that the goals will still be achieved but
in a different way.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Intelligent Agents

General Terms
Theory

Keywords
BDI, Logic-based approaches and methods, Formal models of
agency, Modeling the dynamics of MAS

1. INTRODUCTION
BDI (Belief, Desire, Intention) systems (for an overview, see

Bordini et al. [1]) are a popular approach to modelling and imple-
menting agent systems. It is well accepted and reflected in the theo-
retical underpinnings of BDI systems (e.g., Rao and Georgeff [14])
that rational agents should not intend to pursue a goal that they
believe is impossible to achieve. Similarly, we believe that an
agent should not have a set of intentions, which taken together are
unachievable. Such situations can readily arise as new goals are
committed to, with new intentions instantiated, but without rea-
soning about how the independent intentions interact. Intention
reconsideration—i.e., revisiting the commitments to planned activ-
ity held by an agent—is considered an important notion in BDI
∗We acknowledge the ARC Discovery grant DP1094627.
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agent conceptual frameworks (e.g., Bratman [2] and Bratman et
al. [3]). Intention revision is a central component of this process.

In this paper, we explore the semantics of the kinds of prefer-
ences that should guide the reasoning of an autonomous agent that
is revising its intentions for some reason. Our focus is to provide
a principled semantics for evaluating the different options for re-
vising an existing intention set. The most straightforward way to
revise an intention set is to drop one or more intentions. However,
this will lead to lack of achievement of the associated goal(s). A
preferred but more complex option is to modify one or more inten-
tions (i.e., modify how we intend to achieve the associated goals)
to obtain a non-conflicting intention set.

As an example, consider a purchasing agent with an intention to
purchase a laptop and another intention to purchase a printer. If the
agent is made aware that funds are insufficient for both purchases,
then it may drop one intention such that the other is achievable.
However, if it is possible to modify its current intentions, for exam-
ple by changing its choice of laptop to be a cheaper model so that
both intentions can be satisfied, this would be a preferred revision.

We consider three basic principles in defining our semantics:
the first is environmental tolerance—we prefer a set of intentions
which can succeed in more environments; the second is a maxi-
mal cardinality principle—keep as many top-level goals as possi-
ble; and the third is a minimal modification principle—if we must
change the means chosen to achieve a goal (i.e., an intention), we
prefer to change it as little as possible. These principles necessarily
interact and we have to make particular choices as to which should
dominate as we develop the semantics. However, minor modifica-
tions would allow the relationships to be changed.

Our long term goal is to incorporate rules into the execution en-
gine of BDI agent programming languages to support principled
intention revision. In doing this, we must choose between a quan-
titative framework—requiring costs associated with actions and re-
wards with goals, as well as perhaps probability distributions—and
a qualitative one. The former would offer more flexibility, but re-
quires the programmer to provide required quantities and measures.
As typical BDI programming languages generally lack facilities for
specifying such things as costs, rewards and probability distribu-
tions, we choose the qualitative approach. Consequently, we base
our framework on the CAN family of languages [17] as this maps
well to languages used in a number of BDI agent development plat-
forms [1], but also has been extended to include advanced reason-
ing techniques, such as planning and reasoning about goals.

We stress that we are presenting here a semantics for how agents
ought to revise their intentions, and not an implementation. How-
ever, in future work, we plan to develop an implementation that is
both faithful to the semantics and computationally viable.
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Figure 1: A typical BDI-style architecture [17].

In the following sections, we first present the basic constructs
of the CAN language. We then provide the semantics for revising
intention sets using only deletion, followed by the semantics when
we allow modification of individual intentions. We finish with a
discussion of related work, as well as some further issues to be
addressed in the future.

2. AGENT PROGRAMMING IN THE CAN
FRAMEWORK

BDI agent-oriented programming is based on formal com-
putational models, such as the ones proposed by Cohen and
Levesque [4] and Rao and Georgeff [14], and the philosophical
work of Bratman [2] and Dennett [6], using mental attitudes, such
as beliefs, desires, goals, plans and intentions. Practically, BDI
agent systems enable abstract plans written by programmers to be
combined and used in real-time, in a way that is both flexible and
robust. The CAN (Conceptual Agent Notation) family of BDI lan-
guages [17] are AGENTSPEAK-like languages with a semantics cap-
turing typical BDI systems (for an overview, see Bordini et al. [1]).

A typical BDI system (see Figure 1) responds to events1by se-
lecting a plan from the system’s know-how information for execu-
tion. The execution of a plan may, in turn, post new subgoal events
to be achieved.

In the CAN language, there are three types of atoms: events (de-
noted by e), basic beliefs (denoted by b), and actions (denoted by
act). A propositional language LB is formed in the usual manner
using the basic beliefs as atoms. We will use ψ, possibly with dec-
orations, to denote a sentence of LB .

In CAN, a BDI agent is specified by an initial belief base B, a
plan library Π, and an action description library Λ. B is a model
of the agent’s initial beliefs about the world. It is a set of belief
atoms that the agent holds to be true. We use B |= ψ to denote that
the sentence ψ is true in belief base B. This is defined in the usual
manner.

An action description library Λ encodes the effects of primitive
actions. It is a set of STRIPS-style operators of the form: act : ψ ←
Φ+; Φ−, one for each action atom in the domain. Here, ψ is the
precondition of the action, and is restricted to be a conjunction of
belief literals. Φ+ and Φ− are sets of belief atoms, and correspond
to STRIPS-style add and delete lists, respectively. Note that we
assume all actions are deterministic.

1In CAN, there is no distinction between events and goals, and we
sometimes refer to them as event-goals.

2.1 Plan Library
The plan library, Π, encodes the operational information of the

domain via plan rules of the form e : ψ ← P , where e is an
event, ψ is the context condition, andP is the plan-body program—
P is a reasonable strategy for resolving event e when condition
ψ is believed to be true. Plan-body programs are built from the
following constructs, which we call the user program language:2

act primitive action
+b, −b add/delete a belief atom
?ψ test for a condition
!e post an event-goal
P1;P2 sequence

A program that only contains constructs from the user program lan-
guage is called a user program.

In the full program language, there are two additional constructs
used internally for defining the semantics of programs (i.e., they
are not used in the programs in the plan library):

nil the empty (terminating) program
P . e :Lψ1 : P1, . . . , ψn : PnM attempt P to achieve e

In the last construct, P is a program, e is an event-goal, and:

Lψ1 : P1, . . . , ψn : PnM
is a set of alternative guarded plans relevant to e. The semantics for
this construct is that an execution for P is attempted, and only if P
fails, an alternate plan whose context condition is satisfied, say P1,
is selected for execution. In that case, the construct may transition
to: P1 . e :Lψ2 : P2, . . . , ψn : PnM.3

For example:4

!Buy(pc, shop) . Get(pc) :LisOnline : !Buy(pc,web),
isOffline : !Buy(pc,mailOrder)M

could be the intention of a purchasing agent to attempt to purchase
a laptop from the shop, and if that fails to fall back to achieving
the goal Get(pc) either via the Web, if the agent is online, or by
mail-order, if the agent is offline. There are standard ways to ax-
iomatise a programming language such as the one presented here
(see, e.g, Hennessy [10]), and we assume such an axiomatisation
without presenting the details here. The language we use for this
axiomatisation and for expressing properties of our framework is
second-order, since we will be quantifying over functions, e.g., en-
vironments (which are defined below). We also assume we have an
axiomatisation of finite sets, and omit the details here.

2.2 Intention Base
The intention base, Γ, of an agent contains the programs that

the agent has already committed to for handling previously posted
events. Formally, it is a set of programs in the full program lan-
guage.5 It is an element of the semantics of the CAN language,
described below, but we present it separately since it is central to
the framework described here; it is the intention base of an agent
that is revised. We illustrate the intention base with an example.
2Note that the CAN language also contains a concurrency construct
and allows variables in context conditions, but we omit those here
for simplicity.
3Note that this is a variant of the CAN language, where . and e :
L∆M are treated as separate constructs.
4As noted above, the version of CAN we consider here is proposi-
tional. However, we will sometimes use atoms with parentheses as
syntactic sugar, e.g., Buy(pc, shop).
5In CAN, an intention is actually a pair containing an identifier
(e.g., a natural number) and a program, however we suppress the
identifier for simplicity.
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Get(pc)

Buy(pc, shop)

→

Order

Go(sony)

≤ $1700

Go(lenovo)

≤ $1000

Pay

Buy(pc,web)

≤ $800

...

Get(printer)

Buy(printer,web)

(≥ $300) ∧ (≤ $500)

...

Figure 2: An example goal-plan hierarchy. Plans are represented with
rectangles; goals are represented with rounded rectangles. Arcs with
an arrow between them represent sequential composition. Arcs with
no arrow represent alternate plans for their parent goal. The second
annotation on plans states how much it will end up costing given the set
of possible environments.

EXAMPLE 1. Consider a purchasing agent with two intentions:
one to achieve the goal of purchasing a laptop and another to
achieve the goal of buying a printer. Figure 2 outlines the avail-
able plans in the library for achieving these goals. Assume Γ =
{I1, I2}, where:

I1 = [(Go(sony) � Order :Lψ1 : Go(lenovo)M); !Pay]�
Get(pc) :Lψ2 : Buy(pc,web)M;

I2 = !Get(printer).

That is, the agent has already started addressing the task of buying
a laptop and has chosen to buy a Sony. However, should it fail
to buy a Sony, it may alternatively try to buy a Lenovo (if context
condition ψ1 holds, e.g., the Lenovo store is open) or even fall back
to acquiring a laptop on the Web (if conditionψ2 applies, e.g., it can
access the Internet).

2.3 Semantics
As with most agent programming languages, the Plotkin-

style operational semantics of CAN closely follows Rao and
Georgeff’s [15] abstract interpreter for rational agents, and is de-
fined using a so-called BDI agent configuration C of the form
〈Π,Λ,B,A,Γ〉, where components Π,Λ,B, and Γ (resp.) are the
plan library, action library, belief base and intention base (resp.), as
described above, and A is the sequence of actions executed so far.
A transition relation C −→E C′ on agent configurations is then
used to state that a single step in executing agent configuration C
yields configuration C′ within an environment E . We represent an
environment as a function E : Confs 7→ 2Events, where Confs is the
set of all possible agent configurations and Events is the set of all
possible external events in the domain, i.e., programs of the form:
+b, −b, and !e. That is, an environment determines which external
actions occur at each step in the execution of an agent system. We
further require that environments are consistent in the sense that
at most one of +b and −b are in E(C), for any belief atom b and
configuration C. For example, given a configuration C and an en-
vironment E , E(C) might contain a belief update that the price of
Lenovo laptops have dropped 30% (e.g., due to a sale). Finally, a
BDI executionE of an agent C0 = 〈Π,Λ0,B0,A0,Γ0〉 in an envi-
ronment E is a, possibly infinite, sequence of agent configurations
C0 · C1 · · · such that Ci −→E Ci+1, for all i ≥ 0.

Given an intention I ∈ Γ0 and an execution E (w.r.t. an envi-
ronment E), it is possible to determine whether the intention I has
successfully executed (i.e., it has evolved to the empty program,
nil), failed, or can continue to execute. In general, an intention
fails if it becomes blocked, that is, it cannot execute further in the

current configuration (for example, if an action does not meet its
precondition or a test step is believed false), and it cannot be “re-
covered” via the default failure handling mechanism of re-trying
different alternatives for active (sub)goals. We refer to Sardina and
Padgham [17] for full details on the semantics of the language.

In this paper, we focus mainly on the last component of config-
uration C = 〈Π,Λ,B,A,Γ〉, namely, the intention base Γ. It will
be notationally convenient to separate this component out from the
rest of the configuration. We therefore define the diminished config-
uration C− to be a configuration with the intention base argument
omitted, i.e., C− = 〈Π,Λ,B,A〉. Where confusion does not arise,
we will simply refer to these as configurations. 〈C−,Γ〉 will be
used to denote the (full) configuration that has Γ as its last compo-
nent, and whose other components are as in C−.

3. REVISION BY DROPPING INTEN-
TIONS

Our aim is to characterise which possible intention bases Γ∗

qualify as acceptable intention revisions for a given intention base
Γ that the agent deems to be in need of reconsideration. We specify
a semantics for when a new intention base counts as an appropriate
revision of the current intentions. In future work, we plan to inves-
tigate an implementation that could be used in actual BDI systems
which would be faithful to this ideal. We are currently agnostic
on when and why a given intention base ought to be revised. This
could happen, for example, when a new belief or intention is added,
or when the agent determines there may be a negative interaction or
conflict between intentions. One way to achieve a similar result to
revising intentions would be to simply execute the intentions and
the ones that end up being blocked would be dropped automati-
cally from the intention set. However, executing intentions could
consume valuable resources that could be saved by revising the in-
tention set at appropriate times. In this section, we focus on the
revision of intention sets by simply abandoning one or more cur-
rent intentions.

One of the dimensions we use for comparing intention sets con-
sists of the environments in which the intention set can be suc-
cessfully executed. However, which intention sets can be success-
fully executed in an environment depends on how smart the agent
is about the choices it has to make during an execution, e.g., about
which plans to select and intentions to execute at which times. A
smart agent, e.g., one who can plan ahead to make the right deci-
sions, might be able to execute reliably a given intention set. On
the other hand, a dumb agent—e.g., one who does not plan ahead,
but rather chooses an intention to execute according to a fixed rule
such as round-robin—might not be able to execute successfully the
same intention set reliably. So, the definition of a successful ex-
ecution depends on the agent under consideration. In the inter-
est of generality—so that our framework can apply to a variety of
agents—we take the successful execution of a set of intentions Γ
in a configuration C− and an environment E , Success(Γ, C−, E),
to be a primitive of our framework, and we leave it undefined. We
only make the assumption that the empty set of intentions always
executes successfully, since there is nothing to execute.

AXIOM 1 (SUCCESS).

∀C−, E . Success(∅, C−, E).

Let S denote this axiom together with the axioms for finite sets.
For example, let us return to our purchasing agent described in

Example 1. Suppose the agent’s budget is $1700 and that the set
of possible environments are those described in Figure 2 with the
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second annotation in plans (e.g., buying a computer on the web will
cost no more than $800). In this case, the agent may be unable to
successfully execute (both) its intentions I1 and I2 (in environments
where buying a Sony and a printer costs over $1700) and hence
one purchase may eventually fail (e.g., at time of payment for the
printer, if the computer is purchased for $1500). The question then
is: can the agent revise Γ to a more “robust” set of intentions?6

The various dimensions in qualitative frameworks, such as the
one we have chosen, are often incomparable, and therefore, they
cannot be readily combined. Consequently, decisions must be
made as to which dimensions take precedence. In our frame-
work, one dimension for comparison consists of the environments
in which an intention set can be successfully executed (environ-
mental tolerance), and another is the cardinality of the intention
set.7 In this paper, we give precedence to environmental tolerance.
However, the framework could easily be adapted so that cardinality
gets precedence. Having environmental tolerance dominate cardi-
nality means the agent is cautious in that it would prefer to drop an
intention to gain more certainty that the intention set will be suc-
cessfully executed. Alternatively, giving precedence to cardinal-
ity would model a bold agent that believes things will “work out”
(with respect to the environment), and prefers to maintain more of
its intentions. Both can lead to counterintuitive results in particular
examples, but this is inherent in qualitative frameworks that contain
incomparable dimensions.

At a minimum, once the agent has decided to revise its inten-
tions, the revised intention set should be executable in some en-
vironment. We prefer intention sets that are executable in more
environments. Of these preferred sets, we choose the sets that have
higher cardinality, i.e., retain more intentions from the original set.

We define the revision of an intention set in three stages. First,
we define what it means for an intention base to be maximal in
terms of environmental tolerance. Amongst the maximal bases, the
revision candidates are those that have some chance of success. We
then say that the revision sets are the largest candidate sets.

3.1 Definition of a Maximal Set
We say that a set of intentions Γ dominates another set Γ′ in

a configuration C−, if the agent can successfully execute Γ in a
superset of the environments in which it successfully executes Γ′

in C−. Formally:

DEFINITION 2 (DOMINATES).

Dom(Γ,Γ′, C−)
def
=

∀E . Success(Γ′, C−, E) ⊃ Success(Γ, C−, E).

We then define the set of maximal options in terms of dominance.
A set of intentions Γ is maximal with respect to a set Γ in config-
uration C−, if Γ is a subset of Γ and it dominates any nonempty
subset of Γ that dominates it. The empty intention base needs to
be ruled out for comparison as it (trivially) dominates every inten-
tion set—the empty set of intentions always executes successfully.
We want to allow the possibility of the agent abandoning all its in-
tentions, if no subsets of its intentions have any chance of success,
however, we also want this to be the only condition under which
the agent drops all of its intentions.

6Note that in our example, the order of the selection of plans has
already been fixed, and the order of execution of intentions is irrel-
evant, therefore the exact definition of Success is not important.
7Later on, we will introduce a minimal modification dimension.

DEFINITION 3 (MAXIMAL).

Max(Γ,Γ, C−)
def
=

Γ ⊆ Γ ∧ [∀Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ⊃
(Dom(Γ′,Γ, C−) ⊃ Dom(Γ,Γ′, C−))].

Observe here that the empty set is indeed maximal, but other op-
tions can be maximal as well.

3.2 Definition of a Revision Set
For an intention base to be a revision candidate of Γ, it must be

a maximal subset of Γ, but also possible in the sense that the in-
tentions can be achieved in at least one environment. Note that the
second constraint does not follow from maximality: if no nonempty
subset of Γ succeeds, then every subset will be considered maxi-
mal. Formally, we define Cand(·, ·, ·) as follows:

DEFINITION 4 (REVISION CANDIDATE).

Cand(Γ,Γ, C−)
def
= Max(Γ,Γ, C−) ∧ Poss(Γ, C−),where

Poss(Γ, C−)
def
= ∃E . Success(Γ, C−, E).

Finally, an intention revision Γ∗ of an intention base Γ is defined
to be a largest candidate set:

DEFINITION 5 (REVISION).

REV(Γ∗,Γ, C−)
def
=

Cand(Γ∗,Γ, C−) ∧ ∀Γ′.Cand(Γ′,Γ, C−) ⊃ |Γ′| ≤ |Γ∗|.

In Example 1, there are two possible revisions: Γ1 = {I1}, and
Γ2 = {I2}, i.e., the agent drops either one of its intentions. These
sets dominate Γ = {I1, I2} because they terminate in strictly more
environments than Γ does (i.e., all environments where Sony +
printer cost > $1700).

3.3 Properties
We now turn to some properties of these definitions.8 Firstly, a

(possibly empty) revision set always exists:

PROPOSITION 6.

S |= ∀Γ, C−.∃Γ∗.REV(Γ∗,Γ, C−).

Secondly, consider the (optimal) case in which it is possible to se-
lect a (nonempty) fully robust set of intentions, i.e., a set of inten-
tions that can be fully executed in every environment. In that case,
any revision will be fully robust:

PROPOSITION 7.

S |= ∀Γ, C−.
(∃Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ∧ SuccessAlways(Γ′, C−)) ⊃

(∀Γ∗.REV(Γ∗,Γ, C−) ⊃ SuccessAlways(Γ∗, C−)),

where SuccessAlways(Γ, C−)
def
= ∀E . Success(Γ, C−, E).

The empty set of intentions can always be achieved in any config-
uration. However, we want the agent to drop all its intentions only
if there is no other choice, i.e., when none of the other subsets of Γ
have any chance of success. Indeed, we can show that the revision
of a set Γ is the empty set iff no nonempty subset of Γ is possible.

PROPOSITION 8.

S |= ∀Γ, C−.[∀Γ′.Γ′ ⊆ Γ ∧ Γ′ 6= ∅ ⊃ ¬Poss(Γ′, C−)] ≡
[∀Γ∗.REV(Γ∗,Γ, C−) ⊃ Γ∗ = ∅].

8All propositions in this paper were verified with the PVS Verifi-
cation System [12].
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This proposition shows that given a set Γ that has no chance of
success, although we cannot guarantee the success of a revision
of Γ, any non-empty revision of Γ will at least have some chance
of success. Furthermore, a revision of Γ will only be empty if no
nonempty subset of Γ has any chance of success.

We close by noting that with the method for revision considered
here, the only choice is to drop current intentions altogether. In the
context of BDI agent systems, where goals can be achieved in mul-
tiple ways, one can envision more sophisticated accounts of revi-
sion so as to avoid resorting to such drastic decisions. We consider
one such account in the next section.

4. REVISION BY MODIFICATION
In the previous section, we considered resolving conflicting in-

tentions by dropping some. However, BDI agents often have var-
ious alternative plans for achieving goals. Instead of dropping an
intention altogether, another option is to see if adopting other alter-
natives resolves the conflict. This option, which we call intention
modification is preferable because it can lead to the achievement of
more of the agent’s goals.

Consider again our purchasing agent from Example 1 with the
two intentions to buy a computer and a printer. Instead of dropping
one of its intentions, the agent can consider modifying its intention
to buy a computer by changing the method of achieving the event-
goal Order to the plan Go(lenovo), or indeed by changing the means
to achieve the top-level event-goal Get(pc) to the plan Buy(pc,web).
Either of these changes will result in the successful execution of
both intentions, as the total cost in any possible environment will
be below the available funds of $1700.

The definition of revision by modifying intentions is more in-
volved than the definition of revision by dropping intentions. First,
we must define what we mean by modifying an intention. We mod-
ify an intention by selecting an alternate plan to achieve the in-
tention or a subintention. This only makes sense for what we call
active goals of the intention, which are the (sub)goals of the inten-
tion for which a plan has already been selected to achieve the goal.
If P ′ is a modification of P , then we call P ′ an alternate of P .
Then, we define the alternate subset relation which holds between
two intention sets Γ′ and Γ, if every element of Γ′ is an alternate of
an element of Γ. With this definition in hand, we define a cardinal
revision of an intention set Γ in a similar fashion to the definition
of revision in previous section, except we replace subset with al-
ternate subset. This gives us a largest, maximal set in the space of
alternate subsets of Γ, rather than in the space of subsets of Γ, as
before. We define what it means to be a “least modification” of an
intention, and generalise that definition to hold over sets of inten-
tions, which we call setwise closeness. Finally, we define a revision
of an intention set Γ∗ to be a cardinal revision of Γ∗ that is maximal
with respect to setwise closeness. Although the formal framework
in this section is more complicated than the previous one, concep-
tually the differences are simple: 1) the candidate sets for a revision
of Γ are taken from the set of alternate subsets of Γ rather than the
set of subsets of Γ; and 2) we add an extra dimension to compare
the revision candidates for Γ, namely, minimal modification of the
elements of Γ.

4.1 Definition of Alternate Subset
To define revision by modification, we must first define what we

mean by a modification. We take a modification to be a different
choice of a plan to achieve the intention or a subgoal of the in-
tention. Formally, we say that P ′ is an alternate of a program P
relative to a belief base B, P ;B P

′ if P ′ can be obtained from
P by changing the way some (sub)goal in P is to be achieved. We

define this as a set of recursive axioms, with three cases depending
on the structure of P .9

AXIOM 2 (ALTERNATE OF A PROGRAM).

(P1;P2) ;B P
′ ≡ ∃P ∗.P1 ;B P

∗ ∧ P ′ = (P ∗;P2);

P1 � e :L∆M ;B P ′ ≡
(∃P ∗.P1 ;B P

∗ ∧ P ′ = (P ∗ � e :L∆M)) ∨
∃ψ, P. ψ :P ∈ ∆ ∧ B |= ψ ∧ P ′ = (P � e :L∆ \ {ψ :P M});

P1 ;B P2 ≡ P1 = P2, otherwise.

In other words, if the program is a sequence P1;P2, then we re-
cursively look for alternates in P1. We do not need to consider
alternates in P2, since while the agent may have started executing
P1, and therefore may have generated alternative plans to achieve
its (sub)goals, this would not yet be the case for P2. If the program
is of the form P1 � e : L∆M, then we recursively look for alternates
in P1 (first disjunct), but we also allow other choices of programs
in ∆ to achieve e, provided their context conditions are satisfied
by B (second disjunct). In this case, P1 is dropped as a means to
achieve e. Note that when P1 is dropped, all subgoals of P1 are
automatically dropped as well. For all other program constructs,
the only alternate is the program itself.

EXAMPLE 9. In Example 1, the alternates to I1 are I1 itself
(;B is reflexive), and assuming ψ1 and ψ2 are satisfied:

I ′1 =
(
(Go(lenovo) � Order :L M); !Pay

)
�

Get(pc) :Lψ2 : Buy(pc,web)M;
I ′′1 = Buy(pc,web) � Get(pc) :L M.

The basic idea for revision by modification is that, given a set of
intentions Γ to revise, we consider not just subsets of Γ, but also for
each subset of Γ, we replace the elements of the subset by each of
their alternates and consider the resulting sets as well. From these
sets, we choose the ones with greatest environmental tolerance that
are possible, and among those, the ones that are largest in size.
From the remaining sets, we take the ones with the least changes to
the elements of Γ to be the revisions of Γ. The aim in minimising
the changes to the intentions is, as far as possible, to retain the work
already done by the agent to achieve the associated goal.

Given the definition of an alternate of a program, we can now
define the alternate subset relation (Γ′ vB Γ), which holds if ev-
ery element of Γ′ is an alternate of an element of Γ, and no two
elements of Γ′ are alternates of the same element of Γ:

DEFINITION 10 (ALTERNATE SUBSET).

Γ′ vB Γ
def
= (∀I ′ ∈ Γ′.∃I ∈ Γ.I ;B I

′) ∧
∀I ′1, I ′2 ∈ Γ′.∀I ∈ Γ.I ;B I

′
1 ∧ I ;B I

′
2 ⊃ I ′1 = I ′2.

4.2 Definition of Cardinal Revision
In considering intention modifications, we only consider alterna-

tives of active goals in each intention structure.10 An active goal is
the event-goal e in a program of the form P � e : L∆M, where e is
the active goal and ∆ is a set of guarded plans.11

The goal-program trace of a program P is a finite sequence of
pairs of the form (e, L∆M), consisting of an active goal e, and its
alternate guarded plans L∆M, and is defined as follows. We treat
this recursive definition as an axiom:
9We adopt the convention that unbound variables are universally
quantified in the widest scope.

10All other goals are either completed, or not yet expanded so the
alternatives are unknown.

11Note that this definition is different from the one given in [17],
where the whole program was considered the active goal.
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AXIOM 3 (GOAL-PROGRAM TRACE).

Trace(P )=





Trace(P1) if P =P1;P2

(e, L∆M) · Trace(P1) if P =P1 � e :L∆M
ε otherwise,

where the operator · is sequence concatenation and ε is the empty
sequence. Note that we assume P has been evolved from a user
program using the transition rules for CAN. For such programs, it
can be shown that if P is of the form P1;P2 (case 1), none of the
goals in P2 are active yet. Therefore, we only have to consider the
goal-program trace of P1. For example, the goal-program trace of
intention I1 in Example 1 is:

(Get(pc), Lψ2 : Buy(pc,web)M)·(Order, Lψ1 : Go(lenovo)M).

DEFINITION 11. Let Σ denote the set of axioms consisting of
Axioms 1–3, along with the axioms defining the language of CAN,
and the axiomatisation of finite sets.

Note that the framework in the previous section was independent of
the agent language used, therefore we did not need the axioms for
the language of CAN. However, revision by modification is framed
in terms of the constructs of the CAN language. This is evident, for
example, in Axiom 2. However, it would not be difficult to adapt
the definitions to other agent languages.

We assume that each intention in the intention base has a differ-
ent top-level goal. For Γ vB Γ∗, this allows us to uniquely identify
the subset of Γ∗ whose alternate is Γ. The semantics of the CAN
language ensures that an intention I in the intention base can only
be of the form !e, or P . e : L∆M. We formally define the top-level
goal of an intention as follows:

DEFINITION 12 (TOP-LEVEL GOAL).

TLG(I)
def
= e,when I = !e, or Trace(I) = (e, L∆M) · . . .

Note that the trace of !e is ε, so the second case does not apply to
intentions of the form !e. We say that a set of intentions is distinct,
if the top-level goals of its members are all different:

DEFINITION 13 (DISTINCT INTENTION SET).

Distinct(Γ)
def
= ∀I, I ′ ∈ Γ.I 6= I ′ ⊃ TLG(I) 6= TLG(I ′).

Next, we update the definitions Max and Cand from the previous
section by substituting subset with alternate subset (vB). Let CB−
denote the belief base component of C−. We define:

DEFINITION 14 (MAXIMAL INTENTION SET).

Max+(Γ,Γ, C−)
def
= Γ vCB− Γ ∧ [∀Γ′.Γ′ vCB− Γ ∧ Γ′ 6= ∅ ⊃

(Dom(Γ′,Γ, C−) ⊃ Dom(Γ,Γ′, C−))].

DEFINITION 15 (CANDIDATE INTENTION SET).

Cand+(Γ,Γ, C−)
def
= Max+(Γ,Γ, C−) ∧ Poss(Γ, C−).

In deciding which candidate sets are better than others, we now
have two dimensions to consider. In the previous section, we chose
the candidate sets with the largest cardinality. This amounts to pre-
ferring to keep top-level goals. As we will see below, for revision
by modification, we will also prefer sets whose intentions have un-
dergone the least degree of modification. For the moment, we use
an intermediate predicate, REVCARD+ to capture the former pref-
erence. We say that Γ∗ is a cardinal revision of Γ in C−, if Γ∗ is a
candidate for revision and is no smaller than all other candidates.

DEFINITION 16 (CARDINAL REVISION).

REVCARD+(Γ∗,Γ, C−)
def
=

Cand+(Γ∗,Γ, C−)∧∀Γ′.Cand+(Γ′,Γ, C−)⊃|Γ′| ≤ |Γ∗|.

As one would expect, a cardinal revision always exists:

PROPOSITION 17.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃ ∃Γ∗.REVCARD+(Γ∗,Γ, C−).

4.3 Definition of Revision by Modification
Now, we formally specify what it means to be a “least modifica-

tion” of an intention. Given belief base B, and programs P , P1 and
P2 such that P ;B P1 and P ;B P2, we say that P1 is closer
than P2 to P (i.e., P1 �P P2), if the following holds (as standard,
| · | denotes the length of a sequence):

DEFINITION 18 (CLOSER).

P1 �P P2
def
=

| Trace(P1)| ≥ | Trace(P2)| ∧ (P2 = P ⊃ P1 = P ).

In other words, P1 is closer to P than P2 if, basically, no more
goals have been dropped in P1 than in P2 (with respect to P ). If no
goals have been dropped in either, then P2 is closer to P than P1,
if P2 is identical to P , but P1 is not (because in P1, an alternate
plan has been chosen to achieve the last subgoal). We capture that
case via the second conjunct. For example, using the intentions
in Examples 1 and 9, it can be seen that I ′1 �I1 I ′′1 ∧ I ′′1 6�I1 I ′1,
since | Trace(I ′1)| > | Trace(I ′′1 )|; I ′1 is strictly closer to I1 than I ′′1 .
To verify that �P is intuitively correct, we show that the length of
the Trace of an alternate P ′ of a program P is not greater than the
length of the Trace of P itself.

PROPOSITION 19.

Σ |= ∀B, P, P ′.P ;B P
′ ⊃ | Trace(P )| ≥ | Trace(P ′)|.

This property holds because an alternate P ′ of P can have dropped
goals but not added any.

For our definition of revision by modification, we must gener-
alise �P to apply to two alternate subsets of the set Γ of intentions
to be revised. We only compare sets that consist of alternates of the
same subset of Γ. If Γ′ vB Γ, then the elements of Γ′ are each
alternates of the elements of a subset of Γ, which we call the core
of Γ′ with respect to Γ and B. Formally, given Γ′ vB Γ:

DEFINITION 20 (CORE OF AN INTENTION SET).

core(B,Γ,Γ′) def
= {P ∈ Γ|∃P ′ ∈ Γ′.P ;B P

′}.

Note that if Γ is distinct, then Γ′ is guaranteed to be the same size
as core(B,Γ,Γ′), for any B.

For alternate subsets Γ1 and Γ2 of Γ that share the same core,
we say that Γ1 is setwise closer to Γ than Γ2, if for every I ∈ Γ,
I’s alternate in Γ1 is closer to I than its alternate in Γ2:

DEFINITION 21 (SETWISE CLOSER).

Γ1 �B,Γ Γ2
def
=

if Γ1 vB Γ ∧ Γ2 vB Γ ∧ core(B,Γ,Γ1) = core(B,Γ,Γ2)
then ∀I ∈ Γ, I1 ∈ Γ1, I2 ∈ Γ2.I ;B I1 ∧ I ;B I2 ⊃

I1 �I I2
else FALSE ,

where if A then B else C def
= (A ⊃ B) ∧ (¬A ⊃ C).

1086



Finally, we say that Γ∗ is a modification revision of Γ in C−,
if Γ∗ is a cardinal revision and is maximal with respect to setwise
closeness:

DEFINITION 22 (MODIFICATION REVISION).

REV+(Γ∗,Γ, C−)
def
= REVCARD+(Γ∗,Γ, C−) ∧

∀Γ′.REVCARD+(Γ′,Γ, C−) ⊃
(Γ′ �CB− ,Γ Γ∗ ⊃ Γ∗ �CB− ,Γ Γ′).

4.4 Properties
We can show that (the appropriate reformulations of) the propo-

sitions in the previous section hold for REV+ as well.
A (possibly empty) modification revision set of a distinct set Γ

always exists.

PROPOSITION 23.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃ ∃Γ∗.REV+(Γ∗,Γ, C−).

If there exists a fully robust subset of a distinct set Γ, then the
modification revision set will be fully robust.

PROPOSITION 24.

Σ |= ∀Γ, C−.Distinct(Γ) ∧
(∃Γ′.Γ′ vCB− Γ ∧ Γ′ 6= ∅ ∧ SuccessAlways(Γ′, C−)) ⊃

(∀Γ∗.REV+(Γ∗,Γ, C−) ⊃ SuccessAlways(Γ∗, C−)).

The modification revision of a distinct set Γ is the empty set iff
no nonempty subset of Γ is possible.

PROPOSITION 25.

Σ |= ∀Γ, C−.Distinct(Γ) ⊃
[∀Γ′.Γ′ vCB− Γ ∧ Γ′ 6= ∅ ⊃ ¬Poss(Γ′, C−)] ≡
[∀Γ∗.REV+(Γ∗,Γ, C−) ⊃ Γ∗ = ∅].

Let us return to our purchasing agent example, as described in
Examples 1 and 9, and in Figure 2. As there is $1700 available, the
(best) revision is obtained by dropping the goal of buying a Sony
and adopting the goal of buying a Lenovo (for achieving event-goal
Order), that is, the only modification revision is Γ∗ = {I ′1, I2}.
Observe that while intention base Γ′ = {I ′′1 , I2} can be consid-
ered for revision, it involves higher-level modifications to inten-
tions than Γ∗ does. That is, let B be the agent’s current belief base,
then I ′1 �I I ′′1 ∧I ′′1 6�I I ′, and therefore Γ∗ �B,Γ Γ′∧Γ′ 6�B,Γ Γ∗,
which means that Γ′ does not qualify as an acceptable revision set.
However, if the agent were to believe there was only $1400 avail-
able, then intention I1 would have to be modified higher up in its
hierarchy of goals, and the only revision would indeed be Γ′. Ob-
serve that in both cases, though, dropping any of the intentions, as
in the previous section, would not qualify as acceptable revisions:
there is something less drastic that can be done.

5. RELATED WORK
The problem of revising intentions, especially within formal BDI

frameworks, has received surprisingly little attention. Rao and
Georgeff [16] extend their seminal BDI logic to resolve a specific
paradox that arises when intentions are dropped but do not con-
sider the general problem. Wobcke [19] considers the effects on
intentions when beliefs are revised; he uses a version of epistemic
entrenchment [7], effectively requiring a quantitative measure of
the priority of each intention. To our knowledge, Wobcke was the
first to apply ideas from belief revision [7] to the problem of re-
vising intentions. However, his framework, and in particular his
representation of plans, is restrictive.

More recently, Grant et al. [8] present a detailed investiga-
tion of the general problem of intention revision. They propose
postulates for the revision of BDI structures; a BDI structure
〈B,D, I, v, (c, C)〉 is a representation of the current mental state
of an agent (similar to what we call a configuration), where v com-
putes the “value” in achieving a desire and c assigns a “cost” to
performing actions in the domain C (which includes all actions the
agent may intend) that are used to achieve goals. Each intention
in I is represented as a plan instance or “recipe” a → g, where
a is an action to perform and g is the goal (i.e., proposition) that
would be achieved by successful execution of a. Grant et al. are
specifically interested in BDI structures that are “rational” (are not
internally inconsistent) and that maximise “benefit” (the total value
of its current goals minus the cost of the actions to achieve them).12

Grant et al. propose postulates for the various cases of adding
and deleting a belief, desire or intention, and for the cases of mod-
ifying value and cost functions; each of these cases may result in a
new BDI structure. Their main requirements for the resulting BDI
structure are: (i) the rationality condition; (ii) that any change to
the intention set is minimal (in that it overlaps as much as possible
with the intention set in the original BDI structure); and (iii) that
the candidate revisions are maximal in benefit.

While our aims have many similarities to those of Grant et al.,
we have taken an orthogonal approach by considering intention re-
vision within the rich CAN framework. In particular, this frame-
work allows us to reason about complex plans or recipes to be used
to achieve goals, and the environments in which they can be suc-
cessfully performed, allowing us to revise to intention sets that are
maximally likely to be successful. The rich plan representation, in-
cluding subgoals, available in the CAN language also allows us to
consider the possibility of revising to a new intention by consid-
ering alternative execution paths to achieve a goal or subgoal. In
particular, use of the CAN framework better bridges the gap be-
tween abstract theoretical framework and the standard execution
model of BDI agent systems [1, 13]. It also allows us to reason ex-
plicitly about revising to sets of maximally robust intentions, and
impose our minimal modification condition.

Van der Hoek et al. [18] define a powerful framework for de-
scribing and reasoning about BDI mental states, and a correspond-
ing account for revising intentions. Their ultimate goal is to incor-
porate the dynamics of intentions into a framework for reasoning
about mental states; as such, they have similar aims to ours. Their
formal framework is very rich; however, their approach to the ac-
tual intention revision is very algorithmic, which is an issue that
Grant et al. [8] specifically attempt to address. Further, the model
presented in Van der Hoek et al. does not address two of our main
concerns: their intention-removal step does not seem to account for
mutually conflicting intentions; and they do not enforce minimal
modification of intentions.

Finally, Icard et al. [11] also consider how belief revision im-
pacts intention revision; they also tightly intertwine the revision
of beliefs and intention sets. They provide postulates for revising
both sets of intentions and beliefs. However, this is under a simple
model of plans, in particular, non-hierarchical plans; hence, they
are not able to capture a notion of minimal plan modification such
as the one presented here.

Most of the other frameworks discussed here examine the rela-
tionship between beliefs, goals and intentions, which is something

12In a follow-up paper, Grant et al. [9] extend this framework to the
multi-agent case, to model a different problem, that of how agents
use knowledge of each others’ intentions to coordinate behaviour.
Since this work is only tangentially related to ours, we will not
discuss it further here.
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which we do not address. The reason we do not address this is-
sue is that although the interplay between these mental attitudes
is theoretically interesting, we do not see it playing a role in cur-
rently implemented systems. For example, in the CAN framework,
as well as in many implemented agent systems, goals are simply
labels with no propositional meaning. Similarly, while beliefs do
have propositional content in CAN, the language in which beliefs
are framed does not admit beliefs about the future. Since goals
and intentions are future-oriented, in the absence of beliefs about
the future, the relationship between beliefs on the one hand, and
goals and intentions on the other is not very interesting. There are
implemented systems (e.g., [5]) that have goals with propositional
content, however, as far as we are aware, there are no implemented
systems that allow explicit beliefs about the future.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have addressed an important aspect of agent

reasoning—intention revision. Intention revision is central, since
an agent typically pursues multiple tasks, adopting intentions to
achieve them. These intentions may conflict with each other, due
to resource limitations, for example. In the event of such conflicts
the agent ought to resolve them in a rational manner.

We have defined a framework for the revision of sets of inten-
tions that mutually conflict. We have presented two approaches.
The first is to revise the set of intentions by dropping one or more
intentions to attain a non-conflicting set, and the other is to modify
the current intentions so that they may be achieved by alternative
means to obtain a non-conflicting set of intentions.

Our theory of intention revision is embedded in a powerful for-
mal framework for the representation of goals, programs, and the
environments under which they are executed. This framework al-
lows us to specify rich criteria for appropriate revised sets of inten-
tions to satisfy: robustness (guaranteed success in maximal number
of environments), minimal reduction on dropping an intention (i.e.,
preserving maximal number of top-level intentions), and minimal
change to the means of achieving an intention.

Future work includes extending our model to include further fea-
tures of Grant et al.’s framework, i.e., adding new intentions, rep-
resenting costs of action and value of achieving goals. In such
an account, we would expect to be able to demonstrate satisfac-
tion of their postulates within our much richer framework of goals
and plans, providing a clear specification of intention revision be-
haviour for BDI agent programming models. Our ultimate aim is
a model of the complete intention reconsideration problem, includ-
ing intention selection, opportunistic merging, and revision; and its
application to the design of such processes in practical agent pro-
gramming frameworks. In this paper, we presented a semantics
for intention revision and future work also involves developing an
implementation that is faithful to these semantics but also compu-
tationally feasible.

7. REFERENCES
[1] R. H. Bordini, L. Braubach, M. Dastani,

A. Fallah-Seghrouchni, J. J. Gómez Sanz, J. Leite,
G. O’Hare, A. Pokahr, and A. Ricci. A survey of
programming languages and platforms for multi-agent
systems. Informatica (Slovenia), 30(1):33–44, 2006.

[2] M. E. Bratman. Intentions, Plans, and Practical Reason.
Harvard University Press, 1987.

[3] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and
resource-bounded practical reasoning. Computational
Intelligence, 4(3):349–355, 1988.

[4] P. R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213–261, 1990.

[5] F. S. de Boer, K. V. Hindriks, W. van der Hoek, and J.-J.
Meyer. A verification framework for agent programming
with declarative goals. Journal of Applied Logic,
5(2):277–302, 2007.

[6] D. Dennett. The Intentional Stance. MIT Press, 1987.
[7] P. Gärdenfors. Knowledge in Flux. The MIT Press, 1988.
[8] J. Grant, S. Kraus, D. Perlis, and M. Wooldridge. Postulates

for revising BDI structures. Synthese, 175:127–150, 2010.
[9] J. Grant, S. Kraus, and M. Wooldridge. Intentions in

equilibrium. In M. Fox and D. Poole, editors, Proceedings of
the National Conference on Artificial Intelligence (AAAI),
pages 786–791. AAAI Press, 2010.

[10] M. Hennessy. The Semantics of Programming Languages.
John Wiley & Sons, Chichester, England, 1990.

[11] T. Icard, E. Pacuit, and Y. Shoham. Joint revision of beliefs
and intentions. In F. Lin, U. Sattler, and M. Truszczynski,
editors, Proceedings of Principles of Knowledge
Representation and Reasoning (KR), pages 572–574. AAAI
Press, 2010.

[12] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K.
Srivas. PVS: Combining specification, proof checking, and
model checking. In R. Alur and T. A. Henzinger, editors,
Proceedings of the International Conference on Computer
Aided Verification (CAV), volume 1102 of Lecture Notes in
Computer Science (LNCS), pages 411–414. Springer-Verlag,
1996.

[13] A. S. Rao. Agentspeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. W. Perram,
editors, Proceedings of the European Workshop on
Modelling Autonomous Agents in a Multi Agent World
(MAAMAW), volume 1038 of Lecture Notes in Computer
Science (LNCS), pages 42–55. Springer, 1996.

[14] A. S. Rao and M. P. Georgeff. Modeling rational agents
within a BDI-architecture. In J. F. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of Principles of
Knowledge Representation and Reasoning (KR), pages
473–484. Morgan Kaufmann, 1991.

[15] A. S. Rao and M. P. Georgeff. An abstract architecture for
rational agents. In B. Nebel, C. Rich, and W. R. Swartout,
editors, Proceedings of Principles of Knowledge
Representation and Reasoning (KR), pages 438–449.
Morgan Kaufmann, 1992.

[16] A. S. Rao and M. P. Georgeff. BDI agents: From theory to
practice. In V. Lesser and L. Gasser, editors, Procedings of
the International Conference on Multiagent Systems
(ICMAS), pages 312–319. AAAI Press / MIT Press, 1995.

[17] S. Sardina and L. Padgham. A BDI agent programming
language with failure recovery, declarative goals, and
planning. Autonomous Agents and Multi-Agent Systems,
23(1):18–70, 2011.

[18] W. van der Hoek, W. Jamroga, and M. Wooldridge. Towards
a theory of intention revision. Synthese, 155(2):265–290,
2007.

[19] W. Wobcke. Plans and the revision of intentions. In C. Zhang
and D. Lukose, editors, Distributed Artificial Intelligence:
Architecture and Modelling, volume 1087 of Lecture Notes in
Computer Science (LNCS), pages 100–114. Springer, 1995.

1088



Session 4F
Logics for Agency





Action models for knowledge and awareness

Hans van Ditmarsch
Logic

University of Seville, Spain
hvd@us.es

Tim French
Computer Science and
Software Engineering

University of Western Australia
tim@csse.uwa.edu.au

Fernando R.
Velázquez-Quesada

Logic
University of Seville, Spain

FRVelazquezQuesada@us.es

ABSTRACT
We consider semantic structures and logics that differenti-
ate between being uncertain about a proposition, being un-
aware of a proposition, becoming aware of a proposition and
getting to know the truth value of a proposition. We give a
unified setting to model all this variety of static and dynamic
aspects of awareness and knowledge, without any constraints
on the modal properties of knowledge (or belief — such as
introspection) or on the interaction between awareness and
knowledge (such as awareness introspection). Our primitive
epistemic operator is called speculative knowledge. This is
different from the better known implicit knowledge, now de-
finable, which plays a more restricted role. Some dynamic
semantic primitives that are elegantly definable in our set-
ting are the actions of ‘becoming aware of a propositional
variable’, ‘implicit knowledge’, ‘addressing a novel issue in
an announcement’, and also more complex ways in which an
agent can become aware of a novel issue by way of increasing
the complexity of the epistemic model.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Modal Logic

General Terms
Theory

Keywords
Modal logic, Epistemic logic, Awareness, Dynamics

1. INTRODUCTION
We consider a framework that differentiate between (i)

agents being uncertain about the value of a proposition, (ii)
agents being unaware of a proposition, (iii) agents becoming
aware of propositions, and (iv) agents being informed of the
truth of propositions of which they were already aware.

Example 1. Alfred likes football. He supports the En-
glish national football team and he is aware that yesterday
there was a match between England and The Netherlands,

Appears in: Proceedings of the 11th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
June, 4–8, 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

but he does not know which team won. He does not like
other sports, so he is unaware that the English national rugby
team played yesterday too. When looking online for the foot-
ball match’s result, Alfred sees a web page with header “The
English team faced a complicated rugby match yesterday”,
hence becoming aware of that match (without getting to know
who won). He keeps looking for the score of the football
match and finally finds it: England 2 - The Netherlands 1.

In this paper we give a unified setting to model all this va-
riety of static and dynamic aspects of awareness and knowl-
edge, without any constraints on the modal properties of
knowledge (or belief - such as introspection) or on the inter-
action between awareness and knowledge (such as awareness
introspection). Our work is rooted in: the tradition of epis-
temic logic [11] and in particular multi-agent epistemic logic
[13, 4]; in various works on the interaction of awareness and
knowledge [3, 14, 15, 9] — including a relation to recent
works like [10, 7, 8]; and in modal logical research in propo-
sitional quantification, starting in the 1970s with [5] and
followed up by work on bisimulation quantifiers [24, 12, 6].

Works treating awareness either follow a semantically fla-
voured approach, where awareness concerns propositional
variables in the valuation [15, 9], or a more syntactically
flavoured approach, where awareness concerns all formulas
of the language in a given set, in order to model ‘limited
rationality’ of agents [3, 19]. Our proposal falls straight into
the semantic corner: within the limits of their awareness,
agents are fully rational. Our proposal extends the work of
[20, 21] — these works treat the static interaction of knowl-
edge and awareness but not its dynamics, and in particular
not the wide variety of dynamics in action models.

2. STRUCTURES
Our semantic model augments standard epistemic (Kripke)

models with a parameter to define the notion of awareness.

Definition 1 (Epistemic awareness model). Given
a countable set of atomic propositions P and a finite set of
agents N , where these sets are disjoint, an epistemic aware-
ness model is a tuple M = (S,R,A, V ) where

• S is the domain: a non-empty set of (propositional)
states also called worlds and also denoted by D(M);

• R : N → P(S×S) is an accessibility function assigning
to each agent i ∈ N a binary accessibility relation;

• A : N → S → P(P ) is an awareness function return-
ing the set of atomic propositions agent i ∈ N is aware
of at state s ∈ S (agent i’s awareness state at s);
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• V : P → P(S) is a valuation function indicating, for
each atomic proposition p ∈ P , the set of states V (p)
in which the proposition is true.

We will write Ri for R(i) and Ai for A(i). A pair (M, s)
with M an epistemic awareness model and s a state in D(M),
the evaluation state, is an epistemic awareness state.

In epistemic awareness models, awareness is specified by
the awareness function. Our notion of awareness is given
in terms of a set of atomic propositions, different from the
models of general awareness of [3] in which awareness is given
in terms of an arbitrary set of formulas.

Just like with epistemic models, we can impose require-
ments on epistemic awareness models. The standard ones
are properties of the accessibility relations, like reflexivity,
seriality or transitivity. We do not discuss closure proper-
ties of the awareness set Ai(s) as done in [3] because Ai(s)
is a set of atoms rather than an arbitrary set of formulas.
There are also properties that relate the accessibility rela-
tions with the awareness function. One interesting example
is the property of awareness introspection [9], which holds
when awareness sets are preserved by the accessibility rela-
tion: p ∈ Ai(s) implies p ∈ Ai(t) for every state t such that
(s, t) ∈ Ri. As interesting as such models can be, we make
no commitment to any particular property, focussing on the
most general class of epistemic awareness models.

A notion of bisimulation [16] between epistemic awareness
models can be obtained by extending the standard defini-
tion with a clause that asks for the awareness function to
assign, for every agent, the same set of atomic propositions
in bisimilar states. The bisimulation requirements can also
be restricted to a subset of atomic propositions; this makes
sense in our setting because agents may not be aware of ev-
ery atom. But we go one step further: agents may be aware
of different atomic propositions in different states, so in or-
der to indicate when two epistemic awareness models are
indistinguishable from the perspective of an agent (or a set
of them), we ask for an additional restriction. The result is
called awareness bisimulation.

Definition 2 (Awareness bisimulation). Let M =
(S,R,A, V ) and M ′ = (S′, R′, A′, V ′) be two epistemic aware-
ness models. For any Q ⊆ P , a relation R[Q] ⊆ (S × S′)
is called a Q-awareness bisimulation between M and M ′ if,
for every (s, s′) ∈ R[Q]:

• atoms: for all p ∈ Q, s ∈ V (p) iff s′ ∈ V ′(p);

• aware: for all i ∈ N , Q ∩ Ai(s) = Q ∩ A′
i(s

′);

• forth: for all i ∈ N , if t ∈ S and Ri(s, t) then there is
a t′ ∈ S′ such that R′

i(s
′, t′) and (t, t′) ∈ R[Q∩Ai(s)];

• back: for all i ∈ N , if t′ ∈ S′ and R′
i(s

′, t′) then there
is a t ∈ S such that Ri(s, t) and (t, t′) ∈ R[Q∩A′

i(s
′)].

We say that (M, s) and (M ′, s′) are Q-awareness-bisimilar
(notation: (M, s)↔Q(M ′, s′)) if there is a Q-awareness bisim-
ulation between M and M ′ that contains (s, s′).

The aware clause is the additional ‘atomic’ requirement,
given the nature of our models. The further requirement
that distinguishes awareness bisimulation from a restricted
bisimulation appears in the forth and back clauses: instead
of being R[Q]-bisimilar, states t and t′ need to be just R[Q∩

Ai(s)]-bisimilar and R[Q∩ A′
i(s

′)]-bisimilar, respectively —
note that by the aware clause, Q∩Ai(s) and Q∩A′

i(s
′) are

the same. The motivation is very simple: two states are Q-
awareness-bisimilar for an agent i if they appear Q-identical
to her. Since she does not need to be aware of every atom,
the states just have to be identical up to those atoms of Q
the agent is aware of. Then, for the atoms clause, we just
need to check that both states coincide in the truth values of
atoms in Q. Moreover, in the forth clause, the bisimulation
for state t is further restricted to the propositions visible
for agent i in s, the i-predecessor of t; similarly for back.
This ensures us that only atoms the agent is aware of at
the current state will matter when looking for a difference
in accessible worlds. This chaining requirement was present
in epistemic awareness structures since its inception in [3].

Awareness bisimulation gives us a form of observational
equivalence among epistemic awareness models. If an agent i
is in state s, then her perspective is that of Ai(s)-awareness-
bisimilarity: she cannot distinguish the current model from
those that are in its R[Ai(s)] equivalence class. This can be
generalized for a set of agents N ; their perspective is that of⋃

i∈N Ai(s)-awareness-bisimilarity, so two epistemic aware-
ness states (M, s) and (M ′, s′) are observationally equivalent
for the agents in N iff no one can distinguish them, that is,
iff they are Ai(s)-awareness bisimilar for all i ∈ N :

(M, s)↔
⋃

i∈N Ai(s)(M ′, s′) .

If every agent is aware of every atom at every state, we
get standard (restricted) bisimulation: for agents with full
awareness we go back to the standard multi-agent epistemic
situation, where awareness plays no role.

Example 2. The diagram below shows three epistemic
awareness states, (M, s), (M ′, s′) and (M ′′, s′′). In it, each
state shows its name, the truth value it assigns to atoms (the
overline indicates falsity) and the awareness set for agent i

in the format iAi(s); the evaluation states are underlined.
The states (M, s), (M ′, s′) and (M ′′, s′′) are {p}-awareness

bisimilar (e.g., {(s, s′′), (t, t′′1 ), (t, t′′2 )} is a {p}-awareness bisim-
ulation between the first and the third). This is because not
only the s-states (s, s′ and s′′) coincide in the truth value
of and in agent i’s awareness of every atom in {p} (clauses
atoms and aware of the definition — note how the truth
value of q is irrelevant), but also because every t-state in each
model is {p}-awareness bisimilar to every t-state in the oth-
ers (clauses back and forth, given that {p}∩Ai(s) = {p}).
(Indeed, the awareness of i is ∅ in all four t-states; if it had
been {p} in all four it would have worked as well.)

M

s(pq, i{p})

t(pq, i∅)

M ′

s′(pq, i{p})

t′(pq, i∅)

M ′′

s′′(pq, i{p})

t′′1 (pq, i∅) t′′2 (pq, i∅)

i i
i i

3. ACTION MODELS
Epistemic awareness models allow us to represent the in-

formation of agents who may be uncertain of the truth value
of atomic propositions and may be even unaware of some of
them. But, of course, the information of such agents can
change via different informational acts. The general struc-
ture that we introduce now, epistemic awareness action mod-
els, allow us to represent, as far as we know, any conceivable
form of awareness change or of knowledge change.
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Definition 3 (Epistemic awareness action model).
Let P and N be sets of atomic propositions and agents, re-
spectively, with properties as before. An epistemic awareness
action model is a tuple M = (S,R,A, pre, post) where

• S is a non-empty domain: a set of actions also denoted
by D(M);

• R : N → P(S×S) is an accessibility function, assigning
to each agent i ∈ N an accessibility relation R(i);

• A : {+,−} → N → S → P(P ) is an awareness
change function, indicating the disjoint sets of atoms
each agent i ∈ N will become aware (+) and unaware
of (-) after the execution of s ∈ S;

• pre : S → L is a precondition function that specifies,
for each action s ∈ S, the requirement for its execution;

• post : S → P → L is a postcondition function speci-
fying, for each action in s ∈ S, how the truth value of
each atomic proposition p ∈ P will change.

A pair (M, s) with M an epistemic awareness action model
and s an action in D(M) is an epistemic awareness action.

The language L in terms of which we specify the precon-
ditions and postconditions is a fixed parameter of this defi-
nition. In Section 4 we give an integrated approach for the
syntax and semantics of a logical language with epistemic
awareness action models, wherein L is not a fixed parame-
ter. As before, we write Ri for R(i); also, we write A+

i for
A(+)(i) and A−

i for A(−)(i).

We can now indicate how an epistemic awareness action
model modifies an epistemic awareness model. The following
definition is essentially the product update of [1] with an
additional clause that deals with awareness.

Definition 4 (Action model execution). Let M =
(S,R,A, V ) and M = (S,R,A, pre, post) be an epistemic aware-
ness model and an epistemic awareness action model, respec-
tively. The epistemic awareness model M⊗M = (S′, R′,A′, V ′)
– the result of executing M in M – is defined as follows:

S′ :=
{
(s, s) | (M, s) |= pre(s)

}

R′
i :=

{(
(s, s), (s′, s′)

)
| (s, s′) ∈ Ri and (s, s′) ∈ Ri

}

A′
i(s, s) :=

(
Ai(s) ∪ A+

i (s)
)

\ A−
i (s)

V ′(p) :=
{
(s, s) | (M, s) |= post(s, p)

}

The new set of states is given by the restricted Cartesian
product of S and S: a pair (s, s) will be a state in the new
model iff s satisfies s’s precondition in M . Since the precon-
dition is given as a formula of a language L, we assume a
satisfiability relation |= that indicates whether a formula of
L evaluates to true or false in an epistemic awareness state.
For the accessibility relation of the new model, we simply
combine the accessibility relation of the ‘static’ and the ‘ac-
tion’ model: a state (s′, s′) is R′

i-accessible from state (s, s)
iff s′ is Ri-accessible from s, and s′ is Ri-accessible from
s. For the awareness function of each agent i in each state
(s, s), we add the atoms in A+

i (s) and remove the atoms in
A−

i (s) (in whatever order—we require these sets to be dis-
joint). Finally, for the valuation, an atomic proposition p is
true at state (s, s) iff s satisfies post(s, p) in M .

The epistemic awareness state that results from executing
(M, s) in (M, s) is given by(M⊗M, (s, s)) whenever (M, s) |=
pre(s).

Example 3. Below is the diagram of an epistemic aware-
ness action model. Each one of the actions indicates also its
precondition and its awareness change function (the latter

with the format i+A+
i

,−A−
i for every agent i). Here the post-

condition function is trivial: post(s)(p) = post(t)(p) = p.

s (p, i+{p},−∅) t (¬p, i+∅,−∅)i i
i

The only difference between actions s and t is the precon-
dition and the fact that s adds p to agent i’s awareness.
This epistemic awareness action model can be seen as a form
of ‘conditionally becoming aware’, where the agent becomes
aware of p in the states in which p holds, and keeps her old
awareness in states in which p fails (see Definition 13). We
will see more examples of epistemic awareness action models
and their execution in Section 8.

4. LANGUAGE
Section 2 presented a semantic structure, epistemic aware-

ness model, for representing the information of agents that
do not need to be aware of all the relevant atoms. Then
Section 3 introduced another structure, epistemic awareness
action model, that allows us to represent diverse actions that
can change the agents’ information. However, a parameter
in these action models was a logical language.

We can also do this ‘all at once’: an inductively defined
language, with an appropriately compositional semantics,
wherein a countable set of ‘action model shapes’ features as
a parameter in the language. This language allows us to
describe epistemic awareness models and how they change
after an epistemic awareness action model is applied.

Definition 5 (Language). Given sets of atomic propo-
sitions P and agents N as before, the language L of the logic
of knowledge and awareness change is given by

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | KS
i ϕ | Aiϕ | [M, s]ϕ

where i ∈ N , p ∈ P and (M, s) is a epistemic awareness
action satisfying that:

(a) its domain is finite;

(b) the postcondition function changes the valuation of only
a finite number of atomic propositions.

(c) the awareness function returns two finite sets of atomic
propositions;

The language L extends multi-agent epistemic logic with
two operators. The first, Aiϕ, expresses that agent i is aware
of ϕ; the second, [M, s]ϕ, stands for “after (every) execution
of the epistemic awareness action (M, s), ϕ is the case”. Im-
plication →, disjunction ∨, and equivalence ↔ are defined
by abbreviation as usual, and LS

i ϕ is defined as ¬KS
i ¬ϕ.

Note that ⊤ is explicitly a primitive in the language; we do
not define it with an abbreviation of the form p ∨ ¬p for
some atom p because we want every agent to be aware of ⊤
even if they are unaware of every atomic proposition.

The epistemic operator KS
i is non-standard. It stands

for agent i’s speculative knowledge (a notion called implicit
knowledge in [20]), and its semantic interpretation will be
introduced in the next section. Explicit knowledge is defined
by KE

i ϕ iff KS
i ϕ ∧Aiϕ (cf. [3]).
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The case [M, s]ϕ of the inductive language definition is
indeed a proper induction, because it can be seen as an op-
eration on the set of all preconditions pre(t) of actions in the
action model, and the formula ϕ. In the definition, all these
are supposed to be of type formula and lower in the inductive
hierarchy. The restrictions on epistemic awareness actions
in the language are imposed so that the inductively defined
language L is well-defined—the class of epistemic awareness
actions needs to be enumerable, and (as an independent re-
quirement) the number of arguments in the inductive con-
struct [M, s]ϕ needs to be finite. For this we need all three
finiteness requirements. For (a) this was known since [22];
for (b) this was known since dynamic epistemic logics mod-
elling factual change, namely [18]; we can make our logic tick
by the novel requirement (c). If we merely wished a seman-
tic treatment of epistemic awareness actions, the finiteness
requirements would not be needed.

As mentioned, our notion of awareness is semantic: an
agent is aware of a formula if she is aware of the set of
atomic propositions in that formula. For this, we need to
define the free variables of a formula.

Definition 6 (Free variables). The free propositional
variables of ϕ ∈ L are defined inductively in the following
way: v(⊤) := ∅; v(p) := {p}; v(¬ϕ) := v(ϕ); v(ϕ ∧ ψ) :=
v(ϕ)∪v(ψ); v(KS

i ϕ) := v(ϕ), v(Aiϕ) := v(ϕ), v([M, s]ϕ) :=⋃
t∈D(M) v(pre(t))∪⋃

t∈D(M),p changes v(post(t)(p))∪v(ϕ) where

‘p changes’ means that p ∈ A+
i (t) or p ∈ A−

i (t) for some
agent i.1

Concerning v([M, s]ϕ), recall that the modality [M, s] rep-
resents an inductive case of the language with the precondi-
tions pre(t), postconditions post(t)(p) and the formula ϕ as
arguments.

5. SEMANTICS
Having defined the structures and the language to describe

them, we now define the semantic interpretation.

Definition 7 (Semantics). Let M = (S,R,A, V ) and
s ∈ D(M) be given. The semantics for ⊤, atoms, negation
and conjunction is as usual. For the rest,

(M, s) |= KS
i ϕ iff ∀(s, t) ∈ Ri and ∀(M ′, t′)↔Ai(s)(M, t),

(M ′, t′) |= ϕ
(M, s) |= Aiϕ iff v(ϕ) ⊆ Ai(s)
(M, s) |= [M, s]ϕ iff (M, s) |= pre(s) ⇒ (M ⊗ M, (s, s)) |= ϕ

The set of validities of the language L is called the logic l.

An agent speculatively knows ϕ when ϕ remains true in
all accessible states for every possible interpretation of all
propositions she is unaware of. We achieve this by compos-
ing the agent’s accessibility relation with bisimulation re-
stricted to propositions the agent is aware. This speculative
knowledge is not implicit knowledge KI in the Fagin et al.
[3] sense where this corresponds to mere modal accessibility

(M, s) |= KI
i ϕ iff ∀(s, t) ∈ Ri, (M, t) |= ϕ

1The clause for [M, s]ϕ makes the semantics of Aiϕ (below)
work but is too restrictive given our intuitions of awareness.
For example, given that [p := q]p ↔ q, we want that v([p :=
q]p) = v(q) = q, but our definition gives {p, q}. This will be
further investigated.

Example 4. Consider the epistemic awareness states of
Example 2. In all three cases agent i knows p explicitly but
she does not know q explicitly at s because the accessible t
is p-awareness bisimilar to (e.g.) t′ where q is false. If she
becomes aware of q in state s, then she will know q explicitly:
any state {p, q}-awareness bisimilar to t must satisfy q.

Example 5. Here is an epistemic awareness state for Al-
fred’s situation before his online search (Example 1); we will
use formulas of L to show that it represents the situation
faithfully. We will use f (r) to indicate that England won
the football (rugby) match.

s(fr, a{f})

M0

t(fr, a{f})a a
a

At (M0, s), Alfred (a) is aware of the football match (f)
but unaware of the rugby match (r) because Aaf and ¬Aar
hold (f is in Aa(s) but r is not). Moreover, Alfred does not
have any speculative (and hence does not have any explicit)
knowledge about who won any of the matches since neither
of the following formulas hold at (M0, s): KS

a f , KS
a ¬f ,

KS
a r, K

S
a ¬r. This is because for f,¬f, r and ¬r we can

find a state u reachable from s (e.g., t for the first for-
mula; s for the second, third and fourth) and an epistemic
awareness state (M ′, u′) that is {f}-awareness-bisimilar to
(M0, u) and in which the given formula fails. For the first
formula, any state {f}-awareness-bisimilar to (M0, t) should
satisfy ¬f ; analogously for the second. For the third and
fourth, a state {f}-awareness-bisimilar to (M0, s) can as-
sign any truth value to r.

Our main result is that in epistemic awareness bisimilar
states the agents have the same explicit knowledge; this jus-
tifies a more complex form of bisimulation and the notion of
speculative knowledge that is more complex than ‘standard’
(implicit) knowledge. Although there is fairly direct proof of
this (consisting of that case of the following inductive proof),
we present it in the context of a more general, staged, re-
sult. Below, we will use the following valid observation.
Let v(ϕ) = Q′ ⊆ Q and take an epistemic awareness state
(M, s): ϕ is true in all states (M ′, s′) that are Q-bisimilar to
(M, s) iff ϕ is true in all states (M ′′, s′′) that are Q′-bisimilar
to (M, s). From left to right the statement holds because we
look at less atoms; from right to left it holds because the
extra atoms do not appear in ϕ. In other words, variation
in variables not occurring in ϕ does not affect its value. For
Q \ Q′ = {p} this corresponds to the validity ϕ ↔ ∀pϕ
whenever p 6∈ v(ϕ), in bisimulation quantified logic.

Theorem 8. If (M, s)↔Q(M ′, s′) and v(ϕ) ⊆ Q, then
(M, s) |= ϕ iff (M ′, s′) |= ϕ.

Proof. To be more precise, the statement we prove is
“Let ϕ ∈ L. Then for every epistemic awareness states
(M, s) and (M ′, s′), if (M, s)↔Q(M ′, s′) and v(ϕ) ⊆ Q, then
(M, s) |= ϕ iff (M ′, s′) |= ϕ.” The proof is by induction on
ϕ, and the cases of interest are KS

i ϕ, Aiϕ, and [M, s]ϕ.

• Base case p: From the atoms clause of bisimulation,
the fact that p ∈ Q, and (M, s)↔Q(M ′, s′), it follows
that (M, s) |= p iff (M ′, s′) |= p.

• Inductive case ¬ϕ: Showing that (M, s) |= ¬ϕ iff
(M ′, s′) |= ¬ϕ is equivalent to showing that (M, s) 6|= ϕ
iff (M ′, s′) 6|= ϕ; swapping the order delivers (M, s) |=
ϕ iff (M ′, s′) |= ϕ which follows by induction.
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• Inductive case ϕ ∧ ψ: Let (M, s)↔Q(M ′, s′) and
v(ϕ ∧ ψ) ⊆ Q (so v(ϕ), v(ψ) ⊆ Q). Now (M, s) |=
ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ, iff (using the
induction hypothesis on ϕ and on ψ) (M ′, s′) |= ϕ and
(M ′, s′) |= ψ, i.e., (M ′, s′) |= ϕ ∧ ψ.

• Inductive case KS
i ϕ: Let (M, s)↔Q(M ′, s′) and

v(KS
i ϕ) ⊆ Q (so v(ϕ) ⊆ Q as well). Assume (M, s) |=

KS
i ϕ. Take some t′ ∈ Ri(s

′) and (N ′, u′) such that

(M ′, t′)↔A′
i(s

′)(N ′, u′); we will show that (N ′, u′) |=
ϕ. Because v(ϕ) ⊆ Q and the observation above it is
sufficient to prove this for an arbitrary (N ′, u′) with

(M ′, t′)↔Q∩A′
i(s

′)(N ′, u′).

From back it follows that there is a t ∈ Ri(s) such that

(M, t)↔Q∩A′
i(s

′)(M ′, t′). From (M, t)↔Q∩A′
i(s

′)(M ′, t′)

and (M ′, t′)↔Q∩A′
i(s

′)(N ′, u′) follows (M, t)↔Q∩A′
i(s

′)(N ′, u′)
(bisimilarity is an equivalence relation).

From that, the semantics of KSϕ and again the ob-
servation that we may restrict Ai(s

′) bisimilarity to
Q ∩ A′

i(s
′) bisimilarity, it follows immediately that

(N ′, u′) |= ϕ.

The other direction is similar. Note that, somewhat
surprisingly, we have not used induction in this induc-
tive case of the proof.

• Inductive case Aiϕ: Let (M, s)↔Q(M ′, s′) and also
v(Aiϕ) ⊆ Q (so v(ϕ) ⊆ Q). Now, (M, s) |= Aiϕ
implies v(ϕ) ⊆ Ai(s), and since v(ϕ) ⊆ Q, we have
v(ϕ) ⊆ Ai(s) ∩ Q. By the aware clause of bisimula-
tion, Ai(s)∩Q = A′

i(s
′)∩Q, so v(ϕ) ⊆ A′

i(s
′)∩Q and

hence v(ϕ) ⊆ A′
i(s

′), which implies (M ′, s′) |= Aiϕ.
The other direction is similar.

• Inductive case [M, s]ϕ: Suppose (M, s) |= [M, s]ϕ.
Then (M, s) |= pre(s) implies ((M⊗M), (s, s)) |= ϕ. By
induction we have that (M, s) |= pre(s) iff (M ′, s′) |=
pre(s). The modal product construction in (M ⊗M) is
well-known to be bisimulation preserving (see e.g. the
original publication [1]); an easily observable fact when
one realizes that pairs in the new accessibility relation
require the first argument to be in the accessibility
relation in the original model (given (t, t′) ∈ R[Q], the
induced bisimulation R′[Q] on the product is defined
as ((t, t), (t′, t)) ∈ R′[Q]). Of course, for our present
logic we also have to satisfy the requirement aware.
In the model (M ⊗M) the level of awareness Ai(t, t) is
a function of the prior level of awareness Ai(t) in t and
the deleted or added propositional variables A+

i (t) and
A−

i (t). As the prior awareness Ai(t) is the same in any
Q bisimilar state t′, and the added or deleted atoms are
also the same, the posterior awareness must therefore
also be the same for any pairs (t, t) and (t′, t) in the Q-
bisimulation. Therefore, ((M ⊗ M), (s, s))↔Q((M ′ ⊗
M), (s′, s)). Now using induction again, we conclude
((M ′ ⊗ M), (s′, s)) |= ϕ, and from that and (M ′, s′) |=
pre(s) we conclude (M ′, s′) |= [M, s]ϕ.

Corollary 9. If (M, s)↔P (M ′, s′), then (M, s) |= ϕ iff
(M ′, s′) |= ϕ.

Proof. Apply Theorem 8 with Q = P .

Corollary 10. Epistemic awareness bisimilar states co-
incide in KE . For i ∈ N and ϕ ∈ L, if (M, s) |= KE

i ϕ and

(M, s)↔Ai(s)(M ′, s′) then (M ′, s′) |= KE
i ϕ.

Proof. Apply Theorem 8 with Q = Ai(s), also using that
v(KE

i ϕ) = v(ϕ) ⊆ Ai(s).

This is a good moment to point out that if we define ex-
plicit knowledge in the ‘standard’ way, namely as aware-
ness plus modal accessibility: KEX

i ϕ ↔ (KIϕ ∧ Aiϕ) [3],
then Corollary 10 fails. Epistemic awareness states that are
bisimilar up to the awareness of a given agent do not need to
provide the agent the same explicit knowledge in the aware-
ness plus modal accessibility sense.

Example 6. Consider the following two models:

M : s(p, i{p}) t(p, i∅) u(p, i∅)
i i

M ′:s′(p, i{p}) t′(p, i∅) u′(p, i∅)
i i

Model M has domain {s, t, u}, a single agent with accessibil-
ity relation R = {(s, t), (t, u)}, atom p true everywhere, and
the agent is aware of p only in s. Model M ′ is like M except
that p is false in u′. The only difference between M and M ′

is therefore p’s truth value on the u’s states. Observe how
(M,u) and (M ′, u′) are ∅-bisimilar; then, because of this
and because the t’s states coincide in p’s truth value and
in i’s awareness of p, the epistemic awareness states (M, t)
and (M ′, t′) are {p}-awareness bisimilar. This and the fact
that s and s′ coincide p’s truth value and in i’s awareness of
p makes the epistemic awareness states (M, s) and (M ′, s′)
{p}-awareness bisimilar too. Nevertheless, we can find for-
mulas with atoms in {p} that are known explicitly (in the
awareness plus modal accessibility sense) at (M, s) but not
at (M ′, s′). Formula KIp is an example, as KEXKIp holds
at the first, but not at the second.

Of course this does not say that [3] is incorrect: their
setting is for KD45 models and then our counterexample,
which does not satisfy transitivity, does not work there.

6. PARTIAL AXIOMATIZATION
The logic l is partially axiomatized by the axioms and

rules of Table 1. The complete axiomatization in [21] can
be seen as the special case for the action model encoding
‘all agents become aware of atom p in the entire model’, see
Definition 13, below. The complete axiomatization of stan-
dard action model logic [1] might be seen as the special case
for actions that only change knowledge but not awareness,
see Section 7, below.

The table starts with axioms and rules for the ‘static’ part
of the language, that is, the one that does not involve either
awareness operators or epistemic awareness action modali-
ties [13]. Then we have axioms for speculative knowledge,
describing how this operator carries features of bisimulation:
if an agent is unaware of an atom, he does not refute any
interpretation of that atom, nor does he refute the interpre-
tation of any other agent’s awareness of that atom [21].

The next part of the table characterizes the behaviour of
the awareness operator. The first five axioms are all stan-
dard for atom-based awareness [3, 21]; for the last, the one
concerning Ai[M, s]ϕ, the right-hand side merely expresses
that the agent has to be aware of all variables in all pre-
conditions of actions in the action model, and also of the
variables in ϕ.
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The last part of the table contains reduction axioms for
the epistemic awareness actions, relating the truth value of
formulas after an action to the truth value of formulas be-
fore it. The one for ⊤ indicates that after any successful
execution of (M, s), ⊤ is the case. That for atomic propo-
sitions is inherited from [18], and indicates that after an
execution of (M, s) the atom p will be true iff, provided it
satisfies s’s precondition, the current state satisfies (s, p)’s
postcondition. The axioms for ¬ and ∧ are standard [1].

The axioms for awareness after an epistemic awareness
action are novel; they take into account that the level of
awareness may increase or decrease after action execution,
which gives us two cases. If ϕ contains an atom the agent
becomes unaware of (that is, an atom in A−

i (s)), then she
will not be aware of ϕ after the epistemic awareness action.
Otherwise, after the action the agent will become aware of
ϕ iff she is already aware of ϕ or if she will be after becom-
ing aware of the atoms in A+

i (s), that is, iff she was aware
of ϕ[⊤\A+

i (s)], where ψ[χ\{p1, . . . , pn}] is the simultaneous
substitution of χ for all occurrences of every p1, . . . , pn in ψ.

We have not found axioms for speculative knowledge af-
ter an epistemic awareness action. The form [M, s]KI

i ϕ ↔
(pre(s) → ∧

(s,t)∈Ri
KI

i [M, t]ϕ) for modal accessibility [1] does

not hold for speculative knowledge KS
i ϕ. If [M, t] does not

change awareness, the axiom still holds, but the problem
with an axiom for KS

i of that form is that the level of aware-
ness for agent i before and after action execution may be
different. Surely, if p is true in all accessible states, we want
for i to know p explicitly after becoming aware of p (and
if that is the only dynamics — action models with factual
change might after all change the value of p). But we do
not want for i to know that before becoming aware of p
(neither explicitly, nor speculatively). Dually, if i knows p
explicitly, then after becoming unaware of p (as a conscious
abstraction action, so to speak), she should no longer explic-
itly know that. The axioms for the interaction of awareness
dynamics and speculative knowledge in [21] suggest that the
interaction axioms for speculative knowledge and epistemic
awareness actions will not be reduction axioms, i.e., they will
not be equivalences helping us to rewrite formulas into for-
mulas without epistemic awareness actions. Therefore, we
may also have to face expressivity questions.

It is worthwhile to note that, though an axiomatization
would add value to our framework, it would be mainly for
logicians. It is often said that the value of Hilbert-style com-
plete axiomatizations is limited for the multi-agent system
applications. Similar logics are undecidable, so it is unclear
if effective procedures can be found.

7. TYPES OF EPISTEMIC AWARENESS AC-
TIONS

We can distinguish different types of epistemic awareness
actions, in which we recognize a number of actions familiar
from the literature, but also novel additions.

Knowledge change without awareness change To
model pure knowledge (or belief) change, the awareness func-
tions A+ and A− should neither add nor delete propositional
variables for any agent.

Definition 11 (No awareness change). An epistemic
awareness action model M is of type ‘no awareness change’
if for any agent i and action s ∈ D(M), A+

i (s) = A−
i (s) = ∅.

All propositional tautologies From ϕ → ψ and ϕ infer ψ

KS
i (ϕ → ψ) → (KS

i ϕ → KS
i ψ) From ϕ infer KS

i ϕ
(
(KS

i (p → ϕ) ∨KS
i (¬p → ϕ)) ∧ ¬Aip

)
→ KS

i ϕ if p 6∈ v(ϕ)(
(KS

i (Ajp → ϕ) ∨KS
i (¬Ajp → ϕ)) ∧ ¬Aip

)
→ KS

i ϕ if p 6∈ v(ϕ)

Ai⊤ Ai¬ϕ ↔ Aiϕ

Ai(ϕ ∧ ψ) ↔ (Aiϕ ∧Aiψ) AiKiϕ ↔ Aiϕ

AiAjϕ ↔ Aiϕ

Ai[M, s]ϕ ↔ (
∧

t∈D(M)Aipre(t) ∧ Aiϕ)

[M, s]⊤ ↔ ⊤
[M, s]p ↔

(
pre(s) → post(s, p)

)

[M, s]¬ϕ ↔
(
pre(s) → ¬[M, s]ϕ

)

[M, s](ϕ ∧ ψ) ↔
(
[M, s]ϕ ∧ [M, s]ψ

)

[M, s]Aiϕ ↔ ¬pre(s) if v(Aiϕ) ∩ A−
i (s) 6= ∅

[M, s]Aiϕ ↔ (pre(s) → Aiϕ[⊤\A+
i (s)]) otherwise

From ϕ infer [M, s]ϕ

Table 1: Axiom system

This way, we recapture all ‘standard’ action models à la
[1], modulo the additional information in structures on the
static awareness of agents.

Awareness change without knowledge change To
model pure awareness change, no agent should learn any
non-trivial formula. This is guaranteed if in the action
model, in any equivalence class for any agent, the disjunc-
tion of the preconditions of these actions are equivalent to
the triviality.

Definition 12 (No knowledge change). An epistemic
awareness action model M is of type ‘no knowledge change’
if for any agent i ∈ N , and for all s ∈ D(M)

∨

t∈sRi

pre(t) ↔ ⊤

As awareness change is central to this contribution, let
us investigate even more specific ways of becoming aware
without knowledge change.

Definition 13 (Conditionally becoming aware). The
epistemic awareness action (A+p

i (ϕ), t), wherein agent i be-
comes aware of p in the states satisfying ϕ, has two actions
indistinguishable from one another, t and f. The precondi-
tion function is given by pre(t) = ϕ and pre(f) = ¬ϕ, with
post the trivial assignment for both actions: post(t)(q) =
post(f)(q) = q for every q ∈ P (including p). For the aware-
ness change function only p is added, only in t, and no atom
is removed: A+

i (t) = {p}, A+
i (f) = A−

i (t) = A−
i (f) = ∅.

Other epistemic awareness actions, like (A+Q
i (ϕ), t), an

action wherein i becomes aware of all variables in Q ⊆ P ,
or (A+p

i (⊤), t), the one in which i becomes aware of p in all
states of the epistemic awareness model, can be defined in
a similar way. For the latter we can also use a one-action
epistemic awareness action model, because the other action
now has a precondition that is never satisfied (¬⊤).

Another interesting case is the one in which every agent
becomes aware of p. We can model this by either the compo-
sition A+p

i1
(ϕ); . . . ;A+p

in
(ϕ) when we have N = {i1, . . . , in},
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or, more elegantly, as an epistemic awareness action (A+p
N (ϕ), t)

wherein A+
i (t) = {p} for every agent i ∈ N . Then, A+p

N (⊤)
represents an action wherein every agent becomes aware of
p in the entire model. (This is the special case mentioned at
the start of Section 6.)

On finite epistemic awareness models, where each state s
has a distinguishing formula δs only true in (the bisimula-
tion class of) that state [2, 17], we can define an epistemic
awareness action with which agent i becomes aware of p only
in the actual state:

A+p
i (δt) .

With the action model for becoming aware, implicit knowl-
edge KI in the Fagin et al. modal accessibility sense [3] is
now definable. (Otherwise, it is not.)

Definition 14 (Implicit knowledge).

KI
i ϕ iff [A

+v(ϕ)
i (⊤)]KS

i ϕ .

If the agent is aware of all variables in ϕ, Aiϕ holds, so
that speculative knowledge KS

i ϕ now entails explicit knowl-
edge KE

i ϕ. In other words, the definition spells out that an
agent implicitly knows ϕ (in the sense that ϕ is true in all i-
accessible states) iff after becoming aware of all the variables
in ϕ, she explicitly knows ϕ.

We should point out however, that in our framework this
definition is of limited use, as we also allow for more involved
ways of becoming aware, wherein the value of atoms that the
agent is unaware of may change (see the next section for a
detailed example). In such cases, p may now be true in all
accessible states, so you may implicitly know p but after
the epistemic awareness action, you explicitly know that p
is false, because its value changed in the execution of the
action. The reason to permit such actions is to allow for the
epistemic complexity of states to increase, thus reflecting the
growing knowledge of agents about the atoms they are aware
of. Before they were aware of these atoms, there was no
need for such complexities and their values could therefore
be considered ‘don’t care’ values.

Addressing a novel issue A typical conversational act
is an announcement wherein a novel issue is being addressed.
Such announcements makes the addressed agents aware and
knowledgeable at the same time. Such announcements have
been differently modelled in [23].

Definition 15 (Addressing a novel issue). The a-
wareness announcement

!Aϕ

is the composition of the standard announcement !ϕ with the

action A
+v(ϕ)
N (⊤) that makes every agent aware all variables

in ϕ, or, alternatively and equivalently, defined directly as
the singleton epistemic awareness action consisting of do-
main s, accessible to all agents, with pre(s) = ϕ, trivial post-
condition post(s)(p) = p for every p ∈ P , and such that
A+

i (s) = v(ϕ) and A−
i (s) = ∅ for all agents.

In the definition above, in the variant defined by compo-

sition, it is imperative that A
+v(ϕ)
N (⊤) is after the announce-

ment, not before. After all, a truthful announcement to all
could be

“You are not aware of the fact that Valencia or-
anges mature in November!”

This is true at the moment of the announcement, but after
that no longer: all have now become aware. We have just
discovered the unsuccessful awareness update, an announce-
ment to i of the archetypical form !A(p ∧ ¬Aip).

8. DETAILED EXAMPLE
We have shown how Alfred’s initial situation (Example 1)

can be represented with an epistemic awareness model and
described with the language L (Example 5). Now we will
show how his online search and other actions can be rep-
resented with action models, and described with modalities
expressing the actions’ effect.

By reading “The English team faced a complicated rugby
match yesterday”, Alfred becomes aware of the rugby match.
One could think that this act is represented by an epis-
temic awareness action with a single reflexive action s′ and
awareness change, precondition and postcondition functions
given by A+

a (s′) := {r} and A−
a (s′) := ∅, pre(s′) := ⊤ and

post(s′)(p) := p for every atom p, respectively, but this is
not the case.

M0

s (fr, a{f}) t (fr, a{f})a a
a

⊗
s′(⊤, a+{r},−∅)

M′
0

a

M ′
1

s′ (fr, a{f,r}) t′ (fr, a{f,r})a a
a=

Observe how, in the resulting epistemic awareness state,
(M ′

1, s
′), Alfred is indeed aware of the rugby match (Aar

holds) but he also knows speculatively that England won it
(KS

a r). (Equivalently, [M′
0, s

′](Aar∧KS
a r) holds at (M0, s).)

This is because every epistemic awareness state that is {f, r}-
awareness bisimilar to either (M ′

1, s
′) or else (M ′

1, t
′) must

satisfy r.
The act of becoming aware of r without getting to know its

truth value is represented by the epistemic awareness action
(M0, s) below, with postconditions given by post(s)(f) =
post(t)(f) = f , post(s)(r) = ¬⊤ and post(t)(r) = ⊤.

M0

s (fr, a{f}) t (fr, a{f})a a
a

⊗
s (⊤, a+{r},−∅) t (f, a+∅,−∅)a a

a

M0

s, s (fr, a{f,r}) s, t (fr, a{f})

t, s (fr, a{f,r})

a
a

a

a

aa

M1

=

Now in the resulting epistemic awareness state, (M1, s, s),
Alfred is aware of the rugby match (Aar) without knowing
speculatively who won it (¬KS

a r ∧ ¬KS
a ¬r). (Equivalently,

[M0, s](Aar∧¬KS
a r∧¬KS

a ¬r) holds at (M0, s).) This is be-
cause state (t, s) is reachable from (s, s) and we can find an
epistemic awareness state that is {f, r}-awareness bisimilar
to (M1, t, s) and in which r fails (so ¬KS

a r holds), and be-
cause state (s, t) is reachable from (s, s) and we can find an
epistemic awareness state that is {f, r}-awareness bisimilar
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to (M1, s, t) and in which ¬r fails (so ¬KS
a ¬r holds). Note

how (M0, s) is an action of type ‘no knowledge change’ (Def-
inition 12) because the disjunction of the preconditions of
all the actions, ⊤ ∨ f , is equivalent to ⊤.

Since Alfred’s main concern is football, he keeps looking
until he finds out that England defeated The Netherlands.
In this act there is no change in awareness; this is a simple
announcement of f in the classical sense.

M1 ⊗ s(f, a+∅,−∅)

M1

a

= s, s (fr, a{f,r}) s, t (fr, a{f})
a

aa

M2

Now Alfred knows explicitly (i.e., is aware of and knows
speculatively) that England won the football match. This is
expressed equivalently by the following facts: KEf holds at
(M2, s, s), [M1, s]K

Ef holds at (M1, s, s) and [M0, s][M1, s]K
Ef

holds at (M0, s). Note how the epistemic awareness action
(M1, s) is of type ’no awareness change’ (Definition 11).

9. CONCLUSION, FURTHER RESEARCH
We presented a unified setting to model all static and

dynamic aspects of awareness and knowledge, without any
constraints on the modal properties of knowledge or on the
interaction between awareness and knowledge. For this,
we needed a primitive epistemic operator called speculative
knowledge, that is different from implicit knowledge. Com-
mon awareness dynamics is elegantly definable in our set-
ting, e.g.: ‘an agent becoming aware of a propositional vari-
able’, ‘implicit knowledge’, ‘addressing a novel issue in an
announcement’, and also more complex ways in which an
agent can become aware of a novel issue by way of increas-
ing the complexity of the epistemic model.

A complete axiomatization is still lacking, as are more de-
tailed investigations of special modal classes, such as S5 and
KD45 and how this influences the axiomatization, and com-
pares to other approaches of awareness change that restrict
themselves to such classes. Another future direction is to
go from bisimulation to simulation: we expect that within
reasonable restrictions (e.g., finite models) execution of an
epistemic awareness action models is an awareness simula-
tion of the initial epistemic awareness state, and vice versa.
This would open the window to more succinct axiom systems
and complexity results, and provide corroboration that our
language is a suitable and adequate formalization for any
conceivable change of awareness or information.
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ABSTRACT
Coalition logic is currently one of the most popular logics
for multi-agent systems. While logics combining coalitional
and epistemic operators have received considerable atten-
tion, completeness results for epistemic extensions of coali-
tion logic have so far been missing. In this paper we provide
several such results and proofs. We prove completeness for
epistemic coalition logic with common knowledge, with dis-
tributed knowledge, and with both common and distributed
knowledge, respectively. Furthermore, we completely char-
acterise the complexity of the satisfiability problem for each
of the three logics.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; I.2.4 [Knowledge representation formalisms
and methods]

General Terms
Theory

Keywords
Epistemic logic, coalition logic, completeness, computational
complexity

1. INTRODUCTION
Logics of coalitional ability such as Coalition Logic (CL)

[17], Alternating-time Temporal Logic (AT L) [1], and STiT
logics [2], are arguably one of the most popular types of log-
ics in multi-agent systems research in recent years. Many
different variants of these logics have been proposed and
studied. Most of the obtained meta-logical results have
been about computational complexity and expressive power.
Completeness results have been harder to obtain, with
Goranko’s and van Drimmelen’s completeness proof forAT L
[8], Pauly’s completeness proof for CL [17] and Broersen and
colleagues’ completeness proofs for different variants of STiT
logic [4, 3, 12] being notable exceptions.

The main construction in coalitional ability logics is of the
form [G]φ, where G is a set of agents and φ a formula, intu-

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

itively meaning that G is effective for φ, or that G can make
φ come true no matter what the other agents do. One of the
most studied extensions of basic coalitional ability logics is
adding knowledge operators of the type found in epistemic
logic [5, 16]: both individual knowledge operators Ki where
i is an agent, and different types of group knowledge opera-
tors EG, CG and DG where G is a group of agents, standing
for everybody-knows, common knowledge and distributed
knowledge, respectively. Combining coalitional ability oper-
ators and epistemic operators in general and group knowl-
edge operators in particular lets us express many potentially
interesting properties of multi-agent systems, such as [19]:

• Kiφ→ [{i}]Kjφ: i can communicate her knowledge of
φ to j

• CGφ→ [G]ψ: common knowledge inG of φ is sufficient
for G to ensure that ψ

• [G]ψ → DGφ: distributed knowledge in G of φ is nec-
essary for G to ensure that ψ

• DGφ→ [G]EGφ: G can cooperate to make distributed
knowledge explicit

In this paper we study axiomatisation and complexity
of variants of epistemic coalition logic (ECL), extensions of
coalition logic with individual knowledge and different com-
binations of common knowledge and distributed knowledge.
Coalition logic, the next-time fragment of AT L, is one of the
most studied coalitional ability logics, and this paper settles
a key problem: completeness of its standard epistemic ex-
tensions with group knowledge. We furthermore completely
characterise the computational complexity of the satisfiabil-
ity problem for these extensions.

The combinations of coalitional ability operators and epis-
temic operators in the logics we study in this paper are in-
dependent ; the original semantics of the operators is not
changed. It is well known [14, 13] that there are several
interesting variants of “ability” under imperfect knowledge;
e.g., being able to achieve something without knowing it, vs.
knowing that one is able to achieve something but not neces-
sarily knowing how, vs. knowing how one can achieve some-
thing. While the two former examples can be expressed with
combinations of operators with standard semantics ([{i}]φ∧
¬Ki[{i}]φ and Ki[{i}]φ respectively, in the case of a single
agent), in order to be able to express the latter (knowledge
of ability “de re”), operators with alternative semantics are
needed [14, 18, 11, 13]. We do not consider such operators
in the current paper. Even though ECL with standard se-
mantics cannot express knowledge of ability “de re”, it can
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express many other interesting properties (including the ex-
amples above as well as the other “variants” of ability under
imperfect knowledge).

While epistemic coalitional ability logics have been stud-
ied to a great extent, we are not aware of any published
completeness results for such logics with all epistemic op-
erators. [19] gives some axioms of AT EL, AT L extended
with epistemic operators, but does not attempt to prove
completeness1. Broersen and colleagues [3, 12] prove com-
pleteness of variants of STiT logic that include individual
knowledge operators, but not group knowledge operators,
and [12] concludes that adding group operators is an impor-
tant challenge.

The rest of the paper is organised as follows. In the next
section we first give a brief review of coalition logic, and
how it is extended with epistemic operators. We then, in
each of the three following sections, consider basic epistemic
coalition logic with individual knowledge operators extended
with common knowledge, with distributed knowledge, and
with both common and distributed knowledge, respectively.
For each of these cases we show a completeness result. The
reason that we consider each of these three systems sepa-
rately, rather than only the most expressive logic with both
common and distributed knowledge, is first, that we want
to carefully chart the results for different combinations of
operators (a common practice, also in epistemic logic), and,
second, that separate proofs for the common and distributed
knowledge cases are useful for further extensions for logics
with only these epistemic operators. In Section 6 we con-
sider the computational complexity of the three systems. We
conclude in Section 7.

2. BACKGROUND
We will define several extensions of propositional logic,

and the usual derived connectives, such as φ→ ψ for ¬φ∨ψ,
will be used. We will also define a number of axiomatic
systems S, and by `S φ we mean that the formula φ is
derivable in system S.

2.1 Coalition Logic
We give a brief overview of Coalition Logic (CL) [17]. As-

sume a set Θ of atomic propositions, and a finite set N of
agents. A coalition is a set G ⊆ N of agents. We sometimes
abuse notation and write a singleton coalition {i} as i.

The language of CL is defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Θ and G ⊆ N .
A coalition model is a tuple

M = 〈S,E, V 〉
where

• S is a non-empty set of states;

• V is a valuation function, assigning a set V (s) ⊆ Θ to
each state s ∈ S;

1In an unpublished abstract of a talk given at the LOFT
workshop in 2004 [7], the authors propose an axiomatisation
of AT EL with individual knowledge and common knowl-
edge operators. However, a completeness result or proof
has not been published (personal communication, Valentin
Goranko).

• E assigns a truly playable effectivity function (see be-
low) E(s) over N and S to each state s ∈ S.

An effectivity function [17] over N and a set of states S is a
function E that maps any coalition G ⊆ N to a set of sets of
states E(G) ⊆ 2S . An effectivity function is truly playable
[17, 6] iff it satisfies the following conditions (when X ⊆ S,
X denotes the complement S \X):

E1 ∀s ∈ S∀G ⊆ N : ∅ 6∈ E(G) (Liveness)

E2 ∀s ∈ S∀G ⊆ N : S ∈ E(G) (Safety)

E3 ∀s ∈ S∀X ⊆ S : X 6∈ E(∅)⇒ X ∈ E(N) (N -maximality)

E4 ∀s ∈ S∀G ⊆ N∀X ⊆ Y ⊆ S : X ∈ E(G) ⇒ Y ∈ E(G)
(outcome monotonicity)

E5 ∀s ∈ S∀G1, G2 ⊆ N∀X,Y ⊆ S : X ∈ E(G1) and Y ∈
E(G2) ⇒ X ∩ Y ∈ E(G1 ∪ G2), where G1 ∩ G2 = ∅
(superadditivity)

E6 Enc(∅) 6= ∅, where Enc(∅) is the non-monotonic core of
the empty coalition, namely

Enc(∅) = {X ∈ E(∅) : ¬∃Y (Y ∈ E(∅)and Y ⊂ X)}

An effectivity function that only satisfies E1-E5 is called
playable. On finite domains an effectivity function is playable
iff it is truly playable [6], because on finite domains E6 fol-
lows from E1-E5.

A CL formula is interpreted in a state s in a coalition
model M as follows:

M, s |= p iff p ∈ V (s)

M, s |= ¬φ iff M, s 6|= φ

M, s |= (φ1 ∧ φ2) iff (M, s |= φ1 and M, s |= φ2)

M, s |= [G]φ iff φM ∈ E(s)(G)

where φM = {t ∈ S : M, t |= φ}.
The axiomatisation CL of coalition logic consist of the

following axioms and rules:

Prop Substitution instances of propositional tautologies

G1 ¬[G]⊥

G2 [G]>

G3 ¬[∅]¬φ→ [N ]φ

G4 [G](φ ∧ ψ)→ [G]ψ

G5 [G1]φ ∧ [G2]ψ → [G1 ∪G2](φ ∧ ψ), if G1 ∩G2 = ∅

MP `CL φ, φ→ ψ ⇒`CL ψ

RG `CL φ↔ ψ ⇒`CL [G]φ↔ [G]ψ

CL is sound and complete wrt. all coalition models [17].
The following monotonicity rule is derivable [17], and will

be useful later:

Mon `CL φ→ ψ ⇒`CL [G]φ→ [G]ψ
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2.2 Adding Knowledge Operators
Epistemic extensions of coalition logic were first proposed

in [19]2. They are obtained by extending the language with
epistemic operators, and the models with epistemic accessi-
bility relations.

An epistemic accessibility relation for agent i over a set
of states S is a binary equivalence relation ∼i⊆ S × S. An
epistemic coalition model, henceforth often simply called a
model, is a tuple

M = 〈S,E,∼1, . . . ,∼n, V 〉
where 〈S,E, V 〉 is a coalition model and ∼i is an epistemic
accessibility relation over S for each agent i.

Epistemic operators come in two types: individual knowl-
edge operators Ki, where i is an agent, and group knowledge
operators CG and DG where G is a coalition for express-
ing common knowledge and distributed knowledge, respec-
tively. Formally, the language of CLCD (coalition logic with
common and distributed knowledge), is defined by extending
coalition logic with all of these operators:

φ ::= p | ¬φ | φ ∧ φ | [H]φ | Kiφ | CGφ | DGφ
where p ∈ Θ, i ∈ N , H ⊆ N and ∅ 6= G ⊆ N . When G
is a coalition, we write EGφ as a shorthand for

∧
i∈GKiφ

(everyone in G knows φ).
The languages of the logics CLK, CLC and CLD are the re-

strictions of this language with no CG and no DG operators,
no DG operators, and no CG operators, respectively.

The interpretation of these languages in an (epistemic
coalition) modelM is defined by adding the following clauses
to the definition for CL:

M, s |= Kiφ iff ∀t ∈ S, (s, t) ∈∼i⇒M, t |= φ

M, s |= CGφ iff ∀t ∈ S, (s, t) ∈ (
⋃
i∈G ∼i)∗ ⇒M, t |= φ

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈ (
⋂
i∈G ∼i)⇒M, t |= φ

where R∗ denotes the transitive closure of the relation R.
We use |= φ to denote the fact that φ is valid, i.e., that
M, s |= φ for all M and states s in M .

2.2.1 Some Auxiliary Definitions
The following are some auxiliary concepts that will be

useful in the following.
Intuitively, a pseudomodel is like a model except that

distributed knowledge is “not quite” the intersection of in-
dividual knowledge. Formally, a pseudomodel is a tuple
M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V ) where
(S, {∼i: i ∈ N}, E, V ) is a model and:

• RG ⊆ S×S is an equivalence relation for each G ⊆ N ,
G 6= ∅

• For any i ∈ N , Ri =∼i

• For any G, H, G ⊆ H implies that RH ⊆ RG
The interpretation of a CLCD formula in a state of a pseu-
domodel is defined as for a model, except for the case for
DG which is interpreted by the RG relation:

M, s |= DGφ iff ∀t ∈ S, (s, t) ∈ RG ⇒M, t |= φ

2In that paper for AT L; CL is a fragment of AT L.

An epistemic model is a model without the E function,
i.e., a tuple 〈S,∼1, . . . ,∼n, V 〉. An epistemic pseudomodel is
a pseudomodel without the E function, i.e., a tuple 〈S, {∼i:
i ∈ N}, {RG : ∅ 6= G ⊆ N}, V 〉 (where RG has the properties
above). When M = 〈S,E,∼1, . . . ,∼n, V 〉 is a model or M =
〈S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, E, V 〉 is a pseudomodel,
we refer to 〈S,∼1, . . . ,∼n, V 〉 as M ’s underlying epistemic
model.

Finally, a playable (pseudo)model is like a (pseudo)model,
except that E is not requried to satisfy the E6 property.

We say that a formula φ is satisfied in a (playable)
(pseudo)model M , if M, s |= φ for some state s in M .

3. COALITION LOGIC WITH COMMON
KNOWLEDGE

In this section we consider the logic CLC, extending coali-
tion logic with individual knowledge operators and common
knowledge. The axiomatisation CLC is the result of ex-
tending CL with the following standard axioms and rules
for individual and common knowledge (see, e.g., [5]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

C CGφ→ EG(φ ∧ CGφ)

RN `CLC φ⇒`CLC Kiφ

RC `CLC φ→ EG(φ ∧ ψ)⇒`CLC φ→ CGψ

It is easy to show that CLC is sound wrt. all models.

Lemma 1 (Soundness). For any CLC-formula φ, `CLC
φ⇒|= φ.

Outline of completeness proof.
In the remainder of this section we show that CLC also

is complete. Before giving all the details, we describe the
outline of the proof. We first construct a canonical playable
model Mc, using standard definitions of the canonical epis-
temic accessibility relations [9] and Pauly’s definition of the
canonical effectivity functions [17]. There are two potential
problems with Mc: first, it is not necessarily truly playable
(i.e., it is not necessarily a model), and, second, the truth
lemma does not necessarily work for the case CGφ. To take
care of these problems we filtrate Mc through an appropri-
ately defined closure of a given consistent formula, to obtain
a finite model Mf . This is a standard technique for deal-
ing with transitive closure operators such as the Kleene star
in PDL [10] and indeed common knowledge. In our case
the standard technique must be extended to deal with the
effectivity functions. For us the technique has the conve-
nient side effect that playability and true playability coin-
cides (E1-E5 implies E6) on the resulting model, since it
is finite. However, it remains to be shown that filtration
does not break the playability properties E1-E5, and that
Mf satisfies the truth lemma for the combined (epistemic-
coalitonal) language.
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Completeness proof.

Theorem 1. Any CLC-consistent formula is satisfied in
some playable model.

Proof. We define a canonical playable modelMc = (Sc, {∼ci :
i ∈ N}, Ec, V c) as follows:

Sc is the set of all maximally CLC consistent sets of for-
mulas

s ∼ci t iff {ψ : Kiψ ∈ s} = {ψ : Kiψ ∈ t}

X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that
{t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s.

X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅).

V c: p ∈ V c(s) iff p ∈ s

That ∼ci is an equivalence relation is immediate. That Ec(s)
is playable (satisfies E1-E5) can be shown in exactly the
same way as in the completeness proof for CL [17]. The
idea behind the model construction of course is that a for-
mula belongs to a state s in a model iff it is true there (the
truth lemma). However, the canonical model is in general
not guaranteed to satisfy every consistent formula in the
CLC language; the case of CG in the truth lemma does not
necessarily hold. Therefore we are going to transform Mc

by filtration into a finite model for a given CLC consistent
formula φ. Note that since φ is consistent, it will belong to
at least one s in Mc.

Let cl(φ) be the set of subformulas of φ closed under single
negations and the condition that CGψ ∈ cl(φ)⇒ KiCGψ ∈
cl(φ) for all i ∈ G. We are going to filtrate Mc through

cl(φ). The resulting model Mf = (Sf , {∼fi : i ∈ N}, Ef , V f )
is constructed as follows:

Sf is {[s]cl(φ) : s ∈ Sc} where [s]cl(φ) = s ∩ cl(φ). We will
omit the subscript cl(φ) in what follows for readability.

[s] ∼fi [t] iff {ψ : Kiψ ∈ [s]} = {ψ : Kiψ ∈ [t]}

V f (s) = {p : p ∈ [s]}. Again we will omit the subscript for
readability.

X ∈ Ef ([s])(G) iff {s′ : φX ∈ s′} ∈ Ec(s)(G) where φX =
∨[t]∈Xφ[t] and φ[t] is a conjunction of all formulas in
[t].

We now prove by induction on the size of θ that for every
θ ∈ cl(φ), Mf , [s] |= θ iff θ ∈ [s].

case θ = p trivial

case booleans trivial

case θ = Kiψ assume Mf , [s] 6|= Kiψ. The latter means

there is a [s′] such that [s] ∼fi [s′] and Mf , [s′] 6|=
ψ. By the inductive hypothesis ψ 6∈ [s′]. Since [s′]
is deductively closed wrt cl(φ) and Kiψ ∈ cl(φ), also

Kiψ 6∈ [s′]. [s] ∼fi [s′] means that [s] and [s′] contain
the same Ki formulas from cl(φ), hence Kiψ 6∈ [s].

Assume Mf , [s] |= Kiψ. Then for all [s′] such that

[s] ∼fi [s′], Mf , [s′] |= ψ. This means by the IH that

ψ ∈ [s′] for all [s′] ∼fi [s]. Assume by contradiction
that Kiψ 6∈ [s]. Then φ[s], where φ[s] is the conjunc-
tion of all formulas in [s], is consistent with ¬Kiψ. If

we write 〈Ki〉 for the dual of the Ki modality, this is
equivalent to: φ[s] ∧ 〈Ki〉¬ψ is consistent. By forcing
choices,

φ[s] ∧ 〈Ki〉
∨

¬ψ∈[t]
φ[t]

is consistent. By the distributivity of 〈Ki〉 over ∨,
∨

¬ψ∈[t]
(φ[s] ∧ 〈Ki〉φ[t])

is consistent. So for some [t] with ¬ψ ∈ [t], φ[s] ∧
〈Ki〉φ[t] is consistent. We claim that [s] ∼fi [t]. If this
is the case, we have a contradiction, since we assumed
that ψ ∈ [s′] for all [s′] ∼fi [s].

Proof of the claim: if φ[s] ∧ 〈Ki〉φ[t] is consistent, then

[s] ∼fi [t]. Suppose not [s] ∼fi [t], that is there is a
formula χ such that Kiχ ∈ [s] and ¬Kiχ ∈ [t] or vice
versa. Then we have Kiχ ∧ φ[s] ∧ 〈Ki〉(¬Kiχ ∧ φ[t])
is consistent, but since Ki is an S5 modality, this is
impossible. Same for the case when ¬Kiχ ∈ [s] and
Kiχ ∈ [t].

case θ = [G]ψ

Mf , [s] |= [G]ψ iff ψM
f ∈ Ef ([s])(G) iff {s′ : (∨

[t]∈ψMf φ[t]) ∈
s′} ∈ Ec(s)(G) iff (by the IH) {s′ : (∨ψ∈[t]φ[t]) ∈
s′} ∈ Ec(s)(G) iff(*) {s′ : ψ ∈ s′} ∈ Ec(s)(G) iff(**)
[G]ψ ∈ s iff (since [G]ψ ∈ cl(φ)) [G]ψ ∈ [s].

Proof of (*): assume Sf contains n+k states, [t1], . . . , [tn]
contain ψ and [s1], . . . , [sk] contain ¬ψ. Clearly, φ[t1]∨
. . . ∨ φ[tn] ∨ φ[s1] . . . ∨ φ[sk] is provably equivalent to
>. Consider ∨ψ∈[t]φ[t]. It is provably equivalent to
(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn]). Since for every [si] such
that ¬ψ ∈ [si], (ψ ∧ φ[si]) is provably equivalent to ⊥,

(ψ ∧ φ[t1]) ∨ . . . ∨ (ψ ∧ φ[tn])

is provably equivalent to

(ψ∧φ[t1])∨ . . .∨(ψ∧φ[tn])∨(ψ∧φ[s1])∨ . . .∨(ψ∧φ[sk])

which in turn is provably equivalent to

ψ ∧ (φ[t1] ∨ . . . ∨ φ[sk])

which in turn is equivalent to ψ ∧> hence to ψ. So in
Mc, {s′ : (∨ψ∈[t]φ[t]) ∈ s′} = {s′ : ψ ∈ s′}.
Proof of (**): since we defined X ∈ Ec(s)(N) to hold
iff Sc \X 6∈ Ec(s)(∅), it suffices to show the case that
G 6= N . The direction to the left is immediate: if
[G]ψ ∈ s then {s′ ∈ Sc : ψ ∈ s′} ∈ Ec(s)(G) by
definition. For the other direction assume that {s′ ∈
Sc : ψ ∈ s′} ∈ Ec(s)(G), i.e., there is some γ such that
{s′ ∈ Sc : γ ∈ s′} ⊆ {s′ ∈ Sc : ψ ∈ s′} and [G]γ ∈ s. It
is easy to see that {s′ ∈ Sc : γ ∈ s′} ⊆ {s′ ∈ Sc : ψ ∈
s′} implies that ` γ → ψ, and by the monotonicity
rule it follows that [G]ψ ∈ s.

case θ = CGψ The proof is similar to in [20]. First we show
that in Mf , if CGψ ∈ cl(φ), then CGψ ∈ [s] iff every

state on every supi∈G ∼fi path from [s] contains ψ.

Suppose CGψ ∈ [s]. The proof is by induction on
the length of the path. If the path is of 0 length,
then clearly by deductive closure and by ψ ∈ cl(φ)
we have ψ ∈ [s]. We also have CGψ ∈ [s] by the
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assumption. IH: if CGψ ∈ [s], then every state on every

∪i∈G ∼fi path of length n from [s] contains ψ and CGψ.
Inductive step: let us prove this for paths of length
n + 1. Suppose we have a path [s] ∼fi1 [s1] . . . ∼fin
[sn] ∼fin+1

[sn+1]. By the IH, ψ,CGψ ∈ [sn]. Since

sn is deductively closed and Kin+1CGψ ∈ cl(φ), we

have Kin+1CGψ ∈ [sn]. Since [sn] ∼fin+1
[sn+1] and

the definition of ∼fin+1
, CGψ ∈ [sn+1] and hence by

reflexivity ψ ∈ [sn+1].

For the other direction, suppose that every state on
every ∪i∈G ∼f path from [s] contains ψ. Prove that
CGψ ∈ [s]. Let SG,ψ be the set of all [t] such that
every state on every ∪i∈G ∼f path from [t] contains
ψ. Note that each [t] is/corresponds to a finite set of
formulas so we can write its conjunction φ[t]. Consider
a formula

χ =
∨

[t]∈SG,ψ

φ[t]

Similarly to [20] it can be proved that `CLC φ[s] → χ,
`CLC χ → ψ and `CLC χ → EGχ. And from that
follows that `CLC φ[s] → CGψ hence CGψ ∈ [s].

Now we prove that Mf , [s] |= CGψ iff CGψ ∈ [s].

CGψ ∈ [s] iff every state on every ∪i∈G ∼fi path from
[s] contains ψ iff for every [t] reachable from [s] by a

∪i∈G ∼fi path, Mf , [t] |= ψ iff Mf , [s] |= CGψ.

It is obvious that in Mf , ∼i are equivalence relations. So
what remains to be proved is that Ef satisfies E1-E6. Since
Sf is finite, it suffices to show E1-E5, which for finite sets
of states entail E6.

Proposition 1. Mf satisfies E1-E5.

Proof.

E1 Note that φ∅ is the empty disjunction, ⊥.

∅ ∈ Ef ([s])(G) iff (by definition of Ef ) {s′ : ⊥ ∈ s′} ∈
Ec(s)(G) iff ∅ ∈ Ec(s)(G). Since Ec satisfies E1, ∅ 6∈
Ef ([s])(G).

E2 Sf ∈ Ef ([s])(G) iff {s′ :
∨

[t]∈Sf ∈ s′} ∈ Ec(s)(G) iff

Sc ∈ Ec(s)(G). Since Ec satisfies E2, Sf ∈ Ef ([s])(G).

E3 Let X 6∈ Ef ([s])(∅). Then {s′ : φX ∈ s′} 6∈ Ec(s)(∅).
Note that {s′ : φX ∈ s′} is the complement of {s′ :
φX ∈ s′}, since φX = ¬φX . Since Ec satisfies E3,
this means that {s′ : φX ∈ s′} ∈ Ec(s)(N). Hence
X ∈ Ef ([s])(N).

E4 Let X ⊆ Y ⊆ Sf and X ∈ Ef ([s])(G). Clearly `CLC
φX → φY . Hence {s′ : φX ∈ s′} ⊆ {s′ : φY ∈ s′}.
Since X ∈ Ef ([s])(G), we have {s′ : φX ∈ s′} ∈
Ec(s)(G). Since Ec satisfies E4, {s′ : φY ∈ s′} ∈
Ec(s)(G) so Y ∈ Ef ([s])(G).

E5 Let X ∈ Ef ([s])(G1) and Y ∈ Ef ([s])(G2) and G1 ∩
G2 = ∅. So {s′ : φX ∈ s′} ∈ Ec(s)(G1) and {s′ :
φY ∈ s′} ∈ Ec(s)(G2) and since Ec satisfies E5, {s′ :
φX ∈ s′} ∩ {s′ : φY ∈ s′} ∈ Ec(s)(G2). Note that
{s′ : φX ∈ s′} ∩ {s′ : φY ∈ s′} = {s′ : (∨[t]∈Xφ[t]) ∈ s′
and (∨[t]∈Y φ[t]) ∈ s′} which is in turn the same as

{s′ : (∨[t]∈X∩Y φ[t]) ∈ s′}

since {s′ : (∨[t]∈X∩Y φ[t]) ∈ s′} ∈ Ec(s)(G2), X ∩ Y ∈
Ef ([s])(G1).

Corollary 1. For any CLC-formula φ, `CLC φ iff |= φ.

4. EPISTEMIC COALITION LOGIC WITH
DISTRIBUTED KNOWLEDGE

In this section we consider the logic CLD, extending coali-
tion logic with individual knowledge operators and distributed
knowledge.

The axiomatisation CLD is obtained by extending CL
with the following standard axioms and rules for individual
and distributed knowledge (see, e.g., [5]):

K Ki(φ→ ψ)→ (Kiφ→ Kiψ)

T Kiφ→ φ

4 Kiφ→ KiKiφ

5 ¬Kiφ→ Ki¬Kiφ

RN `CLD φ⇒`CLD Kiφ

DK DG(φ→ ψ)→ (DGφ→ DGψ)

DT DGφ→ φ

D4 DGφ→ DGDGφ

D5 ¬DGφ→ DG¬DGφ
D1 Kiφ↔ Diφ

D2 DGφ→ DHφ, if G ⊆ H
As usual, soundness can easily be shown.

Lemma 2 (Soundness). For any CLD-formula φ, `CLD
φ⇒|= φ.

Outline of completeness proof.
In the remainder of this section we show that CLD also

is complete. An outline of the proof is as follows. As in the
case of CLC, we start with the canonical model construc-
tion. However, rather than constructing a playable model,
we construct a playable pseudomodel Mc. The truth lemma
for the combined epistemic-coalitional language holds for
Mc, but the relations interpreting distributed knowledge are
not necessarily the intersections of the individual epistemic
accessibility relations. The idea is to transform Mc into
a proper model, which has the E1-E6 propeties, without
breaking the truth lemma. This is done in two additional
steps. First, Mc is transformed into a finite pseudomodel
Mf , exactly like in the case of CLC. The transformation
preserves satisfaction, as well as the playability properties
(and E6 follows from finiteness). Using pseudomodels that
are then transformed into proper models is a common way to
deal with intersection in general and distributed knowledge
in particular [22]. We can in fact now make directly use of
an existing completeness result and proof for epistemic logic
with distributed knowledge [5], by taking the (finite) epis-
temic pseudomodel underlying Mf and transform it into a
proper (not necessarily finite) epistemic model which is used
as the underying epistemic model of the final model M ′. It
remains to be shown that the transformation did not break
the true playability properties, nor satisfaction of formulae
in the closure.
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Completeness proof.
For a set of formulae s, let Kas = {Kaφ : Kaφ ∈ s} and

DGs = {DGφ : DGφ ∈ s}.
Definition 1 (Canonical Playable Pseudomodel).

The canonical playable pseudomodel Mc = (Sc, {∼ci : i ∈
N}, {RcG : ∅ 6= G ⊆ N}, Ec, V c) for CLD is defined as fol-
lows:

• Sc is the set of maximal consistent sets.

• s ∼ci t iff Kis = Kit

• sRGt iff DHs = DHt whenever H ⊆ G
• X ∈ Ec(s)(G) (for G 6= N) iff there exists ψ such that
{t ∈ Sc : ψ ∈ t} ⊆ X and [G]ψ ∈ s.
• X ∈ Ec(s)(N) iff Sc \X 6∈ Ec(s)(∅).

• V c(s) = {p : p ∈ s}
Lemma 3 (Pseudo Truth Lemma). Mc, s |= φ⇔ φ ∈

s.

Proof. The proof is by induction on φ. The epistemic
cases are exactly as for standard normal modal logic. The
case for coalition operators is exactly as in [17].

It is easy to check that ∼ci are equivalence relations and
E1-E5 hold for Ec.

Lemma 4 (Finite Pseudomodel). Every CLD-
consistent formula φ is satisfied in a finite pseudomodel where
E1-E6 hold.

Proof. The proof is exactly as in Theorem 1, namely the
construction of Mf , but starting with a Canonical Playable
Pseudomodel rather than Canonical Playable Model; the
definition of Mc contains the clause

ΓRG∆ iff ∀H ⊆ G{ψ : DHψ ∈ Γ} = {ψ : DHψ ∈ ∆}
We add the following condition to the closure: Diψ ∈

cl(φ) iff Kiψ ∈ cl(φ).
We define Mf to be a pseudomodel instead of a model,

by adding the clause:

[s]RfG[s′] iff ∀H ⊆ G{ψ : DHψ ∈ [s]} = {ψ : DHψ ∈ [s′]}
We show that Mf is indeed a pseudomodel:

• Rfi =∼fi : this follows from the fact that Kiφ ∈ [s] iff
Diφ ∈ [s] for any i, φ and s, which holds because of
the Kiφ → Diφ axiom and the new closure condition
above.

• G ⊆ H ⇒ RfH ⊆ RfG: this holds by definition.

We add a case for θ = DGψ to the inductive proof. This
case is proven in exactly the same way as the θ = Kiψ case:
the definitions of ∼fi and RfG are of exactly the same form

(in particular, RfG is also an S5 modality). The proof that
E1-E6 hold in the resulting pseudomodel is the same as in
the proof of Theorem 1 for Ef .

We are now going to transform the pseudomodel into a
proper model; it is a well-known technique for dealing with
distributed knowledge. In fact, we can make direct use of
a corresponding existing result for epistemic logic with dis-
tributed knowledge, and extend it with the coalition oper-
ators/effectivity functions. We here give the more general
result for the language with also common knowledge, which
will be useful later.

Theorem 2 ([5]). If Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6=
G ⊆ N}, V ) is an epistemic pseudomodel, then there is an
epistemic model M ′p = (S′, {∼′i: i ∈ N}, V ′) and a surjective
(onto) function f : S′ → S such that for every s′ ∈ S′ and
formula φ ∈ ELCD, Mp, f(s′) |= φ iff M ′p, s

′ |= φ.

Proof. This result is directly obtained from the com-
pleteness proof for ELCD sketched in [5, p. 70]. For a more
detailed proof (for a more general language), see [22, Theo-
rem 9].

Theorem 3. If a formula is satisfied in some finite pseu-
domodel, then it is satisfied in some model.

Proof. Let M = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆
N}, E, V ) be a finite pseudomodel such that M, s |= φ. Let
Mp = (S, {∼i: i ∈ N}, {RG : ∅ 6= G ⊆ N}, V ) be the epis-
temic pseudomodel underlying M , and let M ′p = (S′, {∼′i:
i ∈ N}, V ′) and f : S′ → S be as in Theorem 2. Let
f−1(X) = {s′ ∈ S′ : f(s′) ∈ X} for any set X ⊆ S. Finally,
let M ′ = (S′, {∼′i: i ∈ N}, E′, V ′) where E′ is defined as
follows:

• For G 6= N : Y ∈ E′(u)(G) ⇔ ∃X ⊆ S, (Y ⊇ f−1(X)
and X ∈ E(f(u))(G))

• for G = N : Y ∈ E′(u)(G) ⇔ Y 6∈ E′(u)(∅)

Two things must be shown: that M ′ is a proper model,
and that it satisfies φ.

Since M ′p is an epistemic model, to show that M ′ is a
model all that remains to be shown is that E′ is truly playable.
We now show that that follows from true playability of E.

E1 Note that f−1(X) = ∅ iff X = ∅.
For G 6= N , ∅ ∈ E′(u)(G) iff (by definition of E′)
∃X ⊆ S, (∅ ⊇ f−1(X)and X ∈ E(f(u))(G)) iff ∅ ∈
E(f(u))(G)) which is impossible since M satisfies E1.
Note that in particular this proves ∅ 6∈ E′(u)(∅), which
we will use in the E2 case below.

For G = N , ∅ ∈ E′(u)(G) iff S′ 6∈ E′(u)(∅) and we’ll
see that this is impossible in the E2 case below.

E2 Note that f−1(S) = S′.

For G 6= N , S′ ∈ E′(u)(G) iff (by definition of E′)
∃X ⊆ S, (S′ ⊇ f−1(X)and X ∈ E(f(u))(G)), and
by taking X = S we get that S′ ∈ E′(u)(G) holds
since S′ ⊇ f−1(S) and S ∈ E(f(u))(G). Note that in
particular this proves S′ ∈ E′(u)(∅), which we needed
in the E1 case above.

For G = N , S′ ∈ E′(u)(G) iff ∅ 6∈ E′(u)(∅) and this
was proved in the E1 case above.

E3 ∀u ∈ S′∀Y ⊆ S′ Y 6∈ E′(u)(∅)⇒ Y ∈ E′(u)(N) follows
immediately from the definition for E′(u)(N).

E4 E′ is monotonic by definition for G 6= N .

For N , assume X ⊆ Y and X ∈ E′(u)(N). Then
X 6∈ E′(u)(∅). Since we already know that E′ is
monotonic for G = ∅ and Y ⊆ X, Y 6∈ E′(u)(∅). So
Y ∈ E′(u)(N).

E5 Let u ∈ S′, f(u) = s, G1, G2 ⊆ N such thatG1∩G2 = ∅,
X ′, Y ′ ⊆ S′, X ′ ∈ E′(u)(G1) and Y ′ ∈ E′(u)(G2). We
must show that X ′ ∩ Y ′ ∈ E′(u)(G1 ∪G2). We reason
by cases for G1 and G2.
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First consider the case that G1 ∪ G2 6= N . We must
show that there is a Z such that f−1(Z) ⊆ X ′∩Y ′ and
Z ∈ E(s)(G1 ∪G2). We have that there are X,Y such
that f−1(X) ⊆ X ′ and X ∈ E(s)(G1) and f−1(Y ) ⊆
Y ′ and Y ∈ E(s)(G2). Take Z = X ∩ Y . It is easy
to see that f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ) (from the
defintion of f−1(·)), and we thus get that f−1(Z) =
f−1(X)∩ f−1(Y ) ⊆ X ′ ∩ Y ′. From X ∈ E(s)(G1) and
Y ∈ E(s)(G2) and superadditivity of E we get that
Z ∈∈ E(s)(G1 ∪G2).

Second consider the case that G1 = N or G2 = N .
Wlog. assume the former. That implies that G2 =
∅. We must show that X ′ ∩ Y ′ ∈ E′(u)(N), i.e.,
that X ′ ∩ Y ′ 6∈ E′(u)(∅). Assume otherwise, i.e., that
X ′ ∩ Y ′ ∈ E′(u)(∅), in other words that X ′ ∪ Y ′ ∈
E′(u)(∅). As G2 = ∅ we also have that Y ′ ∈ E′(u)(∅),
and by E5 for E′ for the case that G1 = G2 = ∅ 6= N
(proven above) we get that (X ′ ∪ Y ′)∩ Y ′ ∈ E′(u)(∅).
I.e., X ′ ∩Y ′ ∈ E′(u)(∅). By E4 for E′ (proven above),
we get that X ′ ∈ E′(u)(∅). But that contradicts the
fact that X ′ ∈ E(u)(G1) with G1 = N .

Finally, consider the case that G1 ∪ G2 = N and
G1 6= N and G2 6= N . We must show that X ′ ∩ Y ′ ∈
E′(u)(N), i.e., that X ′ ∩ Y ′ 6∈ E′(u)(∅), i.e., that there
does not exist a Z such that f−1(Z) ⊆ X ′ ∩ Y ′ and
Z ∈ E(s)(∅). Assume otherwise, that such a Z exists.
Let X,Y be such that

f−1(X) ⊆ X ′ and X ∈ E(s)(G1)
f−1(Y ) ⊆ Y ′ and Y ∈ E(s)(G1)

which exist becauseX ′ ∈ E′(u)(G1) and Y ′ ∈ E′(u)(G2).
From superadditivity of E we get that

X ∩ Y ∈ E(s)(N) (1)

It follows that

X ∩ Y 6∈ E(s)(∅) (2)

because otherwise ∅ = (X∩Y )∩(X ∩ Y ) ∈ E(s)(N) by
E5 for E, which contradicts E1 for E. We furthermore
have that

X ′ ⊆ f−1(X) ⊆ f−1(X)

Y ′ ⊆ f−1(Y ) ⊆ f−1(Y )
(3)

which follow immediately from the facts that f−1(X) ⊆
X ′ and f−1(Y ) ⊆ Y ′ and the definition of f−1(·). From
(3) it follows that

X ′ ∪ Y ′ ⊆ f−1(X ∪ Y ) (4)

From (4) and the assumption that Z ∈ E(s)(∅) we get
that f−1(Z) ⊆ f−1(X ∪ Y ), and it follows, by surjec-
tivity of f , that

Z ⊆ X ∩ Y (5)

By (5) and the assumption that Z ∈ E(s)(∅) we get
that X ∩ Y ∈ E(s)(∅). But this contradicts (2).

E6 We must show that E
′nc(u)(∅) 6= ∅, for any u. Let

s = f(u), and let X ∈ Enc(s)(∅) (exists because of

E6 for E). We show that f−1(X) ∈ E′nc(u)(∅). First,
we have that f−1(X) ∈ E′(u)(∅); this follows from
the fact that X ∈ E(s)(∅) and the definition of E′.
Second, assume, towards a contradiction, that there

exists a Y ⊂ f−1(X) such that Y ∈ E′(u)(∅). By the
definition of E′, this means that there is a Z such that
f−1(Z) ⊆ Y and Z ∈ E(s)(∅). Since Y ⊂ f−1(X)
and f−1(Z) ⊆ Y it follows that f−1(Z) ⊂ f−1(X). It
is easy to see (from surjectivity of f) that it follows
that Z ⊂ X, and this contradicts the assumption that
Z ∈ E(s)(∅) and X ∈ Enc(s)(∅).

In order to show thatM ′ satisfies φ, we show thatM, f(u) |=
γ iff M ′, u |= γ for any u ∈ S′ and any γ, by induction in
γ. All cases except γ = [G]ψ are exactly as in the proof of
Theorem 2.

For the case that γ = [G]ψ, the inductive hypothesis
is that for all proper subformulae χ of [G]ψ, and any v,
M, f(v) |= χ iff M ′, v |= χ. We can state this as {v : M ′, v |=
χ} = f−1(χM ), or χM

′
= f−1(χM ).

First consider the case that G 6= N . Let f(u) = s.

M ′, u |= [G]ψ iff ψM
′ ∈ E′(u)(G) iff there is an X such

that f−1(X) ⊆ ψM
′

and X ∈ E(s)(G). This holds iff
ψM ∈ E(s)(G) iff M, s |= [G]ψ. For the implication to
the left take X = ψM ; for the implication to the right ob-
serve that f−1(X) ⊆ f−1(ψM ) implies that X ⊆ ψM , and
ψM ∈ E(s)(G) follows from X ∈ E(s)(G) by outcome mono-
tonicity of E.

Second consider the case that G = N . M, s |= [N ]ψ iff

ψM ∈ E(s)(N) iff (*) ¬ψM 6∈ E(s)(∅) iff (as above) ¬ψM′ 6∈
E′(u)(∅) iff M ′, u |= [N ]ψ. (*): one direction E3, the other
direction E5 and E1.

Corollary 2. For any CLD-formula φ, `CLD φ iff |=
φ.

5. EPISTEMIC COALITION LOGIC WITH
BOTH COMMON AND DISTRIBUTED
KNOWLEDGE

In this section we consider the logic CLCD, extending
coalition logic with operators for individual knowledge, com-
mon knowledge and distributed knowledge.

The axiomatisation CLCD is obtained by extending CL
with the axioms and rules of CLC and CLD.

Lemma 5 (Soundness). For any CLCD-formula φ,
`CLCD φ⇒|= φ.

Completeness can in fact be shown in exactly the same
was as for CLD, except that there is an extra clause for
CGφ in the proof of satisfaction which is taken care of in the
same way as in the proof for CLC.

Theorem 4. Any CLCD-consistent formula is satisfied
in some finite pseudomodel.

Proof. The proof is identical to the proof of Lemma 4,
starting with the canonical playable pseudomodel, with the
addition of the inductive clause θ = CGψ as in the proof of
Theorem 1.

We can now use the same approach as in the case of CLD.

Theorem 5. If a CLCD formula is satisfied in some fi-
nite pseudomodel, it is satisfied in some model.

Proof. The proof goes exactly like the proof of Theorem
3, using Theorem 2. The definition of the model M ′ is iden-
tical to the definition in Theorem 3, as is the proof that it is
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a proper model. For the last part of the proof, i.e., showing
that M ′ satisfies φ, note that the last clause in Theorem 2
holds for epistemic logic with both distributed and common
knowledge. Thus, the proof is completed by only adding the
inductive clause for [G]φ, which is done in exactly the same
way as in Theorem 3.

Corollary 3. For any CLCD-formula φ, `CLCD φ iff
|= φ.

6. COMPUTATIONAL COMPLEXITY
The following complexity result is an easy consequence of

the known results for other logics:

Theorem 6. The satisfiability problem for CLC and for
CLCD is EXPTIME-complete.

Proof. EXPTIME-hardness follows from EXPTIME-
hardness of S5n + C ([9]). EXPTIME upper bound follows
from the upper bound for ATEL ([21]).

Theorem 7. The satisfiability problem for CLD is
PSPACE-complete.

Proof. PSPACE-hardness follows from PSPACE-
hardness of S5n [9] and also from PSPACE-hardness of CL
[17].

The PSPACE upper bound can be obtained by combining
the tableaux algorithm for S5n + D given in [9] with the
algorithm in [17] which checks the satisfiability of a finite
set of coalition logic formulas. The two algorithms need to
call each other recursively. In addition, since [9] only has the
D operator for the grand coalition, the rule for producing
witnesses for the ¬DGφ formulae has to be modified as in
the tableaux algorithm for K∪,∩ω [15].

7. CONCLUSIONS
This papers settles several hitherto unsolved problems. It

proves completeness of coalition logic extended with differ-
ent combinations of group knowledge operators. The ax-
ioms for the epistemic modalities are standard in epistemic
logic, but the completeness proofs require non-trivial com-
binations of techniques. The proofs are given in detail, and
can be used and extended in future work. The paper fur-
thermore completely characterises the computational com-
plexity of the considered logics. They are all decidable. We
can conclude that adding coalition operators to epistemic
logic comes “for free” without changing the complexity of
the satisfiability problem: the extension of epistemic logic
with distributed and common knowledge with coalition op-
erators remains EXPTIME-complete, the extension of epis-
temic logic with only distributed knowledge with coalition
operators remains PSPACE-complete.
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ABSTRACT
We investigate parameter synthesis in the context of temporal-
epistemic logic. We introduce CTLPK, a parametric extension
to the branching time temporal-epistemic logic CTLK with
free variables representing groups of agents. We give algo-
rithms for automatically synthesising the groups of agents
that make a given parametric formula satisfied. We discuss
an implementation of the technique on top of the open-source
model checker mcmas and demonstrate its attractiveness by
reporting the experimental results obtained.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Checking

General Terms
Verification

Keywords
Temporal-Epistemic Logic, Model Checking

1. INTRODUCTION
Multi-agent systems (MAS) are distributed systems in

which components, or agents, interact with one another trying
to reach private or common goals. One of the recent topics of
interest in this area is the issue of verification and validation
of MAS, i.e., how to ascertain whether a given MAS satisfies
certain specifications of interest. In this context a number of
model checkers [5, 7, 9] have been developed to verify logics
for MAS, including epistemic, deontic, and strategic logics.

Of particular interest to the community is work on auto-
mated model checking tailored to temporal-epistemic spec-
ifications. In this line specifications of MAS are defined on
temporal languages augmented with modalities to reason
about the knowledge of the agents in the system. As an
example of this, most coordination protocols require common
knowledge to be obtained within the group of agents be-
fore the protocol can be executed by the MAS [4]. Common
knowledge (and other group modalities such as distributed

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

knowledge [4]) are expressed in temporal-epistemic logic by
using indices representing the groups they refer to. Model
checkers such as mcmas [9] and mck [5] already support spec-
ifications with group operators including common knowledge
and can be used to verify such properties in a given system.

There are scenarios, however, when checking knowledge for
a specific group of agents is not sufficient. For example, in a
MAS that implements distributed diagnosis we, as specifiers,
would actually like to know which groups in the system
obtain distributed knowledge of a particular fault in the
system. Moreover, even if we have an intuition as to whether
a particular group reaches common or distributed knowledge
of a particular property, it is of interest to ascertain whether
there is a maximal or minimal group that obtains this so
that, for instance, we can minimise the number of agents
involved in a coordination protocol.

If the set of agents is finite, we can solve this problem by
repeatedly querying a model checker with all the possible
instantiations of the specification for all possible valuations.
However, if this set is large, its power set will not be of a trivial
size, resulting in a large number of checks. If the specification
of interest involves several, not necessarily equal groups, the
number of instantiations grows exponentially. In symbolic
model checking the bottleneck is normally the computation
of the set of reachable states, but if the number of formulae
to be checked is sufficiently high, the verification for the
formulae can become the most time consuming operation.

The aim of this paper is to explore an alternative, poten-
tially more efficient technique to identify (or synthesise) the
groups of agents for which a given temporal-epistemic spec-
ification holds. We call this parametric model checking for
temporal-epistemic logic due to its clear correspondence to
parametric model checking for temporal specifications [8, 13],
where temporal intervals are synthesised. Concisely, in the
approach presented the groups under synthesis are treated
as variables ranging over subsets of the set of all agents. The
model checking algorithm we put forward returns only the
subsets validating a given formula.

The rest of the paper is as follows. The syntax and seman-
tics of CTLPK is introduced in the next section. Section 3
presents the synthesis algorithms for the verification of the
parametric formulae. In Section 4 we use an experimental
implementation to demonstrate results for parameter synthe-
sis for the dining cryptographers protocol and diagnosability
properties for a commonly used network protocol. Finally, in
Section 5, we conclude.
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2. THE LOGIC CTLPK
In this section we introduce Parametric Computation Tree

Logic with Knowledge (CTLPK, for short), a branching time
temporal-epistemic logic that includes free variables as pa-
rameters for the group modalities. Intuitively, any CTLPK
formula φ represents the set of formulae that can be con-
structed from φ by instantiating the parameters in φ with
any non-empty set of agents in the group considered.

Definition 1 CTLPK syntax. Let PV be a set of proposi-
tions, Groups be a finite set of group variables, and Agents =
{1, . . . , n} be a finite set of agents. The grammar of CTLPK
in BNF is given below.

φ ::= p | ¬φ | φ ∨ φ | EXφ | EGφ | EφUψ |
Kiφ | EΓφ | DΓφ | CΓφ | KY φ | EY φ | DY φ

where p ∈ PV, i ∈ Agents, Γ ⊆ Agents, Γ 6= ∅ and Y ∈
Groups.

A formula containing at least one group variable is said to be
parametric while a formula with no group variable is called
ground. Notice that the set of the ground formulae defines
CTLK [11].

Recall that EX, EG, EU are temporal modalities, where E
stands for “there exists a path”, and X, G and U respectively
mean “at the next state”, “for all successor states” and “until”.
The epistemic modalities Ki, EΓ, DΓ, CΓ are interpreted
as follows: Kiφ stands for “agent i knows φ”; EΓ is read as
“everyone in group Γ knows φ”; andDΓφ (CΓφ) stands for“the
group Γ has distributed (common, respectively) knowledge

of φ”. Let AFφ
def
= ¬EG¬φ be a derived temporal modality.

The formula AFφ expresses: “for all paths eventually φ holds”.
As an example, consider the formula φ = AF (DY fault),

where Y is a group variable, and Agents = {a, b}. The for-
mula φ represents the set of ground formulae {AF (D{a}fault),
AF (D{b}fault), AF (D{a,b}fault)}. The parametric formula
above states that “for all paths eventually the agents in Y
will have distributed knowledge of fault”. Since φ contains
a free variable, similar to first-order logic, an interpretation
for φ in a model is an assignment υ from the variable Y to
concrete instances in 2{a,b} \ {∅}.

Given that variables in CTLPK represent groups, a natural
question to ask is“which groups satisfy the temporal-epistemic
specification φ on a given model M?”. In the following we
provide an efficient method for calculating all interpreta-
tions υ, such that all ground formulae constructed from φ by
replacing the variable Y with Γ ∈ υ(Y ) are satisfied in M .

Before we do so, we provide the semantics for CTLPK in
terms of the interpreted systems formalism [4], a standard
semantics for epistemic logic. We assume that each agent i in
Agents is defined by means of a set of local states Li, actions
Acti and a protocol Pi : Li → 2Acti . The environment is
analogously defined by Le, Acte, and Pe. The set of global
states G ⊆ L1 × · · · × Ln × Le is a subset of the Cartesian
product of the local states for the agents and the environment.
The transitions are defined locally from local states on joint
actions by considering evolution functions τi : Li ×Act1 ×
· · · ×Actn ×Acte → Li. We refer to [4] for more details.

Definition 2 Interpreted Systems. Given a set of agents
Agents, an interpreted system (or model) M is a tuple M =
(G, g0, T,∼1, . . . ,∼n) such that:

• G ⊆ L1 × · · · × Ln × Le is the set of reachable global
states for the system, where g0 ∈ G.

• The transition relation T ⊆ G×G is defined by (g, g′) ∈
T if there exists (act1, . . . , actn, acte) ∈ Acti × · · · ×
Actn ×Acte such that τi(li(g), act1, . . . , actn, acte) =
li(g
′) for all i ∈ Agents and τe(le(g), act1, . . . , actn, acte)

= le(g
′), where li(g) returns the local state of agent i

in the global state g. The actions act1, . . . , actn, acte
are all consistent with their respective protocols, i.e.,
acti ∈ Pi(li(g)) and analogously for the environment.

• For any i ∈ Agents the relation ∼i ⊆ G × G is an
epistemic accessibility relation such that g ∼i g′ iff
li(g) = li(g

′), where li(g) is as above.

• The function L : G → 2PV is an interpretation for a
set of the propositions PV.

Given a concrete group Γ of agents, we introduce three group
accessibility relations as follows:

∼EΓ =
S
i∈Γ ∼i, ∼DΓ =

T
i∈Γ ∼i, ∼CΓ =

`
∼EΓ

´+
,

where + denotes the transitive closure. These relations are
used to interpret the ground group modalities.

We now introduce the notion of a path as a sequence
π = (g0, g1, . . .) such that gi ∈ G and (gi, gi+1) ∈ T for all
i ≥ 0. We denote π(j) = gj for all j ≥ 0.

In the definition of the semantics of the CTLPK formulae,
we use a valuation of the group variables υ : Groups →
2Agents \ {∅}. The set of all the valuations of the group vari-
ables is denoted by GroupVals. Formally

GroupVals =
“

2Agents \ {∅}
”Groups

.

Now we are in the position to introduce the semantics of
CTLPK. If φ is a formula of CTLPK, then by M, g |=υ φ we
denote that φ holds in the state g of the model M given the
valuation υ. We omit the model symbol M , where this does
not lead to ambiguity.

Definition 3 CTLPK semantics. Let M be a model and
υ be a valuation of the group variables. The relation |=υ is
defined recursively as follows:

• g |=υ p iff p ∈ L(g) for p ∈ PV,

• g |=υ ¬φ iff g 6|=υ φ,

• g |=υ φ ∨ ψ iff g |=υ φ or g |=υ ψ,

• g |=υ EXφ iff there exists a path π starting at g, such
that π(1) |=υ φ,

• g |=υ EGφ iff there exists a path π starting at g, such
that π(i) |=υ φ for all i ≥ 0,

• g |=υ EψUφ iff there exists a path π starting at g, such
that π(j) |=υ φ for some j ≥ 0, and π(i) |=υ ψ for all
0 ≤ i < j,

• g |=υ Kiφ iff for all g′ ∈ G if g ∼i g′, then g′ |=υ φ,

• g |=υ ZΓφ iff for all g′ ∈ G if g ∼ZΓ g′, then g′ |=υ φ,
where Z ∈ {E,D,C},
• g |=υ KY φ iff g |=υ Kiφ, where {i} = υ(Y ),

• g |=υ ZY φ iff g |=υ Zυ(Y )φ, where Z ∈ {E,D,C}.
We say that φ holds in a model M under valuation υ (denoted
M |=υ φ) if M, g0 |=υ φ.

Note that if φ is a ground formula (i.e., a CTLK formula),
then M, g |=υ φ does not depend on the choice of υ.
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3. GROUP SYNTHESIS FOR CTLPK
Given the semantics of CTLPK, a question that arises

is, given a formula φ, how to determine all valuations υ for
the group variables in φ such that all and only the ground
instances of φ, obtained by substituting the group variables
with concrete group values, are satisfied on the given model.

Formally, given a formula φ and a model M , we define a
function fφ : G→ 2GroupVals , returning at every global state
the set of valuations for all the group variables to concrete
group values such that M, g |=υ φ iff υ ∈ fφ(g).

In the rest of this section we present the algorithm Synthφ,
a provably sound and complete procedure for constructing
fφ. The procedure is applied recursively bottom-up from
the atoms to the out-most operators and is defined induc-
tively. The correctness of the overall result follows from the
correctness of the procedure for each individual modality.

In the following examples, we only consider formulae that
contain a single group variable. We write {Y  {A1, . . . , Am}}
to represent the set of valuations {υ1, . . . , υm} s.t. υi(Y ) =
Ai, for all 1 ≤ i ≤ m.

Throughout this section we assume that the model M is
fixed.

3.1 Boolean Operations and Non-parametric
Modalities

We begin by defining the function fφ for CTLPK modalities
which do not contain group variables (i.e., the operators from
CTLK).

Atomic Propositions.
For an atomic proposition p ∈ PV, the function fp is

defined as follows:

fp(g) =

(
GroupVals if p ∈ L(g),

∅ otherwise.

For an atomic proposition, M, g |=υ p does not depend upon
υ; therefore for a state g such that p ∈ L(g), fp(g) is simply
the set of all possible group valuations.

Example 1 (Atomic Propositions). Consider the simple three
state, two-agent interpreted system model as illustrated in
Figure 1. In this model we have PV = {p, q} where L(w0) =
L(w1) = {p} and L(w2) = {q}. Dashed lines labelled with
an agent index represent the indistinguishability relation for
that agent; solid lines labelled with ‘t’ represent temporal
transitions.

w0start

p
w1

p

w2

q

1
2

1, 2 1, 2

1, 2

t
t

t

t

Figure 1: The interpreted system of Examples 1–5
and 7.

In this two-agent example with only one group variable
we have that GroupVals = {Y  {{1} , {2} , {1, 2}}}. It is

straightforward to observe that:

fp(g) =

(
{Y  {{1} , {2} , {1, 2}}} for g ∈ {w0, w1},
∅ if g = w2.

Negation.
Given fφ, to construct the function f¬φ we complement

the groups defined in fφ:

f¬φ(g) = GroupVals \ fφ(g)

As per the definition of fφ, we have that for each state
g and valuation of group variables υ ∈ GroupVals we have
M,g |=υ φ iff υ ∈ fφ(g). This is equivalent to the fact that
for each state g and valuation υ ∈ GroupVals we have that
M,g 6|=υ φ iff υ 6∈ fφ(g), which in turn is equivalent to
υ ∈ GroupVals \ fφ(g), i.e., υ ∈ f¬φ(g).

In presented algorithms we assume the existence of a sub-
routine, denoted Complement, realising the above operation,
i.e., Complement(fφ) = f¬φ.

Example 2 (Negation). Consider the model from Example 1.
After computing the complement of fp we obtain:

f¬p(g) =

(
∅ for g ∈ {w0, w1},
{Y  {{1} , {2} , {1, 2}}} if g = w2.

Disjunction.
For each φ, ψ ∈ CTLPK, we have that for each g ∈ G,

fφ∨ψ(g) = fφ(g)∪fψ(g). It can easily be seen that s |=υ φ∨ψ
iff s |=υ φ or s |=υ ψ. This is equivalent to υ ∈ fφ(s) or
υ ∈ fψ(s).

Temporal Operators.
Intuitively, a temporal transition does not alter the group

assignments in fφ that hold at a given successor. Therefore,
for EXφ we take the union of all assignments for φ from
each next state:

fEXφ(g) =
[

{g′∈G|(g,g′)∈T}
fφ(g′).

We now consider the case of EGφ. Note that fEGφ(g) =
fφ(g) ∩ fEXEGφ(g), for each g ∈ G. Therefore, in a similar
way to the non-parametric case [2, 6], fEGφ can be obtained
through a fixed-point calculation.

Similarly, for EφUφ we have that fEφUψ(g) = fψ(g) ∪
(fφ(g) ∩ fEXEφUψ(g)). Again, such a calculation can be per-
formed as a fixed-point.

Example 3 (Temporal Operators). Let us consider the formula
EXEY p that is to be evaluated at the initial state w0 of
model presented in Figure 1. Let us also assume that the
function fEY p has been correctly calculated and is as follows
(we illustrate its construction in Example 4):

• fEY p(w0) = {Y  {{1} , {2} , {1, 2}}}

• fEY p(w1) = {Y  {{1}}}

• fEY p(w2) = ∅

From the construction of EXφ (where φ = EY p) presented
previously we have that:

1109



• fEXEY p(w0) = fEY p(w1) = {Y  {{1}}}

• fEXEY p(w1) = fEY p(w1) ∪ fEY p(w2) = {Y  {{1}}}

• fEXEY p(w2) = fEY p(w0) = {Y  {{1} , {2} , {1, 2}}}

Finally, we evaluate fEXEY p at the state w0 and obtain
the single satisfiable valuation of υ = {Y  {{1}}}. Such
an assignment would correspond to the concrete formula
EXEΓp, where Γ = {1}. This formula can easily be seen to
hold at w0.

Epistemic Operators.
The set of assignments that make Kiφ hold at g is equal to

the intersection of all sets of assignments that make φ hold
at any state i-distinguishable from g. Therefore, given the
formula Kiφ ∈ CTLPK and a global state g ∈ G we have:

fKiφ(g) =
\

{g′∈G|g∼ig′}
fφ(g′).

For the operators EΓ, DΓ and CΓ we follow the same
construction, but use the relations ∼EΓ , ∼DΓ , ∼CΓ respectively.

3.2 Group Synthesis for Parametric Epistemic
Operators

We now present a methodology for synthesising group
assignments for the parametric epistemic modalities. As is
common in techniques for calculating the satisfaction of
epistemic formulae (see [12]), the following algorithms rely
on the use of the dual for the associated modality being
evaluated.

We begin by presenting the synthesis technique for the
parametric“everybody knows”modality (EY φ). As individual
knowledge is a special case of everybody knows (i.e., where
the set Γ for EΓ consists of a single agent i), we delay this
presentation until after EY φ.

Synthesis for Everybody Knows.
To calculate the parametric assignments for EY φ, we need

to define the existential group pre-image between two global
states g and g′. We denote this as Link∃Y (g, g′) and it consists
of all group valuations υ such that there exists an i ∈ υ(Y )
and g ∼i g′. Formally:

Link∃Y (g, g′) = {υ ∈ GroupVals | g ∼i g′ for some i ∈ υ(Y )}.

It is important to note that ∼i is an equivalence rela-
tion, thus from its reflexivity we have that Link∃Y (g, g) =
GroupVals and from its symmetry Link∃Y (g, g′) = Link∃Y (g′, g)
follows.

Algorithm 1 SynthE (fφ, Y )

Input: fφ ∈
`
2GroupVals

´G
Output: fEY φ ∈

`
2GroupVals

´G
1: f := Complement (fφ)
2: h := ∅
3: for all g ∈ G do
4: h(g) :=

S
g′∈G

`
Link∃Y (g, g′) ∩ f (g′)

´
5: end for
6: return Complement (h)

Lemma 4 (Correctness of SynthE).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ EY φ iff υ ∈
SynthE(fφ, Y )(g).

Proof. Using the definition of Link∃Y and the inductive
assumption on fφ, we prove correctness of SynthE (fφ, Y ). At
the end of the loop between Lines 3 and 5 in Algorithm 1,
for each global state g ∈ G, the set h(g) consists of all the
assignments υ such that there exists i ∈ υ(Y ) and there
exists g′ ∈ G where g ∼i g′ and M, g′ |=υ ¬φ.

As such, υ ∈ h(g) iff M, g |=υ EY ¬φ, where EY φ is defined
as ¬EY ¬φ. By taking the complement of h, we obtain the
set of all assignments υ, which map each global state g to a
set of valuations of group variables, such that:

M, g 6|=υ EY ¬φ (def. of complement)
⇔ M, g |=υ ¬EY ¬φ (def. of 6|=)
⇔ M, g |=υ EY φ (def. of EY ). ut

Example 4 (Everybody Knows). We now show that fEY p from
Example 3 is correctly synthesised. At the first line of Algo-
rithm 1, we take the complement of fp (i.e., f¬p) and store
it in the variable f . As such, the function held in the vari-
able f contains the assignments f(w0) = f(w1) = ∅ and
f(w2) = {Y  {{1} , {2} , {1, 2}}} (see Example 2).

We now show the construction of Link∃Y (g, g′) for all pairs
of states. These are shown below (we omit the symmetric
cases):

Link∃Y (wi, wi) = {Y  {{1} , {2} , {1, 2}}}, for i ∈ {0, 1, 2}
Link∃Y (w0, w1) = {Y  {{1} , {1, 2}}}
Link∃Y (w1, w2) = {Y  {{2} , {1, 2}}}
Link∃Y (w0, w2) = ∅

At Line 4, we use Link∃Y (g, g′) and f(g′) to construct h(g).
Therefore we need to compute Link∃Y (g, g′)∩f(g′) for all pairs
of states g, g′ ∈ {w0, w1, w2}. Notice that if g′ ∈ {w0, w1}
then f(g′) = ∅. Similarly, if g = w0 and g′ = w2 then
Link∃Y (g, g′) = ∅. This leaves only two remaining, non-empty
cases:

Link∃Y (w1, w2) ∩ f(w2) = {Y  {{2} , {1, 2}}}
Link∃Y (w2, w2) ∩ f(w2) = {Y  {{1} , {2} , {1, 2}}}

Next, at Line 4, we calculate the function h by assigning
to each h(g) the union of Link∃Y (g, g′) ∩ f(g′) for all g′ ∈
{w0, w1, w2}. The function h is therefore as follows:

• h(w0) = ∅
• h(w1) = {Y  {{2} , {1, 2}}}
• h(w2) = {Y  {{1} , {2} , {1, 2}}}

Finally, we take the complement of h to calculate the
function fEY p. The result can be seen below:

• fEY p(w0) = {Y  {{1} , {2} , {1, 2}}}
• fEY p(w1) = {Y  {{1}}}
• fEY p(w2) = ∅

These assignments mean that EY p can be satisfied at the
state w0 with any assignment to the variable Y and at the
state w1 with the assignment Y = {1}. However, there is no
substitution that makes EY p hold at w2.
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Synthesis of Individual Knowledge.
As previously stated, individual knowledge is a special case

of everybody knows, where each group assignment consists
of only a single agent. We adapt the set Link∃Y as below:

Link indv.
Y (g, g′)=

˘
υ∈GroupVals | υ(Y ) = {i} and g ∼i g′

¯
.

The set Link indv.
Y contains only those group valuations that

assign to Y a single agent. To compute fKY φ, we use Algo-
rithm SynthK ; this algorithm can be simply constructed by
substituting Link∃Y with Link indv.

Y on Line 4 of Algorithm 1.

Corollary 5 (Correctness of SynthK).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ KY φ iff υ ∈
SynthK(fφ, Y )(g).

The proof is straightforward and can easily be obtained
by replacing EY with KY in the proof of Lemma 4.

Example 5 (Individual Knowledge). We demonstrate how to
construct fKY p for the model in Example 3. The only differ-
ence between SynthK and Algorithm 1 is that we substitute
Link∃Y (g, g′) for Linkindv.

Y (g, g′). The latter consists of all
group valuations υ ∈ Link∃Y (g, g′) such that υ(Y ) is a single-
element group.

Using the values for Link∃Y (g, g′) from Example 4, and
selecting only those group assignments consisting of a single
agent, we obtain:

Link indv.
Y (w1, w2) ∩ f(w2) = {Y  {{2}}}

Link indv.
Y (w2, w2) ∩ f(w2) = {Y  {{1} , {2}}}

where Link indv.
Y (g, g′) = ∅ for the remaining cases.

Taking the union of Linkindv.
Y (g, g′)∩f(g′) for all g, g′ ∈ G,

and then complementing, we obtain the function fKY p as:

• fKY p(w0) = {Y  {{1} , {2}}}
• fKY p(w1) = {Y  {{1}}}
• fKY p(w2) = ∅

It can easily be seen that for all states g ∈ G the set
fKY p(g) consists of exactly those valuations from fEY p(g)
that assign to Y groups consisting of one agent only.

Synthesis of Distributed Knowledge.
Given two global states g, g′ ∈ G and a group Y ∈ Groups,

we define:

Link∀Y (g, g′) = {υ ∈ GroupVals | g ∼i g′ for all i ∈ υ(Y )}.
In contrast to Link∃Y (g, g′), the set Link∀Y (g, g′) consists of
all assignments υ, such that for all agents i ∈ υ(Y ), i considers
g and g′ as indistinguishable (i.e., the group Y considers g
and g′ indistinguishable).

Algorithm 2 SynthD (fφ, Y )

Input: fφ ∈
`
2GroupVals

´G
Output: fDY φ ∈

`
2GroupVals

´G
1: f := Complement (fφ)
2: h := ∅
3: for all g ∈ G do
4: h(g) :=

S
g′∈G

`
Link∀Y (g, g′) ∩ f (g′)

´
5: end for
6: return Complement (h)

Lemma 6 (Correctness of SynthD).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ DY φ iff υ ∈
SynthD(fφ, Y )(g).

Proof. We define the modality DY φ as ¬DY ¬φ; a global
state g satisfies DY φ under group valuation υ if there exists

a state g′ such that g ∼υ(Y )
D g′ and M, g |=υ φ.

At the end of Line 5 of Algorithm 2 we have that, for each
global state g ∈ G, the set h(g) consists of all assignments υ
such that there exists a global state g′ ∈ G, where for all i ∈
υ(Y ), g ∼i g′ and M, g′ |=υ ¬φ. So we have M, g |=υ DY ¬φ.

By taking the complement of h at the end of Algorithm 2,
we obtain the set of all assignments υ, which map each global
state g to a set of valuations of group variables, such that:

M, g 6|=υ DY ¬φ (def. of complement)
⇔ M, g |=υ ¬DY ¬φ (def. of 6|=)
⇔ M, g |=υ DY φ (def. of DY ).

Therefore, we have that for all g ∈ G, for all valuations
υ ∈ fDY φ(g) iff M, g |=υ DY φ.

ut

Example 6 (Distributed Knowledge). We now adapt the in-
terpreted system from Figure 1 by making all the states
indistinguishable for Agent 2 (see Figure 2). As before, we
have PV = {p, q} and the states are labelled such that
L(w0) = L(w1) = {p} and L(w2) = {q}.

w0start

p
w1

p

w2

q

1, 2
2

2

1, 2 1, 2

1, 2

t
t

t

t

Figure 2: The interpreted system of Example 6.

The introduction of new epistemic links in the model does
not change the values of either fp or f¬p. Therefore, the
variable f (i.e., f¬p) at Line 1 of Algorithm 2 is such that
f(w0) = f(w1) = ∅ and f(w2) = {Y  {{1} , {2} , {1, 2}}}.

Recall that Link∀Y (g, g′) consists of all group valuations
assigning to variable Y groups consisting solely of agents
that cannot distinguish between g and g′. We now build
Link∀Y (g, g′) for all the pairs of states. Again we omit the
symmetric cases:

Link∀Y (wi, wi) = {Y  {{1} , {2} , {1, 2}}} for all i∈{0, 1, 2}
Link∀Y (w0, w1) = {Y  {{1} , {2} , {1, 2}}}
Link∀Y (w1, w2) = Link∀Y (w0, w2) = {Y  {{2}}}
In Line 4 of Algorithm 2 for each state g we compute h(g) as
the union of sets Link∀Y (g, g′)∩f(g′) over all g′ ∈ {w0, w1, w2}.
Again, notice that if g′ ∈ {w0, w1} then Link∀Y (g, g′)∩f(g′) =
∅, thus we need to consider only the following cases:

Link∀Y (w0, w2) ∩ f(w2) = {Y  {{2}}}
Link∀Y (w1, w2) ∩ f(w2) = {Y  {{2}}}
Link∀Y (w2, w2) ∩ f(w2) = {Y  {{1} , {2} , {1, 2}}}
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The function evaluated in the loop between Lines 3–5 and
held in variable h is equal to fDY ¬p; thus after complementing
in the return statement we obtain:

• fDY p(w0) = {Y  {{1} , {1, 2}}}

• fDY p(w1) = {Y  {{1} , {1, 2}}}

• fDY p(w2) = ∅

Synthesis of Common Knowledge.
Recall from [4] that CΓφ ⇔ EΓ(φ ∧ CΓφ), for any Γ ⊆

Agents. We can use this equivalence to compute the set
of states satisfying CΓφ by reasoning through existential
pre-images of the epistemic relations for EΓ. We use the fol-
lowing algorithm, an extension of the non-parametric version
presented in [12].

The synthesis of parametric common knowledge employs
a similar observation, i.e., that CY is the fixed-point of EY .

Algorithm 3 SynthC (fφ, Y )

Input: fφ ∈
`
2GroupVals

´G
Output: fCY φ ∈

`
2GroupVals

´G
1: f := ∅
2: h := Complement (fφ)
3: while f 6= h do
4: f := h
5: for all g ∈ G do
6: h(g) :=

S
g′∈G

`
Link∃Y (g, g′) ∩ f (g′)

´
7: end for
8: end while
9: return Complement (h)

Lemma 7 (Correctness of SynthC).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ CY φ iff υ ∈
SynthC(fφ, Y )(g).

Proof. As usual, let E
0
Y φ = φ, E

i+1
Y φ = EY (E

i
Y φ) for

all i ≥ 0 and CY φ = ¬CY ¬φ. Since CY φ⇔ EY (φ ∧ CY φ),
we have that for each state g and each group valuation υ ∈
GroupVals:

M, g |=υ CY φ iff M, g |=υ

j_
i=0

E
i
Y φ for some j ≥ 0. (?)

Observe now that in Algorithm 3, prior to the execution of
the loop between Lines 3–8, the function h is equivalent to
f¬φ. Given Lemma 4 (i.e., the correctness of SynthE), after
the first iteration of this inner loop h evaluates to f¬φ∨EY ¬φ.
After the j-th iteration of the main body (Lines 3–8), the
function h evaluates to

h = f jW
i=0

E
i
Y ¬φ

.

Given that we work on finite models, h eventually reaches
a fixed-point. At that point h = f kW

j=0
E
j
Y ¬φ

, where k is the

smallest value of j in ?. Therefore we have that h = fC¬φ.
After taking the complement we have:

M, g 6|=υ CY ¬φ (def. of complement)
⇔ M, g |=υ ¬CY ¬φ (def. of 6|=)
⇔ M, g |=υ CY φ (def. of CY ).

This concludes the proof for CY φ.
ut

Example 7 (Common Knowledge). We now present how to
synthesise fCY p for the model presented in Figure 1. As
before, let PV = {p, q} and the states be labelled such that
L(w0) = L(w1) = {p} and L(w2) = {q}.

Note that in the first run of the 3–8 loop of Algorithm 3 the
result of the evaluation of the function held in h variable is
equal to the result of the evaluation in 3–5 loop of Algorithm 1.
We can therefore reuse the values for h and Link∃Y (g, g′) from
Example 4 to compute:

Link∃Y (w0, w1) ∩ f(w1) = {Y  {{1, 2}}}
Link∃Y (w0, w2) ∩ f(w2) = ∅
Link∃Y (w1, w1) ∩ f(w1) = Link∃Y (w1, w2) ∩ f(w2)
= Link∃Y (w2, w1) ∩ f(w1) = {Y  {{2} , {1, 2}}}
Link∃Y (w2, w2) ∩ f(w2) = {Y  {{1} , {2} , {1, 2}}}

Note that f is equal to h due to the substitution in Line 4
and the remaining cases are equal to Link∃Y (g, w0) ∩ f(w0),
which yields the empty set.

In the second run of the while loop we again calculate h(g)
for each state g by computing the union of all Link∃Y (g, g′)∩
f(g′) for each g′ ∈ {w0, w1, w2} (Line 6). The result is as
follows:

• h(w0) = {Y  {{1, 2}}}
• h(w1) = {Y  {{2} , {1, 2}}}
• h(w2) = {Y  {{1} , {2} , {1, 2}}}

It can be easily seen that the next run of the loop does
not change the value of h, so the fixed-point is reached and
we exit the while loop. The function held in variable h is
equal to fCY ¬p, therefore after the complement in the return
statement we obtain:

• fCY p(w0) = {Y  {{1} , {2}}}
• fCY p(w1) = {Y  {{1}}}
• fCY p(w2) = ∅

which concludes our example.

The following algorithm is presented to provide the entry
point for calculating the function fφ for given φ ∈ CTLPK
by recursively calling previously introduced subroutines.

Algorithm 4 SynthCTLPK (φ)

Input: φ ∈ CTLPK

Output: fφ ∈
`
2GroupVals

´G
1: if φ = ZY ψ then
2: return SynthZ(SynthCTLPK(ψ), Y )
3: else /* non-parametric mod. omitted for simplicity */
4: return fφ
5: end if

Theorem 8 (Group Synthesis for CTLPK).
For each model M , for all global states g ∈ G and for all
formulae φ in CTLPK, we have that M, g |=υ φ iff υ ∈ fφ(g).
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Proof. The validity of the theorem follows immediately
from the previous treatment of propositions, Boolean and
temporal operators, Lemmas 4, 6 and 7 and Corollary 5.

ut

4. EVALUATION
We have implemented the presented parametric approach

as an experimental extension to the open-source model checker
mcmas [9]. A GNU GPL licenced release is available from
http://vas.doc.ic.ac.uk/tools/mcmas_parametric/. As
mcmas is a symbolic model checker, the satisfiable group
valuations are also stored symbolically. We compare this
to a näıve approach that iteratively checks each possible
group assignment for satisfiability. Observe that for n agents
and m group variables, there are (2n − 1)m unique group
assignments.

We carry out this comparison using two benchmarks.

4.1 Dining Cryptographers
We first consider Chaum’s Dining Cryptographers proto-

col [1]; this problem has been widely studied with respect to
multi-agent systems and temporal-epistemic logic [10].

We consider the following two parametric specifications
(we write paid i to represent the proposition “diner i paid”):

• ϕDC1 = AG (paid1 → (CY (paid1)))

• ϕDC2 = AG (paid1 → (CY (paid1 ∧ ¬DZ (¬paid2))))

The first specification ϕDC1 expresses “if diner one paid,
then the group Y has common knowledge that diner one
paid”. This specification is satisfied only for the valuation
Y = {Diner 1}. The formula ϕDC2 extends the first formula
by additionally stating that “the group Y also has common
knowledge that the group Z does not have distributed knowl-
edge that diner two did not pay”. Considering only the case
in which diner one paid, this specification is satisfied when
Z = GroupVals \{Diner 1,Diner 2} (Y is as for ϕDC1). The
group Z cannot include Diner 2, because if diner one paid,
then diner two knows (individually) that he did not.

The experimental results for parameter synthesis for these
formulae over models of varying size can be seen in Table 1.
The values were collected over three runs, with a timeout of
one hour per run. The machine employed for these bench-
marks was an Intel Core 2 Duo processor 3.00 GHz, with a
6144 KiB cache, and ran 32-bit Fedora 14, kernel 2.6.35.14.
These results show that the parametric approach can, memory
permitting, perform synthesis faster than the näıve approach.
This is exemplified for 18 diners and the formula ϕDC2, where
parametric verification completed in under 11 minutes but
näıve did not finish within the hour.

For a model containing 14 diners, the construction of the
reachable state space, regardless of implementation or for-
mula, exhibited an unusually high run-time. This is reflected
in the timeout and memout results for this sized model.
We believe that this was caused by BDD reordering within
the CUDD library utilised by mcmas.

4.2 IEEE Token Ring Network
We now compare the parametric and näıve approaches

using the industry standard IEEE token ring bus network. In
the comparison that follows, we automated the injection of
faults into the model, following the approach of [3]; this allows
for the automatic analysis of fault-diagnosability properties.

We briefly summarise the scenario below; for a complete
description we refer the reader to [3].

The IEEE token ring protocol connects n nodes in a ring
topology; data moves between nodes on the network in a
clockwise fashion. Access is granted to nodes on the network
in the form of a token; this is passed from node to node.
Tokens are issued onto the network from an “active moni-
tor”. To detect faults, tokens contain a “time to live” field,
initialised to the maximum time that a token would take
to circulate the whole network and counting down to zero.
Should a token fail to circulate back to the active monitor
within the given time-frame, it is deduced that a fault has
occurred on the network.

We consider instantiations of the network where the first
node wishes to transmit a data token to the final node. Conse-
quently, data needs to pass through every single intermediate
node on the system.

Using a modified version of the fault injector from [3], we
inserted two types of non-deterministic faults: even nodes
stop sending tokens and odd nodes stop receiving tokens.
The properties verified are shown in Table 2. To exemplify:
ϕTR2 states that “there exists a future state where the group
Y has common knowledge that the group Z does not possess
common knowledge that faults have not been injected”.

Table 3 shows the comparison between the parametric and
näıve approach. These results demonstrate the benefits of
parametric verification.

5. CONCLUSIONS
We have introduced a novel parametric temporal-epistemic

logic, as well as presenting a sound and complete approach
for parameter synthesis. Using two non-trivial examples, we
have shown that a symbolic implementation of the parametric
technique can be more efficient than a brute force approach.

The results corroborate the expected: the parametric tech-
nique sacrifices memory efficiency for tractability. The current
experimental results seem favourable to the parametric ap-
proach. However, the results also demonstrate that there exist
models where the näıve technique can complete synthesis,
while the parametric approach runs out of memory.

We are interested in applying the parametric technique
to a wider range of industrial scenarios, for example, those
where the synthesised groups can be used to define cliques
of agents during the design and implementation phase.
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Table 2: Diagnosability Properties for the Token Ring Protocol

Formula Specification

ϕTR1 EF CY ¬ (
W

fault∈Faults fault injected)

ϕTR2 EF CY ¬ CZ ¬ (
W

fault∈Faults fault injected)

ϕTR3
E[(CY ¬(

W
fault∈Faults fault injected)) U

(EF EZ DV ¬(
W

fault∈Faults(fault injected ∨ fault stopped)))]

Table 3: Comparison for the Token Ring Network
Model

Formula
Group Valuations Time (s) Memory (KiB)

Nodes States Possible # SAT parametric näıve parametric näıve
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ABSTRACT
The last decade has been witness to a rapid growth of interest in
logics intended to support reasoning about the interactions between
knowledge and action. Typically, logics combining dynamic and
epistemic components contain ontic actions (which change the state
of the world, e.g., switching a light on) or epistemic actions (which
affect the information possessed by agents, e.g., making an an-
nouncement). We introduce a new logic for reasoning about the
interaction between knowledge and action, in which each agent in
a system is assumed to perceive some subset of the overall set of
Boolean variables in the system; these variables give rise to epis-
temic indistinguishability relations, in that two states are consid-
ered indistinguishable to an agent if all the variables visible to that
agent have the same value in both states. In the dynamic compo-
nent of the logic, we introduce actions r(p, i) and c(p, i): the effect
of r(p, i) is to reveal variable p to agent i; the effect of c(p, i) is to
conceal p from i. By using these dynamic operators, we can repre-
sent and reason about how the knowledge of agents changes when
parts of their environment are concealed from them, or by revealing
parts of their environment to them. Our main technical result is a
sound and complete axiomatisation for our logic.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods—Modal Logic; I.2.11 [Distributed Artificial Intel-
ligence]: Multiagent Systems

General Terms
Theory

Keywords
Modal logic, epistemic logic, dynamic epistemic logic, interpreted
systems, knowledge and change

1. INTRODUCTION
Over the past decade, there has been a rapid growth of interest in
logics intended for reasoning about the interaction between knowl-
edge and action (see, e.g., [3] for extensive references). Such Dy-
namic Epistemic Logics make it possible to investigate many dif-
ferent dimensions along which action can interact with knowledge.
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(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
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For example, one recent and very active area of research at the in-
terface of knowledge and action is the study of how communicative
utterances such as public announcements change the knowledge of
those that witness the utterance [3, 9].

Our aim in the present paper is to introduce a logic that is in-
tended for representing an aspect of the relationship between know-
ledge and action that has not hitherto been considered: how the
knowledge of agents is changed by concealing parts of their en-
vironment from them, and revealing parts of their environment to
them. In more detail, we are concerned with scenarios in which we
have a set of agents, where each agent i is associated with a set of
Boolean variables Vi, the idea being that agent i can completely and
correctly perceive the value of the variables in Vi. We refer to Vi

as the visibility set of agent i. To represent what an agent knows in
such a scenario, our logic uses conventional S5 epistemic modali-
ties Ki, where Kiϕ means that agent i knows ϕ [4]. The semantics
of epistemic modalities is defined via possible worlds, with the in-
terpretation that two states s and s′ are indistinguishable to agent i
if the variables Vi have the same value in s and s′. To model rev-
elation and concealment, our logic has dynamic modalites [7], in
which we have atomic actions of the form r(p, i) and c(p, i), mean-
ing reveal p to i and conceal p from i, respectively. The effect of
performing the action r(p, i) is that the variable p is added to i’s
visibility set; and the effect of performing the action c(p, i) is that
the variable p is removed from i’s visibility set. For example, the
following formula of our logic asserts that i doesn’t know p∧q, but
after revealing p to i, it does:

¬Ki(p ∧ q) ∧ [r(p, i)]Ki(p ∧ q).

The remainder of the paper is structured as follows. We intro-
duce the logic in the following section, beginning with an informal
overview of the language, and some example formulae and their
intended meaning. We then go on to present the formal syntax and
semantics of the logic, and consider a detailed example, showing
how the logic can be used to axiomatise properties of a multi-agent
voting scenario. We then present the main technical result of the
paper: an axiomatisation of the logic, for which we prove com-
pleteness using a type of canonical model construction. We con-
clude with some comments and issue for future work. Throughout
the paper we assume some familiarity with modal, dynamic, and
epistemic logics (see, e.g., [4, 6, 7, 2]).

2. THE LOGIC
We will begin with an informal overview of the logic, before pre-
senting the formal syntax and semantics.

2.1 Overview
The Logic of Revelation and Concealment (LRC) is a combination
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of the well-known multi-agent epistemic logic S5n [4] with a spe-
cialised dynamic logic component [7], which is intended to allow
us to reason about the effects of revealing variables to agents, and
concealing variables from them. The language of LRC is parame-
terised by the following basic sets:

• A setN = {1, . . . , n} of agents;

• A set Φ = {p, q, . . .} of Boolean variables;

• A finite set of Vis = {v1, . . . , vm} of visibility variables;

• A set A = {α, α′, . . .} of state changing actions;

• A set RC = {r(v, i), c(v, i)}, where i ∈ N , v ∈ Vis, of
revelation and concealment actions; and

• a set of variables SEES = {seesi(v) | i ∈ N , v ∈ Vis}.
The language contains the usual Boolean operators of classical logic
(∧, ∨, ¬, →, ↔). When we refer to propositional atoms or vari-
ables we mean Φ ∪ Vis ∪ SEES. Formulae over those variables
using only Boolean operators are called objective. To represent
the knowledge possessed by agents in the system, we use indexed
unary modalities Ki, where i ∈ N , so that Kiϕ is intended to mean
“agent i knows ϕ”. The semantics of epistemic modalities is based
on the interpreted systems model of knowledge [4]. Each agent
i ∈ N is associated with a subset Vi of the variables Vis, with the
idea being that the agent i is able to completely and correctly per-
ceive the values of the variables Vi, but is not able to perceive the
values of any other variables. We call Vi the visibility set of agent i.
Thus, in the terminology of interpreted systems, Vi represents the
local state of i. So, more precisely:

Kiϕ means that, given the background knowledge of
the agent and the variables Vi that he currently sees,
the agent i can infer ϕ.

Note that the fact that v ∈ Vi does not imply that i “controls” or has
“write access” to i (cf. [11, 5, 10]): it simply means that i is able
to see the value of v. Thus it could be that two different agents are
able to see some of the same variables (i.e., we might have v ∈ Vi

and v ∈ Vj for i 6= j). We require Vis to be finite for two reasons.
The first is technical and it is reflected in the use of a particular ax-
iom, (Ax37), in our axiomatic system, described later in the paper.
This axiom helps us to enforce a certain property of the canonical
model for our logic. The second reason is purely philosophical. If
the agents we are interested in modelling have bounded observa-
tional and reasoning capabilities, then they can surely observe only
finitely many features of their environment.

Within the object language, we can refer to the variables that
an agent sees by using the primitive operators seesi(v), with the
obvious meaning.

To represent actions and the effect that actions have on the sys-
tem, we use a dynamic logic component, with program modalities
[π] (“after all executions of program π. . . ”) and 〈π〉 (“after some
execution of program π. . . ”). Programs π within dynamic modal-
ities are constructed from atomic actions. Atomic actions in our
language are of two types. First, we have a setA of state changing
actions, typically denoted α, α′, . . ., which are essentially the same
as atomic actions in conventional propositional dynamic logic [7].
The effect of performing such an action is to change the state of
the system; we allow for the possibility that state changing actions
have multiple possible outcomes.

In addition to the conventional PDL-style state-changing actions
A, in LRC we have a set RC of two additional types of atomic ac-
tions, r(v, i) and c(v, i), where i ∈ N and v ∈ Vis. The action

r(v, i) is read “reveal v to i”, while c(v, i) is read “conceal v from
i”. The effect of performing r(v, i) is to add the variable v to agent
i’s visibility set, while the effect of c(v, i) is to remove v from i’s
visibility set. These two atomic programs thus directly manipulate
an agent’s local state, and since what an agent knows is determined
solely by its local state, they can also change what an agent knows.
Notice, however, that actions r(v, i) and c(v, i) do not change the
actual state of the system. In this sense, state changing actions A
and visibility actions r(v, i), c(v, i) can be understood as causing
changes to an agent’s knowledge along two different dimensions:
visibility actions r(v, i) and c(v, i) change an agent’s visibility set
but do not change the state of the system, while actions A change
the state of the system but do not change an agent’s visibility set.

Atomic actions are combined into complex programs using the
usual program constructs of dynamic logic [7]: π1;π2 means “ex-
ecute program π1 and then execute program π2” (sequence); and
π1 ∪π2 means “either execute program π1 or execute program π2”
(non-deterministic choice). LRC allows only a limited form of iter-
ation, as follows. If π is a program that does not contain an element
ofA (i.e., all sub-programs of π are built from the basic reveal and
conceal actions in RC), then π∗ means “repeatedly execute π an un-
determined number of times”. For technical reasons, (discussed in
more detail below), we choose to omit the standard dynamic logic
“test” operator, ϕ?, from the logic LRC.

Finally, and again for somewhat technical reasons, we include
within LRC a universal modality ϕ. The expression ϕ means
“in all states of the model, fixing the current visibility descriptions,
ϕ holds”.

2.2 Some Example Formulae
Let us see some examples of formulae of our logic.

p→ [r(p, i)]Kip

This formula says that, if p is true, then after revealing the variable
p to i, agent i will know that p is true. This is in fact a valid formula
of LRC: the effect of revealing a Boolean variable to an agent will
be that the agent knows the value of that Boolean variable.

[α]p→ [r(p, i);α]Kip

This formula says that if after doing α, the variable p is true, then if
we reveal p to i and then do α, then i will know that p is true. This
is in fact also a valid valid formula of LRC, for all α ∈ A.

Kir ∧ [c(p, i) ∪ c(q, i)]¬Kir

This formula says that i knows r, but if we choose to conceal either
p or q, then i will not know r.

〈r(v, i)∗〉ϕ↔ ϕ ∨ 〈r(v, i)〉ϕ
This (valid) formula says that ϕ is true after some undetermined
number of executions of the r(v, i) action if, and only if, ϕ is true
now or after at most one repetition of the action r(v, i).

Note that the following is not a well-formed formula of LRC.

[(r(v, i) ∪ (α1;α2))∗]ϕ

This is because the iteration operator “ ∗ ” is here applied to a pro-
gram that contains state changing actions, i.e., elements of A. We
impose this restriction on iteration mainly for technical reasons.
Having such formulae would greatly complicate any completness
proof for an axiomatic system for LRC, while hiding the main idea
behind some difficult technical details; moreover, as is well known,
a strong completeness proof is out of reach in this situation. Note
also that we do not have programs of the form ϕ?. This is justi-
fied by the following reasoning. We want to formulate a logic that
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π ::= α atomic state changing action
| r(v, i) reveal v to i
| c(v, i) conceal v from i
| π;π sequence
| π ∪ π non-deterministic choice
| π∗ repeat π some finite number of times

(π must contain no actionsA)
| skip do nothing

ϕ ::= > truth constant
| p propositional atoms
| seesi(v) agent i sees variable v
| ¬ϕ negation
| ϕ ∨ ϕ disjunction
| Kiϕ epistemic box modality
| [π]ϕ dynamic box modality
| ϕ universal modality for fixed visibility structure

Figure 1: Syntax of programs (π) and formulae (ϕ). Terminal
symbols are interpreted as follows: α ∈ A is an atomic state
changing action, p ∈ Φ ∪ Vis is an arbitrary Boolean variable,
v ∈ Vis is a visibility variable, and i ∈ N is an agent.

can be used for reasoning about the knowledge that can be obtained
only from directly revealing features of the environment. Since the
agents “know" the program that is being executed, performing a
test on the value of a variable that is not visible to a certain agent
can increase the agent’s knowledge. This increase, however, is not
because of a direct observation of the variable.

We define the syntax of programs π and formulae ϕ of the logic
LRC by mutual induction through the grammar in Figure 1.

2.3 Models
(The reader may benefit from reading this section together with
Example 1, below.) In what follows, we will assume the setsN , Φ,
and Vis are fixed, with each respective set playing the role described
above.

Now, as we explained earlier, every agent i ∈ N is assumed to
be able to completely and correctly see a subset Vi ⊆ Vis. That is,
agent i will know the value of the variables in Vi; if p 6∈ Vi , then
i does not necessarily know the value of p. We refer to Vi as the
visibility set for agent i, and we refer to a tuple V = (V1, . . . ,Vn),
in which we have one visibility set for each agent, as a visibility
structure. Notice that we place no requirements on visibility sets
Vi or visibility structures (V1, . . . ,Vn). It could be that Vi = Vj, for
example, or even that V1 = · · · = Vn = ∅ (although this latter case
would not be very interesting). Let V denote the set of visibility
structures.

Next, we assume a set S = {s1, . . . , sm} of states, and a standard
Kripke valuation function θ : S → 2Φ∪Vis, which gives the set of
variables θ(s) true in each state s ∈ S. Notice that θ gives a value
both for variables in Φ and variables in Vis.

For each state changing action α ∈ A, we are assumed to have
a binary relation Rα ⊆ S × S, capturing the effects of α. The
interpretation of this relation is more or less standard for dynamic
logic [7]: if (s, s′) ∈ Rα, then this means that state s′ could result
as a possible effect of performing action α in state s.

Putting these components together, a model, m, (over the sets
fixed above) is a structure

m = 〈S,V, {Rα},R3, θ〉,
where S is a state set, V ∈ V is a visibility structure, {Rα} is a
collection of accessibility relations for the state changing actions in
A, R3 is the universal relation on S, and θ is a Kripke valuation

function. LetM denote the set of models.
A pointed model is a pair (m, s), where m ∈ M is a model

and s is a state in m. Below, we will define the satisfaction of
formulae with respect to pointed models. Let P(M) be the set
of all pointed models over the set of modelsM. A configuration
f = 〈S, {Rα},R3, θ〉 abstracts away from the specific visibility
structure V . The set Mf is the set of all models over the configura-
tion f .

Where s and s′ are two states in S, we write s ∼i s′ to mean that
the states s and s′ agree on the values of variables Vi, i.e.,

s ∼i s′ iff θ(s) ∩ Vi = θ(s′) ∩ Vi.

The reader will note that the relations ∼i defined in this way are
equivalence relations, and we will later use these relations to define
a conventional (S5) interpretation for knowledge modalities, cf. [4].

2.4 Dynamic Accessibility Relations
We must now define the accessibility relations Rπ , used to give a se-
mantics to dynamic modalities [π] (cf. [6, p.87]). In Propositional
Dynamic Logic (PDL), program accessibility relations Rπ are bi-
nary relations over the set S of system states. In our logic, they are
slightly more complex: they are binary relations over the set P of
pointed models (m, s). No actions in our framework will change a
configuration: state changing actions (as the name suggests) change
a state, while revealing and concealing actions RC change the visi-
bility structure, and hence the model. We will define these relations
in three stages: first we define the relations for atomic revelation
and concealment programs r(p, i) and c(p, i), then we define the
form of accessibility relations for state changing actions, and then
finally, we define the accessibility relations for complex programs
with respect to these.

Assume m = (S,V, {Rα},R3, θ) and m′ = (S ′,V ′, {R′α},
R′3, θ′) are models and s, s′ are states such that s ∈ S and s′ ∈ S ′.
Then

((m, s), (m′, s′)) ∈ Rr(v,i) iff:

1. s′ = s,S ′ = S,R′ = R,R′3 = R3 and θ′ = θ
Revealing v to i does not change the current point, the state
set, any of the accessibility relations, or the truth of atomic
propositions.

2. V ′i = Vi ∪ {v} and for all j 6= i, V ′j = Vj

Atom v becomes visible for i after r(v, i) has been executed,
but otherwise, i’s visibility set is unchanged and the visibility
set of every other agent remains unchanged.

We define the relationsRc(v,i) in a similar way:

((m, s), (m′, s′)) ∈ Rc(v,i) iff:

1. s′ = s,S ′ = S,R′ = R,R′3 = R3 and θ′ = θ
Concealing v from i does not change the current point, the
state set, any of the accessibility relations, or the truth of
atomic propositions.

2. V ′i = Vi \ {v} and for all j 6= i, V ′j = Vj

Atom v becomes invisible for i after c(v, i) has been exe-
cuted, but otherwise, i’s visibility set is unchanged and the
visibility set of every other agent remains unchanged.

The relationRskip is the identity, i.e.,:

Rskip = {((m, s), (m, s))}.
Let Rr(p,i)∗ = (Rr(p,i))

∗ and Rc(p,i)∗ = (Rc(p,i))
∗, i.e., Rr(p,i)∗ is

the reflexive and transitive closure of the relation Rr(p,i); similarly
forRc(p,i)∗ .
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Figure 2: Three models.

EXAMPLE 1. Consider the models m,m′ and m′′ from Figure 2,
whereN = {i} and Vis = {p, q}. The three models are connected
by a r(p, i) and a c(q, i) transition, respectively. Note they are all
models over the same configuration (i.e., the only difference be-
tween the models is the visibility structure). Points in a model in
the same ∼i-equivalence class have the same ‘colour’ (in m′, the
state s′ induces the equivalence class {s′}). Since the visibility de-
scriptions are global, they are given at the top of each model. We
have the following (for all ϕ), where the reader may like to take a
peek at the definition of entailment at the end of this section:

1. (m, s) |= Kiq ∧ ¬Kip ∧ (ϕ↔ [α]Kiϕ)
The agent knows q but not p, and the action α does not
change his knowledge.

2. (m, s) |= 〈r(p, i)〉(Ki¬p ∧ [α]Kip)
After revealing p to i, the agent knows p is false, but also that
p would become true after α.

3. (m, s) |= 〈r(p, i);α; c(q, i)〉Ki[β]Ki(p↔ q)
It is possible to reveal p to i, then do α and then conceal q
from i so that afterwards, the agent knows that all executions
of β lead to states where the agent is sure that p and q are
equivalent.

Note that the and 3 operators enable us to quantify over states
that are present in a model m. We have for instance in (m, s) that

(¬seesi(p) ∧♦[α ∪ β]⊥): what an agent sees is the same in
each snapshot, and in m, there is a state where neither α nor β can
be performed.

We will now prove that the iteration operator, ∗, can in fact be
eliminated from programs in LRC. This simplifies the semantics
of the language, and greatly simplifies the completeness proof we
give later. First, we prove a proposition which shows how reveal
or conceal actions γ(v, i) can be eliminated, or moved “along” a
sequence RC-actions.

PROPOSITION 1. The following are true. Let γ(v, i), γ̂(v, i) be
either r(v, i) or c(v, i), such that γ(v, i) = r(v, i) iff γ̂(v, i) =
c(v, i).

1. Rγ(v,i)∗ = Rskip ∪Rγ(v,i);

2. Rγ(v,i) ◦ Rγ(v,i) = Rγ(v,i);

3. Rγ(v,i) ◦ Rγ̂(v,i) = Rγ̂(v,i);

4. Rr(v,i) ◦ Rr(w,k) = Rr(w,k) ◦ Rr(v,i);

5. Rc(v,i) ◦ Rc(w,k) = Rc(w,k) ◦ Rc(v,i);

6. Rr(v,i) ◦ Rc(w,k) = Rc(w,k) ◦ Rr(v,i), where i 6= k or v 6= w.

7. Rγ(v,i) ◦ Rα = Rα ◦ Rγ(v,i), where α ∈ A.

PROOF. Follows immediately from the definition of the rela-
tions Rr(v,i),Rc(v,i),Rskip.

Using the above properties, we prove that for any program built
from atomic programs in RC only, the following is true.

COROLLARY 1. Let ~αi denote a sequence of RC-programs αi1 ;
αi2 ; . . . ;αik . Let n sequences of RC-programs ~α1, ~α2, . . . , ~αn be
given, and define Σ as the set of sequences σ of RC-programs
that are made by choosing an arbitrary number of sequences from
~α1, ~α2, . . . , ~αn (each ~αi occurring at most once), and combining
them in an arbitrary order using only the operator “;”. So Σ =
{skip, ~α1, . . . , ~αn, (~α1; ~α2), . . . , (~αn; ~αn−1), (~α1; ~α2; ~α3), . . . , (~αn;
~αn−1; ~αn−2), (~α1; ~α2; . . . ; ~αn), . . . , (~αn; ~α2; . . . ; ~αn−1)}. Then

(~α1 ∪ . . . ∪ ~αn)
∗ = ∪σ∈Σσ

PROOF. The statement is best understood via an example. We
claim that if α, β ∈ RC then

(α ∪ β)∗ = skip ∪ α ∪ β ∪ (α;β) ∪ (β;α)

This follows from the fact that

(α ∪ β)∗ = skip ∪ (α ∪ β) ∪ (α ∪ β); (α ∪ β)
∪(α ∪ β); (α ∪ β); (α ∪ β) . . . .

Consider (α ∪ β); (α ∪ β); (α ∪ β). It is equivalent to

α;α;α ∪ α;α;β ∪ . . . ∪ α;β;β . . . ∪ β;β;β

Using the equivalences from Proposition 1, we see that this is actu-
ally equivalent to

α ∪ (α;β) ∪ (β;α) ∪ β.

The proof of the general statement is similar.

COROLLARY 2. Every program is equivalent to a program with-
out the operator ∗.

PROOF. This follows from Proposition 1, together with the fact
that we do not allow the star operator to be applied to programs
containing elements from A and Corollary 1.
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Given the atomic relations Rα for state changing actions andRr(p,i),
Rc(p,i) for visibility actions, we obtain the accessibility relations
Rπ for arbitrary programs π as follows. Let the composition of
arbitrary relations R1 and R2 be denoted by R1 ◦ R2. Then the ac-
cessibility relations for complex programs are defined [7]:

Rα = {((m, s), (m, s′)) | (s, s′) ∈ Rα & m ∈M}
Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪Rπ2

At last we are ready to give the formal semantics for our logic.
Assume that ϕ is a formula of our logic and that (m, s) ∈ P is
a pointed structure. Let M be the class of all models. Then we
write M, (m, s) |= ϕ to mean that ϕ is true at (satisfied in) state
s of m. SinceM is fixed, we also write (m, s) |= ϕ for this. The
satisfaction relation “|=” is inductively defined by the following
rules:

(m, s) |= >

(m, s) |= p iff p ∈ θ(s) (where p ∈ Φ);

(m, s) |= seesi(v) iff v ∈ Vi (where v ∈ Vis);

(m, s) |= ¬ϕ iff not (m, s) |= ϕ

(m, s) |= ϕ ∨ ψ iff (m, s) |= ϕ or (m, s) |= ψ

(m, s) |= Kiϕ iff ∀s′ with s ∼i s′, we have (m, s′) |= ϕ

(m, s) |= ϕ iff ∀s′ we have (m, s′) |= ϕ

(m, s) |= [π]ϕ iff ∀(m′, s′) such that ((m, s), (m′, s′)) ∈ Rπ
we have (m′, s′) |= ϕ.

We define the remaining connectives of classical logic (“⊥” –
falsum, “∧” – and, “→” – implies, “↔” – if, and only if), the dia-
mond dual Mi (“maybe”) of the epistemic modality Ki, the diamond
dual 〈π〉 of the dynamic box modality, and the diamond dual 3 of
the universal modality can be defined as abbreviations in the
expected way:

⊥ =̂ ¬>
ϕ ∧ ψ =̂ ¬(¬ϕ ∨ ¬ψ)
ϕ→ ψ =̂ (¬ϕ) ∨ ψ
ϕ↔ ψ =̂ (ϕ→ ψ) ∧ (ψ → ϕ)

Miϕ =̂ ¬Ki¬ϕ
〈π〉ϕ =̂ ¬[π]¬ϕ.
3ϕ =̂ ¬ ¬ϕ.

2.5 A Detailed Example

EXAMPLE 2. Suppose we have three members of a committee,
a, b, and c who are going to vote to elect a new committee chair.
The standing chair is c and the new chair will be chosen from the
three of them, by the three of them. Let pi

j ∈ Φ denote that agent i’s
vote is for agent j (pi

j is read as “i prefers j”’, or “i votes for j”).
We assume that votes are fair, in the sense that every agent votes
exactly for one agent:

µ :
∧

i∈N

∧

k 6=j 6=m 6=k

pi
j ↔ ¬pi

k ∧ ¬pi
m

The rule used for electing a winner is as follows: any agent will be
elected if it has a majority of the votes; if there is no majority (ev-
erybody gets one vote each), then the standing chair, c, is elected.

Given this rule, let us define abbreviations wi, denoting that i is the
winner:

wa =̂ (
∨

i,j∈N :i 6=j(pi
a ∧ pj

a))

wb =̂ (
∨

i,j∈N :i 6=j(pi
b ∧ pj

b))

wc =̂ (¬wa ∧ ¬wb)

Let ω collect these three definitions as a conjunction. Finally, we
specify who initially sees what: agents initially see only their own
vote.

σ :
∧

i,j∈N
sees(pi

j, i) ∧
∧

k 6=i,i,j,k∈N
¬sees(pk

j , i)

To express the background information in this scenario, we find
it convenient to define a common knowledge operator, C. This
is a standard construction, and we refer the reader to, e.g., [4]
for details. Formally, given the individual knowledge operators
Ki, we first define an “everyone knows” operator, E, as follows:
Eϕ=̂

∧
i∈N Kiϕ. We then define the common knowledge operator

Cϕ as the maximal fixed point solution to the expression E(ϕ ∧
Cϕ).1

Now, let the background information χ be µ ∧ ω ∧ σ. We will
assume that χ is common knowledge among {a, b, c}: all agents
know (and they know that they know, etc) that they vote for only one
candidate, what the definition of winning is, and which variables
are initially seen.

Let us consider the vote ν = pa
b ∧ pb

c ∧ pc
b, which of course is not

commonly known. We then have

(Cχ ∧ ν)→ [r(pa
b, c)]Kcwb (1)

If a’s vote is revealed to c, then c knows who the winner is (it is b).
Agents a and b do not know that c in this case knows who the

winner is, even if they know that c learns b’s vote:

(Cχ ∧ ν) 6→ (Ka[r(pa
b, c)]KaKcwb ∨ Kb[r(pa

b, c)]KbKcwb) (2)

Likewise, we have

(Cχ ∧ ν)→ [r(pb
c , a) ∪ r(pc

b, a)]Ka¬wa (3)

If a learns the vote of one of the other committee members, he
knows that he has not won the election.

Let now α be (r(pb
c , a)∪r(pc

b, a)); (c(pb
c , a)∪c(pc

b, a)) (randomly
reveal one of the variables pb

c and pc
b to a, and then conceal ran-

domly one of them). Then

(Cχ ∧ ν)→ (〈α;α〉Kapb
c ∧ 〈α;α〉¬Kapb

c) (4)

That is, there is a choice of revealing and concealing the variables
so that a finds out he is winning, and there is a choice that he is not.
This should be contrasted with the programα′ = (r(pb

c , a); c(pb
c , a))∪

(r(pc
b, a); c(pc

b, a)), for which we obtain

(Cχ ∧ ν)→ [α′;α′]¬Kapb
c (5)

(If the agent gets a random variable revealed and then concealed,
he does not learn anything).

Our example easily illustrates how agents can know atoms with-
out seeing them:

(Cχ ∧ ν)→ ¬Kc¬pa
c ∧ [r(pa

b, c)](¬sees(pa
c , c) ∧ Kc¬pa

c) (6)

In words, given the initial constraints (Cχ ∧ ν), agent c does not
know that pa

c is false. However, after pa
b is revealed to c, although he

1In the following, the C-operator does not appear in the conse-
quent of any of the example formula, and hence can be omitted: for
this example it suffices to think of it as an abbreviation of mutual
knowledge of depth three.
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still does not see pa
c , he now knows its true value! This is because

c knows that a only votes for one agent, i.e., he knows that certain
constraints between variables exist.

When building or verifying intelligent agents, one might wonder
what the benefit is of having conceal-actions, in which agents just
‘forget’ the truth value of certain atomic propositions. This makes
sense in many scenario’s where agents need at some time sufficient,
maybe sensitive information to take an appropriate decision, where
they should not ‘accumulate’ too much of this information. An
example of this might be an agent who grants users access to a
sensitive website, and the users posess an n-character password,
where for each login session, they only are required to reveal k
positions of this password (k < n). The agent deciding whether the
user is allowed access should in such cases at every login attempt
know whether the user has provided the right k characters, but when
the login session ends, it should be ensured that this information
is not remembered, since otherwise he in the end would learn the
complete password. Instead of formalising this additional scenario,
let us now show how, even in the voting setting, the possibility of
concealing can be useful.

EXAMPLE 3. Continuing with the voting example, let us intro-
duce new atoms δi (i ∈ N ) meaning that i is the declared winner
of the vote. Initially, we have

δ :
∧

i,j∈N
¬δi ∧ sees(δi, j) (7)

That is, initially nobody is the declared winner, and the fact who
is a declared winner is visible for each agent. We also assume an
action βi, which models that the chair c can declare that i is the
winner. In order for i being enabled to be declared the winner, the
pre-condition is Kcwi and the post-condition is δi.

(¬Kcwi → ¬〈βi〉>) ∧ (Kcwi → 〈βi〉δi) (8)

Before defining our procedure for declaring the winner, let rc (re-
veal to c) be short for

rc : r(pa
a, c); r(pa

b, c); r(pa
c , c); r(pb

a, c); r(pb
b, c); r(pb

c , c)

Similarly, cc is like rc, but rather than revealing a’s and b’s votes to
c, they are concealed from them. Define

γ = rc; (βa ∪ βb ∪ βc); cc

Then γ has the following properties:

1. C(χ ∧ δ)→ [γ](wi ↔ Kaδi ∧ Kbδi ∧ Kcδi)
After γ, any winner is known to be a declared winner

2. C(χ ∧ δ)→ [γ]¬(Kcpa
a ∨ Kcpa

b ∨ Kcpa
c)

That is, after every execution of γ, agent c does not know
(does not remember) a’s vote (the same is of course true for
b’s vote). It is in fact easy to see that after execution of γ, we
have ¬Kjpi

k, for any i 6= j.

3. AXIOMS
We now present an axiomatization for LRC: the main technical re-
sult of our paper is that this axiomatization is sound and complete.
We first present the axiomatization and discuss the properties the
various axioms are capturing, before describing the completeness
proof in the following subsection. The axiomatization is presented
in Tables 1 and 2. Table 1 deals with the knowledge axioms, the
axioms for and the inference rules of the logic. This is all fairly
standard: the axioms say that both Ki and are S5-operators,

Propositional Logic:
(Ax1) propositional tautologies

S5 Axioms for Knowledge:
(Ax2) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
(Ax3) Kiϕ→ ϕ
(Ax4) ¬Kiϕ→ Ki¬Kiϕ

S5 Axioms for State of Revelation:
(Ax5) (ϕ→ ψ)→ ( ϕ→ ψ)
(Ax6) ϕ→ ϕ
(Ax7) ¬ ϕ→ ¬ ϕ

Inference Rules:
(IR1) From ` ϕ→ ψ and ` ϕ infer ` ψ
(IR2) From ` ϕ infer ` Kiϕ
(IR3) From ` ϕ infer ` [π]ϕ

Table 1: Inference rules for LRC and some aixoms.

which is standard for knowledge (see e.g., [4]) and for the univer-
sal modality (see, e.g., [2]). Notice that the positive introspection
axiom, (Ki → KiKiϕ), follows from the other axioms, and similarly
for the modality.

The axioms of Table 2 relate to the dynamic component and the
interaction between our modalities. Of the dynamic logic axioms:

(Ax8) and (Ax9) say that actions conceal and reveal are determin-
istic: they lead to a unique outcome.

(Ax10) and (Ax11) say that reveal and conceal are idempotent:
repeating them has no effect.

(Ax12) and (Ax13) explain that when doing a reveal and a con-
ceal action in sequence, it is the last performed action that
determines the result.

(Ax14), (Ax15) and (Ax18) say that two actions from RC com-
mute with each other, as long as they concern different agents
or different variables.

According to (Ax16) and (Ax17), atomic actions from RC and
from A commute. Semantically, this is illustrated by Fig-
ure 2: “horizontal” and “vertical” steps can be taken in arbi-
trary order.

(Ax19)–(Ax21) are a standard set of axioms for the dynamic logic
constructs of our logic, with a direct correspondence to PDL [7,
p.173].

Finally, we have 16 interaction axioms in LRC:

(Ax22) and (Ax23) ‘generalise’ axioms (Ax16) and (Ax17), and
are again illustrated by Figure 2.

Axioms (Ax24)–(Ax27) are persistence properties of sees and
¬sees. (Ax24) and (Ax25) for instance say that the fact that
agent i sees variable v is not undone by concealing either an-
other variable from i, or concealing a variable from another
agent (Ax24), and persists through any reveal action.

(Ax28) and (Ax29) say that who sees what is a global property
in a model m (the only way to change this is to perform an
RC-action, which leads to a model m′).

(Ax30) and (Ax31) give the non-persistence of sees (it can be-
come false through an apropriate conceal action) and ¬sees
(which can become false through an appropriate reveal ac-
tion).
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Dynamic Logic Axioms:
(Ax8) 〈c(v, i)〉ϕ↔ [c(v, i)]ϕ
(Ax9) 〈r(v, i)〉ϕ↔ [r(v, i)]ϕ
(Ax10) 〈r(v, i); r(v, i)〉ϕ↔ 〈r(v, i)〉ϕ
(Ax11) 〈c(v, i); c(v, i)〉ϕ↔ 〈c(v, i)〉ϕ
(Ax12) 〈r(v, i); c(v, i)〉ϕ↔ 〈c(v, i)〉ϕ
(Ax13) 〈c(v, i); r(v, i)〉ϕ↔ 〈r(v, i)〉ϕ
(Ax14) 〈c(v, i); c(w, k)〉ϕ↔ 〈c(w, k); c(v, i)〉ϕ if C1

(Ax15) 〈r(v, i); r(w, k)〉ϕ↔ 〈r(w, k); r(v, i)〉ϕ if C1

(Ax16) 〈c(v, i)〉〈α〉ϕ↔ 〈α〉〈c(v, i)〉ϕ if C2

(Ax17) 〈r(v, i)〉〈α〉ϕ↔ 〈α〉〈r(v, i)〉ϕ if C2

(Ax18) 〈r(v, i); c(w, k)〉ϕ↔ 〈c(w, k); r(v, i)〉ϕ if C1

(Ax19) [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(Ax20) [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ
(Ax21) [π1;π2]ϕ↔ [π1][π2]ϕ

Interaction Axioms:
(Ax22) 3〈r(v, i)〉ϕ↔ 〈r(v, i)〉3ϕ
(Ax23) 3〈c(v, i)〉ϕ↔ 〈c(v, i)〉3ϕ
(Ax24) seesi(v)→ [c(w, k)]seesi(v) if C1

(Ax25) seesi(v)→ [r(w, j)]seesi(v)
(Ax26) ¬seesi(v)→ [c(w, j)]¬seesi(v)
(Ax27) ¬seesi(v)→ [r(w, k)]¬seesi(v) if C1

(Ax28) seesi(v)→ seesi(v)
(Ax29) ¬seesi(v)→ ¬seesi(v)
(Ax30) seesi(v)→ 〈c(v, i)〉¬seesi(v)
(Ax31) ¬seesi(v)→ 〈r(v, i)〉seesi(v)
(Ax32) ϕ0 → [π]ϕ if C3

(Ax33) ϕ→ [α]ϕ if C2

(Ax34) ϕ→ Kiϕ
(Ax35) seesi(v) ∧ v→ Kiv
(Ax36) seesi(v) ∧ ¬v→ Ki¬v
(Ax37)

(∧
u∈U(u ∧ seesi(u)) ∧∧v∈V(¬v ∧ seesi(v))

∧∧w∈W ¬seesi(w)
)
→

(Kiϕ→ ((
∧

u∈U u ∧∧v∈V ¬v)→ ϕ)) if C4

Table 2: An axiomatization. The condition C1 reads i 6= k or
v 6= w, condition C2 is that α ∈ A, condition C3 is ϕ0 is objec-
tive and π contains no actions from A, and, finally, C4 is that
Vis = U ∪ V ∪W.

(Ax32) says that actions from RC do not change the value of atoms
in a sate.

(Ax33) and (Ax34) explain that any action from A keeps us in m
and an agent only considers states in m possible.

(Ax35) and (Ax36) capture the basic interaction between visibil-
ity sets and knowledge: it an agent i sees a variable v, then i
correctly knows the value of v Notice that the converse impli-
cation does not hold: to see this, suppose the state set S was
a singleton; then every agent would know the value of every
variable, irrespective of whether they could see it or not.

Finally, (Ax37) splits up the visibility atoms in three sets U,V and
W. The atoms in U are all true and seen by i. The atoms in V
are false and seen by i. None of the atoms in W are seen by
i. Then, if i knows that ϕ, then ϕ must be true in every state
that agrees on the atoms in U and V . In other words, every
state (in the same m) that agrees on the atoms that i sees is
considered possible by him.

3.1 Completeness
The technical details of our completeness proof are rather involved,
and so here we will simply describe the key steps on which these
details are based. By Corollary 2, we can restrict ourselves to the
language without the operator ∗. We work with the canonical model
for our logic, which is built from maximal consistent sets (see [2]
for the relevant notions): completeness of our logic follows from
Lemma 2, below. In a nutshell, we take a consistent formula, in-
clude it in a maximal consistent set s, and in the canonical model,
where states are consistent sets, truth in the model at state s and
membership of a formula in s coincide, demonstrating that consis-
tent formulas. The fact that we have eliminated the star operator
from our language means that we do not have to introduce the ma-
chinery of the Fisher-Ladner closure that is used to deal with the
non-compactness of the full Propositional Dynamic Logic. This,
however does not mean that a completeness proof will be straight-
forward, because we have a technical problem of a different nature.
In particular, the canonical model for our logic consists of maximal
consistent sets of formulae (MCS) that are related via the canonical
relations Rc

α,R
c
3,R

c
i in the usual way. Of course, we can prove a

truth lemma with respect to this model but the model itself does not
consist of pointed models of the form (m, s) that are related in the
desired way. Therefore, this canonical model must be transformed
so that it has the desired properties.

DEFINITION 1. The canonical model for our logic is

M = 〈W,Rc
3,Rc

α,Rc
i , θ

c〉, where:

• W is the set of all maximal consistent sets of formulae;

• ΓRc
α∆ iff for all formulae ϕ: if ϕ ∈ ∆, then 〈α〉ϕ ∈ Γ;

• ΓRc
3∆ iff for all formulae ϕ: if ϕ ∈ ∆, then 3ϕ ∈ Γ;

• ΓRc
i ∆ iff for all formulae ϕ: if ϕ ∈ ∆, then Miϕ ∈ Γ;

• θc(p) = {Γ ∈ W | p ∈ Γ}.
It is a standard result in modal logic that the relations Rc

3 and Rc
i

are reflexive symmetric and transitive. In addition, the axioms gov-
erning composition and union of programs are Sahlqvist formulae
and, therefore, canonical. It is a standard exercise in modal logic to
prove that Rc

α satisfies the regularity conditions:

• Rc
α;β = Rc

α ◦ Rc
β

• Rc
α∪β = Rc

α ∪ Rc
β .

We begin the transformation of this canonical model by defining
pointed models of the form (m, s).

DEFINITION 2. For every MCS s ∈ W and allα ∈ A, mod(s) =
(m, s) = 〈S,V,Rα,R3, θ〉, where

1. S = {t ∈ W | sRc
3t};

2. Rα = Rc
α ∩ (S× S);

3. R3 = Rc
3 ∩ (S× S);

4. V = 〈V1, . . . ,Vn〉 is such that v ∈ Vi iff seesi(v) ∈ s;

5. θ(p) = θc(p) ∩ (S× S).

It follows from 1 that R3 is the universal relation on S. We
could also add an epistemic relation Ri = Rc

i ∩ (S × S) to in-
terpret knowledge: (Ax33) and (Ax34) ensure that Ri ⊆ R3 and
Rα ⊆ R3. Of course, we have that Ri and R3 are equivalence re-
lations because reflexivity, transitivity and symmetry are modally
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definable universal properties that are preserved under taking gen-
erated sub-models. We need to show that in fact this Ri relation
captures exactly the truth-definition of knowledge in models based
on the relation ∼i: in fact, (Ax37), together with the axioms that
relate knowledge with sees and are crucial here. In particu-
lar, Ax37 guarantees that within a fixed visibility structure, given a
state s, there are no states s′ for which s ∼i s′ yet agent i would not
consider them the same.

LEMMA 1 (EXISTENCE LEMMA FOR POINTED MODELS). For
all pointed models (m, s) as defined above and all t ∈ S,

3ϕ ∈ t iff there is a t1 ∈ S such that tR3t1 and ϕ ∈ t1;

Miϕ ∈ t iff ∃t1 ∈ S such that tRit1 and ϕ ∈ t1;

Rαϕ ∈ t iff ∃t1 ∈ S such that tRαt1 and ϕ ∈ t1.

PROOF. By induction on the structure of ϕ.

Having defined our pointed models. We move to defining our trans-
formed canonical model. We start with defining the following op-
eration:

DEFINITION 3. If (m, s) = 〈S,V,Rα,R3, θ〉, then

r(v, i)(m, s) = mod(s′) as defined in Definition 2, where
s′ = s \ {¬seesi(v)} ∪ {seesi(v)}
c(v, i)(m, s) = mod(s′) as defined in Definition 2, where
s′ = s \ {seesi(v)} ∪ {¬seesi(v)}

Intuitively, we form the set r(v, i)(m, s) by collecting all maximal
consistent sets that are related via the canonical relation Rc

r(v,i) to
the maximal consistent sets in S.

PROPOSITION 2. For all pointed models (m, s), r(v, i)(m, s) and
c(v, i)(m, s) are pointed models.

We now define a structure that collects all pointed models.

DEFINITION 4. M = {W,Rπ}, where

• W = {(m, s) | s ∈ W}, i.e., W consists of all pointed mod-
els for every MCS in the canonical model M as defined in
Definition 1.

• Rπ is defined inductively as follows.

1. If π is an atomic state changing action α ∈ A, then
(m, s)Rπ(m1, s1) iff m = m1 and sRπs1 in the sense of
item 2 from Definition 2.

2. If π is r(v, i), then

(m, s)Rπ(m1, s1) iff (m1, s1) = r(v, i)(m, s);

3. If π is c(v, i), then

(m, s)Rπ(m1, s1) iff (m1, s1) = c(v, i)(m, s);

4. Rα1;α2 = Rα1 ◦ Rα1 ;

5. Rα1∪α2 = Rα1 ∪ Rα1 .

Now we can prove the desired Truth lemma

LEMMA 2 (TRUTH LEMMA FOR.). For all LRC formulae ϕ:

M, (m, s) |= ϕ iff ϕ ∈ s.

Completeness then follows via a standard argument. Note that the
semantic structure M, (m, s) ‘corresponds’ to the set of all possible
pointed models.

4. CONCLUSIONS
We developed a logic LRC, that allows us to reason about the effects
of epistemic actions that reveal and conceal parts of an environment
to an agent. In that sense, our logic is a direct ‘dynamisation’ of the
interpreted systems approach to epistemic logic. Such epistemic
actions seem very natural, and we believe that several applications
of our logic are possible, for example in the area of security (LRC
might for instance model situations where a user can access a se-
cure website by only revealing part of his password). For future
work, it will be interesting to consider the possibility of revealing
and concealing actions, rather than variables, although this is likely
to require a more elaborate semantic framework than that presented
in this paper. Another natural extension would be to weaken the as-
sumption that it is publicly known who sees which variables.

One of the few papers we are aware of that deal with ontic and
epistemic actions is [12]. There, the state changing actions are as-
signments, and the epistemic actions are public announcements.
In our framework, we can model public announcements of atoms
(just reveal the value to all agents), but not directly disjunctions
of them for instance, or epistemic formulas. On the other hand,
[12] does not offer a logic for their framework: perhaps a syn-
ergy between their and our framework would lead to an interesting
and well-understood framework that mixes ontic and epistemic ac-
tions. One might also expect that our approach is related to work
on awareness, especially dynamic versions of it (cf. [1]). Although
this warrants further investigation, a main difference is that if an
agent i does not see p, we still have Ki(p ∨ ¬p) (the agent knows
that p has some truth value), whereas, if i is not aware of p, the
negation of this holds.

Interesting venues for further research are the connection with
Dynamic (Epistemic) Logic, and decidability. As shown in [8],
having a ‘universal modality’ may jeopardise decidability of a logic,
but since our universal modality is ‘restricted’ to visibility struc-
tures, the logic might well be decidable.
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ABSTRACT
We consider models of multi-player games where abilities of
players and coalitions are defined in terms of sets of out-
comes which they can effectively enforce. We extend the
well studied state effectivity models of one-step games in
two different ways. On the one hand, we develop multi-
ple state effectivity functions associated with different long-
term temporal operators. On the other hand, we define and
study coalitional path effectivity models where the outcomes
of strategic plays are infinite paths. For both extensions we
obtain representation results with respect to concrete mod-
els arising from concurrent game structures. We also apply
state and path coalitional effectivity models to provide al-
ternative, arguably more natural and elegant semantics to
the alternating-time temporal logic ATL*, and discuss their
technical and conceptual advantages.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Theory

Keywords
Games models, effectivity, strategic logic

1. INTRODUCTION
A wide variety of multi-player games can be modeled by

so called ‘multi-player game models’ a.k.a. ‘concurrent game
structures’ [9, 3] which can be seen as a generalization of ex-
tensive form games or of repeated normal form (strategic)
games. Here, we view them as general models of (qualita-
tive) multi-step games. Intuitively, such game is based on
a labelled transition system where every state is associated
with a normal form game and the transitions between states
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(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
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are labelled by tuples of actions,1 one for each player. Thus,
the outcome of playing a normal form game at a given state
is a transition to a new state, respectively to a new normal
form game. In the quantitative version of such games, the
outcome states are also associated with payoff vectors, while
in the version that we consider here, the payoffs are quali-
tative – defined by properties of the outcome states, possi-
bly expressed in a logical language. The players’ objectives
in multi-step games can simply be about reaching a desired
(’winning’) state, or they can be more involved, such as forc-
ing a desired long-term behaviour (transition path, run).

Various logics for reasoning about coalitional abilities in
multi-player games have been proposed and studied in the
last two decades – most notably, Coalition Logic (CL) [9]
and Alternating-time Temporal Logic (ATL* and its frag-
ment ATL) [3]. Coalition Logic can be seen as a logic for
reasoning about abilities of coalitions in one-step (strate-
gic) games to bring about an outcome state with desired
properties by means of single actions, while ATL* allows to
express statements about multi-step scenarios. For example,
the ATL formula 〈〈C〉〉Fϕ says that the coalition of players
(or agents) C can ensure that ϕ will become true at some
future moment, no matter what the other players do; like-
wise, 〈〈C〉〉Gϕ expresses that the coalition C can enforce ϕ
to be always the case. More generally, the ATL* formula
〈〈C〉〉γ holds true iff C has a strategy to ensure that any re-
sulting behavior of the system (i.e., any play of the game)
will satisfy the temporal property γ.

In this paper we study how multi-step games can be mod-
eled and characterized in terms of effectivity of coalitions
with respect to possible outcome states or behaviours, and
how such models can be used to provide conceptually simple
and technically elegant semantics for logics of multi-player
games such as ATL*. The paper has three main objectives:

(i) To extend the semantics for CL based on one-step
coalitional effectivity to semantics for ATL over state-
based coalitional effectivity models;

(ii) To develop the analogous notion of coalitional path ef-
fectivity representing the powers of coalitions in multi-
step games to ensure long-term behaviors, and to pro-
vide semantics for ATL* based on it;

(iii) To obtain characterizations of multi-player game mod-
els in terms of abstract state and path coalitional ef-
fectivity models, analogous to Pauly’s representation
theorem [9, 5].

1Such actions are also called ‘strategies’ in normal form
games, but we reserve the use of the term ‘strategy’ for a
global conditional plan in a multi-step scenario.
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We argue that characterizing effectivity of coalitions in
multi-step games in terms of paths (cf. points (ii) and (iii)
above) is conceptually more natural and elegant than in
terms of outcome states, in several respects. First, collective
strategies in such games generate outcome paths (plays), not
just outcome states. Second, one path effectivity function
is sufficient to define the powers of coalitions in a multi-step
game for all kinds of temporal patterns, through the stan-
dard semantics of temporal operators. This point is further
supported by the fact that path effectivity models provide
a straightforward semantics for the whole language of ATL*
(which is not definable by alternation-free fixpoint operators
on the one-step ability). Finally, we argue that path effec-
tivity can just as well be applied to variants of ATL(*) with
imperfect information, where even simple modalities do not
have fixpoint characterizations [6]. Still, also in that case,
executing a strategy ‘cuts out’ a set of possible paths, just
like in the perfect information case.

The paper is structured as follows. We begin by intro-
ducing basic notions in Section 2. In Section 3 we develop
state-based effectivity models that suffice to define seman-
tics of ATL. The models include three different effectivity
functions, one for each basic modality X,G, U . Then, in
Section 4 we develop and study effectivity models based on
paths. We show how they provide semantics to ATL*, and
identify appropriate “playability” conditions, which we use
to establish correspondences between powers of coalitions in
the abstract models and strategic abilities of coalitions in
concurrent game models. Finally, we briefly discuss how the
path-oriented view can be used to facilitate reasoning about
games with imperfect information in Section 5.

2. PRELIMINARIES
We begin by introducing some basic game-theoretic and

logical notions. In all definitions hereafter, the sets of play-
ers, game (outcome) states, and actions available to players
are assumed non-empty. Moreover, the set of players is al-
ways assumed finite.

2.1 Concurrent game models
Strategic games (a.k.a. normal form games) are basic mod-

els of non-cooperative game theory [8]. Following the tradi-
tion in the qualitative study of games we focus on abstract
game modes, where the effect of strategic interaction be-
tween players is represented by abstract outcomes from a
given set and players’ preferences are not specified.

Definition 1 (Strategic game). A strategic game is
a tuple G = (Agt, St, {Acti|i ∈ Agt}, o) consisting of a set
of players (agents) Agt, a set of outcome states St, a set of
actions (atomic strategies) Acti for each player i ∈ Agt, and
an outcome function o :

Q
i∈Agt Acti → St which associates

an outcome with every action profile.
We define coalitional strategies αC in G as tuples of indi-

vidual strategies αi for i ∈ C, i.e., ActC =
Q
i∈C Acti.

Strategic games are one-step encounters. They can be
generalized to multi-step scenarios, in which every state is
associated with a strategic game. Such games are also known
as concurrent game structures [3].

Definition 2 (Concurrent game structures).
A concurrent game structure (CGS) is a tuple

F = (Agt, St, Act, d, o)

q0
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Figure 1: Repeated matching pennies: a concurrent
game model M1.

which consists of a set of players Agt = {1, . . . , k}, a set
of states St, a set of (atomic) actions Act, a function d :
Agt × St → P(Act) that assigns a sets of actions avail-
able to players at each state, and a (deterministic) transition
function o that assigns the outcome state o(q, α1, . . . , αk) to
every starting state q and a tuple of actions 〈α1, . . . , αk〉,
αi ∈ d(i, q), that can be executed by Agt in q.

A concurrent game model (CGM) is a CGS endowed with
a valuation V : St → P(Prop) for some fixed set of atomic
propositions Prop.

Note that in a CGS all players execute their actions syn-
chronously and the combination of the actions, together with
the current state, determines the transition in the CGS.

Example 1 (Repeated matching pennies). Two ag-
ents play matching pennies repeatedly on a triangular board
in such a way that the initial state of the next game depends
on what they did before. More precisely, showing the heads
means that the player wants to push the token, and show-
ing the tails means that she wants the token to be left in the
same place. Moreover, player 1 can only push the token to
the right, while 2 can only push it to the left. The scenario
can be formalized using the CGM in Figure 1.

Strategies in multi-step games. A path in a CGS/CGM
is an infinite sequence of states that can result from sub-
sequent transitions in the structure/model. A strategy of a
player a in a CGS/CGMM is a conditional plan that spec-
ifies what a should do in each possible situation. Depend-
ing on the type of memory that we assume for the players,
a strategy can be memoryless, formally represented with a
function sa : St→ Act, such that sa(q) ∈ da(q), or a perfect
recall strategy, represented with a function sa : St+ → Act
such that sa(〈. . . , q〉) ∈ da(q), where St+ is the set of histo-
ries, i.e., finite prefixes of paths in M [3, 10]. A collective
strategy for a group of players C = {a1, ..., ar} is simply a
tuple of strategies sC = 〈sa1 , ..., sar 〉, one for each player
from C. We denote player a’s component of the collective
strategy sC by sC [a].

We define the function out(q, sC) to return the set of all
paths λ ∈ Stω that can be realised when the players in C
follow the strategy sC from state q onward. Formally, for
memoryless strategies, it can be defined as below:

out(q, sC) = {λ = q0, q1, q2... | q0 = q and for each i =
0, 1, ... there exists 〈αia1 , ..., αiak 〉 such that αia ∈ da(qi)

for every a ∈ Agt, and αia ∈ sC [a](qi) for a ∈ C, and
qi+1 = o(qi, α

i
a1 , ..., α

i
ak )}.

The definition for perfect recall strategies is analogous.
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2.2 Abstract models of coalitional effectivity
Effectivity functions have been introduced in cooperative

game theory [7] to provide an abstract representation of the
powers of coalitions to influence the outcome of the game.

Definition 3 (Effectivity functions and models).
A local effectivity function E : P(Agt) → P(P(St)) asso-
ciates a family of sets of states with each set of players.

A global effectivity function E : St×P(Agt)→ P(P(St))
assigns a local effectivity function to every state q ∈ St. We
will use the notations E(q)(C) and Eq(C) interchangeably.

Finally, a coalitional effectivity model consists of a global
effectivity function, plus a valuation of atomic propositions.

Intuitively, elements of E(C) are choices available to the
coalition C: if X ∈ E(C) then by choosing X the coalition
C can force the outcome of the game to be in X. The idea
to represent a choice (action) of a coalition by the set of
possible outcomes which can be effected by that choice was
also captured by the notion of ‘alternating transition system’
used originally to provide semantics for ATL in [2].

Definition 4 (True playability [9, 5]). A local ef-
fectivity function E is truly playable iff the following hold:

Outcome monotonicity: X ∈ E(C) and X ⊆ Y implies
Y ∈ E(C);

Liveness: ∅ /∈ E(C);

Safety: St ∈ E(C);

Superadditivity: if C ∩D = ∅, X ∈ E(C) and Y ∈ E(D),
then X ∩ Y ∈ E(C ∪D);

Agt-maximality: X 6∈ E(∅) implies X ∈ E(Agt);

Determinacy: if X ∈ E(Agt) then {x} ∈ E(Agt) for some
x ∈ X.

A global effectivity function is truly playable iff it consists
only of local functions that are truly playable.

α-Effectivity. Each strategic gameG can be canonically as-
sociated with an effectivity function, called the α-effectivity
function of G and denoted with EαG [9].

Definition 5 (α-effectivity in strategic games).
For a strategic game G, the (coalitional) α-effectivity func-
tion EαG : P(Agt) → P(P(St)) is defined as follows: X ∈
EαG(C) if and only if there exists σC such that for all σC we
have o(σC , σC) ∈ X.

Example 2. The α-effectivity for M1, q0 is: E({1, 2}) =
{{q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}};
E({1}) = E({2}) = {{q0, q1}, {q0, q2}, {q0, q1, q2}};
E(∅) = {{q0, q1, q2}}. Clearly, E is truly playable.

Theorem 1 (Representation Theorem [9, 5]). A lo-
cal effectivity function E is truly playable if and only if there
exists a strategic game G such that EαG = E.

2.3 Logical reasoning about multi-step games
The Alternating-time Temporal Logic ATL* [2, 3] is a

multimodal logic with strategic modalities 〈〈C〉〉 and tempo-
ral operators X (“at the next state”), G (“always from now
on”), and U (“until”). There are two types of formulae of
ATL*, state formulae and path formulae, respectively de-
fined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈C〉〉γ,
γ ::= ϕ | ¬γ | γ∧γ | Xγ | Gγ | γ U γ, for C ⊆ Agt, p ∈ Prop.
F (“sometime in the future”) can be defined as Fϕ ≡ >U ϕ.

Let M be a CGM, q a state in M , and λ = q0, q1, . . . a
path in M . For every i ∈ N we denote λ[i] = qi; λ[0..i] is the
prefix q0, q1, . . . , qi, and λ[i..∞] is the respective suffix of λ.

The semantics of ATL* is given by the following clauses [3]:

M, q |= p iff q ∈ V (p), for p ∈ Prop;
M, q |= ¬ϕ iff M, q 6|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈C〉〉γ iff there is a strategy sC for the players
in C such that for each path λ ∈ out(q, sC) we have
M,λ |= γ.

M,λ |= ϕ iff M,λ[0] |= ϕ;

M,λ |= ¬γ iff M,λ 6|= γ;

M,λ |= γ1 ∧ γ2 iff M,λ |= γ1 and M,λ |= γ2;

M,λ |= Xγ iff M,λ[1,∞] |= γ;

M,λ |= Gγ iff M,λ[i,∞] |= γ for every i ≥ 0; and

M,λ |= γ1 U γ2 iff there is i such that M,λ[i,∞] |= γ2 and
M,λ[j,∞] |= γ1 for all 0 ≤ j < i.

Example 3. Consider again the repeated matching pen-
nies from Example 1. No player can make sure that the token
moves to any particular position (e.g., M1, q0 |= ¬〈〈1〉〉Fpos1).
On the other hand, the player can at least make sure that the
game will avoid particular positions: M1, q0 |= 〈〈1〉〉G¬pos1.
And, if the players cooperate then they control the game com-
pletely: M1, q0 |= 〈〈1, 2〉〉Xpos0∧〈〈1, 2〉〉Xpos1∧〈〈1, 2〉〉Xpos2.

ATL and CL as fragments of ATL*. The most impor-
tant fragment of ATL* is ATL where each strategic modality
is directly followed by a single temporal operator. Thus, the
semantics of ATL can be given entirely in terms of states,
cf. [3] for details. We point out that for ATL the two no-
tions of strategy (memoryless vs. perfect recall) yield the
same semantics.

Furthermore, Coalition Logic (CL) [9] can be seen as the
fragment of ATL involving only booleans and operators 〈〈C〉〉X,
and thus it inherits the semantics of ATL on CGMs.

3. STATE EFFECTIVITY IN MULTI-STEP
GAMES

An alternative semantics of CL has been given in [9] in
terms of the effectivity models defined in section 2.2, via the
following clause, where ϕM := {s ∈ St | M, s |= ϕ}.
M, q |= 〈〈C〉〉Xϕ iff ϕM ∈ Eq(C).

It is easy to see that the CGM-based and effectivity-based
semantics of CL coincide on truly playable models.

The semantics of ATL has never been explicitly defined
in terms of abstract effectivity models. An informal outline
of such semantics has been suggested in [4], essentially by
representation of the modalities 〈〈C〉〉G and 〈〈C〉〉U as appro-
priate fixpoints of 〈〈C〉〉X. The idea was based on the result
from [3] showing that the alternation-free fragment of Alter-
nating µ-Calculus is strictly more expressive that ATL. In
this section, we actually extend state-based effectivity mod-
els to provide semantics for ATL. For that, as pointed out
earlier, a different effectivity function will be needed for each
temporal pattern.
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We note that an effectivity function for the“always”modal-
ity G was already constructed in [9]. Moreover, an effectivity
function for reachability, i.e. for the F modality, has been
presented in [1]. Our construction here differs significantly
from both approaches, and allows to cover all kinds of effec-
tivity that can be addressed in ATL.

3.1 Operations on state effectivity functions
First, we define basic operations on effectivity functions,

reflecting the meaning of these as operations on games.
Composition of effectivity functions E,F : St×P(Agt)→
P(P(St)) is the effectivity function E ◦ F where Y ∈ (E ◦
F )q(C) iff there exists a subset Z of St, such that Z ∈ Eq(C)
and Y ∈ Fz(C) for every z ∈ Z.

Union of effectivity functions E,F is the effectivity func-
tion E ∪ F where Y ∈ (E ∪ F )q(C) iff Y ∈ Eq(C) or
Y ∈ Fq(C). Intersection of effectivity functions is defined
analogously. Likewise, we define union and intersection of
any family of effectivity functions. Hereafter, we assume
that ◦ has a stronger binding power than ∪ and ∩.

Inclusion of effectivity functions is defined as follows:
E ⊆ F iff Eq(C) ⊆ Fq(C) for every q ∈ St and C ⊆ Agt.

The idle effectivity function I is defined as follows:
Iq(C) = {Y ⊆ St | q ∈ Y } for every q ∈ St and C ⊆ Agt.

Proposition 2. The following hold for any outcome mono-
tone effectivity functions E,F,G :

1. E ◦ I = I ◦ E = E.

2. If F1 ⊆ F2 then E ◦ F1 ⊆ E ◦ F2.

3. (E ∪ F ) ◦G = (E ◦G) ∪ (E ◦ F ).

4. (E ∩ F ) ◦G = (E ◦G) ∩ (E ◦ F ).

Remark 3. The identities E ◦ (F∪G) = (E◦F ) ∪ (E ◦G)
and E ◦ (F ∩G) = (E ◦ F ) ∩ (E ◦G) are not valid.

Definition 6. For any effectivity function E we define
inductively the effectivity functions E(n) and E[n] as follows:
E(0) = I, E(n+1) = I ∪ E ◦ E(n),
E[0] = I, E[n+1] = I ∩ E ◦ E[n].

Proposition 4. For every n ≥ 0 : E(n) ⊆ E(n+1) and
E[n+1] ⊆ E[n].

Proof. Routine, by induction on n.

Definition 7. The weak iteration of E is the function

E(∗) =
∞S
k=0

E(k), i.e., Y ∈ E(∗)
q (C) iff ∃n. Y ∈ E(n)

q (C).

The strong iteration of E is the function E[∗] =
∞T
k=0

E[k],

i.e., Y ∈ E[∗]
q (C) iff ∀n. Y ∈ E[n]

q (C).

Proposition 5. Unions, intersections, compositions, week
and strong iterations preserve outcome-monotonicity of ef-
fectivity functions.

Proposition 6. For any effectivity function E :

1. E(∗) is the least fixed point of the monotone operator
Fw defined by Fw(F ) = I ∪ E ◦ F.

2. E[∗] is the greatest fixed point of the monotone operator
Fq defined by Fq(F ) = I ∩ E ◦ F .

Proof. (1) First, we show by induction on k that for

every k, E(k) ⊆ I ∪ E ◦ E(∗). Indeed, E(0) = I ⊆ I ∪ E ◦
E(∗); E(k+1) = I ∪ E ◦ E(k) ⊆ I ∪ E ◦ E(∗) by the inductive
hypothesis and proposition 2. Thus, E(∗) ⊆ I ∪ E ◦ E(∗).

For the converse inclusion, let Y ∈ (I ∪ E ◦ E(∗))q(C).

If Y ∈ Iq(C), then Y ∈ E
(∗)
q by definition. Suppose Y ∈

(E ◦ E(∗))q(C). Then, there is Z ∈ Eq(C) such that for ev-

ery z ∈ Z, Y ∈ E(∗)
z(C), hence Y ∈ E

(kz)
z (C) for some

kz ≥ 0. Let m = max
z∈Z

kz. Then, by proposition 4, Y ∈
E

(m)
z (C) for every z ∈ Z. Therefore, Y ∈ (E ◦ E(m))q(C) ⊆

E
(m+1)
q (C) ⊆ E(∗)

q (C).

Thus, E(∗) is a fixed point of the operator Fw.
Now, suppose that F is such that Fw(F ) = I ∪ E ◦ F.

Then, we show by induction on k that for every k, E(k) ⊆ F.
Indeed, E(0) = I ⊆ I ∪ E ◦ F = F. Suppose E(k) ⊆ F. Then
E(k+1) = I ∪ E ◦ E(k) ⊆ I ∪ E ◦ F = F by the inductive
hypothesis and proposition 2. Thus, E(∗) ⊆ F. Therefore,
E(∗) is the least fixed point of Fw.

(2). The argument is dually analogous.

3.2 Binary effectivity functions

Definition 8. Given a set of players Agt and a set of
states St, a local binary effectivity function for Agt on St
is a mapping U : P(Agt) → P(P(St)× P(St)) associating
with each set of players a family of pairs of outcome sets.

A global binary effectivity function associates a local bi-
nary effectivity function with each state from St.

Now we define some basic (global) binary effectivity func-
tions and operations on them.

Left-idle binary effectivity function L : St × P(Agt) →
P(P(St)× P(St)) is defined by Lq(C) = {(X,Y ) | q ∈ X}
for any q ∈ St and C ⊆ Agt. Respectively, right-idle binary
effectivity function R is defined by Rq(C) = {(X,Y ) | q ∈
Y } for any q ∈ St and C ⊆ Agt.

Union of binary effectivity functions U,W : St×P(Agt)→
P(P(St)× P(St)) is the binary effectivity function U ∪W
where (X,Y ) ∈ (U ∪W )q(C) iff (X,Y ) ∈ Uq(C) or (X,Y ) ∈
Vq(C). Intersection of binary effectivity functions is defined
analogously. Right projection of U is the unary effectivity
function E such that Eq(C) = {Y | (X,Y ) ∈ Uq(C)} for
all q, C. Likewise, we define union, intersection, and right
projection of any family of binary effectivity functions.

Composition of a unary effectivity function E with a bi-
nary effectivity function U is the binary effectivity function
E◦U such that (X,Y ) ∈ (E◦U)q(C) iff there exists a subset
Z of St, such that Z ∈ Eq(C) and (X,Y ) ∈ Uz(C) for every
z ∈ Z. Inclusion of binary effectivity functions: U ⊆ W iff
Uq(C) ⊆Wq(C) for every q ∈ St and C ⊆ Agt.

Definition 9. For any unary effectivity function E we
define the binary effectivity functions E{n}, n ≥ 0, induc-
tively as follows: E{0} = R;E{n+1} = R∪ (L∩E ◦E{n}).

Then, the binary iteration of E is defined as the binary

effectivity function E{∗} =
∞S
k=0

E{k}, i.e. (X,Y ) ∈ E{∗}q (C)

iff (X,Y ) ∈ E{n}q (C) for some n.

Definition 10. A binary effectivity function U is outcome-
monotone if every Uq(C) is upwards closed, i e. (X,Y )∈ Uq(C)
and X ⊆ X ′, Y ⊆ Y ′ imply (X ′, Y ′)∈ Uq(C).
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Proposition 7. For any finite set of states St and unary
effectivity function E, E{∗} is the least fixed point of the
monotone operator Fb defined by Fb(U) = R ∪ (L ∩ E ◦ U).

Proof. Analogous to the proof of proposition 6.

Proposition 8. E(∗), E[∗] and E{∗} are outcome-mono-
tone. Moreover, E(∗) is the right projection of E{∗}.

3.3 State-based effectivity models for ATL
The semantics of ATL can now be given in terms of models

that are more abstract and technically simpler than CGM.

Definition 11. A state-based effectivity frame (SEF) for
ATL is a tuple F = 〈Agt, St,E,G,U〉, where: Agt is a
set of players, St is a set of states, E and G are outcome-
monotone effectivity functions, and U is an outcome-monotone
binary effectivity function.

A state-based effectivity model (SEM) for ATL is a SEF
plus a valuation of atomic propositions.

Definition 12. A SEF F is standard iff (1) E is truly

playable, (2) G = E[∗], and (3) U = E{∗}.
A SEM M = 〈F , V 〉 is standard if F is standard.

Now, we define truth of an ATL formula at a state of a
state-based effectivity model uniformly as follows:

M, q |= 〈〈C〉〉Xϕ iff ϕM ∈ Eq(C),

M, q |= 〈〈C〉〉Gϕ iff ϕM ∈ Gq(C),

M, q |= 〈〈C〉〉ψUϕ iff (ψM, ϕM) ∈ Uq(C).

Extending α-Effectivity to SEM. Given a CGM M =
(Agt, St, Act, d, o, V ), we construct its corresponding SEM
as follows: SEM(M) = (Agt, St,E,G,U) where Eq = E(q)αM
for all q ∈ St, G = E[∗] and U = E{∗}.

Example 4. The “always” effectivity in state q0 of the re-
peated matching pennies can be written as follows: Gq0({1, 2}) =
{{q0}, {q0, q1}, {q0, q2}, {q0, q1, q2}}, Gq0({1}) = Gq0({2}) =
{{q0, q1}, {q0, q2}, {q0, q1, q2}}, Gq0(∅) = {{q0, q1, q2}}.

The next result easily follows from Theorem 1:

Theorem 9 (Representation Theorem). A state ef-
fectivity modelM for ATL is standard iff there exists a CGM
M such that M = SEM(M).

Moreover, we observe that the ATL semantics in CGMs
and in their associated standard SEMs coincide.

Proposition 10. For every CGM M , state q in M , and
ATL formula ϕ, we have that M, q |= ϕ iff SEM(M), q |= ϕ.

Proof. Routine, by structural induction on formulae.

Corollary 11. Any ATL formula ϕ is valid (resp., sat-
isfiable) in concurrent game models iff ϕ is valid (resp., sat-
isfiable) in standard state-based effectivity models.

4. COALITIONAL PATH EFFECTIVITY
State-based effectivity models for ATL partly characterize

coalitional powers for achieving long-term objectives. How-
ever, the applicability of such models is limited by the fact
that they characterize effectivity with respect to outcome
states, while effectivity for outcome paths (i.e., plays) is

only captured when such paths are described by the spe-
cific temporal patterns definable in ATL. Thus, in particular,
state-based effectivity models are not suitable for providing
semantics of the whole ATL*.

In this section we aim at getting to the core of the notion
of effectivity in multi-step games, regardless of the temporal
pattern that defines the winning condition, by re-defining it
in terms of outcome paths, rather than states. The idea is
natural: every collective strategy of the grand coalition in
a multi-step game determines a unique path (play) through
the state space of the game. Consequently, the outcome of
following an individual or coalitional strategy in such game
is a set of paths (plays) that can result from execution of the
strategy, depending on the moves of the remaining players.
Hence, powers of players and coalitions in multi-step games
can be characterized by sets of sets of paths. We claim that
the notion of path effectivity captures adequately the mean-
ing of strategic operators in ATL(*). Moreover, it provides
correct semantics for the whole ATL*, and not only its lim-
ited fragment ATL.

4.1 Frames, models, effectivity functions

Definition 13 (Path effectivity function). Let Agt
be a set of players, and St a set of states. A path in St is
any infinite sequence of states of St. The set of all paths in
St is therefore denoted by Stω. A path effectivity function
is a mapping E : P(Agt) → P(P(Stω)) that assigns to each
coalition a non-empty family of sets of paths.

The intuition is analogous to that for state effectivity: a
set of paths X is in E(C) means that the coalition C can
choose a strategy that ensures that the game will develop
along one of the paths in X. Note that this notion refers to
global effectivity only: X ∈ E(C) can include paths starting
from different states. Local effectivity is easily extractable
from the global one. This is in line with the concept of a
strategy as a complete conditional plan: in particular, the
strategy must prescribe collective actions of the coalition
from all possible initial states of the game.

Also, we will assume that E captures the actual effectiv-
ity, i.e., it collects only the actual outcome paths of choices
available to C, and is not necessarily closed under upwards
monotonicity. We note that the outcome-monotone notion
of effectivity has a somewhat negative meaning, in the sense
that X ∈ E(C) is usually interpreted as “the coalition C
can ensure that the outcome of the game cannot be outside
X”, whereas this does not mean that every element of X is a
feasible outcome. This distinction is conceptual, rather than
technical, but it will influence our construction of effectivity
functions for concrete models. The “actuality” assumption
is necessary to specify appropriate abstract playability con-
ditions characterizing path effectivity in concrete models.

Definition 14 (Path effectivity frames/models).
A path effectivity frame (PEF) is a structure F = (Agt, St, E)
consisting of a set of players Agt, a set of states St and a
path effectivity function E on these. A path effectivity model
(PEM) expands a PEF by a valuation of the propositions
V : Prop→ P(St).

By analogy with identifying choices as sets of outcome
states in state effectivity models, we will refer to sets of
paths in a PEF as ‘choices’, with the intuition that E(C)
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defines the strategic choices of the coalition C in a PEF F
as sets of paths in F that C can enforce. However, not every
such path can be a feasible outcome in some concrete model
(i.e, a CGM), but only those that follow existing transitions
in the CGM. So, given a path effectivity frame F , we define
the set of ‘feasible’ paths in F as

PathsF =
[

C⊆Agt

[
X∈E(C)

X.

For a PEM M = (F , V ), we define PathsM = PathsF .

4.2 Path effectivity in concurrent games
Not every set of paths is a feasible choice for a coalition.

Note that the powers of players and coalitions in a game
crucially depend on their available strategies. There are dif-
ferent notions of strategy, e.g., depending on the amount of
memory they can use, so we will parameterize the new no-
tion of α-effectivity with a type (class) of strategies. Every
class of individual strategies of players gives rise to a class of
coalitional strategies obtained by freely combining the indi-
vidual strategies of the participating players.2 We say that
a class Σ of individual and coalitional strategies is feasible if
every coalition has at least one strategy in Σ. Two types of
feasible strategies are especially relevant: perfect recall and
memoryless strategies (introduced in Section 2.1). We will
refer to them with mem and nomem, respectively.

Definition 15 (Σ-effectivity). Let M be a CGM and
Σ =

S
C⊆Agt ΣC be a feasible set of coalitional strategies in

M . The Σ-effectivity function of M is defined as

EΣ
M (C) = {

[
q∈St

out(q, sC) | sC ∈ ΣC}.

Specifically, we denote by Emem
M and Enomem

M the effectivity
of coalitions respectively for perfect recall strategies and for
memoryless strategies in M . Note that EΣ

M collects only the
actual outcome paths of actual choices of coalitions in M .

Example 5. The difference between perfect recall and mem-
oryless effectivity is most easily seen in the case of the grand
coalition: Emem

M = {{λ} | λ ∈ {q0, q1, q2}ω}, but Enomem
M =

{{(qi)ω} | i ∈ {0, 1, 2}} ∪ {{qi(qj)ω}} ∪ {{(qiqj)ω}} ∪
{{qiqj(qk)ω} | i 6= j} ∪ {{qi(qjqk)ω} | i 6= j} ∪ {{(qiqjqk)ω} |
i 6= j}. That is, the players can enforce any sequence of
states when they have perfect memory, but only the “peri-
odic” ones in the memoryless case.

For a class Σ of strategies in a CGM M we denote the set
of paths feasible with respect to Σ in M by PathsΣ

M . For any
path effectivity function E we denote the set of all feasible
paths in E , i.e., appearing in any choice of E , by PathsE .

Proposition 12. For every CGM M and a feasible class
Σ of coalitional strategies in M :

1. Every coalition has a collective strategy, and therefore
for every state q in M it can enforce at least one, non-
empty set of outcome paths starting from q. (Safety)

2. For any coalition C in M , every coalitional strategy
produces a non-empty set of outcome paths. (Liveness)

2Here we adhere to the standard ATL assumption that play-
ers in a coalition execute their parts of the joint strategy
independently.

3. EΣ
M (∅) is a singleton. More precisely, EΣ

M (∅) = {PathsΣ
M}.

4. EΣ
M (Agt) consists of singleton sets. More precisely,
EΣ
M (Agt) = {{λ} | λ ∈ PathsΣ

M}. (Determinacy)

5. Every two disjoint coalitions can join their chosen coali-
tional strategies to enforce an outcome set of paths that
is included in the outcome set of paths enforceable by
each of the coalitions following its respective strategy.
(Superadditivity)

To define“playability”conditions for path effectivity frames,
we will need some additional notation. Let q ∈ St, h, h′ ∈
St+, X ∈ P(Stω), and X ∈ P(P(Stω)). Then we denote:

• h � h′ if h′ is an extension of h;

• X(q) := {λ ∈ X | λ[0] = q}; X[i] := {λ[i] | λ ∈ X}
• X(h) := {λ | λ ∈ X, and λ[0..k] = h for some k} is

the set of paths in X starting with h;

• X|h := {λ[k..∞] | λ ∈ X and λ[0..k] = h} is the set of
suffixes of paths in X, extending h;

• X (q) = {X(q) | X ∈ X}, X (h) = {X(h) | X ∈ X},
and X|h = {X|h | X ∈ X}.

4.3 Path effectivity semantics of ATL*
Given an ATL* path formula γ and a path effectivity

model M , let

γM = {λ ∈ PathsM |M,λ |= γ}.
denote the set of paths in M that satisfy γ. Note that rela-
tion M,λ |= γ is already well defined by the relevant seman-
tic clauses in Section 2.3 (it is essentially the semantics of
Linear Time Logic LTL). Then, the path effectivity seman-
tics of ATL* is given by the clause below:

M, q |= 〈〈C〉〉γ iff there is X ∈ E(C) such that X(q) ⊆ γM .

Equivalently: M, q |= 〈〈C〉〉γ iff γM (q) ∈ bE(C)(q), wherebE(C) = {X | Y ⊆ X for some Y ∈ E(C)} is the outcome-
monotone closure of E .

Thus, path effectivity models yield a conceptually simple
and technically elegant semantics of ATL*, where one effec-
tivity function suffices to completely describe the powers of
coalitions to enforce any ATL*-definable behaviour. In par-
ticular, only one simple semantic clause is needed to define
strategic ability in ATL*, because the temporal patterns are
appropriately handled by LTL semantics.

Example 6. Like before, we have EM1 , q0 |= 〈〈1, 2〉〉Fposi
for every i = 0, 1, 2 in both perfect recall and memoryless
strategies. This can be demonstrated e.g. by the choice {q0(qi)

ω}
that belongs to Emem

M1
({1, 2}) as well as Enomem

M1
({1, 2}).

4.4 Characterizing path effectivity functions
The path effectivity semantics for ATL* defined above is

too abstract to be of practical use. Here we identify the
characteristic properties of path effectivity functions arising
in CGMs and define an analogue of the notion of (truly)
playable state effectivity functions.

Definition 16 (Playability in path effectivity).
A path effectivity function E : P(Agt) → P(P(Stω)) is ac-
tually playable if it satisfies the following conditions:

P-Safety: E(C)(q) is non-empty for every C ⊆ Agt, q ∈ St.
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P-Liveness: ∅ /∈ E(C)(q) for every C ⊆ Agt, q ∈ St.
P-Monotonicity: For every C1 ⊆ C2 ⊆ Agt and for every

X2 ∈ E(C2) there is a X1 ∈ E(C1) such that X2 ⊆ X1.

P-Superadditivity: if C∩D = ∅, X ∈ E(C) and Y ∈ E(D),
then Z ∈ E(C ∪D) for some Z ⊆ X ∩ Y .

P-∅-Minimality: E(∅) is the singleton {PathsE}.
P-Determinacy: E(Agt)(q) ⊆ {{λ} | λ ∈ PathsE}.3

We note that the playability conditions above are variants
of true playability, sans outcome monotonicity, for path-
oriented effectivity. These conditions can be adapted to
state effectivity to provide abstract characterization for ac-
tual state effectivity in CGMs, analogous to Pauly’s charac-
terization of the outcome-monotone state effectivity in [9].
For lack of space we do not include that result here.

Besides the general conditions in Definition 16, we need
additional constraints which are specific to the underlying
class of strategies, and relate local choices with global strate-
gies in path effectivity frames.

Path effectivity functions for memoryless strategies

The following definition formalizes the consistency of a
family of local choices with a global memoryless strategy.

Definition 17 (nomem-consistent family of choices).
Given a PEF F = (Agt, St, E) and a coalition C ⊆ Agt,
let X = {Xq}q∈St be such that Xq ∈ E(C)(q) for every
q ∈ St. We call X nomem-consistent if for every pair of
states q1, q2 ∈ St, path λ ∈ Xq1 , and a prefix h = λ[0..i] for
some i ∈ N such that λ[i] = q2, it holds that Xq1 |h = Xq2 .

Definition 18 (nomem-realizability). A playable path
effectivity function E : P(Agt) → P(P(Stω)) is nomem-
realizable if it also satisfies the following conditions:

nomem-Regularity: For every C ⊆ Agt and X ∈ E(C), the
family {X(q)}q∈St is nomem-consistent.

nomem-Convexity: Let {Xq}q∈St s.t. Xq ∈ E(C)(q) for all
q ∈ St, be nomem-consistent. Then the set of all paths
generated by the relation {(q, q′) | q ∈ St, q′ ∈ Xq[1]}
is in E(C).

LimitClosure: Every X ∈ E(C) is limit-closed, i.e., for
every path λ, if every λ[0..i], for i ∈ N, is a prefix of
some path λi ∈ X, then λ ∈ X.

Thus, nomem-regularity of E means that when coalition C
follows a fixed memoryless strategy which determines a set of
outcome paths X, it is effective for the same set of outcome
paths starting from every occurrence of q along any path
from X, viz. X(q). Moreover, nomem-convexity requires
that any consistent collection of ‘locally applied’ strategies
for a given coalition C can be pieced together into a global
memoryless strategy for C.

Theorem 13 (nomem-Representation theorem).
A path effectivity function E equals Enomem

M for some concur-
rent game model M if and only if it is nomem-realizable.

3Unlike the case of state effectivity functions, where the de-
terminacy constraint is only needed for infinite state games
(cf. [5]), it becomes essential here, because even very simple
2-state structures can generate uncountably many paths.

Proof. (Sketch) Showing that for every CGMM , Enomem
M

is nomem-realizable is fairly routine. For the converse impli-
cation, given a nomem-realizable path effectivity function E
we first define a global actual state effectivity function AE
by collecting for every C and q the successor states from each
set of paths in E(C)(q) and thus producing AE(C)(q). Then
we produce the respective global state effectivity function E
by closing AE under upwards monotonicity. It is straight-
forward to show that E is truly playable by the actual path
playability of E . Then using the representation theorem for
truly playable state effectivity functions in [5] we construct
a CGM M for the same set of agents Agt and state space
St, such that the α-effectivity function EαM of M coincides
with E. UsingM we construct the respective path effectivity
function Enomem

M according to Definition 15. Finally, we show
that it coincides with E by using the nomem-realizability of
each of E and Enomem

M .

Path effectivity functions for perfect recall strategies

Here we provide a partial characterization of path effec-
tivity functions for perfect recall strategies.

Definition 19 (mem-consistent family of choices).
Given a PEF F = (Agt, St, E) and a coalition C ⊆ Agt,
let X = {Xh}h∈St+ be such that Xh ∈ E(C)(h) for ev-
ery h ∈ St+. We call X mem-consistent if for every pair
h1, h2 ∈ St+ such that h1 � h2, we have Xh1(h2) = Xh2 .

Definition 20 (mem-Realizable effectivity).
A playable path effectivity function E : P(Agt)→ P(P(Stω))

is mem-realizable if it also satisfies the following conditions
for every coalition C:

mem-Regularity: For every C ⊆ Agt and X ∈ E(C), the
family {X(q)}q∈St is mem-consistent.

mem-Convexity: Let {Xh}h∈St+ , where Xh ∈ E(C)(h) for
every h ∈ St+, be mem-consistent. Then the set of all
paths generated by the relation
{(q, q′) | q = Xh|h[0], q′ ∈ Xh|h[1]} is in E(C).

LimitClosure: as in Definition 18.

Intuition for the mem-Regularity condition: if C can be
efective for X|h after history h, they can obtain it right at
the beginning of the game starting from q = last(h). This
is because every substrategy of a perfect recall strategy is
also a viable perfect recall strategy. Intuition for the mem-
Convexity condition: any ‘consistent’ collection of history-
based local choices for a given coalition C can be pieced
together into a global perfect recall strategy for C.

The following is easy to check.

Proposition 14. For every CGM M , Emem
M is mem-reali-

zable.

For lack of space we defer the respective representation
theorem for perfect recall strategies to a further work.

5. BEYOND PERFECT INFORMATION
So far, we have only been concerned with games where

every player knows the global state of the system at any mo-
ment. Modeling and reasoning about imperfect information
scenarios is more sophisticated. First, not all strategies are
executable – even in the perfect recall case. This is because
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the agents cannot specify that they will execute two different
actions in situations that look the same to them. Therefore,
only uniform strategies are admissible here. Moreover, it is
often important to find a uniform strategy that succeeds in
all indistinguishable for the agent states, rather than con-
tend that there is such a successful strategy for the current
state of the system.

In this section, we briefly sketch how path effectivity mod-
els can be used to give account on powers of coalitions under
imperfect information. This is by no means intended as an
exhaustive analysis. Rather, we point out that the modeling
power of path effectivity can be applied to more sophisti-
cated scenarios than ones assuming complete knowledge.

We take Schobbens’ ATLir [10] as the “core”, minimal
ATL-based language for strategic ability under imperfect in-
formation. ATLir includes the same formulae as ATL, only
the cooperation modalities are presented with a subscript:
〈〈A〉〉ir to indicate that they address agents with imperfect
information and imperfect recall. Models of ATLir are im-
perfect information concurrent game models (iCGM), which
can be seen as concurrent game models augmented with a
family of indistinguishability relations ∼a⊆ St×St, one per
agent a ∈ Agt. The relations describe agents’ uncertainty:
q ∼a q′ means that, while the system is in state q, agent a
considers it possible that it is in q′.

A uniform strategy for agent a is a function sa : St→ Act,
such that: (1) sa(q) ∈ d(a, q); (2) if q ∼a q′ then sa(q) =
sa(q′). A collective strategy is uniform if it contains only
uniform individual strategies. Again, function out(q, sA) re-
turns the set of all paths that may result from agents A
executing strategy sA from state q onward. The semantics
of cooperation modalities in ATL∗ir is defined as follows:

M, q |= 〈〈A〉〉ir γ iff there exists a uniform collective strat-
egy sA such that, for each a ∈ A, q′ such that q ∼a q′,
and path λ ∈ out(sA, q′), we have M,λ |= γ.

First, we observe that the same type of effectivity func-
tions can be used to model powers in imperfect information
games: E : P(Agt) → P(P(Stω)). Moreover, the notion
of Σ-effectivity does not change. Given an iCGM M and
Σ =

S
C⊆Agt ΣC be a set of (uniform) coalitional strate-

gies in M , the Σ-effectivity function of M is still defined as
EΣ
M (C) = {Sq∈St out(q, sC) | sC ∈ ΣC}.
The semantics of ATL∗ir is also very similar to the perfect

information case:

M, q |= 〈〈C〉〉ir γ iff there is X ∈ E(C) such that[
a∈C

[
q′:q∼aq′

X(q′) ⊆ γM .

That is, 〈〈C〉〉ir γ if C have a single choice satisfying γ on all
outcome paths starting from states that look the same as q.

What changes is the structural properties of actual effec-
tivity functions that are induced by iCGM’s. Agt-maximality
and determinacy are no longer valid since even the grand
coalition cannot always enforce every possible course of events,
cf. [6]. The regularity and convexity conditions must also
be revised because the standard fixpoint characterizations
of the temporal modalities do not hold anymore under im-
perfect information [6]. The detailed study of appropriate
realizability conditions is subject to future research.

6. CONCLUSIONS
In this paper we have developed the idea of characteriz-

ing multi-player multi-step games in terms of what sets of
outcomes – states or paths – coalitions can ensure by exe-
cuting one or another collective strategy. These character-
izations lead to respective notions of state-based and path-
based coalition effectivity models, which provide alternative
semantics for logics of such games, most notably ATL and
ATL*. We find such characterizations both conceptually im-
portant and technically interesting because they extract the
core game-theoretic essence from game models. They also
resolve some technical issues arising in the original seman-
tics for ATL*, particularly in the cases of incomplete and
imperfect information. We believe that the understanding of
abstract realizability under imperfect information can lead
to satisfiability checking procedures and complete axiomatic
characterization for these variants of ATL.
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ABSTRACT
Emotion is a cognitive mechanism that directs an agent’s thoughts
and attention to what is relevant, important, and significant. Such
a mechanism is crucial for the design of resource-bounded agents
that must operate in highly-dynamic, semi-predictable environments
and which need mechanisms for allocating their computational re-
sources efficiently. The aim of this work is to propose a logical
analysis of emotions and their influences on an agent’s behavior.
We focus on four emotion types (viz., hope, fear, joy, and distress)
and provide their logical characterizations in a modal logic frame-
work. As the intensity of emotion is essential for its influence on an
agent’s behavior, the logic is devised to represent and reason about
graded beliefs, graded goals and intentions. The belief strength
and the goal strength determine the intensity of emotions. Emo-
tions trigger different types of coping strategy which are aimed at
dealing with emotions either by forming or revising an intention to
act in the world, or by changing the agent’s interpretation of the
situation (by changing beliefs or goals).

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Intelligent agents

General Terms
Theory

Keywords
Cognitive models, logic-based approaches and methods

1. INTRODUCTION
Autonomous software agents are assumed to have different (pos-

sibly conflicting) objectives, able to sense their environments, up-
date their states accordingly, and decide which actions to perform
at any moment in time. The behavior of such software agents can
be effective and practical only if they are able to continuously and
adequately assess their (sensed) situation and update their states
with relevant information and crucial objectives. For example, a
robot with a plan to transport a container to its target position may
perceive it has low battery charge. The robot may assess the state
of its battery charge as being relevant for the objective of having
the container at its target position, and update its state by suspend-
ing the current battery-demanding transport plan. Such assessment

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and update may cause the agent to decide to charge its battery right
away or to focus on a less battery-demanding task.

Emotion is a (cognitive) mechanism that directs one’s thoughts
and attention to what is relevant, important, and significant in order
to ensure effective behavior. The aim of this work is to propose
a logical analysis of the relationships between emotion and cogni-
tion. An understanding of these relationships is particularly impor-
tant in the perspective of the design of resource-bounded agents that
must survive in highly-dynamic, semi-predictable environments and
which need mechanisms for allocating their computational resources
efficiently. Indeed, as it has been stressed by several authors in psy-
chology and economics, emotions provide heuristics for preventing
excessive evaluation and deliberation by pruning of search spaces
[5] and for interrupting normal cognition when unattended goals
require servicing [20], and signals for belief revision [15].

Our approach is inspired by the appraisal and coping models of
human emotions [16, 11, 8]. According to these models, an agent
continuously appraises its situation (e.g., low battery charge endan-
gers the objective of having a container at its target position) after
which emotions can be triggered (e.g., fear of failing to place the
container at its target position). The triggered emotions can affect
the agent’s behavior depending on their intensities. There are often
a set of strategies that can be used to cope with a specific emotion,
for example, by updating the agent’s mental state (e.g., being fear-
ful that the transportation plan will not place the container at its
target position leads the agent to reconsider its plan).

We first propose, in Section 2, a dynamic logic with special op-
erators which allow to represent the intentions of a cognitive agent
as well as its beliefs and goals with their corresponding strengths.
Then, in Section 3, we provide a logical analysis of the intensity of
different emotions such as hope, fear, joy and distress. In Section
4, we extend the logic with special operators to formally character-
ize different kinds of coping strategies which are aimed at dealing
with emotions either by forming or revising an intention to act in
the world, or by changing the agent’s interpretation of the situation
(by changing belief strength or goal strength). A complete axiom-
atization and a decidability result for the logic are given in Section
5. Related works are discussed in Section 6.

2. LOGICAL FRAMEWORK
This section presents the syntax and the semantics of the logic

DL-GA (Dynamic Logic of Graded Attitudes). This logic is de-
signed to represent beliefs, goals, and intentions, where beliefs and
goals have degree of plausibility and desirability, respectively.

2.1 Syntax
Assume a finite set of atomic propositions describing facts Atm =

{p, q, . . .}, a finite set of physical actions (i.e., actions modifying the
physical world) PAct = {a, b, . . .}, a finite set of natural numbers
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Num = {x ∈ N : 0 ≤ x ≤ max}, with max ∈ N \ {0}. We note
Num− = {−x : x ∈ Num \ {0}} the corresponding set of negative
integers. We note Lit the set of literals and l, l′, . . . the elements of
Lit. Finally, we define the set of propositional formulas Prop to be
the set of all Boolean combinations of atomic propositions.

The language L of DL-GA is defined by the following grammar
in Backus-Naur Form (BNF):

Act : α F a | ∗ϕ
Fml : ϕ F p | exch | Deskl | Inta |

¬ϕ | ϕ ∧ ϕ | Kϕ | [α]ϕ

where p ranges over Atm, h ranges over Num, l ranges over Lit,
k ranges over Num ∪ Num−, and a ranges over PAct. The other
Boolean constructions >, ⊥, ∨, → and ↔ are defined in the stan-
dard way.

The set of actions Act includes both physical actions and sens-
ing actions of the form ∗ϕ. A sensing action is an action which
consists in modifying the agent’s beliefs in the light of a new in-
coming evidence. In particular, ∗ϕ is the mental action (or process)
of learning that ϕ is true. As we will show in Section 2.3, techni-
cally this amounts to an operation of belief conditioning in Spohn’s
sense [21].

The set of formulas Fml contains special constructions exch,
Deskl and Inta which are used to represent the agent’s mental state.
Formulas exch are used to identify the degree of plausibility of a
given world for the agent. We here use the notion of plausibil-
ity first introduced by Spohn [21]. Following Spohn’s theory, the
worlds that are assigned the smallest numbers are the most plausi-
ble, according to the beliefs of the individual. That is, the number
h assigned to a given world rather captures the degree of exception-
ality of this world, where the exceptionality degree of a world is
nothing but the opposite of its plausibility degree (i.e., the excep-
tionality degree of a world decreases when its plausibility degree
increases). Therefore, formula exch can be read alternatively as
“the current world has a degree of exceptionality h” or “the current
world has a degree of plausibility max − h”.

Formula Deskl has to be read “the state of affairs l has a degree of
desirability k for the agent”. Degree of desirability can be positive,
negative or equal to zero.1 Suppose k > 0. Then Deskl means that
“the agent wishes to achieve l with strength k”, whereas Des−kl
means that “the agent wishes to avoid l with strength k”. Des0l
means that “the agent is indifferent about l” (i.e., the agent does not
care whether l is true or false). For notational convenience, in what
follows we will use the following abbreviations:

AchGkl def= Deskl for k > 0
AvdGkl def= Des−kl for k > 0

where AchG andAvdG respectively stand for achievement goal and
avoidance goal.

Formulas Inta capture the agent’s intentions. We assume that
the agent’s intentions are only about physical actions and not about
sensing actions. The formula Inta has to be read “the agent has the
intention to perform the physical action a” or “the agent is commit-
ted to perform the physical action a”.

The logic DL-GA has also epistemic operators and modal op-
erators that are used to describe the effects of a given action α.
The formula [α]ϕ has to be read “after the occurrence of the ac-
tion α, ϕ will be true”. Kϕ has to be read “the agent knows that
ϕ is true”. This concept of knowledge is the standard S5-notion,
partition-based and fully introspective, that is commonly used in
computer science and economics [7]. The operator K̂ is the dual of
K, that is, K̂ϕ def

= ¬K¬ϕ. As we will show in the Section 2.5, the
1However, we assume that exceptionality/plausibility and positive
desirability are measured on the same scale Num.

operator K captures a form of ‘absolutely unrevisable belief’, that
is, a form of belief which is stable under belief revision with any
new evidence.

2.2 Physical action description
Similarly to Situation Calculus [18], in our framework physical

actions are described in terms of their executability preconditions
and of their positive and negative effect preconditions. In particular,
we define a function

Pre : PAct −→ Prop
to map physical actions to their executability preconditions. Using
the notion of executability precondition, we define special dynamic
operators for physical actions of the form 〈〈a〉〉, where 〈〈a〉〉ϕ has
to be read “ the physical action a is executable and, ϕ will be true
afterwards”:

〈〈a〉〉ϕ def
= Pre(a) ∧ [a]ϕ

Moreover, we introduce two functions
γ+ : PAct × Atm −→ Prop
γ− : PAct × Atm −→ Prop

mapping physical actions and atomic propositions to propositional
formulas. The formula γ+(a, p) describes the positive effect pre-
conditions of action a with respect to p, whereas γ−(a, p) describes
the negative effect preconditions of action a with respect to p. The
former represent the necessary and sufficient conditions for ensur-
ing that p will be true after the occurrence of the physical action
a, while the latter represent the necessary and sufficient conditions
for ensuring that p will be false after the occurrence of the physical
action a. We make the following coherence assumption:

(COHγ) for every a ∈ PAct and p ∈ Atm, γ+(a, p) and γ−(a, p)
must be logically inconsistent.

COHγ ensures that actions do not have contradictory effects.

2.3 Models and truth conditions
The semantics of the logic DL-GA is a possible world seman-

tics with special functions for exceptionality, desirability and in-
tentions.

Definition 1 (Model). DL-GA models are tuples M = 〈W,∼
, κexc,D,I,V〉 where:

• W is a nonempty set of possible worlds or states;

• ∼ is an equivalence relation between worlds in W;

• κexc : W −→ Num is a total function from the set of possible
worlds to the set of natural numbers Num;

• D : W × Lit −→ Num∪Num− is a total function from the set
of possible worlds to the set of integers Num ∪ Num−;

• I : W −→ 2PAct is a total function called commitment func-
tion, mapping worlds to sets of physical actions;

• V : W −→ 2Atm is a valuation function.

As usual, p ∈ V(w) means that proposition p is true at world w.
The equivalence relation ∼, which is used to interpret the epistemic
operator K, can be viewed as a function from W to 2W . Therefore,
we can write ∼ (w) = {v ∈ W : w ∼ v}. The set ∼ (w) is the
agent’s information state at world w: the set of worlds that the agent
imagines at world w. As ∼ is an equivalence relation, if w ∼ v then
the agent has the same information state at w and v (i.e., the agent
imagines the same worlds at w and v).

The function κexc represents a plausibility grading of the pos-
sible worlds and is used to interpret the atomic formulas exch.
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κexc(w) = h means that, according to the agent the world w has
a degree of exceptionality h or, alternatively, according to the agent
the world w has a degree of plausibility max − h. (Remember that
the degree of plausibility of a world is the opposite of its exception-
ality degree). The function κexc allows to model the notion of belief:
among the worlds the agent cannot distinguish from a given world
w (i.e., the agent’s information state at w), there are worlds that the
agent considers more plausible than others. For example, suppose
that ∼(w) = {w, v, u}, κexc(w) = 2, κexc(u) = 1 and κexc(v) = 0. This
means that {w, v, u} is the set of worlds that the agent imagines at
world w. Moreover, according to the agent, the world v is strictly
more plausible than the world u and the world u is strictly more
plausible than the world w (as max − 0 > max − 1 > max − 2).

DL-GA models are supposed to satisfy the following normality
constraint for the plausibility grading to ensure that the agent’s be-
liefs are consistent:

(Normκexc ) for every w ∈ W, there is v such that w ∼ v and
κexc(v) = 0.

The function D is used to interpret the atomic formulas Deskl.
Suppose k > 0. Then, D(w, l) = k means that, at world w, l has
a degree of desirability k; whereas D(w, l) = −k means that, at
world w, l has a degree of desirability −k — or equivalently, l has
a degree of undesirability k —. D(w, l) = 0 means that the agent is
indifferent about l.

The function I is used to interpret the atomic formulas Inta. For
every world w ∈ W, I(w) identifies the set of physical actions that
the agent intends to perform. I(w) = ∅ means that the agent has no
intention.

Note that in our dynamic setting an agent may be committed to
perform an action even though it believes that this is a suboptimal
choice, i.e., we do not require agents to have intentions because
of their desirable consequences. An agent may have an intention
without desiring its consequence because, for example, its beliefs
and desires may change due to a sensing action. In our running
example, the robot may have the intention to transport a container
to a given target position, while it believes that this is a suboptimal
choice as it has just learnt that it does not have sufficient battery
power to accomplish the task.

Definition 2 (Truth conditions). Given a DL-GA model M, a
world w and a formula ϕ, M,w |= ϕ means that ϕ is true at world
w in M. The rules defining the truth conditions of formulas are:

• M,w |= p iff p ∈ V(w)

• M,w |= exch iff κexc(w) = h

• M,w |= Deskl iffD(w, l) = k

• M,w |= Inta iff a ∈ I(w)

• M,w |= ¬ϕ iff not M,w |= ϕ

• M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

• M,w |= Kϕ iff M, v |= ϕ for all v such that w ∼ v

• M,w |= [α]ψ iff Mα,w |= ψ

where model Mα is defined according to Definitions 3 and 5 below.

Definition 3 (Update via physical action). Given a DL-GA
model M = 〈W,∼, κexc,D,I,V〉, The update of M by a is defined
as Ma = 〈W,∼, κexc,D,Ia,Va〉 where for all w ∈ W:

Ia(w) = I(w) \ {a}
Va(w) = (V(w) ∪ {p : M,w |= γ+(a, p)})\

{p : M,w |= γ−(a, p)}
The performance of a physical action a makes the commitment
function I to remove a from the set of intentions. That is, if an
agent intends to perform the physical action a, then after the per-
formance of a the agent does not intend to perform a anymore. Of
course, the agent may adopt intention a again by, for example, per-
forming an intention update operation (see Section 4.1). Physical
actions modify the physical facts via the positive effect precondi-
tions and the negative effect preconditions, defined in Section 2.2.
In particular, if the positive effect preconditions of action a with
respect to p holds, then p will be true after the occurrence of a; if
the negative effect preconditions of action a with respect to p holds,
then p will be false after the occurrence of a.2

A sensing action updates the agent’s information state by mod-
ifying the exceptionality degree of the worlds that the agent can
imagine. Before defining such a model update, we follow [21] and
lift the exceptionality of a possible world to the exceptionality of a
formula viewed as a set of worlds.

Definition 4 (Exceptionality degree of a formula). Let
||ϕ||w = {v ∈ W : M, v |= ϕ and w ∼ v}. The exceptionality degree of
a formula ϕ at world w, noted κw

exc(ϕ), is defined as follows:

κw
exc(ϕ) =


min

v∈||ϕ||w
κexc(v) if ||ϕ||w , ∅

max if ||ϕ||w = ∅
As expected, the plausibility degree of a formula ϕ, noted κw

plaus(ϕ),
is defined as max − κw

exc(ϕ).

Definition 5 (Update via sensing action). Given a DL-GA
model M = 〈W,∼, κexc,D,I,V〉. The update of M by the sensing
action ∗ϕ is defined as M∗ϕ = 〈W,∼, κ∗ϕexc,D,I,V〉 such that for all
w:

κ
∗ϕ
exc(w) =



κexc(w) − κw
exc(ϕ) if M,w |= ϕ

CutB(κexc(w) + δ) if M,w |= ¬ϕ ∧ K̂ϕ
κexc(w) if M,w |= K¬ϕ

where δ ∈ Num \ {0} and

CutB(x) =



x if 0 ≤ x ≤ max
max if x > max
0 if x < 0

The action of sensing that ϕ is true modifies the agent’s beliefs as
follows.

1. For every world w in which ϕ is true, the degree of exception-
ality of w decreases from κexc(w) to κexc(w) − κw

exc(ϕ), which
is the same thing as saying that, degree of plausibility of w
increases from max − κexc(w) to max − (κexc(w) − κw

exc(ϕ)).

2. For every world w in which ϕ is false:

(a) if at w the agent can imagine a world in which ϕ is true,
i.e. K̂ϕ, then the degree of exceptionality of w increases
from κexc(w) to Cutmax(κexc(w) + δ), which is the same
thing as saying that, the degree of plausibility of w de-
creases from max−κexc(w) to max−Cutmax(κexc(w)+δ);

2Note that the order of the set theoretic operations in the definition
seems to privilege negative effect preconditions; however, due to
the coherence assumption COHγ made in Section 2.2 the effects of
a physical action will never be inconsistent.
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(b) if at w the agent cannot imagine a world in which ϕ is
true, i.e. K¬ϕ, then the degree of exceptionality of w
does not change.

The condition 2(b) ensures that the agent’s plausibility ordering
over worlds does not change, if the agent learns something that
he cannot imagine.3 CutB is a minor technical device, taken from
[3], which ensures that the new plausibility assignment fits into the
finite set of natural numbers Num. The parameter δ is a conser-
vativeness index which captures the agent’s disposition (or person-
ality trait) to radically change its beliefs in the light of a new evi-
dence. More precisely, the higher is the index δ, and the higher is
the agent’s disposition to decrease the plausibility degree of those
worlds in which the learnt fact ϕ is false. (When δ = max, the agent
is minimally conservative). We assume that δ is different from 0 in
order to ensure that, after learning that p is true, the agent will be-
lieve p for every proposition p ∈ Atm (see validity (5) in Section
2.5 below).

In the sequel we write |=DL-GA ϕ to mean that ϕ is valid in DL-GA
(ϕ is true in all DL-GA models).

2.4 Definition of graded belief
Following [21], we define the concept of belief as a formula

which is true in all worlds that are maximally plausible (or min-
imally exceptional).

Definition 6 (Belief, Bϕ). In model M at world w the agent
believes that ϕ is true, i.e., M,w |= Bϕ, if and only if, for every v
such that w ∼ v, if κexc(v) = 0 then M, v |= ϕ.

The following concept of graded belief is taken from [10]: the
strength of the belief that ϕ is equal to the exceptionality degree
of ¬ϕ.

Definition 7 (Graded belief, B≥hϕ). For all h ≥ 1, in model
M at world w the agent believes that ϕ with strength at least h, i.e.
M,w |= B≥hϕ, if and only if, κw

exc(¬ϕ) ≥ h.

An agent has the strong belief that ϕ if and only if, it believes that
ϕ is true with maximal strength max.

Definition 8 (Strong belief, SBϕ). In model M at world w the
agent strongly believes that ϕ (or at w the agent is certain that ϕ is
true), i.e., M,w |= SBϕ, if and only if κw

exc(¬ϕ) = max.

As the following proposition highlights, the concepts of belief,
graded belief and strong belief semantically defined in Definitions
6-8 are all syntactically expressible in the logic DL-GA.

Proposition 1. For every DL-GA model M, world w and h ∈
Num such that h ≥ 1:

1. M,w |= Bϕ iff M,w |= K(exc0 → ϕ)

2. M,w |= B≥hϕ iff M,w |= K(exc≤h−1 → ϕ)

3. M,w |= SBϕ iff M,w |= K(exc≤max−1 → ϕ)

where exc≤k
def
=
∨

0≤l≤k excl for all k ∈ Num.

We define the dual operators in the usual way: B̂ϕ def
= ¬B¬ϕ,

B̂≥hϕ
def
= ¬B≥h¬ϕ and ŜBϕ def

= ¬SB¬ϕ.
We assume that “the agent believes that ϕ exactly with strength

h”, i.e. Bhϕ, if and only if the agent believes that ϕ with strength
3Note that the tree conditions 1, 2(a) and 2(b) cover all cases. In-
deed, the third condition K¬ϕ is equivalent to ¬ϕ ∧ K¬ϕ, because
K¬ϕ→ ¬ϕ is valid.

at least h and it is not the case that the agent believes that ϕ with
strength at least h+1. That is, we define:

Bhϕ
def
= B≥hϕ ∧ ¬B≥h+1ϕ if 1 ≤ h < max, and

Bmaxϕ
def
= B≥maxϕ

2.5 Some properties of epistemic attitudes
The following validities highlight some interesting properties of

beliefs. For every h, k ∈ Num such that h ≥ 1 and k ≥ 1 we have:

|=DL-GA Kϕ→ B≥hϕ (1)

|=DL-GA Bϕ↔ B≥1ϕ (2)
|=DL-GA SBϕ↔ B≥maxϕ (3)
|=DL-GA ¬(Bϕ ∧ B¬ϕ) (4)

|=DL-GA K̂ϕ→ [∗ϕ]Bϕ if ϕ ∈ Prop (5)

|=DL-GA (B≥hϕ ∧ B≥kψ)→ B≥min{h,k}(ϕ ∧ ψ) (6)

|=DL-GA (B≥hϕ ∧ B≥kψ)→ B≥max{h,k}(ϕ ∨ ψ) (7)

According to the validity (1), knowing that ϕ implies believing that
ϕ with strength at least h. According to the validity (2), belief is
graded belief with strength at least 1. According to the validity (3),
the agent has the strong belief that ϕ if and only if, it believes that
ϕ with maximal strength max. According to the validity (4) (which
follows from the normality constraint NORMκexc in Section 2.3), an
agent cannot have inconsistent beliefs. The validity (5) highlights
a basic property of belief revision in the sense of AGM theory [2]:
if ϕ is an objective fact and the agent can imagine a world in which
ϕ is true then, after learning that ϕ is true, the agent believes that
ϕ.4 According to the validities (6) and (7), if the agent believes that
ϕ with strength at least h and believes that ψ with strength at least
k, then the strength of the belief that ϕ ∧ ψ is at least min{h, k}; if
the agent believes that ϕ with strength at least h and believes that
ψ with strength at least k, then it believes ϕ ∨ ψ with strength at
least max{h, k}. Similar properties for graded belief are given in
possibility theory [6].

3. EMOTIONS AND THEIR INTENSITY
We use the modal operators of graded belief and graded goal of

the logic DL-GA to provide a logical analysis of emotions such as
hope, fear, joy and distress with their intensities.

According to some psychological models [17, 11, 16] and com-
putational models [9, 4] of emotions, the intensity of hope with
respect to a given event is a monotonically increasing function of
the degree to which the event is desirable and the likelihood of the
event. That is, the higher is the desirability of the event, and the
higher is the intensity of the agent’s hope that this event will occur;
the higher is the likelihood of the event, and the higher is the inten-
sity of the agent’s hope that this event will occur. Analogously, the
intensity of fear with respect to a given event is a monotonically
increasing function of the degree to which the event is undesirable
and the likelihood of the event. There are several possible merging
functions which satisfy these properties. For example, we could de-
fine the merging function merge as an average function, according
to which the intensity of hope about a certain event is the average of
the strength of the belief that the event will occur and the strength
of the goal that it will occur. That is, for every h, k ∈ Num rep-
resenting respectively the strength of the belief and the strength of

4The only difference with AGM theory is the condition K̂ϕ. AGM
assumes that new information ϕ must incorporated in the belief
base (the so-called success postulate), whereas we here assume that
ϕ must incorporated in the belief base only if the agent can imagine
a world in which ϕ is true.
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the goal, we could define merge(h,k) as h+k
2 . Another possibility

is to define merge as a product function (also used in [9, 17]), ac-
cording to which the intensity of hope about a certain event is the
product of the strength of the belief that the event will occur and the
strength of the goal that it will occur. Here we do not choose a spe-
cific merging function, as this would much depend on the domain
of application in which the formal model has to be used.

The emotion intensity scale is defined by the following set:

EmoInt = {y : there are x1, x2 ∈ Num such that merge(x1,x2) = y}
As Num is finite, EmoInt is finite too.

Let us define the notions of hope and fear with their correspond-
ing intensities. We say that the agent hopes with intensity i that
its current intention to perform the action a will lead to the desir-
able consequence l if and only if, there are h, k ∈ Num \ {0} such
that merge(h,k) = i and h < max and: (1) the agent believes with
strength h that the physical action a is executable and l will be true
afterwards, (2) the agent wishes to achieve l with strength k, (3) the
agent intends to perform the physical action a. Formally:
Hopei(a, l) def=

∨
h,k∈Num\{0}:h<max and merge(h,k)=i(Bh〈〈a〉〉l∧

AchGkl ∧ Inta)
We say that the agent fears with intensity i that its current in-

tention to perform the action a will lead to the undesirable con-
sequence l if and only if, there are h, k ∈ Num \ {0} such that
merge(h,k) = i and h < max and: (1) the agent believes with
strength h that the action a is executable and l will be true after-
wards, (2) the agent wishes to avoid l with strength k, (3) the agent
intends to perform the action a. Formally:
Feari(a, l) def=

∨
h,k∈Num\{0}:h<max and merge(h,k)=i(Bh〈〈a〉〉l∧

AvdGkl ∧ Inta)
In the preceding definitions of hope and fear, the strength of the

belief is supposed to be less than max in order to distinguish hope
and fear, which imply some form of uncertainty, from happiness
and distress which are based on certainty. Indeed, we have that:

|=DL-GA Hopei(a, l)→ ¬SB〈〈a〉〉l (8)

|=DL-GA Feari(a, l)→ ¬SB〈〈a〉〉l (9)

This means that if an agent hopes/fears that its intention to perform
the action a will lead to the desirable/undesirable result l, then it is
not certain about that. For example, if our robot hopes to place a
container at a given target position by its transport plan, then the
robot is not certain that the container will be at the target position
after performing the transport plan. On the contrary, to be joy-
ful/distressed that its current intention to perform the action a will
lead to the desirable/undesirable consequence l, the agent should
be certain that its intention to perform the action a will lead to
the desirable/undesirable consequence l. This is consistent with
OCC psychological model of emotions [16] according to which,
while joy and distress are triggered by actual consequences, hope
and fear are triggered by prospective consequences (or prospects).
Like [9], we here interpret the term ‘prospect’ as synonymous of
‘uncertain consequence’ (in contrast with ‘actual consequence’ as
synonymous of ‘certain consequence’). The following are our def-
initions of joy and distress about actions:

Joyi(a, l) def=
∨

k∈Num\{0}:merge(max,k)=i(SB〈〈a〉〉l∧
AchGkl ∧ Inta)

Distressi(a, l) def=
∨

k∈Num\{0}:merge(max,k)=i(SB〈〈a〉〉l∧
AvdGkl ∧ Inta)

where Joyi(a, l) and Distressi(a, l) respectively mean that “the
agent is joyful that its current intention to perform the action a will
lead to the desirable consequence l” and “the agent is distressed

that its current intention to perform the action a will lead to the un-
desirable consequence l”. Note that, when computing the intensity
of joy and distress, the belief parameter in the merging function
merge is set to max because strong belief is equivalent to graded
belief with maximal strength (validity (3) in Section 2.5).

We here distinguish distress from sadness by adding a condition
to the definition of distress: the appraisal variable called control-
lability or control potential [19]. That is, to be sad that its current
intention to perform the action a will lead to the undesirable result
l, the agent should be certain that it has no control over the undesir-
able result l, in the sense that the agent cannot prevent l to be true
— which is the same thing as saying that l will be true after every
executable action of the agent —.

Sadnessi(a, l) def= Distressi(a, l) ∧ SB¬Control l

with
Control ϕ def

=
∨

b∈PAct

〈〈b〉〉¬ϕ

where Control ϕ means “the agent has control over ϕ” (or “the
agent can prevent ϕ to be true”). Our definition is consistent with
some psychological theories [19, 11] according to which, undesir-
able states of affairs that not be controlled makes one to be sad.

Example 1. Consider again our robot which can decide to trans-
port either container number 1 or container number 2 to a given
target position. The former task is more demanding than the lat-
ter task, as container number 1 is much heavier than container
number 2. In particular, the former task requires at least a full
battery charge, whereas the latter requires at least a half battery
charge. This means that the action of transporting container num-
ber 1 (transport1) and the action of transporting container number
2 (transport2) have the following positive effect preconditions with
respect to the objective of placing a container at the target position
(pos):
γ+(transport1, pos) = f ullCharge,
γ+(transport2, pos) = f ullCharge ∨ hal fCharge.
Let us assume that the two actions are always executable:
Pre(tranport1) = Pre(tranport2) = >.

Suppose that at the state w the robot intends to transport con-
tainer number 1 to the target position and considers undesirable
with degree k not to have any container at the target position, i.e.,

M,w |= AvdGk¬pos ∧ Inttransport1
Moreover, suppose that the robot is certain that in the current situ-
ation there is no container at the target position, i.e.,

M,w |= SB¬pos
Finally, suppose that the robot is minimally conservative in revising
its beliefs, that is, δ = max.

The robot observes its battery load and realizes that it does not
have a full battery charge but only a half battery charge. After the
observation the robot will strongly believe that, if it follows its in-
tention, it will not place any container at the target position, i.e.,

M∗hal fCharge∧¬ f ullCharge,w |= SB〈〈transport1〉〉¬pos
It should be noted that the new model M∗hal fCharge∧¬ f ullCharge is ex-
actly the same as M except for the plausibility value κexc. This
implies that we have,

M∗hal fCharge∧¬ f ullCharge,w |= AvdGk¬pos∧
Inttransport1 ∧ SB〈〈transport1〉〉¬pos

and therefore for merge(max,k) = i we have
M∗hal fCharge∧¬ f ullCharge,w |= Distressi(transport1,¬pos)

This means that, after having observed that it only has a half bat-
tery charge, the robot is distressed with intensity i that, if it follows
its current intention, then it will not succeed in placing a container
at the target position.
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4. FROM APPRAISAL TO COPING
In the previous section, we have characterized emotions in terms

of beliefs, (achievement and avoidance) goals, and intentions, and
formalized their intensities in terms of belief strength and goal
strength. Emotions with high intensity influence the agent’s be-
havior in order to cope with relevant and significant events. In gen-
eral, coping can be seen as a cognitive mechanism whose aim is
to discharge a certain emotion by modifying one or more of the
mental attitudes (e.g., beliefs, goals, intentions) that triggered the
emotion [11]. For example, our robot can cope with its distress that
if it follows its current intention then it will not succeed in placing
a container at the target position, by reconsidering its current inten-
tion. The coping mechanism determines various types of responses,
also called coping strategies. We here consider three types of cop-
ing strategies: coping strategies affecting intentions, coping strate-
gies affecting beliefs and coping strategies affecting goals. More
precisely, we consider coping strategies which deal with emotion
either by forming or revising an intention to act in the world, or
by changing the agent’s interpretation of the situation (by changing
belief strength or goal strength).

4.1 Coping strategies: syntax and semantics
We extend the logic DL-GA with three different kinds of coping

strategies: (1) coping strategies affecting beliefs of the form ϕ↑B

and ϕ↓B, (2) coping strategies affecting goals of the form l↑D and
l↓D, and (3) coping strategies affecting intentions of the form −a
and +a. We call DL-GA+ the resulting logic. ϕ↑B consists in in-
creasing the strength of the belief that ϕ is true, while ϕ↓B consists
in reducing the strength of the belief that ϕ is true. l↑D consists in
increasing the desirability of l, while l↓D consists in reducing the
desirability of l. Finally, −a consists in removing the intention Inta,
while +a consists in generating the intention Inta.

The set of coping strategies is defined by the following grammar:

CStr : β F ϕ↑B| ϕ↓B| l↑D| l↓D| −a | +a

where ϕ ranges over Fml, l ranges over Lit, and a ranges over PAct.
For every coping strategy β we introduce a corresponding dynamic
operator [β], where [β]ψ has to be read “after the occurrence of β,
ψ will be true”.

As expected, the truth conditions of the new operators are given
in terms of model transformation. For every β ∈ CStr we define:

M,w |= [β]ψ iff Mβ,w |= ψ
The model Mβ is defined according to the Definitions 9-11 below.

Coping strategies affecting the strength of the belief that ϕ either
increase or decrease the exceptionality of the worlds in which ϕ
is false with ω unit, only if the agent believes that ϕ, i.e. Bϕ. If
the agent does not believe that ϕ, i.e. ¬Bϕ, they do not have any
effect on the agent’s mental state. In fact, we assume that coping
strategies can only operate on existing beliefs of the agent by either
increasing or decreasing their strengths. ω is a parameter which
captures the agent’s disposition (or personality trait) to radically
change its mental state when coping with emotions (the higher is
ω, and the higher is the agent’s disposition to change its mental
state when coping with emotions).

Definition 9 (Update via coping strategy on beliefs). Given a
DL-GA model M and β ∈ {ϕ↑B, ϕ↓B}, the updated model Mβ is de-
fined as Mβ = 〈W,∼, κβexc,D,I,V〉 where for all w:

κ
β
exc(w) =



κexc(w) if M,w |= ϕ

CutB(κexc(w) + ω) if M,w |= ¬ϕ ∧ Bϕ and β = ϕ↑B

κexc(w) if M,w |= ¬ϕ ∧ ¬Bϕ and β = ϕ↑B

CutB(κexc(w) − ω) if M,w |= ¬ϕ ∧ Bϕ and β = ϕ↓B

κexc(w) if M,w |= ¬ϕ ∧ ¬Bϕ and β = ϕ↓B

ω ∈ Num \ {0} and CutB has been defined in Definition 5.

Coping strategies affecting desirability of l either increase or de-
crease the desirability of l with ω unit.

Definition 10 (Update via coping strategy on goals). Given a
DL-GA model M and β ∈ {l↑D, l↓D}, the updated model Mβ is de-
fined as Mβ = 〈W,∼, κexc,Dβ,I,V〉 where for all w:

Dβ(w, l′) =



CutD(D(w, l′) + ω) if β = l↑D and l′ = l
CutD(D(w, l′) − ω) if β = l↓D and l′ = l
D(w, l′) if l′ , l

ω ∈ Num \ {0} and:

CutD(y) =



y if −max ≤ y ≤ max
max if y > max
−max if y < −max

CutD ensures that the new desirability degree of a literal fits into the
finite set of integers Num ∪ Num−.

Finally, coping strategies affecting intentions change the com-
mitment function by either adding or removing an intention.

Definition 11 (Update via coping strategy on intentions).
Given a DL-GA model M and β ∈ {−a,+a}, the updated model Mβ

is defined as Mβ = 〈W,∼, κexc,D,Iβ,C,V〉 where for all w:

Iβ(w) =


I(w) \ {a} if β = −a
I(w) ∪ {a} if β = +a

The following validities capture some expected properties of cop-
ing strategies affecting beliefs and goals. If h ≥ 1 then:

|=DL-GA+ B≥hϕ→ [ϕ↑B]B≥CutB(h+ω)ϕ (10)

|=DL-GA+ B≥hϕ→ [ϕ↓B]B≥CutB(h−ω)ϕ if CutB(h − ω) > 0 (11)

|=DL-GA+ B≥hϕ→ [ϕ↓B]¬Bϕ if CutB(h − ω) = 0 (12)

|=DL-GA+ Deshl→ [ϕ↑D]DesCutD(h+ω)l (13)

|=DL-GA+ Deshl→ [ϕ↓D]DesCutD(h−ω)l (14)

4.2 Triggering conditions of coping strategies
In our model coping strategies have triggering conditions which

are captured by the function
Trg : CStr −→ Fml

mapping coping strategies to DL-GA-formulas. For every coping
strategy β, Trg(β) captures the conditions under which the coping
strategy β is possibly triggered. Following current psychological
and computational models of emotions [11, 16, 9], we here assume
that coping strategies are triggered by the agent’s positively va-
lenced emotions (e.g., hope and joy) and negatively valenced emo-
tions (e.g., fear and sadness). In what follows we only discuss cop-
ing strategies triggered by negatively valenced emotions.

We assume that an agent that is fearful or distressed because its
intention a will realize the undesirable effect l will possibly recon-
sider its intention. Such an intention reconsideration strategy can
be formulated as follows:
Trg(−a) =

∨
l∈Lit,i∈EmoInt:i≥θ((Feari(a, l) ∨ Distressi(a, l))∧

B Control l)
This means that the coping strategy of reconsidering the inten-

tion to perform the action a is triggered if and only if (1) the agent
is either fearful or distressed with intensity at least θ that its in-
tention to perform the action a will lead to an undesirable result,
(2) the agent believes that he has control over l, in the sense that
he can prevent the undesirable result l to be true by performing a
different action. θ is a threshold which captures the agent’s sen-
sitivity to negative emotions (the lower is θ, and the higher is the
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agent’s disposition to discharge a negative emotion by coping with
it). Control l captures the appraisal variable called controllability
we have discussed in Section 3.

Furthermore, we assume that an agent that is fearful or distressed
because it believes that its intended action a will realize the unde-
sirable consequence l on which it has no control (1) will decrease
the strength of the belief that action a will lead to the undesirable
consequence l or, (2) will increase the desirability of l. The former
kind of coping strategy captures wishful thinking while the latter
captures mental disengagement.
Trg(〈〈a〉〉l↓B) =

∨
l∈Lit,i∈EmoInt:i≥θ((Feari(a, l) ∨ Distressi(a, l))∧

¬B Control l)
Trg(l↑D) =

∨
l∈Lit,i∈EmoInt:i≥θ((Feari(a, l) ∨ Distressi(a, l))∧

¬B Control l)
Note that differently from intention-related coping, wishful think-

ing and mental disengagement are triggered if the agent appraises
that it has no controllability of the undesirable consequence l, in
the sense that it cannot prevent l to be true (on this see also [14]).

Example 2. Let us continue the example of Section 3. We have,
M∗hal fCharge∧¬ f ullCharge,w |= Distressi(transport1,¬pos)

Suppose i ≥ θ. Given the assumption that Pre(tranport2) = > and
the positive effect preconditions of transport2 with respect to pos,
the robot believes that the action transport2 will place the second
container at the target position, i.e.,

M∗hal fCharge∧¬ f ullCharge,w |= B〈〈transport2〉〉pos
and therefore,

M∗hal fCharge∧¬ f ullCharge,w |= B Control ¬pos
Following the specification of the triggering condition for intention-
related coping, the robot can now reconsider its intention Inttransport1 ,

M∗hal fCharge∧¬ f ullCharge,w |= Trg(−transport1)

5. AXIOMATIZATION AND DECIDABILITY
The logic DL-GA of Section 2 is axiomatized as an extension

of the normal modal logic S5 for the epistemic operator K with
(1) a theory describing the constraints imposed on the agent’s men-
tal state, (2) the reduction axioms of the dynamic operators [α], and
(3) an inference rule of replacement of equivalents.

Theory of the agent’s mental state.∨
h∈Num exch∨
k∈Num∪Num− Deskl

exch → ¬excl if h , l
Deskl→ ¬Desml if k , m
K̂ exc0

Reduction axioms for the dynamic operators [α].

[α]p↔


(γ+(a, p) ∧ ¬γ−(a, p)) ∨ (p ∧ ¬γ−(a, p)) if α = a
p if α = ∗ϕ

[α]Inta ↔

⊥ if α = a
Inta if α , a

[α]exch ↔



exch if α = a
((ϕ ∧∨l,m∈Num\{0}:l−m=h(Bm¬ϕ ∧ excl))∨
(ϕ ∧ (B̂ϕ ∧ exch))∨
(¬ϕ ∧ K̂ϕ ∧∨l∈Num:CutB(l+δ)=h excl)∨
(K¬ϕ ∧ exch)) if α = ∗ϕ

[α]Deskl↔ Deskl
[α]¬ψ↔ ¬[α]ψ
[α](ψ1 ∧ ψ2)↔ ([α]ψ1 ∧ [α]ψ2)
[α]Kψ↔ K[α]ψ

Rule of replacement of equivalents.

From ψ1 ↔ ψ2 infer ϕ↔ ϕ[ψ1/ψ2]

Given a formula ϕ, let red(ϕ) be the formula obtained by iterating
the application of the reduction axioms from the left to the right,
starting from one of the innermost dynamic operators [α]. red
pushes the dynamic operators inside the formula, and finally elim-
inates them when facing an atomic proposition. Obviously, red(ϕ)
does not contain dynamic operators [α]. The following proposition
is proved using the reduction axioms above and the rule of replace-
ment of equivalents.

Proposition 2. Let ϕ be a formula in the language of DL-GA.
Then, red(ϕ)↔ ϕ is DL-GA valid.

Theorem 1. Satisfiability in DL-GA is decidable.
Sketch of Proof. Let L-GA be the fragment of the logic DL-GA
without dynamic operators. The problem of satisfiability in L-GA
is reducible to the problem of global logical consequence in S5,
where the set of global axioms Γ is the theory of the agent’s mental
state given above. That is, we have |=L-GA ϕ if and only if Γ |=S5 ϕ.
Observe that Γ is finite. It is well-known that the problem of global
logical consequence in S5 with a finite number of global axioms is
reducible to the problem of satisfiability in S5. The problem of sat-
isfiability checking in S5 is decidable [7]. It follows that the prob-
lem of satisfiability checking in the logic L-GA is decidable too.
Proposition 2 and the fact that L-GA is a conservative extension of
DL-GA ensure that red provides an effective procedure for reduc-
ing a DL-GA formula ϕ into an equivalent L-GA formula red(ϕ).
As L-GA is decidable, DL-GA is decidable too.

�

The logic DL-GA+ of Section 4 is axiomatized by the axioms
and the rules of inference of the logic DL-GA plus the following
reduction axioms for the dynamic operators [β].

Reduction axioms for the dynamic operators [β].

[β]p↔ p

[β]Inta ↔


> if β = +a
⊥ if β = −a
Inta if β , +a and β , −a

[β]exch ↔



((ϕ ∨ (¬ϕ ∧ ¬Bϕ)) ∧ exch)∨
(¬ϕ ∧ Bϕ ∧∨l∈Num:CutB(l+ω)=h excl) if β = ϕ↑B

((ϕ ∨ (¬ϕ ∧ ¬Bϕ)) ∧ exch)∨
(¬ϕ ∧ Bϕ ∧∨l∈Num:CutB(l−ω)=h excl) if β = ϕ↓B

exch if β = l↑D or β = l↓D

[β]Deskl↔


∨
m∈Num∪Num−:CutD(m+ω)=k Desml if β = l↑D

∨
m∈Num∪Num−:CutD(m−ω)=k Desml if β = l↓D

Deskl if β , l↑D and β , l↓D

[β]¬ψ↔ ¬[β]ψ
[β](ψ1 ∧ ψ2)↔ ([β]ψ1 ∧ [β]ψ2)
[β]Kψ↔ K[β]ψ

The following Theorem 2 is proved in the same way as Theorem 1.

Theorem 2. Satisfiability in DL-GA+ is decidable.

6. RELATED WORK
Although psychological models of emotion emphasize the role

of emotion intensity and its role in the coping mechanism, most
existing works on logical modeling of emotions have ignored either
the intensity of emotions or the coping strategies.

Adam et al. [1] have proposed a logical formalization of the
OCC model, while Lorini & Schwarzentruber [13] have formalized
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counterfactual emotions such as regret and disappointment. Both
approaches ignore the quantitative aspect of emotions. In a previ-
ous work [12] we formalized emotion intensity by using a similar
logic, but we did not consider the coping strategies.

The logical approach to emotion proposed by Steunebrink et
al. [22] has both characteristics of our approach: it provides a for-
mal model of emotions extended with their intensities and coping
strategies. In this model, an intensity function is assigned to each
appraised emotion to determine its intensity at each state of the
model. The coping mechanism introduced in this model is inspired
by Frijda’s theory of action tendencies [8]. According to this the-
ory, specific emotions give agents the tendency to perform particu-
lar actions. In the proposed model, coping strategies are developed
for negative emotions and their aim is to reduce the intensity of neg-
ative emotions. However, unlike the present approach, Steunebrink
et al.’s approach takes emotion intensity as a primitive without ex-
plaining how it depends on more primitive cognitive ingredients
such as belief strength and goal strength. The other important dif-
ference between the present work and Steunebrink et al.’s work is
that we here provide a decidable logic of emotion with a complete
axiomatization, whereas Steunebrink et al. do not provide any de-
cidability result or complete axiomatization for their logic of emo-
tion.

In the computational model proposed by Gratch and Marsella [9,
14], the eliciting conditions of emotions are defined in terms of
quantitative measures such as desirability and likelihood of events.
The model is based on several thresholds that determine when emo-
tions are elicited and how emotions are coped with. The imple-
mentation of the proposed model is called EMA and is applied to
generate predictions about human emotions and their coping strate-
gies. Since the model is quantitative and the authors do no provide
any details about its underlying logic, it is hard to compare this
model with other logical approaches. One can only conclude that
the model proposed by Gratch and Marsella considers both emo-
tion intensities and coping strategies, although it does not provide
a logical characterization of the emotions, their intensities, or the
corresponding coping strategies.

7. DISCUSSION
In this work we have provided a logical characterization of emo-

tions enriched with intensities and coping strategies. Emotions are
defined in terms of graded beliefs, graded (achievement and avoid-
ance) goals, and intentions. The intensity of emotions, which is
defined as a function of belief strength and goal strength, is used to
trigger specific coping strategies. We have considered only a few
coping strategies triggered by negative emotions. In future work,
we intend to extend our analysis to coping strategies triggered by
positive emotions. For example, hope or joy with respect to a cur-
rent intention may trigger coping strategies that suspend the other
intentions in order to create a focus on the intended action for which
the agent is hopeful or joyful. Moreover, the emotions discussed in
this paper are defined with respect to an agent’s action. We would
like to extend our model in order to characterize emotions in terms
of events that are independent from the agent’s actions and inten-
tions. Finally, in the present work we have only modeled the so-
called prospective emotions, rather than actual emotions. We be-
lieve that our model can be easily extended to characterize actual
emotions such as being joyful to have already placed a container
at the target position or being hopeful that the current state of the
battery charge is not empty.
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ABSTRACT
We present a methodology for the automatic verification of
multi-agent systems against temporal-epistemic specifications
derived from higher-level languages defined over convergent
equational theories. We introduce a modality called rewrit-
ing knowledge that operates on local equalities. We discuss
the conditions under which its interpretation can be ap-
proximated by a second modality that we introduce called
empirical knowledge. Empirical knowledge is computationally
attractive from a verification perspective. We report on an im-
plementation of a technique to verify this modality with the
open source model checker mcmas. We evaluate the approach
by verifying multi-agent models of electronic voting protocols
automatically extracted from high-level descriptions.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Verification

General Terms
Security, Verification

Keywords
Epistemic Logic, Equational Rewriting, Model Checking

1. INTRODUCTION
Over the past decade there has been increased interest in

developing methodologies for the verification of multi-agent
systems (MAS). An approach that has been shown effective
is that of symbolic model checking [15, 18] for MAS specified
in semantics for temporal-epistemic logic [12]. This has been
effectively used in a number of practical applications, includ-
ing autonomous underwater vehicles [11] and cryptographic
protocols [23].

A clear advantage of MAS-based approaches using temporal-
epistemic logic is the intuitiveness of the resulting specifi-
cations to be checked. Concepts emerging from the MAS
community are now being exported to other close disciplines
that increasingly see the benefit of using powerful, expressive
languages.

One of these areas is security. It has long been recognised [5]
that cryptographic protocols can benefit from specifications

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in which knowledge-based concepts feature prominently. Con-
cepts such as anonymity, privacy and non-repudiation can
be both naturally and powerfully expressed in epistemic lan-
guages. Influential works in the area include the formulation
of secrecy by Halpern et al. [14], advances on algorithmic
knowledge [20] and the epistemic modelling of unlinkabil-
ity [23]. These have found applications in MAS in a variety
of ways, including attack detectability [4].

Still, fundamental problems remain. Firstly, the indistin-
guishability relations to be used when interpreting the knowl-
edge modalities need to account for the cryptographic primi-
tives used in the messages exchanged. For instance, the set of
indistinguishable states should be computed by taking into
account the agent’s ability to decipher a given message. While
some approaches (e.g., [7]) support cryptographic primitives
such as encryption and decryption, existing approaches fall
short of addressing the more general classes including digital
signatures and bit-commitments. Yet, these primitives are
prominent in several classes of protocols, e.g., e-voting or
zero-knowledge.

Secondly, little or no support for cryptography-inspired
modalities is currently provided in existing tools. An exten-
sion to mcmas [15] that caters for explicit knowledge exists [16],
but we are unaware of any model checker supporting epis-
temic modalities for cryptographic concepts, or, indeed, other
application-driven epistemic modality of use in many MAS
settings. In fact, recent approaches [4] have been restricted
to protocols in which receivers can decode all messages down
to their atomic constituents immediately upon their receipt.
This assumption is not natural in many settings including
e-voting, where principals are often only able to decipher
messages only at the end of a run.

In this paper we develop an approach aimed at overcom-
ing these limitations. Specifically, in Section 2 we define a
novel epistemic modality that is interpreted with respect to
a general equational theory defining the system. This differs
from the standard approach in which the agents’ knowledge
is interpreted on the equality of the local states. The high
computational cost of deducing equivalence under equational
theories has been previously discussed [8]. Thus, in Section 3,
we put forward a computationally efficient approximation.
Section 4 discusses the implementation of this revised modal-
ity on top of the model checker mcmas. In Section 5 we evalu-
ate the techniques presented by verifying e-voting protocols
modelled as MAS as per the formalism developed in Section 2.
We discuss the results and conclude in Section 6.
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2. A TEMPORAL-EPISTEMIC LOGIC FOR
SECURITY PROTOCOLS

In this section we introduce a MAS-based semantics for
an epistemic logic under convergent equational theories.

2.1 Preliminaries
We assume familiarity with the concepts presented in this

subsection; the following is intended to fix the notation only.
Interpreted Systems. The interpreted systems (IS) formal-

ism [19] is a MAS-based semantics for temporal-epistemic
logic (CTLK) [12]. We assume a set Ag = {1, . . . , n} of agents
and an Environment denoted by Env. An agent i is described
by a set Li of possible local states, a set Acti of local actions,
a local protocol function Pi : Li → 2Acti and a local evolution
function ti : Li ×Act1 × . . .×Actn ×ActEnv → Li. An IS
is defined by the set G ⊆ Q1≤i≤n Li × LE of global states,
the set Act = Act1 × . . . × Actn × ActEnv of joint actions,
the joint protocol P = (P1, . . . , Pn, PEnv) and the global
evolution function t = (t1, . . . , tn, tEnv). For a global state
g ∈ G and a joint action a ∈ Act, we use gi and ai to denote
the local state and the local action of agent i, respectively.
For more details on interpreted systems, we refer the reader
to [12].

Equational Theories [10]. For ease of reference, consider
the following equational theory aimed at checking whether
one integer is smaller or equal to another.

An Equational Theory (Σ1, E1) for Illustrative Purposes.

Signature Σ1:
Sorts: S = {nat, bool}; Variables: Xnat = {x, y};
Function Symbols: Σλ,bool = {true, false};
Σ[(nat,nat),bool] = {≤}; Σ[bool,bool] = {¬}
Σ[λ,nat] = {0}; Σ[nat,nat] = {succ}
Σ[ω,s] = ∅, otherwise (i.e., for other ω ∈ S∗, s ∈ S);

The set E1 of Σ1-Equations :
((¬true) = false);
((¬false) = true);
(≤(0, x) = true);
(≤(succ(x), 0) = false);
(≤(succ(x), succ(y)) =≤(x, y));

Let S be a non-empty set of sorts (i.e., simple types such as
nat and bool in the example above). Let Σ = {Σ(ω,s)|ω ∈ S∗,
s ∈ S} be an S-sorted signature, i.e., a collection of functional
symbols of type [ω, s]. Generally, σ ∈ Σ(ω,s) denotes a function
symbol (e.g., ¬,≤, succ in the example above). LetX be an S-
sorted set of variables (e.g., x and y above), where Xs are the
variables of sort s (e.g.,Xnat is still {x, y} above). Let TΣ,X be
the S-sorted set of terms overX and Σ (e.g., succ(x) is a term
over signature Σ1 in the example above), and TΣ be the set
of ground terms, i.e., terms without variables. An equational
theory is a tuple (Σ, E), where Σ is a signature and E is a
set of Σ-equations. The notation t = t′ or t→E t

′ denotes
a Σ-equation, i.e., a pair (t, t′) of terms equal under E.

The semantics for equational theories can be given through
the S-sorted Σ-algebra A = (A,ΣA) [10], where the set
A = (As | s ∈ S) is an indexed set of values (i.e., the sort nat
above is mapped under A onto the set Anat of concrete values,
e.g., natural numbers). For each sort s, the set As is called the
support-set for s. The set ΣA is a set of functions fA from Aω
to As corresponding to function symbols f in Σ, f ∈ Σ(ω,s),
ω ∈ S∗, s ∈ S (e.g., the symbol succ corresponds to a con-
crete successor function operating on natural numbers). The
indexed set δ = (δs | s ∈ S) of maps is an assignment of

X into the algebra A; the tuple δ=[x1/v1 , . . . , xn/vn ] rep-
resents an assignment where the variable xi is set to the
value vi, for i ∈ {1, . . . , n}. Moreover, the notation δ[x/v]
represents the assignment obtained from δ when δs(x) is
replaced by the value v, for some x ∈ Xs, v ∈ As, s ∈ S.

The relation →∗E is the transitive closure of →E ∪ =. Let
t ∈ TΣ,X . The normal term of t (denoted by t↓E ) is the unique
term t′ ∈ TΣ,Y such that t →∗E t′, where Y ⊆ X. Finally,
recall that an equational theory E is convergent if the algebra
of its semantics can be mechanised into a rewriting system
→E which is convergent (i.e., confluent and terminating [2]).
A theory is subterm convergent if all the subterm in the left-
hand side of the rewriting rule also appear on the right-hand
side of it. For more details on equational theories, we refer
to [10].

Protocols. Security protocols often rely on primitives such
as encryption and hashing to establish some security prop-
erty, e.g., authentication. These primitives can be formally
described by equational theories. Consider the simple proto-
col below constructed on the theory (Σ1, E1).

A Communication Protocol Pr1.

1. A→ B : n

2. B→ A : m

3. A→ B : ≤(n,m)

The protocol Pr1 describes a set of send-receive rules of
the two roles: the A-role and the B-role. An agent assuming
the A-role initiates the protocol by sending the term n to its
B-role partner agent. This receiver replies with the term m.
The initiator terminates the protocol with the acknowledge-
ment ≤(n,m), where ≤ is a publicly known function symbol.
This symbol is described by the equational theory (Σ1, E1)
aforementioned. The protocol Pr1 is purposely simple to
exemplify the material that follows.

High-level security languages such as Common Authen-
tication Protocol Specification Language (CAPSL) [9] pro-
vide precise descriptions of security protocols, including the
underlying equational theory formalising the effects of the
protocol-primitives executed by each role (i.e., in our presen-
tation, by some agent assuming that role). We assume that
all protocols referred to henceforth are specified in CAPSL.

2.2 Protocol Model
In this subsection we put forward a technique for producing

a fully instantiated interpreted system that models a finite
number of protocol sessions running concurrently. The aim
of this construction is to obtain interpreted systems in which
the epistemic relation for each agent is an equivalence relation
under the underlying equational theory of the protocol.

Consider a generic security protocol Pr that is specified
by an equational theory (Σ, E). Its execution generates an
instantiation of the protocol. To model this, let a Σ-algebra
A, together with a finite set ∆ of assignments of variables X
in A, be the interpretation of the protocol’s theory (Σ, E).
Importantly, assume that the rewriting sequence t→E∗ t↓E
mechanising the term algebra TΣ,X is somehow provided
for each t ∈ TΣ,X , e.g., by using a rewriting engine or a
CAPSL compiler [9] a priori. Since the normal terms are at
hand, to obtain the equivalence between states we will not
need to express the message-deducibility relation beforehand,
as required in other approaches [8]. Also, we only consider
a bounded number of protocol instantiations. By doing so
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we obtain decidable state-equivalence modulo convergent
equational theories.

On the algebra A, let the set TΣ,X |Pr denote the terms used
only in the actual description of the protocol Pr. When Pr
is implicit, we simply write simply TΣ,X to mean TΣ,X |Pr . In
doing so, we underline the protocol-terms (i.e., messages and
their subparts) and, later, their values. Thus, for the protocol
Pr1, the set TΣ1,X |Pr1 of terms is {A,B, n,m,≤(n,m)}. To
highlight variables describing a role of the protocol (i.e.,
variables A and B in Pr1), we introduce an additional sort
called role. Variables of sort role (i.e., Xrole) range over
support set Arole. This is taken to be a set of strings, for
example {alice, bob, greg, . . .}.

Protocol Roles to Agents.
An entire protocol-role (e.g., a sender) is described by a
variable of sort role together with all the terms and actions
that inherently characterise it.

Assume a particular assignment δ ∈ ∆. An assignment
δ (homomorphically) instantiates all the terms in TΣ,X |Pr .
As such, an assignment symbolically corresponds to a protocol
session (e.g., a session of Pr1 is given by δ = [n/3,m/2, A/alice,
Bbob]). However, to model the development of the protocol
execution more clearly, we will use the projection of each such
assignment δ ∈ ∆ per each role. Note that when the sender A
starts the protocol Pr1, it does not possess any value for the
variable m or for the term ≤(n,m) (as it will only receive m
after the protocol starts, from some interlocutor of B-role).
To formalise this, we will say that a variable is free in or
bound to a role (see formalisation below).

Variables in a Role. A variable x is bound to a role R,
written x ∈ BR, if the (CAPSL) protocol description stipu-
lates the variable x as private to the role R. Otherwise, a
variable y is free in a role R, written y ∈ FR. The extension
to non-atomic terms is as usual: if t ∈ TΣ,X′ and X ′∩FR 6= ∅
then t ∈ FR, otherwise t ∈ BR.

In the Pr1 protocol the variable n is bound to the role of A,
while the variable m is free in the role of A. Therefore, the
term ≤(m,n) is free in the role of A.

To denote the initial ignorance of some concrete values
within a role, we will use designated values, called null values,
in the assignment of the variables and terms which are free
in a role. To denote these null values, we use (⊥s | s ∈ S),
an S-sorted set of constant function symbols. When the sort
s is implicit, we simply write ⊥ instead of ⊥s. All constant
function symbols over ω ∈ S∗ in which at least one component
is ⊥ are denoted by ⊥ω, i.e., if n has value ⊥nat within ≤
(m,n), then the whole value of ≤ (m,n) is also ⊥, specifically
⊥[(nat,nat),bool]. Bound variables are assigned to concrete, non-
null values, chosen arbitrarily over the a given range, e.g.,
integers, etc. Let the universal algebra A be the denotational
interpretation of the theory (Σ, E). To be able to define
operations on null values, we naturally extend the denotation
A to A⊥, which has As⊥=As ∪ {⊥s} as support-sets and
it operates over As like A and it returns ⊥ whenever it
operates over ⊥, for any s ∈ S.

Initial Instantiation of Roles. Let δ ∈ ∆ be an assign-
ment. The initial R-role instantiation δ|R is the projection of
the assignment δ on a role R, extended to A⊥ to enforce the
assignment of all terms in the R-role to values, including null
values: δ|R = (t/δ(t), t

′/⊥s | t ∈ (BR)s, t
′ ∈ (FR)s, s ∈ S).

For the protocol Pr1, let δ = [n/3,m/2, A/alice, Bbob] be
an assignment. Then, by the definition above, the initial role
instantiations are as follows:
δ|A=[n/3,m/⊥, A/alice, B/bob,≤(n,m)/⊥],
δ|B=[n/⊥,m/2, A/alice, B/bob,≤(n,m)/⊥].

For each role R, we map each initial instantiation δ|R
of the R-role into an agent agδR. This gives the set Ag =
∪
δ∈∆

∪
R∈Xrole

{agδR} of agents.

An IS Protocol Semantics.
In the following let the agent agδR represent an arbitrary R-
role under the assignment δ of a Pr protocol. In particular,
let agδA correspond to the A-role under δ|A, for an assignment
δ = [n/3,m/2, A/alice, B/bob] of the protocol Pr1. We now
present the formal description of the agent agδR.

We consider several concurrent instantiations of each role
by different agents. So, a free term (⊥) representing the
role of the sender can later be instantiated to potentially
different values, depending on the value received from other
agents. A receipt may trigger the instantiations of other local
terms as prescribed by the equational theory of the protocol.
For instance, in Pr1 with δ = [n/3,m/2, A/alice, B/bob] an
A-role participant may receive the value 2 for m from a
B-role agent. Following this, the A-role agent will “apply”
the equational theory E1 to rewrite the term ≤(m,n) to
≤(3, 2), ≤(2, 1), ≤(1, 0) and, finally, to .F.1. To permit this,
the term ≤(m,n) of sort Bool, which is free in the role of
A, should range over (Anat × Anat) ∪ Abool⊥ = (N × N) ∪
{.T., .F.}⊥. However, the term n should efficiently range only
over Anat=N for this agent, since n is bound to the A-role
and its initial value cannot be changed. These value-range
restrictions optimise the size of the fully instantiated model.
The following definition formalises this by giving the possible
values of a portion of a message held by an agent during the
run.

Range of a Term for an Agent. The range RangeR(t)
of a term t ∈ TΣ,X |Pr for an agδR agent is as follows:
RangeR(t)=8>>>>><>>>>>:

As t ∈ (BR)s ∩Xs (1)
As⊥ if t ∈ (FR)s ∩Xs (2)
(As1 × . . .×Asn ) ∪As if t ∈ (BR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si (3)
(As1 × . . .×Asn ) ∪As⊥ if t ∈ (FR)s, t = σ(t1, . . . , tn),

σ ∈ Σ(s1,...,sn),s, ti ∈ TΣ,X,si (4)

Stores and Views for an Agent. A store for an agent agδR
is a relation (t :: RangeR(t) | t ∈ TΣ,X |Pr ) between terms
and their respective ranges for the agent agδR.

An initial view for an agent agδR encodes an a initial R-role
instantiation δ. A non-initial view for agδR encodes an actual
assignment δ[y/v], for some y ∈ (FR)s, v ∈ As (i.e., v 6= ⊥s).

The store of agδA in a model for Pr1 is as follows:
storeagδ

A
= (A ::String,B ::String, n ::N,m ::N⊥,
≤(n,m)::(N× N) ∪ {.T., .F.}⊥).

A possible non-initial view for agδA in a model for Pr1 is:
viewagδ

A
= (A 7→ alice,B 7→ bob, n 7→ 3,m 7→ 2,

≤(n,m) 7→ ⊥).
The non-initial view viewagδ

A
shows that agδA has updated

the value for m in its view from the initially held ⊥ to the
received value 2. In the above, agδA has not yet “calculated”
the value of ≤(n,m), i.e., ≤(n,m) is still ⊥ in viewagδ

A
.

1.T. and .F. are the concrete values for true and false.
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To complete the description of instantiated protocol roles,
we introduce the set of adjacent terms Adj. These terms are
unrelated to the equational theory E, but are induced by the
(CAPSL) protocol description (e.g., flag variables to denote
protocol steps, stages of rewriting, etc.).

Local States of Agents. An (initial) local state is an (ini-
tial) view together with certain protocol-driven adjacent
terms and their assigned values. The set LagδR

is the set

of all possible local states of agδR.

Let step ∈ Adj be an adjacent atomic term of sort nat (i.e.,
denoting protocol steps). Then, let RangeR(step) = N and
step 7→ 1 in an initial setup, for any role R. An initial state i l
and local state l of agent agδA in a model for Pr1 are as follows:
i l = (step 7→ 1, A 7→ alice,B 7→ bob, n 7→ 3,m 7→ ⊥N,

≤(n,m) 7→ ⊥{.T.,.F.});
l = (step 7→ 5, A 7→ alice,B 7→ bob, n 7→ 3,m 7→ 2,

≤(n,m) 7→ .F.).
Let l ∈ Lagδ

R
, t ∈ TΣ,X and x ∈ RangeR(t). In the follow-

ing, we use the following notations:
l .view denotes the view encoded inside the local state l
l .t denotes that the local state l stores a value for the term t
l |t=x denotes the fact that l.t=x
l |δ denotes that l|t=x and δ=[t/x] for all t in the domain of δ
l [t/x ] denotes the fact that l.t is set to x

In the following, let i denote the map agδR of an initiator

role R and i′ denote the map agδ
′
R′ of a receiver role R′.

Local Actions and Protocol of Agents. Let step ∈ Adj,
j ∈ {1, 2, 3}, nrj ∈ RangeR(step) and t, x, i′, l be as above.
The set LActi= {send(t, x, i′), receive(t, x), rewrite, empty}
is the set of possible local actions of agent i. The local proto-
col Pi of agent i is as follows: Pi(l|step=nr1, l.t=x, l.R′=i′.R′)=
{send(t, x, i′)}, Pi(l|step=nr2)= {receive(t, x)},
Pi(l|step=nr3)= {rewrite}.

When a particular protocol is given, the parameters of the
actions are restricted to proper subsets of TΣ,X , e.g., t ranges
over certain terms in receive(t, x) for i.

The Environment Agent. We assume that the environment
agent Env records all communication. Therefore, the local
states of the Env agent are given by maps of the form (t ::
∪

R∈role
RangeR(t) :: Ag :: Ag | t ∈ TΣ,X). This gives the set

LEnv of possible local states of the Environment agent. The
environment has only one possible action denoted by listen,
which is enabled by its protocol at every local state.

Global States and Joint Actions. Let i ∈ Ag = {1, . . . , n},
li ∈ LActi, lEnv ∈ LEnv, ai ∈ Acti and aEnv ∈ ActEnv. A
global state g is a tuple (l1, . . . , ln, lEnv). The set G of global
states is the set of all possible states g as above. A joint
action a is a tuple (a1, . . . , an, aEnv). The set Act of joint
actions is the set of all possible joint actions a as above.

Agents’ Local Evolution Function. Let i denote the agδR
agent, i′ denote the agδ

′
R′ agent as above, let l ∈ Li be a

local state of agent i and a ∈ Act be a joint action. The
local evolution function Ei of agent i is defined below. In
this definition, the preconditions for enabling a state-update
upon receipt express the following: 1) the action receive of
agent i is synchronised with the action send of agent i′ and
with the action listen of the Env agent; 2) agent i is in the
step nr where it awaits message t; 3) the purported sender is

the agent of the R′-role2 (i.e., i.R′ = i′.R′ ); 4) the values xj
of certain subterms tj in the received term t are consistent
with agent i’s view, i.e., l|tj=xj . These conditions are inspired
by the matching-receive semantics [3, 21].8>>>>>>>>>>><>>>>>>>>>>>:

l[step/nr+1] if l|t=x,step=nr,R′=i′.R′ , for
ai=send(t, x, i′),aEnv= listen,
a′i = receive(t, x)

l[step/nr+1, t/x] if l|tj=xj ,step=nr,R′=i′.R′ , for
ai=receive(t, x),aEnv= listen,
a′i=send(t, x, i), tj ∈ Sub(t)

l[step/nr+1, t/t
′] if l|step=nr+1, for ai=rewrite,

aEnv= listen,
a′i=empty, t ∈ TΣ,X , t

′ = t↓E
To illustrate further, let i = agδA in the Pr1 protocol and,

by Ei, let the action receive(m, 2) be performed at the local
state l|step=1 of agent i. The implicit rewriting-driven state-
update is: ≤

`
3, 2
´
→≤

`
succ(2), succ(1)

´
→≤

`
2, 1
´
→

≤
`
succ(1), succ(0)

´
→≤

`
1, 0
´
→ .F.. For protocols where the

intermediate rewriting is not of interest, we collapse such a
state-update sequence in one update, i.e., the sequence
l[step/3,≤(n,m)/(2,1)], l[step/4,≤(n,m)/(1,0)] and
l[step/5,≤ (n,m)/.F.] is reduced to l[step/3,≤ (n,m)/.F.].
The above presentation of the local evolution function Ei
formalises such optimisations.

The Global Evolution Function. The global evolution
function t : G×Act→ G is such that t(g, a) = g′ if acti ∈
Pi(gi), Ei(gi, a) = g′i, for all i ∈ Ag ∪ {Env}, for g, g′ ∈ G
and a ∈ Act.

A path is a sequence of global states described by the global
evolution function. Paths naturally define the set of reachable
states. Henceforth, G refers to the set of reachable states.

Equational Interpreted System for Pr. An equational
interpreted system for Pr, denoted by ΥEIS , is a tuple I=
(G,Act, P, t, I0, V ), where the components Act and t are as
previously defined, I0 ⊂ G is a set of initial global states,
P = (Pi | i ∈ Ag ∪ {Env}), and V : G× PV → {true, false}
is a valuation function for the propositions PV of a logic
language.

Local Satisfaction of Equational Equalities of Terms.
The local state l ∈ Li satisfies t =E t′, written l|=(t =E t′), if
l|t=t′ , for t→E∗ t

′ with t′ = t↓E , t ∈ TΣ,X |Pr (i.e., t /∈ Adj).

By the definition above, a local state l satisfies the equality
t =E t′ of terms modulo E if the term t has been rewritten
to the normal term t′ in local state l of ΥEIS .

Equational Indistinguishability. Two local states l ∈ Li
and l′ ∈ Li are i-indistinguishable modulo E, written l ≈Ei l′,
if it is the case that l|=(t =E t

′) if and only if l′|=(t =E t
′),

for all t ∈ TΣ,X |Pr, i.e., t /∈ Adj. Two reachable global
states g, g′ ∈ G are i-indistinguishable modulo E, written
g ∼Ei g′, if gi ≈Ei g′i. The relation ∼Ei ⊆ G×G is the quotient-
indistinguishability relation.

By the definition above, two local states are indistinguish-
able modulo E if they satisfy the same equalities of terms
modulo E.

2If protocols use anonymous channels, then this condition is
dropped.
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As an example, let i be agδA in the ΥE1
IS for the pro-

tocol Pr1. As none of the following states of agδA satisfy
≤ (m,n) = E1 .F., it holds that l1|step=2,≤(n,m)=(3,2) ≈E1

i

l2|step=3,≤(n,m)=(2,1) ≈E1
i l3|step=4,≤(n,m)=(1,0). However, the

state l|step/5,≤(n,m)/.F. does satisfy ≤(m,n)=E1 .F.

Equational Multi-agent System Model for Pr. Let I
be an equational interpreted system for a protocol Pr speci-
fied by a convergent equational theory (Σ, E). The equational
multi-agent system model for Pr ME

IS = (G, (∼Ei )i∈Ag, V ) is
the model generated by the equational interpreted system
model I. In ME

IS the relation ∼Ei is as described above, G is
the set of reachable states generated by I, and V is the set
of atomic proposition in I.

We use the notation I both for the equational interpreted
system for Pr and the equational multi-agent system model
for Pr; the context will disambiguate. In our implementation,
we optimise the formalism above when generating the ΥEIS ;
this is not discussed here.

2.3 The Epistemic Logic CTLKR
Let I be the equational multi-agent system model ME

IS of
Pr, p ∈ PV and i ∈ Ag ∪ {Env}. The specification language
CTLKR, used to express the system requirements is defined
by the following BNF:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | Riϕ | AXϕ | AGϕ | A(ϕUϕ).
The operator Ki denotes the knowledge modality (Kiϕ

reads “agent i knows the fact ϕ”) while the operator Ri is the
rewriting-knowledge modality (Riϕ reads “agent i knows the
fact ϕ modulo the equational theory (Σ, E)”). The semantics
for CTL on ME

IS is as on standard interpreted systems [12].
The interpretation of the knowledge modalities is as follows:

(I, g)|=Kiϕ if (for all g′ ∈ G)(gi = g′i implies (I, g′)|=ϕ)
(I, g)|=Riϕ if (for all g′ ∈ G)(g ∼Ei g′ implies (I, g′)|=ϕ).

The logic CTLKR extends the commonly used logic CTLK
by means of the rewriting epistemic modality R.

3. AN APPROXIMATION FOR AUTOMATIC
VERIFICATION

We wish to use the logic CTLKR as a specification lan-
guage for model checking security protocols encoded in the
MAS-based formalism presented in the previous section. This
would enable us to surpass the significant limitations of the
state-of-the-art as discussed in the introduction. However,
locally parametrised properties of type t =E t′ make the
computation of the indistinguishability relation particularly
costly, thereby increasing the verification time. To circumvent
this, we approximate the R modality and interpret it over an
abstraction of ΥEIS through the use of local predicates. In the
following we will show that important classes of protocols
are amenable to analysis through this approximation.

3.1 Empirical Interpreted Systems
An S-sorted logical signature contains logic symbols of type

[ω], for ω ∈ S∗. Informally, a (standard) signature specifies
symbols related to algebraic operators, e.g., decrypt, whereas
a logical signature specifies symbols related to facts, e.g.,
isDecrypted.

Logically Extended Signatures. A logically extended sig-
nature is given by a tuple (Σ,ΣL), where Σ is an S-sorted
signature and ΣL is an S-sorted logical signature.

The tuple (Σ,ΣL, E) is the logically extended equational the-
ory corresponding to the equational theory (Σ, E). A logically
extended equational theory can describe more properties of
a protocol than the underlying equational theory alone.

The set TΣ,ΣL,X of logical terms is defined on logically
extended signatures (Σ,ΣL) in the same way the set TΣ,X

of terms is defined on the signature Σ.
The denotation of logically extended signatures is given

through a logical extension of the algebra A⊥. In this exten-
sion the interpretation i pA⊥(δ) of a logical term p ∈ TΣ,ΣL,X

under assignments δ ∈ ∆ is a predicate pA⊥ evaluated over
{true, false}. When A⊥ is implicit, we simply write i p(δ)
instead of i pA⊥(δ).

Let j be an arbitrary agent in an IS formalisation.

Logical Terms and Experiments of Agents. A fixed set
Inj ⊆ TΣ,ΣL,X denotes the set of logical terms of agent j.
The set InExj = {i p(δ) | p ∈ Inj} of predicates contains
the local experiments for agent j. An InExj set is denoted as
a local experiment-set. The Ag-indexed set InEx = (InExj |
j ∈ Ag) is the experiment-set.

Logical terms are symbols that enrich the agents’ stores
with “meta-data” representing facts not explicitly included in
the protocol. Experiments are predicates that are evaluated
on the views or the local states of agents, i.e., interpreting this
meta-data. Thus, evaluating these predicates will account for
a special kind of knowledge accrued by the agents.

Below we illustrate these notions, with intuitive predicates
and symbols: e.g., i diffOne(n,m)(δ) is true if “the absolute
difference between δ(n) and δ(m) is 1”.

Possible Experiments For Agent agδA in Pr1. The sets In of
logical terms and their respective experiment-sets InEx are
as follows:
• In1i = {smaller(n,m)}; InEx1i=i smaller(n,m)(δ);
• In2i = {diffOne(n,m)}; InEx2i=i diffOne(n,m)(δ).

Similarly to [17], we introduce an indistinguishability rela-
tion defined over local predicates, i.e., here on local experi-
ments of agents.

Local Empirical Indistinguishability. Two local states
l, l′ ∈ Lj are indistinguishable modulo InExj , or l ≈InExj l′,
if i p(δ) = i p(δ′) for all p ∈ Inj , where δ, δ′ ∈ ∆ respectively
describe l and l′, i.e., l|δ and l′|δ′ . Two global states g, g′ ∈ G
are indistinguishable modulo InExj , written g ∼InExj g′, if
gj ≈InExj g′j . The relation ∼InExj⊆ G×G is the empirical
indistinguishability relation.

Then, two local states l and l′ are indistinguishable through
experiments if these are evaluated identically at l and at l′,
as exemplified below.

Empirical Indistinguishability in a Model for Pr1. Let i be
the agent agδA in a model for Pr1 and two local states of agδA
respectively described by δ[n/9,m/8] and δ[n/9,m/5], i.e.,
lagA |δ[n/9,m/8] and l′agA |δ[n/9,m/5]. Let InEx1i and InEx2i
be the experiment-sets above. Then,
• i smaller(n,m)(δ[n/9,m/8])=false and
i smaller(n,m)(δ[n/9,m/5])=false;
• i diffOne(n,m)(δ[n/9,m/8])=true and
i diffOne(n,m)(δ[n/9,m/5])=false.

Therefore, l ≈InEx1i l′ holds, but l ≈InEx2i l′ does not
hold, i.e., l 6≈InEx2i l′.

Therefore, we have just augmented the ΥEIS formalisation
of protocol executions with local experiments. The resulting
models are formally defined below.
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Empirical Equational Interpreted System. Let Pr be
a protocol specified by (Σ,ΣL, E) and I be the equational
interpreted system ΥEIS for Pr. An empirical equational in-
terpreted system is the tuple I′=(I, InEx), where InEx =
(InExj | j ∈ Ag ∪ {Env}).
3.2 Extended Protocol Logic

We use Pi as the empirical knowledge modality (Piϕ reads
“agent i empirically knows the fact ϕ”). On an empirical equa-
tional multi-agent system model I′ = (I, InEx), consider
the language L′ = CTLKR ∪ Pi, for i ∈ Ag ∪ Env.

The language CTLKR is interpreted on I′ as on I. Let
g ∈ G be an arbitrary reachable state of I′. The interpreta-
tion of the empirical knowledge modality is as follows:

(I′, g)|=Piϕ if
(for all g′ ∈ G)(g ∼InExi g′ implies (I′, g′)|=ϕ).

The empirical knowledge of an agent refers to the infor-
mation obtained only by theoretically enquiring the agent’s
local predicates, i.e., its experiments.

3.3 Experiments Sets of Convergent Equational
Theories

In this section we explicitly link the convergence of the
underlying equational theory to the experiments of the agents.
Once again, we assume that the normal terms of the theory
are encoded in the model, i.e., by using a rewriting system,
and that the number of protocol instantiations considered is
bounded.

Let Pr be a protocol specified by a convergent equational
theory (Σ, E), I be the equational interpreted system for Pr
and j denote the agδR agent as before. Let ΣL be a logical
signature containing the (special) logical symbols pred ∈ ΣL
of type ω, for all ω ∈ S∗. Let t be an arbitrary term of type
ω, i.e., t∈TΣ,X .

Predicates for Terms. A logical term pred(t) ∈ TΣ,ΣL,X is
a logical term for t ∈ TΣ,X . The interpretation i predE(t)(δ)
of a predicate for t in E is always true, i.e., i predE(t)(δ) =
true, for all δ∈∆.

By the definition above, a predicate i predE(t) for a term
t ∈ TΣ,X is true under all assignments δ ∈ ∆ for t. Since
δ is in ∆, i.e., δ is not an role instantiation, it means that
δ(t) 6= ⊥. In the next definition we use predicates for terms
to express special experiments, which simulate the recording
of the normal terms.

Local Experiments of Convergent Theories.
InEj = ∪

t∈TΣ,X

{pred(t′) | t′ = t ↓E} is the set of logical

terms for the convergent theory E of agent j. InExEj =

{i predE(t)(δ) | pr(t)∈InEj } is set of local experiments of the
convergent theory E for agent j.

Importantly, one can automatically produce the exact set
of experiments of a convergent theory E for a protocol Pr by
using the CAPSL description of the protocol, the finite set
of instantiations given and the normal terms implied by E.

Empirical Equational IS for Convergent Theories.
Let InExEj be the local experiments for the convergent the-

ory E of agent j and InExE=(InExEj | j ∈ Ag). An empir-

ical equational interpreted system Υ IE
IS for the convergent

theory E is given by the tuple I′=(I, InExE).

The unwinding of Υ IE
IS follows as in previous definitions.

By the above, the system Υ IE
IS is a special empirical system,

i.e., agents “track” normal terms under E. We now prove that
in these systems the Pi modality coincides with Ri.

Theorem 3.1. Let Pr be a protocol specified by a conver-
gent theory (Σ, E) and I be an M IE

IS model for E. Then, I|=ϕ
if and only if I|=ϕ, for any ϕ ∈ L, where ϕ ∈ L′ is obtained
from ϕ by uniformly substituting Rj for Pj, for any j ∈ Ag.

Proof (sketch). We only need to prove that I|=Rjψ iff I|=Pjψ,
for some arbitrary ψ ∈ L and an agent j=agαR under an ini-
tial R-role instantiation α.

Thus, I|=Rjψ def. of |=L⇔ (for all g′ ∈ G)(g ∼Ej g′ implies

(I, g′)|=ψ)
def. of≈E , |= eq⇔ (for all g′ ∈ G) (for all t ∈ TΣ,X , t

′ =
t↓E) ((gj |t=t′ iff g′j |t=t′) implies (I, g′)|=ψ) (1). Let δ, δ′ be
assignments extending the initial R-role instantiation α and
w.l.o.g. denote the local states in (1) as gj |δ, g′j |δ′ (2). Then,

InEj =
S

t∈TΣ,X

{pred(t↓E)}, InExEj =∪t∈TΣ,X{i pred(t↓E)(δ)

=true} (3). By the definition of ≈InExEj , (2) and (3), the

following holds in (1): gj ≈InEx
E
j g′j (4). From (1) with the

above and (4), it follows that:
def. of |=L′⇔ (I, g)|=Pjψ.

4. MODEL CHECKING KNOWLEDGE OF
PROTOCOL PARTICIPANTS

In this section we present a procedure for model checking
empirical knowledge that allows for the specification and ver-
ification of standard interpreted systems equipped with local
experiment-sets, i.e., not only for the equationally-driven Υ IE

IS .

Algorithm 1 Satp(ϕ : Formula, j : Agent) : Set of
States
1: X ← J¬ϕK
2: Y ← X
3: while X 6= ∅ do
4: g ← X.pop()

5: φg ← true
6: for exp ∈ InExj do
7: if g ∈ JexpK then
8: φg ← φg ∧ exp
9: else

10: φg ← φg ∧ ¬exp
11: end if
12: end for
13: Y ← Y ∪ JφgK
14: X.remove(JφgK)
15: end while
16: return ¬Y

The approach for calculating the set JPjϕK, i.e., the set of
states that satisfy the formula Pjϕ, is shown in Algorithm 1.
Lines 8 and 10 construct the formula φg representing the
conjunction of the evaluation of experiments for the agent j
at the current state g. The set Y is constructed iteratively
from each g ∈ J¬ϕK (the set X). At Line 13, JφgK contains
the set of states that are empirically indistinguishable from
the state g (i.e., JφgK = {g′ ∈ G | g′ ∼InExj g}). To calculate
Y = {g ∈ G | (∃g′ ∈ G)(g′ ∼InExj g) ∧ (g |= ¬ϕ)} efficiently,
we remove JφgK from X (Line 14) as these states have an
identical experiment-set evaluation. At Line 15, Y contains
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Table 1: E-Voting Specifications in CTLKR

VP AG(votes(i, v)→ AG
V
v′ 6=v

Qat(votes(i, v′)))

VVU AG(votes(i, v)→ V
i′ 6=i

V
v′ 6=v

[votes(i′, v′)→ AGQat(votes(i, v′) ∧ votes(i′, v))])

RF
for v ∈ RangeV (vote) \ {vr},

AG(votes(ir, vr) ∧ votes(i, v)→ V
i′ /∈{i,ir}

V
v′

[votes(i′, v′)→ AGQat(votes(i, vr) ∧ votes(i′, v) ∧ votes(ir, v
′))])

CR
for v ∈ RangeV (vote) \ {vc},

AG(votes(ic, vc) ∧ votes(i, v)→ V
i′ /∈{i,ic}

V
v′

[votes(i′, v′)→ AGQat(votes(i, vc) ∧ votes(i′, v) ∧ votes(ic, v
′))])

the reachable states that either directly refute ϕ, or are empir-
ically indistinguishable from a state that does. Therefore we
obtain that Y = JPj(¬ϕ)K, where Pj(¬ϕ) ≡ ¬Pj(¬ϕ) is the
dual of Pj(ϕ). Finally, at Line 16, the algorithm calculates
¬Y , i.e., the set difference between the set of global states G
and Y . So, it returns JPj(ϕ)K.

Proposition 4.1. Algorithm 1 calculates the set of states
JPjϕK.

Implementation. We have implemented Algorithm 1 as
an experimental extension of the model checker mcmas [15].
This extension, titled mcmas-e, is available from [1]. ISPL,
The input-language of mcmas, was extended to allow for the
definition of experiments at the agent level, as well as to
support the specification of empirical knowledge formulae.

5. VERIFYING E-VOTING PROTOCOLS
The applicability of previous research [3] in this line has

been limited to protocols for which the specifications can
be expressed by using standard notions of knowledge; this
included authentication and key-establishment. We herein
analyse e-voting protocols, which were out of the scope of [3].

To illustrate that the models and knowledge modalities
introduced so far surpass this limit, we analyse more sophis-
ticated e-voting protocols than previously possible with our
extension of mcmas.

E-Voting in the Υ IE
IS Formalism. Assume a Υ IE

IS model
and the propositions votes(j) and votes(j, x), representing
that an honest agent j has voted and that agent j has voted x,
respectively. Let i, i′ be two different agents. We consider only
fair paths representing voting sessions in which eventually
both agent i and agent i′ vote and that the voting is not
unanimous.

The specifications for e-voting requirements we consider,
i.e., vote privacy (VP), voter-vote unlinkability (VVU), receipt-
freeness (RF) and coercion-resistance (CR), are formalised
in Table 1. We use the notation Qjϕ to represent ¬Rj¬ϕ,
for any agent j.

VP stipulates that whenever agent i has voted v, there
does not exist a point where the attacker at can be sure
that it was i who voted v. Similarly, VVU expresses that
the attacker at will always consider it possible that agents i
and i′ have swapped votes. RF states that, whenever agent
i counterbalances the vote of the receipt-providing agent
ir, the attacker at is not at any point able to link any of
the voters to their respective votes. CR is similar to RF,
but it is analysed on a stronger threat-model. The formulae
VVU, RF and CR are inspired by the specifications of total
role-interchangeability [23], whereas VP is inspired by the
specifications of anonymity in [14] and their extensions to
privacy in [23].

We verify these specifications against the FOO’92 e-voting
protocol [13]. We formalise the execution of a finite number
of concurrent sessions as three, specialised Υ IE

IS systems. The
first model, M1, is a Υ IE

IS model with an added Attacker
agent (at) representing a passive intruder. This model sat-
isfies the vote-privacy property. A receipt-providing agent
ir and a stronger Attacker are modelled in M2, which spe-
cialisesM1 and supports receipt-freeness. To model coercion,
the formalisation M3 extends M2, with a further enhanced
Attacker and a coercible agent ic.

Experiments. The high-level description of the FOO’92
protocol was initially provided in CAPSL [9]. This encoding
was then passed to an ISPL translator [1]. The translator is
an extension of the PD2IS toolkit [3] where the instantiated,
⊥-enhanced normal terms are inserted into the ISPL models.
In this way we can automatically generate the M1, M2

and M3 formalisations of FOO’92, as well as the e-voting
requirements in ISPL. The generated ISPL files are in the
region of 8000 lines and take approximately 15 seconds to
build. mcmas-e was then used to verify these models. The
machine employed was an Intel Core 2 Duo processor 3.00
GHz with a 6144 KiB cache running the 32-bit Linux kernel
2.6.32.10. The averaged results obtained across two runs of
mcmas-e are summarised in Table 2.

Table 2:Averaged Experiments on FOO’92.
Form. Mem. (KiB) Time (s) States

M1 VP/VVU 176032 66441 6.69 · 1011

M2 (weakened) RF 175496 66168 6.69 · 1011

M3 VP/VVU 181926 70401 6.69 · 1011

The leftmost column shows the class of model considered.
The Memory and Time columns respectively show the aver-
age memory usage and the average CPU time in each run.
States reports the number of reachable states in each model.

Discussion of Results. The Formulae column reports
the strongest e-voting specification that was found to hold
on the model (strength grows from VP, VVU, RF to CR);
vote privacy (VP and VVU) were found to hold on all three
classes of models considered. On modelsM2 andM3 a path
was found where eventually the intruder is able to link the
receipt-providing agent and its vote, i.e., receipt-freeness (RF)
was refuted. Our findings are in-line with known results (i.e.,
vote-privacy holding for FOO’92). An alternative approach
based on applied-pi [8] exhibits similar results. The models
verified are of large sizes and are not optimised for e-voting,
consequently our verification times are seen as favourable.
The complete set of ISPL models and specifications verified
are available from [1].

6. CONCLUSIONS AND RELATED WORK
In this paper we have introduced an approach to model

checking MAS-based models of security protocols, using spec-
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ifications expressed in a specialised temporal-epistemic logic.
This work surpasses the current state-of-the-art of temporal-
epistemic verification of protocols specified as MAS in two
ways. Firstly, it advances a formalism integrating equational
theories with epistemic logic. This allows for the modelling
of several cryptographic primitives of interest. Secondly, we
present an automatic methodology for the verification multi-
agent systems-based models against relevant specifications
through an open-source dedicated model checker. We em-
phasise nonetheless that the methodology presented is not
directly optimised for e-voting primitives; in fact, it aims at
a generic MAS-based verification method.

The empirical indistinguishability relation introduced is
related to that of explicit knowledge [17], although in that
line no support for cryptographic primitives was available.
In [20] agents are empowered with deduction algorithms for
generating new local knowledge, but the technical details
are different and no automatic technique is discussed. In a
theoretical setting of cryptographic modelling, [22] studied the
decidability of model checking with respect to an epistemic
extension of ATL∗; given the specification language, it is clear
that the protocol model, the operators and the semantics
in [22] differ from those we present.

Semi-decidable tools have been used to show static equiva-
lence of applied-pi frames modulo certain convergent equa-
tional theories [6, 8]. Such approaches could be applied to
verify symbolically an infinite number of e-voting sessions.
However, they focus mainly on the problem of deciding static
equivalence in process calculi (thus a comparison on protocol
verification cannot be drawn). Comparatively, we assume
a bounded number of fully instantiated protocol sessions
where the normal terms of the theory are encoded in the
model. Thus, we attain a decidable and fully automatic
method of MAS-based protocol verification. In the context of
bounded size modelling, the epistemic modalities and indis-
tinguishability relations we have introduced can be correlated
to process equivalence [6, 8] and, respectively, static frame-
indistinguishability in applied-pi calculus.

Our specifications of e-voting requirements follow the for-
mulations of anonymity in [14, 23] and are model-independent
(unlike those in [8], where e-voting specifications are expressed
as reachability or process equivalence properties in a model-
dependent manner).
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ABSTRACT
Information-Based Interaction-Oriented Programming, specifically
as epitomized by the Blindingly Simple Protocol Language (BSPL),
is a promising new approach for declaratively expressing multia-
gent protocols. BSPL eschews traditional control flow operators
and instead emphasizes causality and integrity based solely on the
information models of the messages exchanged. BSPL has been
shown to support a rich variety of practical protocols and can be re-
alized in a distributed asynchronous architecture wherein the agents
participating in a protocol act based on local knowledge alone. The
flexibility and generality of BSPL mean that it needs a strong for-
mal semantics to ensure correctness as well as automated tools to
help develop protocol specifications.

We provide a formal semantics for BSPL and formulate impor-
tant technical properties, namely, enactability, safety, and liveness.
We further describe our declarative implementation of the BSPL
semantics as well as of verifiers for the above properties using a
temporal reasoner. We have validated our implementation by veri-
fying the correctness of several protocols of practical interest.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—General;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Theory, Verification

Keywords
Business protocols, agent communication

1. INTRODUCTION
We take as our point of departure Singh’s [13] recent work on

Information-Based Interaction-Oriented Programming and especially
on the Blindingly Simple Protocol Language (BSPL). The main
innovation of BSPL is that it specifies multiagent protocols with-
out the use of any control flow constructs. Instead, it relies purely
on the specifications of the information schemas of the messages
exchanged among the defined roles. From the message schemas,
consisting of parameters (adorned in a specific manner we explain

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

below), BSPL characterizes the relevant (1) causal dependencies
and (2) integrity constraints. Causality provides a basis for order-
ing requirements that traditional languages address via control flow
operators. Integrity constraints provide a basis for exclusion re-
quirements that traditional languages address via choice operators.

Singh [13] explains the generality of BSPL in handling a vari-
ety of practical protocols and its ability to support the composition
of protocols, but without violating encapsulation as previous ap-
proaches, e.g., AUML [11] and MAD-P [3], do. Further, Singh
[14] shows how BSPL can be realized in a fully distributed, asyn-
chronous architectural style wherein the participating agents can
act based solely on local knowledge. The agents are always ready
to receive any incoming message and are not prevented from emit-
ting any message whose information prerequisites they can meet.

How can we be sure that a protocol is correct? Will it lead to
erroneous enactments? Will it deadlock? Notice that BSPL merely
forces the protocol designer to be explicit about causality, but it
does not add to the challenges of correctness. Specifically, any ap-
proach that supports distributed decision making faces these prob-
lems. Traditional approaches insert arbitrary rigidness whereas
BSPL offers an opportunity to achieve correctness and flexibility.

What is needed is, first, a rigorous formalization of the BSPL se-
mantics that would capture the inherent distribution of a BSPL en-
actment along with expressing the local views of the (agents play-
ing the) roles involved. Second, what is also needed is a clear for-
mulation of important correctness properties of protocols and tools
that would verify protocols with respect to those properties.

Contributions. The main contribution of this paper is precisely
to fill the above gaps. To do so requires new technical results. One,
we formulate a formal semantics for BSPL that incorporates a no-
tion of viability and respects the locality of each role, the flow of
causality across roles, and the asynchrony of the communications
between them. Two, we capture the semantic requirements purely
declaratively so that a logic-based reasoner can compute with them.
Three, we formalize correctness properties. We realize the seman-
tics and properties in a verification tool for BSPL protocols.

Organization. Section 2 follows Singh [13] in describing BSPL.
Section 3 provides intuitions about the BSPL semantics as well as
the correctness properties of interest. Section 4 provides a seman-
tics of BSPL based on local enactments and observations by agents
playing the roles in a protocol. Section 5 introduces a temporal lan-
guage and shows how to formalize the causal structure of a protocol
along with each property. It shows how we can verify each property
by checking the (un)satisfiability of the conjunction of the causal
structure and a property-specific formula. Section 6 discusses the
related literature and some directions for future research.

1149



2. BACKGROUND ON BSPL
Listing 1 presents a protocol to help illustrate the main features

of BSPL. For readability, in the listings, we write reserved key-
words in sans serif, and capitalize role names. In the text, we write
message and protocol names slanted, roles in SMALL CAPS, and
parameters in sans serif. We insert p and q as delimiters, as in pSelf
7→ Other: hello[ID, name]q.

Listing 1: The Purchase protocol.
P u r c h a s e {
role B , S , S h i p p e r
parameter out ID key , out i tem , out p r i c e , out

outcome

B 7→ S : r f q [out ID , out i t em ]
S 7→ B : q u o t e [ in ID , in i tem , out p r i c e ]
B 7→ S : a c c e p t [ in ID , in i tem , in p r i c e , out

a d d r e s s , out r e s p o n s e ]
B 7→ S : r e j e c t [ in ID , in i tem , in p r i c e , out

outcome , out r e s p o n s e ]
S 7→ S h i p p e r : s h i p [ in ID , in i tem , in a d d r e s s ]
S h i p p e r 7→ B : d e l i v e r [ in ID , in i tem , in a d d r e s s ,

out outcome ]
}

BSPL distinguishes three main adornments on the parameters of
a message: pinq, meaning the binding must come from some other
message; poutq, meaning that the binding originates in this mes-
sage (presumably based on private computations of the sender); and
pnilq, meaning that no binding is known to the sender at the time of
emission. Each message instance must bind a proper value for each
pinq and each poutq parameter, and a pnulq value for each pnilq
parameter. For brevity, we avoid pnilq parameters in our examples.

Consider the quote message in Purchase, which includes an item
description and a price, and may be emitted in response to a request
for quotes for a particular item. Clearly, for the quote message to be
emitted, its sender must instantiate all of its parameters. However,
from the standpoint of the quote message, the item description is
provided from the outside into the protocol and the price is pro-
vided by the protocol to the outside. Thus we adorn item with pinq
and price with poutq.

A message instance must provide a binding for each pinq and
poutq parameter with the difference being that the poutq binding
has declarative force [2]. For example, an agent emitting a price
quote is not merely reporting a price previously computed in the
conversation but declaring it to be the definitive price in this con-
versation. One can imagine such a message carrying the weight of
a commitment, although we deemphasize commitments here.

All of Purchase’s parameters are adorned poutq, indicating that
Purchase provides them to any protocol that composes Purchase.
The rfq and quote messages help generate a price offer. Here, the
BUYER (B) generates item and the SELLER (S) generates price, since
these parameters are adorned poutq in messages emitted by these
roles. Any message that takes some pinq parameters can be enacted
only if referenced from another protocol.

Notice that the ship message is irrelevant from the parameter
standpoint since all its parameters are adorned pinq, indicating that
ship creates no new information. However, ship is clearly essential
from the role perspective: it ensures that the SHIPPER learns of the
parameter bindings that make the SHIPPER’s emission of deliver
viable. In general, BSPL separates and addresses the two concerns
of the interplay of information with (1) interactions and (2) roles.

An enactment corresponds to a binding of public parameters.
BSPL requires some of the parameters being declared as forming
the key of a protocol enactment. Thus multiple concurrent enact-
ments of the same protocol do not interfere with each other. Every

protocol and message must have a key: for brevity, the key of a
message equals the protocol key parameters that feature in it. An
enactment is complete when all its public pinq and poutq parame-
ters are bound. Specifically, an enactment of Purchase must create
a tuple of bindings for its four public parameters but may omit ad-
dress and response, which are private.

Listing 1 involves a private parameter response that is poutq in
both accept and reject. Since BSPL models each enactment as pro-
ducing a tuple of parameter bindings, the existence of the same
parameter with an poutq adornment in two messages indicates an
integrity violation: thus the two messages cannot both occur: if
they did the binding would be conceptually undefined. That is, ac-
cept and reject conflict on response. And, outcome is poutq in both
reject and deliver, thereby causing a conflict between them.

Syntax
The following BSPL syntax and explanations are simplified from
Singh [13]. Superscripts of + and ∗ indicate one or more and zero
or more repetitions, respectively. Below, b and c delimit expres-
sions, considered optional if without a superscript. For simplicity,
we omit cardinality restrictions and parameter types.

L1 . A protocol declaration consists of a name, two or more roles,
one or more parameters, and one or more references to con-
stituent protocols or messages. The parameters marked key
together form this declaration’s key.
Protocol −→ Name { role Role+ parameter

bParameterbkeycc+Reference∗ }
L2 . A reference to a protocol (from a declaration) consists of the

name of the protocol appended by as many roles and param-
eters as it declares. At least one parameter of the reference
must be a key parameter of the declaration in which it occurs.
Reference −→ Name ( Role+ Parameter+ )

L3 . Alternatively, a reference is a message schema, and consists
of exactly one name, exactly two roles, and one or more pa-
rameters (at least one of which must be a key parameter).
Reference −→ Role 7→ Role : Name [ Parameter+ ]

L4 . Each parameter consists of an adornment and a name.
Parameter −→ Adornment Name

L5 . An adornment is usually either pinq or poutq. A pnilq in a
reference indicates an unknown parameter.
Adornment −→ in | out | nil

3. INTUITIONS ON BSPL SEMANTICS
A protocol describes an interaction by specifying messages to be

exchanged between specific roles, and by (indirectly, though effec-
tively) imposing a partial order on the messages. An enactment of
a protocol involves each of its roles being adopted by an agent, and
the agents exchanging messages that the protocol specifies. A mes-
sage instantiates a message schema and is precisely described by its
name, its sender, receiver, and bindings for each of its parameters.

BSPL is characterized by the interplay between parameters and
messages. In describing interactions declaratively, we are con-
cerned with tuples of parameter bindings. The keys determine the
units of enactment. And, parameter bindings are immutable in any
enactment. The parameter adornments determine how information
is propagated through them. Interactions are realized exclusively
through the exchange of messages: everything of relevance to the
interaction is visible in a message emission and reception.

For example, quote (for a given ID, its key) may occur only after
ID and item are bound. An enactment of a protocol may begin only
when at least one of its messages is enabled. However, an enact-
ment begins and proceeds to completion only if the agents involved
decide autonomously to do their respective parts.
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3.1 Knowledge and Viability
We distinguish between an agent’s local and internal states. The

local state is public, though limited to the role’s view of the proto-
col enactment. The internal state depends on the agent implemen-
tation and is not visible to any other agent. We consider only the
local states of roles. The history of a role maps naturally to its local
state: each message emitted or received advances the local state.

Figure 1 illustrates the impact on a sender and receiver’s knowl-
edge with respect to a parameter adorned pinq, poutq, or pnilq.
Further, because of the immutability of parameter bindings, the
knowledge of a role increases monotonically as its history extends.
Thus these are the only three possible adornments of a parameter.

Knows_

in

��

Does not know6

out
{{

_

nil
��

Knows_
in
out
nil ��

Does not know6

out

in{{

_

nil
��

Knows Does not know Knows Does not know

Figure 1: Viability and knowledge effects for an adorned pa-
rameter on the sender (left) and receiver (right) of a message.

As a result, an pinq emission must be preceded by an pinq or
an poutq emission or reception and an poutq or a pnilq emission
must not be preceded by an pinq or an poutq emission or reception.
Notice that to send a message with an poutq parameter, the sender
agent computes the parameter (through its internal business logic)
but the only role states, i.e., local states, in which the message can
be emitted are those where the role does not know already what it
is. A correctly implemented agent would not compute a binding
for an poutq parameter that (for the given keys) is already known
to its role. And, for an pinq parameter, the role must know its bind-
ing through a previous message. Such parameter-based causality
constraints underlie the semantics of BSPL.

Figure 1 identifies all the viable message emissions and recep-
tions given a role’s state of knowledge with respect to a parameter
in a message. A message reception is always viable. In a practical
system, we would validate incoming messages, as the LoST mid-
dleware [14] does, but in the abstract semantics we assume that the
local state is never corrupted. For a message emission, the sender
must already know the bindings of the pinq parameters and not
know the bindings for any of the other parameters.

3.2 Causal Structures
Because BSPL incorporates a flexible description of interactions,

it matches well with our computational approach of generating a
causal structure as a set of declarative (temporal) constraints that
capture the flow of causality within and across roles. A causal
structure identifies partial states for each role that describe some
parameters as known, some as unknown, and leave others indeter-
minate. It supports reasoning to verify various properties.

BSPL’s flexibility does not accord well with detailed graphical
representations of possible enactments, which get unwieldy fast.
Specifically, a causal structure may be mapped to a finite state ma-
chine but with an explosion in states and transitions. However, to
convey some intuitions, we show some informal pictures below.

Consider protocol Sequential. Because ID is poutq in initial and
pinq in additional, additional causally depends on initial.
S e q u e n t i a l { . . . / / O m i t t i n g r o l e s
parameter out ID key , out answer , out more
B 7→ S : i n i t i a l [out ID , out answer ]
B 7→ S : a d d i t i o n a l [ in ID , out more ]

}

Figure 2: Sequential is enactable and safe.

Sequential ’s causal structure (Figure 2) represents the partial
states of each role. It shows each message along with a precon-
dition partial state in which it might be emitted and the effects it
would have on the states of its sender and receiver. The precondi-
tion specifies what parameters its sender must know (pinq parame-
ters) and must not know (poutq and pnilq parameters) before emit-
ting the message. The effects specify what parameters its sender
and receiver must know after it occurs (poutq and pinq parame-
ters). The solid transitions capture the intuitions of Figure 1. (The
dashed lines show logical relationships.) A message can be emitted
in any state that matches its precondition: the sender should know
all parameters written plain and know none of the parameters writ-
ten with a strikethrough line.

In Sequential, role B can send only initial at the outset. Upon
emitting and receiving this message, respectively, B and S’s states
change as specified by the ? and ! edges from the message node.
Thus, B knows answer and so cannot send initial but it would be
superfluous here anyway. Also, B knows ID and can send additional,
resulting in changing B and S’s states further. When both messages
are emitted and received, each poutq parameter of Sequential is
known to at least one role, i.e., the enactment completes.

Figure 3 shows the causal structure for Purchase. The buyer B
emits an rfq, which enables the seller S to send a quote. At this
point, B has a choice about whether to accept or reject. In case
of reject, all public parameters are bound so the enactment com-
pletes. In case of accept, S may send ship to the SHIPPER, who can
DELIVER the item to B, thereby completing the enactment.

Figure 3: Causal structure for Purchase.

3.3 Enactability
The intuition behind enactability simply is that a protocol should

provide a clear path to completion, i.e., generating a tuple for all
pinq and poutq public parameters. Sequential and Purchase are
enactable, as the enactments described above demonstrate. Let’s
consider Local Conflict, whose causal structure is in Figure 4.
Loca l C o n f l i c t { . . .
parameter out ID key , out answer , out a l t e r n a t i v e
B 7→ C : one [out ID , out answer ]
B 7→ C : two [out ID , out a l t e r n a t i v e ]

}
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Figure 4: Local Conflict is not enactable, but is safe.

Local Conflict is not enactable. Because messages one and two
conflict on ID, emitting one disables two and vice versa. Thus, at
most one of them can be emitted for a given binding of ID. Hence,
either answer or alternative would necessarily remain unbound.

3.4 Safety
A useful protocol must be safe, meaning that each parameter

must have no more than one binding for the same key in any en-
actment. Sequential is safe because each of its parameters is poutq
in at most one message.

Safety requires that at most one message instance with the same
parameter adorned poutq occurs for any key. This condition is easy
to ensure for a single role. Specifically, when a role emits a mes-
sage with an poutq parameter, its knowledge changes and it may
send no subsequent messages with the same poutq parameter. The
BSPL semantics requires this local constraint and the LoST middle-
ware [14] enforces it. In essence, the agent should decide internally
which, if any, of the conflicting messages to send. Local Conflict
is safe because B is the sender of both conflicting messages.

But no such reasoning applies across senders because each main-
tains separate local state information. For example, Abrupt Cancel
below is not safe because it involves a race between B and S. Con-
sider Abrupt Cancel and its causal structure (Figure 5).
Abrupt Cance l { . . .
B 7→ S : o r d e r [out ID , out i t em ]
B 7→ S : c a n c e l [ in ID , in i tem , out outcome ]
S 7→ B : goods [ in ID , in i tem , out outcome ]

}

Figure 5: Abrupt Cancel is enactable but not safe.

Abrupt Cancel is enactable because it is possible to go from its
initial states to where all its public parameters bound. However,
because messages goods and cancel may both be emitted, outcome
may be bound twice. Thus Abrupt Cancel is not safe.

To verify safety involves checking that the protocol prevents a
situation where two roles can both be enabled to send conflicting
messages. In essence, if there are two conflicting execution paths,
they must have a prior branching point controlled by the same role.
For example, in Listing 1, the conflict between accept and reject
on private parameter response means that at most one of these two
messages may occur. The same sender, B, is involved, so Purchase
is safe. Further, because deliver can only occur if ship occurs previ-
ously (to convey address) and ship can occur only if accept occurs
prior (to produce a binding for address). Thus deliver presupposes

accept but accept and reject conflict. Therefore, the mutual exclu-
sion between deliver and reject is guaranteed.

Listing 2 shows Purchase Unsafe based on Purchase, and which
dispenses with the private parameter response. Thus accept and re-
ject no longer conflict, and B may send both of them. Thus deliver
and reject may both occur, violating safety for outcome.

Listing 2: An unsafe variant of Purchase.
P u r c h a s e Unsafe { / / Same as P u r c h a s e e x c e p t t h e s e
B 7→ S : a c c e p t [ in ID , in i tem , in p r i c e , out

a d d r e s s ]
B 7→ S : r e j e c t [ in ID , in i tem , in p r i c e , out

outcome ]
}

In Abrupt Cancel, the inconsistency is obvious because differ-
ent roles make mutually inconsistent decisions. Purchase Unsafe is
more insidious because the inconsistent decisions by B and SHIP-
PER are gated by a decision by B. Our intuition may indicate that B
acts in an odd manner when it emits both accept and reject. How-
ever, the semantics of a protocol depends only on the protocol spec-
ification, not on any imagined internal policies of the agents adopt-
ing its various roles. The protocol specification is the only means
by which we constrain such policies: there is no hidden additional
specification. (Of course, an autonomous agent may violate any
protocol but the semantics tells us clearly what is a violation. No-
tice that LoST [14] helps an agent both respect a given protocol
itself and ensure that others are respecting the protocol too.)

In general, when different roles are the senders of two conflicting
messages, consistency is enforceable only if there is a causally prior
conflict produced by the same role. Specifically, safety holds pre-
cisely when no causal path on which an poutq parameter is bound
once may have the same poutq parameter bound again.

3.5 Liveness
Consider the following variant of Purchase.

P u r c h a s e No Ship { . . .
/ / Same as P u r c h a s e b u t wi th s h i p d e l e t e d
}

Purchase No Ship remains enactable because if B emits reject, all
its public parameters are bound. Despite this, however, if B emits
accept the protocol enactment cannot complete: outcome is never
bound because B can no longer send reject and the SHIPPER never
becomes enabled to send deliver. Notice that we can never require
that an agent send any message. And, in some cases, the protocol
semantics prevents an agent from legally emitting a message.

Liveness requires that no matter what messages any of the agents
has emitted, it should always be possible for a protocol enactment
to legally complete. Liveness does not mean that the completion
is necessarily a “happy” one from the application standpoint, just
that the enactment terminates. In this sense, Purchase is live as are
Purchase Unsafe and Abrupt Cancel. Local Conflict is not live.

Liveness entails enactability but not the other way around. Live-
ness is the more fundamental property. However, during design,
enactability can help catch errors that are easier to fix, whereas to
make corrections to ensure liveness can be more demanding.

4. FORMALIZING BSPL SEMANTICS
We now formalize the above intuitions. For convenience, we fix

the symbols by which we refer to finite lists (mostly, treated as sets)
of roles (~t), public roles (~x), private roles (~y), public parameters (~p),
key parameters (~k ⊆ ~p), pinq parameters (~pI ⊆ ~p), poutq parame-
ters ( ~pO ⊆ ~p), pnilq parameters ( ~pN ⊆ ~p), private parameters (~q),
and parameter bindings (~v, ~w). Here, ~p= ~pI∪ ~pO∪ ~pN , ~pI∩ ~pO = /0,
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~pI ∩ ~pN = /0, and ~pN ∩ ~pO = /0. Also, t and p refer to an individual
role and parameter, respectively. To reduce notation, we rename
private roles and parameters to be distinct in each protocol, and the
public roles and parameters of a reference to match the declaration
in which they occur. Throughout, we use ↓x to project a list to those
of its elements that belong to x.

Definition 1 captures BSPL protocols. A protocol (via any of
its parameters) may reference another protocol (via its public pa-
rameters). The references bottom out at message schemas. Above,
Purchase references accept. And, if a protocol were to reference
Purchase, it would be able to reference (from its public or private
parameters) only the public parameters of Purchase, not address.

DEFINITION 1. A protocol P is a tuple 〈n,~x,~y,~p,~k,~q,F〉, where n
is a name; ~x, ~y, ~p,~k, and ~q are as above; and F is a finite set of f
references, {F1, . . . ,Ff }. (∀i : 1≤ i≤ f ⇒Fi = 〈ni,~xi,~pi,~ki〉, where
~xi ⊆~x∪~y, ~pi ⊆ ~p∪~q), ~ki = ~pi ∩~k, and 〈ni,~xi,~pi,~ki〉 is the public
projection of a protocol Pi (with roles and parameters renamed).
DEFINITION 2. The public projection of a protocol P =

〈n,~x,~y,~p,~k,~q,F〉 is given by the tuple 〈n,~x,~p,~k〉.
We treat a message schema ps 7→ r : m ~p(~k)q as an atomic proto-

col with exactly two roles (sender and receiver) and no references:
〈m,{s,r}, /0,~p,~k, /0, /0〉. Here ~k is the set of key parameters of the
message schema. Usually, ~k is understood from the protocol in
which the schema is referenced:~k equals the intersection of ~p with
the key parameters of the protocol declaration.

Below, let roles(P) =~x∪~y∪⋃i roles(Fi); params(P) = ~p∪~q∪⋃
i params(Fi); msgs(P) =

⋃
i msgs(Fi) and msgs(s 7→ r : m ~p) =

{m}. Definition 3 assumes that the message instances are unique
up to the key specified in their schema.
DEFINITION 3. A message instance m[s,r,~p,~v] associates a mes-
sage schema ps 7→ r : m ~p(~k)q with a list of values, where |~v|= |~p|,
where~v ↓p= pnilq iff p ∈ ~pN .

Definition 4 introduces a universe of discourse (UoD). Defini-
tion 5 captures the idea of a history of a role as a sequence (equiv-
alent to a set in our approach) of all and only the messages the role
either emits or receives. Thus Hρ captures the local view of an
agent who might adopt role ρ during the enactment of a protocol.
A history may be infinite in general but we assume each enactment
in which a tuple of parameter bindings is generated is finite.
DEFINITION 4. A UoD is a pair 〈R ,M 〉, where R is a set of roles,
M is a set of message names; each message specifies its parameters
along with its sender and receiver from R .
DEFINITION 5. A history of a role ρ , Hρ , is given by a sequence
of zero or more message instances m1 ◦m2 ◦ . . .. Each mi is of the
form m[s,r,~p,~v] where ρ = s or ρ = r, and ◦ means sequencing.

Definition 6 captures the idea that what a role knows at a history
is exactly given by what the role has seen so far in terms of incom-
ing and outgoing messages. Here, 2(i) ensures that m[s,r,~p(~k),~v],
the message under consideration, does not violate the uniqueness
of the bindings. And, 2(ii) ensures that ρ knows the binding for
each pinq parameter and not for any poutq or pnilq parameter.

DEFINITION 6. A message instance m[s,r,~p(~k),~v] is viable at role
ρ’s history Hρ iff (1) r = ρ (reception) or (2) s = ρ (emission) and
(i) (∀mi[si,ri,~pi,~vi] ∈ Hρ if~k ⊆ ~pi and ~vi ↓~k=~v ↓~k then ~vi ↓~p∩~pi=
~v ↓~p∩~pi) and (ii) (∀p ∈ ~p : p ∈ ~pI iff (∃mi[si,ri,~pi,~vi] ∈ Hρ and
p ∈ ~pi and~k ⊆ ~pi)).

Definition 7 captures that a history vector for a protocol is a vec-
tor of histories of role that together are causally sound: a message
is received only if it has been emitted [8].

DEFINITION 7. Let 〈R ,M 〉 be a UoD. We define a history vec-
tor for 〈R ,M 〉 as a vector [H1, . . . ,H |R |], such that (∀s,r : 1 ≤
s,r ≤ |R | : Hs is a history and (∀m[s,r,~p,~v] ∈ Hr : m ∈M and
m[s,r,~p,~v] ∈ Hs)).

The progression of a history vector records the progression of
an enactment of a multiagent system. Under the above causality
restriction, a vector that includes a reception must have progressed
from a vector that includes the corresponding emission. Further, we
make no FIFO assumption about message delivery. The viability
of the messages emitted by any role ensures that the progression is
epistemically correct with respect to each role.

DEFINITION 8. A history vector over 〈R ,M 〉, [H1, . . . ,H |R |], is
viable iff either (1) each of its element histories is empty or (2) it
arises from the progression of a viable history vector through the
emission or the reception of a viable message by one of the roles,
i.e., (∃i,m j : H i = H ′i ◦m j and [H1, . . . ,H ′i,H |R |] is viable).

The heart of our formal semantics is the intension of a protocol,
defined relative to a UoD, and given by the set of viable history vec-
tors, each corresponding to its successful enactment. Given a UoD,
Definition 9 specifies a universe of enactments, based on which we
express the intension of a protocol. We restrict attention to viable
vectors because those are the only ones that can be realized. We
include private roles and parameters in the intension so that compo-
sitionality works out. In the last stage of the semantics, we project
the intension to the public roles and parameters.
DEFINITION 9. Given a UoD 〈R ,M 〉, the universe of enactments
for that UoD, UR ,M , is the set of viable history vectors, each of
which has exactly |R | dimensions and each of whose messages
instantiates a schema in M .

Definition 10 states that the intension of a message schema is
given by the set of viable history vectors on which that schema
is instantiated, i.e., an appropriate message instance occurs in the
histories of both its sender and its receiver.
DEFINITION 10. The intension of a message schema is given by:
[[m(s,r,~p)]]R ,M = {H|H ∈ UR ,M and (∃~v, i, j : Hs

i = m[s,r,~p,~v]
and Hr

j = m[s,r,~p,~v])}.
A (composite) protocol completes if one or more of subsets of

its references completes. For example, Purchase yields two such
subsets, namely, {rfq, quote, accept, ship, deliver} and {rfq, quote,
reject}. Informally, each such subset contributes all the viable in-
terleavings of the enactments of its members, i.e., the intersection
of their intensions. Definition 11 captures the cover as an adequate
subset of references of a protocol, and states that the intension of a
protocol equals the union of the contributions of each of its covers.

DEFINITION 11. Let P = 〈n,~x,~y,~p,~k,~q,F〉 be a protocol. Let cover
(P,G)≡G⊆ F |(∀p∈ ~p : (∃Gi ∈G : Gi = 〈ni,xi, pi〉 and p∈ ~pi));
and P’s intension, [[P]]R ,M =(

⋃
cover(P,G)(

⋂
Gi∈G[[Gi]]R ,M ))

y
~x.

As an example, consider a message m1 with a single key param-
eter p adorned pinq whose sender is role r1. The intension of this
message with respect to a UoD 〈R ,M 〉 can be nonempty only if
one of the following conditions holds for some m2 ∈M (m2 should
precede m1 in role r1’s history):
• m2’s schema involves the parameter p adorned poutq and r1

is the sender or receiver of m2.
• m2’s schema involves the parameter p adorned pinq and the

receiver of m2 is the same role r1.
The intension of m1 would still be empty if the intension of any
such m2 is empty, e.g., if m2 does not occur on any viable history
vector. In general, if message m1 has message m2 as an essential
prerequisite, then the intension of m1 must be a subset of the inten-
sion of m2, i.e., [[m1]]⊆ [[m2]].
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The UoD of protocol P consists of P’s roles and messages
including its references recursively. For example, Purchase’s UoD
U = 〈{B, S, SHIPPER}, {rfq, quote, accept, reject, ship, deliver}〉.
DEFINITION 12. The UoD of a protocol P , UoD(P) =
〈roles(P),msgs(P)〉.

4.1 Enactability, Safety, and Liveness
Enactability means that we can produce a history vector that gen-

erates bindings for all public parameters. Note that a protocol that
has a public pinq parameter is not enactable standalone, and must
be referenced from another protocol. Safety means that we cannot
produce a history vector that generates more than one binding for
any parameter. Liveness means that we cannot produce a history
vector that deadlocks.
DEFINITION 13. A protocol P is enactable iff [[P]]UoD(P) 6= /0.
DEFINITION 14. A protocol P is safe iff each history vector in
[[P]]UoD(P) is safe. A history vector is safe iff all key uniqueness
constraints apply across all histories in the vector.
DEFINITION 15. A protocol P is live iff each history vector in the
universe of enactments UoD(P) can be extended through a finite
number of message emissions and receptions to a history vector in
UoD(P) that is complete.

4.2 Well-Formedness Conditions
Because BSPL relies upon parameter adornments and keys for

causality and integrity, it is essential that a protocol meet some el-
ementary syntactic conditions. The main idea is that each key (set
of parameters) identifies a logical entity and nonkey parameters ex-
press attributes of that entity. Thus the nonkey parameters have no
meaning if separated from their keys. As an example, think of tak-
ing the age of a person with an identifier and putting the age in a
record without the person’s identifier. We need to carry the original
identifier along. Of course, an agent may copy the contents of one
parameter to another (e.g., set price equal to age), but such internal
reasoning is not in the purview of BSPL.

The foregoing motivation leads to the following constraints. First,
two messages must involve different parameters unless the key of
one is a subset of the key of the other. Second, no message m0 that
has an poutq key parameter must have an pinq nonkey parameter p
unless: if p occurs as an poutq in a message m1 then m0 includes
m1’s key; and, if p occurs as an pinq in a message m2 with an en-
tirely pinq key then m0 includes m2’s key. Notice that Definition 6
seeks to respect the above constraint. The net result is that if a
message has an poutq parameter p then the key with which p is
produced must be stated whenever we use p.

5. VERIFYING BSPL PROTOCOLS
To verify BSPL protocols, we express a causal structure as well

as the target properties in a temporal language and determine the
satisfiability of the resulting expressions. The language we adopt,
Precedence, is an extension of Singh’s [12] language.

The atoms of Precedence are events. Below, e and f are events.
If e is an event, its complement e is also an event. Precedence treats
e and e on par. The terms e · f and e ? f , respectively, mean that e
occurs prior to f and e and f occur simultaneously. The Boolean
operators: ‘∨’ and ‘∧’ have the usual meanings. The syntax follows
conjunctive normal form:

L6 . I −→ clause | clause ∧ I
L7 . clause −→ term | term ∨ clause
L8 . term −→ event | event · event | event ? event
The semantics of Precedence is given by pseudolinear runs of

events (instances): “pseudo” because several events may occur to-
gether though there is no branching. Let Γ be a set of events where
e ∈ Γ iff e ∈ Γ. A run is a function from natural numbers to the
power set of Γ, i.e., τ : N 7→ 2Γ. The ith index of τ , τi = τ(i). The
length of τ is the first index i at which τ(i) = /0 (after which all in-
dices are empty sets). We say τ is empty if |τ = 0. The subrun from
i to j of τ is notated τ[i, j]. Its first j− i+1 values are extracted from
τ and the rest are empty, i.e., τ[i, j] = 〈τi,τi+1 . . .τ j−i+1 . . . /0 . . .〉. On
any run, e or e may not both occur. Events are nonrepeating.

τ |=i E means that τ satisfies E at i or later. We say τ is a model
of expression E iff τ |=0 E. E is satisfiable iff it has a model.

M1 . τ |=i e iff (∃ j ≥ i : e ∈ τ j)

M2 . τ |=i e? f iff (∃ j ≥ i : {e, f} ⊆ τ j)

M3 . τ |=i r∨u iff τ |=i r or τ |=i u

M4 . τ |=i r∧u iff τ |=i r and τ |=i u

M5 . τ |=i e · f iff (∃ j ≥ i : τ[i, j] |=0 e and τ[ j+1,|τ|] |=0 f )
We capture the local state of each role in a BSPL protocol by

defining two kinds of events: (1) a particular message having been
observed (one event each for sender and receiver) and (2) a partic-
ular parameter having a known binding (one event for each param-
eter whether emitted or received in any message).

Although our approach is generic and implemented, we describe
it via examples based on Purchase to simplify the exposition in
limited space. From Purchase, we first determine events from mes-
sages (B:quote, S:quote, . . . : total 12) and parameters (B:price,
S:price, . . . : total 17). Next, we describe how we generate a causal
structure, ignoring pnilq adornments for brevity. For protocol P ,
let CP be the conjunction of all clauses of the following types.

S R

p

m[in p]'' p

S R

p

m[in p]
''

p

(a) pinq parameters

S R

p
m[out p]%%

p

S R

p

p
m[out p]

''

(b) poutq parameters

Figure 6: Treatment of pinq and poutq parameters: each has
one possible scenario for the sender and two for the receiver.

Reception. If a message is received, it was previously emitted.
Specifically, either the receiver role never observes a mes-
sage or the sender observes it before (six clauses).
B:quote∨S:quote ·B:quote

Information transmission. For each message, in its sender’s view.
See Figure 6(a). Either the message is never emitted or each
of its pinq parameters is observed before (14 clauses).
S:quote∨S: item ·S:quote
See Figure 6(b). Either the message is never emitted or it is
observed simultaneously with each of its poutq parameters
(eight clauses).
S:quote∨S:price?S:quote

Information reception. For each message, in its receiver’s view.
Any poutq or pinq parameter occurs before or simultane-
ously with the message. In other words, either the message is
not observed or each such parameter is observed no later than
the message. A parameter may be observed earlier through
some other path [14] (22 clauses). See Figure 6.
B:quote∨B:price ·B:quote∨B:price?B:quote
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Information minimality. For any role, if a parameter occurs, it
occurs simultaneously with some message emitted or received.
Thus, no role observes a parameter noncausally (16 clauses).

B:price∨B:price?B:quote∨B:price?B:accept∨B:price?
B: reject

Ordering. If a role emits any two messages, it observes them in
some order, not simultaneously. This constraint rules out
lockstep enactments whereby two messages happen to be
emitted magically at the same time to escape our causality
constraints (four clauses).

S:quote∨S:ship∨S:quote ·S:ship∨S:ship ·S:quote
The correctness of our decision procedures relies on the follow-

ing result, whose proof follows from construction.
THEOREM 1. Given a well-formed protocol P , for every viable
history vector, there is a model of CP and vice versa.

Proof Sketch. In the forward direction, we can proceed by induc-
tion to find a pseudolinear run that includes each message emission
and reception that occurs in any history in the history vector H. An
empty history vector corresponds to an empty run. Inductively as-
sume that a run τ exists for history vector H. We can extend H via
the emission of a message only if the message is viable in H, mean-
ing that its sender has locally observed its pinq parameters but not
its poutq or pnilq parameters. Using the information transmission
clauses, we can construct a run τ ′ that extends τ with the message
emission event. We can extend H via the reception of the message
by a role r. By Definition 7, H must include a message emission
event for some role sending to r. Thus we can construct τ ′ as τ ap-
pended with the message reception. In the reverse direction, given a
run τ , we simply construct each member history of the vector from
τ by appending the message emission and reception events (and ig-
noring all others) involving a role in sequence to that role’s history.
The clauses in CP ensure that the resulting vector is viable.

5.1 Verifying Enactability
We generate clauses that together indicate completion of a proto-

col enactment. For each public parameter we identify all the mes-
sages in which it occurs and specify a clause that is the disjunction
of the receivers of those messages observing that parameter. For
example, for outcome, we have B:outcome∨ S:outcome because
B and S are the receivers of the two messages in which outcome oc-
curs. For protocol P , let EP be the conjunction of all such clauses.
Our decision procedure is simply to check if CP∧EP is satisfiable.
THEOREM 2. A well-formed protocol P is enactable if and only
if CP∧EP is satisfiable.

Proof Sketch. In the forward direction, assume protocol P has a
nonempty intension. Then, by Definition 11, it has a cover of ref-
erences that yield bindings for all its public parameters, indicating
that EP holds for each vector. Further from Theorem 1, we know
that CP holds in the corresponding run. In the reverse direction,
from any run that satisfies CP ∧EP we can identify a cover with a
nonempty intension.

5.2 Verifying Safety
Safety means that for each parameter (public or private) adorned

poutq in two or more messages, no more than one of those “com-
peting” messages may be emitted. To this end, we generate clauses
expressing that two or more of the competing messages of some
parameter are observed by their sender. For Purchase, outcome and
response are the relevant parameters. Therefore, the resulting two
clauses are (B:accept∨ SHIPPER:deliver) and (B: reject). This

clause says that both reject and either accept or deliver is emitted,
which signifies an inconsistency. For protocol P , let SP be the
conjunction of all the property clauses. Our decision procedure is
simply to check if CP∧SP is unsatisfiable.
THEOREM 3. A well-formed protocol P is safe if and only if CP∧
SP is not satisfiable.

Proof Sketch. Let τ satisfy CP∧SP. Then, by Theorem 1, we can
construct a history vector in which at least two conflicting messages
occur. We can extend such a vector to one where at least two roles
generate bindings for the same parameter, thus violating integrity
(we cannot prove that they will generate the same bindings since
we have no access to internal reasoning). Conversely, if CP∧SP is
not satisfiable, there is no history vector in the intension of P that
violates integrity.

5.3 Verifying Liveness
Notice that a specific protocol enactment being incomplete does

not entail that some role is blocked. A enactment may fail to com-
plete even though the protocol may be live: (1) one or more agents
may decide not to send messages or (2) one or more messages may
be lost—causality requires only that receptions are preceded by
emissions, not that emissions are always followed by receptions.

To avoid situations where some agents may decide not to send
any messages, we restrict attention to models that are maximal in
the sense that they have no message left unemitted that could be
emitted based on the parameters that feature in it. That is, in a
maximal model, if the sender has observed the pinq and not ob-
served the poutq parameters of a message, then the sender must
also observe the message. The following says that either S emits
quote or it does not observe ID or item or it observes price, i.e.,
(S:quote∨S: ID∨S: item∨S:price).

To avoid situations where the communication infrastructure may
drop messages, we constrain our model to those where every mes-
sage emitted is delivered, e.g., (S:quote∨B:quote). Third, the en-
actment is incomplete, which means that at least one of the public
poutq parameters remains unbound at each role. The above condi-
tion yields a clause (: ID∨ : item∨ :price∨ :outcome) constructed
from protocol-level literals, for which no role is relevant. For each
such literal, we assert two clauses (:price∨B:price∨S:price) and
(:price∨B:price∨S:price), meaning that the protocol-level literal
is true exactly if at least one role observes the parameter.

If a maximal, nonlossy enactment can be incomplete that means
the protocol is not live. For protocol P , let LP be the conjunc-
tion of all the above property clauses. Our decision procedure is to
check if CP∧EP is satisfiable and CP∧LP is unsatisfiable.
THEOREM 4. A protocol P is live if and only if CP∧EP is satisfi-
able and CP∧LP is not satisfiable.

Proof Sketch. Let τ satisfy CP ∧LP. Then, by Theorem 1, we
can construct a viable history vector that cannot be extended by a
message emission (maximality) or by message reception (lossless
transmission), and yet is incomplete. That is, such a history vector
belongs to the universe of enactments of P but is neither complete
nor can be completed. Thus, by Definition 15, P is not live.

Conversely, if a protocol P is live, we know there is a history
vector in the universe of enactments of P that is complete. From
Theorem 2, that vector satisfies CP ∧EP. We also know that each
history vector in the universe of enactments of P is either complete
or can be finitely extended to a complete history vector. Thus if P
is live, CP∧LP is not satisfiable.
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6. DISCUSSION
We employ a satisfiability (SAT) solver for Precedence built us-

ing a propositional SAT solver—an established technology for log-
ical reasoning. Our approach expresses and solves temporal con-
straints directly instead of building an explicit state machine rep-
resentation. Table 1 shows the numbers of Precedence clauses for
selected protocols.

Table 1: Counts of Precedence clauses for our properties.

Protocol |CP| |EP| |SP| |LP| Total

Abrupt Cancel 14 2 4 9 29
Purchase 70 4 4 21 99
Purchase No Reject 56 4 0 19 79
Purchase No Ship 62 4 4 19 89
Purchase Unsafe 64 4 2 21 91
FIPA Request [6] 121 3 56 27 207

A technically correct protocol may have design flaws: (1) it may
have deadwood messages, which can never be enacted; (2) param-
eters that may never be bound (e.g., a private parameter that is not
poutq in any message); (3) some parameters that may never be used
(e.g., a private parameter that is not adorned pinq in any message).
Such checks are valuable because they indicate other problems.

We elide other easy checks that help validate a protocol but which
are not critical to our verifier. A protocol that has a public pinq pa-
rameter cannot be enacted standalone: its intension is empty. A
protocol that lacks a message involving any of its public poutq pa-
rameters is also not enactable.

Traditional notations for protocols such as AUML [11], UML
2.0 message-sequence charts (MSCs), and choreography descrip-
tion languages take a procedural stance for describing interactions.
Thus they emphasize explicit constraints on how messages are or-
dered. Desai and Singh [4] identify several challenges to the en-
actability of a protocol: ordering problems termed blindness and
occurrence problems termed nonlocal choice [7]. Traditional ap-
proaches formalize properties such as safety and liveness but those
are understood purely procedurally and the underlying model does
not sustain a declarative information-based model as BSPL does.
In contrast, BSPL’s parameter adornments force clarity in terms of
causality and the flow of information. In this way, BSPL avoids
both blindness and nonlocal choice: each of them yields an empty
intension and is thus deemed nonenactable. A designer can correct
an unsound protocol by inserting suitable messages.

Miller and McGinnis [9] propose RASA, a language for express-
ing protocols. RASA takes a procedural stance on capturing pro-
tocols and takes its semantics from propositional dynamic logic
(PDL). RASA does not have a notion of parameter adornment as
in BSPL and its semantics does not capture the ideas of maximiz-
ing concurrency and interaction orientation. Like BSPL, RASA
supports protocols that an agent can inspect and reason about.

LoST [14] focuses on the architectural aspects of realizing a lan-
guage such as BSPL. That work describes the functioning of a suit-
able middleware using conceptually relational data stores. It does
not describe the formal semantics as introduced in this paper.

Several researchers have developed approaches for analyzing pro-
tocols [1, 5, 10, 15] that by and large consider higher-level aspects
of interaction than BSPL. It would be interesting and useful to see
how such approaches can be applied on top of BSPL. A potential
advantage, and one that motivates BSPL, is that by guaranteeing the
integrity of distributed enactments, BSPL can facilitate expressing
high-level, declarative meanings of protocols, thereby facilitating

analyses carried out in the above works. Thus the reasoning they
perform on commitments, delegation, and other normative con-
structs could have even better effect than presently, in particular,
obtaining a distributed rendition for free and thus the opportunity
to apply in an asynchronous information-driven environment. Ex-
ploring such connections is an important theme for future research.
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