
Time Optimized Multi-Agent Path Planning using
Guided Iterative Prioritized Planning

(Extended Abstract)

Wenjie Wang
Nanyang Technological University

School of Computer Engineering, Singapore

wang0570@e.ntu.edu.sg

Wooi Boon Goh
Nanyang Technological University

School of Computer Engineering, Singapore

aswbgoh@ntu.edu.sg

ABSTRACT
This paper proposes the guided iterative prioritized planning
(GIPP) algorithm to address the problem of moving multiple
mobile agents to their respective destinations in a shortest time-
related cost. Compared to other MAPP algorithms, the GIPP
algorithm strikes a good balance between various performance
criteria such as finding feasible solutions, completing the task
promptly and low computational cost.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – Workcell organization
and planning.

General Terms
Algorithms, Experimentation.

Keywords
Path planning, Multi-agents, Guided local search

1. INTRODUCTION
Many MAPP algorithms do not scale well when increasing
numbers of agents are required to move concurrently. As such,
finding an optimal solution under these conditions can be
computationally expensive. Many MAPP approaches make a
trade-off between the solution optimality and the computational
complexity of the algorithm. Coupled approaches combine the
workspace of all agents into a composite workspace, and then plan
their paths simultaneously. They can find an optimal solution, but
are not computationally scalable. The alternative decoupled
approaches [1], [2], as used in this work, decompose the MAPP
problem into several sub-problems and then solve these sub-
problems separately. These approaches are notorious for
producing inferior solutions or poor performance when the
environment is only mildly crowded. This paper defines the time-
optimized MAPP problem and then proposes the GIPP algorithm
that is able to find a good solution for the defined problem in
crowded environments.

2. PROBLEM DEFINITION
The time-optimized MAPP problem is described as follow: each
agent Ai , i{1,.,n}, is required to move concurrently along a
collision-free path Pi from a unique starting point Si to its
destination Gi in a shortest time. Assume the path node

ܲሺݐሻ=(ܲ
௫ሺݐሻ, ܲ

௬ሺݐሻ) denotes the position of each agent ܣ at the
time step t, and each agent stops at its destination at the time step
ܶ . The function ݂ሺܲሻ calculates the time taken by agent ܣ to

reach its destination safely with respect to the paths of the other
(n -1) agents. The function ߮ሺݐሻ denotes whether the agent ܣ
collides with the static obstacles ܵ at the path node ܲሺݐሻ. The
function Ω, ܣ denotes whether the agent (ݐ) collides with the
agent ܣ at the path node ܲሺݐሻ . The function ߶, (ݐ െ 1 , ݐ)
indicates whether there is any head-on collision between agent ܣ
and ܣ during the time step ݐ െ 1 to	ݐ. The function ߮ሺݐሻ, Ω,(ݐ)
or ߶,ሺݐ െ 1, ሻ will be set to 1 if its corresponding statement isݐ
true, or else set to 0. As a result, our time-optimized objective
function is described as follows:

 ݉݅݊ ሺ	ݔܽ݉ = ሺܲሻܨ ଵ݂ሺܲሻ, … , ݂ሺܲሻሻ subjected to (1)

 ߮ሺݐሻ=0 for each {݅,ݐ}, (2a)

 Ω,(ݐ)=0 and ߶,(ݐ െ ,݅} for each 0=(ݐ,1 (2b) {ݐ,݆

Where ݅{1,.,݊}, ݆{1,.,݊}, ݆≠)ଵஸஸݔܽ݉ =ܶ ,{1,.,ܶ}ݐ ,݅ ܶ).
The constraints in (2a) and (2b) are called static constraint and
dynamic constraints respectively.

3. GUIDED ITERATIVE PRIORITIZED
PLANNING ALGORITHM
The guided iterative prioritized planning (GIPP) algorithm
(pseudo-code is given in Figure 1) is a local search method that
iteratively finds an improving solution from a defined
neighborhood N (x) of the current solution x with respect to a cost
function. Using an efficient optimal search algorithm like the A*
algorithm for single agent path planning, we can define ݊ different
neighborhood ܰ (ܲ) obtained by applying changes in one
component of the current solution ܲ=(ଵܲ,..,		 ܲ). For each local
neighborhood ܰ(ܲ), we adopt a corresponding local cost function
 :given by (ߤ;ܲ)ܨ

ߤ	+ ݂ሺܲሻ = (ߤ;ܲ)ܨ	݊݅݉ ∗ ∑ ∑ ሼ ݄ሺܲሻ ∗ ሾΩ,ሺݐሻ
்
௧ୀଵ

ୀଵ,ஷ +

߶,ሺݐ െ 1, ሻሿሽ (݅{1,.,݊}) (3)ݐ

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,
Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Minnesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1183

Subjected to (2a). Where ߤ is a positive penalty coefficient, and ݄
is a penalty associated with a defined solution feature ܿ and
initially set to 1. We define ݊ solution features that correspond to
the path of each agent. Each solution feature ܿ for ݅{1,.,݊} is
defined as the violation of the dynamic constraints imposed by
path ܲ. The utility function of each solution feature ܿ is given by

ܷ(ܲ∗, ݅)=	∑ ∑ ሼ ݄ሺܲሻ ∗ ሾΩ,ሺݐሻ
்
௧ୀଵ

ୀଵ,ஷ +߶,ሺݐ െ 1, ሻሿሽ (4)ݐ

where ܦ (ܲ∗) indicates whether the feature ܿ is present in the
solution ܲ∗. ܦሺܲ∗ሻ ൌ 1 means it does, or else ܦሺܲ∗ሻ ൌ 0.

When a local optimal solution ܲ∗ is encountered, a utility for each
solution feature ܿ is calculated according to function (4). Then
݄ሺܲ∗ሻ of the solution feature ܿ with the highest utility present in
the solution ܲ∗ is increased. The local optimal solution ܲ∗ is
deemed to be reached when the current solution is continuously
kept for at least n iterations, where n is the number of agents.

1) Generate an initial solution ܲሺሻ=(ଵܲ

ሺሻ,…,	 ܲ
ሺሻ) and set ݅ ,1 ← ߬ ,0 ← ߠ ,1←

and set a high value for ߤ;
2) Repeat the following procedure until some stopping criteria are satisfied:

a) At the iteration ߬, try to find an improving solution ܲ′ with respect to the
cost function ܨሺܲ; ;in ܰ(ܲሺఛିଵሻ)	ሻߤ

b) ܲሺఛሻ ← ܲ′;
c) If ܲሺఛሻ = ܲሺఛିଵሻ, 1+ߠ ← ߠ, or else ߠ ←0;
d) If ߠ ≥ n, ߠ ←0, calculate the utility ܷ (ܲሺఛሻ , ݆) of each feature ܿ for

j = 1,2,..,n and then increase the value of the feature penalty ݄ of the
feature with the maximal utility by a value of ߝ.

e) ߬ =	߬ + 1, then i =1 if i ≥ n, or else i = i + 1;

Figure. 1 Guided iterative prioritized planning for MAPP

The iteration stops when there is no further improvement with the
current feasible solution or an upper iteration bound is reached.
Since the neighborhood ܰ (ܲሺఛିଵሻ) is obtained by applying
changes in one component ܲ at each iteration, we essentially have
a simple single agent path planning problem with the incremental
positions of other agents treated as obstacles. Cooperative A* [2]
is used to find a path for each agent at each iteration.

4. EXPERIMENTAL RESULTS

Figure 2. Success rates of windowed hierarchical cooperative
A* with 16 window step (WHCA*(16)) and 64 window step
(WHCA*(64)), the Push and Swap, and GIPP algorithms.

The GIPP algorithm was evaluated in a simulation consisting of a
30×20 grid map with 20% static obstacle nodes. Each run uses
the same 100 random scenarios. The Visual C++ simulation code
was executed on an Intel(R) core™ 2 CPU (2.67 GHz) with 2 GB
memory. We compared our proposed GIPP algorithm with the
Windowed Hierarchical Cooperative A*(WHCA*) [1] and Push

and Swap [2] algorithms. In all the experiments presented, the
settings for GIPP are 100=ߤ and = 1.

Figure 3. Comparative task completion time measures the
average time steps to move n agents to their destinations.

Figure 4. Comparative computational time measures the
average time taken to compute viable paths for all n agents.

Though a larger window size allowed the WHCA*(64) algorithm
to achieve better success rate (i.e. percentage of time in 100
scenarios all n agents found viable paths), it was still much lower
than that of the GIPP algorithm. The computational cost of
WHCA*(64) also increased with the increased window size (see
Fig. 4). In contrast, the Push and Swap algorithm moves one agent
at a time and does not suffer from head-on collisions. This
increases its ability to find feasible solutions in crowded
environments (see Fig. 2). However, moving one agent at a time
cannot provide time-optimized MAPP solutions (see Fig. 3)
resulting in significantly longer task completion time than the
GIPP algorithm. GIPP can achieve comparable success rate to that
of Push and Swap if more iterations are allowed. Unlike WHCA*
and Push and Swap, the GIPP algorithm is designed with the
ability to explore the whole solution space and therefore suffers
from high computational cost (see Fig. 4). Fortunately, this
drawback can be readily resolved by using faster computation
hardware.

5. ACKNOWLEDGEMENTS
This research is supported by the Singapore National Research
Foundation (NRF2008-IDM001-017) and administered by the
Ministry of Education.

6. REFERENCES
[1] Silver, D. 2005. Cooperative Pathfinding. In Proceedings of

AIIDE, 117-122.

[2] Luna, R. and Bekris, K. E. 2011. Push and Swap: Fast
Cooperative Path-Finding with Completeness Guarantees, In
Proceedings of IJCAI, 294-300.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Nubmer of agents (n)

S
u

cc
es

s
ra

te
 (

%
)

WHCA*(16)

WHCA*(64)

Push and Swap
GIPP (= 50*n)

GIPP (= 150*n)

0 20 40 60 80 100 120 140 160 180 200
10

1

10
2

10
3

10
4

Nubmer of agents (n)

T
as

k
co

m
p

le
ti

o
n

 t
im

e

WHCA*(16)

WHCA*(64)
Push and Swap

GIPP (= 50*n)

0 20 40 60 80 100 120 140 160 180 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Nubmer of agents (n)

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
(m

s)

WHCA*(16)

WHCA*(64)

Push and Swap

GIPP (= 50*n)

1184

