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ABSTRACT 
One of the challenges of fault detection in the domain of 
autonomous physical agents (or Robots) is the handling of 
unclassified data, meaning, most data sets are not recognized as 
normal or faulty. This fact makes it very challenging to use 
collected data as a training set such that learning algorithms 
would produce a successful fault detection model. Traditionally 
unsupervised algorithms try to address this challenge. In this 
paper we present a hybrid approach that combines unsupervised 
and supervised methods. An unsupervised approach is utilized for 
classifying a training set, and then by a standard supervised 
algorithm we build a fault detection model that is much more 
accurate than the original unsupervised approach. We show 
promising results on simulated and real world domains. 

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics – Autonomous vehicles, 
Sensors.  

General Terms 
Reliability, Experimentation  

Keywords 
Fault detection, Model-Based Diagnosis, Robotics, UAV. 

1. INTRODUCTION 
Autonomous physical agents such as Unmanned Vehicles 

(UVs) or robots are susceptible to a variety of hardware and 
software faults. These faults might lead to mission failure or even 
endanger the safety of the expensive agent or its environment. For 
example, a pitot-static system failure in an Unmanned Aerial 
Vehicle (UAV) might lead to a stall and then a crash. To continue 
operate autonomously, the agent must have an accurate fault 
detection mechanism. Upon fault detection a diagnosis process 
can be triggered and a decision on how to continue can be made. 

Given the nature of autonomous physical agents, i.e. physical 
systems which operate autonomously and interact with a physical 
environment, an accurate fault detection mechanism faces several 
challenges: (1) since the agent is autonomous i.e., there is an 
absence of human operators, there is no other perception which 
can be compared to the agent's own perception. (2) The physical 
environment is both dynamic and nondeterministic and therefore 
the environment and the agent's effects are both very hard to 
model. (3) Physical faults have many expressions, such as a stuck 
value, a drifting value or abrupt intermittent offsets. Furthermore, 
some faults might have unknown expressions. (4) A fault 

expression can span over time. (5) Since the agent does not stop 
its operation, a fault must be detected as quickly as possible, 
online, and with high accuracy. (6) Since the agent is already 
engaged in heavy computations, e.g. vision processing, a fault 
detection mechanism should be kept computationally light. (7) 
Due to the environmental and behavioral contexts, this domain is 
also characterized for having unclassified data, which means the 
data is not recognized by the user as healthy or faulty.  

In a recent work [1], we presented an unsupervised approach 
(hereinafter SFDD) for fault detection in the domain of 
autonomous systems. This approach shows a high rate of fault 
detection and a low rate of false positives (false alarms). In this 
paper we aim to extend the state of the art by describing a hybrid 
approach which is based on the SFDD approach and is 
significantly more accurate. In addition, the presented approach is 
more suitable to meet the challenges for a fault detection 
mechanism in the domain of autonomous physical agents.  

The SFDD approach is used offline to classify a training set. 
Then, even though the SFDD has a certain degree of false 
positives, a standard supervised learning algorithm is applied and 
a fault detection model is created. The created model is used 
online to detect faults.  

We empirically evaluate the presented approach on simulated 
and real world domains: a high fidelity flight simulator, a 
commercial UAV and a laboratory robot.  We show that the learnt 
fault detection model is more accurate than the original 
unsupervised SFDD approach.  

The significances of this paper are by (1) introducing a hybrid 
approach to fault detection of autonomous physical agents. We 
show that this approach is general and can be applied with other 
unsupervised algorithms too. (2) In addition, we theoretically 
analyze our approach and provide an explanation why it is only 
slightly affected by the unsupervised SFDD false positives. (3) 
Finally, we empirically evaluate the hybrid approach and show its 
accuracy. 

The paper is structured as follows. In the next section we 
discuss the related work. In Section 3 we describe the hybrid 
approach: the problem description, the outline of the approach, 
and how we use the SFDD for offline classification of a training 
set. Also, we describe the learning process and why it is only 
slightly affected by the false positives of the SFDD. In Section 4 
we describe the experimental setup and in Section 5 we show the 
results. Finally, Section 6 discusses the different aspects of the 
hybrid approach. 

2. RELATED WORK 
Steinbauer conducted a survey on the nature of faults of 

autonomous robots [2]. The survey participants are developers 
competing in different leagues of the RoboCup competition [3]. 
The reported faults were categorized as hardware, software, 
algorithmic and interaction related faults. The survey concludes 
that hardware faults have a high negative impact on mission 
success. In this paper we focus on detecting such faults. 

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and Michael 
Huhns (eds.), Proceedings of the 13th International Conference on 
Autonomous Agents and Multiagent Systems (AAMAS 2014), May 5-9, 
2014, Paris, France.  
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Multiagent Systems (www.ifaamas.org). All rights reserved. 
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6. CONCLUSIONS and DISCUSSION 
In this paper we described a hybrid approach for fault detection 

in the domain of autonomous physical agents that is unsupervised, 
able to detect unknown faults, use an easy to construct model, and 
also computationally very light and thus can detect faults very 
quickly online. 

The approach uses an accurate unsupervised method to offline 
classify an unclassified training set, applies a supervised learning 
algorithm, and produces a fault detection model that is 
computationally lighter and is more accurate than the original 
unsupervised method when applied online. We have explained the 
causes for the improvement in accuracy and showed satisfying 
results in three different domains – both real-world and simulated. 

The offline step classifies the data with an unsupervised 
approach. An alternative approach for classifying the data is a 
general clustering algorithm e.g. K-means where k=2. However, 
an unsupervised fault detection approach is more specific to the 
fault detection problem and thus expected to be more accurate 
than the general clustering algorithm. We showed that the higher 
the accuracy of the unsupervised approach, the closer the false 
positive rate of the hybrid approach tends to 0.  

We chose to demonstrate how a hybrid approach extends the 
state of the art with the use of, and a comparison to the SFDD 
approach since it showed a high detection rate and a very low 
false positive rate. Any other highly accurate unsupervised 
approach could have been used for classifying the unclassified 
training set. The high detection rate is very important since all 
faults should be classified as such.  

The proposed approach is unsupervised since the starting point 
is with unclassified training set. The SFDD uses a structural 
model (dependency associations) and thus is model based. 
However, constructing such a model is easier than the typically 
suggested analytical behavioral models. Both the SFDD and the 
online phase of the hybrid approach use suspicious pattern 
recognizers to categorize the behavior of attributes. These pattern 
recognizers are very generic and are suitable for a large variety of 
physical systems; the same pattern recognizers were used in all 
the tested domains. 

The learnt FDM generalized the original heuristic decision of 
the unsupervised approach. The model is independent of heavy 
online computations such as correlation calculations and thus is 
computationally lighter. In addition, the FDM is less susceptible 
to false positives than the original unsupervised approach.  

We showed that the use of a static model i.e. learnt offline, is 
very accurate. It is quite possible that models that are learnt online 
in a supervised manner would be even more accurate when 
supplied with enough training instances. However, these online 
computations might be heavy for the agent and not feasible to 
detect faults quickly enough. 

For future work we plan to extend the hybrid approach to 
multiclass supervised learning. The classification options will be 
the different diagnoses for the fault. We hope that the learnt fault 
detection and diagnosis model will provide an accurate and 
minimal diagnosis as well. 
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