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ABSTRACT
This paper analyzes repeated multimarket contact with ob-
servation errors where two players operate in multiple mar-
kets simultaneously. Multimarket contact has received much
attention in economics, management, and so on. Despite
vast empirical studies that examine whether multimarket
contact fosters cooperation or collusion, little is theoretically
known as to how players behave in an equilibrium when each
player receives a noisy and different observation or signal
indicating other firms’ actions (private monitoring). To the
best of our knowledge, we are the first to construct a strategy
designed for multiple markets whose per-market equilibrium
payoffs exceed one for a single market, in our setting. We
first construct an entirely novel strategy whose behavior is
specified by a non-linear function of the signal configura-
tions. We then show that the per-market equilibrium payoff
improves when the number of markets is sufficiently large.
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1. INTRODUCTION
This paper analyzes repeated multimarket contact with

observation errors where two players operate in multiple
markets simultaneously, e.g., [1]. A firm, e.g., Uber, pro-
vides its taxi service in multiple distinct markets (areas)
and determines its price or allocation in each area, facing an
oligopolistic competition, which is often modeled as a pris-
oners’ dilemma (PD). To improve profits, it is inevitably
helpful to realize how the firm’s rival should behave in an
equilibrium. However, despite vast empirical studies that
have examined whether multimarket contact fosters coop-
eration or collusion, little is theoretically known as to how
players behave in an equilibrium when each player receives
a noisy observation or signal of other firms’ actions.
This paper considers a realistic noisy situation where play-

ers do not share common information on each other’s past
history, i.e., private monitoring where each player may ob-
serve a different signal. For example, although a firm cannot
directly observe its rival’s action, e.g., prices, it can observe
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a noisy signal, e.g., its own sales amounts. Analytical studies
on this class of games have not been very successful.

To the best of our knowledge, we are the first to construct
a strategy designed for multiple markets whose per-market
equilibrium payoffs exceed one for a single market. We con-
struct an entirely novel strategy whose behavior is specified
by a nonlinear function of the signal configurations.

2. MODEL
Two players play M PDs simultaneously in each period.

In each PD, each player chooses either C (cooperation) or
D (defection). The players can choose different actions over
the M PDs, so that each player’s action set in each pe-
riod is {C,D}M . In each PD, each player receives either a
good signal g or a bad signal b. The pair of signals they
privately receive in each PD follows a common symmetric
probability distribution that depends entirely on the action
pair of that PD. We denote it by o(ω1, ω2|a1, a2), where
(ω1, ω2) ∈ {g, b}2 and (a1, a2) ∈ {C,D}2. Since the signal
distributions are described by one parameter, there exists
p ∈ (1/2, 1) such that for any i, (ω1, ω2), and (a1, a2),∑
ωi∈{g,b}

o(ωi, ωj |a) =

{
p if (ai, ωj) ∈

{
(C, g), (D, b)

}
,

1− p otherwise.

In each PD, player i’s payoff depends only on his action and
the signal of that PD. The payoff function is common to all
PDs, denoted by πi(ai, ωi). We are more interested in the
expected payoff function

gi(a1, a2) =
∑

(ω1,ω2)
πi(ai, ωi)o(ω1, ω2|a1, a2).

Their expected payoff functions are represented by the fol-
lowing payoff matrix:

C D
C 1, 1 −y, 1 + x
D 1 + x,−y 0, 0

We assume x > 0, y > 0 and 1 > x − y, so that it indeed
represents a PD.

All M PDs are played infinitely, in periods t = 0, 1, 2, . . ..
Player i’s private history at the beginning of period t ≥ 1

is an element of Ht
i ≡

[
{C,D}M × {g, b}M

]t
. Let H0

i be

an arbitrary singleton, and let Hi = ∪t≥0H
t
i be the set of

player i’s all private histories. Player i’s strategy of this
repeated game is a mapping from Hi to the set of all prob-
ability distributions over {C,D}M . If the actual play of the
repeated game is such that the action pair

(
am
1 (t), am

2 (t)
)
is
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Figure 1: EV strategy
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Figure 2: NTPD strategy

played in the m-th PD in period t for each m and t, player i’s
normalized average payoff is

(1− δ)
∑∞

t=0 δ
t ∑M

m=1 gi
(
am
1 (t), am

2 (t)
)
,

where δ ∈ (0, 1) is their common discount factor. Let us
herein focus on belief-free equilibria, which is a subclass of
a sequential equilibrium [2]. A strategy pair is a belief-free
equilibrium if for any t ≥ 0, ht

1 ∈ Ht
1 and ht

2 ∈ Ht
2, each

player i’s continuation strategy given ht
i is optimal against

player j’s continuation strategy given ht
j .

Among belief-free equilibria, a benchmark strategy, which
we call EV, is found by Ely and Välimäki [3] and is depicted
in Figure 1. It is parameterized by two numbers, εR ∈ [0, 1]
and εP ∈ [0, 1]. A player first cooperates at state R, but
after observing a bad signal, she defects at the next period
with probability ϵR, or keep cooperation with 1− ϵR. Like-
wise, after she defects at P , if she observes a good signal, she
returns cooperation with ϵP , or keep defection with 1− ϵP .
They identify a sufficient condition for the existence of εR
and εP in an equilibrium and derive the average payoff start-

ing from state R is VR = 1− (1−p)x
2p−1

.

3. NONLINEAR TRANSITION,
PARTIAL DEFECTION STRATEGY

Let us introduce a novel class of strategies, which we call
the nonlinear transition, partial defection (NTPD) strategy.

Definition 1 (NTPD strategy). Given M PDs, an
NTPD strategy for M(≥ 2) PDs is a two-state automaton
strategy, parameterized by an integer MA such that 1 ≤
MA < M and two numbers ε ∈ [0, 1] and ε̂ ∈ [0, 1]. Let
A = {1, 2, . . . ,MA} and B = {MA + 1,MA + 2, . . . ,M}.

• The state space is {R,P}, and R is the initial state.
• At state R, the player is prescribed to choose C in all

PDs. At state P , she is prescribed to choose C in all
PDs in A and D in all PDs in B.

• Suppose the current state is R and k is an integer be-
tween 0 and MB = M −MA. Then

1. if b is observed among all PDs in A and there
are k bad signals among the PDs in B, then the
state shifts to P with probability 1 − (MB − k)ε̂
(and stays at R with the remaining probability).

2. if g is observed among some PD in A and there
are k bad signals among the PDs in B, then the
state shifts to P with probability kε̂ (and stays R
with the remaining probability).

• Suppose the current state is P and k is an integer be-
tween 0 and MA. Then

1. if g is observed among all PDs in B and there
are k bad signals among the PDs in A, then the
state shifts to R with probability ε+ε̂

{
(1−ε)MA−

k
}
(and stays P with the remaining probability).

2. if b is observed among some PD in B and there
are k bad signals among the PDs in A, then the

state shifts to R with probability (MA − k)ε̂ (and
stays P with the remaining probability).

Figure 2 illustrates NTPD for two PDs. A player cooper-
ates in all PDs in A at state P . Then, she always cooperates
in all PDs in A whichever state she is in. For example, the
transition probabilities from P to R are specified as follows.
Their increase is constant for the number of bad signals from
PDs in B. If she observes at least one bad signal from B,
it is zero, otherwise, ε− ε̂εMA. The transition probabilities
decrease by ε̂ in the number of bad signals k in A. For k
bad signals from A, the transition probability from P to R
is specified as (MA − k)ε̂ if she observes some b in B, or
ε + ε̂{(1 − ε)MA − k} otherwise. We here mix 1 − kε̂ with
(MA − k)ε̂ by the last parameter ε.

Theorem 1 (NTPD for M PDs). There exist ε and
ε̂ such that the NTPD strategy pair is a belief-free equilibrium
if

δ

[
x(1− sMA ) + sMA−1

{
MB(p− s)− x(MA −MB)p

−
sMB (p− s)MBy

pMB − sMB

}]
≥ x(1 + sMA−1MB) and

δ

[
(pMB − sMB )

{
MB(p− s) + (MA −MB)x(s− sMA )

}
+MBy(p− s)(1− sMA − sMB )

]
≥MAx(pMB − sMB ) +MBy(p− s)

hold. The average payoff starting from R is

VR = M −
δsMA (p− s)(M − VP ) + (1− δ)(s− sMA )MBx

(p− s)
{
1− δ(1− sMA )

} ,

where VP = MA + pMAx
p−s

+ sMBMBy

pMB−sMB
.

We herein refer to 1−p as s for simplicity. Then, let us show
that, if the numbers of PDs are sufficiently large, NTPD
achieves a greater payoff than EV.

Corollary 1. Fix x, y, and p. Suppose both MA and
MB are sufficiently large and satisfy

MApx− (MB − 1){2p− 1− (1− p)x} ≥ (1− p)y.

Then if NTPD is an equilibrium for sufficiently large δ, EV
is equilibrium, but its payoff is smaller than that of NTPD.

In addition, our numerical analysis supports this result
with a given discount factor (δ < 1) and suggests that the
transition probabilities to specify the behavior can still be
improved. In future work, we would like to improve NTPD
and to characterize an optimal equilibrium strategy class.
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