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ABSTRACT

In this demonstration, participants will explore a system for
multi-robot observation of a complex scene involving the
activity of a person. Mobile robots have to cooperate to find
a position around the scene maximizing its coverage, i.e.
allowing a complete view of the human skeleton. Simultane-
ously, they have to map the unknown environment around
the scene. We developed a simulator that allows to generate
an environment, a scene, and to simulate robots’ observations
and motion. During the demo, users will be able to test our
simulator, including setting up a scenario and a decision al-
gorithm, monitoring the movements, observations and maps
of the robots, and visualizing the performance of the team.
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1 INTRODUCTION

In this demonstration paper, we focus on complex scene
observation by mobile robots in unknown and cluttered en-
vironments. The robots have to coordinate themselves to
explore the environment and to optimize their positioning
around the scene so as to maximize the quality of the scene
observation. This concerns for instance assistance, rescue and
surveillance tasks. We consider that the robots observe a per-
son carrying out an activity in a quasi-static location (scene).
We assume that robots are homogeneous, can communicate
and know only the relative location of the scene to observe.
They have to deploy themselves around the person with the
objective to fully observe its pose (i.e. the set of skeleton
joints), as illustrated in Fig. 1.

Recent works proposed various solutions to coordinate
robots in tracking a set of (mobile) targets [1, 3, 6]. How-
ever they generally consider that the environment is free of
obstacles, or they are too few to obstruct the observation.
Yet in distributed recognition scenarios, a particular chal-
lenge is when each individual point of view does not allow
a satisfactory recognition, e.g. because of the presence of
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Figure 1: Joint observation of a scene with 3 robots
and a navigation model with 2 circles and 8 sectors.

occlusions. Thus the robots have to coordinate to obtain the
most complementary observations.

Our work focuses on multi-robot scene observation in
unknown and cluttered environment. So the robots have
to explore and map the environment while simultaneously
searching for an optimal joint position around the scene that
maximizes the coverage (observation) of the targets. To this
end, we proposed an original approach based on a circular
topology and an incremental mapping, that has been imple-
mented and validated with a fleet of real robots [4]. We also
developed a simulator that allows to generate an environment
and a scene, and to simulate robots’ observations and motion.
By using this simulator, we were able to compare different
algorithms for the simultaneous exploration of the environ-
ment and coverage of the scene. These results are detailed in
the accompanying publication to this demonstration [5].

In this paper, after a brief presentation of the proposed
approach and techniques involved, we will focus on describing
our simulator, the demonstration workflow and its interactive
aspects with the audience1.

2 OUR APPROACH

Coverage task: To formalize the coverage task of a complex
scene observation problem, we use the CMOMMT2 frame-
work [6]. It aims to dynamically position robots to maximize
the coverage3 of mobile targets. In our problem scenario,
robots have to cover a human pose (skeleton) defined as a set

1A video is available at https://liris.cnrs.fr/crome/wiki/doku.php?id=
demoaamas2018.
2Cooperative Multi-robot Observation of Multiple Moving Targets
3Here it is defined as the number of targets under observation and the
duration of observation of each target.
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of joints (targets). The observation vector of a robot is then
defined as a binary vector, where each element is 1 if the
robot is tracking the target or 0 otherwise. The individual
(resp. joint) observation quality made by a robot (resp. a
team) is the average number of joints tracked by the robot
(resp. the team). To quantify the individual contribution of
a robot to the joint observation, the contribution of a robot
is the part of the observation that it is the only one to see.

Mapping task and circular topology: As the envi-
ronment is unknown, robots must build a map to locate
themselves and learn observation qualities from different lo-
cations. So we extend the CMOMMT framework with a
simultaneous mapping task. The map uses cells as a dis-
crete representation of the robots’ positions. These cells arise
from sectors and concentric circles around the scene where
the robots are moving (cf. Fig. 1). This circular navigation
topology is adapted to the continuous observation of a scene.

Incremental mapping: One issue of our coverage and
mapping problem is the trade-off between exploitation and
exploration, that is moving to optimize the coverage versus
exploring the environment to find new interesting observation
positions. To master the complexity of the state space and
the time to explore it, we propose an incremental mapping
based on a quadtree structure. The idea is to refine the
discretization by splitting cells only in interesting areas i.e.
where the quality of observation is promising. Fig. 2(a) shows
a quadtree map constructed by robots. Two views are given
to visualize the different map data: coverage data on the
top map with cell qualities in shades of green (the greener
the cell, the better is the quality from this cell; white is for
cells where the scene is not visible, dark for obstacle cells);
obstacle probabilities in shades of grey on the bottom map.

Decision algorithms: We propose different algorithms
to guide the robots exploration of the state space. They
rely on local versus global information and lead to solutions
with different computational and memory costs. Approaches
based on local information and meta-heuristic optimizations
obtained better results than the exhaustive exploration4.

3 SIMULATOR

We developed from scratch a simulator (cf. Fig. 2) with two
goals: (i) to run a large quantity of experiments in order to
compare our different algorithms, (ii) be realistic enough to
properly model key features of real mobile robots, environ-
ments and scene. First we consider that robots’ motion
around the scenes is perfect. i.e. robots can move along cir-
cles without trajectory errors, and robots are equipped with
sensors allowing them to remotely detect nearby obstacles.
Communications between robots are also supposed to be
instant and errorless. We use a reference environment to
simulate obstacles and observation of the scene from each
cell. The robots do not have access to this environment. They
build the quadtree map (cf. Fig. 2(a)) during their explo-
ration. To generate this reference environment, one can
choose where to put obstacles by loading a file or random ones

4For further details, see the accompanying publication [5].

Figure 2: Simulator interface. (a) Quadtree map
built by 3 robots (b) Reference environment (c) Mon-
itoring of the 3 robots (d) Setup and control

according to a probability. To simulate a scene and assign
observations to each cell, one can choose random observa-
tions or real skeleton data. They have been obtained from
human pose captures with Kinect sensor and OpenNI/NITE
skeletal tracking library [2]. These data have been imported
in the simulator to generate the observation vectors (com-
posed of 15 body joints) for each sector. Fig. 2(b) shows a
reference environment with obstacles (black cells), occluded
cells (white), and cells with different observation qualities
(shades of green)5. We add noise to the perception from a
cell to simulate camera sensor noise and occlusions by other
robots6. So the observation perceived by a robot from a cell
may vary from the reference environment. One important
feature of our simulator is that its main parts (data structures
(e.g. cell, quadtree), decision algorithms, interface) are used
both in simulation and for real robots experimentation [4, 5].

4 DEMONSTRATION

During the demonstration, participants of the conference will
be given the opportunity to configure and observe examples of
how a team of robots simultaneously map and cover a human
pose and its surrounding environment. The demonstration
sequence will be divided into two parts: the configuration
of the scenario and the monitoring of the execution. First,
the user can choose via the setup panel (cf. Fig. 2(d)) an
environment, a human pose, the number of robots and their
initial position, the noise degree, the algorithm and its pa-
rameters, ... Then, he/she can launch and control the robots’
execution via the control panel (cf. Fig. 2(d)). During this
phase, the user can observe the movement of the robots and
the map they are building (cf. Fig. 2(a)), and have access to
information specific to each robot (its current observation
vector and its contribution) (cf. Fig. 2(c)). Some statistics
concerning the team are also displayed (current joint quality,
best joint quality found so far, ...). Finally, a video of our
experiments with real robots (Turtlebot2) will be shown.

5The greener the cell, the better is the observation quality.
6A noise parameter defines the probability for each value of an obser-
vation vector to be flipped compared to the reference values.
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