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ABSTRACT
This paper proposes adversarial attacks for Reinforcement Learning
(RL). These attacks are then leveraged during training to improve
the robustness of RL within robust control framework. We show
that this adversarial training of DRL algorithms like Deep Dou-
ble Q learning and Deep Deterministic Policy Gradients leads to
significant increase in robustness to parameter variations for RL
benchmarks such as Mountain Car and Hopper environment. Full
paper is available at (https://arxiv.org/abs/1712.03632) [7].
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1 INTRODUCTION
Advances in deep neural networks (DNN) has a tremendous impact
in addressing the curse of dimensionality in RL and offers state of
the art results in several RL tasks ([4], [8], [5], [6], [9]). However, it
has been shown in [2] that DNN can be fooled easily into predict-
ing wrong label by perturbing the input with adversarial attacks.
It opens up interesting frontier regarding robustness of machine
learning algorithms in general. Robust and high performance poli-
cies is critical to enable successful adoption of deep reinforcement
learning (DRL) for autonomy problems. More specifically, robust-
ness to real world parameter variations, such as changes in the
environmental parameters of the dynamical system are critical.

We address these challenges in an adversarial training frame-
work. We first engineer “optimal" attack on the DRL agent and
then leverage these attacks during training that leads to significant
improvement in robustness and improves policy performance in
challenging continuous domains. Our approach is loosely inspired
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from the idea of robust control, in which the best case policy is
sought over the set containing the worst possible parameters of the
system. We translate this into a problem of best performing policy
trained in presence of adversary. The key difference, however, is
that while robust control approaches tend to be conservative, our
approach leverages the inherent optimization mechanisms in DRL
to enable learning of policies that have even higher performance
over a range of parameter and dynamical uncertainties like friction,
mass etc.

The paper is organized as follows.We provide introduction in Sec-
tion 1. Adversarial attacks and their use for improving robustness
have been described in Section 2, and results have been presented
in Section 3. Finally, concluding remarks and future directions have
been discussed in Section 4.

2 METHOD
2.1 Adversarial Attack

Definition 2.1. An adversarial attack is any possible perturbation
that leads the agent into increased probability of taking “worst”
possible action in that state. Here, the “worst” possible action for a
trained RL agent is the action which corresponds to least Q value.

2.1.1 Naive adversarial attack. First, we propose a naive method
of generating adversarial attack. The adversarial attack is essentially
a search across nearby observation which will cause the agent
to take wrong action. For generating adversarial attack on the
DRL policies, we sample a noise with finite (small) support. The
particular noise that causes least estimate of the value function
is selected as adversarial noise. This noise is added to the current
observation.

For naive attack on DDPG, the critic network can be used to
ascertain value functions when required and actor network de-
termines the behavior policy to pick action. Thus, the objective
function used by adversary in this case is the Q∗cr it ic (s,a), that is,
the value function determined by the trained critic network.

2.1.2 Gradient based adversarial attack . In this subsection, we
show that a proposed cost function different from the one used
in traditional FSGM ([3])) is more effective in finding worst possi-
ble action in the context of reinforcement learning with discrete
actions.
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Theorem 2.2. Let the optimal policy be given by conditional prob-
ability mass function (pmf) π∗ (a |s ), the action which has maximum
pmf be given as a∗ and the worst possible action be given by aw . Then
the objective function whose minimization leads to optimal adversar-
ial attack on RL agent is given by J (s,π∗) = −

∑n
i=1 pi loдπ

∗
i where

π∗i = π∗ (ai |s ), pi = P (ai ), the adversarial probability distribution P
is given by

P (ai ) =

{
1, if aw = 1
0, otherwise (1)

This is the cross entropy loss between the adversarial probability
distribution and optimal policy generated by the RL agent

Q values can be converted into pmf by using softmax function.
We can shown that the objective function that should be used for
engineering attack on RL algorithm should be given by Theorem
2.2 as it is consistent with Def. 2.1 [7]. FSGM algorithm can be
used to minimize this objective function. We must point out that
this objective function is different from ones in literature [3]. The
objective functions mentioned in [3] will result in min

s
π∗ (a∗ |s ) (a∗

is the best possible action for given state s). This leads to decrease in
the probability of taking best possible action. This won’t necessarily
lead to increase in probability of taking worst possible action.

The objective function that adversary need to minimize being
given by the optimal value function of critic (Q∗ (s,a)). Here the gra-
dient is given by ∇sQ∗ (s,a) =

∂Q∗
∂s +

∂Q∗
∂U ∗

∂U ∗
∂s . Here,U ∗ represents

the optimal policy given by actor.

2.1.3 SGD based attack. We also used Stochastic Gradient De-
scent approach where we followed the gradient descent for same
number of sampling time and selected the state that we end up in
as adversarial state.

2.2 Robust Reinforcement Learning by
harnessing adversarial attacks

2.2.1 Adversarial Training. Adversary fools the agent into be-
lieving that it’s in a “fooled” state different from actual state such
that the optimal action in “fooled” state leads to worst action in
actual current state. In other words, the adversary fools the agent
into sampling worst trajectories directly. We have used gradient
based attack for adversarial training as it performed best amongst
all attacks (results presented in Section 3).

3 RESULTS
We discuss results for proposed adversarial attack and adversarially
trained robust policy. All the experiments have been performed
within OpenAi gym environment ([1]) with MuJoCo ([10]).

We show that the proposed attack(s) outperform attacks in [3]
as shown in Fig. 1. We also present results (Fig. 2) that show signif-
icant improvement in robustness because of proposed adversarial
training algorithm.

4 CONCLUSION
In this paper, we have proposed adversarial attack for reinforcement
learning algorithms. We leveraged these attacks to train RL agent
that led to robust performance across parameter variations for
DDPG and DDQN. Future direction involves providing theoretical

(a) DDQN Cart Pole (b) RBF Q Cart Pole

(c) DDQN Mountain Car (d) RBF Q mountain car

Figure 1: Comparison of different attacks. It can be observed
that Gradient Based (GB) attack performs better than Naive
Sampling (NS) which in turn outperform Stochastic Gradi-
ent Descent (SGD) as well as HFSGM ([3]). RBF Q learning is
relatively more resilient to adversarial attack than DDQN.

(a) DDQN Mountain Car (b) Robust DDQN Mountain-Car

(c) DDPG Hopper (d) Robust DDPG hopper

Figure 2: Comparison of “vanilla" RL with robust RL. Note
the improvement across parameters because of robust train-
ing.

relationship between these attacks and robustness of the algorithms
(to parameter variation).
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