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ABSTRACT 
Maintaining the safety of an autonomous drone while it executes 
a mission is a primary concern in presence of fixed and mobile 
enemies.  Path planning using A* fails to deliver a feasible, safe 
plan when a drone has resource limitations in such 
environments. Enhancing A* with constraint optimization 
techniques may improve outcomes, but significantly increases 
path determination time. We define Robust A* (RA*) that 
introduces the use of a safety margin to maximize the robustness 
of the drone to meet mission requirements while managing 
resource restrictions. We rely on a theory of robustness based on 
Metric Temporal Logic (MTL) as applied to offline verification 
and online control of hybrid systems. By satisfying the 
predefined MTL constraints, RA* dynamically defines a safety 
margin between the drone and an enemy, while constraining the 
margin size given the drone’s resources. The safety margin 
creates a robust neighborhood around the dynamically generated 
path. The robust neighborhood holds all valid trajectories within 
the current world state. When the world state changes, RA* first 
examines the robust neighborhood to find a valid trajectory 
before initiating the path re-planning. We evaluate RA* using 
the Rassim simulator. The results show that the algorithm 
generates faster and safer paths than the classical A* in the 
presence of moving enemies.1. 
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1 INTRODUCTION 
The goal of autonomous drone path planning is to generate 

risk free paths that account for the geometric characteristics of 
obstacles. The planning methods commonly used include A*, 
genetic algorithms, simulated annealing, artificial neural 
networks, Dijkstra’s algorithm, dynamic programming 
algorithms, particle swarm optimization, ant colony algorithms 
etc. Many of these approaches handle the autonomous planning 
problem as a pure path planning problem without considering 
mission objectives, constraints, and enemy mobility. For a drone 
to become an autonomous vehicle, the path planning algorithm 
must provide intelligence to avoid obstacles, threats, and no-fly 
zones, while satisfying the performance requirements. The 
autonomous drone must be able to quickly act when enemies 
move. If the drone relies only on pure path planning, it is 
probable that the excess time spent to find the shortest path will 
place it within an enemy’s range, which could influence its 
safety. Without path planning and with only reactive enemy 
avoidance, the potential for the drone to reach its target location 
is greatly reduced. 

In this paper, we address the problem of an autonomous 
drone, with resource restrictions, traveling to a target in a 
dynamic, adversarial environment. The target has a range called 
terminal range. For each problem instance, the goal is for the 
drone to be located eventually within terminal range of its 
assigned target. The environment is non-deterministic, such that 
the drone has partial information about enemies prior the 
mission, including their geometry and capabilities, but the 
distribution of enemies is unknown until the drone traverses the 
world and uses its sensors for detection.  The drone can perceive 
the environment around it within a circular region centered at 
the drone location where the radius of the circle is its vision 
range. The environment under investigation has three types of 
static and mobile enemies with different risk ranges: 

1. Radars: able to see and detect the drone from a 
distance with what we call vision range (VR). 

2. Jammers: able to jam the drone’s communications if 
the drone gets in its jamming range (JR). 

3. Killers: able to shoot missiles when the drone gets 
inside its weapon range (WR).  

The A* algorithm is perhaps the most popular path planning 
search algorithm using both a heuristic function and a cost 
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function to reach the target, i.e., ݂ (݊) = ℎ (݊) + g(݊). The 
algorithm finds the cheapest path by trying (expanding) the node 
with the lowest ݂ [1]. For real-time planning, where 
computational speed is a priority, the D* algorithm can perform 
fast rerouting when new obstacles are detected in the 
environment [2]. D* is substantially faster than A*, but at the 
cost of sub-optimal solution paths [3].  

Both A* and D* consider path length as the only optimality 
criterion. Additional optimality criteria introduce the problem of 
multi-objective path planning (MOPP). As a solution to such 
problems, the Multi-objective A* (MOA*) Algorithm [4] and 
MOD* [5] were developed, based on similar principles to A* and 
D*, respectively. In the presence of safety risks imposed by 
moving enemies, the aforementioned algorithms cannot 
guarantee they will find a feasible path.  The shortest path may 
not be the safest, and could be the most hazardous path. The 
safest path may be the longest one, but requires consideration of 
limited resources. Therefore, an algorithm incorporating path 
feasibility into risk-minimization is needed. 

In this paper, we develop a robustness function using the 
robustness theory of Metric Temporal Logic (MTL) [6] to 
maximize the drone safety while satisfying mission constraints. 
The MTL robustness can be defined as the upper-bounded 
perturbation that the drone can tolerate without changing its 
Boolean truth value with respect to its mission specification 
expressed in MTL [6]. In detail, if an MTL specification ߮ 
valuates to positive robustness ߝ, then the specification is true, 
i.e., satisfied and, moreover, the path points can tolerate 
perturbations up to ߝ and still satisfy the specification. Similarly, 
if ߝ is negative, then the path point does not satisfy ߮ and all the 
other points that remain within the open tube of radius |ߝ| also 
do not satisfy ߮. 

Our approach to address the reach-while-avoid-when-
possible problem has two main steps. First, the mission 
constraints are simply and concisely expressed using MTL 
specifications [10]. Secondly, we create RA* by extending A* 
with two modifications: (i) a soft modification of the objective 
function to include the MTL robustness function, and (ii) a hard 
modification of the algorithm logic to exclude the non-robust 
positions from the search space. The robustness function is used 
to guide the node expansion in RA* and dynamically create a 
safety margin around adversarial assets using the drone 
resources. In addition, RA* creates a robust neighborhood 
around the generated path using the robustness degrees of the 
path points [6, 11]. The robust neighborhood provides a set of 
valid trajectories that can be robust enough for the drone to 
autonomously react to moving enemies or fuel leak without 
conducting any re-planning process. 

The next section further discusses the related work of the 
MTL robustness and its application to path planning problems. 
Section 3 discusses the proposed approach, and Section 4 
presents the results and shows examples. 

2  RELATED WORK 
Researchers have applied genetic algorithms to MOPP 

problems [12, 13], but these have a major issue of computational 
complexity. Combining the optimization criteria into a single 

objective function is a common approach [14, 15] often with 
tools, such as penalty functions and weights for linear 
combinations of attribute values. These methods are problematic 
as the generated paths are very sensitive to small adjustments in 
the penalty function coefficients and weighting factors [16].  

The Limited damage A* algorithm [15] considers UAV 
damage and distance criteria. An upper bound is predefined for 
maximum tolerated damage. Two heuristic functions are 
computed, one for the distance and one for the damage, each of 
which is multiplied by a factor that depends on the 
environmental parameters that must be examined 
experimentally to find their optimal values. The algorithm finds 
suboptimal solutions with a reasonable time performance 
compared to MOA*. 

The path planning algorithm in [16] uses A* with a key 
modification. Rather than computing the cost function ݂ by 
summing cost criteria, it calculates the Pareto front of the cost 
criteria. However, the algorithm deals with fixed obstacles as 
impassable terrains, which affects the flexibility of the generated 
paths when resources are limited. 

Considering the issues of using predefined weights for path 
planning algorithms, there is a need for more robust multi-
objective optimization functions. Recent papers [8, 9] develop 
path planning algorithms using the MTL robustness theory. 
Unlike the problem domain explained in this paper, the problem 
domains in [8, 9] only contain of static obstacles that the robot 
or drone must avoid in order for the mission to succeed using 
the specification of reach-while-avoid problem.  

In [8], a path planner framework is designed to produce 
global paths using a linear temporal logic (LTL) specification and 
local trajectories using an MTL specification. The global path is 
only updated if new obstacles appear, while the MTL 
specification is updated if new obstacles appear and if mission 
requirements change. It is unclear how they handle a change to 
mission requirements that relax risk constraints. In addition, 
incorporating mobile enemies would require the global planner 
to recalculate a global path every time a known obstacle moves.  

In [9], a reach-while avoid specification using MTL was 
defined and used by a robustness estimation function to find the 
most robust path. Their mixed-integer linear programming 
(MILP) algorithm calculates the trajectory that minimizes the 
performance objective function while satisfying the robustness 
measure. It does not support moving enemies or risk awareness. 

To maximize the robustness of a MTL specification, authors 
in [7] apply a gradient descent method using Sequential 
Quadratic Programming (SQP). Their results show that the 
proposed optimization technique is significantly faster and the 
functional output is arguably much better than the output of 
MILP algorithm [9]. Although the investigated environment is 
fully known with only one static obstacle, the performance of 
the developed technique is not time efficient for online path 
planning problems. To our knowledge, our work is the only 
work that utilizes the MTL robustness with the A* algorithm for 
online path planning in non-deterministic environments with 
mobile enemies. 
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3  MTL ROBUSTNESS MAXIMIZATION FOR 
PATH PLANNING 

The RA* generates the robust neighborhood and 
Robust_Heuristic_Search (RHS) to adjust the path when new 
information is detected. Figure 1 displays a closed-loop process 
that ends when the drone reaches the target. The RA* creates a 
safety margin around the closest enemy to set the minimum 
accepted risk at each path step. The safety margin size is 
computed using the robustness function to maximize the 
satisfaction of the mission constraints along the planned path. 
RA* keeps track of a robust neighborhood around the optimal 
trajectory to reduce re-planning attempts and increase drone 
resilience against moving enemies. The robustness measure 
returns positive values if the trajectory satisfies the specification 
and negative values otherwise. Intuitively, the robustness degree 
of a feasible path is the largest distance the drone can 
independently perturb and still maintain the feasibility of its 
current path. This defines a neighborhood around the original 
path such that any trajectory within this neighborhood is 
guaranteed to satisfy the specification but with a lower degree of 
robustness. When the drone detects a violation of its constraints, 
the RHS utilizes the current robust neighborhood to find a valid 
replaceable trajectory. When the whole neighborhood becomes 
invalid, re-planning needs to be executed by RA*. The objective 
is to find a neighborhood with a set of valid trajectories and an 
optimal path at the neighborhood’s center instead of planning 
for a single path.  However, when the algorithm can only find 
one feasible path then the robust neighborhood is collapsed into 
a single trajectory. A collapsed neighborhood occurs when the 
available resources approach their limits and, consequently, the 
drone must take some allowable risk to reach its target. 

 
Figure 1: The proposed approach 

Definition 1 (MTL Syntax). Let AP be the set of atomic 
propositions and I be a time interval of R. The MTL φ formula is 
recursively defined using the following grammar [10]: 

 ߮ ≔  ଵ⋁߮ଶ|߮ଵ⋀߮ଶ| ߮ଵ࣯ூ߮ଶ         (1)߮ |߮¬||ܶ
 
T is the Boolean True, p ∈ AP , ¬ is the Boolean negation, ⋁ and ⋀ are the logical OR and AND operators, respectively. ࣯ூ is the 
timed until operator and the interval ܫ  imposes timing 
constraints on the operator. Informally, ߮ଵ࣯ூ߮ଶ means that ߮ଵ 
must hold until ߮ଶ holds, which must happen within the interval ܫ . The implication ( ⟹) , Always (□), and Eventually (◊) 
operators can be derived using the above operators. 

Using the MTL syntax (Definition 1), we define the MTL 
specification of our problem of reach-while-avoid-when-possible 
as follows. 

߮ = ◊[,௧௦௧௧] ݍ ∧  □[,௧௦௧௧] (¬݂݁ܽݏ݊ݑ )  ∧ □[,௧௦௧௧] ൫( ܿ݊݅ܽݎݐݏ݊ଵ > ଵ݈݀ℎݏ݁ݎℎݐ ∧ … ݊݅ܽݎݐݏ݊ܿ   ∧. > ( ݈݀ℎݏ݁ݎℎݐ ⟹  ൯          (2)݂݁ܽܵ݅݉݁ݏ¬

This formula requires the drone to reach the target terminal ݍ 
(i.e., liveness property) while always avoiding being inside 
unsafe areas (i.e., safety property). When the available 
constraint1.. constraintn are above their predefined thresholds, it 
must always stay away from the semi-safe areas (i.e., conditional 
safety property). Otherwise, the semi-safe areas need to be 
gradually receded to free up some space for the drone to 
maneuver in to reach its target. We define a path trajectory that 
satisfies the specification given in (2) to be a feasible trajectory. 
Otherwise, it is infeasible. For our problem domain, this 
specification would be: ߮ = ◊[,ௗௗ] ݍ ∧  □[,ௗௗ] (¬ܹܴ ∧  □[,ௗௗ] ൫( ݂ >݂ ∧ ݐ  < ( ௫ݐ ⟹ ¬ܸܴ ∧  ൯        (3)ܴܬ¬

To precisely capture the MTL formula, each predicate  ∈   ܲܣ
is mapped to a subset of the metric space S. Let ࣩ: ܲܣ ⟶  ࣪(ܵ) 
be an observation map for the atomic propositions. The Boolean 
truth value of a formula ߮ with respect to the trajectory s at time 
t is defined recursively using the MTL semantics directly 
reproduced as stated in [10]: (ݏ, (ݐ ≔ ܶ ⟺ ∋  ∀ ܶ ,ܲܣ ,ݏ) (ݐ ≔ ⟺  ࣩ ௧ݏ   ∈ ,ݏ) ()ࣩ  (ݐ ≔ ࣩ ¬߮ ⟺ ,ݏ)¬ (ݐ ,ݏ) ߮ ࣩ =∶ (ݐ ≔  ࣩ ߮ଵ ⋁ ߮ଶ ⟺ ,ݏ) (ݐ ≔  ࣩ ߮ଵ  ⋁ ,ݏ)  (ݐ ≔  ࣩ ߮ଶ   (ݏ, (ݐ ≔  ࣩ ߮ଵ⋀߮ଶ ⟺ ,ݏ) (ݐ ≔  ࣩ ߮ଵ ⋀ (ݏ, (ݐ ≔ ࣩ ߮ଶ (ݏ, (ݐ ≔ ࣩ ߮ଵ࣯ூ߮ଶ ⟺ ᇱݐ∃  ∈ ݐ + .ܫ ,ݏ) (ᇱݐ ≔  ࣩ ߮ଶ   ⋀ ∀ ݐᇱᇱ ∈ ,ݐ) ,(ᇱݐ ,ݏ) (ᇱᇱݐ ≔ ࣩ ߮ଵ 

In our problem domain, we have 6 atomic propositions 
including time, fuel, risk ranges (VR, JR, and WR), and the target. 
To properly use the observation map semantics in the problem 
domain, we compute time and fuel in terms of distance metric d, 
which is the Euclidian distance between points ଵ,  :ଶ,  as

,ଵ)݀  (ଶ = ඥ(ݔଵ − ଶ)ଶݔ ଵݕ) + −  ଶ)ଶ        (4)ݕ

By using the drone’s velocity v, and the fuel consumption 
rate ܿݐݎ (fuel per distance), we calculate the time and fuel in 
terms of distance as follows: 

ݐ   = ௗ௩                          (5) 

  ݂ = ݀ ×  (6)           ݐݎܿ

To formally measure the robustness degree of ߮ (2) at the 
trajectory point s at time t, the robustness semantics of ߮ is 
recursively defined as taken directly from [6]: 
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where ⊔  stands for maximum, ⊓  stands for minimum,  ,ܲܣ∋ and ݈, ∋ ݑ  ℕ. The robustness is a real-valued function of the 
trajectory point s with the following important property stated 
in Theorem 1. 

Theorem 1 [6]: For any ݏ ∈ ܵ  and MTL formula  ߮ , if ۤ߮ݏ) ۥ, ݅) is negative, then s does not satisfy the specification ߮ 
at time i. If it is positive, then s satisfies ߮ at i. If the result is 
zero, then the satisfaction is undefined.  

By maximizing the robustness degree ۤ߮ۥ, we can compute 
the control inputs (direction, velocity) over the finite set of input 
sequences which would provide us with a path solution to a 
given problem instance, assuming that there is at least one 
feasible path. The generated sequence of inputs can be simply 
considered as the sequence of path points, i.e., trajectory (s,t) to 
the target that satisfy ߮ by having positive robustness degree ۤ(ݏ, ۥ(ݐ > 0. The larger ۤ(ݏ,  the more robust is the trajectory ,ۥ(ݐ
to a perturbation of ߮. In other words, trajectory s can be 
disturbed at time t while ۤ߮ۥ decreases but remains positive. 
Consequently, the robustness degree ۤ߮ۥ of each path trajectory 
creates a robust neighborhood around the trajectory to make 
available a set of trajectories with less ۤ߮ۥ but still satisfy the 
original ߮. 

The Signed Distance, ݐݏ݅ܦ ௗ, is a domain-specific function 
that must be defined to reflect the domain properties [6]. In this 
paper, we define three functions to measure the distance from 
the propositions of the target, the enemy set, and the resource 
limits (Figure 2). The target symbol represents the target 
terminal while the blue circle is the drone. The red circle 
surrounded by multiple circles represents the enemy, where 
cyan, orange, and red circles are the VR, JR, and WR, 
respectively.  

Definition 2 (Target ݀݅ݐݏ  function): Given that ݍ  is the 
target terminal of drone  and r is its range, the ݀݅ݐݏ between ݍ  
and  at time i is defined as 

)ݐݏ݅݀   ,)݀ = (ݍ , (ݍ −  (7)        ݎ

Definition 3 (Enemy ݀݅ݐݏ function): Let  be the drone, ܺ be 
the enemy set, and ߠ ≥ 0 be the enemy speed. Then ݀݅ݐݏ 
between  and ܺ at time i is defined for each risk range as 
follows: ݀݅ݐݏோ(, ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܸܴ + ,)ோݐݏ݅݀ (8)           (ߠ ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܴܬ + ,)ௐோݐݏ݅݀ (9)           (ߠ ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܹܴ +  (10)        (ߠ

 
With respect to the target q, dist is defined as the distance from 
the drone to the closest edge of the region defined by the target’s 
terminal range. On the other hand, the enemy dist function is 
evaluated with respect to the drone  and the set of enemies ܺ to 
a triple that represents the distances to the range of the closest 
enemy x to p (Figure 2). In addition, we use the velocity of a 
given enemy ߠ such that each risk range is extended with the 
enemy’s velocity as represented by dotted circles around colored 
enemy ranges (Figure 2). The terminal range for a moving target 
must be shrunk, rather than extended, by the velocity of the 
target, assuming that the target is running away from the drone. 

 

 
Figure 2: The structure of the problem domain 

Lastly, we define a depth function to measure the distance 
between the current position of the drone and its resource limit.  
Each drone has a pre-specified amount of fuel and time to reach 
its target. We assume that each mission starts at time 0 with fuel ݂௫ and each drone has time ݐ௫ , the deadline, to reach its 
target. To calculate the robustness of a given configuration of 
drones with allotted fuel capacities, fuel consumption rates, and 
deadlines, we redefine each constraint in terms of distance using 
equations 5 and 6. Given that a drone moves with velocity ݒ, we 
define two regions centered at the target q with radius ݒ × ݂ 
and  ݒ ×  ௫ to define the farthest positions that the droneݐ
could travel while still being able to reach its target. With these 
regions defined, we can define the function depth. 

Definition 4 (Resource depth function): Given that ݂, ௫ݐ  are the resource thresholds, ݀݁ݐℎ  and ݀݁ݐℎ௧ functions for the drone  at time i are defined as: ݀݁ݐℎ () 
=ቄ( ݂ − ݂) − ,)݀) (ݍ − (ݎ × crt     ݂݅  ∉ ࣩ( ݂) 0                                           ݐℎ݁(11)       ݁ݏ݅ݓݎ 

௫ݐ)ቊ= ()ℎ ௧ݐ݁݀ − (ݐ − (ௗ(,)ି)௩  ݂݅       ∉  (12)   ݁ݏ݅ݓݎℎ݁ݐ                                             0 (௫ݐ)ࣩ

The function depth measures the distance to the closest edge 
of the region defined by a constraint centered on the target. It 
should be noted that the defined regions are 3D with respect to 
time. Therefore, the pizza slice shown in Figure 2 would be 
shrunk from the outer edge over time.  

Using the dist and depth functions, the MTL robustness 
degree of ߮ in equation 3 can be point-wise computed at each 
position in the world state to solve the following path planning 
problem:  

,ݏ) ߩ  (ݍ = ݉݅݊ ∑ ,ݏ)ܿ (ାଵݏ − ,ݏ)ۤ  (1-13)      ۥ(ାଵݏ

.ݏ   0       .ݐ ≤ ݅ <  ௫    (13-2)ݐ

              ݂ ≤ ݂ ≤ ݂௫                   (13-3) 

                            ߳ ≤ ۥ ߩۤ ≤ ߳௫    (13-4) 
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              (14) 

(15) 

 

where ܿ(ݏ,  .*) is a cost function similar to the f function in Aݏ
Equations 13-2 and 13-3 represent the resource limitation. ߳ and  ߳௫  are the desired minimum and maximum 
robustness which make equation 13-4 an optional constraint in 
the problem. When ߳ > 0, it enforces a minimum safety 
margin around enemies, while ߳௫ > 0 attempts to limit the 
path length when the available resources are extremely large. 

3.1  RA* Algorithm 
A* represents the world state as a grid map divided into 

squares. In this paper, each square is evaluated either as a 
passable (safe and reachable), impassable when it is either 
occupied by one or more enemies, or unreachable when the 
drone does not have enough resources to reach it. However, the 
impassable squares that are occupied by the VR or JR of enemies 
can become passable when the drone cannot afford to avoid 
them given its limited resources.  

RA* uses the same logic as the standard A*. The modified 
functions are presented in Algorithm 1. In line 3 of the neighbors 
function, the node is included into the search space only when 
the robustness is zero or positive. Our algorithm uses the MTL 
robustness to classify nodes in the gird into passable or 
impassible based on their satisfaction of the mission safety 
constraints. Only passable nodes are used to feed the open queue 
in RA*. The robustness of the liveness property is used in the h 
function to encourage the algorithm to expand its search 
towards positions closer to the target. 

Assumption 1: If drone velocity is ݒ and the max velocity of 
the enemy set is ݒᇱ =  ௫, then the drone is assumed toݒ௫∈ݔܽ݉
be faster ݒ >  .ᇱ by at least 20%ݒ

Assumption 2: If the drone vision range is ܸܴ and the 
enemy set’s max vision range is ܸܴᇱ =  ௫∈ܸܴ௫, then theݔܽ݉
drone has bigger vision range ܸܴ > ܸܴᇱ. 

Assumption 3: Given target ݍ and enemy set  ܺ, q is not 
part of the enemy set ݍ ∉ ܺ. 

The robustness of the safety property (□[,ௗௗ] (¬WR )) is 
measured at each position of the search space since it must hold 

at all path points. To measure the robustness of the safety 
property for pos, we use the MTL robustness semantic with 
duration of [1, 1] and enemy set X is found in equation 14.  In 
order to apply the robustness semantic, the always operator □  is 
converted into the Until operator using the conversion rules in 
[11].Then, the robustness becomes a minimum function of the 
robustness of True value and the dist function in equation 10. 
Since the robustness of True by semantic is positive infinity, the 
robustness function becomes about the dist function of WR. 

Line 4 in robustness_safety in Algorithm 1 defines the dist 
function using equation 10 to measure the distance from the WR 
of the enemy set. The positions inside the WR would have 
negative robustness, preventing the drone from taking paths 
through them. Positions with positive numbers are considered 
passable. Their robustness degree depends on how far they are 
from the boundary of the WR. 

The conditional safety property ቀ □[,ௗௗ] ൫( ݂ > ݂ ∧ ݐ  ( ௫ݐ> ⟹ ¬ܸܴ ∧  ൯ቁ evaluates the ability of the drone to avoidܴܬ¬

being seen or jammed by enemies considering its current time 
and fuel. It avoids enemy JR and VR only when it has sufficient 
resources to do so, otherwise these areas are included in the 
search space as passable positions for the drone. The ݀݁ݐℎ functions, in equations 11 and 12, measure how far away 
the drone is from being out of time or fuel if it chooses to pass 
through position pos. The safety margin, i.e., the minimum 
robustness  ߳, is dynamically computed using the results of ݀݁ݐℎ   and ݀݁ݐℎ ௧  (line 1 in robustness_safety). The safety 
margin is decreased gradually with the time and fuel and 
becomes negative when either one of the resources starts 
approaching its limits. In lines 2 and 3 of function 
robustness_safety, the updated safety margin would be subtracted 
from the VR and JR to allow the drone pass through semi-safe 
areas. The dist functions in lines 2 and 3 return positive if the 
drone obeys the constraint of the minimum robustness and 
returns negative otherwise.  The robustness of the conditional 
safety is computed in equation 15 using the MTL robustness 
semantics for the time duration of [1, 1] and enemy set X. The 
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robustness function becomes about finding the maximum values 
of the negative of ݀݁ݐℎ  and ݀݁ݐℎ ௧ and the minimum of dist 
functions of equations 8 and 9. 

The MTL robustness semantic in equation 15 is mapped into 
line 5 of robustness_safety function to decide if position pos is 
passable or impassable. Equation 15 would return negative 
values if the point pos is inside the jamming and vision ranges 
(JR, VR) of the closest enemy and the drone’s time and fuel are 
above thresholds. On the other hand, it would return positive if 
and only if pos is outside the VR and JR of all enemies. In case 
the fuel or time are approaching their limits, equation 15 would 
always return zero when pos is inside VR or JR of enemies. 
According to Theorem 1, zero is undefined robustness, which 
RA* would accept only when there are insufficient resources to 
reach the target while avoiding areas with conditional safety 
property. By using this technique, the MTL robustness allows 
runtime risk assessment of the VR and JR which completely 
depends on the availability of resources.  

Line 6 in robustness_safety computes the final robustness 
degree of pos as the min value of the safety and conditional 
safety properties. A negative value means the robustness is 
negative and pos is not inserted into the search space (line 3 of 
the neighbors function). Otherwise, the robustness degree is 
either positive or zero and pos is passable and considered for 
path planning search. By preferring paths with larger safety 
robustness in line 5 of the neighbors function, the algorithm 
generates robust paths to risky areas.  

In RA*, ◊[,ௗௗ]   ݍ evaluates the reachability of the target ݍ
from position pos in the robustness_liveness function. It depends 
on the dist function in equation 7, which returns a positive real 
number if pos is outside the terminal range of q and returns 
negative otherwise. Then, h in line 6 of neighbors function would 
have negative value when pos is inside the target area which 
decreases f in line 7.  To guarantee that the algorithm expands 
positions with shorter distances to the target, the OPEN queue of 
A* is ordered based on the lowest (most robust) f values of 
searchable positions. 

 

 Algorithm 1 Functions needed for RA* Search 

function neighbors(p,  ߳, ϵ୫ୟ୶) 
1-  neighbors = neighbors_of(p,1) 
2-  for n ∈ neighbors 
3-    if(robustness_safety(n, X, ߳, ϵ୫ୟ୶)>=0) 
4-       n.r=robustness_safety(n, X, ߳, ϵ୫ୟ୶) 
5-       n.g = d(n,p)- n.r 
6-       n.h= robustness_liveness(neighbor, q) 
7-       n.f = n.g + n.h 
8-       n.parent = p 
9-  return neighbors 
function robustness_safety(pos, X,  ߳,  ϵ୫ୟ୶) 
1-  ߳= min൫߳, (ݏ)ℎ ݐ݁݀ − ߳, (ݏ)ℎ ௧ݐ݁݀ − ߳൯  
,ݏ)ோݐݏ݅݀ -2 ܺ) = ,ݏ)ோݐݏ݅݀ ܺ) − ߳ 
,ݏ)ோݐݏ݅݀ -3 ܺ) = ,ݏ)ோݐݏ݅݀ ܺ) − ߳ 
4- safety =݀݅ݐݏௐோ(ݏ, ܺ) 
5-con_safety= max ൭ ,(ݏ)ℎ ݐ݁݀ min,(ݏ)ℎ ௧ݐ݁݀ ቀ݀݅ݐݏோ(ݏ, ܺ), ,ݏ)ோݐݏ݅݀ ܺ)ቁ൱ 

6-return min (safety,con_safety,  ߳௫)  
function robustness_liveness(pos, q) 
1- return ݀݅(ݍ ,ݏ)ݐݏ  

3.2 RHS 
The loop function (Algorithm 2) of the drone (agent) moves 

the drone on the path and monitors robustness simultaneously. 
The drone’s sensor detects enemies when they are within its 
vision. The violate_robustness function (line 9 of loop) checks if 
the robustness of the current path is violated by newly detected 
information. It iterates over the current path points, re-evaluates 
the robustness of the safety property given available enemy 
information and the world state, and returns the first invalid 
path point, i.e., critical point cp. A violation calls RHS (line 12) to 
find a replaceable trajectory inside the robust neighborhood. To 
make a quick decision about the validation of the robust 
neighborhood, RHS checks the validity of the neighbors of cp at 
the edges of the neighborhood using the cp’s robustness degree 
to identify these edges (lines 1-6 in RHS). The RHS is a pure 
heuristic search for finding a valid trajectory inside the robust 
neighborhood with a min robustness of zero. Essentially, the 
heuristic search concentrates on quickly and effectively finding 
valid trajectory as an immediate reaction against moving 
enemies. However, when there is no valid trajectory inside the 
robust neighborhood, RA* is recalled, generating a new path 
with its robust neighborhood considering all enemies that can be 
seen (line 14). 

Algorithm 2 Functions needed for MTL-Robustness Monitoring 

function loop() 
1-  X =sensor_results 
2-    If ߩ=∅ 
ߩ       -3 ←path generated by MTL_Robustness_Based_A* 
4-       If ߩ=∅ 
5-          Agent.Stop()      // no path 
6-    Else 
7-       If sensor_results != ∅ 
8-           X= X ∪ sensor_results 
9-           cp=violate_robustness(ߩ,X,0,  ϵ୫ୟ୶) 
10- If cp≠null 
11-                          s= drone_position 
,ߩ ,RHS(s,cp =ߩ       -12 0,  ϵ୫ୟ୶) 
13-       If ߩ=null 
ߩ          -14 ←re-plan by RA* 
15-       Agent.move(ߩ) 
function violate_robustness(ߩ,X,  ϵ୫୧୬,  ϵ୫ୟ୶) 
1-   for pos ∈ ߩ 
2-      if robustness_safety(pos, X,0,  ϵ୫ୟ୶)<0 
3-         return pos 
4-   return null 
 
function RHS(s,cp, ߩ,  ϵ୫୧୬, ϵ୫ୟ୶)        
1- neighbors = neighbors_of(cp, cp.r) 
2- for each pos ∈ neighbors 
3-    if robustness_safety(pos, X,0, ϵ୫ୟ୶)<0 
4-         neighbors.remove(pos) 
5-    if neighbors=null 
6-       return null 
7-    p= s  
8-    open←p 
9-    while ݊݁ ≠ ∅ 
10- p= pop(open) 
11- if(dist(p,q)==r) 
12-     return construct_path(p) 
13-       closed←p 
14-       for n ∈ neighbors(p,0,  ϵ୫ୟ୶) 
15-         if n ∉ open 
16-    n.h= robustness_liveness(n, q)-n.r 
16-           open←( n) 
17-  return null 
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By using MTL robustness to plan and monitor paths, the 
generated paths satisfy the initial mission constraints under all 
circumstances. However, when the drone has smaller vision than 
the enemies, it might find itself inside a vision of one or more 
enemies before it sees them. This case can be dealt with as a 
special case by considering these areas temporarily passable 
allowing the drone to escape the immediate risk towards the 
target. This obviously violates the safety property but that is 
because of the physical capabilities of the drone and not related 
to the path planning and monitoring processes. 

Figure 4 illustrates the approach using the Rassim simulator 
where the drone has unlimited time and fuel to reach its target 
(deadline=∞, fuel=∞, 100= ݒ,  ϵ୫୧୬ = ϵ୫ୟ୶   ,ݒ = ߮ :(ݒ = ◊[,ஶ] ݍ ∧ □[,ஶ] (¬WR )  ∧  □[,ஶ] ൫( ∞ > ݂ ∧ ݐ  < ∞)⟹ ¬ܸܴ ∧  ൯ܴܬ¬

Pink represents the planned path while green represents the 
path traversed by the drone to reach its current position. The 
robust neighborhood is shown in blue around the path. At time 
t0, the drone detects enemy E1 and updates its specification to 
become: ܺ =  ,ଵ. RA* finds a path that avoids enemies in ܺ. At t1ܧ
it sees E2, which is a mobile enemy, and  ܺ becomes ሼܧଵ,  .ଶሽܧ
Since E2 invalidates the whole robust neighborhood, RA* is 
recalled to find another path with a new robust neighborhood. 
The drone sees E3 and ܺ becomes ሼܧଵ, ,ଶܧ  ଷሽ, but part of theܧ
neighborhood is still valid. Here, RHS finds a valid trajectory to 
the target without doing replanning. 

The case of limited resources is shown in Figure 5. Here, the 
mission specification is (deadline=25݉ݏ, fuel=50݃, crt=0.1 g/ms, ݂ = ϵ୫୧୬  ,100= ݒ ,5݃ = ϵ୫ୟ୶   ,ݒ = ߮ :(ݒ = ◊[,ଶହ] ݍ ∧  □[,ଶହ] (¬WR )  ∧  □[,ଶହ] ൫( ݂ > 5 ∧ ݐ  < 25 )⟹ ¬ܸܴ ∧  ൯ܴܬ¬

Obviously, the drone cannot reach its target without 
accepting some risk. At t0, the drone accepts some risk of VR of 
enemy E1. At t1, it tries to avoid E2, but it continues moving 
toward its path. Then, the drone evaluates the robustness of its 
current path. Since the deadline at t1 is approaching, the path 
becomes robust despite the moving enemy and any further 
detected enemies. Therefore, the drone stops attempting to avoid 
E2 and takes the direct path to the target without replanning 
when it saw enemy E4.  

4  EVALUATION 
The main motivation of this paper is to increase the 

possibility of the mission completion in adversarial world when 
the drone does not have sufficient resources to completely avoid 
all hazardous areas in presence of mobile enemies. Enhancing A* 
with MTL robustness helps to find a balance between risk 
avoidance and resource depletion. To show the effectiveness of 
the approach, we compare the average of planning time, travel 
time (i.e., path length), and the time spent inside risky areas of 
the A* algorithm and RA* in 100 randomly generated scenarios 

with static and moving enemies. We have built a random 
scenario generator on top of Rassim to test our algorithm. The 
worlds are setup as 3000  1500 cell grids. The scenario 
generator randomly places the target, drone, and enemy assets 
using a normal distribution with multiple values of the standard 
deviation and mean using the world width and height. Killers are 
selected with a 60% probability, Jammers with a 20% probability, 
and Radars with a 20% probability. We initially set the min and 
max accepted robustness,  ϵ୫୧୬ and  ϵ୫ୟ୶, to the drone velocity. 
The experiments are conducted on a quad-core Intel i7 3.4GHz 
processor with 16GB RAM. We run the same scenarios with 
unlimited, limited (100 seconds), insufficient (50 seconds) time. 
The results are shown in Table 1. 

 

 
Figure 3: An example of RA* utilizes the robust 

neighborhood 

 
Figure 4: RA* path planning with limited resources 

With unlimited resources, RA* successfully accomplishes the 
mission in all scenarios without accepting risk except in two 
cases, where enemies construct a virtual wall in front of the 
target. The drone was unable to reach its target without breaking 
through the VR and JR of enemies. With 50 seconds, RA* was 
unable to find feasible paths in 4% of the scenarios. The failed 
missions occurred because of the distribution of the enemies 
with WR. Since the drone must avoid WRs regardless of its 
resource condition, it ran out of time before reaching the target.  
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t0 t1 
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Table 1: Comparison between A* and RA* in seconds 

 Avg. 
Planning 
Time 

Avg. 
Travel 
Time 

Avg. 
Accepted 
Risk 

Mission 
Completion 

A* 
(Unlimited 
Resources) 

13.18 29.56 1.8676 98% 

RA* 
(Unlimited 
Resources) 

5.91 26.86 0.1022 100% 

A* 
(Limited 

Resources) 

10.36 26.71 1.227 90% 

RA* 
(Limited 

Resources) 

3.798 25.48 0.4948 100% 

A* 
(Insufficient 
Resources) 

7.129 25.01 0.6444 84% 

RA* 
(Insufficient 
Resources) 

2.499 23.43 0.509 96% 

 
The average planning time of RA* in all cases is less than A*, 

because it prioritizes the drone safety by avoiding paths in 
narrow passages between enemies, while A* allows the drone to 
pass between enemies. This sometimes traps the drone inside 
moving enemy ranges, consequently increasing replanning time. 
On the other hand, the RA* reduces replanning attempts by 
adjusting the trajectory of the current path from the robust 
neighborhood. Thus, RA* generates safer, shorter, and faster 
paths overall than A* with and without limited resources. 

With A*, the drone was unable to accomplish its mission in 
10% and 16% of the scenarios with limited and insufficient 
resources, respectively. One possible reason for this occurrence 
when the drone is trapped inside a mobile enemy range for long 
time while trying to find an optimal path, causing resource 
depletion before reaching the target. Another reason may be that 
when the drone consumes its resources to completely avoid all 
enemies, it has no fuel or time left to accomplish the mission. In 
addition, the average path length (i.e., travel time) for paths 
generated by A* in both cases is surprisingly longer than the 
average length for RA* paths. In fact, A* attempts to find the 
shortest path, which makes its paths very tight around enemies. 
With mobile enemies, the tight paths face replanning very 
frequently, increasing their overall lengths.  

Although A* attempts to avoid all risky areas, the drone takes 
more risk with A* than with RA*, with and without limited 
resources. This situation is apparent when scenarios surround 
the drone with multiple enemies, trapping it. One scenario with 
moving enemies is shown in Figure 6. At time t1 and t2, A* 
spends significant time finding a valid path and stays in its 
position until enemies E2 and E3 move away from the optimal 
path. In similar scenarios, if enemies E2 or E3 move toward the 
drone, the drone will be trapped inside the risky area until the 
enemy moves away, which may cost the drone its life.  

 
Figure 5: A*path planning in presence of mobile enemies 

Figure 7 shows how RA* reacts to the same scenario in Figure 
6 with unlimited resources. RA* can find a valid path without 
accepting any risk. The same scenario with limited resources has 
been shown in the previous section (Figure 5). 

 
Figure 6: RA* plans with unlimited resources 

5  CONCLUSIONS 
The presented algorithm, RA*, dynamically and flexibly 

determines the risk avoidance based on the latest information 
about the environment and mission constraints. It addresses the 
“reach-while-avoid-when-possible” path planning problem by 
using the MTL robustness theory. The experiments showed that 
RA* is able to avoid mobile enemies better than A*. Moreover, A* 
is not able to plan for feasible paths under limited resources.  
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