

MTL Robustness for Path Planning with A*
Robotics Track†

Sarra Alqahtani
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

sarra-alqahtani@utulsa.edu

Ian Riley
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

ian-riley@utulsa.edu

Samuel Taylor
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

smt506@utulsa.edu

Rose Gamble
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

gamble@utulsa.edu

Roger Mailler
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

roger-mailler @utulsa.edu

ABSTRACT
Maintaining the safety of an autonomous drone while it executes
a mission is a primary concern in presence of fixed and mobile
enemies. Path planning using A* fails to deliver a feasible, safe
plan when a drone has resource limitations in such
environments. Enhancing A* with constraint optimization
techniques may improve outcomes, but significantly increases
path determination time. We define Robust A* (RA*) that
introduces the use of a safety margin to maximize the robustness
of the drone to meet mission requirements while managing
resource restrictions. We rely on a theory of robustness based on
Metric Temporal Logic (MTL) as applied to offline verification
and online control of hybrid systems. By satisfying the
predefined MTL constraints, RA* dynamically defines a safety
margin between the drone and an enemy, while constraining the
margin size given the drone’s resources. The safety margin
creates a robust neighborhood around the dynamically generated
path. The robust neighborhood holds all valid trajectories within
the current world state. When the world state changes, RA* first
examines the robust neighborhood to find a valid trajectory
before initiating the path re-planning. We evaluate RA* using
the Rassim simulator. The results show that the algorithm
generates faster and safer paths than the classical A* in the
presence of moving enemies.1.

KEYWORDS
Path planning; metric temporal logic; robustness; A*

ACM Reference format:

S. Alqahtani, I. Riley, S. Taylor, R. Gamble, and R. Mailler. 2018. In Proc.
of the 17th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2018), July 10-15, 2018, Stockholm, Sweden, ACM, New York,
NY, 9 pages

Proc. of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2018), M. Dastani, G. Sukthankar, E. André,
S. Koenig (eds.), July 10-15, 2018, Stockholm, Sweden. Copyright © 2018,
International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
The goal of autonomous drone path planning is to generate

risk free paths that account for the geometric characteristics of
obstacles. The planning methods commonly used include A*,
genetic algorithms, simulated annealing, artificial neural
networks, Dijkstra’s algorithm, dynamic programming
algorithms, particle swarm optimization, ant colony algorithms
etc. Many of these approaches handle the autonomous planning
problem as a pure path planning problem without considering
mission objectives, constraints, and enemy mobility. For a drone
to become an autonomous vehicle, the path planning algorithm
must provide intelligence to avoid obstacles, threats, and no-fly
zones, while satisfying the performance requirements. The
autonomous drone must be able to quickly act when enemies
move. If the drone relies only on pure path planning, it is
probable that the excess time spent to find the shortest path will
place it within an enemy’s range, which could influence its
safety. Without path planning and with only reactive enemy
avoidance, the potential for the drone to reach its target location
is greatly reduced.

In this paper, we address the problem of an autonomous
drone, with resource restrictions, traveling to a target in a
dynamic, adversarial environment. The target has a range called
terminal range. For each problem instance, the goal is for the
drone to be located eventually within terminal range of its
assigned target. The environment is non-deterministic, such that
the drone has partial information about enemies prior the
mission, including their geometry and capabilities, but the
distribution of enemies is unknown until the drone traverses the
world and uses its sensors for detection. The drone can perceive
the environment around it within a circular region centered at
the drone location where the radius of the circle is its vision
range. The environment under investigation has three types of
static and mobile enemies with different risk ranges:

1. Radars: able to see and detect the drone from a
distance with what we call vision range (VR).

2. Jammers: able to jam the drone’s communications if
the drone gets in its jamming range (JR).

3. Killers: able to shoot missiles when the drone gets
inside its weapon range (WR).

The A* algorithm is perhaps the most popular path planning
search algorithm using both a heuristic function and a cost

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

247

function to reach the target, i.e., ݂ (݊) = ℎ (݊) + g(݊). The
algorithm finds the cheapest path by trying (expanding) the node
with the lowest ݂ [1]. For real-time planning, where
computational speed is a priority, the D* algorithm can perform
fast rerouting when new obstacles are detected in the
environment [2]. D* is substantially faster than A*, but at the
cost of sub-optimal solution paths [3].

Both A* and D* consider path length as the only optimality
criterion. Additional optimality criteria introduce the problem of
multi-objective path planning (MOPP). As a solution to such
problems, the Multi-objective A* (MOA*) Algorithm [4] and
MOD* [5] were developed, based on similar principles to A* and
D*, respectively. In the presence of safety risks imposed by
moving enemies, the aforementioned algorithms cannot
guarantee they will find a feasible path. The shortest path may
not be the safest, and could be the most hazardous path. The
safest path may be the longest one, but requires consideration of
limited resources. Therefore, an algorithm incorporating path
feasibility into risk-minimization is needed.

In this paper, we develop a robustness function using the
robustness theory of Metric Temporal Logic (MTL) [6] to
maximize the drone safety while satisfying mission constraints.
The MTL robustness can be defined as the upper-bounded
perturbation that the drone can tolerate without changing its
Boolean truth value with respect to its mission specification
expressed in MTL [6]. In detail, if an MTL specification ߮
valuates to positive robustness ߝ, then the specification is true,
i.e., satisfied and, moreover, the path points can tolerate
perturbations up to ߝ and still satisfy the specification. Similarly,
if ߝ is negative, then the path point does not satisfy ߮ and all the
other points that remain within the open tube of radius |ߝ| also
do not satisfy ߮.

Our approach to address the reach-while-avoid-when-
possible problem has two main steps. First, the mission
constraints are simply and concisely expressed using MTL
specifications [10]. Secondly, we create RA* by extending A*
with two modifications: (i) a soft modification of the objective
function to include the MTL robustness function, and (ii) a hard
modification of the algorithm logic to exclude the non-robust
positions from the search space. The robustness function is used
to guide the node expansion in RA* and dynamically create a
safety margin around adversarial assets using the drone
resources. In addition, RA* creates a robust neighborhood
around the generated path using the robustness degrees of the
path points [6, 11]. The robust neighborhood provides a set of
valid trajectories that can be robust enough for the drone to
autonomously react to moving enemies or fuel leak without
conducting any re-planning process.

The next section further discusses the related work of the
MTL robustness and its application to path planning problems.
Section 3 discusses the proposed approach, and Section 4
presents the results and shows examples.

2 RELATED WORK
Researchers have applied genetic algorithms to MOPP

problems [12, 13], but these have a major issue of computational
complexity. Combining the optimization criteria into a single

objective function is a common approach [14, 15] often with
tools, such as penalty functions and weights for linear
combinations of attribute values. These methods are problematic
as the generated paths are very sensitive to small adjustments in
the penalty function coefficients and weighting factors [16].

The Limited damage A* algorithm [15] considers UAV
damage and distance criteria. An upper bound is predefined for
maximum tolerated damage. Two heuristic functions are
computed, one for the distance and one for the damage, each of
which is multiplied by a factor that depends on the
environmental parameters that must be examined
experimentally to find their optimal values. The algorithm finds
suboptimal solutions with a reasonable time performance
compared to MOA*.

The path planning algorithm in [16] uses A* with a key
modification. Rather than computing the cost function ݂ by
summing cost criteria, it calculates the Pareto front of the cost
criteria. However, the algorithm deals with fixed obstacles as
impassable terrains, which affects the flexibility of the generated
paths when resources are limited.

Considering the issues of using predefined weights for path
planning algorithms, there is a need for more robust multi-
objective optimization functions. Recent papers [8, 9] develop
path planning algorithms using the MTL robustness theory.
Unlike the problem domain explained in this paper, the problem
domains in [8, 9] only contain of static obstacles that the robot
or drone must avoid in order for the mission to succeed using
the specification of reach-while-avoid problem.

In [8], a path planner framework is designed to produce
global paths using a linear temporal logic (LTL) specification and
local trajectories using an MTL specification. The global path is
only updated if new obstacles appear, while the MTL
specification is updated if new obstacles appear and if mission
requirements change. It is unclear how they handle a change to
mission requirements that relax risk constraints. In addition,
incorporating mobile enemies would require the global planner
to recalculate a global path every time a known obstacle moves.

In [9], a reach-while avoid specification using MTL was
defined and used by a robustness estimation function to find the
most robust path. Their mixed-integer linear programming
(MILP) algorithm calculates the trajectory that minimizes the
performance objective function while satisfying the robustness
measure. It does not support moving enemies or risk awareness.

To maximize the robustness of a MTL specification, authors
in [7] apply a gradient descent method using Sequential
Quadratic Programming (SQP). Their results show that the
proposed optimization technique is significantly faster and the
functional output is arguably much better than the output of
MILP algorithm [9]. Although the investigated environment is
fully known with only one static obstacle, the performance of
the developed technique is not time efficient for online path
planning problems. To our knowledge, our work is the only
work that utilizes the MTL robustness with the A* algorithm for
online path planning in non-deterministic environments with
mobile enemies.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

248

3 MTL ROBUSTNESS MAXIMIZATION FOR
PATH PLANNING

The RA* generates the robust neighborhood and
Robust_Heuristic_Search (RHS) to adjust the path when new
information is detected. Figure 1 displays a closed-loop process
that ends when the drone reaches the target. The RA* creates a
safety margin around the closest enemy to set the minimum
accepted risk at each path step. The safety margin size is
computed using the robustness function to maximize the
satisfaction of the mission constraints along the planned path.
RA* keeps track of a robust neighborhood around the optimal
trajectory to reduce re-planning attempts and increase drone
resilience against moving enemies. The robustness measure
returns positive values if the trajectory satisfies the specification
and negative values otherwise. Intuitively, the robustness degree
of a feasible path is the largest distance the drone can
independently perturb and still maintain the feasibility of its
current path. This defines a neighborhood around the original
path such that any trajectory within this neighborhood is
guaranteed to satisfy the specification but with a lower degree of
robustness. When the drone detects a violation of its constraints,
the RHS utilizes the current robust neighborhood to find a valid
replaceable trajectory. When the whole neighborhood becomes
invalid, re-planning needs to be executed by RA*. The objective
is to find a neighborhood with a set of valid trajectories and an
optimal path at the neighborhood’s center instead of planning
for a single path. However, when the algorithm can only find
one feasible path then the robust neighborhood is collapsed into
a single trajectory. A collapsed neighborhood occurs when the
available resources approach their limits and, consequently, the
drone must take some allowable risk to reach its target.

Figure 1: The proposed approach

Definition 1 (MTL Syntax). Let AP be the set of atomic
propositions and I be a time interval of R. The MTL φ formula is
recursively defined using the following grammar [10]:

 ߮ ≔ ଵ⋁߮ଶ|߮ଵ⋀߮ଶ| ߮ଵ࣯ூ߮ଶ (1)߮ |߮¬||ܶ

T is the Boolean True, p ∈ AP , ¬ is the Boolean negation, ⋁ and ⋀ are the logical OR and AND operators, respectively. ࣯ூ is the
timed until operator and the interval ܫ imposes timing
constraints on the operator. Informally, ߮ଵ࣯ூ߮ଶ means that ߮ଵ
must hold until ߮ଶ holds, which must happen within the interval ܫ . The implication (⟹) , Always (□), and Eventually (◊)
operators can be derived using the above operators.

Using the MTL syntax (Definition 1), we define the MTL
specification of our problem of reach-while-avoid-when-possible
as follows.

߮ = ◊[,௧௦௧௧] ݍ ∧ □[,௧௦௧௧] (¬݂݁ܽݏ݊ݑ) ∧ □[,௧௦௧௧] ൫(ܿ݊݅ܽݎݐݏ݊ଵ > ଵ݈݀ℎݏ݁ݎℎݐ ∧ … ݊݅ܽݎݐݏ݊ܿ ∧. > (݈݀ℎݏ݁ݎℎݐ ⟹ ൯ (2)݂݁ܽܵ݅݉݁ݏ¬

This formula requires the drone to reach the target terminal ݍ
(i.e., liveness property) while always avoiding being inside
unsafe areas (i.e., safety property). When the available
constraint1.. constraintn are above their predefined thresholds, it
must always stay away from the semi-safe areas (i.e., conditional
safety property). Otherwise, the semi-safe areas need to be
gradually receded to free up some space for the drone to
maneuver in to reach its target. We define a path trajectory that
satisfies the specification given in (2) to be a feasible trajectory.
Otherwise, it is infeasible. For our problem domain, this
specification would be: ߮ = ◊[,ௗௗ] ݍ ∧ □[,ௗௗ] (¬ܹܴ ∧ □[,ௗௗ] ൫(݂ >݂ ∧ ݐ < (௫ݐ ⟹ ¬ܸܴ ∧ ൯ (3)ܴܬ¬

To precisely capture the MTL formula, each predicate ∈ ܲܣ
is mapped to a subset of the metric space S. Let ࣩ: ܲܣ ⟶ ࣪(ܵ)
be an observation map for the atomic propositions. The Boolean
truth value of a formula ߮ with respect to the trajectory s at time
t is defined recursively using the MTL semantics directly
reproduced as stated in [10]: (ݏ, (ݐ ≔ ܶ ⟺ ∋ ∀ ܶ ,ܲܣ ,ݏ) (ݐ ≔ ⟺ ࣩ ௧ݏ ∈ ,ݏ) ()ࣩ (ݐ ≔ ࣩ ¬߮ ⟺ ,ݏ)¬ (ݐ ,ݏ) ߮ ࣩ =∶ (ݐ ≔ ࣩ ߮ଵ ⋁ ߮ଶ ⟺ ,ݏ) (ݐ ≔ ࣩ ߮ଵ ⋁ ,ݏ) (ݐ ≔ ࣩ ߮ଶ (ݏ, (ݐ ≔ ࣩ ߮ଵ⋀߮ଶ ⟺ ,ݏ) (ݐ ≔ ࣩ ߮ଵ ⋀ (ݏ, (ݐ ≔ ࣩ ߮ଶ (ݏ, (ݐ ≔ ࣩ ߮ଵ࣯ூ߮ଶ ⟺ ᇱݐ∃ ∈ ݐ + .ܫ ,ݏ) (ᇱݐ ≔ ࣩ ߮ଶ ⋀ ∀ ݐᇱᇱ ∈ ,ݐ) ,(ᇱݐ ,ݏ) (ᇱᇱݐ ≔ ࣩ ߮ଵ

In our problem domain, we have 6 atomic propositions
including time, fuel, risk ranges (VR, JR, and WR), and the target.
To properly use the observation map semantics in the problem
domain, we compute time and fuel in terms of distance metric d,
which is the Euclidian distance between points ଵ, :ଶ, as

,ଵ)݀ (ଶ = ඥ(ݔଵ − ଶ)ଶݔ ଵݕ) + − ଶ)ଶ (4)ݕ

By using the drone’s velocity v, and the fuel consumption
rate ܿݐݎ (fuel per distance), we calculate the time and fuel in
terms of distance as follows:

ݐ = ௗ௩ (5)

 ݂ = ݀ × (6) ݐݎܿ

To formally measure the robustness degree of ߮ (2) at the
trajectory point s at time t, the robustness semantics of ߮ is
recursively defined as taken directly from [6]:

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

249

where ⊔ stands for maximum, ⊓ stands for minimum, ,ܲܣ∋ and ݈, ∋ ݑ ℕ. The robustness is a real-valued function of the
trajectory point s with the following important property stated
in Theorem 1.

Theorem 1 [6]: For any ݏ ∈ ܵ and MTL formula ߮ , if ۤ߮ݏ) ۥ, ݅) is negative, then s does not satisfy the specification ߮
at time i. If it is positive, then s satisfies ߮ at i. If the result is
zero, then the satisfaction is undefined.

By maximizing the robustness degree ۤ߮ۥ, we can compute
the control inputs (direction, velocity) over the finite set of input
sequences which would provide us with a path solution to a
given problem instance, assuming that there is at least one
feasible path. The generated sequence of inputs can be simply
considered as the sequence of path points, i.e., trajectory (s,t) to
the target that satisfy ߮ by having positive robustness degree ۤ(ݏ, ۥ(ݐ > 0. The larger ۤ(ݏ, the more robust is the trajectory ,ۥ(ݐ
to a perturbation of ߮. In other words, trajectory s can be
disturbed at time t while ۤ߮ۥ decreases but remains positive.
Consequently, the robustness degree ۤ߮ۥ of each path trajectory
creates a robust neighborhood around the trajectory to make
available a set of trajectories with less ۤ߮ۥ but still satisfy the
original ߮.

The Signed Distance, ݐݏ݅ܦ ௗ, is a domain-specific function
that must be defined to reflect the domain properties [6]. In this
paper, we define three functions to measure the distance from
the propositions of the target, the enemy set, and the resource
limits (Figure 2). The target symbol represents the target
terminal while the blue circle is the drone. The red circle
surrounded by multiple circles represents the enemy, where
cyan, orange, and red circles are the VR, JR, and WR,
respectively.

Definition 2 (Target ݀݅ݐݏ function): Given that ݍ is the
target terminal of drone and r is its range, the ݀݅ݐݏ between ݍ
and at time i is defined as

)ݐݏ݅݀ ,)݀ = (ݍ , (ݍ − (7) ݎ

Definition 3 (Enemy ݀݅ݐݏ function): Let be the drone, ܺ be
the enemy set, and ߠ ≥ 0 be the enemy speed. Then ݀݅ݐݏ
between and ܺ at time i is defined for each risk range as
follows: ݀݅ݐݏோ(, ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܸܴ + ,)ோݐݏ݅݀ (8) (ߠ ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܴܬ + ,)ௐோݐݏ݅݀ (9) (ߠ ܺ) = minஸஸ|| d൫, ൯ݔ − .ݔ) ܹܴ + (10) (ߠ

With respect to the target q, dist is defined as the distance from
the drone to the closest edge of the region defined by the target’s
terminal range. On the other hand, the enemy dist function is
evaluated with respect to the drone and the set of enemies ܺ to
a triple that represents the distances to the range of the closest
enemy x to p (Figure 2). In addition, we use the velocity of a
given enemy ߠ such that each risk range is extended with the
enemy’s velocity as represented by dotted circles around colored
enemy ranges (Figure 2). The terminal range for a moving target
must be shrunk, rather than extended, by the velocity of the
target, assuming that the target is running away from the drone.

Figure 2: The structure of the problem domain

Lastly, we define a depth function to measure the distance
between the current position of the drone and its resource limit.
Each drone has a pre-specified amount of fuel and time to reach
its target. We assume that each mission starts at time 0 with fuel ݂௫ and each drone has time ݐ௫ , the deadline, to reach its
target. To calculate the robustness of a given configuration of
drones with allotted fuel capacities, fuel consumption rates, and
deadlines, we redefine each constraint in terms of distance using
equations 5 and 6. Given that a drone moves with velocity ݒ, we
define two regions centered at the target q with radius ݒ × ݂
and ݒ × ௫ to define the farthest positions that the droneݐ
could travel while still being able to reach its target. With these
regions defined, we can define the function depth.

Definition 4 (Resource depth function): Given that ݂, ௫ݐ are the resource thresholds, ݀݁ݐℎ and ݀݁ݐℎ௧ functions for the drone at time i are defined as: ݀݁ݐℎ ()
=ቄ(݂ − ݂) − ,)݀) (ݍ − (ݎ × crt ݂݅ ∉ ࣩ(݂) 0 ݐℎ݁(11) ݁ݏ݅ݓݎ

௫ݐ)ቊ= ()ℎ ௧ݐ݁݀ − (ݐ − (ௗ(,)ି)௩ ݂݅ ∉ (12) ݁ݏ݅ݓݎℎ݁ݐ 0 (௫ݐ)ࣩ

The function depth measures the distance to the closest edge
of the region defined by a constraint centered on the target. It
should be noted that the defined regions are 3D with respect to
time. Therefore, the pizza slice shown in Figure 2 would be
shrunk from the outer edge over time.

Using the dist and depth functions, the MTL robustness
degree of ߮ in equation 3 can be point-wise computed at each
position in the world state to solve the following path planning
problem:

,ݏ) ߩ (ݍ = ݉݅݊ ∑ ,ݏ)ܿ (ାଵݏ − ,ݏ)ۤ (1-13) ۥ(ାଵݏ

.ݏ 0 .ݐ ≤ ݅ < ௫ (13-2)ݐ

 ݂ ≤ ݂ ≤ ݂௫ (13-3)

 ߳ ≤ ۥ ߩۤ ≤ ߳௫ (13-4)

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

250

 (14)

(15)

where ܿ(ݏ, .*) is a cost function similar to the f function in Aݏ
Equations 13-2 and 13-3 represent the resource limitation. ߳ and ߳௫ are the desired minimum and maximum
robustness which make equation 13-4 an optional constraint in
the problem. When ߳ > 0, it enforces a minimum safety
margin around enemies, while ߳௫ > 0 attempts to limit the
path length when the available resources are extremely large.

3.1 RA* Algorithm
A* represents the world state as a grid map divided into

squares. In this paper, each square is evaluated either as a
passable (safe and reachable), impassable when it is either
occupied by one or more enemies, or unreachable when the
drone does not have enough resources to reach it. However, the
impassable squares that are occupied by the VR or JR of enemies
can become passable when the drone cannot afford to avoid
them given its limited resources.

RA* uses the same logic as the standard A*. The modified
functions are presented in Algorithm 1. In line 3 of the neighbors
function, the node is included into the search space only when
the robustness is zero or positive. Our algorithm uses the MTL
robustness to classify nodes in the gird into passable or
impassible based on their satisfaction of the mission safety
constraints. Only passable nodes are used to feed the open queue
in RA*. The robustness of the liveness property is used in the h
function to encourage the algorithm to expand its search
towards positions closer to the target.

Assumption 1: If drone velocity is ݒ and the max velocity of
the enemy set is ݒᇱ = ௫, then the drone is assumed toݒ௫∈ݔܽ݉
be faster ݒ > .ᇱ by at least 20%ݒ

Assumption 2: If the drone vision range is ܸܴ and the
enemy set’s max vision range is ܸܴᇱ = ௫∈ܸܴ௫, then theݔܽ݉
drone has bigger vision range ܸܴ > ܸܴᇱ.

Assumption 3: Given target ݍ and enemy set ܺ, q is not
part of the enemy set ݍ ∉ ܺ.

The robustness of the safety property (□[,ௗௗ] (¬WR)) is
measured at each position of the search space since it must hold

at all path points. To measure the robustness of the safety
property for pos, we use the MTL robustness semantic with
duration of [1, 1] and enemy set X is found in equation 14. In
order to apply the robustness semantic, the always operator □ is
converted into the Until operator using the conversion rules in
[11].Then, the robustness becomes a minimum function of the
robustness of True value and the dist function in equation 10.
Since the robustness of True by semantic is positive infinity, the
robustness function becomes about the dist function of WR.

Line 4 in robustness_safety in Algorithm 1 defines the dist
function using equation 10 to measure the distance from the WR
of the enemy set. The positions inside the WR would have
negative robustness, preventing the drone from taking paths
through them. Positions with positive numbers are considered
passable. Their robustness degree depends on how far they are
from the boundary of the WR.

The conditional safety property ቀ □[,ௗௗ] ൫(݂ > ݂ ∧ ݐ (௫ݐ> ⟹ ¬ܸܴ ∧ ൯ቁ evaluates the ability of the drone to avoidܴܬ¬

being seen or jammed by enemies considering its current time
and fuel. It avoids enemy JR and VR only when it has sufficient
resources to do so, otherwise these areas are included in the
search space as passable positions for the drone. The ݀݁ݐℎ functions, in equations 11 and 12, measure how far away
the drone is from being out of time or fuel if it chooses to pass
through position pos. The safety margin, i.e., the minimum
robustness ߳, is dynamically computed using the results of ݀݁ݐℎ and ݀݁ݐℎ ௧ (line 1 in robustness_safety). The safety
margin is decreased gradually with the time and fuel and
becomes negative when either one of the resources starts
approaching its limits. In lines 2 and 3 of function
robustness_safety, the updated safety margin would be subtracted
from the VR and JR to allow the drone pass through semi-safe
areas. The dist functions in lines 2 and 3 return positive if the
drone obeys the constraint of the minimum robustness and
returns negative otherwise. The robustness of the conditional
safety is computed in equation 15 using the MTL robustness
semantics for the time duration of [1, 1] and enemy set X. The

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

251

robustness function becomes about finding the maximum values
of the negative of ݀݁ݐℎ and ݀݁ݐℎ ௧ and the minimum of dist
functions of equations 8 and 9.

The MTL robustness semantic in equation 15 is mapped into
line 5 of robustness_safety function to decide if position pos is
passable or impassable. Equation 15 would return negative
values if the point pos is inside the jamming and vision ranges
(JR, VR) of the closest enemy and the drone’s time and fuel are
above thresholds. On the other hand, it would return positive if
and only if pos is outside the VR and JR of all enemies. In case
the fuel or time are approaching their limits, equation 15 would
always return zero when pos is inside VR or JR of enemies.
According to Theorem 1, zero is undefined robustness, which
RA* would accept only when there are insufficient resources to
reach the target while avoiding areas with conditional safety
property. By using this technique, the MTL robustness allows
runtime risk assessment of the VR and JR which completely
depends on the availability of resources.

Line 6 in robustness_safety computes the final robustness
degree of pos as the min value of the safety and conditional
safety properties. A negative value means the robustness is
negative and pos is not inserted into the search space (line 3 of
the neighbors function). Otherwise, the robustness degree is
either positive or zero and pos is passable and considered for
path planning search. By preferring paths with larger safety
robustness in line 5 of the neighbors function, the algorithm
generates robust paths to risky areas.

In RA*, ◊[,ௗௗ] ݍ evaluates the reachability of the target ݍ
from position pos in the robustness_liveness function. It depends
on the dist function in equation 7, which returns a positive real
number if pos is outside the terminal range of q and returns
negative otherwise. Then, h in line 6 of neighbors function would
have negative value when pos is inside the target area which
decreases f in line 7. To guarantee that the algorithm expands
positions with shorter distances to the target, the OPEN queue of
A* is ordered based on the lowest (most robust) f values of
searchable positions.

 Algorithm 1 Functions needed for RA* Search

function neighbors(p, ߳, ϵ୫ୟ୶)
1- neighbors = neighbors_of(p,1)
2- for n ∈ neighbors
3- if(robustness_safety(n, X, ߳, ϵ୫ୟ୶)>=0)
4- n.r=robustness_safety(n, X, ߳, ϵ୫ୟ୶)
5- n.g = d(n,p)- n.r
6- n.h= robustness_liveness(neighbor, q)
7- n.f = n.g + n.h
8- n.parent = p
9- return neighbors
function robustness_safety(pos, X, ߳, ϵ୫ୟ୶)
1- ߳= min൫߳, (ݏ)ℎ ݐ݁݀ − ߳, (ݏ)ℎ ௧ݐ݁݀ − ߳൯
,ݏ)ோݐݏ݅݀ -2 ܺ) = ,ݏ)ோݐݏ݅݀ ܺ) − ߳
,ݏ)ோݐݏ݅݀ -3 ܺ) = ,ݏ)ோݐݏ݅݀ ܺ) − ߳
4- safety =݀݅ݐݏௐோ(ݏ, ܺ)
5-con_safety= max ൭ ,(ݏ)ℎ ݐ݁݀ min,(ݏ)ℎ ௧ݐ݁݀ ቀ݀݅ݐݏோ(ݏ, ܺ), ,ݏ)ோݐݏ݅݀ ܺ)ቁ൱

6-return min (safety,con_safety, ߳௫)
function robustness_liveness(pos, q)
1- return ݀݅(ݍ ,ݏ)ݐݏ

3.2 RHS
The loop function (Algorithm 2) of the drone (agent) moves

the drone on the path and monitors robustness simultaneously.
The drone’s sensor detects enemies when they are within its
vision. The violate_robustness function (line 9 of loop) checks if
the robustness of the current path is violated by newly detected
information. It iterates over the current path points, re-evaluates
the robustness of the safety property given available enemy
information and the world state, and returns the first invalid
path point, i.e., critical point cp. A violation calls RHS (line 12) to
find a replaceable trajectory inside the robust neighborhood. To
make a quick decision about the validation of the robust
neighborhood, RHS checks the validity of the neighbors of cp at
the edges of the neighborhood using the cp’s robustness degree
to identify these edges (lines 1-6 in RHS). The RHS is a pure
heuristic search for finding a valid trajectory inside the robust
neighborhood with a min robustness of zero. Essentially, the
heuristic search concentrates on quickly and effectively finding
valid trajectory as an immediate reaction against moving
enemies. However, when there is no valid trajectory inside the
robust neighborhood, RA* is recalled, generating a new path
with its robust neighborhood considering all enemies that can be
seen (line 14).

Algorithm 2 Functions needed for MTL-Robustness Monitoring

function loop()
1- X =sensor_results
2- If ߩ=∅
ߩ -3 ←path generated by MTL_Robustness_Based_A*
4- If ߩ=∅
5- Agent.Stop() // no path
6- Else
7- If sensor_results != ∅
8- X= X ∪ sensor_results
9- cp=violate_robustness(ߩ,X,0, ϵ୫ୟ୶)
10- If cp≠null
11- s= drone_position
,ߩ ,RHS(s,cp =ߩ -12 0, ϵ୫ୟ୶)
13- If ߩ=null
ߩ -14 ←re-plan by RA*
15- Agent.move(ߩ)
function violate_robustness(ߩ,X, ϵ୫୧୬, ϵ୫ୟ୶)
1- for pos ∈ ߩ
2- if robustness_safety(pos, X,0, ϵ୫ୟ୶)<0
3- return pos
4- return null

function RHS(s,cp, ߩ, ϵ୫୧୬, ϵ୫ୟ୶)
1- neighbors = neighbors_of(cp, cp.r)
2- for each pos ∈ neighbors
3- if robustness_safety(pos, X,0, ϵ୫ୟ୶)<0
4- neighbors.remove(pos)
5- if neighbors=null
6- return null
7- p= s
8- open←p
9- while ݊݁ ≠ ∅
10- p= pop(open)
11- if(dist(p,q)==r)
12- return construct_path(p)
13- closed←p
14- for n ∈ neighbors(p,0, ϵ୫ୟ୶)
15- if n ∉ open
16- n.h= robustness_liveness(n, q)-n.r
16- open←(n)
17- return null

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

252

By using MTL robustness to plan and monitor paths, the
generated paths satisfy the initial mission constraints under all
circumstances. However, when the drone has smaller vision than
the enemies, it might find itself inside a vision of one or more
enemies before it sees them. This case can be dealt with as a
special case by considering these areas temporarily passable
allowing the drone to escape the immediate risk towards the
target. This obviously violates the safety property but that is
because of the physical capabilities of the drone and not related
to the path planning and monitoring processes.

Figure 4 illustrates the approach using the Rassim simulator
where the drone has unlimited time and fuel to reach its target
(deadline=∞, fuel=∞, 100= ݒ, ϵ୫୧୬ = ϵ୫ୟ୶ ,ݒ = ߮ :(ݒ = ◊[,ஶ] ݍ ∧ □[,ஶ] (¬WR) ∧ □[,ஶ] ൫(∞ > ݂ ∧ ݐ < ∞)⟹ ¬ܸܴ ∧ ൯ܴܬ¬

Pink represents the planned path while green represents the
path traversed by the drone to reach its current position. The
robust neighborhood is shown in blue around the path. At time
t0, the drone detects enemy E1 and updates its specification to
become: ܺ = ,ଵ. RA* finds a path that avoids enemies in ܺ. At t1ܧ
it sees E2, which is a mobile enemy, and ܺ becomes ሼܧଵ, .ଶሽܧ
Since E2 invalidates the whole robust neighborhood, RA* is
recalled to find another path with a new robust neighborhood.
The drone sees E3 and ܺ becomes ሼܧଵ, ,ଶܧ ଷሽ, but part of theܧ
neighborhood is still valid. Here, RHS finds a valid trajectory to
the target without doing replanning.

The case of limited resources is shown in Figure 5. Here, the
mission specification is (deadline=25݉ݏ, fuel=50݃, crt=0.1 g/ms, ݂ = ϵ୫୧୬ ,100= ݒ ,5݃ = ϵ୫ୟ୶ ,ݒ = ߮ :(ݒ = ◊[,ଶହ] ݍ ∧ □[,ଶହ] (¬WR) ∧ □[,ଶହ] ൫(݂ > 5 ∧ ݐ < 25)⟹ ¬ܸܴ ∧ ൯ܴܬ¬

Obviously, the drone cannot reach its target without
accepting some risk. At t0, the drone accepts some risk of VR of
enemy E1. At t1, it tries to avoid E2, but it continues moving
toward its path. Then, the drone evaluates the robustness of its
current path. Since the deadline at t1 is approaching, the path
becomes robust despite the moving enemy and any further
detected enemies. Therefore, the drone stops attempting to avoid
E2 and takes the direct path to the target without replanning
when it saw enemy E4.

4 EVALUATION
The main motivation of this paper is to increase the

possibility of the mission completion in adversarial world when
the drone does not have sufficient resources to completely avoid
all hazardous areas in presence of mobile enemies. Enhancing A*
with MTL robustness helps to find a balance between risk
avoidance and resource depletion. To show the effectiveness of
the approach, we compare the average of planning time, travel
time (i.e., path length), and the time spent inside risky areas of
the A* algorithm and RA* in 100 randomly generated scenarios

with static and moving enemies. We have built a random
scenario generator on top of Rassim to test our algorithm. The
worlds are setup as 3000 1500 cell grids. The scenario
generator randomly places the target, drone, and enemy assets
using a normal distribution with multiple values of the standard
deviation and mean using the world width and height. Killers are
selected with a 60% probability, Jammers with a 20% probability,
and Radars with a 20% probability. We initially set the min and
max accepted robustness, ϵ୫୧୬ and ϵ୫ୟ୶, to the drone velocity.
The experiments are conducted on a quad-core Intel i7 3.4GHz
processor with 16GB RAM. We run the same scenarios with
unlimited, limited (100 seconds), insufficient (50 seconds) time.
The results are shown in Table 1.

Figure 3: An example of RA* utilizes the robust

neighborhood

Figure 4: RA* path planning with limited resources

With unlimited resources, RA* successfully accomplishes the
mission in all scenarios without accepting risk except in two
cases, where enemies construct a virtual wall in front of the
target. The drone was unable to reach its target without breaking
through the VR and JR of enemies. With 50 seconds, RA* was
unable to find feasible paths in 4% of the scenarios. The failed
missions occurred because of the distribution of the enemies
with WR. Since the drone must avoid WRs regardless of its
resource condition, it ran out of time before reaching the target.

t1 t0

t2

t0 t1

t2 t3

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

253

Table 1: Comparison between A* and RA* in seconds

 Avg.
Planning
Time

Avg.
Travel
Time

Avg.
Accepted
Risk

Mission
Completion

A*
(Unlimited
Resources)

13.18 29.56 1.8676 98%

RA*
(Unlimited
Resources)

5.91 26.86 0.1022 100%

A*
(Limited

Resources)

10.36 26.71 1.227 90%

RA*
(Limited

Resources)

3.798 25.48 0.4948 100%

A*
(Insufficient
Resources)

7.129 25.01 0.6444 84%

RA*
(Insufficient
Resources)

2.499 23.43 0.509 96%

The average planning time of RA* in all cases is less than A*,

because it prioritizes the drone safety by avoiding paths in
narrow passages between enemies, while A* allows the drone to
pass between enemies. This sometimes traps the drone inside
moving enemy ranges, consequently increasing replanning time.
On the other hand, the RA* reduces replanning attempts by
adjusting the trajectory of the current path from the robust
neighborhood. Thus, RA* generates safer, shorter, and faster
paths overall than A* with and without limited resources.

With A*, the drone was unable to accomplish its mission in
10% and 16% of the scenarios with limited and insufficient
resources, respectively. One possible reason for this occurrence
when the drone is trapped inside a mobile enemy range for long
time while trying to find an optimal path, causing resource
depletion before reaching the target. Another reason may be that
when the drone consumes its resources to completely avoid all
enemies, it has no fuel or time left to accomplish the mission. In
addition, the average path length (i.e., travel time) for paths
generated by A* in both cases is surprisingly longer than the
average length for RA* paths. In fact, A* attempts to find the
shortest path, which makes its paths very tight around enemies.
With mobile enemies, the tight paths face replanning very
frequently, increasing their overall lengths.

Although A* attempts to avoid all risky areas, the drone takes
more risk with A* than with RA*, with and without limited
resources. This situation is apparent when scenarios surround
the drone with multiple enemies, trapping it. One scenario with
moving enemies is shown in Figure 6. At time t1 and t2, A*
spends significant time finding a valid path and stays in its
position until enemies E2 and E3 move away from the optimal
path. In similar scenarios, if enemies E2 or E3 move toward the
drone, the drone will be trapped inside the risky area until the
enemy moves away, which may cost the drone its life.

Figure 5: A*path planning in presence of mobile enemies

Figure 7 shows how RA* reacts to the same scenario in Figure
6 with unlimited resources. RA* can find a valid path without
accepting any risk. The same scenario with limited resources has
been shown in the previous section (Figure 5).

Figure 6: RA* plans with unlimited resources

5 CONCLUSIONS
The presented algorithm, RA*, dynamically and flexibly

determines the risk avoidance based on the latest information
about the environment and mission constraints. It addresses the
“reach-while-avoid-when-possible” path planning problem by
using the MTL robustness theory. The experiments showed that
RA* is able to avoid mobile enemies better than A*. Moreover, A*
is not able to plan for feasible paths under limited resources.

ACKNOWLEDGMENTS
This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-16-1-
0253. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of Air Force Research
Laboratory or the U.S. Government.

t0 t1

t2 t3

t3

t0

t2

t1

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

254

REFERENCES
[1] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2003.
[2] A. Stentz. The focussed D* algorithm for real-time replanning. In

Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Canada, 1995.

[3] D. T. Wooden. Graph-based Path Planning for Mobile Robots. Ph.D.
Dissertation, Georgia Institute of Technology, 2006.

[4] B. S. Stewart and C. Chelsea. Multiobjective A*. ACM,2(1991), 775-814.
[5] T. Oral and F. Polat. MOD* Lite: An incremental path planning algorithm

taking care of multiple objectives. IEEE Transactions on Cybernetics, 1(2016),
245-257.

[6] G. Fainekos and G.J. Pappas. Robustness of temporal logic specifications. In
Proceedings of the First Combined International Conference on Formal
Approaches to Software Testing and Runtime Verification. Springer-Verlag,
Seattle, 2006

[7] Y. V. Pant, H. Abbas, and R. Mangharam. Smooth operator: Control using
the smooth robustness of temporal logic. In Proceedings of the IEEE
Conference on Control Technology and Applications (CCTA), HI, 2017

[8] B. Hoxha, and G. Fainekos. Planning in dynamic environments through
temporal logic monitoring. In Proceedings of the Workshops at the Thirtieth

Conference on Artificial Intelligence AAAI,2016
[9] S. Saha and A.A. Julius. An MILP approach for real-time optimal controller

synthesis with metric temporal logic specifications. In Proceedings of the
American Control Conference ,2016.

[10] Koymans, R. Specifying real-time properties with metric temporal logic.
Real-Time Syst., 4 (1990), 255-299

[11] A. Dokhanchi, B. Hoxha, and G, Fainekos. On-Line monitoring for temporal
logic robustness. In Runtime Verification. Springer, pp. 1–20,2014

[12] H. Jun and Z. Qingbao. Multi-objective mobile robot path planning based on
improved genetic algorithm. In Proceedings of the International Conference
on Intelligent Computation Technology and Automation, 2(2010).

[13] M. Samadi and F. Othman. Global path planning for autonomous mobile
robot using genetic algorithm. In Proceedings of the International Conference
on Signal-Image Technology & Internet-Based Systems, Japan, 2013.

[14] F. Guo, H. Wang, and Y. Tian. Multi-objective path planning for
unrestricted mobile. In Proceedings of the IEEE International Conference on
Automation and Logistics, Shenyang, 2009.

[15] S. Bayili and F. Polat. Limited-Damage A*: A path search algorithm that
considers damage as a feasibility criterion. Knoweldge-Based System, 24
(2011), 501-512.

[16] A. Lavin. A Pareto front-based multiobjective path planning algorithm.
Computing Resource Respository, 2015.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

255

