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ABSTRACT
Policy networks are graphicalmodels that integrate decision-making

models. They allow for multiple Markov decision processes (MDPs)

that describe distinct focused aspects of a domain to work in har-

mony to solve a large-scale problem. This paper defines policy

networks and shows how they are able to naturally generalize

many previous models, such as options and constrained MDPs.
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1 INTRODUCTION
The Markov decision process (MDP) [4] and its many variants are

sequential decision-making models that are increasingly deployed

in large high-impact domains ranging from aircraft collision avoid-

ance [10] to autonomous vehicles [19, 21]. Efforts to accurately

represent these important real world problems has highlighted the

inability for a single monolithic model—one state-action space for

one objective—to scale, instead relying on a fragmented collection

of techniques. Multi-objective approaches allow for more than one

objective to be considered, either by combining them into a single

objective via scalarization [14], defining a preference ordering with

slack via a lexicographic MDP (LMDP) [22, 24], or stating multiple

constraining objectives for a primary objective via a constrained

MDP (CMDP) [1]. Hierarchical approaches allow for reasoning at

varying levels of abstraction, either by hierarchical task networks

(HTN) [8, 15], defining subtask hierarchies for MDPs via MAXQ-

like techniques [7, 9], or leveraging another policy by temporarily

transferring control to it via the options framework [3, 17].

Each one of these solutions introduces an important reasoning

capability, but to support long-term autonomy [2] in the real world,

we need to integrate these varied capabilities within one system [5].

As Marvin Minsky observed, “the power of intelligence stems from

our vast diversity, not from any single, perfect principle” [11]. It is

unlikely that any singleMDPmodel will be sufficient. For scalability,

we need new formal architectures that allow multiple models to be

integrated within a single agent. To this end, we propose a novel

framework called policy networks that unifies prior approaches and

provides a solid foundation on which to build the next generation

of large-scale models.
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2 POLICY NETWORKS
In general, policy networks are graphs in which vertices denote sets of
policies for a reward function and edges denote policy dependences
among them. The objective is to capture the relations among dis-

tinct decision-making components to solve large multi-objective

hierarchical problems. Thus, a policy network is a sequential

decision-making model defined by a directed graph ⟨V ,E⟩ [18]:

• V is a finite set of vertices such that each v ∈V denotes a set

of policies Πv for reward function Rv :Sv ×Av →R; and
• E is a finite set of edges such that each ⟨v,w⟩=e ∈E forms a

dependence ofw on v , with optional properties:

– policy constraint Πe enforces that πw ∈Πe , for the policy

πw ∈Πw chosen forw ; and/or

– policy transitionTe :Sv ×Av ×Sw →[0,1] is a partial func-

tion for Pr (w,s ′w |v,sv ,av ).

The execution of a policy network operates over discrete time

steps t ∈N as a form of Markov multi-reward process. Each vertex v
has a state space Sv and action space Av for its policy and reward;

it also has an initial state s0v ∈Sv . Each edge e= ⟨v,w⟩ makes w
inherently depend on v such that when v performs an action or

transitions its state it can affectw .

As in (PO)MDPs, to perform an action is simply the act of

conditioning on the action so as to induce an update in the un-

derlying vertex v’s stochastic process following the distribution

Pr (w,s ′w |v,sv ,av ); this is called a state transition. This probabil-
ity distribution describes the state transition within the state space

of v (i.e.,w =v and s ′w =s
′
v ∈Sv ) as well as across other state spaces

used by other vertices (i.e., w ,v and s ′w ∈Sw ). Policy networks

require full specification of Pr (w,s ′w |v,sv ,av ) via the collection of

functions Te . In its simplest form, if v only transitions to itself by

Te =Tvv , thenTe is equivalent to a typical (PO)MDP state transition.

Performing an action also induces a reward from Rv .
At each time step, any controller vertex v performs the ac-

tion πv (sv ) ∈Av at their current state sv ∈Sv from a policy πv ∈

Πv ∩(
⋂
w Πwv ) chosen for v . Each policy network has an initial

controller v0 ∈V . The actions performed by v may result in a sto-

chastic state transition to a different vertexw ’s state space. We call

this a transfer of control, with the controller changing from v to

w who now performs actions following its policy. Obviously, only

a controller vertex can transfer control. If a non-controller vertex

performs a state update, transfer of control attempts instead result

in a self-loop state transition.

For any edge ⟨v,w⟩=e ∈E, there is an inherent dependence that

w has on v . First, if v is the controller and the state spaces are

shared Sw =Sv , thenw also follows the state transition result of v
(i.e., st+1w =st+1v ). Second, if v is the controller and the action spaces
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Figure 1: Three policy network graphical representations.

are sharedAw =Av , thenw also performs the action thatv performs

(i.e., atw =a
t
v ); performing an action in this way also emits a reward

Rw for w . Thus, if Sw =Sv and Aw =Av then w performs action

atw =a
t
v and the successor state is st+1w =st+1v . However, if Sw ,Sv

and Aw =Av then w still performs action atw =a
t
v and induces a

state transition as normal, with a caveat that any transfer of control

attempt self-loops instead. Any additional dependences can be

optionally added to an edge as well, as described above.

For each vertex v , we can define its relative Markov reward

process for a set of policies. This defines a hierarchy of relative

constrained semi-MDPs (CSMDPs) [1, 12] as an optimality criterion.

3 THEORETICAL ANALYSIS
We can show the generality of policy networks by proving that they

can encapsulate various models such as CMDPs and the options

framework. First, Proposition 3.1 states that they generalize MDPs;

partially observable MDPs (POMDPs) [16] are continuous state

MDPs, belief MDPs, and are similarly generalized.

Proposition 3.1. Policy networks generalize (PO)MDPs.

Next, we consider two cases of policy constraint edges: con-
strained MDPs (CMDPs) [1] in Proposition 3.2 and MODIA [21] in

Proposition 3.3. Constraints limit the space of policies from parent

vertices to a child controller vertex. CMDPs represent a policy net-

work with a shared both state and action space. Figure 1(b) provides

a graphical representation. MODIA represents a policy network

with a different state space but a shared action space, illustrating

how performing action can simultaneously affect many models.

Proposition 3.2. Policy networks generalize CMDPs.

Proposition 3.3. Policy networks generalize MODIA.

Lastly, we consider two related cases of policy transition edges:
the options framework [17] (both Markov and semi-Markov) in

Proposition 3.4 and semi-autonomous systems (SAS) [19] in Propo-

sition 3.5. Here, transfer of control happens between parent and

child vertices, both online (options) and offline (SAS). Options rep-

resent a policy network with a shared state space and shared action

space. Figure 1(c) provides a graphical representation. SAS rep-

resents a policy network with different state space and different

action space, illustrating how different models can interact.

Proposition 3.4. Policy networks generalize options.

Proposition 3.5. Policy networks generalize SAS.

Figure 2: Experiments with the home healthcare robot us-
ing this policy network in the real household shown above.
Three highlights are shown: (1) medicine retrieval for task
t1, (2)medicine delivery completionwith transfer t1→h→t2,
and (3) interruption of cleaning task t2 by detecting a fall
with task fi and calling for assistance.
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Figure 3: The policy network for the home healthcare robot.

4 EVALUATION
Home healthcare robots serve in household and eldercare scenarios,

providing solutions to a wide array of helpful tasks ranging from

cleaning tomedicine delivery [13].We focus on a robot solution that

captures the three top-ranked needs [6]: (1) medicine notification

and delivery; (2) cleaning; and (3) monitoring and helping with

falls. Figure 3 shows the policy network for our healthcare robot.

The vertices are a task selector h, tasks ti (medicine and cleaning),

fall monitor fi , executor ϵi , and path planner pi j . Tasks are solved
using nova [23] and path planning uses harmonic function solver

epic [20]. Figure 2 shows this policy network’s successful execution
on a real robot acting in a home environment.

5 CONCLUSION
Policy networks represent a principled mathematical model that

enables the integrated design of multiple models. They provide a

formal approach to generalize select state-of-the-art models and

use them within a single reasoning system. The implementation of

policy networks demonstrates that they can be used effectively to

model and solve a challenging home healthcare robot problem. This

work lays the foundation for scalable integration of multiple models

in support of reasoning about complex real-world domains and long-

term autonomy. The full description, proofs, and formalization is

provided in Wray’s thesis [18].
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