
Multi-agent Adversarial Inverse Reinforcement
Learning with Latent Variables

Extended Abstract

Nate Gruver
Stanford University

ngruver@cs.stanford.edu

Jiaming Song
Stanford University

tsong@cs.stanford.edu

Mykel J. Kochenderfer
Stanford University
mykel@stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

ABSTRACT
We introduce an algorithm for inferring reward functions from
expert human trajectories in multiagent environments. Current
techniques exhibit poor sample-efficiency, lack stability in training,
or scale poorly to large numbers of agents. We focus on settings
with a large, variable number of agents and attempt to resolve
these settings by exploiting similarities between agent behaviors.
In particular, we learn a shared reward function using adversarial
inverse reinforcement learning and a continuous latent variable.
We demonstrate our algorithm on two real-world settings: traffic
on highways and in terminal airspace.
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1 INTRODUCTION
Accurate models of human behavior are increasingly important
to safe and effective deployment of autonomous systems. Despite
this need, behavior modeling remains difficult for various com-
mon problem settings. Urban environments, for example, still pose
significant challenges for autonomous planning because of the un-
certainty resulting from a high density of people [9]. To describe
these scenarios robustly, a model must capture multi-modality in
agent motivations and complex interactions that often scale super-
linearly with the number of agents.

Two common approaches to modeling human behavior are imi-
tation learning and inverse reinforcement learning (IRL). Imitation
learning aims to produce trajectories that match a given expert
distribution and can be attempted with techniques as simple as
supervised learning – a.k.a. behavior cloning [6]. Inverse reinforce-
ment learning, on the other hand, seeks to learn a reward function
that can rationalize expert demonstrations [7]. The latter task is
often much more challenging, but offers a concise description of the
data generating process when accomplished. If the features used
for IRL are sufficiently abstract, learned reward functions can also
be transferred across problems [11].
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1.1 Adversarial IRL (AIRL)
Inverse reinforcement learning (IRL [7, 8] seeks to identify the re-
ward function under which the expert policies are “optimal”. The
MaxEnt RL framework relates the probability of sampling a trajec-
tory by the optimal policy to the reward. With deterministic dy-
namics, 𝑇 , the probability of sampling a trajectory 𝜏 = {(𝑠𝑡 , 𝑎𝑡 }∞𝑡=0
is determined by the following energy function:

𝑝 (𝜏) = exp(∑𝑡 𝑟 (𝑠𝑡 , 𝑎𝑡 ))
𝑍 (𝑟 ) (1)

where 𝑍 (𝑟 ) is a normalization constant that sums over all valid
trajectories. One can thus perform maximum likelihood estimation
(MLE) of 𝑟 over the demonstrations to recover the reward.

The normalization constant 𝑍 , however, is difficult to estimate
for large or continuous state spaces. In adversarial inverse rein-
forcement learning [1, 2], adversarial training of a generator and
discriminator is used to compute an importance sampling estimate
of the normalization constant that can scale to high-dimensional
problems.

1.2 Multi-agent IRL
In multi-agent environments, we can generalize the single reward
function above to many reward functions 𝑟 𝑖 ∼ 𝑃𝜙 (𝑟 ). Our task thus
becomes learning parameters 𝜙 such that sampled trajectories from
all agents are indistinguishable from the set of expert trajectories.

To create a tractable objective, we assume the expert policies
form a Logistic Stochastic Best Response Equilibrium (LSBRE, [10]).
In LSBRE, imitation learning can be cast as maximum likelihood
estimation over the expert trajectories as follows:

max
𝜙
E𝜏∼𝜋𝐸

[
𝑁∑
𝑖=1

log

(∑
𝑟 𝑖

𝑃𝜙 (𝑟 𝑖 )
exp(∑𝑡 𝑟

𝑖 (𝑠𝑡 , 𝑎𝑡 ))
𝑍 (𝑟 𝑖 )

)]
(2)

In the above problem, learning can be difficult as there are almost
no structural assumptions among the agents, and thus the joint
distribution over reward functions 𝑃𝜙 (𝑟 ) can be arbitrarily complex.
In particular, the objective in Equation 2 is difficult to optimize due
to marginalization within the logarithm.

2 METHODS
2.1 Scalable Modeling with Latent Variables
To address themarginalization over 𝑃𝜙 (𝑟 ) in Equation 2, we propose
to model the policy and reward functions with latent variables.
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Specifically, we may assume the reward function for agent 𝑖 can
be modeled using a latent variable 𝑧𝑖 , and is defined as 𝑟𝜙 (𝑎𝑖𝑡 , 𝑠𝑡 |𝑧𝑖 )
with parameters 𝜙 respectively. We further assume that the latent
variable has the prior 𝑝 (𝑧) = N(𝜇𝑧 , 𝜎𝑧).

With the latent variables and conditional reward model, the
objective in Equation 2 becomes:

L(𝜙) = E𝜏∼𝜋𝐸

[
𝑁∑
𝑖=1

log

(∫
𝑧𝑖
𝑝 (𝑧𝑖 )

exp(∑𝑡 𝑟𝜙 (𝑎𝑖𝑡 , 𝑠𝑡 |𝑧𝑖 ))
𝑍 (𝑟𝜙 , 𝑧𝑖 )

d𝑧𝑖
)]

(3)

To remove the summation over 𝑝 (𝑧𝑖 ) in the log, we introduce a
inference model 𝑞𝜔 (𝑧𝑖 |𝜏𝑖 ), where 𝜏𝑖 = {(𝑠𝑖𝑡 , 𝑎𝑖𝑡 )} is the trajectory
for agent 𝑖 . This leads to an evidence lower bound to 𝐿(𝜙) [3]:

L(𝜙) ≥ E𝜏∼𝜋𝐸

[
𝑁∑
𝑖=1
E𝑧𝑖∼𝑞𝜔 (𝑧𝑖 |𝜏𝑖 ) [ELBO𝜙,𝜔 (𝜏𝑖 , 𝑧𝑖 )]

]
(4)

where ELBO𝜙,𝜔 (𝜏𝑖 , 𝑧𝑖 ) is defined as:∑
𝑡

𝑟𝜙 (𝑎𝑖𝑡 , 𝑠𝑡 |𝑧𝑖 ) − log𝑍 (𝑟𝜙 , 𝑧𝑖 ) − log𝑞𝜔 (𝑧𝑖 |𝜏𝑖 ) + log 𝑝 (𝑧𝑖 ) (5)

Given 𝑧𝑖 , we can then optimize the first two terms in ELBO𝜙,𝜔 (𝜏𝑖 , 𝑧𝑖 )
with AIRL, which provides both the reward function and the corre-
sponding policy as discussed next.

2.2 Multi-agent AIRL with Latent Variables
We propose an AIRL algorithm that maximizes the evidence lower
bound objective in Equation 5. First, for the latent variable model
𝑞𝜔 , we introduce a inference network 𝑞𝜔 (𝑧 |𝜏) that predicts the
latent variable from trajectories. From Equation 5, this corresponds
to the following objective:

L𝑞𝜔 = −E𝜏∼𝜋𝐸 ,𝑧∼𝑞𝜔 (𝑧 |𝜏) [log𝑞𝜔 (𝑧 |𝜏) − log𝑝 (𝑧)] (6)

Then, conditioned on the latent variable 𝑧, we can transform the
first term of Equation 5 using an AIRL approach. Here we need an
additional discriminator 𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧) that depends on state 𝑠 , action
𝑎 and the latent variable 𝑧, whose goal is to discriminate generated
trajectories and the demonstrations. Specifically, one provides a
parameterized policy 𝜋𝜃 (𝑎 |𝑠), and the discriminator is denoted as:

𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧) =
exp(𝑟𝜙 (𝑠, 𝑎 |𝑧))

exp(𝑟𝜙 (𝑠, 𝑎 |𝑧)) + 𝜋𝜃 (𝑎 |𝑠, 𝑧)
(7)

The discriminator then minimizes the following objective:

L𝐷 = − E𝜏𝐸∼𝜋𝐸 ,𝑧𝐸∼𝑞𝜔 (𝑧 |𝜏𝐸 ) [log𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧𝐸 )] (8)
− E𝜏∼𝜋𝜃 (𝑧),𝑧∼N(0,1) [log(1 − 𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧))] (9)
− E𝜏𝐸∼𝜋𝜃 (𝑧𝐸 ),𝑧𝐸∼𝑞𝜔 (𝑧 |𝜏𝐸 ) [log(1 − 𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧𝐸 ))] (10)

where the first term encourages higher 𝐷𝜃,𝜙 for demonstrations,
and the second and third term encourages lower 𝐷𝜃,𝜙 for trajecto-
ries generated by the policy when the latent variables are sampled
from 𝑝 (𝑧) or inferred from demonstrations.

The learned policy 𝜋𝜃 (𝑎 |𝑠, 𝑧) produces an action distribution
based on the latent variable and the current state, and its primary
objective is to reach higher 𝐷𝜃,𝜙 values. We use 𝜋𝜃 (𝑧) for the short-
hand notation for the policy 𝜋𝜃 (𝑎 |𝑠, 𝑧) with latent variable 𝑧. To
encourage the latent variables to be informative for generating
the trajectories, we add a reconstruction loss such that trajectories

Table 1: Displacement of sampled trajectory from ground
truth–both average over time and final displacement.

model avg. disp. (m) final disp. (m)

highD w/o latent 5.03 5.68
highD w/ latent 4.93 5.61
FAA w/o latent 670 808
FAA w/ latent 596 785

Figure 1: Visualization of learned reward function rolled out
in time. Cars appear closer horizontally than in real life.

in 𝜏𝐸 could be reconstructed via 𝑞𝜔 (𝑧 |𝜏𝐸 ) (encoder) and 𝜋𝜃 (𝑎 |𝑠, 𝑧)
(decoder), similar to InfoGAIL [5]. This leads to the objective:

L𝐺 = −E𝜏∼𝜋𝜃 (𝑧),𝑧∼𝑝 (𝑧) [𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑧)] (11)
+ E𝜏𝐸∼𝜋𝜃 (𝑧𝐸 ),𝑧𝐸∼𝑞𝜔 (𝑧 |𝜏𝐸 ),𝜏𝐸∼𝜋𝐸 [∥𝜏𝐸 − 𝜏𝐸 ∥2] (12)

These loss functions are iteratively minimized with stochastic gra-
dient descent.

3 RESULTS
We tested our algorithm on highway trajectories from the highD
dataset [4] and trajectories of aircraft in terminal airspace from
non-public Federal Aviation Administration (FAA) data. Verifying
learned reward function in an IRL setting is challenging when
ground truth rewards are not available. We attempt to assay the
reward functions by visualization and examining the corresponding
policies.
Learned Policies
To demonstrate the plausibility of learned reward models, we gen-
erated trajectories from the corresponding policy distribution and
measure displacements from the ground truth trajectories (Table 1).
Video demonstrations of our learned policies are also available.1

Learned Reward Functions
We visualize learned rewards by plotting the distribution for nearby
points. Figure 1 shows a visualization from the HighD dataset re-
flecting a lane-change objective.
1http://bit.ly/multi-agent-traffic
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