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ABSTRACT
The study of stable fractional matchings is fairly recent and
moreover, is scarce. This paper reports the first investigation
into the important but unexplored topic of incentive compatibil-
ity of matching mechanisms to find stable fractional matchings.
We focus our attention on matching instances under strict
preferences. First, we make the significant observation that
there are matching instances for which no mechanism that
produces a stable fractional matching is incentive compatible.
We then characterize restricted settings of matching instances
admitting unique stable fractional matchings. For this class of
instances, we prove that every mechanism that produces the
unique stable fractional matching is (a) incentive compatible
and (b) resistant to coalitional manipulations. We provide a
polynomial-time algorithm to compute the stable fractional
matching as well. The algorithm uses envy-graphs, hitherto
unused in the study of stable matchings.
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1 INTRODUCTION
Matchings have been studied for several decades now, be-
ginning with Gale and Shapley’s pioneering work [6]. They
introduced the notion of stability and provided algorithms for
finding stable matchings. Since then, a considerable amount
of work has been carried out on both the theory and applica-
tions of stable matchings. Matching mechanisms already in use
have also been for their stability and incentive compatibility
aspects [3, 5, 7]. The focus of these studies has often been
school choice mechanisms or residency matching mechanisms
already in practice [1, 2]. In these familiar settings, nodes are
wholly or “integrally” matched. We shall call such matchings
as integral matchings. A fractional matching is essentially a
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convex combinations of integral matchings. While they do have
a lot of practical relevance, fractional matchings are not ap-
plicable to settings such as school choice. Consequently, they
have only been studied in literature as a means to produce
integral matchings. Even papers that explicitly study fractional
allocations only use them towards a deeper understanding of
integral matchings [11–13].

Relaxing the integrality constraint in matchings may make
the problem harder. For instance, the problem of finding a
stable, social welfare maximizing integral matching can be
posed as a linear program. However, when we allow for match-
ings to be fractional, the problem becomes NP-Hard. This was
shown by Caragiannis et al. [4]. They also show that by allow-
ing the stable matchings to be fractional, we can make large
gains in terms of social welfare. Thus, it is of interest to study
fractional matchings and design algorithms to find fractional
matchings with desirable properties. Another crucial require-
ment for matching mechanisms is incentive compatibility, i.e.
the matching mechanism should induce all participating agents
to reveal their true preferences. Previous work [8, 10, 14, 15]
explores the incentive compatiblity of stable integral matchings.
This paper explores the problem of finding incentive compati-
ble mechanisms that produce stable fractional matchings.

2 SETUP AND RESULTS
2.1 Definitions
We represent a stable matching instance as I = ⟨M,W ,U ,V ⟩.
Here, M = {m1, · · · , mn } is the set of men and W = {w1, · · · ,
wn }, is the set of women. The valuations of men and women
are captured by matrices U = [ai , j ]i , j ∈[n] and V = [bi , j ]i , j ∈[n]
respectively. In particular, ai , j ismi ’s valuation for being matched
integrally to w j . Analogously, bi , j is w j ’s valuation for being
matched integrally to mi . We assume that all entries of U and
V are non-negative and that a linear order can be derived
from the valuations of one agent. Matching problems are tradi-
tionally studied as graph problems. Let us denote the induced
bipartite graph for a stable matching instance I as G = (V , E)
where V = M ∪W and (mi ,w j ) < E ⇔ U (i, j) = V (i, j) = 0. Given
v ∈ V , e ∈ E, we shall use e ⊥ v to denote that e is incident on
v. Fractional matchings can be defined as follows.

Definition 2.1 (Fractional Matching). µ is said to be a frac-
tional matching on G = (V , E) if µ : E → [0, 1] such that
∀v ∈ V ,

∑
e⊥v µ(e) ≤ 1.

Extended Abstract  AAMAS 2020, May 9–13, Auckland, New Zealand

1951



Before defining the stability of fractional matchings, we must
define a blocking pair in the context of fractional matchings.
We say that (m,w) form a blocking pair under matching µ if
both get strictly less utility from µ than they get by being
matched integrally with each other. The utility of a woman w
under fractional matching µ is

∑
m∈M µ(m,w)V (m,w). Thus, it

is essentially the weighted sum of the utility from each of the
integral matchings in the support of µ. The utility of a man can
be analogously defined. Hence, we can now define stability for
fractional matchings.

Definition 2.2 (Stable Fractional Matchings). A fractional
matching µ is said to be stable is there does not exist a pair
of agents (m,w) ∈ M ×W such that U (m,w) > U (m, µ(m)) and
V (m,w) > V (µ(w),w).

We explore the existence of incentive compatible mecha-
nisms to find stable fractional matchings. This paper aims for
what is generally known as Bayesian Incentive Compatibility.
That is, we shall say that a mechanism is incentive compatible
if truthful revelation of preferences by all agents is a Nash
Equilibrium for all input instances. We show that there does not
exist a mechanism to find a stable fractional matching which
is incentive compatible for all agents. This clearly negates
any possibility of a mechanism where truthful revelation is a
dominant strategy even for general settings. We call a man
woman pair to be MFP (mutual first preference) if they are
each others’ first preferences. That is, m and w are said to be
MFP if w = argmaxa∈W U (t )(m,a), m = argmaxa∈M V (t )(a,w).
Note that for any stable matching instance I with strict pref-
erences, if there exist a pair of nodes that are MFP, they are
matched under every stable matching.

2.2 Main Results
The contribution of this paper is in the important but unex-
plored topic of incentive compatibility of matching mechanisms
to find stable fractional matchings. We focus on matching in-
stances under strict preferences. The complete proofs can be
found in the full version of the paper [9].

THEOREM 2.3. There is no incentive compatible mechanism
to find stable fractional matchings which gives incentives for
truthful revelation of preferences to all agents on all inputs.

We establish this by giving a cardinal version of the example
[10] and show that for each stable fractional matching, there
is an agent who can misreport their values and ensure that any
stable matching after the misreporting will give them higher
utility. As a result, irrespective of the mechanism used, there is
always an agent for whom being truthful is not a best response.
In light of this result, we characterize the class of unique stable
fractional matchings under strict preferences and show that
any stable matching mechanism will be incentive compatible
when input instances are restricted to those having a unique
stable fractional matching. We use Algorithm 1 to define the
class Conditioned Mutual First Preference (CMFP).

Definition 2.4. We say that a stable matching instance I is
in class CMFP if and only if Algorithm 1 returns a perfect
matching when I is given as input.

Algorithm 1: CMFP_matching
Input: I = ⟨M ,W ,U ,V ⟩
Output: µ , I ′ = ⟨M ′,W ′,U ′,V ′⟩
t ← 0 and µ ← ∅;
M (0) ← M , W (0) ←W , U (0) ← U , V (0) ← V ;
I (0) = ⟨M (0),W (0),U (0),V (0) ⟩;
while ∃(m,w ) ∈ M (t ) ×W (t ) s.t. (m,w ) is MFP in I (t ) do

µ ← µ ∪ (m,w ). Set I (t+1) as I (t ) without m and w ;
t ← t + 1;

I ′ = I (t );

LEMMA 2.5. Given any stable matching instance I , Algorithm
1 returns a matching that is a subset of any stable integral
matching on I .

THEOREM 2.6. Given any matching instance belonging to
CMFP, under any mechanism to find a stable fractional matching,
truthful revelation of preferences forms a Nash Equilibrium.

PROOF. Given a stable matching instance I ∈ CMFP , every
mechanism resulting in a stable fractional matching will return
the same matching µ∗. We use Algorithm 1 to give us labellings
i1, · · · , in and j1, · · · , jn such that µ∗ = {(mi1 , w j1 ), · · · , (min ,
w jn )} where (mit ,w jt ) are matched in the t th round in Algo-
rithm 1. Let all other agents be truthful. Clearly, (mi1 ,w j1 ) have
no incentive to misreport their preferences as they are already
matched to their first preference. As long as mi1 and w j1 stay
truthful, they will continue to be matched to each other, irre-
spective of how other agents are behaving. Now for t > 1 for
(mit ,w jt ) neither can gain by increasing or decreasing their
value for any agent matched earlier. This is because the agents
who are matched before round t are truthful and will not
become MFP pairs with mit or w jt . Thus, those pairings will
not change. Of the remaining agents, mit and w jt have highest
value for each other and cannot benefit from misreporting their
preferences. Consequently, when all other agents are truthful,
no agent has an incentive to misreport their preferences. □

THEOREM 2.7. A stable matching instance I has a unique
stable fractional matching if and only if it is in CMFP.

One side of this claim is clear from Theorem 2.6. In order
to establish the other side we give an algorithm to find a
stable fractional matching which is not integral, whenever the
instance is not in CMFP . The complete proof and algorithm
can be found in the full version of the paper [9].

3 CONCLUSIONS AND FUTURE WORK
We explore the design of incentive compatible mechanisms for
finding stable fractional matchings under strict preferences.
While this is not possible under general settings, when the
instance has a unique stable fractional matching, no agent has
an incentive to misreport. There is much scope for future work.
Manipulability of mechanisms for stable fractional matchings
must be studied. Further, it may be possible to achieve incentive
compatibility by relaxing the stability constraint.
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