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ABSTRACT
Vulcano is a fire-management system based on deep reinforcement
learning (DRL). Using simulated trajectories from a state-of-the-art
simulator, agents are trained to select areas that should be treated
to minimize fire propagation. We focus on the operational problem
where fire suppression teams are deployed after detecting an igni-
tion and collaborative strategies are critical to contain the fire. We
propose a new algorithm based on centralized training with decen-
tralized execution, modifying the reward and advantage functions
to provide each agent with critical information about the teams.
Experiments demonstrate the performance of the method compared
to traditional approaches.
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1 INTRODUCTION
In recent years, we have seen increasing burned areas by forest fires
worldwide due to changes in temperature and precipitation levels
[21, 26, 27]. Wildfires have consumed important areas and forest
resources, as a result, fire management expenditures have increased
and thousands of homes and many lives have been lost. Although
DRL algorithms have erupted in several fields and applications
[15], their implementation in fire management problems have only
been discussed [28] and only scarce learning models can be found
in the literature [1, 3, 20]. To date, several efforts have been done
to integrate fire-management with real/simulated data [23–25],
however, these approaches have strong limitations such as poor
scalability when including uncertainties and a fire-expert dependent
performance, given the complexity of the problem.

To deal with the intractability of the problem as the number of
agents increase when applying centralized methods, we focus on a
centralized training and decentralized execution approach [7, 10, 12,
13], where agents have access to the true state of the system during
training, using this information to boost their performance during
the execution phase. We propose a local reward extension to a multi-
agent deep reinforcement learning (MADRL) actor-critic algorithm
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(COMA) [8] to find efficient collaboration strategies for subsets
of agents in the context of fire suppression planning, modifying
the landscape to minimize the fire propagation. A novel training
environment is built on the top of a fire growth simulator [18].
Experiments in real forests show the potential of the system.

Figure 1: Sub-Groups COMA structure. A central critic cal-
culates the counterfactual advantage function to update
agents’ policies. Q-functions values are estimated for each
sub-group 𝑔.

2 METHODS
Environment. We consider a multi-agent fully cooperative world
[16, 19] with 𝑛 ∈ 𝑁 agents, a set of actions 𝑎𝑛𝑡 ∈ 𝐴𝑛 for each
time-step 𝑡 ∈ 𝑇 , and a set of observations 𝑂𝑛 . The true state of the
environment is described by 𝑠 ∈ 𝑆 . Each agent selects an action
𝑎𝑛𝑡 at time-step 𝑡 by following a stochastic policy 𝜋𝑛 : 𝐴𝑛 ×𝑂𝑛 →
[0, 1]. A joint action vector 𝒂𝑡 =

(
𝑎1𝑡 , ..., 𝑎

𝑛
𝑡

)
∈ 𝑨 = 𝐴1 × ... × 𝐴𝑛

is given to the environment, defining a state transition function
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝒂𝑡 ) : 𝑆 ×𝑨× 𝑆 → [0, 1]. Agents can perform six different
actions – four directional movements, harvest, and wait/rest – in
a forest mapped into a grid composed of cells with an identical
area. Fire is simulated by tracking the state of all cells as the fire
progresses through discrete time steps. A state is composed by (i)
the expected fire progress, (ii) number of actions needed to harvest
a cell, (iii) topographic information, (iv) the agents’ positions, and
(v) the weather forecast. They are penalized by a proportional factor
to the fire progress, the number of burned cells by the end of the
episode (-1), and being caught by fire (-100). Available cells are
rewarded (+2) at the end of the episode.

Training ArchitectureWe extend COMA [8] with the concept
of local rewards and Q-functions for each sub-group of agents
𝑔 ∈ 𝐺 in the context of MARL [2]. In our model, each agent
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Figure 2: Results samples. (a) Homogeneous instance train-
ing comparison (𝑛 = 5, 1600 cells). (b) COMA and SubG-
COMA performance comparison in a heterogeneous land-
scape (𝑛 = 5). (c) Visualization of SubG-COMA and COMA
policies. Agents are highlighted by black circles, harvested
cells in dark green, and fire in brown.

𝑛 belongs to a unique sub-group 𝑔; 𝒂𝑔 is the vector of actions
taken by the agents in 𝑔; 𝑟𝑔 (𝑠, 𝒂𝑔 ) the local-reward obtained by
𝑔 when taking actions 𝒂𝑔 on state 𝑠; and 𝑄𝑔 (𝑠, 𝒂𝑔 ) the sub-group
action-state function (Figure 1). A central critic calculates the ad-
vantage function for an agent 𝑛 from the sub-group 𝑔 as𝐴𝑛 (𝑠, 𝒂𝑔 ) =
𝑄𝑔 (𝑠, 𝒂𝑔 ) −

∑
𝑎
′
𝑛
𝜋𝑛 (𝑎′

𝑛 |𝜏𝑛)𝑄𝑔 (𝑠, (𝒂−𝑛𝑔 , 𝑎
′
𝑛)).

Actors are represented by gated recurrent units (GRUs) [4] using
fully connected layers for processing the inputs and outputs from
the hidden state, and the centralized critic is defined with 5 fully-
connected layers of 64 units with ReLu activation. The optimal
learning rate (0.0005), discount factor 𝛾 (0.99), and batch size (64)
are found using derivative-free optimization methods [5, 6].

Experiments. Policy gradient/Actor-Critic (PG/AC) [9, 22], Dou-
ble Deep Q-Networks (DDQN) [11], and Hysteretic Q-learning
(HQL) [14, 17] algorithms are implemented in their centralized and
decentralized versions for benchmarking and exploring the most
suitable approach for the environment. We compare the average
return of all the implemented methods, as well as the average num-
ber of burned cells by the end of an episode. Models are trained for
100,000 episodes, averaging metrics every 100 episodes. We vary
the number of agents 𝑛 ∈ {1, ..., 5}.

Two experimental sets are used to assess the performance of
the algorithms. The first set consists of real Canadian landscapes
where fires on homogeneous and heterogeneous (multiple fuel
types and non-flammable cells) forests of different sizes are simu-
lated. The second set contains five generated landscapes to assess
the performance of the algorithms in specific coordination tasks.
Weather conditions and ignition probabilities are based on histori-
cal datasets1. The open-source implementation and detailed results
can be found in http://github.com/cpaismz89/Vulcano_DRL.

3 RESULTS
Homogeneous. We solve a 9, 400, and 1600 cells square instances.
All algorithms obtain similar performance in the first and second
instances, however, agents tend to require more time (+50%) to

1http://www.firegrowthmodel.ca/prometheus/software_e.php

contain the fire when no centralized training is performed due to
the lack of collaboration strategies. In addition, returns variance is
significantly increased (+20%) with respect to the number of agents
when using decentralized methods and are easily outperformed by
centralized ones when dealing with larger homogeneous forests
(e.g., 40×40, Figure 2 (a)) where coordination is critical. Centralized
methods tend to dominate in terms of average return (30% less of
average area burned) but tend to be noisy. On average, COMA/SubG-
COMA converge faster (requiring one-third of iterations) and are
stable, presenting a similar performance for a different number of
subgroups. Q-Learning methods such as DDQN and HQL did not
reach good performance and were dominated by the rest of the
algorithms.

Heterogeneous. COMA and SubG-COMA are able to learn
high-quality policies faster and with less variance than other al-
gorithms as we increase the number of agents (Figure 2 (b)). The
performance of decentralized algorithms is worse than in the ho-
mogeneous case since the fire dynamic is affected by the forest
structure and coordination becomes crucial to contain the fire. Cen-
tralized algorithms are still competitive but become intractable
after increasing the number of agents beyond five. We observe that
COMA agents tend to over-harvest the forest in comparison to
SubG-COMA as the number of agents is increased. The explana-
tion is that COMA agents receive a noisy approximation of their
contribution to the global reward, not capturing their real impact,
thus, performing sub-optimal actions. For example, we observe the
agents trained by SubG-COMA and COMA on the 20 × 20 instance
(Figure 2 (c)) where agents 1 and 2 are located at the bottom-center
of the landscape and agent 3 is placed on the north-east side. SubG-
COMA agents find an efficient collaborative strategy, using |𝐺 | = 2
by creating a sub-group with agents 1 and 2. This happens because
the third agent observes a different reward function, allowing it to
understand that harvesting cells on the north-east side is not useful
to contain the fire.

Challenges. Comparing the performance of our extension and
COMA (Figures 2 (d)), we see how agents following SubG-COMA
are able to find subtle but more efficient/complex collaborative
strategies. On the left side, SubG-COMA agents discover that har-
vesting next to the fire is enough to protect the land beyond the
mountains section (gray cells) while COMA agents continue to
harvest cells in non-critical places. We observe this on the isolated
agent where its optimal action is to wait since it cannot help to
contain the fire, however, the agent tends to harvest cells due to a
failed credit assignment when training the agents.

4 CONCLUSIONS
We tested state-of-the-art MADRL algorithms in a novel fire sup-
pression environment. An extension of a centralized training and
decentralized execution AC algorithm with local rewards and 𝑄-
functions for sub-groups was implemented, outperforming tradi-
tional algorithms in a cooperative setting. In order to exploit the
SubG-COMA extension, sub-groups should be carefully selected to
exploit complex interactions within teams, matching agents with
significant collaboration. Our results represent a novel DRL appli-
cation on fire suppression planning with the potential of multiple
extensions and real-life applications.
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