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ABSTRACT

When robots act in an environment, there will be temporal uncer-
tainty over the execution of their actions, i.e. the duration of an
action and the time it takes place will be stochastic. The presence
of multiple robots in the environment contributes towards this un-
certainty. Temporal uncertainty is often disregarded in multi-robot
coordination, and so we aim to develop planning solutions that
explicitly model this uncertainty to generate effective plans.
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1 INTRODUCTION

If there is temporal uncertainty over an action executed by a robot,
the duration of that action and the time at which execution begins
will vary. Almost any deployment of a multi-robot system will
have a level of temporal uncertainty. For example, wheeled robots
may suffer from tire slip when navigating, causing the robot to
arrive late to its destination. The presence of multiple robots in the
environment also contributes to this uncertainty. Existing methods
for multi-robot planning commonly disregard temporal uncertainty
[1, 3, 5]. Instead, these methods often make assumptions such as all
actions having the same fixed duration, which simplifies planning
at the cost of inefficient execution-time behaviour [8].

We wish to accurately model temporal uncertainty to enable
effective multi-robot coordination, and will do so by modelling the
duration of actions as continuous stochastic processes. With the
introduction of rich continuous-time models of robot behaviour,
we can then apply techniques from formal verification to obtain
probabilistic guarantees over robot performance.

2 CONGESTION-AWARE PLANNING

We wish to solve multi-robot path planning problems, where robots
have to reach their respective goals without colliding, in environ-
ments where the presence of multiple robots causes temporal un-
certainty. Therefore, we present a novel planning framework that
explicitly reasons over the effect the presence of multiple robots has
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Figure 1: A high-level diagram of the congestion-aware plan-
ning framework.

on navigation performance [10]. We refer to this effect as congestion.
An overview of the congestion-aware planning framework can be
seen in Figure 1.

In this framework, a sequential planning assumption is made,
with each robot considering those who planned before it. To sum-
marise the effect of the other robots for the robot who is currently
planning, we introduce a probabilistic reservation table (PRT). APRT
stores route information for robots who have planned, and so we
can approximate the behaviour of robots without making assump-
tions about their behaviour, such as those seen in [5]. The PRT is
inspired by the discrete deterministic reservation table presented in
[9], although to consider continuous stochastic action durations the
operation of the reservation table has to be changed significantly.

In this framework, we use continuous probability distributions
to model continuous stochastic action durations. In particular we
use phase-type distributions (PTD) to model action durations [4],
as they are highly flexible in fitting distributions to empirical data,
as well as being represented as continuous-time Markov chains
(CTMC), which is useful for formal verification.

The planning framework in Figure 1 begins with an empty PRT.
The first robot starts by building a Markov decision process (MDP)
model of its environment, which can then be solved with heuris-
tic search methods (e.g. [2]) to obtain a policy. This robot has no
knowledge of the other robots as the PRT is empty. This policy
informs the robot which edge to traverse given the robot’s current
location and time. Using the policy and PTDs, a CTMC is built
and inserted into the PRT, which provides a rich continuous-time
representation of a robot’s policy, and is used to summarise their
behaviour for future robots. For any subsequent robot, the first step
is to obtain the route information of all robots who planned before
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Figure 2: The scalability results for a warehouse-style map.

from the PRT. This information is then used in the construction of
the robot’s MDP, which will affect the generated policy.

After planning, we can use the CTMCS stored in the PRT to verify
the continuous-time behaviour of the robot team. For example, we
may wish to compute the probability that a robot arrives at its goal
within 5 minutes. Due to the sequential planning assumption, an
iterative verification procedure is required to update the CTMCs to
take into account the effects of all other robots, which can then be
verified using the PRISM model checker [7].

3 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the congestion-aware planning
framework, we have analysed the scalability of planning, as well
as the execution-time performance of the obtained policies. To
test the scalability of the framework, we invoked the planner on
a warehouse-style map using synthetic distributions to model the
duration of navigation actions. For this experiment, 40 random con-
figurations of robots were generated for 2-15 robot path planning
problems. The results of this experiment can be seen in Figure 2,
where the total planning time measures the total time for all robots
to plan. This result shows there to be a sub-exponential increase in
the total planning time, and so this framework mitigates the expo-
nential state space increase seen when using joint planning models.

To test the performance of the obtained policies at execution
time, we simulate a 5 robot setup in ROS using the Stage simulator
on a warehouse-style map with two main sections linked by two
tunnels, one of which is slightly longer. This allows robots to choose
the longer tunnel if the shorter one is too congested. With dura-
tion distributions fit from empirical data, we generated 6 problem
configurations, each one increasing the congestion by forcing an
additional robot to travel through one of the tunnels. We compare
our framework to a conservative baseline intended to emulate a
multi-agent path finding (MAPF) solver [6]. We use the makespan
to measure execution-time performance, i.e. the time taken for the
last robot to arrive to its goal. The results of this experiment can
be seen in Figure 3. These results show that the congestion-aware
framework is able to route robots more effectively than the MAPF
baseline, as it allows robots to be present in the same area simulta-

neously if the time cost incurred is lower than taking longer, less
congested routes. In contrast, the MAPF baseline is conservative as

it forces robots to stay away from each other.
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Figure 3: The execution-time performance results.

4 CONCLUSIONS & FUTURE WORK

We have presented a framework for multi-robot planning under
uncertainty that allows robots to reason over continuous stochastic
action durations and congestion. Though we have focused on robot
navigation, this framework is applicable to general actions and
shared resources. We have also developed a procedure to compute
probabilistic guarantees over the continuous-time behaviour of the
robot team. Currently, we approximate the MDP models used for
planning in order to highlight the benefits of the PRT. In future
work, we will investigate more accurate planning approaches. We
will also consider planning for collaborative tasks in this framework,
while minimising unnecessary waiting time. Additionally, we plan
to incorporate an online replanning mechanism into the framework,
as well as demonstrate its effectiveness in real robot trials.
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