
Snooping Attacks on Deep Reinforcement Learning
Matthew Inkawhich

Duke University
Durham, North Carolina

matthew.inkawhich@duke.edu

Yiran Chen
Duke University

Durham, North Carolina
yiran.chen@duke.edu

Hai Li
Duke University

Durham, North Carolina
hai.li@duke.edu

ABSTRACT
Adversarial attacks have exposed a significant security vulnerability
in state-of-the-art machine learning models. Among these models
include deep reinforcement learning agents. The existing methods
for attacking reinforcement learning agents assume the adversary
either has access to the target agent’s learned parameters or the
environment that the agent interacts with. In this work, we propose
a new class of threat models, called snooping threat models, that are
unique to reinforcement learning. In these snooping threat models,
the adversary does not have the ability to interact with the target
agent’s environment, and can only eavesdrop on the action and
reward signals being exchanged between agent and environment.
We show that adversaries operating in these highly constrained
threat models can still launch devastating attacks against the target
agent by training proxy models on related tasks and leveraging the
transferability of adversarial examples.

KEYWORDS
deep reinforcement learning; machine learning; security

ACM Reference Format:
Matthew Inkawhich, Yiran Chen, and Hai Li. 2020. Snooping Attacks on
Deep Reinforcement Learning. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
The deep learning revolution has put neural networks at the fore-
front of the machine learning research and production landscape.
Recently, it has been shown that deep neural networks (DNNs) are
effective function approximators for solving complex reinforcement
learning (RL) problems. Mnih et al. [21] demonstrated that we can
leverage the feature extraction capabilities of convolutional neural
networks to enable RL agents to learn to play Atari games from
raw pixels. Since then, there has been an influx of work dedicated
to the field of deep RL (DRL), enabling powerful new solutions
for tasks such as game playing [20, 21, 32, 34], continuous con-
trol [17, 33, 35], complex robot manipulation [16, 28, 30], and even
autonomous vehicle operation [4, 31].

Despite the numerous successes of the applications of deep neu-
ral networks, these models have a significant Achilles’ heel. Studies
show that these largely uninterpretable models are vulnerable to
small adversarial perturbations to the input that cause the models
to perform poorly [10, 37]. Recent work has uncovered a variety of
adversarial attack algorithms in the domain of image classification

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

[6, 8, 10, 26]. Alarmingly, results show that adversarial examples
effective against one model are also effective against other models
trained on the same task [10]. This transferability property has
enabled attacks against models in black-box settings [13, 25].

As of now, adversarial attacks against DRL agents primarily con-
sider the white-box threat model, in which the adversary is assumed
to have access to the target model’s architecture and parameters. To
our knowledge, the study of black-box attacks against DRL has been
limited to the acknowledgement of the transferability of adversar-
ial examples across policies and algorithms [12]. Thus, the current
method for black-box attacks against DRL agents involves training
a surrogate agent, which makes the rather unrealistic assumption
that the adversary has unbounded access to the environment. In
general, the black-box threat model in RL is more complex than
it is in supervised learning. First, in the data generating process
for supervised learning the model draws i.i.d. samples from a static
dataset. In RL, data generation is in the form of an environment
from which new data samples are conditioned on the current en-
vironment state and the agent’s actions. This means that an RL
adversary cannot trivially approximate the training data gener-
ating process the way a supervised learning adversary can. Also,
the RL problem consists of an exchange of three signals between
the environment and agent (state, action, reward). Even if an RL
adversary seeks to approximate the agent or environment using
some other method (e.g., inverse RL), they would need access to all
signals.

In this work, we investigate threat models for DRL under the
assumption that the adversary does not have access to the environ-
ment that the target agent interacts with. Specifically, we explore
the potential effectiveness of an adversary that only has the ability
to eavesdrop on a subset of the RL signals at each time step. We
dub these the snooping threat models. For a real-world example of
the snooping threat models of a vision-based DRL system, consider
a camera-equipped mobile system such as an autonomous vehicle.
These systems typically send the camera feed via a wireless network
to a server running an instance of the trained DRL agent, which
processes the images and decides how to act in the given state. As
with all current adversarial threat models, the adversary is assumed
to have the ability to alter the input of the model. Action signals are
transmitted from the server back to the drone via a separate channel.
Finally, reward signals may come from a variety of sources. Given
this scenario, it is entirely possible that the adversary cannot access
or eavesdrop on all signals due to private channels, encryption, etc.

We show that by training proxy models on tasks similar to the
target agent’s task, we are able to craft adversarial inputs that
significantly reduce the performance of target agents trained on
various Atari environments. We feel this to be a more practical
threat model for real-world systems. Overall, the contributions of
this paper can be summarized as follows:

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

557

• We define the complex threat model taxonomy for snooping
attacks on DRL agents.

• We propose the use of proxy models for launching effec-
tive adversarial attacks under the different snooping threat
models.

• We conduct extensive experiments using the attacks against
the state-of-the-art DRL algorithms DQN [21] and PPO [33].

• We empirically show that adversarial examples transfer be-
tween models that are trained with very different objectives
as long as the tasks are related.

2 RELATEDWORK
Adversarial machine learning is a research area that investigates
the vulnerabilities of deep neural networks to small adversarial
perturbations. In this work, we focus on evasion attacks, which are
test-time attacks designed to fool a trained model. This topic was
popularized in the image classification domain in the white-box
setting, where Szegedy et al. [37] discovered that adding impercep-
tible noise to an image causes the model to predict the incorrect
class with high confidence. Goodfellow et al. [10] followed by sug-
gesting a fast gradient method for crafting adversarial examples
in an inexpensive way by assuming local linearity in the target
model. Goodfellow et al. [10] also observed that adversarial ex-
amples crafted using the gradients of one model transfer to other
models trained on the same task. Papernot et al. [25] leveraged this
concept of transferability and introduced a framework for black-box
attacks that uses the target model as an oracle to train a surrogate
model with a similar decision surface, and uses the surrogate to
craft adversarial examples that also fool the target.

In the DRL domain, Huang et al. [12] showed that the fast gra-
dient method [10] can be extended to fool agents on the Atari
benchmark. Lin et al. [18] introduced a strategically-timed attack,
which seeks to make perturbations sparse in time to render them
more difficult to detect. Lin et al. [18] further presented an enchant-
ing attack that strives to lure the target agent into a specified state.
Behzadan and Munir [1] demonstrated that adversarial examples
can be used during training to corrupt the learning process of an
agent on the Atari Pong environment. Adversarial examples have
also been used for hardening DRL models to environmental param-
eter variations in continuous control environments [29]. Overall,
adversarial attacks on DRL agents have primarily been limited to
the white-box setting.

3 PRELIMINARIES
3.1 Adversarial example crafting
The goal of adversarial example crafting is to apply an imperceptible
perturbation to a benign input such that the perturbed input fools
the target model. In this work, we consider variants of the Fast
Gradient Method (FGM) [10] because it is computationally efficient
and generalizes to models other than classifiers. FGM is a one-step
method that assumes linearity of the decision surface around a
given sample. With this assumption, the optimal perturbation for
an input 𝑥 is in the direction to maximize the loss 𝐽 . We consider
constraining the perturbations under the 𝐿∞ and 𝐿2 norm bounds.

Under the 𝐿∞ norm bound ∥𝑥∗ − 𝑥 ∥∞ ≤ 𝜖 , an adversarial exam-
ple 𝑥∗ is generated as

𝑥∗ = 𝑥 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(∇𝑥 𝐽 (𝑥,𝑦)) (1)

where 𝑦 is the label. Under the 𝐿2 norm bound ∥𝑥∗ − 𝑥 ∥2 ≤ 𝜖 , 𝑥∗ is
generated as

𝑥∗ = 𝑥 + 𝜖 ∗ ∇𝑥 𝐽 (𝑥,𝑦)
∥∇𝑥 𝐽 (𝑥,𝑦)∥2

. (2)

We also consider a momentum iterative variant of FGM (MIFGM)
introduced by Dong et al. [8]. This variant disregards the linearity
assumption and iteratively perturbs while accumulating a velocity
vector in the direction of the gradient to stabilize the perturbation
direction and combat overfitting. The velocity vector 𝑔 is accumu-
lated as

𝑔𝑡+1 = 𝜇 ∗ 𝑔𝑡 +
∇𝑥 𝐽 (𝑥∗𝑡 , 𝑦)∇𝑥 𝐽 (𝑥∗𝑡 , 𝑦)

1
. (3)

To craft the example, at each iteration we use Equations 1 and 2,
but substitute ∇𝑥 𝐽 (𝑥,𝑦) with 𝑔𝑡+1. A visualization of 𝐿∞ and 𝐿2
constrained FGM perturbations on Pong are shown in Figure 1.

Figure 1: Adversarial example comparison between FGM at-
tacks under different norm constraints on the Pong environ-
ment. The 𝐿∞ bounded example was crafted with 𝜖 = 0.03
and the 𝐿2 bounded example used 𝜖 = 2.4. These examples
were crafted using the psychic proxy model (see 5.2).

3.2 Reinforcement learning
Reinforcement Learning is a machine learning paradigm based on
sequential interactions between an agent and an environment in
which the agent attempts to learn a policy 𝜋 to maximize a total
reward [36]. This interaction is formalized as a Markov Decision
Process (MDP), which is the tuple ⟨S,A,P,R, 𝛾⟩. S is a finite set
of states, A is a finite set of actions, P(𝑠, 𝑎, 𝑠 ′) = 𝑃 (𝑆𝑡+1 = 𝑠 ′ |𝑆𝑡 =
𝑠, 𝐴𝑡 = 𝑎) is the state transition function, R(𝑠, 𝑎) = E[𝑅𝑡+1 |𝑆𝑡 =

𝑠, 𝐴𝑡 = 𝑎] is the reward function and 𝛾 ∈ [0, 1] is a discount factor.
The interaction can be described as follows: At each time step 𝑡 ,
the environment sends a state 𝑠𝑡 to the agent. The agent decides
on an action 𝑎𝑡 and dispatches it back to the environment. The
environment responds by sending a reward 𝑟𝑡+1 to the agent along
with the next state 𝑠𝑡+1, and the process repeats. In this work, we
consider the state-of-the-art value-based DRL method DQN [21]
and policy-based PPO [33].

3.2.1 Deep Q-Networks. Q-learning is a value-based RL algo-
rithm that estimates the cumulative discounted reward of each
state-action pair, and chooses the agent’s policy based on these esti-
mated returns. In Q-learning, we approximate the function𝑄∗ (𝑠, 𝑎),

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

558

Figure 2: Snooping threat model overview for DRL.

which gives the cumulative discounted reward for taking action 𝑎 in
state 𝑠 and following an optimal policy 𝜋∗ thereafter [40]. To train,
we iteratively optimize with a temporal difference loss 𝛿 based on
the Bellman equation [3]:

𝛿 = 𝑄 (𝑠, 𝑎) − (𝑟 + 𝛾 max
𝑎

𝑄 (𝑠 ′, 𝑎)) . (4)

Once we have an acceptable approximation of𝑄∗, a common policy
is to act 𝜖-greedily to aid in exploration. In an effort to apply Q-
learning to problems with large state spaces such as Atari games,
Mnih et al. [21] combine convolutional neural networks with Q-
learning to create deep Q-learning. In practice, this requires the
use of a replay memory buffer to enable off-policy learning and a
target network for more stable updates.

3.2.2 Proximal policy optimization. PPO [33] is a policy-based
RLmethod, meaning that it directly approximates the policy 𝜋𝜃 (𝑎 |𝑠)
with a neural network with parameters 𝜃 . The algorithm is typically
implemented in an actor-critic framework which simultaneously
learns to approximate 𝜋𝜃 (𝑎 |𝑠) and a variance-reduced advantage
estimate to stabilize the policy gradient. At each training step, PPO
alternates between (1) collecting experience by running the current
policy for a set number of time steps, (2) computing empirical
returns and advantages, and (3) using batch learning to optimize a
clipped surrogate objective that constrains the amount the updated
policy can differ from the old policy:

𝐿𝐶𝐿𝐼𝑃 (𝜃) = E𝑡
[
min(𝑟𝑡 (𝜃)𝐴𝑡 , clip(𝑟𝑡 (𝜃), 1 − 𝛼, 1 + 𝛼)𝐴𝑡)

]
(5)

where 𝛼 is a hyperparameter, 𝐴𝑡 is the empirical advantage, and
𝑟𝑡 (𝜃) is the probability ratio

𝑟𝑡 (𝜃) =
𝜋𝜃 (𝑎𝑡 , 𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 , 𝑠𝑡)
. (6)

4 SNOOPING THREAT MODELS
A high level view of the snooping threat model for DRL is portrayed
in Figure 2. As in any threat model, we assume the adversary can
intercept and manipulate the input game frames (i.e., the state).
In the snooping family of threat models, the adversary does not
have direct access to the environment, so training a surrogate DRL

model and transferring examples from the surrogate to the target is
ruled out. Instead, the adversary can only "snoop", or eavesdrop, on
the natural interactions between the agent and environment. We
define the SRA threat model to represent the scenario in which the
adversary can snoop on reward and action signals, SA for when
the adversary can only snoop on the actions, SR for when the
adversary can only snoop on the rewards, and S for when the
adversary only has access to the states. When the reward signal
is hidden, the adversary is assumed to have no inclination about
the goal of the agent. In the general case of game environments,
this means that the adversary cannot explicitly infer the difference
between winning and losing. When the action signal is hidden, not
only is the adversary unable to determine which actions correspond
to certain changes in the state space, but there is also no way of
explicitly knowing the scope and magnitude of the action space at
all.

5 ATTACK STRATEGIES
5.1 Methodology
Our general attack methodology is to leverage the transferability
of adversarial examples. While this concept is not fully understood,
recent efforts proclaim that transferability is primarily enabled by
decision boundary similarity between models [19, 37, 38]. We argue
that this condition, however, generally overestimates the resources
necessary to craft effective transferable adversarial examples. The
snooping threat models for RL provides one such counterexample,
in which the adversary cannot train a surrogate DRL model that
closely resembles the target agent. Instead, we posit that if the
adversary can train a proxy model that learns a task that is related
to the target agent’s policy to maximize reward, adversarial exam-
ples crafted to fool the proxy will also fool the agent. This implies
that even proxy models with radically different decision surface
dimensionality than the target can reliably produce transferable
attacks. We hypothesize that by learning a related task, the proxy
will learn to extract and use input features in a similar fashion to
the target agent, which is the only necessary condition for crafting
transferable attacks. Our explicit goal is to train a proxy model M
under a constraint subset 𝜅 ∈ {𝑆, 𝑆𝑅, 𝑆𝐴, 𝑆𝑅𝐴} parameterized by
𝜃M𝜅

with loss 𝐽M𝜅
that extracts similar input features and learns

comparable implications of these features to the target agent T
parameterized by 𝜃T trained with loss 𝐽T (e.g., temporal difference
error). Using input gradients as an indication of feature saliency,
our intention is to train a constrained proxy M𝜅 to optimize:

argmin
M𝜅

[
1
𝑁

𝑁∑
𝑖=1

∇𝑥 𝐽M𝜅
(𝜃M𝜅

, 𝑥𝑖 , 𝑦𝑖) − 𝑐∇𝑥 𝐽T (𝜃T , 𝑥𝑖 , 𝑧𝑖)
] (7)

where 𝑁 is an arbitrary number of inputs, 𝑥𝑖 is an input, 𝑦𝑖 is the
true label for the proxy, 𝑧𝑖 is the pseudo-true label [12] for the agent,
and 𝑐 is an unknown constant. We include 𝑐 as a scaling constant as
we desireM𝜅 to produce similarly shaped input gradients to T ’s,
meaning the magnitude of the gradients do not necessarily have to
align exactly. Note that this objective is a theoretical representation,
and does not represent a tractable optimization objective. The exact
choice of task and proxy M𝜅 is determined by our discretion.

Also, note that since we are attacking RL agents during test time,
we will not have access to ground truth labels required by the FGM

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

559

Figure 3: Comparison of features learned by target agent, surrogate agent, and proxy models on Seaquest environment using
perturbation-based saliency map visualizations [11].

method (i.e. the 𝑦 in Equations 1 and 2), as RL data is inherently
unlabeled. To work around this, we follow [12] and assume that
our surrogates and proxies have converged to a reasonable minima,
so we use their outputs as "truth". For surrogate agents or classifier
proxies, we use the one-hot output of the model as truth, and for
regressor proxies, we use the output (plus a small constant)1 as
truth.

5.2 S threat model
The S threat model is the weakest snooping threat model. The
adversary only has access to a stream of states, and has no inclina-
tion about the motivations or capabilities of the agent. In this case,
we propose a proxy M𝑆 that models the environment dynamics.
Previous work shows that we can perform accurate next-frame
prediction using the current state, action, and an 𝐿2 reconstruction
loss as long as P is roughly deterministic [15, 23, 39]. This model
directly approximates the state transition distribution P(𝑠, 𝑎, 𝑠 ′). In
S however, we do not have access to A, so the best we can do is
approximate an expectation of P under the target agent’s policy
𝜋𝑇 using a psychic proxy model:

𝑝𝑠𝑦𝑐ℎ𝑖𝑐 (𝑠𝑡 , 𝜃𝑃) ≈ E𝜋𝑇 [𝑃 (𝑠𝑡+1 |𝑠𝑡)] = E𝑎𝑡∼𝜋𝑇 [𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)] . (8)

Because the psychic learns the dynamics P under 𝜋𝑇 , it effectively
learns an encoding of 𝜋𝑇 in the state space. In other words, the
displacement of the agent’s representation in the state space (e.g.
the pixels of the paddle in Breakout) from 𝑠𝑡 to 𝑠𝑡+1 inherently
encodes a representation of the action 𝑎𝑡 taken and therefore an
instance of the agent’s policy 𝜋𝑇 (𝑠𝑡). This approximation will be
noisy in general due to displacements in the state space that are
not the consequence of the agent’s actions (e.g. the movement of
the fish in Seaquest). Despite the noise, the key is that a subset of
the features learned by the psychic will be similar to the features
learned by the target agent.

5.3 SR threat model
In the SR threat model, we can intercept the states and snoop on
the rewards. Because we do not have access to the actions, we
again cannot make any presumptions about the policy 𝜋𝑇 directly.
However, by observing the rewards resulting from each state in a
1We must add a small constant to avoid computing a loss of zero.

rollout we can get insight into the agent’s motivations by training
an assessor proxy to estimate the value 𝑉 of a given state under 𝜋𝑇 .
Since the reward signal is what drives the policy 𝜋𝑇 , the features
learned to approximate 𝑉 𝜋𝑇 must correspond to the features used
by the agent itself.

𝑎𝑠𝑠𝑒𝑠𝑠𝑜𝑟 (𝑠𝑡 , 𝜃𝐴) ≈ E𝜋𝑇
[∑∞

𝑘=0
𝛾
(𝑘)
𝑡 𝑟𝑡+𝑘+1

]
= 𝑉 𝜋𝑇 (𝑠𝑡) (9)

In our study we use empirical return to estimate value, meaning
that we observe the immediate rewards at each step, and when
the episode is over we retroactively compute and standardize the
discounted sum of rewards at each state. During training, the asses-
sor minimizes a Huber regression objective [9] between predicted
value and empirical value. Despite the fact that the 𝐽M𝑆𝑅

objective
is different than 𝐽T , the task of approximating 𝑉 𝜋𝑇 is directly re-
lated to 𝜋𝑇 . For example, value-based agents directly approximate
a value estimate 𝑄𝜋𝑇 (𝑠𝑡 , 𝜋𝑇 (𝑠𝑡)) = 𝑉 𝜋𝑇 (𝑠𝑡), and for policy-based
agents the explicit goal of the resulting policy is to maximize return,
so implicitly the agent learns to assess the value of states.

5.4 SA threat model
In the SA threat model, we have access to a stream of states and
can snoop on the actions taken by the agent at each step. Therefore,
approximating the target’s policy 𝜋𝑇 can be done directly with
supervised learning. We can train an imitator model to predict the
action that the target will take at a given state as:

𝑖𝑚𝑖𝑡𝑎𝑡𝑜𝑟 (𝑠𝑡 , 𝜃𝐼) ≈ 𝜋𝑇 (𝑠𝑡). (10)

Since the imitator is a classifier, we train it with cross-entropy loss
(𝐽M𝑆𝐴

) using the agent’s actions as labels. Although the imitator
is trained with a different objective, it is directly related to the
target agent’s goal. For value-based agents, the policy 𝜋 is an 𝜖-
greedy extension of the learned Q-function and for policy-based
agents, the function 𝜋𝑇 is directly approximated. This methodology
is homologous to the black-box attack strategy in [25], in which
a substitute model is trained using the target model as an oracle.
Note that if we were to have a continuous action space, the imitator
would simply become a regression model.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

560

Figure 4: The effect of uniform random noise on trained agent performance. BASE agents are trained without noise and AUG
agents are trained with noise. Rewards are averages over 10 episodes.

5.5 SRA threat model
When we have the ability to eavesdrop on rewards and actions, we
can attack with an imitator, assessor, or psychic. However, with this
additional information we can improve our attacks by strategically
timing the perturbations to make them less detectable. Lin et al.
[18] show that we can accomplish this in a white-box setting by
defining a preference function

𝑐 (𝑠𝑡) = max
𝑎𝑡

[𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄 (𝑠𝑡 , 𝑎𝑡))] −min
𝑎𝑡

[𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄 (𝑠𝑡 , 𝑎𝑡))]
(11)

and attacking when 𝑐 (𝑠) ≥ 𝛽 for some threshold 𝛽 . At first glance, it
may seem possible to use a similar preference-based approach with
our imitator or assessor models. However, these proxies are only
ever exposed to one particular policy 𝜋𝑇 during training, so they
lack the ability to assign credit to certain states or actions from the
delayed reward signal. The RL agent, by contrast, learns this credit
assignment through repeated trial and error during training. Nev-
ertheless, we can approximate this ability using a combination of
an assessor and an action-conditioned psychic (AC-psychic), which
predicts 𝑠𝑡+1 given 𝑠𝑡 and 𝑎𝑡 [39]. To perform the attack, we use the
AC-psychic to generate a hypothetical next-state for every action
given the current state, and value each of these with the assessor.
We define a preference function whose output increases as the
variation of potential future reward increases. In other words, we
want to perturb 𝑠𝑡 when there is a large difference in the different
hypothetical values 𝑉 𝜋𝑇 (𝑠𝐻

𝑡+1). To craft the perturbations, we can
choose M𝑆𝑅𝐴 to be the proxy model of our choice (i.e. M𝑆 , M𝑆𝑅 ,
or M𝑆𝐴). For details, see Algorithm 1.

6 IMPLEMENTATION DETAILS
6.1 Agents
We train DQN [21] and PPO [33] agents on Pong, Breakout, Space
Invaders, and Seaquest games in the Atari 2600 Arcade Learning
Environment [2] via OpenAI Gym [5]. Preprocessing is primarily
facilitated using the Atari wrappers in OpenAI’s baselines library
[7], which converts frames from RGB to grayscale [0, 1], and resizes
frames to 84x84. To make the environment Markovian, a state is
created by stacking the last four consecutive frames, making the
input volume to the models of shape 4x84x84. We use the PyTorch

Algorithm 1: Strategically-timed snooping attack
Input: Trained assessor, trained AC-psychic, trained proxy

M𝜅 , trained target agent T , 𝛽
for 𝑡 = 1, T do

Initialize empty list 𝑞;
foreach 𝑎 ∈ A do

Predict 𝑠𝐻
𝑡+1 with AC-psychic(𝑠𝑡 , 𝑎)

Estimate 𝑉𝐻 with assessor(𝑠𝐻
𝑡+1)

Append 𝑉𝐻 to 𝑞;
end
𝑐 (𝑠𝑡) = max

[
Softmax(𝑞)

]
−min

[
Softmax(𝑞)

]
if 𝑐 (𝑠𝑡) ≥ 𝛽 then

Perturb 𝑠𝑡 using ∇𝑥 𝐽M𝜅

end
Feed 𝑠𝑡 to target T for action decision;

end

deep learning framework [27], the DQN implementation described
in [22], and Ilya Kostrikov’s implementation of PPO [14].

6.2 Proxies
For the psychic and AC-psychic, we use a scaled-down implementa-
tion of the architecture described in [39], as they work with the raw
RGB frames and we predict the preprocessed version of the frames.
The imitator architecture that we use is identical to the smaller DQN
that was initially introduced in [21], and apply a Softmax operation
to the logits for use with the cross-entropy classification loss. Note
that we intentionally use a different architecture from the target
agents in the interest of strictly adhering to black-box assumptions.
The assessor uses the same architecture as the imitator, but we
replace the classification layer with a single output node, and train
the model with the Huber regression loss [9]. To train these models,
we first let the trained agent collect experiences and save these into
a buffer of 100,000 state/label pairs. Once we fill the buffer, we train
on samples from this buffer of experiences for 30 epochs, using a
batch size of 64. We repeat this process until we reach 2.5 million
total training iterations. We find that this procedure significantly
reduces training time compared to purely online training.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

561

Figure 5: Performance reduction of DQN agents due to 𝐿∞ and 𝐿2 bounded perturbations. The black dotted line represents a
random-guess policy.

Figure 6: Performance reduction of PPO agents due to 𝐿∞ and 𝐿2 bounded perturbations. The black dotted line represents a
random-guess policy.

7 EXPERIMENTS AND ANALYSIS
Although previous work has shown that DRL agents are vulnerable
to adversarial noise, to our knowledge it is not clear whether it is
the adversarial nature of the noise or simply the presence of noise
that causes the agents to fail. Figure 4 shows that small uniform ran-
dom noise significantly impacts agent performance. We believe that

this fragility is due to the narrow training data distribution. Atari
frames do not naturally contain the noise, occlusion, or lighting
variations that natural images do, which leads to a higher risk of
overfitting. In the interest of proving that our attacks are effective
due to transferability between proxy and agent, for the remainder

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

562

Figure 7: Effectiveness of strategically-timed attacks on agents over 30,000 time steps. Top row corresponds to DQN agents,
while bottom corresponds to PPO agents. Our ACP+Assessor method and the random baseline use imitator gradients. We also
compare to the technique in [18], which uses the stronger surrogate gradients. The FGMmethod is used for crafting.

of the work we only consider agents that are hardened with uni-
form random noise perturbations during training. Our experiments
show that this produces more robust models while not significantly
reducing clean data performance.

To test the effectiveness of the attacks outlined in Section 5, we
average the total reward accumulated by the target agent over 10
episodes of states perturbed by the FGM or MIFGM attacks at every
time step (using the proxy gradients ∇𝑥 𝐽M𝜅

). We repeat this on
each game for five 𝜖 values (i.e. attack strengths). For an upper-
bound baseline attack, we use the policy-transfer methodology
proven to be effective in [12] that assumes the adversary has access
to the target agent’s environment and can train an identical model
to the target agent. We can then use this model as a surrogate for
crafting transferable adversarial examples. Figures 5 and 6 show the
effectiveness of the transferred adversarial examples on the DQN
and PPO agents, respectively.

The imitators produce the most effective attacks out of the proxy
models, performing comparably to the surrogate in all games. We
believe this is because these models represent the most direct proxy
to the agent’s policy 𝜋𝑇 . The assessor attacks generally require
a higher 𝜖 to reach the performance of the baseline and imitator
attacks. Work by Tramèr et al. [38] gives the insight that better
performing models yield more transferable adversarial examples.
We therefore hypothesize that the reason for the lower performance
of the assessor attacks is because the task of predicting the exact
floating point value of a given state is a difficult objective to approxi-
mate precisely given the sparsity and variance of the reward signals.

The attacks from the psychics perform worse than the surrogate
and imitator attacks in general. This is not surprising, as the psy-
chics operate under the most constrained threat model. In essence,
the psychic model learns a noisy encoding of what the imitator
learns directly. However, note that in the Breakout environment
the attacks from the psychic model roughly match the effective-
ness of the surrogate and imitator attacks. We believe that this
is because Breakout has a deterministic state transition function
(i.e., the next frame can be exactly predicted by the current frame),
unlike the other games which have state elements outside of the
agent’s control (e.g., hardcoded paddle in Pong, etc.). Thus, because
the psychic model’s learned representation of state dynamics is
a direct delineation of the agent’s policy, subsequent attacks are
more transferable. This result further supports our hypothesis that
proxy models that more directly approximate the target agent’s
policy will yield more transferable attacks.

To qualitatively evaluate the features that these models learn, we
create perturbation-based saliency maps [11] designed to be human
interpretable visualizations of ∇𝑥 𝐽 (𝜃, 𝑥𝑖 , 𝑦𝑖) on Atari games. Figure
3 shows a representative example of what the saliency maps tell us
about these models. As expected, the surrogate model’s map is very
similar to the target’s. The imitator’s salient regions tend to be the
most similar to the target’s out of the proxy models, which further
supports our beliefs regarding attack effectiveness. The assessor
tends to focus less on the agent itself (i.e. the submarine), and
more on the objects around it which correspond to potential future
reward. This intuition also helps to explain the inferior performance

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

563

Figure 8: Noise visualization produced FGM attack by a sur-
rogate and each proxy model for a DQN agent trained on
Atari Pong environment. On the left is the current unper-
turbed game state. The top and bottom rows of noise are the
𝐿∞ and 𝐿2 constrained perturbations, respectively. We note
that the saliency patterns in the gradients of the different
proxies show considerable visual similarities.

of the assessor’s attacks. Finally, because the psychic model predicts
the entire next-frame, it must attend to any object in the state
space that moves. Because the psychic learns an approximation
of the state transition dynamics, a subset of the features that it
learns (e.g. the submarine, fish, divers) do correspond to features
that are important to the agent’s policy. Figure 8 gives a direct
visualization of the gradient-based perturbations of each proxy
on a Pong state. Note that the 𝐿2 perturbations from the imitator
and assessor proxies share considerable visual similarities to the
surrogate agent’s “upper bound" perturbation. The psychic model’s
perturbations show notable saliency in regions of the ball and
paddles, but the gradients are not as strongly localized.

The results of the strategically-timed snooping attack on DQN
and PPO agents can be seen in Figure 7. Note that we use the FGM
crafting method with imitator gradients in this experiment. We
compare this performance to (1) the black-box variant of the orig-
inal strategically-timed attack described in [18] using FGM with
surrogate gradients, and (2) an attack which perturbs at random
time steps with FGM and imitator gradients. The strategically-timed
attacks will typically be more effective on the paddle-based games
such as Pong, as there is a clear distinction between time steps
that are critical for good performance (i.e. as the ball approaches
the paddle) and time steps when the actions of the agent do not
matter. As expected, our method does not perform as well as the
surrogate that was trained to assign credit to certain states and
actions. Our method does show promise, however, as it performs
markedly better than the random strategy without requiring any
interaction with the environment. We believe that our method’s
effectiveness is bottlenecked by the high-variance assessor predic-
tions, and reducing the variance of the reward signal learned would
lead to better performance.

An unexpected result of our experiments is the unimpressive per-
formance of MIFGM compared to vanilla FGM. To understand why,
we consider that iterative attacks like MIFGM create a more custom
perturbation for the model that it is crafted by. This introduces the
possibility that the resulting adversarial examples are overfit to a
local maxima of the white-box model. In the case of the the proxy
models, we posit that because of the significant differences in the

loss functions used by the agents and the proxies, adversarial exam-
ples that are more tailored to a specific objective will not perform
as well. In the case of the baseline surrogate agents that do use the
same objectives, the high variance of the RL data generation pro-
cess is more likely to yield models with differently-shaped decision
surfaces compared to supervised classifiers that draw i.i.d. samples.
Again, this renders these more tailored perturbations less effective
for transfer-based attacks.

Finally, we propose that our work offers a unique prospective
on adversarial example transferability. Previous work has shown
that adversarial examples transfer between different classifiers, etc.
This phenomena has been justified by decision surface similarity
between the classifiers [19, 24, 38]. However, to our knowledge,
we are among the first to demonstrate that adversarial examples
transfer across models that learn with very different optimization
objectives as long as the tasks are related such that the gradient
of the loss with respect to the input has a similar shape. For exam-
ple, although the loss, output dimensionality, and decision surface
of the psychic proxy is radically different from the target model,
adversarial examples generated by the psychic also fool the agent.
This implies that an adversary can effectively attack agents even
if they have no knowledge of what the target system is trying to do.
These findings alone force us to reconsider what makes adversarial
examples transfer between models. We believe that our snooping
threat models and proxies offer a unique and effective test environ-
ment for further work on the study of transferability of adversarial
examples between models with fundamentally different but related
objectives.

8 CONCLUSIONS
It is often infeasible for an adversary to have access to a target
agent’s parameters or train a DRL surrogate agent on a proprietary
environment. However, we show that an adversary only needs the
ability to intercept the states and optionally snoop on the action
and reward signals to launch powerful adversarial attacks on a
black-box agent. Further, we show that adversaries can use trained
proxy models to make their attacks sparse in time, rendering them
more difficult to detect. We believe these to be important secu-
rity vulnerabilities to consider and address before deploying these
models to systems that we trust.

REFERENCES
[1] Vahid Behzadan and Arslan Munir. 2017. Vulnerability of Deep Reinforcement

Learning to Policy Induction Attacks. In MLDM.
[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael H. Bowling. 2013.

The Arcade Learning Environment: An Evaluation Platform for General Agents.
J. Artif. Intell. Res. 47 (2013), 253–279.

[3] Richard Bellman. 1966. Dynamic programming. Science 153 3731 (1966), 34–7.
[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat

Flepp, Prasoon Goyal, Lawrence D. Jackel, Miguel Pozuelo Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Junbo Jake Zhao, and Karol Zieba. 2016. End to End
Learning for Self-Driving Cars. CoRR abs/1604.07316 (2016).

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016).
arXiv:arXiv:1606.01540

[6] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. 2017 IEEE Symposium on Security and Privacy (SP) (2017),
39–57.

[7] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, YuhuaiWu, and Peter Zhokhov.
2017. OpenAI Baselines. https://github.com/openai/baselines. (2017).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

564

http://arxiv.org/abs/arXiv:1606.01540
https://github.com/openai/baselines

[8] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. 2018. Boosting Adversarial Attacks with Momentum. In CVPR.

[9] Ross B. Girshick. 2015. Fast R-CNN. 2015 IEEE International Conference on
Computer Vision (ICCV) (2015), 1440–1448.

[10] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. CoRR abs/1412.6572 (2015).

[11] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. 2018. Visualizing
and Understanding Atari Agents. In ICML.

[12] Sandy H. Huang, Nicolas Papernot, Ian J. Goodfellow, Yan Duan, and Pieter
Abbeel. 2017. Adversarial Attacks on Neural Network Policies. CoRR
abs/1702.02284 (2017).

[13] Nathan Inkawhich, Wei Wen, Hai Li, and Yiran Chen. 2019. Feature Space
Perturbations Yield More Transferable Adversarial Examples. In CVPR.

[14] Ilya Kostrikov. 2018. PyTorch Implementations of Reinforcement Learning Algo-
rithms. https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail. (2018).

[15] Felix Leibfried, Nate Kushman, and Katja Hofmann. 2017. A Deep Learning
Approach for Joint Video Frame and Reward Prediction in Atari Games. CoRR
abs/1611.07078 (2017).

[16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-End
Training of Deep Visuomotor Policies. Journal of Machine Learning Research 17
(2016), 39:1–39:40.

[17] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous control
with deep reinforcement learning. CoRR abs/1509.02971 (2016).

[18] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,
andMin Sun. 2017. Tactics of Adversarial Attack onDeep Reinforcement Learning
Agents. In IJCAI.

[19] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Xiaodong Song. 2017. Delv-
ing into Transferable Adversarial Examples and Black-box Attacks. CoRR
abs/1611.02770 (2017).

[20] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In ICML.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013).

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015),
529–533.

[23] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh.
2015. Action-Conditional Video Prediction using Deep Networks in Atari Games.
In NIPS.

[24] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. 2016. Trans-
ferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples. CoRR abs/1605.07277 (2016).

[25] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine
Learning. In AsiaCCS.

[26] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. 2016 IEEE European Symposium on Security and Privacy (EuroS&P)
(2016), 372–387.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[28] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen,
Yide Shentu, Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell.
2018. Zero-Shot Visual Imitation. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW) (2018), 2131–21313.

[29] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish
Chowdhary. 2018. Robust Deep Reinforcement Learningwith Adversarial Attacks.
In AAMAS.

[30] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and
Pieter Abbeel. 2018. Asymmetric Actor Critic for Image-Based Robot Learning.
CoRR abs/1710.06542 (2018).

[31] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani.
2017. Deep Reinforcement Learning framework for Autonomous Driving. CoRR
abs/1704.02532 (2017).

[32] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust Region Policy Optimization. In ICML.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

[34] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529 (2016), 484–489.

[35] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin A. Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In ICML.

[36] Richard S. Sutton and Andrew G. Barto. 1988. Reinforcement Learning: An
Introduction. IEEE Transactions on Neural Networks 16 (1988), 285–286.

[37] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
CoRR abs/1312.6199 (2014).

[38] Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
McDaniel. 2017. The Space of Transferable Adversarial Examples. CoRR
abs/1704.03453 (2017).

[39] Elias Wang. 2017. Deep Action Conditional Neural Network for Frame Prediction
in Atari Games.

[40] Christopher J. C. H. Watkins and Peter Dayan. 1992. Technical Note: Q-Learning.
Machine Learning 8 (1992), 279–292.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

565

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Adversarial example crafting
	3.2 Reinforcement learning

	4 Snooping threat models
	5 Attack strategies
	5.1 Methodology
	5.2 S threat model
	5.3 SR threat model
	5.4 SA threat model
	5.5 SRA threat model

	6 Implementation details
	6.1 Agents
	6.2 Proxies

	7 Experiments and analysis
	8 Conclusions
	References

