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ABSTRACT

Agents can individually devise plans and coordinate to achieve com-
mon goals. Methods exist to factor planning problems into separate
tasks and distribute the plan synthesis process, while reducing the
overall planning complexity. However, merging distributedly gen-
erated plans becomes computationally costly when task plans are
tightly coupled, and conflicts arise due to dependencies between
plan actions. Existing methods either scale poorly as the number
of agents and tasks increases, or do not minimize makespan, the
overall time necessary to execute all tasks. A new algorithm, the
Temporal Optimal Conflict Resolution Algorithm (TCRA∗), is intro-
duced to merge independently generated plans and optimally mini-
mize the resulting makespan. A proof of optimality is provided and
the algorithm is empirically evaluated across two heterogeneous
multiagent domains against two baseline algorithms. The TCRA∗

results in better makespan across the problems solved, and a search
relaxation constant allows the TCRA∗ to generate better plans with
competitive processing time and memory usage.
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1 INTRODUCTION

Multiagent planning allows agents to devise individual plans and
coordinate to achieve common goals [12]. Multiagent plan synthesis
distributes the planning process in order to reduce the computa-
tional cost and scale to larger problems [25]. Parallel plan execution
allows agents to execute different parts of a plan and concurrently
achieve shared goals. Parallel plan execution is required by physi-
cally embodied agent systems, such as multi-robot systems [1].

Multiagent plan synthesis factors the planning process across
agents, decomposing problems into tasks before planning, and
generates separate plans for each task [25]. However, real world
tasks often are tightly coupled and tasks’ plans conflict with each
other. Solutions often assume loose coupling between tasks or serial
plan execution to simplify the coordination process [25].

Tightly coupled tasks require plan merging methods to prevent
conflicts during parallel plan execution [7]. Conflicts arise when
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the actions of one plan modify the environment and prevent an-
other plans’ actions from succeeding. Plan merging algorithms
coordinate independently generated plans and eliminate conflicts
by introducing temporal orders and removing redundant actions
[7]. Algorithms minimize the number of plan actions optimally, but
do not account for action durations and do not minimize makespan
directly, the time required to execute the plan [13].

Accounting for durative actions can minimize makespan signif-
icantly, especially in real-world domains, where different actions
require different completion times. The Logistics Domain [25] re-
quires different vehicle types to deliver goods across their desig-
nated areas. Vehicle types are limited to subsets of an interconnected
transportation network. Goods must be exchanged between vehicle
types before reaching their destinations, requiring coordination.
Real-world domains, such as Logistics, are physically distributed
and require parallel plan execution to accomplish tasks concur-
rently. Tasks that share the same vehicles are coupled, as the shared
vehicles’ actions have mutual execution order constraints (e.g., a ve-
hicle cannot deliver to two independent locations simultaneously).
Durative actions are critical, as the travel time between locations
varies significantly, directly impacting the makespan.

This manuscript presents a new problem formulation and an
algorithm for merging loosely and tightly coupled task plans, while
accounting for durative actions, andminimizingmakespan for paral-
lel execution. The algorithm can facilitate multiagent coordination
and generate plans to solve complex heterogeneous multiagent
problems efficiently. A proof of optimality is provided and the algo-
rithm is empirically compared to baselines across two domains.

2 BACKGROUND AND RELATEDWORK

Multiagent planning algorithms factor the problem and coordinate
plans in order to improve scalability and solve more complex prob-
lems for larger numbers of agents [25]. Agents coordinate before
planning, dividing the goal requirements and allocating tasks, gen-
erate task plans independently, and coordinate after planning, by
merging task plans and resolving conflicts [9].

Agents are allocated to tasks according to their individual capa-
bilities and plans are generated for each task [25]. Problem decom-
position and task allocation can be performed using coordination
graphs [15, 19], interaction graphs [5, 14], and coalition formation
[11]. Tasks’ plans are generated serially, where the planner assumes
that its task’s initial state is the final state from the prior task’s plan
[10]. The task goals are concatenated with the goals of the next task
in order to guarantee that the next task’s planner will not undo the
goals achieved by the previous planner. Serial plan synthesis does
not require serial plan execution, and the serially synthesized plans
can be merged for parallel execution.
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Serial plan synthesis addresses tightly coupled domains [25];
however, merging the independently generated plans can be a com-
plex problem. Conflicts arise when the plan’s actions can prevent
the execution of another plan’s actions. Most planners assume se-
rial plan execution in order to simplify the merging process and
prevent conflicts between plans. Plans are executed serially, in the
same order as they were synthesized; however, serial plan execution
prevents tasks from being executed in parallel, and results in long
plan execution durations. Plan merging algorithms allow parallel
task execution and can shorten the plan execution duration [7].

The Coalition Formation and Planning framework [11] employs
coalition formation [23] to allocate tasks. Coalition formation al-
gorithms derive agent teams, based on agents’ capabilities and
task requirements. A plan is generated for each task, using serial
plan synthesis. However, the framework employs a greedy merging
algorithm that can result in long plan execution.

A temporal plan merge algorithm distributes the plan synthesis
before merging task plans, but the resulting plan is executed by a
single agent [18]. The Task Coordination and Decomposition algo-
rithm employs coordination before planning and imposes ordering
constraints on tasks allocated to each agent, so that planning can be
accomplished independently [24]. The method ignores the fact that
one agent’s plan can modify the environment and make another
agent’s plan invalid, limiting the algorithm to uncoupled tasks.

The Multi-Agent Planning by Plan Reuse algorithm performs
task allocation before planning using relaxed reachability analy-
sis after generating relaxed plans for all agent-task combinations
[4]. However, the method requires homogeneous agents [4]. The
Forward Multiagent Planning algorithm supports heterogeneous
agents, but cannot scale due to communication limitations [26].

CSP+Planing introduces the agent interaction digraph in order
to estimate task coupling [5]. Task coupling is defined as the level of
interaction between agents, where tighter coupling leads to higher
computational complexity. The algorithm seeks to minimize the
coupling when allocating tasks in order to improve planning com-
plexity. Constraint satisfaction factors the problem before planning;
however, solving the constraint satisfaction problem dominates the
plan synthesis computation, rendering the algorithm inefficient [8].

The Multiagent Plan Coordination Problem (MPCP) formulation
assumes a set of agents derived plans independently to achieve
their individual goals [7]. Agents can undermine each other when
executing their plans and must coordinate to produce conflict-free
plans that guarantee all agents achieve their individual goals. The
solution to an MPCP is composed entirely of actions drawn from
the original agents’ plans; no actions are added. A plan 𝜋 can be
defined by a tuple ⟨𝐴, ≺𝑇 , ≺𝐶 ⟩, where 𝐴 = {𝑎1, 𝑎2, . . .} is a set of
actions, ≺𝑇 and ≺𝐶 are sets of temporal and causal orders on ac-
tions 𝐴, respectively. Actions are defined by the tuple ⟨𝑝𝑟𝑒, 𝑒 𝑓 𝑓 ⟩,
where 𝑝𝑟𝑒 is a set of preconditions that must hold during action
execution, and 𝑒 𝑓 𝑓 is the set of effects caused by the action execu-
tion. A temporal order, ≺𝑇 , is a tuple ⟨𝑎𝑖 , 𝑎 𝑗 ⟩, with 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴, and
establishes that action 𝑎 𝑗 cannot be executed before action 𝑎𝑖 ’s ex-
ecution is completed. A causal order is an extended temporal order,
≺𝐶 , represented by the tuple ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑐⟩, with 𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴, and 𝑐 is a
condition belonging to action 𝑎𝑖 ’s effects (𝑐 ∈ 𝑎𝑖 .𝑒 𝑓 𝑓 ) and to action
𝑎 𝑗 ’s preconditions (𝑐 ∈ 𝑎 𝑗 .𝑝𝑟𝑒). Causal orders help identify plan

conflicts, but do not impact the plan execution, and are reduced to
regular temporal orders after the merging process completes.

Two types of conflicts arise when merging coupled plans [7].
Open preconditions occur when a precondition 𝑐 of an action 𝑎 𝑗
is not satisfied by the existence of a causal order ≺𝐶= ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑐⟩,
indicating that action 𝑎𝑖 establishes condition 𝑐 to satisfy action
𝑎 𝑗 ’s precondition. Causal conflicts occur when a causal order ≺𝐶
= ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑐⟩ is threatened by the effects of an action 𝑎. The causal
order ≺𝐶 is threatened if there exists an action 𝑎 whose effects
establish the negative condition ¬𝑐 and neither of the temporal
orders ⟨𝑎, 𝑎𝑖 ⟩ and ⟨𝑎 𝑗 , 𝑎⟩ exist. A causal conflict implies that action
𝑎’s effects can deny condition 𝑐 and prevent action 𝑎 𝑗 to execute.

Open preconditions and causal conflicts are addressed by intro-
ducing causal and temporal orders, respectively. An open precondi-
tion of action 𝑎 and condition 𝑐 can be resolved by adding a causal
order ≺𝑇 = ⟨𝑎𝑖 , 𝑎, 𝑐⟩, such that condition 𝑐 exists in the effects of
action 𝑎𝑖 , 𝑐 ∈ 𝑎𝑖 .𝑒 𝑓 𝑓 [7]. The solution forces action 𝑎𝑖 to establish
the condition 𝑐 for action 𝑎. A causal conflict of action 𝑎 and causal
order ≺𝐶 = ⟨𝑎𝑖 , 𝑎 𝑗 , 𝑐⟩ can be resolved by adding a temporal order
⟨𝑎, 𝑎𝑖 ⟩ or ⟨𝑎 𝑗 , 𝑎⟩ [7]. The solution forces the threatening action 𝑎 to
execute before action 𝑎𝑖 , or after action 𝑎 𝑗 .

MPCP is NP-Complete and a tractable optimal algorithm is infea-
sible [7]. The Multiagent Plan Coordination by Plan Modification
Algorithm (PMA) solves MPCP problems and minimizes the re-
sulting number of actions [7]. The PMA allows a set of actions to
replace a single redundant action collectively, resulting in merged
plans with fewer actions. However, the PMA cannot scale to large
numbers of agents executing complex and tightly coupled tasks [7].

The Solution Test Algorithm (STA) [7], a component of the PMA,
solves plan conflicts iteratively and adds temporal and causal orders
to derive a conflict-free plan. The STA, presented in Algorithm 1,
was reformulated as a standalone merging algorithm. Each conflict
resolved generates a new plan, which is added to a priority search
queue for further refinement, and the first conflict-free plan en-
countered is returned. The STA uses the most-constrained conflicts
first heuristic [20] and orders the priority queue using the number
of conflict solutions [7]. Cyclical plans are discarded and a null plan
is derived when the conflicts encountered cannot be resolved. Serial
plan synthesis guarantees that the conflicts between plans can be
resolved, and prevents the derivation of a null plan.

The STA scales better than the PMA, but does not minimize
makespan [7]. The resulting plan’s makespan determines the time
taken to accomplish a plan’s goals, a key factor in real-world prob-
lems. The reductions in plan execution time can make the difference
between mission success or failure. This manuscript presents an al-
gorithm that merges independently generated plans and optimally
minimizes the resulting makespan, while accounting for durative
actions. The following Section introduces a problem formulation
that incorporates durative actions and the new algorithm.

3 TEMPORAL PLAN COORDINATION

The MPCP is extended to incorporate durative actions and mini-
mize temporal makespan. The Temporal MPCP (TMPCP) is a tu-
ple ⟨𝐼 ,𝐺, 𝜋𝐼 ⟩, where 𝐼 = {𝑖1, . . .} is the set of initial conditions,
𝐺 = {𝑔1, . . .} is the set of goal conditions, and 𝜋𝐼 is the initial plan,
consisted of a list Π = ⟨𝜋1, . . . , 𝜋𝑚⟩ of𝑚 multiagent plans. TMPCP
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Data: A (conflicted) plan 𝜋𝐼 , consisted of a list of plans Π;
Result: A conflict-free plan 𝜋 or null;
Add input plan 𝜋𝐼 to the queue;
while the queue is not empty do

Pop plan 𝜋 from the queue;
Identify conflicts 𝐾 = {𝜅1, . . .} in plan 𝜋 ;
if there are conflicts in plan 𝜋 then

foreach conflict 𝜅 ∈ 𝐾 do

Identify solutions Σ = {𝜎1, . . .} to conflict 𝜅;
foreach solution 𝜎 ∈ Σ do

Apply solution 𝜎 to produce plan 𝜎 (𝜋) = 𝜋𝜎 ;
Compute priority 𝑓 (𝜋𝜎 ) = | Σ |, the number
of solutions to conflict 𝜅;

Enqueue plan 𝜋𝜎 with priority 𝑓 (𝜋𝜎 );
else return conflict-free plan 𝜋 ;

return null;
Algorithm 1: The Solution Test Algorithm (STA), extracted
and reformulated from the Cox and Durfee’s PMA [7].

plans’ actions are defined by the tuple ⟨𝑝𝑟𝑒, 𝑒 𝑓 𝑓 , 𝑑𝑢𝑟 ⟩, where 𝑝𝑟𝑒
is a set of preconditions that must hold during action execution,
𝑒 𝑓 𝑓 is the set of effects caused by the action execution, and 𝑑𝑢𝑟
is the action execution duration, the amount of time necessary to
execute the action. A solution to a TMPCP is a conflict-free plan, 𝜋 ,
that satisfies all goal conditions in𝐺 when executed from the set of
initial conditions, 𝐼 . All the actions of a solution plan 𝜋 are drawn
from the input plans, Π. No actions are added or removed.

A plan’s path is a series of actions chained by temporal orders, 𝑃
= ⟨ ≺𝑇 1, . . . ⟩. The length of a path, 𝑙 (𝑃), is the sum of the temporal
orders’ action durations, 𝑙 (𝑃) = ∑

≺𝑇 ∈𝑃 ≺𝑇 .𝑎𝑖 .𝑑𝑢𝑟 . The makespan,
𝑚(𝜋), is the length of 𝜋 ’s longest path,𝑚(𝜋) = max𝑃 ∈𝜋 𝑙 (𝑃), and
represents the estimated time necessary to execute all of plan 𝜋 ’s
actions. An optimal solution plan, 𝜋∗, results in a makespan𝑚(𝜋∗)
less than or equal to the makespan of any conflict-free plan 𝜋
generated by 𝑛 successive conflict resolution iterations applied to
the initial plan,𝑚(𝜋∗) ≤𝑚(𝜋) ∀ 𝜋 ∈ 𝜎𝑛 (𝜋𝐼 ).

A Logistics example involves an autonomous semi-tractor-trailer
truck (𝑎), a manned truck (𝑚), and two delivery tasks. Current au-
tonomous semi-trucks are restricted to interstate highways and
are not permitted in urban traffic [22]. The trailers are transferred
to manned trucks before entering cities. Trailers 1 and 2 must be
transported from a factory, via a highway, to an urban warehouse.
Trucks can only transport one trailer at a time and exchange trailers
at a transfer hub outside the city. Plans are generated individually
for each delivery task, as shown in Figure 1. The plan for task 1
results in truck 𝑎 bringing trailer 1 from the factory to the hub in 3
hours (1𝑎 , 3h), followed by truck𝑚 moving trailer 1 to the ware-
house (1𝑚 , 1h). The plan for task 2 involves truck𝑚 returning to
the hub (2𝑚

𝑖
, 1h), while truck 𝑎 transports trailer 2 (2𝑎 , 3h), followed

by truck𝑚 moving trailer 2 to the warehouse (2𝑚
𝑖𝑖
, 1h). The plans

can be merged to accomplish both tasks.
The Serial Algorithm, Algorithm 2, a baseline TMPCP Solution,

introduces temporal orders in order to strictly enforce the serial
execution of the input plans Π. The Serial Algorithm assumes the
input plans were synthesized serially, and can be merged into a

Input
Task Plans Serial STA TCRA*

3h

3h

3h

3h3h

3h

3h

3h

1h

1h

1h
1h

1h

1h

1h

1h

1h 1h

1h

1h

Figure 1: Illustrative Logistics problem and results for Serial,

STA, and TCRA
∗
. Task 1 actions shaded in gray.

conflict-free plan when executed serially. The Serial Algorithm
strictly orders plan 2’s actions after plan 1’s, as shown in Figure 1,
resulting in a 8 hour makespan. A second baseline for TMPCP is
the STA (Algorithm 1). The STA can return a result rapidly due to
its constraint satisfaction search, but does not necessarily minimize
the resulting plans’ makespan, making it suboptimal. STA results in
truck 𝑎 serially fetching both trailers to the hub, followed by truck
𝑚 serially delivering both trailers, resulting in a 9 hour makespan.

Data: A (conflicted) plan 𝜋𝐼 , consisted of a list of plans Π;
Result: A conflict-free plan 𝜋 ;
foreach plan 𝜋𝑘 in plan list Π do

Add temporal orders ≺𝑇 = ⟨𝑎𝑖 , 𝑎 𝑗 ⟩ between each action
of plan 𝜋𝑘 , 𝑎𝑖 , and each action of plan 𝜋𝑘+1, 𝑎 𝑗 , where
plan 𝜋𝑘+1 succeeds plan 𝜋𝑘 in the input plan list Π ;
Algorithm 2: The Serial baseline algorithm.

The Temporal Optimal Conflict Resolution Algorithm (TCRA∗),
employs an 𝐴∗ search to guarantee completeness and minimize
makespan, as presented in Algorithm 3. The TCRA∗ is similar to
the STA, in that both algorithms search the space of plans in order
to solve conflicts iteratively and result in a conflict-free plan. STA
and TCRA∗ have worst case complexity 𝑂 (( | 𝐾 | · | Σ |)𝑛), where
| 𝐾 | is the number of conflicts resolved per iteration, | Σ | is the
number of solutions to each conflict, and 𝑛 is number of successive
conflicts resolved on the resulting conflict-free plan 𝜋 . The TCRA∗

performs a uniform-cost search and employs an admissible heuristic
to minimize makespan and guarantee optimality. The priority of
a plan 𝜋 , 𝑓 (𝜋), is defined by the plan’s makespan,𝑚(𝜋), and the
admissible search heuristic, ℎ(𝜋). The heuristic can be multiplied
by a relaxation scalar 𝜖 > 1 in order to generate approximate results
and produce plans faster. The TCRA∗ algorithm is reduced to a
uniform cost search when 𝜖 = 0. TCRA∗ parallelizes both trucks’
actions, as shown in Figure 1, resulting in a 7 hour makespan.

TCRA∗’s admissible heuristic estimates the costs of a given plan
𝜋 in order to guide the TCRA∗ search. A plan 𝜋 has a set of conflicts
𝐾 = {𝜅1, . . .}. All conflicts 𝐾 must be addressed, so the cost of 𝜋 is
at least as high as the cost of the most costly conflict, and 𝑓 (𝜋) =
𝑚𝑎𝑥 (𝐾) =𝑚𝑎𝑥 ( 𝑓 (𝜅1), . . . ) is an underestimate. Each conflict 𝜅
∈ 𝐾 has a set of solutions Σ = {𝜎1, . . .}. The cost of conflict 𝜅 can
be as low as the cost of the least costly solution; thus, the cost of
𝜅 is underestimated by 𝑓 (𝜅) = 𝑚𝑖𝑛(Σ) = 𝑚𝑖𝑛( 𝑓 (𝜎1), . . . ). Each
solution 𝜎 generates a new plan, 𝜋𝜎 , whose cost is greater than or
equal to its makespan, 𝑓 (𝜋𝜎 ) ≥𝑚(𝜋𝜎 ). The makespan𝑚(𝜋𝜎 ) is an
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Data: A (conflicted) plan 𝜋𝐼 , consisted of a list of plans Π;
Result: A conflict-free plan 𝜋 or null;
Add input plan 𝜋𝐼 to the queue;
while the queue is not empty do

Pop plan 𝜋 from the queue;
Identify conflicts 𝐾 = {𝜅1, . . .} in plan 𝜋 ;
if there are conflicts in plan 𝜋 then

foreach conflict 𝜅 ∈ 𝐾 do

Identify solutions Σ = {𝜎1, . . .} to conflict 𝜅;
foreach solution 𝜎 ∈ Σ do

Apply solution 𝜎 to produce plan 𝜎 (𝜋) = 𝜋𝜎 ;
Compute 𝑓 (𝜋𝜎 ) =𝑚(𝜋𝜎 ) + 𝜖 · ℎ(𝜋𝜎 );
Enqueue plan 𝜋𝜎 with priority 𝑓 (𝜋𝜎 );

else return conflict-free plan 𝜋 ;
return null;

Algorithm 3: Temporal Optimal Conflict Resolution (TCRA∗).

underestimate of the cost of 𝜎 , 𝑓 (𝜎) =𝑚(𝜋𝜎 ). The estimate cost
𝑓 (𝜋) =𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑚(𝜋𝜎1 ), . . . ), . . . ), is an underestimate, and the
heuristic ℎ(𝜋) = 𝑓 (𝜋) -𝑚(𝜋) is admissible.

TCRA∗’s optimality is supported by the additive property of con-
flict resolution, which adds, but does not remove temporal orders.
TCRA∗’s priority queue expands a plan 𝜋∗ before a plan 𝜋 , if𝑚(𝜋∗)
≤𝑚(𝜋). Successive conflict resolution iterations can increase, but
cannot decrease 𝜋 ’s makespan. Thus, 𝜋 ’s makespan and the makes-
pan of all successors of 𝜋 will have a makespan greater than or
equal to the makespan of 𝜋∗. The makespan of the resulting plan,
𝜋∗, is better than the makespan of any other satisficing plan; thus,
the TCRA∗ is optimal with respect to the resulting plan’s makespan.
A detailed proof of optimality follows.

The first Lemma establishes that adding a temporal order gener-
ates a new plan with greater than or equal makespan.

Lemma 1. Let 𝜋 denote a plan and let ≺𝑇 denote a temporal order
added to 𝜋 , producing a new plan 𝜋1. Then𝑚(𝜋) ≤𝑚(𝜋1).

Proof. Let 𝜋 ’s longest path be 𝑃 . Add a temporal order ≺𝑇 to 𝜋 ,
forming a new path 𝑃1 in the resulting plan, 𝜋1.
If 𝑙 (𝑃1) > 𝑙 (𝑃), then 𝜋1’s longest path is 𝑃1 and

𝑚(𝜋1) = 𝑙 (𝑃1)
> 𝑙 (𝑃)
> 𝑚(𝜋) .

If 𝑙 (𝑃1) ≤ 𝑙 (𝑃), then 𝜋1’s longest path is 𝑃 and

𝑚(𝜋1) = 𝑙 (𝑃)
=𝑚(𝜋) □

Solving an open precondition adds a temporal order, generating
a new plan with greater than or equal makespan.

Lemma 2. Let 𝜅 denote an open precondition of plan 𝜋 . Let 𝜎
denote a solution to 𝜅 that adds a temporal order ≺𝑇 to plan 𝜋 ,
producing a new plan 𝜎 (𝜋) = 𝜋1. Then𝑚(𝜋) ≤𝑚(𝜋1).

Proof. The proof follows from Lemma 1. □

Solving a causal conflict adds a causal order, which is an extended
temporal order, and generates a new plan with greater than or equal
makespan.

Lemma 3. Let 𝜅 denote a causal conflict of plan 𝜋 . Let 𝜎 denote
a solution to 𝜅 that adds a causal order ≺𝐶 to plan 𝜋 , producing a
new plan 𝜎 (𝜋) = 𝜋1. Then𝑚(𝜋) ≤𝑚(𝜋1).

Proof. A causal order ≺𝐶 is an extended temporal order; thus, the
proof follows from Lemma 1. □

Solving a conflict generates a new plan with greater than or
equal makespan.

Lemma 4. Let 𝜅 denote a conflict of plan 𝜋 . Let 𝜎 denote a solution
to 𝜅, producing a new plan 𝜎 (𝜋) = 𝜋1. Then𝑚(𝜋) ≤𝑚(𝜋1).

Proof. The proof follows from Lemmas 2 and 3. □

Successive conflict resolution iterations to a plan 𝜋 generate a
plan 𝜎𝑛 (𝜋) = 𝜋𝑛 with greater than or equal makespan.

Lemma 5. Let plan 𝜋 have a series of conflicts 𝜅1, 𝜅2, . . ., 𝜅𝑛 , re-
solved by a series of solutions 𝜎1, 𝜎2, . . ., 𝜎𝑛 , and generating a series
of plans 𝜋1, 𝜋2, . . ., 𝜋𝑛 . Then𝑚(𝜋) ≤𝑚(𝜋𝑛).

Proof. Plan 𝜋𝑖+1, produced by applying solution 𝜎𝑖+1 to conflict
𝜅𝑖+1 in plan 𝜋𝑖 , has makespan 𝑚(𝜋𝑖+1) , 𝑚(𝜋𝑖 ) ≤ 𝑚(𝜋𝑖+1), from
Lemma 4. Then𝑚(𝜋) ≤ . . . ≤𝑚(𝜋𝑖 ) ≤𝑚(𝜋𝑖+1) ≤ . . . ≤𝑚(𝜋𝑛). □

A plan returned by TCRA∗ has makespan less than or equal
than any plan generated by successive conflict resolution iterations
applied to the initial plan, 𝜋𝐼 .

Theorem 1. Let 𝜋∗ denote the first plan returned by TCRA∗. Let 𝜋
denote a plan generated by successive conflict resolution iterations
applied to the initial plan, 𝜋 ∈ 𝜎𝑛 (𝜋𝐼 ). Then𝑚(𝜋∗) ≤𝑚(𝜋).

Proof. Let 𝜋 denote a plan in TCRA∗’s priority queue, the product
of a series of conflict resolution iterations applied to the initial
plan, 𝜋𝐼 . Let 𝜋𝑛 denote a plan generated by 𝑛 successive conflict
resolutions applied to plan 𝜋 , then𝑚(𝜋) ≤𝑚(𝜋𝑛), from Lemma 5.
Plan 𝜋∗ is returned before plan 𝜋 ; thus

𝑚(𝜋∗) ≤ 𝑚(𝜋)
≤ 𝑚(𝜋𝑛) . □

TCRA∗’s search queue is ordered according to makespan. The
lowest makespan plan is expanded first. Other plans in the queue
will produce plans with higher makespan, as successive conflict
resolutions cannot reduce makespan. Thus, the fist plan returned
has the lowest makespan.

4 METHODOLOGY

The baseline merging algorithms, Serial and STA, Algorithms 2 and
1, respectively, and TCRA∗, Algorithm 3, were evaluated across
two domains. Each TMPCP problem was extracted from randomly
generated planning problems that each consists of a randomly
generated group of agents, called a grand coalition, an initial state,
and a goal state composed of randomly generated tasks. Each task
has an individual set of requirements, and all tasks’ requirements
must be met in order to solve the planning problem. Tasks were
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allocated to agents according to the agents’ capabilities and the
tasks’ requirements using a coalition formation algorithm [23].
Each task was individually solved using the Coalition Formation
and Planning framework [11], and an external planner. Each task
solution resulted in a task plan. A merging problem consists of
merging all the task plans to solve the original planning problem.

The Actions Concurrency and Time Uncertainty Planner (Ac-
tuPlan) [3], adopted as the external planner, supports concurrent
durative actions with stochastic action durations. Similar planners
exist [17, 6], but ActuPlan is the only planner to support a high-
level problem description language and offer a publicly available
implementation. The stochastic action durations were determinized
[29] by adopting the distribution’s mean as the true action duration.

The Logistics Domain [25], a benchmark domain for multiagent
planning, was extended in order to introduce continuous distances
between locations, and model the travel time between locations, as
a function of distance. Specific truck types cannot travel outside of
their assigned districts, and different truck types must coordinate
in order to deliver trailers across districts. The trailers’ initial and
goal locations are selected randomly and each trailer delivery is a
separate task. Problems are generated by randomly positioning and
connecting locations on a 2D coordinate system. Two districts and
truck types were generated, requiring up to 2 trucks per task. The
makespan, the time necessary to accomplish all tasks and deliver all
trailers, is minimized. Coupling exists within each task, as trucks
need to coordinate actions in order to deliver a trailer. There is no
coupling between tasks, as each trailer delivery is independent and
does not conflict with others. However, plans for separate tasks
can become coupled when sharing the same trucks. Task plans that
share common trucks have increased coupling, since each shared
truck cannot execute all task actions simultaneously. Transport
actions require the trucks to be positioned at specific locations in
order to attach, detach, and transport trailers. An individual truck
cannot be positioned in multiple locations simultaneously, and the
task actions have inherent temporal constraints, creating a tight
coupling between tasks.

The Blocks World Domain [16] was extended to allow multiple
robot arms to cooperate and concurrently rearrange stacks of blocks
[11]. Specific block types require robots with specific grippers. Mag-
netic blocks require magnetic grippers and suction blocks require
suction grippers. Each block type requires a stochastic amount of
time to be manipulated, defined by a Gaussian probability distribu-
tion. The initial and goal states are generated by stacking blocks
randomly. Each goal state stack generates a separate task, but the
component blocks of different goal stacks often originate from the
same initial state stack, causing tight coupling between tasks.

Each planning problem consisted of 1-10 tasks and 2-10 agents.
One hundred problems were generated for each task-agent combi-
nation, resulting in 9,000 problems per domain. Each experiment
was allocated one CPU core, with planning time and memory lim-
ited to 1 hour and 120 GB, on an Intel Xeon 5115 Linux server.
Algorithms were implemented in Python 2.7.

5 RESULTS

The dependent variables are the success rates, makespan, process-
ing time, and memory usage. The success rates are the ratio of

problems solved within the 1 hour time limit. The TCRA∗ algo-
rithm’s relaxation parameter, described in Section 3, defines the
weight of the search heuristic to balance between optimality and
greediness. The TCRA∗ algorithm was evaluated for relaxation val-
ues 𝜖 = { 0, 1, 10, 100, 1000 }. The results for 𝜖 = 1000 were not
significantly different from the results for 100, and were omitted.
The number of agents (trucks and robots) for each domain was
2-10 and due to space limitations, results for 2, 6, and 10 agents are
presented without loss of detail. Optimal makespan is guaranteed
for 𝜖 ≤ 1, but lower computational cost can be achieved for 𝜖 > 1.

The Serial Algorithm successfully solved all of the Logistics
Domain problems. The STA solved 41.8% of the problems, while
the uniform cost version of TCRA∗, with 𝜖 = 0, solved 39.7%. The
TCRA∗ solved 41.7% of the problems with 𝜖 = 1, 44.4% with 𝜖 = 10
and 44.9% with the highest epsilon value, 𝜖 = 100, but the success
rates varied significantly per number of tasks and trucks.

Success decreased for higher numbers of tasks, as presented in
Figure 2, for TCRA∗ (𝜖 = 10), and increased for higher numbers
of trucks. The same pattern was observed for STA and TCRA∗ for
all 𝜖 . The higher ratios of tasks per truck cause fewer trucks to be
allocated multiple tasks. The tight coupling caused by a high ratio
of tasks per truck has significant impact on all evaluated metrics.
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Figure 2: Success (%) per tasks and trucks for TCRA
∗
(𝜖 = 10).

The makespan results, presented in Figure 3, are limited to the
tasks that had at least 50% of the problems solved. Lower makespan
values are better. One may assume, based on the success rate results,
that the Serial Algorithm is the best solution; however, its makespan
is linear as the number of tasks increase, see Figure 3 (a). The same
pattern exists with additional trucks, as shown in Figure 3 (b-c).
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Figure 3: Makespan (min) per number of tasks for 2, 6, and

10 trucks. Note that the y-axes values vary.
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The STA and TCRA∗ makespan was similar to the Serial Algo-
rithm’s makespan for 2 trucks, as shown in Figure 3 (a), but greater
differences appeared with additional trucks. Increasing the number
of trucks reduces the STA’s and TCRA∗’s makespan, see Figure 3
(b-c). A similar pattern is observed for 4 and 8 trucks, which are
omitted. The STA resulted in a makespan less than, or equal to
that of the Serial Algorithm across all numbers of tasks and trucks.
TCRA∗ resulted in the same makespan for all 𝜖 values, which was
less than or equal to the STA and the Serial Algorithm. STA’s and
TCRA∗’s makespan benefit from the lower task per truck ratios,
while the Serial Algorithm’s was unaffected.

The Serial Algorithm solved all the problems in ≤ 0.5 min. The
plan synthesis time for STA and TCRA∗ increased with the number
of tasks per truck. The increased number of trucks, as presented
across Figure 4 (a-c), resulted in less time, for each number of tasks
for both algorithms. The processing time significantly increased
when the ratio of tasks per truck is greater than 0.5, due to the
more coupled merging problem, as multiple tasks must be allocated
to each truck. Note that STA required 6.5 and 0.1 min to solve for
3 tasks using 2 and 6 trucks, respectively, while TCRA∗ (𝜖 = 1)
required 5.7 and 0.1 min. Both STA and TCRA∗ required 0.5 min or
less to solve problems with 3 tasks using 6 to 10 trucks. The same
pattern was observed with more tasks. TCRA∗ (𝜖 = 0) required more
processing time than STA for problems with 1-4 tasks, Figure 4 (a-b),
but required less processing time for problems with 5 and 6 tasks,
see Figure 4 (c). TCRA∗ (𝜖 ≥ 1) required less processing time than
STA for all numbers of trucks and tasks.
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Figure 4: Processing time (min) per num. of tasks and trucks.

The Serial Algorithm memory usage was 2.1 and 1.6 GB for
problems with 2 trucks and 1 and 2 tasks, respectively, but below 1.0
GB for problemswithmore trucks and tasks, as seen in Figure 5 (a-c).
STA and TCRA∗ both required increasing memory with increasing
numbers of tasks. STA required more memory than TCRA∗ when
the number of tasks was greater than 3, see Figure 5 (b-c). STA
and TCRA∗ (𝜖 = 0) resulted in a sudden increase in memory usage,
as the number of tasks grew larger than 3, but TCRA∗ (𝜖 = 100),
required memory usage similar to Serial.

The Serial Algorithm achieved the highest success rate, solved
all problems, and required minimal processing time and memory
usage. However, this algorithm’s makespan increased linearly on
the number of tasks, which was substantially higher than STA and
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Figure 5: Memory usage (GB) per num. of tasks and trucks.

TCRA∗. Overall, STA and TCRA∗ required more processing time
and memory usage, but resulted in substantially lower makespan
as the number of tasks increased. These algorithms also resulted in
an increased success rate and a decreased makespan as the number
of trucks increased. TCRA∗ for all 𝜖 values, resulted in the lowest
makespan, across all problems, and with 𝜖 = 100, required less
processing time and memory usage than the STA.

All of the Blocks World Domain problems were solved by the Se-
rial Algorithm. STA solved 54.0% of the problems, whereas TCRA∗

solved 43.7% of the problems with 𝜖 = 0, 48.9% with 𝜖 = 1, 54.7%
with 𝜖 = 10, and 54.3% with 𝜖 = 100. Similar to the Logistics Domain,
the success rates varied per number of tasks and robots.

Additional tasks resulted in decreased success, as presented in
Figure 6, for TCRA∗ (𝜖 = 10), but success increased with additional
robots. The same pattern was observed for STA and TCRA∗ for all
𝜖 , but the increased success rate for higher numbers of robots is not
as pronounced as in the Logistics Domain. The increased number
of robots causes fewer tasks to be allocated to each robot, but the
task coupling remains tight. The addition of robots does not reduce
the problem complexity significantly, as the task coupling is mostly
due to the same blocks being involved in multiple tasks.
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Figure 6: Success (%) per tasks and robots for TCRA
∗
(𝜖 = 10).

The makespan results, presented in Figure 7, are limited to the
tasks that had at least 50% of the problems solved. The number of
tasks that had more than 50% of the problems solved did not vary
significantly as more robots were added, and results are shown for
1-5 tasks across all numbers of robots.

The Serial Algorithm’s makespan increases as the number of
tasks increase, see Figure 7 (a). The same pattern exists with ad-
ditional robots, as shown in Figure 7 (b-c). The STA and TCRA∗

makespan grew similarly to the Serial Algorithm’s makespan, but
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Figure 7: Makespan (min) per num. of tasks and robots.

the STA resulted in a makespan less than, or equal to that of the
Serial Algorithm across all numbers of tasks and robots. TCRA∗, for
all 𝜖 values, resulted in strictly less than or equal makespan to STA
and the Serial Algorithm. Contrary to the results in the Logistics
Domain, the ratio of tasks per robot did not impact makespan.

All of the problems were solved by the Serial Algorithm in ≤ 0.5
min. The plan synthesis time for STA and TCRA∗ increased with
the number of tasks. TCRA∗ (𝜖 = 0) required the highest processing
time, followed by TCRA∗ (𝜖 = 1) and TCRA∗ for 𝜖 ≥ 10, as presented
in Figure 8 (a). TCRA∗ (𝜖 = 10) required lower processing time than
STA for 2 robots and 5 tasks, as shown in Figure 8 (a), but the STA
required significantly lower processing time for fewer tasks. The
same pattern occurred for more robots, but lower 𝜖 values required
less processing time than STA with 5 tasks as more robots were
added. TCRA∗ (𝜖 ≥ 1) had lower processing time than STA for 6-10
robots and 5 tasks, see Figure 8 (b-c). STA’s processing time, relative
to TCRA∗, was better than in the Logistics Domain.
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Figure 8: Processing time (min) per num. of tasks and robots.

Memory usage was approximately constant when adding up
to 3 tasks, as seen in Figure 9 (a), across all algorithms. A sudden
increase occurred for TCRA∗ (𝜖 = 0) with 4-5 tasks. This pattern
repeats for more robots, and STA had the same increase in memory
usage, as seen in Figure 9 (c). However, TCRA∗’s memory usage

remained low for 𝜖 ≥ 1. STA’s memory usage, relative to TCRA∗,
was also better than in the Logistics Domain, as there were fewer
problem instances where STA resulted in the worst memory usage.
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Figure 9: Memory usage (GB) per num. of tasks and robots.

TCRA∗ and STA offer similar makespan across all numbers of
robots and tasks, but both are lower than the Serial Algorithm’s
makespan. TCRA∗’s and STA’s makespan also become smaller, rel-
ative to Serial’s, as the number of tasks increase. TCRA∗ (𝜖 ≥ 10)
requires similar processing time as STA, but lower than STA for
the largest numbers of robots and tasks. TCRA∗ (𝜖 ≥ 1), similarly,
requires approximately the same memory usage to that of STA for a
low number of tasks, but requires less memory than STA when the
number of robots and tasks is large. Among the algorithms offering
the lowest makespan, TCRA∗ (𝜖 ≥ 10) offers the lowest cost.

The Serial Algorithm solved all problems using the lowest pro-
cessing time and memory, but had the highest makespan, across
both domains. TCRA∗ and STA both resulted in a decaying success
rate as the number of tasks increased. More tasks resulted in more
plan actions to merge and more plan conflicts to resolve, which
increased processing time and memory usage. Both algorithms
resulted in better success rates with additional robots, although
the impact was more pronounced in the Logistics Domain. TCRA∗

and STA resulted in the lowest makespan, and TCRA∗ resulted in
lower makespan than STA for the most difficult problems across
both domains. The TCRA∗ heuristic had a significant impact on the
processing time and memory usage, as increased 𝜖 values required
lower computational resources. TCRA∗ (𝜖 ≥ 10) offered the second
lowest processing time and memory usage, yet resulted in the best
makespan across both domains.

6 DISCUSSION

Coupling between tasks was the main factor limiting the STA’s
and TCRA∗’s ability to scale to an increasing number of tasks.
Tighter task coupling required more computational resources, as
more conflicts arise when merging task plans. Coupling varied per
domain, as coupling is due to the allocation of multiple tasks to
each agent and dependencies caused by shared objects.

The allocated computational power, 1-hour processing time limit,
and graph search implementation impacted the success rates nega-
tively. All the problems evaluated are solvable, as each task plan
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was synthesized serially, and the conflicts can be resolved. STA and
TCRA∗ can generate successful results for all problems with addi-
tional processing power, a longer processing time, and by optimiz-
ing and parallelizing the graph search algorithm implementations.

6.1 The Logistics Domain

The Logistics Domain results were influenced by task coupling
due to the ratio of tasks per truck. Problems with many tasks per
truck were difficult to solve. The high ratio of tasks per truck re-
sulted in multiple tasks being allocated to each truck and created a
tighter coupling between each task. This tighter coupling increased
the dependencies between task plans, causing more conflicts, and
increasing the search space for STA and TCRA∗. Adding trucks de-
creased the number of tasks allocated to each truck, which reduced
the task coupling. The STA and TCRA∗ resulted in high quality
plans that leverage the increased number of trucks to minimize
makespan. This better makespan, compared to the Serial Algorithm,
is more pronounced for larger numbers of trucks and tasks. TCRA∗

(𝜖 > 1) resulted in better plans than the STA, at a cost that was
equal or lower than the STA. TCRA∗ (𝜖 > 10) also provided high
quality plans at a cost comparable to that of the Serial Algorithm.

6.2 The Blocks World Domain

The Blocks World Domain results were largely independent of the
number of robots, as the stacking of blocks causes task coupling.
The addition of robots reduces the number of tasks allocated to each
robot, but does not reduce the number of blocks that are involved
in multiple tasks. Task plans sharing the same blocks are tightly
coupled, as actions that move a common block have dependencies.

The Serial Algorithm required the lowest computational cost, but
the highest makespan. TCRA∗ is the best solution when the fastest
plan execution is required, at the cost of increased computational
resources. TCRA∗ (𝜖 ≥ 10) solved problems faster than STA for the
largest problems solved, yet resulted in lower makespan.

6.3 Overall

The Serial Algorithm, a naive concatenation of plans, requires lim-
ited processing time and memory usage, but does not minimize
the resulting makespan, and fails to benefit from additional agents.
The serial plan execution, with a single task executed at a time,
wastes agent-hours, as more agents and tasks are allocated, and
causes a growing number of agents to wait or remain idle. The
serial execution results in longer makespans as the number of tasks
increases. However, the Serial Algorithm is the best choice for a
single agent, when the opportunity to parallelize action execution
is limited, or when the makespan does not need to be minimized.

STA and TCRA∗ account for action dependencies between task
plans, which results in increased computational complexity and
lower success rates. However, the algorithms leverage more agents
to parallelize task execution and reduce the resultingmakespan. The
added computational complexity translates into lower makespan
and faster plan execution. Fewer agents are idle as more tasks
execute simultaneously. The benefits are more pronounced as tasks
and agents are added, and more tasks can be parallelized. The
main weakness of both algorithms is the increased computational
complexity, which is worse than the serial concatenation of plans.

The TCRA∗ (𝜖 = 1) is guaranteed to result in the minimum ma-
kespan. TCRA∗’s optimality guarantee defines lower bounds on
solution quality and provides a conceptual benchmark. Knowing the
lowest possible makespan helps quantify the quality of suboptimal
solutions, such as those produced by Serial and STA.

The makespan-optimality of the input plans is not required,
as TCRA∗ will minimize the resulting makespan, given a set of
sub-optimal input plans. End-to-end makespan optimality is not
guaranteed, since TCRA∗ preserves the input plans’ actions and
temporal orders. Algorithms that remove actions and temporal
orders (i.e., PMA) can result in lower makespan, but at higher com-
putational cost. TCRA∗ is the first merging algorithm to preserve
the input actions and temporal orders while minimizing makespan.

TCRA∗’s relaxation scalar, 𝜖 > 1, resulted in a lower computa-
tional cost than STA for the largest problems solved. The admissible
heuristic is simple, and future work can introduce more informed
heuristics to improve the TCRA∗’s scalability to a larger number of
agents and tasks, while lowering the computational cost.

TCRA∗ is an especially relevant tool for large scale logistics
environments, where each action can require hours to complete,
and a reduction in makespan can offset the added computation time.
Additionally, TCRA∗ is the best tool in scenarios where plans can
be generated in advance, but the plan execution is time critical. An
example of such a domains is extraplanetary robot missions [2],
where the robots’ operation is limited to day cycles due to solar
power limitation and the plans can be generated overnight.

Complex multi-robot problems will require better task alloca-
tion algorithms, as Shehory and Kraus’s [23] coalition formation
algorithm does not account for certain aspects, such as the fact that
some robot resources cannot be exchanged during task execution
[28]. Multi-robot coalition formation algorithms can account for
such constraints and result in better task allocation [21, 27].

STA’s and TCRA∗’s computational cost can also be improved
by leveraging domain knowledge, such as task ordering [23]. A
hybrid of TCRA∗ and the Serial Algorithm can selectively serialize
tasks before resolving conflicts. Fewer conflicts will remain after
the serialization, which will reduce the computational cost.

7 CONCLUSION

TCRA∗ was introduced to merge independently generated plans
and minimize the resulting makespan, while accounting for dura-
tive actions. A proof of optimality was provided and the algorithm
was empirically evaluated across two multiagent domains against
two baseline algorithms, the Serial Algorithm, and the STA. STA
was extracted from the PMA and used as a stand-alone algorithm
for comparison to TCRA∗. Serial and STA are the only algorithms
comparable to TCRA∗. STA’s constraint satisfaction does not mini-
mize makespan, but TCRA∗’s A* search uses an admissible heuristic
and a relaxation scalar to prune the search space and minimize ma-
kespan optimally. TCRA∗ results in better makespan, and a search
relaxation constant allows it to generate better plans with lower
processing time and memory usage than the STA. TCRA∗ provides
the best solution when the lowest makespan is necessary.
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