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ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are a suit-

able formulation for coordinating interactions (i.e. constraints) in

cooperative multi-agent systems. The traditional DCOP model as-

sumes that variables owned by the agents can take only discrete

values and constraints’ cost functions are defined for every possible

value assignment of a set of variables. While this formulation is

often reasonable, there are many applications where the decision

variables are continuous-valued and constraints are in functional

form. To overcome this limitation, Continuous DCOPs (C-DCOPs),

an extension of the DCOPs model has been proposed that is able

to formulate problems having continuous variables. The existing

methods for solving C-DCOPs come with a huge computation and

communication overhead. In this paper, we apply continuous non-

linear optimization methods on Cooperative Constraint Approxi-

mation (CoCoA) algorithm, which is a non-iterative, fast incomplete

local search approach for solving DCOPs. We empirically show that

our algorithm is able to provide high-quality solutions at the ex-

pense of smaller communication cost and execution time compared

to the state-of-the-art C-DCOP algorithms.
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1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are a pow-

erful framework to model cooperative multi-agent systems wherein

multiple agents communicate directly or indirectly with each other.

The agents act autonomously in a common environment in order

to optimize a global objective which is an aggregation of their

corresponding constraint cost functions. Each of the functions is

associated with a set of variables controlled by the corresponding

agents. In DCOPs, agents need to coordinate value assignments to

their variables in such a way that maximize their aggregated utility

or minimize the overall cost [6, 18, 19]. A number of multi-agent

coordination problems, such as meeting scheduling [15], sensor

networks [4, 27], multi-robot coordination [25] and smart homes

[7, 21], have been dealt with this model.
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Over more than a decade, a number of algorithms have been pro-

posed to solve classical DCOPs. These approaches can be broadly

classified as exact and non-exact algorithms. On the one hand,

Synchronous Branch-and-Bound (SyncBB) [10], Asynchronous Dis-

tributed OPTimization (ADOPT) [18], Distributed Pseudo-tree Op-

timization Procedure (DPOP) [19, 20] are some of the former type

of algorithms. They are able to find the global optimal solution

of a given DCOP at the expense of either or both exponential

memory and computational cost since DCOPs are NP-Hard. On

the other hand, non-exact algorithms, such as DSA [26], MGM &

MGM2 [14], Max-Sum [5, 13], CoCoA [23], AED [16], MIF-DCOP

[17], and ACO_DCOP [1] trade solution quality for lower memory

requirements as well as shorter execution time.

The traditional DCOP model is based on an assumption; that

is, each of the variables that are involved in the constraints can

take values from the discrete domain(s) and a constraint is typi-

cally represented in a cost (i.e. utility) table. Nevertheless, several

applications, such as target tracking sensor orientation [8], coop-

erative air and ground surveillance [9], network coverage using

low duty-cycled sensors [12] and many others besides, can be best

modeled with continuous-valued variables. Therefore, the tradi-

tional DCOP formulation is not well-suited to such applications.

To deal with this issue, the regular DCOP model is extended for

continuous-valued variables [22]. Notably, there are two key differ-

ences between DCOPs and Continuous DCOPs (C-DCOPs). Firstly,

variables controlled by the agents are continuous in C-DCOPs

rather than discrete in traditional DCOPs, and as such, a variable

can take any value between an upper bound and a lower bound of

its domain. Secondly, the constraints utilities are represented in a

functional form in C-DCOPs instead of a tabular form, which has

been commonly seen in traditional DCOPs.

In more detail, [22] propose a new version of the Max-Sum al-

gorithm [5] in order to solve continuous-valued DCOPs, and that

is named as Continuous Max-Sum (CMS). CMS approximates the

constraint utility functions as piece-wise linear functions. However,

this approximation has not been become popular due to the lack of

availability of real-world applications having piece-wise linear func-

tions. Afterward, Hybrid CMS (HCMS) [24] is proposed, which uses

discrete Max-Sum as the underlying algorithmic framework with

the addition of a continuous non-linear optimization method. Later,

[2] propose a Particle Swarm Based Algorithm (PFD) to solve Con-

tinuous DCOPs, while [11] have made the latest contribution to this

field. In this paper, the authors propose an exact algorithm namely

Exact Continuous DPOP (EC-DPOP), three non-exact methods −
inference-based Approximate Continuous DPOP (AC-DPOP), Clus-

tered AC-DPOP (CAC-DPOP), and a local search based algorithm,

named Continuous DSA (C-DSA). The main limitation of these al-

gorithms is that both AC-DPOP and CAC-DPOP incur exponential
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memory and computation overhead even though CAC-DPOP cuts

the communication cost by providing a bound on message size.

In the wake of the above background, we extend the Cooperative

Constraint Approximation (CoCoA) [23] algorithm so that it can

solve Continuous DCOPs. We particularly inspired tailoring CoCoA

for C-DCOPs due to two main reasons. Firstly, it is a non-iterative,

semi-greedy local search based approach that is able to find high-

quality solutions with a smaller communication overhead. Secondly,

it is already reported in [23] that the original DSA algorithm (i.e. the

traditional DCOP version of C-DSA) is significantly outperformed

by CoCoA. Moreover, our continuous version of CoCoA, which we

call C-CoCoA, is an approximate local search algorithm that can

solve C-DCOPs without any restriction on the graph structure and

with a very lower communication cost. We empirically evaluate the

performance of C-CoCoA in terms of solution quality, number of

messages, and completion time. We show that C-CoCoA provides

up to 25% better solution, requires up to 268 times and 3.23 times

fewer messages and less execution time, respectively, compared to

the state-of-the-art C-DCOP algorithms.

The remainder of this paper is structured as follows. In Section 2,

we describe the background and research challenges. In Section 3,

we discuss the details of the Continuous Cooperative Constraint

Approximation (C-CoCoA) algorithm with a worked example. Af-

terward, Section 4 presents the theoretical analysis. Section 5 then

reports the empirical evaluation of our approach as opposed to the

current state-of-the-art, and Section 6 concludes.

2 BACKGROUND AND PROBLEM
FORMULATION

In this section, we formulate the problem and discuss the back-

ground necessary to understand our proposed method. We first

describe the general DCOP framework and then move to the C-

DCOP framework, which is our problem of interest in this paper.

We then discuss the CoCoA algorithm and the challenges in incor-

porating CoCoA with the C-DCOP framework.

2.1 Distributed Constraint Optimization
Problem

A Distributed Constraint Optimization Problem (DCOP) can be

defined as a tuple ⟨𝐴,𝑋, 𝐷, 𝐹, 𝛼⟩ [18] where,
• 𝐴 is a set of agents {𝑎1, 𝑎2, . . . , 𝑎𝑛}.
• 𝑋 is a set of discrete variables {𝑥1, 𝑥2, . . . , 𝑥𝑚}, where each
variable 𝑥 𝑗 is controlled by one of the agents 𝑎𝑖 ∈ 𝐴.
• 𝐷 is a set of discrete domains {𝐷1, 𝐷2, . . . , 𝐷𝑚}, where each
𝐷𝑖 corresponds to the domain of variable 𝑥𝑖 .

• 𝐹 is a set of cost functions {𝑓1, 𝑓2, . . . , 𝑓𝑙 }, where each 𝑓𝑖 ∈ 𝐹
is defined over a subset 𝑥𝑖 = {𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑘 } of variables 𝑋 ,

called the scope of the function, and the cost for the function
𝑓𝑖 is defined for every possible value assignment of 𝑥𝑖 , that

is, 𝑓𝑖 : 𝐷𝑖1 × 𝐷𝑖2 × . . .× 𝐷𝑖𝑘 → R, where the arity of the

function 𝑓𝑖 is 𝑘 . In this paper, we consider only binary cost

functions (i.e., there are only two variables in the scope of

all functions).

• 𝛼 : 𝑋 → 𝐴 is a variable-to-agent mapping function that

assigns the control of each variable 𝑥 𝑗 ∈ 𝑋 to an agent 𝑎𝑖 ∈

𝑥0𝑥3

𝑥1

𝑥2

(a) Constraint Graph

𝑓 (𝑥0, 𝑥1) = 𝑥2
0
− 2𝑥0𝑥1 + 2𝑥2

1

𝑓 (𝑥0, 𝑥2) = 𝑥0𝑥2 + 3𝑥2
2

𝑓 (𝑥0, 𝑥3) = 𝑥0𝑥3 + 𝑥2
3

𝑓 (𝑥1, 𝑥2) = 𝑥2
1
− 𝑥1𝑥2 + 2𝑥2

2

∀𝑥𝑖 ∈ 𝑋 : 𝐷𝑖 = [−20, 20]

(b) Cost Functions

Figure 1: Example of a C-DCOP

𝐴. Each agent can hold several variables. However, for ease

of understanding, we assume each agent controls only one

variable in this paper.

An optimal solution of a DCOP is an assignment 𝑋 ∗ that minimizes

the sum of cost functions as shown in Equation 1:
1

𝑋 ∗ = argmin

𝑋

∑
𝑓𝑖 ∈𝐹

𝑓𝑖 (𝑥𝑖 ) (1)

2.2 Continuous Distributed Constraint
Optimization Problem

Similar to the DCOP formulation, C-DCOPs can be defined as a

tuple ⟨𝐴,𝑋, 𝐷, 𝐹, 𝛼⟩ [11]. In C-DCOPs, 𝐴, 𝐹 , and 𝛼 are the same as

defined in DCOPs. Nonetheless, the set of variables 𝑋 and the set

of domains 𝐷 are defined as follows:

• 𝑋 is the set of continuous variables {𝑥1, 𝑥2, . . . , 𝑥𝑚}, where
each variable 𝑥 𝑗 is controlled by one of the agents 𝑎𝑖 ∈ 𝐴.
• 𝐷 is a set of continuous domains {𝐷1, 𝐷2, . . . , 𝐷𝑚}, where
each 𝐷𝑖 = [𝐿𝐵𝑖 ,𝑈 𝐵𝑖 ] corresponds to the domain of variable

𝑥𝑖 . In other words, variable 𝑥𝑖 can take on any value in the

range of 𝐿𝐵𝑖 to𝑈𝐵𝑖 .

As discussed in the previous section, a notable difference between

DCOPs and C-DCOPs can be found in the representation of the

cost functions. In DCOPs, the cost functions are conventionally

represented in the form of a table, while in C-DCOPs, they are

represented in the form of a function [11]. However, the goal of C-

DCOP remains the same as depicted in Equation 1. Figure 1 presents

an example C-DCOP, where Figure 1(a) shows a constraint graph

with four variables with each variable 𝑥𝑖 controlled by an agent

𝑎𝑖 . Each edge in the constraint graph represents a cost function

and the definition of each function is shown in Figure 1(b). In this

particular example, the domains of all variables are the same – each

variable 𝑥𝑖 can take values from the range [−20, 20].

2.3 Cooperative Constraint Approximation
The Cooperative Constraint Approximation (CoCoA) algorithm

starts with randomly activating an agent. Upon activation, the agent

sends an InquiryMessage to its neighboring agents. We define

the set of direct neighbors of the agent 𝑎𝑖 is N𝑖 . When an agent

1
For a maximization problem, the argmin operator should be replaced by the argmax

operator.
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𝑎𝑖 sends an InquiryMessage to the neighboring agents 𝑎 𝑗 ∈ N𝑖 ,
each 𝑎 𝑗 calculates cost maps for every value in the domain of 𝑎𝑖
using the following equation:

𝜁 𝑗,𝑘 = min

𝑥 𝑗,𝑙 ∈𝐷 𝑗

∑
𝐶∈𝐹 𝑗

𝐶 (𝑥 𝑗 ∩ 𝑥𝑖,𝑘 ∩ 𝑥 𝑗,𝑙 ) (2)

Where 𝜁 𝑗,𝑘 is the cost for the 𝑘𝑡ℎ value of agent 𝑎𝑖 ’s domain

which is calculated by the neighbor 𝑎 𝑗 , 𝑥 𝑗,𝑙 indicates that 𝑥 𝑗 is

assigned the 𝑙𝑡ℎ value of 𝑎 𝑗 ’s domain
2
, 𝐷 𝑗 , 𝐶 is the cost for the

function which is an element of the constraint function set 𝐹 𝑗
between agent 𝑎 𝑗 and one of the agent ∈ N𝑗 , 𝑥 𝑗 is the Current

Partial Assignment (CPA) that contains the known assigned values

of the neighbors of 𝑎 𝑗 , 𝑥𝑖,𝑘 indicates that 𝑥𝑖 is assigned the 𝑘𝑡ℎ

value of agent 𝑎𝑖 ’s domain 𝐷𝑖 . Agent 𝑎 𝑗 calculates 𝜁 𝑗,𝑘 for all the

values of 𝑘 ∈ 𝐷𝑖 and the resulting cost map 𝜁 𝑗 = {𝜁 𝑗,1, 𝜁 𝑗,2, . . . . ,

𝜁 𝑗, |𝐷𝑖 | } is sent to the inquiring agent 𝑎𝑖 via CostMessage. Then, 𝑎𝑖
finds the value of its variable 𝑥𝑖 from Equation 3.

𝛿 =𝑚𝑖𝑛

|N𝑖 |∑
𝑗=1

𝜁 𝑗,𝑘 ; 𝜌 = {𝑘 :

|N𝑖 |∑
𝑗=1

𝜁 𝑗,𝑘 = 𝛿} (3)

In Equation 3, 𝛿 is the minimum aggregated cost received from

the neighbors for each 𝑘 ∈ 𝐷𝑖 , 𝜌 is a set of values from agent 𝑎𝑖 ’s

domain for which the cost is minimum. However, more than one

value in 𝑎𝑖 ’s domain can achieve the minimum cost. In this case, a

unique-first approach is followed to determine whether the current

solution is accepted or not. In this approach, |𝜌 | is compared with

a bound 𝛽 . The initial value of 𝛽 is set to 1. This means the value

is acceptable if it is a unique local optimum. If |𝜌 | > 𝛽 , agent 𝑎𝑖
goes into HOLD state and waits for more information. Otherwise, a

value is randomly selected from 𝜌 and is assigned to its controlled

variable. After assigning a value to 𝑥𝑖 , every agent 𝑎 𝑗 ∈ N𝑖 updates
its current partial assignment and repeats the algorithm. If the value

assignment is not possible for all the agents, 𝛽 is increased by 1,

and the algorithm is repeated. This approach prevents the agents

from assigning a value prematurely to their variables.

2.4 Challenges
We need to address the following challenges to develop a C-DCOP

algorithm that adapts the Cooperative Constraint Approximation

(CoCoA).

• Non-iterativeCharacteristics:AsCoCoA is a non-iterative,

semi-greedy DCOP solver, it assigns a value to a variable

only once. For its semi-greedy disposition, early assignments

may turn out to be sub-optimal.

• Infinite Domain: For Continuous DCOPs, the domain is an

infinite number of values within a range denoted by [Lower

Bound, Upper Bound]. An agent needs to assign a value

to its variables from an infinite number of points. For this

reason, a C-DCOP solver needs a substantial amount of time

to converge as well as massive memory overhead for the

computation.

2
In Equation 2, for continuous valued variables, 𝐷 𝑗 indicates the discretized domain

of the agent 𝑎 𝑗 .

• Discretization: C-DCOP solvers need to discretize the con-

tinuous state space to operate. The choice of discrete points

can be random, however, settling up the number of discrete

points is critical. The quality of solutions found by a C-DCOP

algorithm increases with the increasing number of points,

because, with more discrete points, the agents can more

accurately represent the cost function. Nevertheless, the in-

creasing number of discrete points increases the overhead.

• Initializing Parameters: If the cost functions are not con-
vex, initializing the parameters in continuous non-linear

optimization methods matters a lot. Because, even with infi-

nite computing power and time, the gradient approach can

still be stuck with local minimum or saddle point.

In the following section, we devise a novel method to apply CoCoA

in C-DCOPs.

3 THE C-COCOA ALGORITHM
To address the challenges discussed in the previous section, we

propose C-CoCoA, a non-exact local search algorithm that uses

Cooperative Constraint Approximation (CoCoA) as the underlying

algorithmic framework. To be precise, we combine the discrete

CoCoA algorithm and the continuous non-linear optimization tech-

nique. C-CoCoA is also a non-iterative algorithm like CoCoA in

the sense that each agent can only assign its value once and once

assigned, it cannot change its value.

In C-CoCoA, we assume that an agent 𝑎𝑖 communicates only

with those agents whose variables affect 𝑎𝑖 ’s cost function. In other

words, 𝑎𝑖 communicates only with 𝑎 𝑗 ∈ N𝑖 . This ensures a low

communication overhead as well as a fully decentralized solution.

For this reason, the total cost of an individual agent 𝑎𝑖 only depends

on |N𝑖 | rather than the size of the constraint graph. We also assume

that each agent knows its neighbors’ discretized domain and the

nodes of the constraint graph are reachable from any other node.

The C-CoCoA algorithm uses the same message passing tech-

nique as described in Section 2.3 for the discrete CoCoA, using the

current discretizations of the domain of each variable 𝑥𝑖 . However,

as the cost functions are not in the tabular form, each agent cal-

culates the cost by evaluating 𝐶 = 𝑓𝑖 (𝑥𝑖 ), where 𝑥𝑖 is the set of

variables related to 𝑓𝑖 . The key difference between the C-CoCoA

and discrete CoCoA is that, in C-CoCoA, each agent 𝑎𝑖 calculates

the cost by considering its domain discretizations, 𝑥𝑖 (1), 𝑥𝑖 (2),...,
𝑥𝑖 (𝑑) (Algorithm 1: Line 1) instead of the actual continuous do-

main, where 𝑑 is the total number of random discrete points taken

from 𝐷𝑖 . We select the discrete points randomly because, as afore-

mentioned, we use the non-linear optimization technique to adjust

these random discrete points later. For the example of Figure 1, for

simplicity, let us assume that 𝑑 = 2. So, we discretize the domains

of 𝑥0, 𝑥1, 𝑥2, and 𝑥3 into two random discrete points (𝑥0: {1, 2}, 𝑥1:

{3, 4}, 𝑥2: {7, 8}, and 𝑥3: {5, 9}) from the domain range [-20, 20].

The states of the agents are defined as IDLE, ACTIVE, HOLD and
DONE [23]. At the start of the algorithm, all the agents are in IDLE
state and 𝛽 = 1. Then C-CoCoA activates an agent 𝑎𝑖 randomly

and as soon as the agent finishes the algorithm, it will trigger the

algorithm for its neighbors. Agent 𝑎𝑖 sends an UpdateStateMes-
sage({𝑖 , ACTIVE}) and an InquiryMessage({𝑖 , 𝑥𝑖 }) to each neighbor

𝑎 𝑗 ∈ N𝑖 and waits for the CostMessage({𝜁 𝑗 }) from the neighbors
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Algorithm 1: The C-CoCoA Algorithm

1 Discretize each domain into 𝑑 points, 𝑥𝑖 (1) , 𝑥𝑖 (2) , . . . , 𝑥𝑖 (𝑑)

When started or 𝑎𝑖 receives UpdateStateMessage({𝑗 , DONE}):
require :𝑆𝑇𝐴𝑇𝐸 := IDLE or HOLD

2 𝑆𝑇𝐴𝑇𝐸 ← ACTIVE

3 for each agent 𝑎 𝑗 ∈ N𝑖 do
4 sends UpdateStateMessage({𝑖 , ACTIVE}) to 𝑎 𝑗

5 sends InquiryMessage({𝑖 , 𝑥𝑖 }) to 𝑎 𝑗

6 waits for all CostMessage({𝜁 𝑗 }) from 𝑎 𝑗 ∈ N𝑖

7 calculate 𝜌 using Equation 3

8 𝜒 ← values of 𝑥 𝑗 that results 𝜁 𝑗

9 if |𝜌 | ≤ 𝛽 or IdleActiveNeighbors(𝑖) = 0 then
10 Θ← randomly select from 𝜌

11 𝜒 ← 𝜒 ∪ Θ
12 calculate 𝐹

𝑎𝑖
N𝑖 using Equation 4

13 𝑥
𝑎𝑖
N𝑖 ← set of related variables with 𝐹

𝑎𝑖
N𝑖

14 for each variable 𝑥 ∈ 𝑥𝑎𝑖N𝑖 do
15 initialize 𝑥 with the corresponding value from 𝜒

16 while the terminating condition is not met do
17 ∀𝑥 ∈ 𝑥𝑎𝑖N𝑖 update 𝑣𝑥 using Equation 5

18 𝑥𝑖 ← 𝑣𝑥𝑖
19 𝑆𝑇𝐴𝑇𝐸 ← DONE

20 for each agent 𝑎 𝑗 ∈ N𝑖 do
21 sends UpdateStateMessage({𝑖 , DONE}) to 𝑎 𝑗

22 sends SetValueMessage({𝑖 , 𝑥𝑖 }) to 𝑎 𝑗

23 else
24 𝑆𝑇𝐴𝑇𝐸 ← HOLD

25 for each agent 𝑎 𝑗 ∈ N𝑖 do
26 sends UpdateStateMessage({𝑖 , HOLD}) to 𝑎 𝑗

When received InquiryMessage({𝑖 , 𝑥𝑖 }) at 𝑎 𝑗 :
27 𝜁 𝑗 ← ∅
28 for all 𝑥𝑖,𝑘 𝑖𝑛 𝐷𝑖𝑑𝑖𝑠

do
29 𝑐𝑜𝑠𝑡 ← ∅
30 if 𝑎 𝑗 ∈ 𝑥𝑖 then // 𝑎 𝑗 already assigned a value to

its variable 𝑥 𝑗

31 𝐷 𝑗𝑑𝑖𝑠
← value of 𝑎 𝑗

32 for all 𝑥 𝑗,𝑙 𝑖𝑛 𝐷 𝑗𝑑𝑖𝑠
do

33 calculate 𝜁 𝑗,𝑘 using Equation 2

34 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 ∪ 𝜁 𝑗,𝑘
35 𝐶 ← min(𝑐𝑜𝑠𝑡 ), 𝑣𝑗 ← argmin𝑗 (𝑐𝑜𝑠𝑡 )
36 𝜁 𝑗 ← 𝜁 𝑗 ∪ {𝑣𝑗 : 𝐶 }
37 sends CostMessage({𝜁 𝑗 }) to 𝑎𝑖

When received UpdateStateMessage({𝑖 , 𝑆 }) at 𝑎 𝑗 :
38 𝑎 𝑗 stores 𝑆𝑇𝐴𝑇𝐸 of 𝑎𝑖 ← 𝑆

39 if 𝑆 = HOLD and 𝑆𝑇𝐴𝑇𝐸 of 𝑎 𝑗 = HOLD and
IdleActiveNeighbors(j) = 0 then

40 𝛽 + +
41 Repeat algorithm

42 if 𝑆 = DONE and 𝑆𝑇𝐴𝑇𝐸 of 𝑎 𝑗 = HOLD then
43 Repeat algorithm

Procedure 1: IdleActiveNeighbors
1 Function IdleActiveNeighbors(𝑖):
2 for each agent 𝑎 𝑗 ∈ N𝑖 do
3 if 𝑆𝑇𝐴𝑇𝐸 of 𝑎 𝑗 = IDLE or ACTIVE then
4 𝑐𝑜𝑢𝑛𝑡 + +

5 return 𝑐𝑜𝑢𝑛𝑡

(Algorithm 1: Lines 3-6). After receiving the InquiryMessage, each
neighbor 𝑎 𝑗 calculates the lowest cost for every possible value as-

signment for the discretized domain of 𝑥𝑖 , 𝐷𝑖𝑑𝑖𝑠 (Algorithm 1: Lines

27-34). We define 𝜁 𝑗 = {𝜁 𝑗,𝑥𝑖 (1) , 𝜁 𝑗,𝑥𝑖 (2) , ..., 𝜁 𝑗,𝑥𝑖 (𝑑) } as the overall
cost map that contains the minimum cost for each of the discrete

points of 𝑎𝑖 ’s domain and is calculated by the agent 𝑎 𝑗 . We define

each element of the cost map as 𝜁 𝑗,𝑥𝑖 (𝑑) = {𝑣 𝑗 : 𝐶}, where 𝐶 is the

minimum cost and 𝑣 𝑗 denotes the value of 𝑎 𝑗 ’s domain that results

the minimum cost (Algorithm 1: Lines 35-36). 𝑎 𝑗 sends the cost

map to 𝑎𝑖 via CostMessage({𝜁 𝑗 }). After receiving all the cost maps,

the agent 𝑎𝑖 then calculates 𝜌 using the Equation 3. 𝜌 contains the

values of 𝑥𝑖 that is near-optimal within the discretized points 𝑥𝑖 (1),
𝑥𝑖 (2),..., 𝑥𝑖 (𝑑) of the agent 𝑎𝑖 ’s domain. 𝑎𝑖 also stores the values

𝑣 𝑗 ∈ 𝜁 𝑗,𝑥𝑖 (𝑑) in a set 𝜒 (Algorithm 1: Lines 7-8). For the example

of Figure 1, we assume that the agent 𝑎0
3
is randomly selected.

𝑎0 then sends UpdateStateMessage and InquiryMessage to its

neighbors 𝑎1, 𝑎2, 𝑎3 and waits for the CostMessage from all of

them. Upon receiving the InquiryMessage, 𝑎1, 𝑎2 and 𝑎3 calculate
the cost map 𝜁1 = {3: 13, 3: 10}, 𝜁2 = {7: 154, 7: 161}, 𝜁3 = {5: 30, 5: 35},

respectively, and send these cost maps to the inquiring agent 𝑎0
via CostMessage. After receiving the cost maps, 𝑎0 calculates 𝜌 by

using the Equation 3 and for this example 𝑎0 assigns 𝜌 = {1} and
𝜒 = {𝑥1 = 3, 𝑥2 = 7, 𝑥3 = 5}. We describe this example elaborately in

Figure 2.

Similar to the discrete CoCoA algorithm, more than one value in

𝑎𝑖 ’s domain can achieve the minimum cost, that is |𝜌 | > 1. In this

case, we follow a unique-first approach which is described in the

CoCoA algorithm (Section 2.3). Algorithm 1: Lines 24-26 describes

the case when |𝜌 | > 𝛽 . In this case, 𝑎𝑖 goes into the HOLD state

and waits until another agent has completed its assignment before

the algorithm is run again. Otherwise (when |𝜌 | ≤ 𝛽), a value is
randomly selected from the set 𝜌 . We assign this value to Θ and

add this Θ to the set 𝜒 (Algorithm 1: Lines 10-11). This assignment

is near-optimal within the discretized domain 𝐷𝑖𝑑𝑖𝑠 of 𝑎𝑖 . To find

the best solution within the actual domain 𝐷𝑖 , we use a non-linear

optimization technique. We choose a gradient-based optimization

approach because we can implement it in a decentralized way using

only local information. Now, for employing the gradient-based non-

linear optimization, agent 𝑎𝑖 calculates the local objective function

𝐹
𝑎𝑖
N𝑖

(Algorithm 1: Line 12) by using the following equation.

𝐹
𝑎𝑖
N𝑖

=
∑

𝑎 𝑗 ∈N𝑖

𝑓 (𝑎𝑖 , 𝑎 𝑗 ) (4)

Where 𝑓 (𝑎𝑖 , 𝑎 𝑗 ) is the cost function that is related to agent 𝑎𝑖
and its direct neighbor 𝑎 𝑗 ∈ N𝑖 . For the example of Figure 1, agent

𝑎0 assigns Θ = 1 from 𝜌 and appends this value with the set 𝜒 .

Hence, the set 𝜒 = {𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 7, 𝑥3 = 5}. Thereafter, the

3
We use 𝑎𝑖 and 𝑥𝑖 interchangeably throughout the paper since we assume that each

agent controls exactly one variable.

Main Track AAMAS 2021, May 3-7, 2021, Online

1130



𝑎0

[1,2]

𝑎3

[5,9]

𝑎1

[3,4]

𝑎2

[7,8]

(a) InquiryMessage from 𝑎0

Algorithm starts by random activation of an agent 𝑎0.

• 𝑎0 sends InquiryMessage to 𝑎1, 𝑎2 and 𝑎3 and waits for the CostMessage from them,

blue arrows represent the InquiryMessage, grey node represents the inquiring agent.

• 𝑎1, 𝑎2 and 𝑎3 calculates the cost map, 𝜁 , yellow nodes represent the neighbors.

• 𝑎1 calculates:

𝜁3,1 = 13, 𝜁4,1 = 25, therefore, appends [3: 13] with 𝜁1.

𝜁3,2 = 10, 𝜁4,2 = 20, therefore, appends [3: 10] with 𝜁1.

𝑎1 sends the final 𝜁1 = [3: 13, 3: 10] to 𝑎0 via CostMessage.

• 𝑎2 calculates:

𝜁7,1 = 154, 𝜁8,1 = 200, therefore, appends [7: 154] with 𝜁2.

𝜁7,2 = 161, 𝜁8,2 = 208, therefore, appends [7: 161] with 𝜁2.

𝑎2 sends the final 𝜁2 = [7: 154, 7: 161] to 𝑎0 via CostMessage.

• 𝑎3 calculates:

𝜁5,1 = 30, 𝜁9,1 = 90, therefore, appends [5: 30] with 𝜁3.

𝜁5,2 = 35, 𝜁9,2 = 99, therefore, appends [5: 35] with 𝜁3.

𝑎3 sends the final 𝜁3 = [5: 30, 5: 35] to 𝑎0 via CostMessage.
𝑎0𝑎3

𝑎1

𝑎2

(b) CostMessage to 𝑎0

• 𝑎0 receives cost maps from 𝑎1, 𝑎2 and 𝑎3, red arrows represent the CostMessage.
• 𝑎0 calculates 𝜌 using Equation 3:

For the discretized domain value 1: cost = 13 + 154 + 30 = 197.

For the discretized domain value 2: cost = 10 + 161 + 35 = 206.

Therefore, 𝜌 = 1 and 𝜒 = {𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 7, 𝑥3 = 5}.
After 100 iterations of the gradient-based approach, we get, 𝑥0 = -0.572.

𝑎0 marks its state to DONE and sends a SetValueMessage
to 𝑎1, 𝑎2, and 𝑎3 that contains the assigned value of 𝑎0.

𝑎0𝑎3

𝑎1

𝑎2

(c) Inquiry messages from 𝑎1

After the completion of 𝒂0, the algorithm is triggered for the neighboring agents 𝒂1, 𝒂2, 𝒂3.

• 𝑎1 sends InquiryMessage to 𝑎0 and 𝑎2, blue arrows represent the InquiryMessage.

• 𝑎0 and 𝑎2 calculates the cost map.

• 𝑎0 calculates:

𝜁−0.572,3 = 21.756, therefore, appends [-0.572: 21.756] with 𝜁0.

𝜁−0.572,4 = 36.899, therefore, appends [-0.572: 36.899] with 𝜁0.

𝑎0 sends the final 𝜁0 = [-0.572: 21.756, -0.572: 36.899] to 𝑎1 via CostMessage.

• 𝑎2 calculates:

𝜁7,3 = 86, 𝜁8,3 = 113, therefore, appends [7: 86] with 𝜁2.

𝜁7,4 = 86, 𝜁8,4 = 112, therefore, appends [7: 86] with 𝜁2.

𝑎2 sends the final 𝜁2 = [7: 86, 7: 86] to 𝑎1 via CostMessage.

𝑎0𝑎3

𝑎1

𝑎2

(d) Cost messages to 𝑎1

• 𝑎1 receives cost maps from 𝑎0 and 𝑎2, red arrows represent the cost message.

• 𝑎1 calculates 𝜌 using Equation 3:

For the discretized domain value 3: cost = 21.756 + 86 = 107.756.

For the discretized domain value 4: cost = 36.899 + 86 = 122.899.

Therefore, 𝜌 = 3 and 𝜒 = {𝑥0 = −0.572, 𝑥1 = 3, 𝑥2 = 7}.
After 100 iterations of the gradient-based approach, we get, 𝑥1 = -0.122.

𝑎1 marks its state to DONE and sends a SetValueMes-
sage to 𝑎0 and 𝑎2 that contains the assigned value of 𝑎1.

Agents 𝑎2 and 𝑎3 also calculate the values for their variables simultaneously.

We get 𝑥2 = 0.124 and 𝑥3 = 0.911 when the algorithm terminates.

Hence, the near-optimal assignment is, X∗ = {x0 = -0.572, x1 = -0.122, x2 = 0.124 and x3 = 0.911}

Figure 2: Example partial trace of the C-CoCoA algorithm to solve the C-DCOP shown in Figure 1. In this example, we assume
that the variable 𝑥𝑖 is controlled by the agent 𝑎𝑖 and 𝑥0: [1, 2], 𝑥1: [3, 4], 𝑥2: [7, 8], 𝑥3: [5, 9] are the two random discrete points
taken from the actual domain [-20, 20]. We also assume that, 𝜁 𝑗,𝑘 is the cost for the 𝑘𝑡ℎ value of agent 𝑎𝑖 ’s domain which is
calculated by neighbor 𝑎 𝑗 and 𝜁 𝑗 is the overall cost map that is calculated by the neighbor 𝑎 𝑗 . We use the arrows between the
nodes of the constraint graph to indicate the direction of the corresponding messages.
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agent 𝑎0 calculates the local objective function 𝐹
𝑎0
N0

= 𝑥2
0
− 2𝑥0𝑥1 +

2𝑥2
1
+ 𝑥0𝑥2 + 3𝑥2

2
+ 𝑥0𝑥3 + 𝑥2

3
.

After that, the agent 𝑎𝑖 performs gradient-based approach for

optimizing its local objective function 𝐹
𝑎𝑖
N𝑖
(𝑥𝑎𝑖N𝑖
) where 𝑥𝑎𝑖N𝑖

is the

set of all the related variables with 𝐹
𝑎𝑖
N𝑖

(Algorithm 1: Line 13).

Agent 𝑎𝑖 assigns every variable 𝑥 ∈ 𝑥𝑎𝑖N𝑖
with the corresponding

value from the set 𝜒 as the initial values in the gradient-based

optimization (Algorithm 1: Lines 14-15). Specifically, the agent 𝑎𝑖
minimizes the local objective function 𝐹

𝑎𝑖
N𝑖

and updates the value

𝑣𝑥 of each variable 𝑥 ∈ 𝑥𝑎𝑖N𝑖
according to the following equation:

𝑣𝑥 (𝑡) = 𝑣𝑥 (𝑡 − 1) − 𝛼
𝜕𝐹

𝑎𝑖
N𝑖

𝜕𝑥
𝑎𝑖
N𝑖

����𝑣𝑥
argmin𝑥𝑖

𝐹
𝑎𝑖
N𝑖
(𝑥𝑎𝑖N𝑖 )

(5)

Here, 𝛼 is the learning rate of the algorithm (Algorithm 1: Lines

16-17). For the example of Figure 1, 𝑥
𝑎0
N0

= {𝑥0, 𝑥1, 𝑥2, 𝑥3}. Agent 𝑎0

initializes all the variables in 𝑥
𝑎0
N0

from the set 𝜒 in the gradient-

based optimization. In this example, the initial values are set as

𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 7, 𝑥3 = 5 (see Figure 2). Then the agent 𝑎0 starts

updating the values of the variables 𝑥
𝑎0
N0

by using the Equation 5.

The agent continues this update process until it converges or

a maximum number of iterations is reached. After termination,

the current value of 𝑣𝑥 is actually the approximate optimal assign-

ment for the variable 𝑥𝑖 (Algorithm 1: Line 18). Then the agent

𝑎𝑖 updates its state to DONE and sends its neighbors 𝑎 𝑗 ∈ N𝑖 an
UpdateStateMessage({𝑖 , DONE}) and a SetValueMessage({𝑖 , 𝑥𝑖 })
that contains the assigned value of 𝑥𝑖 . Upon receiving the SetVal-
ueMessage, the neighbors update their CPA with the value of 𝑥𝑖
and trigger the algorithm for them. For our example, after 100 iter-

ations, the final assignment of the variable 𝑥0 is -0.572. Agent 𝑎0’s

state is marked as DONE and 𝑎0 sends a SetValueMessage to all

the neighbors 𝑎1, 𝑎2, and 𝑎3. The neighbors update their CPA with

the value of 𝑥0 and trigger the algorithm for them. Note that, each

agent can only assign its value once, and once assigned it cannot

change its value. To be precise, each agent updates its value locally

with gradient descent and sends the SetValueMessage only once

to a neighbor, and thus C-CoCoA is a non-iterative approach.

4 THEORETICAL ANALYSIS

In this section, we describe some theoretical properties of C-CoCoA

in terms of communication, computation, and memory.

Theorem 4.1. In a binary constraint graph 𝐺 = (𝑁, 𝐸), the total
number of messages required by C-CoCoA is 5|𝑁 |2 + 𝑑 |𝑁 |2 in the
worst case, where 𝑑 is the total number of discrete points taken from
the agents’ domain and we assume that the total number of agents
|𝐴| = |𝑁 |.

Proof. In C-CoCoA, we define N𝑖 is the set of direct neigh-

bors of the agent 𝑎𝑖 . After the activation of an agent 𝑎𝑖 , it sends

2|N𝑖 | messages (UpdateStateMessage and InquiryMessage) to
its neighbors as well as 𝑎𝑖 receives |N𝑖 | messages from its neighbors

against the reply of the inquiry messages in the form of CostMes-
sage (Algorithm 1: Lines 4-6). Therefore, at this stage, the number

of messages is 3|N𝑖 |. Then, after a successful assignment to its

variable, the agent 𝑎𝑖 sends 2|N𝑖 | messages (UpdateStateMessage
and SetValueMessage) to its neighbors (Algorithm 1: Lines 20-22).

As a result, the number of messages transmitted so far is 5|N𝑖 |.
However, an agent sends an additional |N𝑖 | messages each time

it enters into the HOLD state (Algorithm 1: Lines 25-26). Although

an agent may never enter into the HOLD state, in the worst case,

it may enter into the HOLD state 𝑑 times at most. For this reason,

5|N𝑖 | +𝐻 |N𝑖 | is the total number of messages an agent sends and

receives, where 𝐻 = 0, 1, ..., 𝑑 defines the number of times an agent

enters into the HOLD state. In the worst case, the graph is com-

plete where |N𝑖 | = |𝑁 | − 1 ≈ |𝑁 | and 𝐻 = 𝑑 . Therefore, the total

number of messages sent or received by an agent 𝑎𝑖 is 5|𝑁 | + 𝑑 |𝑁 |
and C-CoCoA requires total 5|𝑁 |2 + 𝑑 |𝑁 |2 messages in the worst

case. □

Theorem 4.2. Themessage size complexity of C-CoCoA is𝑂 (2|𝑁 |2+
𝑑 |𝑁 |) in the worst case.

Proof. In C-CoCoA, the size of each UpdateStateMessage is
constant and in each of the InquiryMessage and SetValueMes-
sage, the agent 𝑎𝑖 sends the CPA 𝑥𝑖 that contains the set of known
assigned values of all the neighbors of 𝑎𝑖 . Hence, the size of each In-
quiryMessage and SetValueMessage is |N𝑖 |. 𝑎𝑖 sends total |N𝑖 |
InquiryMessage and SetValueMessage to its neighbors. So, the

summation of message size complexity is |N𝑖 |2 + |N𝑖 |2 = 2|N𝑖 |2.
When the neighboring agents send InquiryMessage to 𝑎𝑖 , it sends
a CostMessage of size 𝑑 as well that contains the cost map 𝜁 .

Therefore, 𝑎𝑖 sends |N𝑖 | CostMessage of size 𝑑 to the neighbors.

Hence, the total message size for an agent 𝑎𝑖 is𝑂 (2|N𝑖 |2 +𝑑 |N𝑖 |) ≈
𝑂 (2|𝑁 |2 + 𝑑 |𝑁 |) in the worst case in C-CoCoA. □

Theorem 4.3. The overall computational complexity of C-CoCoA
is 𝑂 ( |𝑁 | (𝑑2 + 𝑏)) in the worst case, where 𝑏 is the number of times
an agent updates the values of the variables in Equation 5.

Proof. After the transmission of UpdateStateMessage and In-
quiryMessage (Algorithm 1: Lines 3-5), the computational com-

plexity of an agent is |N𝑖 |𝑑2 (𝑑2 is the complexity of calculating

an InquiryMessage). In the gradient-based optimization, an agent

needs |𝑥𝑎𝑖N𝑖
|+𝑏 |𝑥𝑎𝑖N𝑖

| computational complexity. After a successful as-

signment or each of the unsuccessful attempt (HOLD state) to assign
a value, an agent again iterates over the set of its neighbors (Algo-

rithm 1: Lines 20-26). This step adds |N𝑖 | +𝐻 |N𝑖 | complexity, where

𝐻 = 0, 1, ..., 𝑑 . After adding all these, the overall computational com-

plexity is 𝑂 ( |𝑁 |𝑑2 + |𝑁 | + |𝑁 |𝑏 + |𝑁 | + 𝐻 |𝑁 |) ≈ 𝑂 ( |𝑁 | (𝑑2 + 𝑏));
where in the worst case |N𝑖 | ≈ |𝑁 |, |𝑥𝑎𝑖N𝑖

| ≈ |𝑁 | and 𝐻 = 𝑑 . □

5 EXPERIMENTAL RESULTS

In this section, we empirically evaluate the performance of C-

CoCoA against the state-of-the-art C-DCOP solvers: PFD, AC-DPOP
4
,

C-DSA, and HCMS. The performance metrics that we consider for

the evaluation are solution quality, time, and the number of mes-

sages. For PFD, we use the parameter settings suggested in [2] with

𝐾 = 500. We set DSA-B (i.e. 𝑝 = 0.6) for C-DSA. For HCMS, AC-

DPOP, and C-CoCoA, we choose the learning rate, 𝛼 = 0.01 (which

4
Although [11] proposed three versions of Continuous DPOP, we only compare with

AC-DPOP in this paper. The reason is that AC-DPOP is reported to provide the best

solution among the approximate C-DPOP algorithms proposed in their work.
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Figure 3: Comparison of C-CoCoA and the benchmarking
algorithms on random C-DCOPs (Dense graphs).
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Figure 4: Comparison of C-CoCoA and the benchmarking
algorithms on random C-DCOPs (Sparse graphs).
is the best result found on the empirical evaluation), and the number

of discrete points to be 3. For the experimental settings, we use the

settings described in [2]. To be precise, two types of graphs are used

for comparison, namely, Random Graphs and Random Trees. Binary
quadratic functions are used as the constraints which are of the

form 𝑎𝑥2 +𝑏𝑥𝑦 + 𝑐𝑦2 (used in both [2] and [11]). The coefficients of

the cost function (𝑎, 𝑏, 𝑐) are chosen randomly between [−5, 5], and
the domains of each agent are set to [−50, 50]. However, it is worth
mentioning that although we choose binary quadratic functions

for evaluation, C-CoCoA is broadly applicable to other classes of

problems. In all of the settings described above, we run the bench-

marking algorithms on 25 independently generated problems and

20 times on each problem for a fixed amount of time which we

describe in detail in the following part of our discussion. In order to

conduct these experiments, we use a computer with an Intel Core

i5-4200M CPU with 2.5 GHz processor and 8GB RAM. Note that

unless stated otherwise, all differences shown in this section are

statistically significant for p-value < 0.05.

Random Graphs: We use three different settings for random

graphs - sparse, dense, and scale-free. For all the settings, we set the

maximum number of iterations for Equation 5 of C-CoCoA to be 100.
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Figure 5: Comparison of C-CoCoA and the benchmarking
algorithms on random C-DCOPs (Scale-free graphs).

Table 1: Solution quality of C-CoCoA, PFD, HCMS, and C-
DSA on random graphs with varying number of agents.

C-CoCoA PFD HCMS C-DSA

|𝐴| = 30

𝑝 = 0.2 -554,339 -469,093 -423,383 -493,730

𝑝 = 0.6 -1,251,118 -1,042,611 -1,055,878 -1,096,852

|𝐴| = 50

𝑝 = 0.2 -1,311,988 -1,030,328 -974,416 -1,118,344

𝑝 = 0.6 -3,086,005 -2,623,534 -2,730,943 -2,334,385

|𝐴| = 70

𝑝 = 0.2 -2,253,114 -1,858,646 -2,049,757 -1,636,508

𝑝 = 0.6 -5,486,958 -4,494,102 -5,060,671 —

Note that, although AC-DPOP requires fewer messages than HCMS

and PFD, we do not limit the number of messages for HCMS and

PFD since AC-DPOP requires much more computation to calculate

one message. Figure 3 shows the comparison between C-CoCoA

and the benchmarking algorithms on Erdős-Rényi [3] topology

with dense settings (edge probability 0.6). In this setting, we set

the 𝑛𝑜. 𝑜 𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 = 50. Moreover, we stop PFD, HCMS, and C-DSA

after 1000 milliseconds (ms) for each problem which is much larger

than the time needed to complete C-CoCoA. C-CoCoA produces

solutions of significantly improved quality and outperforms its

competitors HCMS, PFD, and C-DSA by 7.97%, 10.85%, and 24.58%,

respectively.

We choose sparse graphs as our second random graph settings.

Figure 4 shows the comparison of costs on Erdős-Rényi topology

with sparse settings (edge probability 0.2). The experimental setting

is similar to setting in the dense graphs with 𝑛𝑜. 𝑜 𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 = 50 and

the stopping criterion of iterative algorithms being 1000 ms. In this

setting, C-CoCoA manages to outperform C-DSA by 18.75%. The

other benchmarking algorithms (PFD and HCMS) are outperformed

by 23.95% − 25.43%.
Table 1 shows further comparisons on random graph settings

varying the number of agents. For this experiment, we run each

algorithm for 1500 ms using 30, 50, and 70 agents, each with both

sparse (𝑝 = 0.2) and dense (𝑝 = 0.6) settings. For smaller graphs (i.e.,

|𝐴| = 30), in both sparse and dense settings, the closest competitor

of C-CoCoA is C-DSA. For larger graphs and sparse settings, the

trends remain the same as the smaller instances. However, as the
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Figure 6: Comparison of C-CoCoA and the benchmarking
algorithms on random C-DCOPs (Random tree).
density and graph size increases, C-DSA takes more time than the

competing algorithms and HCMS becomes the closest competitor

of C-CoCoA. In all the settings, C-CoCoA outperforms the existing

algorithms given the same time. We omit the result for C-DSA in

|𝐴| = 70, 𝑝 = 0.6, as it does not produce any output within the

given time. A key insight we can draw from this experiment is that

neither the graph size nor the density has any adverse effect on the

performance of C-CoCoA in random graph settings.

Table 2: Comparison between C-CoCoA and the competing
algorithms in terms of Solution Cost, Time and No. of mes-
sages.

Graph Type Algorithm C T (ms) M

Sparse

C-CoCoA -1,277,088 297.4 2,502

HCMS -974,416 428.5 436,950

PFD -1,030,328 416.6 347,625

C-DSA -1,118,344 1000.0 218,475

Dense

C-CoCoA -3,086,005 375.5 3,765

HCMS -2,730,943 525.1 1,012,266

PFD -2,623,534 515.4 775,733

C-DSA -2,334,385 1000.0 506,133

Scale-Free

C-CoCoA -302,895 475.1 1,376

HCMS -261,848 856.0 284,532

PFD -272,023 781.7 228,600

C-DSA -281,995 1000.0 142,266

Tree

C-CoCoA -447,163 298.6 490

HCMS -365,917 420.5 98,000

PFD -368,272 429.0 89,066

C-DSA -379,123 1000.0 49,000

AC-DPOP -300,825 965.54 100

Figure 5 shows the performance comparison for scale-free net-

works in a larger graph setting (|𝐴| = 100). Although PFD, C-DSA,

and HCMS show similar performances, C-CoCoA outperforms the

existing algorithms by a margin of 5.94%, 5.62%, and 2.63% for

HCMS, PFD, and C-DSA, respectively. Note that we do not include

AC-DPOP in dense, sparse, and scale-free settings as it runs out of

memory in these settings.

Random Trees: We use the random tree configuration as our

last experimental setting since the memory requirement of AC-

DPOP is less on trees. The experimental configurations are similar

to random graph settings. Figure 6 shows the comparison graph

between C-CoCoA and the benchmarking algorithms on random

trees. HCMS, PFD, and C-DSA show similar performances in this

setting, however, C-CoCoA outperforms these algorithms by 13.12%,

21.42%, and 11.31%, respectively. Moreover, C-CoCoA provides 1.49

times better solution than AC-DPOP.

Table 2 summarizes the performance evaluation of C-CoCoA

against the benchmarking algorithms in terms of solution cost (C),

convergence time in ms (T), and the number of messages (M). The

settings for these experiments are the same as described above.

We use the time reported in the table as the convergence time

for each of the iterative algorithms. C-CoCoA outperforms all the

benchmarking algorithms in each setting. Moreover, the closest

competitor of C-CoCoA in sparse settings is C-DSA which requires

87 times more messages than C-CoCoA. The closest competitor of

C-CoCoA in dense settings is HCMS which requires 268 times more

messages. We see similar trends for Scale-free and random tree

settings. The closest competitor C-DSA requires 100 − 103 times

moremessages in these settings. AlthoughAC-DPOP requires fewer

messages than C-CoCoA in a random tree setting, it requires much

more time (3.23 times) than C-CoCoA in the random tree setting.

6 CONCLUSIONS AND FUTUREWORK
The classical DCOP model is only able to effectively deal with dis-

crete variables. However, this is recently reported that this assump-

tion significantly limits DCOPs’ ability to be applicable to many

real-world problems. In the wake of this, the C-DCOP framework

has been proposed which is an extension of the DCOP framework

having continuous valued variables. In this paper, we propose an

algorithm, namely C-CoCoA, that combines the discrete CoCoA

algorithm with a gradient-based non-linear optimization method to

solve C-DCOPs. We then empirically evaluate our algorithm in four

different experimental settings and compare the results with those

of the state-of-the-art C-DCOP algorithms. In all the experimental

settings, C-CoCoA performs better than the competing algorithms

in terms of solution quality, time, and the number of messages.

In the future, we would like to explore whether C-CoCoA can be

tailored to solve multi-objective and asymmetric C-DCOPs.
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