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ABSTRACT
We study a variant of the continuous multi-armed bandits problem, 
where the objective is to estimate the sensitivity threshold for an 
unknown psychometric function Ψ. This setting models the conduct 
of a psychometric experiment, which aims at quantifying human 
perception. We show that this setting is akin to hierarchical multi-
armed bandits and Black-box optimization of noisy functions, with 
both significant similarities and key differences. We introduce a new 
algorithm, DOS, for Dichotomous Optimistic Search, that efficiently 
solves this task, and show that DOS outperforms recent methods 
from both Psychophysics and Global Optimization for non Gaussian 
Psychometric functions in our experiments.1
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1 INTRODUCTION
Psychophysics investigates the relation between physical stimuli 
and the subjective responses (such as sensations) they produce. One 
of the key aspect of Psychophysics is the evaluation of human per-
ception, which is generally assessed by performing psychometric 
experiments, which unfold as follows: the experimenter presents to 
an individual, called the observer, a sequence of stimuli of varying 
intensities (for instance, the volume of a specific sound, see e.g.
[14, 20]), and try to measure how often the different intensities 
are perceived by the observer. In particular, the majority of experi-
ments are interested in measuring the sensitivity threshold, where 
the stimulus is just noticeable [28]. In the recent years, there has 
been an increased interest in using adaptive algorithms in order to 
estimate this threshold in psychometric experiments [30], where 
an agent adapts the sequence of stimulus intensity based on the 
observer responses. The two most popular adaptive methods in 
Psychophysics are currently the staircase [12] and likelihood maxi-
mization [28], both of which require strong assumption regarding 
the psychometric function and have limited guarantees regarding 
the consistency of their estimator.

1More elements of analysis of DOS and additional experiments may be found in [2].
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In this paper, we show that the threshold estimation problem can
be rewritten as a new type of the pure exploration continuous multi-
armed bandit problem, with interesting twists. Then, we introduce
a new algorithm, Dichotomous Optimistic Search (DOS), that takes
inspiration from hierarchical bandits and black box optimization
(see e.g. [18, 38]) to solve this problem (Section 3). The idea behind
DOS is to perform a stochastic continuous binary search, while
achieving the correct trade off between the depth of the binary tree,
and the confidence in its noisy comparisons. DOS only assumes a
minimal set of hypotheses over the psychometric function, and does
not assume the knowledge of its shape. Our experiments show that
DOS significantly outperforms traditional adaptive psychometric
methods and recent global optimization methods.

2 PROBLEM SETUP
Let 𝑇 denote the time horizon, I = [0, 1] the interval of possible
stimuli 2, Ψ : I ↦→ [0, 1] the psychometric function, 𝜇∗ ∈ [0, 1] the
target probability, 𝑠∗ � Ψ−1 (𝜇∗) the sensitivity threshold. Due to
the nature of the task, the psychometric function is assumed to
be continuous and strictly increasing (see e.g. [30]). The objective
of the threshold estimation problem is to find an estimator 𝑠 of
the sensitivity threshold 𝑠∗ with at most 𝑇 stimuli. I, 𝑇 and 𝜇∗ are
known to the agent (here the experimenter), but Ψ is unknown.
The process unfolds as follows. For each round 𝑡 ∈ [1, . . . ,𝑇 ]:

(1) The agent chooses an arm (here an intensity) 𝑠 ∈ I.
(2) The environment (here the observer) detects the stimulus

and notify the agent using an independent Bernoulli random
variable of mean Ψ(𝑠).

At time 𝑡 = 𝑇, the agent returns the arm 𝑠 that is her best guess
for the target stimulus 𝑠∗ . The performance of the agent is then
evaluated using simple regret R, defined as R(𝑠) = |𝜇∗ − Ψ(𝑠) |. In
the rest of the paper, we make the following assumption on Ψ.

Assumption 1 (Ψ is smooth around 𝑠∗). There exists 𝜈 > 0, and
0 < 𝜌 < 1 such that ∀ℎ > 0, ∀𝑠 ∈ I, |𝑠 − 𝑠∗ | ≤ 2−ℎ =⇒
|Ψ(𝑠) − Ψ(𝑠∗) | ≤ 𝜈𝜌ℎ

This implies that Ψ is smooth enough around 𝑠∗ to prevent the “find
the needle in a haystack” problem of global optimization [43]. It
should be noted that all continuously differentiable Ψ (including
e.g. Gaussian c.d.f.) satisfy Assumption 1.

Relation with Global Optimization. Let 𝑓 be defined as 𝑓 (𝑠) =
−|𝜇∗−Ψ(𝑠) |. It is easy to see that 𝑓 admits 𝑠∗ as its uniquemaximum,
and 𝑓 (𝑠∗) = 0. Moreover, the regret defined above is equivalent to
the usual definition of simple regret for 𝑓 (see e.g. [7]). Similarly,
Assumption 1 implies a similar smoothness condition for 𝑓 around
2The present work can be easily extended to any closed interval
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Figure 1: Comparison of the evolution of the average regret over 100 runs as a function of the number of stimuli presented
to the observer, for a time horizon of 𝑇 = 200, for each psychometric function. The standard deviation is reported using the
shaded area.

Algorithm 1: DOS

Parameters 𝜇∗ (objective), 𝑇 (time horizon)
Initialization 𝑖 ← 1, 𝑠1 ← 1/2, 𝑁1 ← 0, 𝜇1 ← 0, 𝑡 ← 0,
S = ∅, 𝑁∗ as in (3) and B𝑇 (·) as in (2).
while 𝑡 ≤ 𝑇 do

if |𝜇∗ − 𝜇𝑖 (𝑡) | > 2B𝑇 (𝑁𝑖 (𝑡)) or 𝑁𝑖 (𝑡) > 𝑁∗ then
if 𝑁𝑖 (𝑡) > 𝑁∗ then
S ← S ∪ {𝑖} ;

Activate new arm using (1) ;
𝑖 ← 𝑖 + 1 ;

Sample arm 𝑠𝑖 , update 𝑡, 𝑁𝑖 , 𝜇𝑖 ;
Output: 𝑠𝑖∗ , where 𝑖∗ = maxS if S ≠ ∅ , else 𝑖 .

its maximum. Therefore, 𝑓 draws a link between black box opti-
mization and threshold estimation. However, since Ψ is unknown
and only observed through the realizations of Bernoulli random
variables, global optimization strategies cannot be directly used to
solve the threshold optimization problem.

3 DICHOTOMOUS OPTIMISTIC SEARCH
We now introduce our main contribution, DOS. Let 𝑠𝑖 denotes the
stimulus value of the i-th arm activated by DOS, and 𝑁𝑖 (𝑡) (resp.
𝜇𝑖 (𝑡) and 𝜇𝑖 ) the number of pulls (resp. the empirical average and
the true probability value) of the 𝑖-th arm at time 𝑡 .

DOS strategy. The pseudocode for DOS can be found in Algo-
rithm 1. The general idea of DOS is inspired by the deterministic
dichotomous search algorithm. In order to achieve this, the agent
starts with the arm 𝑠1 = 1/2 (i.e. the center of I). Then, the agent
pulls the latest arm of the sequence 𝑠𝑖 until the time budget is
elapsed (𝑡 = 𝑇 ) or one of the two possible new arm activation crite-
ria is satisfied. Then she compares 𝜇∗, the target probability, and
𝜇𝑖 (𝑁𝑖 ), (i.e. the empirical proportion of stimuli of intensity 𝑠𝑖 that
were detected). Finally, leveraging the fact that Ψ is monotonically
increasing, she activates the arm 𝑠𝑖+1 such that

𝑠𝑖+1 = 𝑠𝑖 + sign(𝜇∗ − 𝜇𝑖 ) (1/2𝑖+1) (1)

Contrarily to the deterministic setting, here the agent has only
access to noisy observations of Ψ(𝑠𝑖 ). Therefore, for any arm 𝑠𝑖
the agent can only compare 𝜇𝑖 and 𝜇∗, and can never be sure if
Ψ(𝑠𝑖 ) ≥ 𝜇∗ . To succeed, the agent maintains a trade-off between:
• Confidence: Increase 𝑁𝑖 to improve confidence in the 𝜇𝑖 ,
• Depth: Increase 𝑖 to improve the approximation of 𝑠∗ .

This is achieved by using two arm activation rules:

|𝜇∗ − 𝜇𝑖 (𝑡) | > B𝑇 (𝑁𝑖 (𝑡)) �
3
2

√︄
log (𝑇 )
𝑁𝑖 (𝑡)

. (2)

𝑁𝑖 (𝑡) > 𝑁∗ �
⌊

𝑇

(log𝑇 ) (log2𝑇 )

⌋
. (3)

While (2) is a direct application of Azuma Hoeffding, (3) is key in
achieving the aforementioned exploration trade-off, by limiting
number of pulls for the arm 𝑖 before the activation of the next arm.

4 EXPERIMENTS
We now evaluate the performance of DOS. We set 𝑇 = 200, to re-
produce the constraints of psychometric experiments. We compare
DOS to the two commonly used adaptivemethods in Psychophysics:
Staircase [12], and PsiMethod [28], and to the hierarchical bandit
based algorithm POO (Parallel Optimistic Optimization – [18]). The
objective is to identify the stimulus 𝑠∗ such that 𝜇∗ = 0.5. We used
three psychometric functions : Nsteep, based on a Gaussian c.d.f.,
𝛽steep, are based on a Beta c.d.f., and Ψ𝑚

steep, defined as :

Ψ𝑚 (𝑠∗ + 𝑥) = min (1, 𝜇∗ + |𝑥 |) 1𝑥≥0 +max
(
0, 𝜇∗ − |𝑥 |0.3

)
1𝑥≤0

Results. Figure 1 reports the average simple regret over 100 runs for
each method and psychometric function. First, note that PsiMethod
outperforms other algorithms forNsteep – as it is able to leverage its
additional assumption about the Gaussian c.d.f. – and this advantage
is particularly important for small time budget. However, PsiMethod
performs poorly for the other psychometric functions, that are
non Gaussian. Second, while POO seems to converge toward the
solution for every function, it achieves the worst performance, as
its rate of convergence is slow and it cannot take advantage of the
monotonic property of Ψ. Finally, it is important to note that DOS
provides one of the best estimation in all these settings.
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