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1 INTRODUCTION
In this work, we investigate the impact of two approaches to agent
desynchronization on task allocation in decentralized swarms: vari-
ation in response threshold and variation in response duration. We
focus on swarms consisting of simple threshold-based stimulus-
response agents and examine how they respond to dynamically
changing task demands in a logistics re-supply problem.

Ideally, a swarm will be able to divide the labor of its workers
appropriately such that task demands are satisfied in a timely man-
ner. In general, agent resources should be conserved to minimize
waste resulting from overdelivery. Because task switching may
incur physical or time costs, stable distributions of agents are desir-
able. We predict that agent performance will be more consistent
when agent desynchronization is highest and that the need for suffi-
cient desynchronization is more critical for more difficult problems.
To provide grounds for this investigation, we examine primary
effects for each method of desynchronization in combination with
different types of logistic schedules on agent performance.

2 IMPLEMENTATION
Problem: Our testbed problem is based on the logistics of material
resupply. We consider a scenario with materials𝑚𝑖 , 𝑖 ∈ {1, . . . , 𝑀}
defining a task 𝑠𝑖 . Every agent can respond to global stimuli and
perform any of the 𝑀 tasks. Task demands are specified in two
schedules. The original schedule, 𝑆𝑂 , is our simulation input con-
sisting of static demands for each material in each timestep. The
working schedule, 𝑆𝑊 , represents updated task demands based
on quantities of materials actually delivered during a simulation.
Schedules consist of sessions; contiguous sequences of fixed non-
zero demand for a given material. In 𝑆𝑂 , sessions have defined
intervals, whereas 𝑆𝑊 contains dynamic start and end times to
reflect deliveries. Session end times are triggered when the total
requested material amount has been delivered. Subsequently, start
times may be delayed, since sessions for the same material must re-
main disjoint in time. Additionally, start times cannot be decreased.
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Altogether, we include 3 benchmarks for measuring swarm per-
formance: Timesteps to completion, sum of agent over-delivery, and
average number of task switches per agent - all for a given schedule.
The domain goals are to minimize each respective benchmark.
System Description: A response threshold defines a minimum
environmental stimulus to trigger a response from an agent. Task
selection involves the agent evaluation of current task demands
and selection of tasks to address them, or otherwise, to remain
idle. An agent uniformly selects, at random, from candidate tasks
which exceed its threshold. Response threshold, 𝜏𝑖 , for a given task 𝑑𝑖
is a value in [0..1]. System parameter Scaling_factor allows re-
sponse threshold values to be applied to problems with significantly
different demands or in different domains. Let 𝜎𝑖 (𝑡) represent the
stimulus (demand) for material𝑚𝑖 at time 𝑡 . Then, an agent may
activate for task𝑑𝑖 in timestep 𝑡 if 𝜎𝑖 (𝑡) ≥ 𝜏𝑖 ·Scaling_factor. Sys-
tem parameter Thresh_init defines the method by which thresh-
old values are determined. If Thresh_init ∈ (0..1] then ∀ 𝑖 ∈
[1, . . . , 𝑀] 𝜏𝑖 = Thresh_init. In other words, the threshold values
are a single constant for all tasks. Thresh_init > 1, dictates hetero-
geneous response thresholds generated according to one of several
probability distributions. The Thresh_init value determines the
probability distribution used. In this work, the distributions we
explore are uniform, Gaussian, and Poisson. Response threshold
values are static, remaining unchanged throughout a simulation.
Response duration is a measure of how long an agent remains on one
task before switching to another. In our model, response duration
is probabilistic. System parameter prob_check ∈ (0..1] defines the
probability that in a given timestep an agent will evaluate stimuli
and select a task. Thus, lower prob_check values indicate higher
time on task.

3 EXPERIMENTS
Design: Our study is divided into response threshold and duration
segments, exploring factors related to each respective form of inter-
agent variation. For response thresholds, we examine 7 probability
distributions for generating values: constant, uniform, Gaussian
(𝜇 = 0.50, 0.25), and Poisson (𝜆 = 3, 5, 7). For response duration, we
test homogeneous prob_check values from [0.1,1.0], in increments
of 0.1. Every experiment contains 10 runs with distinct input sched-
ules. We define Stress_index as a measure of agent resources
relative to task demands. It is inversely proportional to the number
of agents (Popsize) because a smaller swarm will be under higher
stress than a larger one given identical task demands. This metric is
directly proportional to the Scaling_factor because higher values
effectively raise thresholds, thus decreasing the number of agents
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Table 1: Eight experiments, varying stress index values
along two axes: Fixed population with decreasing scaling
factor and fixed scaling factor with increasing population.

Expt Popsize Scaling_factor Stress_index
A 100 100 1.00
B 100 50 0.50
C 100 25 0.25
D 50 100 2.00
E 150 100 0.67
F 200 100 0.50
G 400 100 0.25

Table 2: Two-way ANOVA PR(>F) for timesteps to comple-
tion averages on response threshold experiments.

Stress Main effect: Main effect: Interaction
Expt index Init_thresh Sched_type effect
A 1.00 6.01E-108 7.93E-14 2.20E-08
B 0.50 4.46E-89 1.03E-26 5.03E-03
C 0.25 5.56E-60 8.06E-31 3.55E-01

that activate for a task. We run eight experiments, partitioned into
two sections for our analysis, examining decreasing stress index
values along two axes: Fixed population size with decreasing scal-
ing factor and fixed scaling factor with increasing population size.
In both instances, progressively lowering Stress_index.

Table 1 outlines the parameters for each experiment, which are
performed for the response threshold distributions and response
duration values above. The Two-way ANOVA encompasses the
independent categorical variables (threshold, schedule type), with
effects of stress index on interaction and within group variance to
analyze forms of desynchronization and schedule design.
Broad Analysis of Swarm Behavior: System performance met-
rics are used for our Two-way repeated ANOVA. Here, we show
results for timesteps and task switches. The experimental design
is motivated by an assessment of the main effects given by both
categorical variables, and their interaction. Experimental p-values
are consolidated into a single table, for each metric. Low p-values
(𝑝 ≤ 0.05) signify rejection of null hypotheses, and thus, a statisti-
cally significant effect for the given parameter.

Table 2 gives timesteps results for response threshold experi-
ments. We see that interaction between threshold and schedule
type is weakened, as stress decreases via decreasing scaling factor.
Table 3 shows the same results for task switches. With decreasing
scaling values, a similar trend occurs for interaction effects, only
this time, we stop rejecting once a stress index of 0.50 is reached.

We can see, generally, that placing higher demands on our swarm
leads to greater interaction between parameters. When the thresh-
old scaling factor is larger, the load on our agents is more intense,
since they can’t detect incoming task demands as quickly. One
would expect to see a similar effect take hold when population size
is decreased, as, in that instance, there are more agents to deal with
task demands. Evidently, this is not the case.

Table 3: Two-way ANOVA PR(>F) for agent task-switching
averages on response threshold experiments.

Stress Main effect: Main effect: Interaction
Expt index Init_thresh Sched_type effect
A 1.00 1.05E-58 3.67E-07 1.64E-18
B 0.50 5.60E-16 1.00E+00 9.99E-01
C 0.25 0.789445 0.589522 0.942792

Table 4: Two-way ANOVA PR(>F) for timesteps elapsed aver-
ages on response duration experiments.

Stress Main effect: Main effect: Interaction
Expt index Prob_check Sched_type effect
D 2.00 8.66E-257 1.07E-121 1.08E-105
A 1.00 1.23E-168 6.84E-08 1.92E-13
E 0.67 3.15E-163 1.86E-05 4.61E-02
F 0.50 8.35E-144 1.03E-04 4.09E-01
G 0.25 2.89E-148 1.44E-15 7.73E-01

Lower Scaling_factor corresponds to homogeneity in perfor-
mance, spanning multiple factors. In the case of response threshold,
Tables 2 and 3 show null hypothesis rejection (𝑝 ≤ 𝛼 = 0.05) more
often when our scaling values are higher. This is due to a wider
spread of values across our range of possible response thresholds.
When this is the case, changing threshold quantities or distributions
clearly has a greater burden or weighted impact on performance
- especially in the case of timesteps to completion. Experiment A
acts as a baseline for other experimental outcomes, since it contains
ideal task demands for a population size of 100.

Table 4 shows Two-way ANOVA timesteps results for response
duration, with a decreasing Stress_index by way of increasing
Popsize. Observe that higher population sizes play a role in dimin-
ishing the effects of changing response duration. With an overabun-
dance of agents, task demands are almost always satisfied. In this
case, we base our analysis on changes to task switching due to in-
creasing population. In comparison with response threshold results,
it is clear that population size has a greater impact on duration of
response, independent of threshold distribution.

4 DISCUSSION
This simulation provides an extensible model for complex task
demands for decentralized multi-agent systems. We find that both
mechanisms for desynchronization impact swarm behavior, but
have different effects. Variable response duration diversifies the
frequency with which agents re-evaluate their actions and affects
how quickly agents respond to changing task demands, and variable
response thresholds allow agents to respond differently to the same
material demands, effectively desynchronizing task acceptance for
any given material. From our analysis, we broadly observe that
interaction between threshold distribution and schedule variant
diminishes under low-stress environments.

Acknowledgements: This work was supported by the National
Science Foundation under Grant No. IIS1816777.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1511


	1 Introduction
	2 Implementation
	3 Experiments
	4 Discussion



