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ABSTRACT
Humans can move their bodies and eyes actively to perceive the
state of the environment they are surrounded by. Autonomous
robots are needed to learn this ability, so called active perception,
to behave as humans do. In this paper, we propose a reinforcement
learning algorithm to make the robots have the perceptual abil-
ity. In our algorithm, we simultaneously train two agents which
control the robot and its sensor on the robot to achieve a task.
We conducted experiments on navigation tasks in a 3D environ-
ment where useful information for the task achievement is partially
occluded. The experimental results show that our algorithm can
obtain better perceptual behavior and achieve higher success rates
than conventional reinforcement learning algorithms.
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1 INTRODUCTION
While autonomous robots are designed to perceive the state of
the environment via various sensors, their decision making is of-
ten hindered due to sensor occlusions. Active perception is used
to enable autonomous robots to actively perceive the necessary
information for decision making in such a situation [1, 7]. There
are some deep reinforcement learning (RL) studies that are related
to active perception, however, their applicability is limited just in
scanning or mapping [4, 5].

In this paper, we simultaneously train two agents which make
different roles, one is a moving agent to behave for achieving a
given task while moving the robot, the other is a perceptual agent
to actively explore the state of the environment for better task
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achievement. For learning the perceptual policy, we introduce a
meta-evaluation process which measures how much the perceptual
policy improves the behavior of the moving policy. We conducted
experiments on navigation tasks in a 3D simulation environment
with some obstacles, and the results show that our algorithm can
obtain better perceptual behavior and achieve a task with a higher
success rate than conventional RL algorithms.

2 PROBLEM DESCRIPTION
Let 𝑎𝑚 denote the moving agent that controls the robot’s movement
and 𝑎𝑐 denote the perceptual agent that decides where to face the
sensor, which is assumed to be a camera mounted on the robot in
this paper. We propose a new markov decision process (MDP)M =

⟨S,U𝑚,U𝑐 ,P𝑚,P𝑐 , 𝑟 , 𝑝1, 𝛾⟩ in our problem setup, where S is a
set of states,U𝑚 andU𝑐 are sets of moving and perceptual agent’s
actions. P𝑚 : S ×U𝑚 ×S → [0, 1] and P𝑐 : S ×U𝑐 ×S → [0, 1]
are the state transition functions, 𝑟 : S × U𝑚 → R is a reward
function, 𝑝1 : S → [0, 1] is a distribution over initial states, and
𝛾 ∈ (0, 1) is a discount factor, respectively. We define a stochastic
policy 𝜋 as the probability distribution over actions conditioned
on the current state; 𝜋 : S × U → [0, 1]. For a given 𝜋 , the state
value is defined as 𝑉 𝜋 (𝑠) = E𝜋

[∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑢𝑡 )
]
, where 𝑠0 = 𝑠

and 𝑢0 ∼ 𝜋 (·|𝑠0). We assume a realistic setting where the robot’s
movements affect which direction the camera faces whereas the
camera’s movements do not affect the robot’s movements. The state
transition in this setting is described as follows:

1. Given a state 𝑠 ∈ S, the moving agent 𝑎𝑚 takes an action
𝑢𝑚 ∈ U𝑚 according to the moving policy 𝜋𝑚 : S ×U𝑚 →
[0, 1].

2. The perceptual agent 𝑎𝑐 receives a state 𝑠 ∈ S induced by the
state transition function P𝑚 (·|𝑠,𝑢𝑚), and takes an action
𝑢𝑐 ∈ U𝑐 given the state 𝑠 according to the perceptual policy
𝜋𝑐 : S ×U𝑐 → [0, 1].

3. The moving agent 𝑎𝑚 receives the next state 𝑠 ′ induced by
the other state transition function P𝑐 (·|𝑠,𝑢𝑐 ).

Based on the transition, the joint distribution 𝑝𝑚,𝑐 of a state trajec-
tory s𝜏 = {𝑠1, 𝑠1, · · · , 𝑠𝑇−1, 𝑠𝑇 } induced by rollouts following 𝜋𝑚 ,
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𝜋𝑐 , P𝑚 and P𝑐 is thus written as follows:

𝑝𝑚,𝑐 (s𝜏 ) = 𝑝1 (𝑠1)
𝑇∏
𝑡=1

P𝑐 (𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑐𝑡 )𝜋𝑐 (𝑢𝑐𝑡 |𝑠𝑡 )

P𝑚 (𝑠𝑡 |𝑠𝑡 , 𝑢𝑚𝑡 )𝜋𝑚 (𝑢𝑚𝑡 |𝑠𝑡 )

= 𝑝1 (𝑠1)
𝑇∏
𝑡=1

P̃ (𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑚𝑡 )𝜋𝑚 (𝑢𝑚𝑡 |𝑠𝑡 ), (1)

where P̃ (𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑚𝑡 ) = P𝑐 (𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑐𝑡 )𝜋𝑐 (𝑢𝑐𝑡 |𝑠𝑡 )P𝑚 (𝑠𝑡 |𝑠𝑡 , 𝑢𝑚𝑡 ) is a
state transition function that involves 𝜋𝑐 .

3 OPTIMIZATION OF POLICIES
In our setting, we prepare two same environments : E1 and E2. In
the environment E1, the moving policy 𝜋𝑚

𝜃
runs with a perceptual

policy 𝜋𝑐
𝜙1

while the value function approximator 𝑉𝑤1 estimates
the expected cumulative rewards the moving agent 𝑎𝑚 earns. In
the environment E2, another perceptual policy 𝜋𝑐𝜙2 and the value
function approximator 𝑉𝑤2 make the same role of 𝜋𝑐

𝜙1
and 𝑉𝑤1 , re-

spectively. The policies 𝜋𝑚
𝜃
, 𝜋𝑐
𝜙1

and 𝜋𝑐
𝜙2

are parameterized by 𝜃 , 𝜙1
and 𝜙2, the value function approximators 𝑉𝑤1 and 𝑉𝑤2 are parame-
terized by𝑤1 and𝑤2, respectively. We define a meta-evaluator V
which measures how much perceptual policy 𝜋𝑐

𝜙2
is better suited

for the moving agent 𝑎𝑚 than 𝜋𝑐
𝜙1

by calculating the difference

of the average values 𝑉𝑤2 and 𝑉𝑤1 given the trajectories in each
environment. The average value 𝑉𝑤𝑒

, which is calculated by the
value function approximator 𝑉𝑤𝑒

updated in the environment E𝑒 ,
summarizes how much cumulative rewards the moving policy 𝜋𝑚

𝜃
can obtain with a perceptual policy 𝜋𝑐

𝜙𝑒
in the environment E𝑒 for

∀𝑒 ∈ {1, 2}. The meta-evaluator V can be calculated as follows:

V(𝜏𝑘 ) = 𝑉𝑤2 (𝜏𝑘 ) −
1
𝐾

∑
𝜏𝑘′ ∈𝐷1

𝑉𝑤1 (𝜏𝑘′), (2)

where𝜏𝑘 = {𝑠𝑡 , 𝑢𝑚𝑡 , 𝑟𝑡 , 𝑠𝑡 , 𝑢𝑐𝑡 }𝑇𝑡=1 is a trajectory for∀𝑘 ∈ {1, 2, · · · , 𝐾}
and 𝐾 is the number of trajectories. 𝐷1 = {𝜏𝑘 }𝐾𝑘=1 denotes a set of
trajectories obtained by rollouts of the policies in the environment
E1. We update 𝜋𝑐

𝜙2
using the framework of REINFORCE [8] by

replacing the cumulative rewards with the meta-evaluator V. To
update the 𝜋𝑐

𝜙1
to approximate what 𝜋𝑐

𝜙2
is used to be, we employ

the soft update rule as follows:

𝜙1 = 𝛼𝜙2 + (1 − 𝛼)𝜙1 (3)

where 𝛼 controls rate of the updates and we set 𝛼 = 0.05. After the
soft update, we employ the general actor-critic algorithm to update
both themoving policy𝜋𝑚

𝜃
and the value function approximator𝑉𝑤1

by using 𝐷1 is sampled again by a rollout of 𝜋𝑚
𝜃

with 𝜋𝑐
𝜙1
. Since the

perceptual policy 𝜋𝑐
𝜙1

is expected to be better suited for the moving
policy 𝜋𝑚

𝜃
than the one before update in (3), the moving policy 𝜋𝑚

𝜃
is updated so that 𝜋𝑚

𝜃
gets further more rewards with the better

perceptual policy 𝜋𝑐
𝜙1
. The process of updating policies is completed

by copying 𝑤1 to 𝑤2 for the next update. In the training process,
we empirically found that the 𝜖-greedy strategy is beneficial to
learn better perceptual policies. We sample the action 𝑢𝑐2𝑡 of the

(a) (b) (c)

(d) 60 deg. (e) 100 deg.

Figure 1: (a) is bird’s-eye view of the map, (b) and (c) are ex-
amples of observations of the agent with the field of view
60 and 100 degrees, (d) and (e) are average returns in each
setting.

perceptual agent in the environment E2 as follows:

𝑢𝑐2𝑡 =

{
argmax𝜋𝑐

𝜙2
(𝑠𝑡 ) with probability 1 − 𝜖

a random action with probability 𝜖
.

After training, we employ 𝜋𝑐
𝜙1

as the actual perceptual policy with
which the moving policy 𝜋𝑚

𝜃
performs at the test time.

4 EXPERIMENTS AND RESULTS
We build the environment by using the Mini-world package[3]. It
has a single room where multiple boxes (green, yellow, blue) are
placed between the agent and the goal (red box) as obstacles. We
perform navigation tasks and evaluate our algorithm (𝜖 = 0.1, 0.3)
against the following four baselines: Fixed_Forward (only the
moving policy is trained with the camera is fixed in the forward
direction), Joint (a single agent with the joint action space U𝑚 ×
U𝑐 ), IA2C (𝑎𝑚 as well as 𝑎𝑐 are trained separately by using the
cumulative reward), Curriculum (inspired by [2], after the Joint
agent is pre-trained in the environment without any obstacles, its
parameters are used as initial values for training in the environment
with the obstacles). Themoving agent𝑎𝑚 for all methods are trained
by advantage actor-critic (A2C) [6].

Figure 1 shows the experimental results with two horizontal
fields of view 60 (Figure 1(d)) and 100 (Figure 1(e)) degrees during
training. In the setting with 100 degrees, some baselines obtain large
returns. Even in this setting, our algorithm with 𝜖 = 0.1 yields the
best result. On the other hand, although all methods deteriorate the
average returns in the setting with 60 degrees, our algorithm with
𝜖 = 0.3 achieves the highest success rate. These results show that
our algorithmmakes autonomous robots learn perceptual behaviors
for better task achievement, and are consistent with our intuition –
the less information we have, the more we are going to look at our
surroundings.
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