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ABSTRACT
Competitive Multi-Agent Systems (MAS) are inherently hard to

control due to agent autonomy and strategic behavior, which is

particularly problematic when there are system-level objectives to

be achieved or specific environmental states to be avoided.

Existing methods mostly assume specific knowledge about agent

preferences, utilities and strategies, neglecting the fact that actions

are not always directly linked to genuine agent preferences, but

can also reflect anticipated competitor behavior, be a concession to

a superior adversary or simply be intended to mislead other agents.

This assumption both reduces applicability to real-world systems

and opens room for manipulation.

We therefore propose a new governance approach for Multi-

Attribute MAS which relies exclusively on publicly observable

actions and transitions, and uses the acquired knowledge to pur-

posefully restrict action spaces, thereby achieving the system’s

objectives while preserving a high level of autonomy for the agents.
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1 INTRODUCTION
One of the most intriguing and challenging characteristics of an

MAS is the fact that the environmental transitions depend simulta-

neously on the actions of all agents. This mutual influence leads

to strategic and sometimes even seemingly erratic agent actions—

particularly when human agents are involved—, and it decouples

intended and observed behavior: In general, the preference order of

a self-interested and strategic agent over the environmental states

cannot be concluded from observing its actions, meaning that pref-

erence elicitation, for example using CP-nets [4], is only possible as

long as additional assumptions hold about the link between actions

and preferences.

While full control on the part of an outside authority directly

contradicts theMulti-Agent property of such a system, some level of

control and cooperation can still be achieved. Existing approaches
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include Stochastic Games [8], Deontic Logic [7], Normative Systems

[9], and more specifically Normative Multi-Agent Systems [1, 2]

and Game Theory for MAS [3, 5, 6]. Building upon these ideas, we

propose to make use of the knowledge collected by observing how

agents behave in the system, in order to refine the rules of the game.

As a consequence, we do not reason in terms of agent preferences

or utilities, but rather in terms of actions and transitions.

Naturally, there is a conflict between control and autonomy,

requiring a relative weighting of the two objectives. We strive here

for minimal restriction, subject to a constraint on the expected

value of the system objective.

2 MODEL
Consider a finite set I = {1, ..., 𝑛} of agents who, at every time step

𝑡 ∈ N0, perceive the environmental state 𝑠𝑡 ∈ S and perform an

action 𝑎𝑖 ∈ A𝑖 , 𝑖 ∈ I, following a confidential action policy 𝜋𝑖 :

S → A𝑖 . The environmental state changes from 𝑡 to 𝑡 +1 according
to a transition function 𝛿 : S × A → S, where A =

∏
𝑖 A𝑖 .

Since the action policies are at the agents’ discretion, the evolu-

tion 𝑠𝑡+1 := 𝛿 (𝑠𝑡 , 𝜋 (𝑠𝑡 )) can be influenced either by changing what
agents can do (altering their action sets) or by changing what conse-
quences actions have (altering the transition function). We choose

a strict separation of concerns: 𝛿 represents the (unalterable) reac-

tion of the environment to agent actions, while the restriction of

actions is performed by the Governance G. To use an analogy, the

transition function accounts for the laws of nature, whereas the

Governance plays the role of the legislature.

The Governance intervenes by defining a set of allowed actions
𝐴𝑡 = Γ(𝑠𝑡 ) ⊑ A, where A =

∏
𝑖 A𝑖 is the fundamental action

set. When all agents have made their choice 𝑎 = (𝑎𝑖 )𝑖 ∈ 𝐴𝑡 , the

Governance uses the information (𝑠𝑡 , 𝑎) to learn, i.e., to update its

internal state 𝑠
(𝑡+1)
G := 𝜆

(
𝑠
(𝑡 )
G , 𝑠𝑡 , 𝑎

)
.

We assume that there is a system objective in addition to the

agents’ goals. Since G has only probabilistic information about

the agents’ future actions, its objective needs to be compatible

with probabilistic reasoning. Therefore, we assume a cost function

𝑐G : S → R to be minimized.

3 GOVERNANCE LOOP
In this work, we propose a solution for multivariate binary envi-

ronments (S = B𝑚 for some 𝑚 ∈ N), where agents can change

one attribute per time step (or choose the neutral action ∅), and an

attribute is toggled when at least one agent chooses to change it.

Let 𝑛 be the number of agents,𝑚 the number of attributes, and 𝑞

the number of actions per agent (we assume the same A𝑖 for all 𝑖).
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3.1 Observation and Learning
Let 𝑠G be a simple counter of observed actions per agent per envi-

ronmental state, i.e., SG := N
𝑛 ·2𝑚 ·𝑞
0

. For every observation (𝑠𝑡 , 𝑎𝑡 ),
the learning function 𝜆 increments the respective numbers by one.

This gives rise to an (observed) probability distribution

𝑃
(𝑡 )
𝑖

(𝑠) := ©«
𝑠
(𝑖,𝑠,1)
G

𝑠
(𝑖,𝑠)
G

, ...,
𝑠
(𝑖,𝑠,𝑞)
G

𝑠
(𝑖,𝑠)
G

ª®¬ , where 𝑠
(𝑖,𝑠)
G =

𝑞∑
𝑘=1

𝑠
(𝑖,𝑠,𝑘)
G

for all 𝑖 and 𝑠 , reflecting the knowledge about the agents’ actions

up to step 𝑡 and thus being G’s best guess for the actions at (𝑡 + 1).
It is customary to set 𝑃

(𝑡 )
𝑖

(𝑠) :=
(
1

𝑞 , ...,
1

𝑞

)
if 𝑠

(𝑖,𝑠)
G = 0.

3.2 Restriction of Action Spaces
Given some independence assumptions, Algorithm 1 solves the

restriction problem by computing an expected cost matrix for all

joint actions, and then deleting individual actions from this matrix

until the expected value drops below a given cost threshold 𝛼 .

Data: Governance cost function 𝑐G , cost threshold 𝛼
Input: Agent-specific probability distributions 𝑃𝑖 (𝑠𝑡 )
Output: Restricted action set 𝐴𝑡

𝑃 (𝑠𝑡 ) :=
∏

𝑛 𝑃𝑖 (𝑠𝑡 ) ∈ P𝑛𝑞 ;

𝐶 := 𝑃 (𝑠𝑡 ) ◦ 𝑐G ∈ R𝑞𝑛 ;

𝐴 := A ;

while
∑
𝑎∈𝐴𝐶𝑎 > 𝛼 do

(𝑖, 𝑗) := argmax𝑎 𝑗 ∈𝐴𝑖\{∅},𝑖∈I 𝐶 (□−𝑖 ,𝑎 𝑗 ) ;
Remove all 𝑎 ∈ 𝐴 where agent 𝑖 chooses 𝑎 𝑗 and delete

the corresponding hyperplane of 𝐶 ;

end
𝐴𝑡 := 𝐴 ;

Algorithm 1: Restricting agent actions

Theorem 3.1 (Proof omitted). Let 𝛼 ≥ 𝐶𝛿 (𝑠𝑡 ,∅) . Then Algo-
rithm 1 produces a restriction 𝐴𝑡 ⊆ A of actions such that 𝐶𝐴𝑡

≤ 𝛼 .
This restriction is Pareto minimal, i.e., �𝐴′

𝑡 ⊐ 𝐴𝑡 with the same
property.

If the cost function has the form 𝑐G (𝑠) := 1S− (𝑠) for a subset
S− ∈ S of violating states, then 𝛼 is precisely an upper bound for

the probability of transitioning into a violating state.

The worst-case time complexity of Algorithm 1 is O
(
𝑛2 · 𝑞𝑛+2

)
.

4 EVALUATION AND RESULTS
We compare unrestricted (agents have the full range of actions) and

restricted (with Governance as in Section 3) evolution. To quantify

the restriction, we use 𝔯G (𝑡) := 1 − |𝐴𝑡 |
|A | ∈ [0, 1] and show this

degree of restriction together with the average cost over time.

The application domain is a smart home environment with 7

binary variables: S = 𝑇 × 𝑂 ×𝑊 × 𝐵 × 𝐻 × 𝐿 × 𝐴 � B7 (Time,

Occupancy, Window, Blinds, Heating, Light and Alarm). Agents

can change five of the variables, while time and occupancy are

controlled externally. The Governance wants to make sure that the

heating is off whenever the window is open, and therefore acts

against the cost function 𝑐G (𝑠) := 1𝑠𝑊 ∧𝑠𝐻 .
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Figure 1: Evaluation results

In the deterministic scenario, each agent 𝑖 has a fixed mapping

𝜋𝑖 : S → A𝑖 of states to actions. In the probabilistic scenario,

agents have probability distributions for their action policy 𝜋𝑖 :

S → ΔA𝑖 .

Each line in Figure 1 is the mean of 10 independent runs with

identical parameters, random initial states and fixed 𝛼 := 3

2
· 1

𝑞𝑛 .

4.1 Results
G succeeds in reducing the average cost substantially in all cases

from the a priori violation probability of 25%. Moreover, both cost

and degree of restriction decrease over time, which indicates that

the Governance indeed learns to predict agent actions and improves

its corrective action. Notably, this learning process is independent

from an estimated agent preference order: The action policies were

created randomly, which means that they most likely do not corre-

spond to a consistent order over the environmental states.

5 CONCLUSION AND FUTUREWORK
We show here that governing a competitiveMAS is possible without

prior knowledge or assumptions about agent preferences. This

extends the applicability of such an approach to unknown and, in

particular, human agents.

While the algorithm is functional, it lacks (polynomial) scala-

bility in terms of the number of agents and attributes, and it fully

re-evaluates the minimal restriction at every step, thereby reducing

continuity of allowed actions over time. Future work will therefore

include a more efficient representation of knowledge (e.g. attribute

dependencies and conditional probabilities), as well as a generaliza-

tion to environments with continuous attributes or irregular shape,

more complex agent actions, locality constraints and multiple-step

restrictions.
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