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ABSTRACT
In this paper we consider a particular class of problems called
multiarmed gambler bandits (MAGB) which constitutes a modified
version of the Bernoulli MAB problem where two new elements
must be taken into account: the budget and the risk of ruin. The
agent has an initial budget that evolves in time following the re-
ceived rewards, which can be either +1 after a success or −1 after
a failure. The problem can also be seen as a MAB version of the
classic gambler’s ruin game. The contribution of this paper is a
preliminary analysis on the probability of being ruined given the
current budget and observations, and the proposition of an alterna-
tive regret formulation, combining the classic regret notion with
the expected loss due to the probability of being ruined. Finally,
standard state-of-the-art methods are experimentally compared
using the proposed metric.
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1 MAB AND MAGB
Multiarmed bandits (MAB) constitute a framework to model online
sequential decision-making while facing the exploration-exploitation
dilemma [37, 46, 48]. A MAB is typically represented by an agent
interacting with a discrete random process (or a “slot machine”) by
choosing, at each round 𝑡 , some action 𝐴𝑡 = 𝑖 to perform among 𝑘
possible actions (or “arms”), then receiving a corresponding reward
𝑅𝑡 . Because the complete information about the reward functions
is not available, the agent must estimate them by sampling (i.e. by
pulling the arms and observing the received rewards). In the stan-
dard stochastic setting [7], the rewards originated from the same
arm are independent but identically distributed, and observing an
arm does not give any information about other arms. The objective
is to maximize the expected sum of rewards over a potentially infi-
nite time-horizon, finding a strategy that minimizes the expected
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regret (i.e. the cumulated difference between the rewards that could
be obtained by always pulling the arm with highest mean, and the
rewards the agent expects to receive following the given strategy).
A good policy should guarantee sub-linear regret for any config-
uration of arms, i.e. the expected average regret per round must
tend to zero asymptotically as time tends to infinity [1, 10, 28].

In this paper, we define a particular MAB variation called mul-
tiarmed gambler bandits (MAGB), which constitutes a subclass of
survival MAB [44]. A MAGB can be formally defined as a random
process that exposes 𝑘 ∈ N+ arms to an agent having an initial bud-
get 𝑏0 ∈ N+, which evolves in time with the received rewards, so
that 𝐵ℎ = 𝑏0 +

∑ℎ
𝑡=1 𝑅𝑡 . Let P = {𝑝1, · · · , 𝑝𝑘 } be the set of parame-

ters that regulate the underlying Bernoulli distributions fromwhich
the rewards 𝑅𝑡 ∈ {+1,−1} are drawn. It means that, at each round
𝑡 ∈ N+, the agent executes an action 𝑖 , which either increases its
budget 𝐵𝑡 by 1 with stationary probability 𝑝𝑖 ∈ [0, 1], or decreases
it by 1with probability 1−𝑝𝑖 . The game stops when 𝐵𝑡 = 0 happens
for the first time (the gambler is ruined), but it can be occasionally
played forever if the initial conditions allow the budget to increase
infinitely.

When taken separately, each arm within a MAGB can be seen as
an instance of a gambler’s ruin game played against an infinitely
rich adversary [20, 21, 29, 47]. For that reason, the probability of
surviving, playing the game forever, and never being ruined, having
a current budget 𝐵𝑡 , and repeatedly pulling arm 𝑖 , is:

lim
ℎ→∞

𝜔ℎ,𝑖 =

1 −
(
1−𝑝𝑖
𝑝𝑖

)𝐵𝑡

if 𝑝𝑖 > 0.5 ,
0 if 𝑝𝑖 ≤ 0.5 .

(1)

In contrast to the standard MAB, solving a MAGB involves a
multi-objective optimization: in addition to minimizing the ex-
pected regret generated by the rounds when the best arm is not
played (classic regret), the agent must also minimize the expected
regret generated by the probability of being ruined. To analyze that,
we define the notion of expected normalized relative regret ℓ ∈ [0, 1]:

ℓℎ,𝜋 =
𝜔ℎ,𝜋

𝜔∗
ℎ

·
∑︁𝑘

𝑖=1

[
𝑝∗ − 𝑝𝑖

𝑝∗
·
E[𝑁𝑖,ℎ]

ℎ

]
︸                             ︷︷                             ︸

normalized classic regret

+
(
𝜔∗
ℎ
− 𝜔ℎ,𝜋

𝜔∗
ℎ

)
︸          ︷︷          ︸
regret due to ruin

, (2)

where ℎ is the considered (potentially infinite) time-horizon, 𝑝∗ and
𝑝𝑖 are, respectively, the underlying parameters of the optimal arm
and of arm 𝑖 , E[𝑁𝑖,ℎ] is the number of rounds arm 𝑖 is expected
to be pulled, and 𝜔ℎ,𝜋 and 𝜔∗

ℎ
are the probability of surviving,

respectively, following a given strategy 𝜋 , or always playing the
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best arm. In finite-horizon experimental scenarios, after several
independent repetitions, the expected normalized relative regret can
be approximated empirically by averaging the normalized difference
between the obtained final budget and the potentially best budget:

ℓ̂ℎ,𝜋 = 1 − 𝐵ℎ,𝜋/𝐵∗ℎ . (3)

2 RELATEDWORKS ON SAFE BANDITS
The search for safety guarantees is receiving increased attention
within the reinforcement learning community [5, 9, 12, 14–16, 19,
25, 26, 42, 43, 54] and in particular concerning multiarmed bandits
[23, 24]. In an alternative version of the problem called risk-averse
MAB [13, 22, 40, 45, 51, 52, 58], the agent must take into account the
expected variability on the expected rewards in order to identify
(and avoid) unstable (then considered risky) actions, but without
worrying about ruin, since the notion of budget is not considered.
In this sense, the risk-reward trade-off can be tackled by using some
risk-aware metric, such as the mean-variance, or the conditional
value at risk. A MAGB cannot be reduced to the risk-averse setting
due to the absence of notion of ruin, which leads to a simplified
interpretation of safety as a synonym of reward constancy. In ad-
dition, in the Bernoulli case, both mean and variance are directly
dependent on 𝑝 . In another variation of the problem called conser-
vative bandits [24, 55], the agent knows, a priori, a default action
with its underlying reward mean, and it is constrained to respect a
threshold in the ongoing relative regret compared to that action.

In another modified version of the problem called budgeted MAB
[2, 4, 8, 17, 18, 34, 35, 38, 49, 50, 56, 57], the player receives a reward
but needs to pay a cost after pulling an arm, which is taken from a
given initial budget. The process stops when the budget is over. In
this setting, reward and cost are independent functions associated to
each arm. The goal is to maximize cumulated rewards, constrained
by a budget that limits the cumulated costs. The arm with best
estimated reward-to-cost ratio should be preferred. Alternatively,
the budget can be imposed only on a preliminary exploration phase
[6, 11, 30, 39], and the question is how to spend the budget efficiently
in order to identify the best arm. A MAGB cannot be reduced to any
of those budgeted settings due to the explicit separation between
rewards and costs, which does not exist in a MAGB.

3 FINDINGS AND CONCLUSIONS
In the experimental setting, a MAGB with 𝑘 = 10 arms is instanti-
ated, each one with a different parameter 𝑝𝑖 , linearly distributed
between 0.45 and 0.55 (i.e. half positive and half negative mean re-
warded arms). The initial budget is set to𝑏0 = 𝑘 = 10, and the results
are averaged after 2000 repetitions and over time-horizon ℎ = 5000.
The standard UCB1 method [7, 41] is compared with other state-of-
the-art MAB algorithms, namely KL-UCB [27], Bayes-UCB [31], and
Thompson-Sampling [3, 32, 33], which have proven to asymptoti-
cally achieve logarithmic regret for Bernoulli arms, matching the
accepted theoretical lower bound [36], but also with classic naive
sub-optimal methods, namely Empirical-Means and 𝜀-greedy [37,
48, 53], and with an original simple heuristic called Empirical-Sum,
which chooses, at each round, the arm with highest observed sum
of rewards. Finally, some fixed arm policies are included, namely
Best-Arm (always pull the arm with highest mean), Worst-Arm
(the arm with lowest mean), Worst-Positive-Arm (the arm with

lowest 𝑝 greater than 0.5), and Best-Negative-Arm (the arm with
highest 𝑝 lower than 0.5).

The methods are compared considering their survival rate, de-
fined by the proportion of episodes that run without ruin until the
predefined time-horizon, and considering their empirical normal-
ized relative regret, given by Eq. (3), as shown in the Figure 1. UCB1
presents a heavy regret due to its conservative behavior, which
leads to intense exploration during the initial rounds, and often to
ruin. The naive methods (Empirical-Means, Empirical-Sum, and
𝜀-Greedy), which are classically sub-optimal, present better sur-
vival rates against the classically optimal algorithms (Bayes-UCB,
Thompson-Sampling, and KL-UCB), which finally allows them to
present better relative regret.
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Figure 1: Survival rates and average empirical relative nor-
malized regrets, 𝑛 = 2000 episodes, time-horizon ℎ = 5000.

In conclusion, taking the overall performance together, mixing
the regret caused by sub-optimal choices (i.e. the regret in classic
terms) and the regret caused by ruin, upsets the standard insights
and strategies concerning MAB. Intuitively, an algorithm for min-
imizing this alternative kind of regret must carefully coordinate
the remaining budget with the confidence on the estimated distri-
butions, seeking for minimizing the probability of ruin when the
budget is relatively low, and gradually becoming classically optimal,
as the budget increases. Future works must include a more compre-
hensive set of experimental scenarios, a theoretical analysis about
the regret bounds of the selected algorithms, and the extension of
this survival setting to Markovian decision processes.
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