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Abstract
In this work, we define the consensus-prevention problem, which

examines the canonical swarm robotic consensus problem from an

adversarial point of view: how (if at all) is it possible to lead a swarm

into a disagreement, that is, prevent them from reaching an agree-

ment. We focus on consensus-prevention in physically grounded

tasks, concentrating on influencing the direction of movement of a

flocking swarm and guaranteeing that the swarm will never con-

verge to the same direction by the use of external, predefined agents,

referred to as diverting agents.
We formally define the notion of disagreement within a flock,

and propose a way of measuring it. We show a correlation between

the consensus-prevention problem and the coalition formation prob-

lem, whose players aim at maximizing the disagreement measure.

While the general problem of optimizing disagreement between

flocking agents is NP-hard, we focus on a case which is solvable in

polynomial time, using a variant of the graph clustering problem

where the clusters constitute the desired coalitions. This allows us

to determine both the number of coalitions that optimize disagree-

ment, and the behavior of the diverting agents for a given number

of coalitions that will lead to optimal disagreement. Finally, we

demonstrate in simulation the impact of the number of diverting

agents on the disagreement measure in different scenarios, and

discuss the limitations of the diverting agents in dynamic settings.
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1 Introduction
Swarm research is highly motivated by natural phenomena: from

schools of fish to a flock of birds, many problems have sought an-

swers from the way animals interact in different situations, achiev-

ing emergent behavior by the entire group of individuals. In this

work, we are motivated by locust swarms. Locusts are infamous

for their ability to aggregate into gregarious migratory swarms

that pose a major threat to food security of a group of crop fields.

Dividing the locust swarm into several groups, each one heading to-

wards a different crop field, could minimize the total damage made

to each field individually, and thus a fatal damage to one specific
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field is avoided. Motivated by the locus-swarm example, we define

the consensus-prevention problem, which goal is to prevent a group

of individually-limited members from reaching a consensus. We

concentrate on influencing the direction of movement of a flocking

swarm and guaranteeing that the swarm will never converge to

the same direction. We examine consensus-prevention by using

diverting agents which are meant to lead the flocking agents into a

disagreement. However, other means can be incorporated as well

(e.g. external cues). Regarding an autonomous Unmanned Aerial

Vehicle (UAV) swarm, for instance, diverting UAVs can be utilized

so as to divert flocking UAVs among multiple surveillance targets

[12]. Those concepts can be also expanded beyond the realm of

swarm robotics (e.g., social consensus and social influence [2, 32]).

There are two main groups of agents in the swarm: the flocking

agents, and the diverting agents. The first group are the swarm

agents, which in our case are flocking individuals, trying to con-

verge to the same orientation. The flocking agents are agents which

we cannot directly control, they have limited sensing and compu-

tational capabilities, use no explicit communication, and follow

the same simple behavioral rules. The second group of agents, the

diverting agents, are indistinguishable by the flocking agents, and

have the same movement capabilities as the flocking agents. How-

ever, we have full control over the diverting agents’ behavior, thus

we are interested in defining their behavior that will lead to the

desired disagreement.

As a first step, we propose a disagreement measure which uses

the group response pattern, and show a correlation between this

disagreement measure and the coalition formation game, whose

players aim atmaximizing the disagreementmeasure.We prove that

maximizing the disagreement measure is equivalent to maximizing

the coalition structure’s payoff, making the general problem of

maximizing the disagreement in a swarm NP-hard.

Consequently, when modeling the relationships between neigh-

bors of a flock at each time step as a graph, the consensus-prevention

problem can also be viewed as a graph clustering problem. Particu-

larly, the clusters constitute the desired coalitions. We consider the

case in which the number of connected components in the flocking

neighbors graph at time step 0 is at least the number of desired

orientations after convergence. When the number of desired ori-

entations is fixed, we prove that determining the diverting agents’

initial placements in a flock for guaranteeing consensus-prevention,

and also their desired behavior, can be computed in polynomial time,

since edge additions to the graph are solely required.

We have implemented the consensus-prevention setting in the

MASON simulator [15], demonstrating the impact of the number of

diverting agents on the disagreement measure in different scenarios.

Finally, we discuss the limitations of the diverting agents in dynamic

settings.
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2 Related Work
The problem of preventing consensus is related to the problem of

leading a swarm of agents in ad-hoc settings [8, 9, 27], in which

a subset of (informed) agents is responsible for leading the entire

group of agents into a designated behavior, yielding (globally) opti-

mal group payoff. However, as opposed to the problem of leading

a team into one desired (or undesired) behavior, in this case we

would like to prevent them from converging to the same behavior.

Measuring Disagreement When measuring disagreement, a

simple measure is commonality: the number of people who choose

a common option [14]. However, this only considers the choices

for the majority option, and ignores the variation among the rest.

Another method is to instruct the group to reach unanimity and

then calculate the percentage of unanimous groups [25]. This also

ignores relevant information, namely the degree of agreement in

groups who achieve less than complete unanimity. Some experi-

ments with electronic groups used a measure of group agreement

derived from the mathematics of fuzzy set theory [26], and calcu-

lated by computer program [19]. However, this measure requires

interval data, not the nominal data produced by questionnaires

[28]. Moreover, it also requires the group data to provide voting

probabilities for the options.

Cooperative Game Theory In general, cooperative game the-

ory [17], [24] provides analytical tools for studying the competition

between cooperating groups of players, referred to as coalitions

[17], that can strengthen the players’ positions in a game. In con-

trast, in this paper we are aiming to prevent them from achieving

their desired cooperation. The Coalition Structure Generation (CSG)

problem, of finding the optimal coalition structure, for which the

social welfare (the sum over all coalitions’ payoffs) is maximized,

is known to be NP-complete according to Sandholm et al. [20],

which propose an anytime algorithm with worst-case guarantees.

Various approximation methods for this combinatorial optimization

problem were introduced in the literature, which might be applica-

ble to our own problem. Some methods are Dynamic Programming

(DP) based [18, 33], which guarantee to find an optimal solution in

𝑂 (3𝑛) steps, given 𝑛 agents. However, a solution is produced only

after the entire execution has been completed. Furthermore, several

heuristics were developed for the sake of solving the CSG problem.

For instance, Shehory and Kraus [23] proposed a greedy algorithm,

which puts constraints on the size of the coalitions that are taken

into consideration.

Task Allocation In classical robotics perspective, task alloca-

tion is an instance of the single-task robot, multi-robot task problem

(ST-MR) [11], where the goal is to assign teams of robots to tasks

so as to maximize the system’s performance. The general problem

was proven to be NP-hard as a special case of the Set Partition-

ing Problem [7]. The problem has also been extensively studied

in the swarm-robotics perspective, examining conditions in which

swarm robots may be divided between tasks attempting to optimize

group performance [1, 13, 16]. On the contrary, in this paper we

are aiming to utilize diverting agents, so as to maximize a disagree-

ment measure, which does not necessarily concern the system’s

performance and might also bring to its degradation.

3 Preliminaries
In this section, we start by presenting the flocking agents’ model

(Subsection 3.1). We then give the definition of the disagreement

measurement (Subsection 3.2).

3.1 The Flocking Model - Basic Definitions
The flock comprises of 𝑘 flocking agents, trying to converge to the

same orientation 𝜃∗, and𝑚 diverting agents. On the one hand, the

flocking agents 𝐴𝐹
:= {𝑎0, ..., 𝑎𝑘−1} are agents which we cannot

directly control. On the other hand, we can control the behavior

of the diverting agents 𝐴𝐷
:= {𝑎𝑘 , ..., 𝑎𝑛−1}, where 𝑛 =𝑚 + 𝑘 . We

assume that the diverting agents are controlled by a centralized

entity (thus can communicate with it), which has full knowledge

of the world and a high computability. Thus they do not adopt the

flocking behavior, but behave according to some policy which we

aim to optimize. Flocking agents update their orientation based on

the orientations of the other agents in their neighborhood, defined

by the visibility radius. Let 𝑁𝑖 (𝑡) be the set of 𝑛𝑖 (𝑡) ≤ 𝑛 agents

(including agent 𝑎𝑖 ) at time 𝑡 which are located within a visibility
radius 𝑅 of agent 𝑎𝑖 . At each time step 𝑡 , the number of diverting

agents inside𝑎𝑖 ’s neighborhood is denoted by𝑚𝑖 (𝑡) and the number

of flocking agents inside the neighborhood is denoted by 𝑘𝑖 (𝑡),
where 𝑛𝑖 (𝑡) =𝑚𝑖 (𝑡) + 𝑘𝑖 (𝑡) ≤ 𝑛. Following [8], we note that when

diverting agents work together to influence flocking agents to align

to some orientation, it suffices to consider only algorithms that

choose at each time step just one orientation for all the diverting

agents to adopt. We shall make the following definitions:

Definition 3.1. (Flocking Neighbors Graph) The relationships be-
tween neighbors which exist in time step 𝑡 and influence the form

of their update equations can be described by the Flocking Neigh-
bors Graph, a simple, directed graph (digraph) G(𝑡) = (V, E(𝑡)),
where: V = {0, ..., 𝑘 − 1} - The vertex set representing the flocking

agents, and E(𝑡) = {(𝑖, 𝑗) ∈ V × V|𝑎𝑖 ≠ 𝑎 𝑗 ∈ 𝑁𝑖 (𝑡)}. We denote

its number of connected components at time 0 by 𝜂. Note that G(𝑡)
can be converted to an equivalent undirected graph, but another

model could also be considered in which sensing is directional.

Definition 3.2. (Fixed Topology) If there exists some digraph G =

(V, E) for which G(𝑡) = G for any time step 𝑡 , we say that this is

a fixed topology (i.e., all agents are stationary at all times).

Definition 3.3. (Switching Topology) A switching topology can be

modeled using a dynamic graph G(𝑡) = G𝜎 (𝑡 ) parameterized with

a switching signal 𝜎 (𝑡) : N→ Q𝑘 , where Q𝑘 denotes the class of

all simple graphs defined on 𝑘 vertices.

Following [3], the results given in this paper are entirely applica-

ble to a fixed topology. In a switching topology, additional assump-

tions are required: There exists an infinite sequence of contiguous,

nonempty, bounded, time-intervals, [𝑡𝑖 , 𝑡𝑖+1], 𝑖 ≥ 0, starting at 𝑡0,

with the property that across each such interval, the union graph

∪𝑡𝑖+1𝜏=𝑡𝑖
G(𝜏) is strongly connected. However, in our experimental

results, we refer to the case in which those assumptions do not

necessarily hold.

Each agent 𝑎𝑖 moves with velocity 𝑣𝑖 . At each time step 𝑡 , each

agent 𝑎𝑖 has a position 𝑝𝑖 (𝑡) = (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡)) in the environment

and an orientation 𝜃𝑖 (𝑡). The evaluation regards a continuous space
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of orientations due to its more realistic nature. According to [9],

each agent’s position 𝑝𝑖 (𝑡) at time 𝑡 is updated after its orientation

is updated (based on the Vicsek Model [29]), such that:{
𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡 − 1) + 𝑣𝑖𝑐𝑜𝑠 (𝜃𝑖 (𝑡))
𝑦𝑖 (𝑡) = 𝑦𝑖 (𝑡 − 1) − 𝑣𝑖𝑠𝑖𝑛(𝜃𝑖 (𝑡))

Readers could refer to [3] for examples of possible update rules.

Accordingly, at each time step 𝑡 and for each agent 𝑎𝑖 , we denote

the closed disc of radius 𝑅, whose center is at 𝑝𝑖 (𝑡), by 𝐷𝑖𝑠𝑐𝑖 (𝑡), i.e.,
𝐷𝑖𝑠𝑐𝑖 (𝑡) := {(𝑥,𝑦) ∈ R2 | (𝑥 − 𝑥𝑖 (𝑡))2 + (𝑦 − 𝑦𝑖 (𝑡))2 ≤ 𝑅2}.

The diverting agents join the flock in order to influence its mem-

bers to behave in a particular way. Since we fully control the di-

verting agents, we consider the Drop case [9] for their initial place-

ments, in which they are at their desired location at time 0.

3.2 Disagreement Measurement
The disagreementmeasurewhichwewill use is based onWhitworth

and Felton [30, 31], as follows:"The core construct proposed is that
the disagreement between two group members is the distance apart of
their positions on the given issue."We thus propose a disagreement

measure between flocking agents, after they have reached conver-

gence. Let Θ := {𝛼1, ..., 𝛼𝜉 } be the set of desired orientations after

convergence, whereas 𝜉 ≥ 2 and 𝜉 = 𝑘 is not necessarily satisfied

(i.e., several flocking agents might converge to a common desired

orientation). Let 𝛼𝑞𝑖 be the final orientation of 𝑎𝑖 ∈ 𝐴𝐹
.

For the case that the final orientations are viewed as a nominal

data choice problem, if some two agents 𝑎𝑖 , 𝑎 𝑗 converge to different

final orientations 𝛼𝑞𝑖 ≠ 𝛼𝑞 𝑗
(respectively), we can define their

disagreement, 𝑑𝑖 𝑗 , as one, and as zero if they converge to the same

orientation, i.e.: 𝑑𝑖 𝑗 = 1 if 𝛼𝑞𝑖 ≠ 𝛼𝑞 𝑗
, else 𝑑𝑖 𝑗 = 0.

Given that 𝑓𝑖 flocking agents converged to the orientation 𝛼𝑞𝑖 ,

we define agent 𝑎𝑖 ’s disagreement with the rest of the flock, 𝑑𝑖 ,

as the sum of the disagreement between 𝑎𝑖 and each of the other

flocking agents, divided by the possible number of relationships

(𝑘 −1 - we subtract 1 since we don’t take 𝑎𝑖 into consideration since

it cannot disagree with itself):

𝑑𝑖 =
1

𝑘 − 1

∑
1≤ 𝑗≤𝜉

𝑑𝑖 𝑗 𝑓𝑗

If 𝑐𝑖 agents converge to the same orientation 𝛼𝑞𝑖 , then the disagree-

ment of one individual converging to this orientation is the number

of disagreements it has with the rest of the group (𝑘 − 𝑐𝑖 ), divided

by the number of possible disagreement with all the other agents

(𝑘 − 1), that is:

𝑑𝑖 =
𝑘 − 𝑐𝑖

𝑘 − 1

Therefore, the disagreement for the entire flock, 𝐷 , can be ob-

tained by averaging the disagreement of its agents:

𝐷 =
1

𝑘

∑
1≤𝑖≤𝜉

𝑓𝑖𝑑𝑖 =
1

𝑘 (𝑘 − 1)
∑

1≤𝑖≤𝜉

∑
1≤ 𝑗≤𝜉

𝑑𝑖 𝑗 𝑓𝑗 𝑓𝑖

The minimum value of 𝐷 is 0, when all agents agree, and its max-

imum value is 1, when all agents of the flock disagree and 𝑘 ≤ 𝜉

(otherwise, it is less than 1). The following holds:

𝐷 =

∑
1≤𝑖≤𝜉 𝑐𝑖𝑑𝑖∑
1≤𝑖≤𝜉 𝑐𝑖

=
𝑘2 −∑

1≤𝑖≤𝜉 𝑐
2

𝑖

𝑘2 − 𝑘
(1)

According to [31], the maximum disagreement occurs when the
group is spread as evenly as possible over all desired final orientations.
Supposing 𝑟 (𝜉) is the integral quotient and 𝑞(𝜉) is the remainder

when 𝑘 is divided by 𝜉 , so that 𝑘 = 𝑟 (𝜉)𝜉 + 𝑞(𝜉), 𝑟 (𝜉) = ⌊ 𝑘
𝜉
⌋, 0 ≤

𝑞(𝜉) < 𝜉 , then the maximum value of 𝐷 will be:

𝐷𝑚𝑎𝑥 (𝜉) =
𝑘2 − (𝜉 − 𝑞(𝜉))𝑟 (𝜉)2 − 𝑞(𝜉) (𝑟 (𝜉) + 1)2

𝑘2 − 𝑘
(2)

where 𝑐𝑖 (𝜉) = 𝑟 (𝜉) for 1 ≤ 𝑖 ≤ 𝜉 − 𝑞(𝜉) and 𝑐𝑖 (𝜉) = 𝑟 (𝜉) + 1 for

𝜉 −𝑞(𝜉) + 1 ≤ 𝑖 ≤ 𝜉 . In general, as 𝑘 gets very large, 𝐷𝑚𝑎𝑥 (𝜉) tends
towards 1 − 1

𝜉
.We aim at reaching maximum disagreement.

Lemma 3.4 proves that 𝐷𝑚𝑎𝑥 (𝜉) is strictly increasing as a func-

tion of 𝜉 (proof is omitted due to space constraints, and can be

found in the supplementary material [5]).

Lemma 3.4. Let 𝜉 be the number of desired orientations. Then, the
following holds: 𝐷𝑚𝑎𝑥 (𝜉 + 1) > 𝐷𝑚𝑎𝑥 (𝜉).

4 Consensus-Prevention as a Cooperative
Game

In this section, we would like to present the consensus-prevention

problem as a cooperative game with transferable utility (in charac-

teristic form) with a static coalition structure, given a set of desired

orientations after convergence - Θ := {𝛼1, ..., 𝛼𝜉 }. Following Sub-

section 3.2, such a game can be formally defined as follows:

Definition 4.1. A consensus-prevention game with transferable
utility (in characteristic form) with a static coalition structure

CS = {S1, . . . ,S𝜉 } is a triplet (N = 𝐴𝐹 ∪𝐴𝐷 , 𝑣, CS), where:
• 𝐴𝐹 , 𝐴𝐷

are the sets of 𝑘 flocking agents and 𝑚 diverting

agents (respectively), where 𝑛 = 𝑘 +𝑚.

• The agents in the coalitionS𝑖 will converge to the orientation
𝛼𝑖 while maximizing the disagreement measure (∀1 ≤ 𝑖 ≤ 𝜉).

• 𝑣 : 2N → R associates with each coalition S ⊆ S𝑖 (1 ≤ 𝑖 ≤
𝜉) the following real-valued payoff:

𝑣 (S) = 𝑐𝑖 (𝜉)2 − (𝑐𝑖 (𝜉) − |𝑆 |)2 (3)

The characteristic function presented above was inspired by

Dutta et al. [6]. For brevity, given a fixed 𝜉 , we henceforth denote

𝑐𝑖 := 𝑐𝑖 (𝜉), 𝑟 := 𝑟 (𝜉), 𝑞 := 𝑞(𝜉).
For finding the Shapley value of the coalition structure CS (re-

ferred to as CS-value) we proceed in two steps: (1) Consider the re-
stricted cooperative games (S𝑖 , 𝑣 |S𝑖

), for each S𝑖 ∈ CS, separately
and for each game find the Shapley value, and (2) The CS-value of
the game is the 1 × 𝑛 vector 𝜙 (N , 𝑣, CS) of payoffs constructed by

combining the resulting allocations of each restricted game.

The following theorem gives us the Shapley value of each re-
stricted cooperative game (S𝑖 , 𝑣 |S𝑖

), for each S𝑖 ∈ CS.

Theorem 4.2. Let (N = 𝐴𝐹∪𝐴𝐷 , 𝑣, CS) be a consensus-prevention
gamewith a static coalition structureCS = {S1, . . . ,S𝜉 }. Let (S𝑖 , 𝑣 |S𝑖

)
be a restricted cooperative game, for some S𝑖 ∈ CS. Then, for ev-
ery agent 𝑗 ∈ S𝑖 the Shapley value 𝜙 (S𝑖 , 𝑣 |S𝑖

) assigns the payoff
𝜙 𝑗 (S𝑖 , 𝑣 |S𝑖

) given by:

𝜙 𝑗 (S𝑖 , 𝑣 |S𝑖
) = 2𝑐𝑖 − |𝑆𝑖 |

Proof. For brevity, we denote𝑢 := 𝑣 |S𝑖
and𝑤S :=

|S |!( |S𝑖 |− |S |−1)!
|S |!

for each S ⊆ S𝑖 − { 𝑗}. Considering the definition of the Shapley
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value [22], for every agent 𝑗 ∈ S𝑖 its marginal contribution to a

coalition S ⊆ N − {𝑖} is given as follows:

𝑢 (S ∪ { 𝑗}) − 𝑢 (S) = 𝑐2𝑖 − [𝑐𝑖 − (|𝑆 | + 1)]2 − [𝑐2𝑖 − (𝑐𝑖 − |𝑆 |)2] =

= (𝑐𝑖−|𝑆 |)2−(𝑐𝑖−|𝑆 |−1)2 = (𝑐𝑖−|𝑆 |+𝑐𝑖−|𝑆 |−1) (𝑐𝑖−|𝑆 |−𝑐𝑖+|𝑆 |+1) =
= [2𝑐𝑖 − 2|𝑆 | − 1]

Given a set of size |S𝑖 | − 1, the number of its subsets of size ℓ is( |S𝑖 |−1
ℓ

)
. Thus, for each S ⊆ S𝑖 − { 𝑗} such that |𝑆 | = ℓ , we infer:

𝑤S ·
(
|S𝑖 | − 1

ℓ

)
=
ℓ!( |S𝑖 | − ℓ − 1)!

|S𝑖 |!

(
|S𝑖 | − 1

ℓ

)
=

=
ℓ!( |S𝑖 | − ℓ − 1)!

|S𝑖 |!
· ( |S𝑖 | − 1)!
ℓ!( |S𝑖 | − ℓ − 1)! =

1

|S𝑖 |
Accordingly, we have that:

𝜙 𝑗 (S𝑖 , 𝑢) =
∑

S⊆S𝑖−{ 𝑗 }
𝑤S [𝑢 (S∪{ 𝑗})−𝑢 (S)] =

1

|S𝑖 |

|S𝑖 |−1∑
ℓ=0

[2𝑐𝑖−2ℓ−1] =

=
|S𝑖 |
|S𝑖 |

2𝑐𝑖 −
2

|S𝑖 |

|S𝑖 |−1∑
ℓ=0

ℓ− |S𝑖 |
|S𝑖 |

= 2𝐶𝑖 −
2

|S𝑖 |
· |S𝑖 |

2

[0+ |S𝑖 | −1] −1 =

= 2𝑐𝑖 − |𝑆𝑖 | + 1 − 1 = 2𝑐𝑖 − |𝑆𝑖 |
□

The following corollary gives us an expression for the relative

efficiency of each restricted cooperative game’s grand coalition.

Corollary 4.3. Let (N = 𝐴𝐹 ∪ 𝐴𝐷 , 𝑣, CS) be a consensus-
prevention game with a static coalition structure CS = {S1, . . . ,S𝜉 }.
Let (S𝑖 , 𝑣 |S𝑖

) be a restricted cooperative game, for some S𝑖 ∈ CS.
The relative efficiency of this game’s grand coalition is:

𝑣 |S𝑖
(S𝑖 ) = 2𝑐𝑖 |S𝑖 | − |S𝑖 |2

Proof. For each coalition S𝑖 ∈ CS:

𝑣 |S𝑖
(S𝑖 ) =

∑
𝑗 ∈S𝑖

𝜙 𝑗 (S𝑖 , 𝑣 |S𝑖
) =

∑
𝑗 ∈S𝑖

[2𝑐𝑖−|𝑆𝑖 |] = 2𝑐𝑖 (𝜉) |S𝑖 | − |S𝑖 |2

□

Given that the agents are aiming at maximizing the disagree-

ment measure, the following theorem shows that maximizing the
disagreement measure is equivalent to maximizing the coalition struc-
ture’s value.

Theorem 4.4. Let (N = 𝐴𝐹∪𝐴𝐷 , 𝑣, CS) be a consensus-prevention
game with a static coalition structure CS = {S1, . . . ,S𝜉 }. Then, the
disagreement measure reaches its maximum if and only if the value
of the coalition structure reaches its maximum, i.e., it equals to:

𝑣 (CS) =
𝜉∑
𝑖=1

𝑐2𝑖 = 𝜉𝑟2 + 2𝑞𝑟 + 𝑞

Proof. ⇐ The value of the coalition structure is given by the

following expression: 𝑣 (CS) = ∑
S𝑖 ∈CS 𝑣 (S𝑖 ). Thus, the maximiz-

ing the coalition structure’s value is equivalent to the maximiz-

ing the payoff of each coalition S𝑖 ∈ CS. The first and second

derivatives (respectively) of the characteristic function given in

Definition 4.1 with respect to the size of the a coalition S ⊆ S𝑖
are as follows: 𝑣 ′(S) = 2(𝑐𝑖 − |S|), 𝑣 ′′(S) = −2. The characteristic

function reaches an extremum value when its first derivative equals

to zero: 2(𝑐𝑖 − |S|) = 0 ⇒ |S| = 𝑐𝑖 . Since 𝑣
′′(S) = −2 < 0, for each

coalition S𝑖 ∈ CS such that |S𝑖 | = 𝑐𝑖 , the coalition receives its

maximum payoff, which equals to 𝑣 (S𝑖 ) = 𝑐2
𝑖
. As in Subsection 3.2,

this also guarantees the maximization of the disagreement measure.

⇒ Regarding Equation 2, eventually |S𝑖 | = 𝑐𝑖 for every 1 ≤ 𝑖 ≤ 𝜉 .

Thus, for each agent 𝑗 ∈ S𝑖 the Shapley value 𝜙 (S𝑖 , 𝑣 |S𝑖
) as-

signs the payoff 𝜙 𝑗 (S𝑖 , 𝑣 |S𝑖
) = 𝑐𝑖 . Hence, the relative efficiency

of each restricted cooperative game’s grand coalition becomes

𝑣 |S𝑖
(S𝑖 ) = 𝑣 (S𝑖 ) = 𝑐2

𝑖
. In particular, the coalition structure’s value

reaches the following: 𝑣 (CS) = ∑
S𝑖 ∈CS 𝑣 (S𝑖 ) =

∑𝜉

𝑖=1
𝑐2
𝑖
. Indeed,

considering the proof of the previous direction, it really is the coali-

tion structure’s maximum value. Furthermore, as mentioned in

Subsection 3.2, we have that:

𝑣 (CS) =
𝜉∑
𝑖=1

𝑐2𝑖 =

𝜉−𝑞∑
𝑖=1

𝑐2𝑖 +
𝜉∑

𝑖=𝜉−𝑞+1
𝑐2𝑖 =

𝜉−𝑞∑
𝑖=1

𝑟2 +
𝜉∑

𝑖=𝜉−𝑞+1
(𝑟 + 1)2 =

= (𝜉 −𝑞)𝑟2 +𝑞(𝑟 + 1)2 = (𝜉 −𝑞)𝑟2 +𝑞𝑟2 + 2𝑞𝑟 +𝑞 = 𝜉𝑟2 + 2𝑞𝑟 + 𝑞

□

Consequently from Theorem 4.4, we infer thatmaximizing the
disagreement measure is an NP-hard process.

5 Consensus-Prevention - Problem Definition
The consensus-prevention problem is formally defined as follows:

Definition 5.1. (Consensus-Prevention Problem) Given a group of

flocking agents 𝐴𝐹
:= {𝑎0, ..., 𝑎𝑘−1}, a group of diverting agents

𝐴𝐷
:= {𝑎𝑘 , ..., 𝑎𝑛−1}, and a set of desired orientations after con-

vergence - Θ := {𝛼1, ..., 𝛼𝜉 }. We are aiming to find a partition

𝑃 = (𝑉1, . . . ,𝑉𝜉 ) of the flocking neighbors graph at time step 0,

G(0) = (V, E(0)), and initial locations for the diverting agents,

that will guarantee that flocking agents associated with the cluster

𝑉𝑖 will converge to the orientation 𝛼𝑖 (if possible), while maximizing

the disagreement measure.

In general, the consensus-prevention problem requires edge op-

erations (both additions and deletions) of the flocking neighbors

graph, thus making it a variant of the CLUSTER-EDITING prob-

lem, which is known to be NP-complete [21]. Therefore, we re-

strict the analysis to a case in which the problem is solvable in

polynomial time, and a partition can be readily computed, with

less computational expense. Henceforth, we examine the case in

which the number of connected components in the flocking neigh-

bors graph at time step 0 is at least the number of desired orienta-

tions after convergence (𝜂 ≥ 𝜉). First, we deal with determining the

initial placements of the diverting agents in a flock that guarantees

consensus-prevention. When the number of desired orientations is

fixed, we prove that this can be done in polynomial time (Section

6.1). When also considering the maximization of the disagreement

measure, we need an additional and quite restrictive property to

be satisfied for the problem to be solvable in polynomial time: The

partition is obtained by only aggregating connected components

in the flocking neighbors graph at time step 0.
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5.1 Diverting Agents’ Initial Placements -
Problem Definition

We first define the following two problems:

Definition 5.2. DIP (Diverting agents Initial Placements) - The

input is as follows: (1) The initial placements of the 𝑘 flocking

agents; (2) The desired orientations after convergence:Θ := {𝛼1, ..., 𝛼𝜉 };
and (3)𝑚 diverting agents are inserted into the flock. Assuming

that the flocking neighbors graph has 𝜂 connected components, the

goal is determining the𝑚 diverting agents’ initial placements such

that, for each desired orientation 𝛼𝑖 (1 ≤ 𝑖 ≤ 𝜉), there will be at

least one flocking agent which will converge to this orientation.

Definition 5.3. MDIP (Minimal Diverting agents Initial Place-
ments) - The input is as follows: (1) The initial placements of the 𝑘

flocking agents; and (2) The desired orientations after convergence:

Θ := {𝛼1, ..., 𝛼𝜉 }. Assuming that the flocking neighbors graph has 𝜂

connected components, the goal is determining theminimal number

of diverting agents and their initial placements such that, for each

desired orientation 𝛼𝑖 (1 ≤ 𝑖 ≤ 𝜉), there will be at least one flocking

agent which will converge to this orientation.

It should be noted that the DIP andMDIP problems are dealing

with the convergence of at least one flocking agent to each de-

sired orientation 𝛼𝑖 (1 ≤ 𝑖 ≤ 𝜉). This stems from the fact that we are

not considering the maximization of the disagreement measure, but

we are willing to at least reach the minimum disagreement possible

(reach some lower bound on the disagreement), which might be

sub-optimal. Thus, we define the following two problems:

Definition 5.4. DIP-MAX and MDIP-MAX - Identical to theDIP
andMDIP problems (respectively), except for the fact that we are

also aiming to maximize the disagreement measure.

6 Polynomial Time Complexity - Required
Properties

Following [3], the diverting agents are assumed to have a Face
Desired Orientation behavior, which is sufficient for guaranteeing

consensus on a desired orientation, while employing them into a

flocking model that is based on the Vicsek Model [29]. Accordingly,

given that𝜂 ≥ 𝜉 , in Subsection 6.1 we prove that theDIP andMDIP
problems are polynomial in time. In Subsection 6.2, we discuss a

case in which the DIP-MAX andMDIP-MAX problems are also

polynomial in time. We prove that, for any fixed 𝜉 ≥ 2 (the number

of desired orientations), those problems can be solved in 𝑂 (𝜂𝑘𝜉 )
time.

6.1 DIP and MDIP
In this section, wewill be showing that theDIP andMDIP problems

are both polynomial in time, given that 𝜂 ≥ 𝜉 . In order to relate

the clustering problem to the DIP problem we make the following

definitions (according to Shamir et al. [21]):

Definition 6.1. (Cluster Editing/Completion/Deletion Set) If 𝐺 =

(𝑉 , 𝐸) is any graph and 𝐹 ⊆ 𝑉 ×𝑉 is such that 𝐺 ′ = (𝑉 , 𝐸Δ𝐹 ) is a
cluster graph, then 𝐹 is called a cluster editing set for𝐺 (𝐸Δ𝐹 denotes

the symmetric difference between 𝐸 and 𝐹 , i.e., (𝐸 − 𝐹 ) ∪ (𝐹 −𝐸)). If
in addition 𝐹∩𝐸 = ∅, then 𝐹 is called a cluster completion set for𝐺 . If

𝐹 ⊆ 𝐸, then 𝐹 is called a cluster deletion set for𝐺 . If𝐺 ′
is a 𝜉-cluster

graph, then 𝐹 is called a 𝜉-cluster editing/completion/deletion set for
𝐺 . We denote by 𝑃 (𝐹 ) the partition of 𝑉 according to 𝐹 .

Hence, the literal meaning of the size of a cluster completion

set is as follows: it counts the number of edge operations (both addi-
tions and deletions) needed to transform a graph into a cluster graph.
In the case of the 𝜉-CLUSTER-COMPLETION problem [21], it

counts the number of edge additions only. Thus, regarding Defini-

tion 5.1, the DIP problem becomes a variant of the 𝜉-CLUSTER-
COMPLETION problem. Let us consider the following definition.

Definition 6.2. (The Distance Between Connected Components)
Given a flocking neighbors graph at time step 0, G(0) = (V, E(0)),
and a pair of connected components𝐶𝑖 ,𝐶 𝑗 in G(0), let 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) :=
min𝑣∈𝐶𝑖 ,𝑢∈𝐶 𝑗

| |𝑝𝑣 (0) − 𝑝𝑢 (0) | | denote the distance between them.

The following lemma shows how many diverting agents are

required for joining together two distinct connected components in

the flocking neighbors graph at time step 0 into a single coalition.

Furthermore, it gives us lower and upper bounds on the size of the

optimal completion set required for such a partition.

Lemma 6.3. Let 𝐶𝑖 ,𝐶 𝑗 be a pair of distinct connected components
in G(0) (𝐶𝑖 ∩ 𝐶 𝑗 = ∅). Therefore, if 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) ≤ 2𝑅, then a single
diverting agent should be inserted for connecting between them. Oth-
erwise, two diverting agents 𝑎𝑞𝑖 , 𝑎𝑞 𝑗

are required, which are initially
placed in the neighborhood of a flocking agent corresponding to𝐶𝑖 ,𝐶 𝑗

(respectively). In both cases, at least 4 edges and at most 2𝑘 ·𝑚𝑖, 𝑗 edges
are added to the flocking neighbors graph, where𝑚𝑖, 𝑗 is the required
number of diverting agents.

Proof. Since 𝐶𝑖 ∩𝐶 𝑗 = ∅, then 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) > 𝑅. Otherwise, there

is a pair of vertices 𝑣 ∈ 𝐶𝑖 , 𝑢 ∈ 𝐶 𝑗 for which 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) = | |𝑝𝑣 (0) −
𝑝𝑢 (0) | | ≤ 𝑅. Therefore: 𝑎𝑣 ∈ 𝑁𝑢 (0), that is (𝑣,𝑢) ∈ 𝐸 (0) according
to the definition of a flocking neighbors graph. This means that

𝑢, 𝑣 ∈ 𝐶𝑖 ∩𝐶 𝑗 holds - which is a contradiction. Thus, the proof is di-

vided into two cases. If𝑅 < 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) ≤ 2𝑅, there is a pair of vertices

𝑣 ∈ 𝐶𝑖 , 𝑢 ∈ 𝐶 𝑗 for which 𝑅 < 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) = | |𝑝𝑣 (0) − 𝑝𝑢 (0) | | ≤ 2𝑅.

Thus, inserting a single diverting agent 𝑎𝑞 ∈ 𝐴𝐷
into the intersec-

tion of the neighborhoods of the flocking agents 𝑎𝑢 , 𝑎𝑣 will create

the desired connection. Moreover, this will result in adding at least

4 edges to the flocking neighbors graph at time step 0, since the

following edges will be necessarily added: (𝑣, 𝑞), (𝑞, 𝑣), (𝑢, 𝑞), (𝑞,𝑢).
Similarly, if the diverting agent will lie in the neighborhood of more

flocking agents, then at most 2𝑘 edges will be added.

If 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) > 2𝑅, according to Definition 6.2, for each pair of

vertices 𝑣 ∈ 𝐶𝑖 , 𝑢 ∈ 𝐶 𝑗 , it holds that | |𝑝𝑣 (0)−𝑝𝑢 (0) | | > 2𝑅, resulting

in𝐷𝑖𝑠𝑐𝑣 (0)∩𝐷𝑖𝑠𝑐𝑢 (0) = ∅. Therefore, two diverting agents 𝑎𝑞𝑖 , 𝑎𝑞 𝑗

are required, which are initially placed in the neighborhood of a

flocking agent corresponding to 𝐶𝑖 ,𝐶 𝑗 (respectively). Similarly to

the previous case, each one will add at least 2 edges and at most 2𝑘

edges to the flocking neighbors graph. □

Therefore, the following problem is equivalent to the DIP prob-

lem given that 𝜂 ≥ 𝜉 :

Definition 6.4. DIP-CLUSTER-COMPLETION - The input is

as follows: (1) A set of desired orientations after convergence -

Θ := {𝛼1, ..., 𝛼𝜉 }; (2) The flocking neighbors graph at time step 𝑡 ,
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Algorithm 1 DIP-CLUSTER-COMPLETION

1: 𝑆0 = {{{∅}, . . . , {∅}}}
2: for i = 1 to 𝜂 do
3: 𝑆𝑖 = {𝑣 [ 𝑗] .add(𝐶𝑖 ) |𝑣 ∈ 𝑆𝑖−1, 1 ≤ 𝑗 ≤ 𝜉}
4: Pick in 𝑆𝜂 a vector 𝑣∗ minimizing:

𝑠 (𝑣) := 2𝑘

𝜉∑
𝑗=1, |𝑣 [ 𝑗 ] |−1>1

|𝑣 [ 𝑗 ] |−1∑
𝑖=1

[𝑑 (𝑣 [ 𝑗]𝑖 , 𝑣 [ 𝑗]𝑖+1) ≤ 2𝑅?1 : 2] (4)

G(𝑡) = (V, E(𝑡)), with 𝜂 ≥ 𝜉 connected components during time

step 0; and (3)𝑚 diverting agents. The goal is finding a partition

𝑃 = (𝑉1, . . . ,𝑉𝜉 ) of the graph G(0), for which the size of the 𝜉-

cluster completion set implied by 𝑃 is at most 2𝑘𝑚.

The following theorem proves that using Algorithm 1, the prob-

lem is solvable in polynomial time.

Theorem 6.5. Let 𝜉 ≥ 2 be fixed. Then, the DIP-CLUSTER-
COMPLETION problem can be solved in 𝑂 (𝜂𝑘𝜉 ) time.

Proof. We will now be adjusting the algorithm given by Shamir

et al. [21] to our problem. Let G(𝑡) = (V, E(𝑡)) be the flocking

neighbors graph. Clearly: |V| = 𝑘 . Let 𝜂 be the number of con-

nected components of G(0) (can be done using either BFS or DFS in

𝑂 ( |V|+ |E(0) |) time). To find the optimum completion set, we com-

pute partitions of the 𝜂 components of G(0) into 𝜉 sets (splitting no
connected components). As in [21], using dynamic programming,

we only need to consider a polynomial number of partitions.

Let𝐶1, . . . ,𝐶𝜂 be the connected components in G(0). In contrast

to [21], each connected component is also characterized by its loca-

tion in R2. Therefore, we shouldn’t consider all possible partitions,
but only those which take into consideration the euclidean distance

between each pair of connected components. Without loss of gen-

erality, we assume that the connected components are sorted, using

𝑑 (·, ·) as a comparator (Definition 6.2), in a descending order (in

the worst case, this can be done in 𝑂 (𝜂2) time).

In contrast to [21], Algorithm 1 denotes each possible partition

by a 𝜉-sized set of sets 𝑆𝑖 of the sets, which correspond to all possi-

ble partitions of 𝐶1, . . . ,𝐶𝑖 . 𝑆𝑖 ’s 𝑗-th set comprises of all connected

components generating the 𝑗-th cluster. We assume there is no

order upon the elements in each such set, meaning that we also

don’t allow duplicate elements in each set. For instance, if 𝜉 = 2,

then the set {{𝐶𝑖 }, {𝐶 𝑗 }} is identical to {{𝐶 𝑗 }, {𝐶𝑖 }}. Hence, given
a partition, regarding Lemma 6.3, we seek to minimize themaxi-
mal number of edges possible, which can be added to the flocking

neighbors graph at time step 0. Note that 𝑣 [ 𝑗] .𝑎𝑑𝑑 (𝐶𝑖 ) in line 3

of the algorithm denotes the addition of 𝐶𝑖 as an element of the

set 𝑣 [ 𝑗] and |𝑣 [ 𝑗] | denotes the cardinality of 𝑣 [ 𝑗]. For brevity, the
conditional expression in Equation 4 is utilized, whereas it equals to

1 if and only if 𝑑 (𝑣 [ 𝑗]𝑖 , 𝑣 [ 𝑗]𝑖+1) ≤ 2𝑅. Otherwise, it equals to 2. As

illustrated in the supplementary material [5], a set corresponding

to some cluster in the partition might contain the empty set ∅, thus
requiring the convention that 𝑑 (𝐶𝑖 , ∅) := 𝑅 for each connected

component 𝐶𝑖 in G(0).
Let 𝑣∗ be the vector returned by Algorithm 1, which regards the

connected components’ spatial position, and let 𝐹 ∗ be the implied

𝜉-cluster completion set. Lemma 6.3 then provides us with 𝑣∗’s
geometric relation, characterizing the set of diverting agents’ initial

positions with respect to the resulting partition. Hence, similarly

to [21], 𝐹 ∗ is optimal. In light of Definition 6.1, if |𝐹 ∗ | ≤ 2𝑘𝑚, then

𝐹 ∗ is a solution for the DIP-CLUSTER-COMPLETION problem.

Otherwise, more diverting agents are required.

For the algorithm’s time complexity, note that the for loop in

line 2 iterates 𝜂 times. In line 3, we iterate 𝑂 (𝑘) elements 𝜉 times.

At total, we have a time complexity of 𝑂 (𝜂𝑘𝜉 ). □

Since the DIP-CLUSTER-COMPLETION problem is equiva-

lent to the DIP problem from a graph theoretic point of view, the

DIP problem is also solved in 𝑂 (𝜂𝑘𝜉 ) time, given that 𝜂 ≥ 𝜉 . Note

that the algorithm above also solves the MDIP problem in 𝑂 (𝜂𝑘𝜉 )
time according to the following corollary:

Corollary 6.6. Let 𝜉 ≥ 2 be fixed. Assuming that the flocking
neighbors graph has 𝜂 ≥ 𝜉 connected components during time step 0,
Algorithm 1 solves theMDIP problem in 𝑂 (𝜂𝑘𝜉 ) time and provides
the minimal number of diverting agents required,𝑚𝑚𝑖𝑛 (𝜉).

Proof. Let 𝑣∗ be the vector returned by the algorithm and let

𝐹 ∗ be the implied 𝜉-cluster completion set. Similarly to [21] and

according to Lemma 6.3, it is optimal. Therefore, in light of Defini-

tion 6.1, for every 𝜉-cluster completion set 𝐹 : |𝐹 ∗ | ≤ |𝐹 |. Therefore,
according to Lemma 6.3, the minimal number of diverting agents

required is given by
|𝐹 ∗ |
2𝑘

, that is:

𝑚𝑚𝑖𝑛 (𝜉) =
𝜉∑

𝑗=1, |𝑣∗ [ 𝑗 ] |−1>1

|𝑣∗ [ 𝑗 ] |−1∑
𝑖=1

[𝑑 (𝑣∗ [ 𝑗]𝑖 , 𝑣∗ [ 𝑗]𝑖+1) ≤ 2𝑅?1 : 2]

□

6.2 DIP-MAX and MDIP-MAX
According to Theorem 4.4, when also considering the maximization

of the disagreement measure, the problem becomes NP-complete.
Regarding Equation 2, given that 𝑃 = (𝑉1, . . . ,𝑉𝜉 ) is the resulting
partition of the flocking neighbors graph at time step 0, supposing 𝑟

is the integral quotient and 𝑞 is the remainder when 𝑘 is divided by

𝜉 , so that 𝑘 = 𝑟𝜉 + 𝑞, then the maximum value of the disagreement

measure is obtained when |𝑉𝑖 | = 𝑟 for 1 ≤ 𝑖 ≤ 𝜉 −𝑞 and |𝑉𝑖 | = 𝑟 + 1

for 𝜉 −𝑞 + 1 ≤ 𝑖 ≤ 𝜉 . Hence, Algorithm 1 can be restricted to all par-

titions satisfying this property. If such a partition exists, it can thus

be obtained in polynomial by only aggregating connected com-
ponents. Otherwise, the general case arises, according to which

such a partition requires a physical separation within several con-

nected components, so as to achieve the desired cardinality of each

coalition 𝑉𝑖 .

6.3 The Optimal Number of Desired
Orientations

Given a static number of agents, determining the number of desired

orientations 𝜉𝑂𝑃𝑇 which will lead to the maximal disagreement

possible is NP-hard due to Theorem 4.4. The following corollary

is a direct outcome of Lemma 3.4, which gives us lower and upper

bounds on this desired number of coalitions.
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Corollary 6.7. Given 𝑘 flocking agents and𝑚 diverting agents,
the number of desired orientations 𝜉𝑂𝑃𝑇 which will lead to the maxi-
mal disagreement possible satisfies:

𝐷𝑚𝑎𝑥 (2) ≤ 𝐷𝑚𝑎𝑥 (𝜉𝑂𝑃𝑇 ) ≤ 𝐷𝑚𝑎𝑥 (min(𝑚,𝑘))

Following Corollary 6.6, the following corollary considers a sce-

nario in which 𝜉𝑂𝑃𝑇 can be calculated in polynomial time.

Corollary 6.8. Let 𝜂 be the number of connected components in
the flocking neighbors graph at time step 0. Given 𝑘 flocking agents
and𝑚 ≤ 𝜂 diverting agents, the number of desired orientations which
will lead to the maximal disagreement possible is 𝜉𝑂𝑃𝑇 = 𝑚 if and
only if𝑚 ≥ 𝑚𝑚𝑖𝑛 (𝑚).

7 Experiments
In this section, we give a concise subset of our experiments, testing

the behavior of the diverting agents, which should eventually lead

to a spatial consensus-prevention in the observed flock in both a

fixed topology and a switching topology. Results regarding the CPU

time and the Runtime appear in the supplementary material [5].

7.1 Simulation Environment
We situate our research within the Flockers domain of the MASON

simulator [15]. This simulator encodes all the dynamics as they are

described in the previous sections, where each agent points and

moves in the direction of its current velocity vector. We made a few

alterations to the MASON Flockers domain, such that they will fit

our needs. It was initially altered to also contain diverting agents.
Another modification was making the flocking agents update their
orientation according to the average orientation of all agents in

𝑁𝑖 (𝑡) (including itself) at time step 𝑡 . For more realistic implications

of the simulator, its toroidal feature was removed. That is, if an

agent moves off of an edge of our domain, it will not reappear and

will remain "lost" forever. All code alterations are provided in [4].

7.2 Placement Methods
For guaranteeing that the flocking neighbors graph does indeed

consist of a specific number of connected components, we consider

the grid placement method and the random placement method pro-

posed in [3], according to which each pair of successive flocking

agents are within a radius of at most 𝑅 from each other. Throughout

both placement methods, for each connected component 𝐶𝑖 , we

calculate the maximal and minimal coordinates at which flocking

agents are initially located with respect to both the 𝑥-axis and the

𝑦-axis, which we denote by 𝑥𝑚𝑖𝑛
𝑖

, 𝑥𝑚𝑎𝑥
𝑖

, 𝑦𝑚𝑖𝑛
𝑖

, 𝑦𝑚𝑎𝑥
𝑖

(denoted by

B𝑖 ). For ensuring that two adjacent connected components𝐶𝑖 ,𝐶𝑖+1
are indeed distinct, we enforce that 𝑥𝑚𝑖𝑛

𝑖+1 − 𝑥𝑚𝑎𝑥
𝑖

> 𝑅. Regarding

the random placement method, it should be noted that the flock-

ing agents might be initially spread across B𝑖 in a high density,

thus occupying a smaller area within B𝑖 . Hence, there are more

positions at which placing a diverting agent won’t influence any

of the flocking agents, resulting in a slower convergence rate. In
contrast, in the grid placement method they are initially within an

exact distance of 𝑅 − 1, thus entirely occupying the area within B𝑖 .

Indeed, regarding the experimental results which follow, it can be

observed that the grid placement method performs better than the

random placement method.

Determining the "best" initial placements of the diverting agents

is NP-hard [10]. Hence, for influencing a cluster comprising of

the connected components 𝐶𝑖1 , . . . ,𝐶𝑖 𝑗 , each diverting agent is

initially placed randomly within the rectangular box formed by

minℓ 𝑥
𝑚𝑖𝑛
𝑖ℓ

,maxℓ 𝑥
𝑚𝑎𝑥
𝑖ℓ

,maxℓ 𝑦
𝑚𝑖𝑛
𝑖ℓ

,minℓ 𝑦
𝑚𝑎𝑥
𝑖ℓ

, for the sake of increas-

ing the probability at which it will indeed influence them all and

solely them. As mentioned earlier, aggregating connected compo-

nents is also required. Following the Intersection Points Placement
method proposed in [3], given a pair of connected components

𝐶𝑖 ,𝐶 𝑗 such that 𝑑 (𝐶𝑖 ,𝐶 𝑗 ) ≤ 2𝑅, for a random pair 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗

which satisfies | |𝑝𝑢 (0)−𝑝𝑣 (0) | | ≤ 2𝑅, a diverting agent𝑎𝑞 is initially

placed randomly along the linear line, connecting the intersection

points of both flocking agents’ neighborhoods.

7.3 "Lost" Agents
Genter [10] considered cases in which some flocking agents may

become indefinitely separated from a flock with a switching topol-

ogy. Hence, each "lost" agent is considered as a cluster on its own.

For a fixed 𝜉 , we denote by 𝑘𝑒
𝑖
(𝜉), ℓ𝑒

𝑖
(𝜉) the number of agents and

the total number of "lost" agents in the 𝑖𝑡ℎ cluster during execution

𝑒 (respectively). Thus, the disagreement measure in Equation 1 is

altered as follows (while denoting ℓ𝑒 (𝜉) := ∑
1≤𝑖≤𝜉 ℓ

𝑒
𝑖
(𝜉)):

𝐷𝑒
𝑙𝑜𝑠𝑡

(𝜉) =
𝑘2 −∑

1≤𝑖≤𝜉 (𝑘𝑒𝑖 (𝜉) − ℓ𝑒
𝑖
(𝜉))2 − ℓ𝑒 (𝜉)

𝑘2 − 𝑘
(5)

The following lemma proves that 𝐷𝑒
𝑙𝑜𝑠𝑡

(𝜉) is strictly decreas-
ing as a function of ℓ𝑒 (𝜉) (proof is omitted due to space constraints,

and can be found in the supplementary material [5]).

Lemma 7.1. Let 𝜉 be the number of desired orientations. For a pair
of executions 𝑒1 < 𝑒2, such that ℓ𝑒1 (𝜉) < ℓ𝑒2 (𝜉), 𝑘𝑒1

𝑖
(𝜉) = 𝑘

𝑒2
𝑖
(𝜉), the

following holds: 𝐷𝑒1
𝑙𝑜𝑠𝑡

(𝜉) > 𝐷
𝑒2
𝑙𝑜𝑠𝑡

(𝜉).

7.4 Experimental Setup
The baseline settings for variables are as follows: domain height

and width: 500 units, agent velocity 𝑣𝑖 = 0.2 units/sec, and visibility

range 𝑅 = 10 units. Flocking agents are initially placed with ran-

dom initial headings throughout the domain. In our experiments,

we conclude that a coalition has converged to an orientation 𝛼

when every agent (that is not a diverting agent) is facing within

0.01 radians of 𝛼 . Other stopping criteria, such as when 90% of the

agents are facing within 0.01 radians of 𝛼 , could have also been

used. Moreover, due to the involvement of randomness in our sim-

ulations, each point in all graphs corresponds to the average over

100 consecutive executions.

All of the experiments incorporate either Θ2 := {𝛼1 = 𝜋, 𝛼2 = 0},
Θ3 := {𝛼3 = 𝜋, 𝛼4 = 𝜋

2
, 𝛼5 = 0} or Θ4 := {𝛼6 = 𝜋

4
, 𝛼7 = 3𝜋

4
, 𝛼8 =

5𝜋
4
, 𝛼9 = 7𝜋

4
} as the set of desired orientations (𝜉 ∈ {2, 3, 4}). Fur-

thermore, the experimental results which are introduced consider

consensus-prevention among a flocking neighbors graphwith𝜂 ≥ 𝜉

connected components,𝐶1, . . . ,𝐶𝜂 , for both the fixed topology case

and the switching topology case.𝐶𝑖 ,𝐶𝑖+1 are initialized to be within
1.5𝑅 from each other (𝑑 (𝐶𝑖 ,𝐶𝑖+1) = 1.5𝑅). Besides, we enforce

𝑦𝑚𝑖𝑛
𝑖

= 𝑦𝑚𝑖𝑛
𝑗

, for the sake of enlarging the area at which a diverting

agent can be initially placed in regardwith Subsection 7.2. Following
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Figure 1: Comparison for both the fixed topology case (1a-
1c) and the switching topology case (1d), with respect to two
parameters for each Θ𝑗 : the time steps and the disagreement
measure’s value (bar charts). The values of𝜂, 𝜉, |𝐶𝑖 | are explic-
itly provided underneath each graph. The placement meth-
ods are as they are presented in Subsection 7.2, where G and
R stand for Grid and Random (respectively).

[3], it is sufficient that each diverting agent constantly orients it-

self to the desired orientation. For each one of the presented graphs,

we consider both the grid placement method or the random place-
ment method described earlier. Our main interest is investigating

the impact of the number of diverting agents on the disagreement

measure in different scenarios, as well as the number of time steps

required until reaching the desired consensus-prevention.

7.5 Experimental Results
In Fig. 1a the desired partition regardingΘ2 is 𝑃 = (𝐶0,𝐶1∪𝐶2), and
we solely incorporate 𝑗 diverting agents with respect to Θ𝑗 , which

is the minimal number of diverting agents required. As expected,

the higher the number of desired orientations, the better the perfor-
mance. Theoretically, the task of aggregating 𝐶1,𝐶2, while using

only a single diverting agent 𝑎𝑖+𝑘 , results in 𝑎𝑖+𝑘 influencing double
the number of flocking agents influenced by it, when considering

Θ3 as the set of desired orientations. Hence, the number of time

steps required until convergence increases as a function of 𝜉 . Hence,

utilizing the minimal number of diverting agents does indeed lead

to the desired consensus-prevention, but adding more diverting
agents yields a better performance (in terms of convergence time).

Regarding Lemma 6.6 and Corollary 6.6,𝑚𝑚𝑖𝑛 (2) =𝑚𝑚𝑖𝑛 (3) =
3,𝑚𝑚𝑖𝑛 (4) = 4. Hence, in Figs. 1b,1c, with respect to Θ𝑗 , at each ex-

ecution we first randomly choose a suitable partition 𝑃 that requires

𝑚𝑚𝑖𝑛 ( 𝑗) of diverting agents, which we then utilize to aggregate

connected components for achieving 𝑃 . The remaining diverting

agents are spread randomly between the resulting clusters. As ob-

served by Fig. 1b, the time steps increase as a function of𝑚, in a rate

which is approximately linear. The anomaly in 𝐷’s value at𝑚 = 40

stems from the fact that both 𝑘 and𝑚 are varied, meaning that the

disagreement measure can’t be calculated in advance. Regarding

Fig. 1c, it can also be observed that the time steps increase as a func-
tion of 𝜉 . Given that 𝑘 is constant, each cluster can contain at most

⌊ 𝑘
𝜉
⌋ flocking agents, a magnitude which decreases as a function of 𝜉 .

Thus, each flocking agent individually will be influenced (directly

or indirectly) by fewer agents, resulting in a slower convergence.
Furthermore, for each Θ𝑗 separately, the convergence rate increases
as a function of𝑚, as expected. We also note that the anomaly at

𝑚 = 40 arises since there are executions in which one cluster might

contain more agents, and thus take longer to converge.

Regarding Subsection 7.3, Fig. 1d considers the same scenario for

a switching topology, with the exception that it considers the num-
ber of "lost" agents instead of considering the time steps required

for convergence. As expected, as the number of diverting agents

increases, the number of "lost" agents decreases. Indeed, inserting
more diverting agents into the flock will result in more flocking

agents being influenced (directly or indirectly) to orient towards

the desired orientation, thus leading to a consensus-prevention.

However, for each Θ𝑗 , it seems as if increasing the number of divert-

ing agents has an opposite impact on the disagreement measure’s

value, which decreases. This was to be expected due to Lemma 7.1.

8 Conclusions and Future Work
We have formally introduced the consensus-prevention problem,

concentrating on guaranteeing that the swarm will never converge

to the same direction by the use of diverting agents. We proposed

a disagreement measure within a flock, and gave a correlation

between our problem and the coalition formation game, according

to which we proved that maximizing the disagreement measure is

equivalent to maximizing the coalition structure’s payoff, making

the general problem ofmaximizing the disagreement in a swarmNP-

hard. Accordingly, we have analyzed cases in which the problem

is solvable in polynomial time, when the number of connected

components in the flocking neighbors graph at time step 0 is at
least the number of desired orientations after convergence (𝜂 ≥ 𝜉).

Finally, we demonstrated in simulation the impact of the number of

diverting agents on the disagreement measure in different scenarios,

as well as the limitations of such agents in dynamic settings.

Future work warrants examination of the complementary case

(𝜂 < 𝜉), in which a physical separation (edge deletions) within
several connected components is required, so as to achieve the

desired consensus-prevention using approximation and heuristic

methods. In such cases we speculate that complex behaviors are

necessary to guarantee consensus-prevention, thus extra focus will

be given to that. Finally, we also intend to consider the concept

of disagreement when it reaches its extreme, where each flocking

agent disagrees with all the other flocking agents.
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