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ABSTRACT
Public announcement logic (PAL) extends multi-agent epistemic

logic with dynamic operators modelling the effects of public com-

munication. Allowing quantification over public announcements

lets us reason about the existence of an announcement to reach a

certain epistemic goal. Two notable examples of logics of quantified

announcements are arbitrary public announcement logic (APAL)

and group announcement logic (GAL). The notion of common

knowledge plays an important role in PAL, and in particular in

characterisations of epistemic states that an agent or a group of

agents might make come about by performing public announce-

ments. In this paper, we study extensions of APAL and GAL with

common knowledge, which has not been done before. We consider

both conservative extensions where the semantics of the quantifiers

is not changed, as well as extensions where the scope of quantifica-

tion also includes common knowledge formulas. We compare the

expressivity of these extensions relative to each other and other

connected logics, and provide sound and complete axiomatisations.
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1 INTRODUCTION
Common knowledge has played an important part in reasoning about

knowledge distribution in the multi-agent setting [15]. It has also

been used in epistemic planning [24], machine learning [29], game

theory [25], and so on. Informally, common knowledge of some

fact 𝜑 is usually defined as ‘everybody knows that 𝜑 , everybody

knows that everybody knows that 𝜑 , and so on’.

A formalism used in [15], epistemic logic (EL) with common
knowledge (ELC), provides a static description of knowledge in

a multi-agent system. Logics that are covered by the umbrella term

dynamic epistemic logic (DEL) [12] study the effects of various epis-

temic events on the individual and group knowledge of agents. The

prime example of such a logic is public announcement logic (PAL)
[28] that models public communication. A public announcement is

an event where all agents publicly and simultaneously receive the

same piece of information. The interaction of epistemic events, in
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particular of public announcements, and common knowledge was

studied in [8].

Aribitrary public announcement logic (APAL) [6] and group an-
nouncement logic (GAL) [1] are extensions of PAL with quantifiers

over possible truthful announcements. APAL extends PAL with

constructs of the form ⟨!⟩𝜑 that mean ‘after some public announce-
ment, 𝜑 holds’. GAL has quantifiers with a more limited scope, with

group announcement operators ⟨𝐺⟩𝜑 meaning that ‘there exists a
(joint) announcement by agents from (possibly singleton) group 𝐺

such that 𝜑 is true after the announcement’. GAL thus allows us to

reason about the ability of an agent or a group of agents to achieve

their epistemic goal by a joint public announcement.

Common knowledge plays an significant role in PAL, and in

particular in characterisations of epistemic states that an agent

or a group of agents might make come about by making public

announcements. Investigating logics of quantified announcement

(or any other quantified epistemic actions) with common knowledge

is long overdue, and it was reiterated as an open question in a recent

survey [10]. In this paper, we address this problem. First, we study

the languages APALC and GALC obtained by extending APAL and

GAL, respectively, with common knowledge without changing the

semantics of any of the operators. This allows us to gain further

insight into the standard APAL and GAL modalities. There is a

subtlety here, however, in the scope of quantification. In both APAL

and GAL the quantification is restricted to announcements in the

purely epistemic language. The reason for this is, in addition to

the fact that the quantification does not range over formulas with

quantifiers in them to avoid circularity, that EL and PAL are equally

expressive [28]. Thus quantifying over EL has the same effect as

quantifying over PAL. Adding common knowledge changes the

picture, since EL and ELC are not equally expressive. In this paper,

in addition to the ‘conservative’ variants APALC and GALC, we also

study variants of APAL and GAL with common knowledge where

the quantification ranges over formulas of ELC, called APALC
𝑋

and GALC
𝑋
(for ‘eXtended semantics’), respectively.

In Section 2 we introduce languages of the logics and the corre-

sponding semantics. We investigate some intuitive properties of

the interaction between quantified announcements and common

knowledge in Section 3. Section 4 is devoted to the study of the rel-

ative expressivity of the languages of GALC, GALC
𝑋
, APALC, and

APALC
𝑋
and situating these languages within a broader landscape

of EL-based logics. In Section 5 we give sound and complete proof

systems for APALC, GALC, APALC
𝑋
, and GALC

𝑋
. Like existing

complete systems for APAL and GAL, these are infinitary. A de-

tailed proof is given for the case of GALC; the other cases follow

by relatively simple modifications.

2 LANGUAGES AND SEMANTICS
Let us fix a finite set of agents 𝐴.
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Definition 2.1. Given a countable set of propositional variables 𝑃 ,

the language of group announcement logic with common knowledge
GALC and the language of arbitrary public announcement logic
with common knowledge APALC are inductively defined as

GALC(𝑃) ∋ 𝜑 ::= 𝑝 | ¬𝜑 | (𝜑 ∧ 𝜑) | □𝑎𝜑 | [𝜑]𝜑 | ■𝐺𝜑 | [𝐺]𝜑
APALC(𝑃) ∋ 𝜑 ::= 𝑝 | ¬𝜑 | (𝜑 ∧ 𝜑) | □𝑎𝜑 | [𝜑]𝜑 | ■𝐺𝜑 | [!]𝜑

where 𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴, and 𝐺 ⊆ 𝐴. Whenever 𝑃 is clear from the

context, we omit it. Duals are defined as ^𝑎𝜑 := ¬□𝑎¬𝜑 , ⟨𝜓 ⟩𝜑 :=

¬[𝜓 ]¬𝜑 , ⟨!⟩𝜑 := ¬[!]¬𝜑 , and ⟨𝐺⟩𝜑 := ¬[𝐺]¬𝜑 .
Formula □𝑎𝜑 is read as ‘agent 𝑎 knows 𝜑 ’; [𝜓 ]𝜑 means that ‘after

the public announcement of 𝜓 , 𝜑 will hold’; ■𝐺𝜑 is read as ‘it is

common knowledge among agents from group 𝐺 that 𝜑’; [𝐺]𝜑 is

read as ‘after any public announcement by agents from group 𝐺 , 𝜑

holds’; [!]𝜑 is read as ‘after any public announcement, 𝜑 holds’.

The fragment of GALC without [𝐺]𝜑 is called public announce-
ment logic with common knowledge PALC; the latter without

[𝜑]𝜑 is epistemic logic with common knowledge ELC; PALC and

ELC minus ■𝐺𝜑 are, correspondingly, public announcement logic
PAL and epistemic logic EL. Finally, fragments of GALC and

APALC without ■𝐺𝜑 are called group announcement logic GAL
and arbitrary public announcement logic APAL correspondingly.

‘Everyone in group𝐺 knows 𝜑 ’ is denoted by □𝐺𝜑 :=
∧

𝑖∈𝐺 □𝑖𝜑 ,
and □𝑛

𝐺
𝜑 is defined inductively as □0

𝐺
𝜑 := 𝜑 and □𝑛+1

𝐺
𝜑 := □𝐺□

𝑛
𝐺
𝜑

for all natural numbers 𝑛.

Definition 2.2. A model 𝑀 is a tuple (𝑆, 𝑅,𝑉 ), where 𝑆 is a non-

empty set of states,𝑅 : 𝐴 → 2
𝑆×𝑆

is an equivalence relation for each

agent, and 𝑉 : 𝑃 → 2
𝑆
is the valuation function. We will denote

model𝑀 with a distinguished state 𝑠 as𝑀𝑠 . Whenever necessary,

we refer to the elements of the tuple as 𝑆𝑀 , 𝑅𝑀 , and 𝑉𝑀 .

It is assumed that for group announcements, agents know the for-

mulas they announce. In the following, wewrite EL𝐺 = {∧𝑖∈𝐺 □𝑖𝜓𝑖 |
for all 𝑖 ∈ 𝐺,𝜓𝑖 ∈ EL} (with typical elements𝜓𝐺 ) to denote the set

of all possible announcements by agents from group 𝐺 .

Definition 2.3. Let 𝑀𝑠 = (𝑆, 𝑅,𝑉 ) be a model, 𝑝 ∈ 𝑃 , 𝐺 ⊆ 𝐴, and
𝜑,𝜓 ∈ GALC(𝑃) ∪ APALC(𝑃).

𝑀𝑠 |= 𝑝 iff 𝑠 ∈ 𝑉 (𝑝)
𝑀𝑠 |= ¬𝜑 iff 𝑀𝑠 ̸ |= 𝜑
𝑀𝑠 |= 𝜑 ∧𝜓 iff 𝑀𝑠 |= 𝜑 and𝑀𝑠 |= 𝜓
𝑀𝑠 |= □𝑎𝜑 iff 𝑀𝑡 |= 𝜑 for all 𝑡 ∈ 𝑆 such that 𝑅(𝑎) (𝑠, 𝑡)
𝑀𝑠 |= ■𝐺𝜑 iff ∀𝑛 ∈ N : 𝑀𝑠 |= □𝑛𝐺𝜑

𝑀𝑠 |= [𝜓 ]𝜑 iff 𝑀𝑠 |= 𝜓 implies𝑀
𝜓
𝑠 |= 𝜑

𝑀𝑠 |= [!]𝜑 iff 𝑀𝑠 |= [𝜓 ]𝜑 for all𝜓 ∈ EL

𝑀𝑠 |= [𝐺]𝜑 iff 𝑀𝑠 |= [𝜓𝐺 ]𝜑 for all𝜓𝐺 ∈ EL𝐺

where 𝑀
𝜓
𝑠 = (𝑆𝜓 , 𝑅𝜓 ,𝑉𝜓 ) with 𝑆𝜓 = {𝑠 ∈ 𝑆 | 𝑀𝑠 |= 𝜓 }, 𝑅𝜓 (𝑎) is

the restriction of 𝑅(𝑎) to 𝑆𝜓 for all 𝑎 ∈ 𝐴, and 𝑉𝜓 (𝑝) = 𝑉 (𝑝) ∩ 𝑆𝜓
for all 𝑝 ∈ 𝑃 .

It is immediate from the semantics that common knowledge of

a group consisting of one agent is equivalent to the knowledge of

that agent. This fact is characterised by the formula ■{𝑎}𝜑 ↔ □𝑎𝜑 .

As discussed in the introduction, we now define alternative vari-

ants of APAL and GAL extended with common knowledge, where

the quantification also ranges over common knowledge. We call

these APALC
𝑋

and GALC
𝑋
, respectively. The languages of the

latter are the same as APALC and GALC with [!]𝜑 and [𝐺]𝜑
being substituted by [!]𝑋𝜑 and [𝐺]𝑋𝜑 . The critical difference, how-
ever, is in the semantics.

Let ELC𝐺 = {∧𝑖∈𝐺 □𝑖𝜓𝑖 | for all 𝑖 ∈ 𝐺,𝜓𝑖 ∈ ELC}. Intuitively,
ELC𝐺

is the set of possible group announcements by agents from

𝐺 that may include common knowledge.

Definition 2.4. The semantics of APALC
𝑋
and GALC

𝑋
is as in

Definition 2.3 with the following modification:

𝑀𝑠 |= [!]𝑋𝜑 iff 𝑀𝑠 |= [𝜓 ]𝜑 for all𝜓 ∈ ELC

𝑀𝑠 |= [𝐺]𝑋𝜑 iff 𝑀𝑠 |= [𝜓𝐺 ]𝜑 for all𝜓𝐺 ∈ ELC𝐺

Note that in a language with both types of operators, [!]𝑋𝜑 →
[!]𝜑 and [𝐺]𝑋𝜑 → [𝐺]𝜑 would be true in every model.

Definition 2.5. We call formula 𝜑 valid if and only if for all𝑀𝑠 it

holds that𝑀𝑠 |= 𝜑 .

We will also use several notions of bisimulation.

Definition 2.6. Let 𝑄 be a set of propositional variables, and𝑀 =

(𝑆𝑀 , 𝑅𝑀 ,𝑉𝑀 ) and 𝑁 = (𝑆𝑁 , 𝑅𝑁 ,𝑉𝑁 ) be models. We say that𝑀 and

𝑁 are 𝑄-bisimilar if there is a non-empty relation 𝐵 ⊆ 𝑆𝑀 × 𝑆𝑁 ,

called𝑄-bisimulation and denoted𝑀 ⇆𝑄 𝑁 , such that for all𝐵(𝑠, 𝑡),
the following conditions are satisfied:

Atoms for all 𝑝 ∈ 𝑄 : 𝑠 ∈ 𝑉𝑀 (𝑝) if and only if 𝑡 ∈ 𝑉𝑁 (𝑝),
Forth for all 𝑎 ∈ 𝐴 and 𝑢 ∈ 𝑆𝑀 such that 𝑅𝑀 (𝑎) (𝑠,𝑢), there is

a 𝑣 ∈ 𝑆𝑁 such that 𝑅𝑁 (𝑎) (𝑡, 𝑣) and 𝐵(𝑢, 𝑣),
Back for all 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑆𝑁 such that 𝑅𝑁 (𝑎) (𝑡, 𝑣), there is a
𝑢 ∈ 𝑆𝑀 such that 𝑅𝑀 (𝑎) (𝑠,𝑢) and 𝐵(𝑢, 𝑣).

We say that𝑀𝑠 and𝑁𝑡 are𝑄-bisimilar and denote this by𝑀𝑠 ⇆𝑄 𝑁𝑡

if there is a 𝑄-bisimulation linking states 𝑠 and 𝑡 . Also, we omit

subscripts 𝑄 if 𝑄 = 𝑃 .

Theorem 1. Given 𝑀𝑠 and 𝑁𝑡 , if 𝑀𝑠 ⇆ 𝑁𝑡 , then for all 𝜑 ∈
APALC∪APALC𝑋∪GALC∪GALC𝑋

we have that𝑀𝑠 |= 𝜑
if and only if 𝑁𝑡 |= 𝜑 .

Proof. The proof is by induction on 𝜑 . Propositional, boolean,

and epistemic cases are as usual. The case of common knowledge

is proven in [12, Theorem 8.35], and the case of public announce-

ments follows from the corresponding result for action models [12,

Theorem 6.21]. Finally, the cases of arbitrary and group announce-

ments follow from the fact that public announcements preserve

bisimilarity and the induction hypothesis. □

Note that for the case of 𝑄-bisimulation where 𝑄 ⊂ 𝑃 , Theorem

1 holds only for 𝜑 ∈ PALC. The reason this result cannot be

extended to a language with quantified announcements is that the

quantification is implicit, and hence can use propositional variables

outside of 𝑄 .

If for some 𝑀𝑠 and 𝑁𝑡 , Forth and Back can be maintained up

to depth 𝑛 ∈ N, we say that 𝑀𝑠 and 𝑁𝑡 are 𝑛-bisimilar and write

𝑀𝑠 ⇆
𝑛 𝑁𝑡 . It is a standard result that 𝑀𝑠 ⇆

𝑛 𝑁𝑡 implies 𝑀𝑠 |= 𝜑
if and only if 𝑁𝑡 |= 𝜑 for 𝜑 ∈ EL with modal depth less or equal 𝑛
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(see, e.g, [20]). This does not hold if 𝜑 contains either a common

knowledge modality or a quantified announcement. In the first case,

common knowledge can access a state on an arbitrarily long dis-

tance from the origin. In the second case, quantified announcements

are not restricted by any modal depth.

3 SHARING COMMON KNOWLEDGE
As one of the main purposes of communication is sharing informa-

tion, in the context of quantified announcements it is quite natural

to ask whether a set of agents can make some fact, which they

know, common knowledge among themselves and other agents.

We now state a number of results for GALC and APALC, but they

do in fact all hold for APALC
𝑋
and GALC

𝑋
as well.

We start with showing that in general agents cannot make their

knowledge common to some other agents neither through their

announcements or any announcement at all. In the proof we use

the well known Moore sentence (see the extended discussion in the

setting of EL in [22]): 𝑝 is true and agent 𝑎 does not know this.

Proposition 1. Let 𝐺 ≠ 𝐻 , then there is a 𝜑 such that □𝐺𝜑 →
⟨𝐺⟩■𝐻𝜑 and □𝐺𝜑 → ⟨!⟩■𝐻𝜑 are not valid.

Proof. Immediate for the case when 𝐺 = {𝑏}, 𝐻 = {𝑎}, and
𝜑 := 𝑝 ∧ ¬□𝑎𝑝 . □

It is also the case that it is not always possible to share common

knowledge of one group with some other group.

Proposition 2. Let 𝐺 ≠ 𝐻 , then there is a 𝜑 such that ■𝐺𝜑 →
⟨𝐺⟩■𝐻𝜑 and ■𝐺𝜑 → ⟨!⟩■𝐻𝜑 are not valid.

Proof. Follows from Proposition 1 and ■{𝑏 }𝜑 ↔ □𝑏𝜑 . □

We have the next proposition as a corollary with𝜓 := 𝑝 ∨ ¬𝑝 .

Proposition 3. There are 𝜑 and𝜓 such that ■𝐺𝜑 ∧ ■𝐻𝜓 → ⟨𝐺 ∪
𝐻 ⟩■𝐺∪𝐻 (𝜑 ∧𝜓 ) and ■𝐺𝜑 ∧■𝐻𝜓 → ⟨!⟩■𝐺∪𝐻 (𝜑 ∧𝜓 ) are not valid.

Finally, it is not always possible to make group knowledge com-

mon even among the members of the group.

Proposition 4. There is a 𝜑 such that □𝐺𝜑 → ⟨𝐺⟩■𝐺𝜑 and

□𝐺𝜑 → ⟨!⟩■𝐺𝜑 are not valid.

Proof. Let 𝐺 = {𝑎, 𝑏} and 𝜑 := ^𝑎 (^𝑎𝑝 ∧ ^𝑏□𝑎¬𝑝), and con-

sider model𝑀𝑠 in Figure 1.

𝑀 : 𝑝

𝑠

¬𝑝
𝑡

¬𝑝
𝑢

𝑎 𝑏

𝑝

𝑠

¬𝑝
𝑡

𝑎 𝑝

𝑠

Figure 1: Model𝑀 and some of its submodels.

It is easy to verify that 𝑀𝑠 |= □{𝑎,𝑏 }𝜑 and at the same time

𝑀𝑠 ̸ |= ■{𝑎,𝑏 }𝜑 (the rightmost state of the model, 𝑢, does not satisfy

𝜑). Now let us consider all updates of𝑀𝑠 depicted in Figure 1. The

reader can check that none of the updates satisfy ■{𝑎,𝑏 }𝜑 . Hence,
𝑀𝑠 ̸ |= ⟨𝐺⟩■𝐺𝜑 and𝑀𝑠 ̸ |= ⟨!⟩■𝐺𝜑 . □

All the negative results of this section should not come as a sur-

prise. Target formulas in our proof contained modalities expressing

that an agent does not know something. Achieving an epistemic goal

that also requires someone to remain ignorant of some fact is quite

tricky in the setting of public communication. Indeed, formulas

with negated knowledge modalities are unstable in the sense that

providing additional public information may make them false.

However, for many applications in AI and multi-agent systems,

having a stable, easily verifiable epistemic goal is enough (see more

on this in [11]). Formulas that remain true after public communica-

tion are called positive, and we show that for positive formulas our

intuitions regarding sharing common knowledge are indeed true.

Definition 3.1. The positive fragment of epistemic logic with com-
mon knowledge ELC+

is defined by the following BNF:

ELC+ (𝑃) ∋ 𝜑+ ::= 𝑝 | ¬𝑝 | (𝜑+ ∧ 𝜑+) | (𝜑+ ∨ 𝜑+) | □𝑎𝜑+ | ■𝐺𝜑+

where 𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴, and 𝐺 ⊆ 𝐴.

The distinctive feature of positive formulas is that they are pre-

served under submodels, i.e. if 𝜑+ holds in a model, then 𝜑+ also

holds in all submodels of the model in the same state of evaluation.

In particular, this fact implies the following result.

Lemma 1. Let𝜑+ ∈ ELC+
, then [𝜑+]■𝐺𝜑+ is valid for any𝐺 ⊆ 𝐴.

Proof. The proof for the case of common knowledge of the

whole set of agents ■𝐴𝜑
+
can be found in [14], but it can be easily

adapted to any 𝐺 ⊆ 𝐴. □

Proposition 5. All of the following are valid:

(1) □𝐺𝜑
+ → ⟨𝐺⟩■𝐻𝜑+

(2) ■𝐺𝜑
+ → ⟨𝐺⟩■𝐻𝜑+

(3) ■𝐺𝜑
+ ∧ ■𝐻𝜓+ → ⟨𝐺 ∪ 𝐻 ⟩■𝐺∪𝐻 (𝜑+ ∧𝜓+)

(4) □𝐺𝜑
+ → ⟨𝐺⟩■𝐺𝜑+

(5) □𝐺𝜑
+ → ⟨!⟩■𝐻𝜑+

(6) ■𝐺𝜑
+ → ⟨!⟩■𝐻𝜑+

(7) ■𝐺𝜑
+ ∧ ■𝐻𝜓+ → ⟨!⟩■𝐺∪𝐻 (𝜑+ ∧𝜓+)

(8) □𝐺𝜑
+ → ⟨!⟩■𝐺𝜑+

Proof. We outline the general idea for proving all of the state-

ments. First, note that formula □𝐺𝜑
+
is already in a form of a group

announcement by 𝐺 (also, for the case of common knowledge we

have that ■𝐺𝜑
+ → □𝐺𝜑+). Moreover, □𝐺𝜑

+
is positive and holds

in the current state of a model. These two facts, in conjunction with

Lemma 1, yield □𝐺𝜑
+ ∧ [□𝐺𝜑+]■𝐺□𝐺𝜑+. The latter is equivalent

to ⟨□𝐺𝜑+⟩■𝐺□𝐺𝜑+ due to the validity of 𝜓 ∧ [𝜓 ]𝜑 ↔ ⟨𝜓 ⟩𝜑 . Not-
ing that ■𝐺□𝐺𝜑

+ → ■𝐺𝜑+ is valid, we have that ⟨□𝐺𝜑+⟩■𝐺□𝐺𝜑+
implies ⟨□𝐺𝜑+⟩■𝐺𝜑+. The latter is equivalent to ⟨𝐺⟩■𝐺𝜑+ by the

semantics. Finally, ⟨!⟩■𝐺𝜑+ is implied by ⟨𝐺⟩■𝐺𝜑+. □

Again, all the results above hold for APAL
𝑋
and GALC

𝑋
as well,

substituting the corresponding modalities.

4 EXPRESSIVITY
In the previous section we did not find any explicit distinction

between GALC and GALC
𝑋
, since all the results were true for both.

An interesting question, then, is whether there is any difference

in expressive power between GALC and GALC
𝑋
, and APALC and

APALC
𝑋
. In this section we show that they are indeed different,
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and also situate these languages within a wider context of logics

based on EL.

Definition 4.1. Let 𝜑 ∈ L1 and𝜓 ∈ L2. We say that 𝜑 and𝜓 are

equivalent, if for all𝑀𝑠 :𝑀𝑠 |= 𝜑 if and only if𝑀𝑠 |= 𝜓 .
Definition 4.2. Let L1 and L2 be two languages. If for every

𝜑 ∈ L1 there is an equivalent𝜓 ∈ L2, we write L1 ⩽ L2 and say

that L2 is at least as expressive as L1. We write L1 < L2 if and

only if L1 ⩽ L2 and L2 ⩽̸ L1, and we say that L2 is strictly more
expressive than L1. If L1 ⩽̸ L2 and L2 ⩽̸ L1, we say that L1 and

L2 are incomparable.

It is known from the literature that EL < ELC < PALC
[9]. Now we compare these languages to the logics of quantified

announcements discussed in this paper..

Theorem 2. PALC < GALC, PALC < GALC𝑋
, PALC <

APALC, and PALC < APALC𝑋
.

Proof. The proof is very similar to the one for PAL < GAL
[1, Theorem 19] and PAL < APAL [6, Proposition 3.13] (noting

that the models in the proof are 𝑃 \ {𝑞}-bisimilar), and we do not

present it here. □

Theorem 3. Both pairs ELC and GAL, and ELC and APAL,

are incomparable.

Proof. In one direction, the proof is a straightforward modifica-

tion of those for GAL ⩽̸ EL [1, Theorem 19] and APAL ⩽̸ EL
[6, Proposition 3.13] .

To see that ELC ⩽̸ GAL, consider ■{𝑎,𝑏 }¬𝑝 ∈ ELC and

assume that there is an equivalent𝜓 ∈ GAL. As𝜓 is finite, it must

have some finite number of symbols 𝑛.

Now, let us consider models 𝑀 and 𝑁 depicted in Figure 2.

Lengths of the models are 𝑛+1. It is easy to see that𝑀𝑠 ̸ |= ■{𝑎,𝑏 }¬𝑝

𝑀 :

𝑠
. . .

. . .𝑁 :

𝑡

Figure 2: Models𝑀 and 𝑁 . Relation for agent 𝑎 is depicted by
dashed lines and 𝑏’s relation is shown by solid lines. Propo-
sitional variable 𝑝 is true in the black state.

and 𝑁𝑡 |= ■{𝑎,𝑏 }¬𝑝
To show that𝑀𝑠 |= 𝜓 if and only if 𝑁𝑡 |= 𝜓 , we use the induction

on the size of𝜓 . Since the models are 𝑛-bisimilar, no EL formula

of modal depth 𝑛 can distinguish𝑀𝑠 and 𝑁𝑡 .

Case 𝜓 := [𝜒]𝜏 and for some 𝑚 ∈ N, 𝑢 and 𝑣 , 𝑀𝑢 and 𝑁𝑣 are

(𝑛 −𝑚)-bisimilar. There are two possible cases. First, update of

𝑀 with 𝜒 preserves the path to the black state. Then, however, 𝜏

has a modal depth of at most (𝑛 −𝑚) − 1, while 𝑀
𝜒
𝑢 and 𝑁

𝜒
𝑣 are

(𝑛 −𝑚) − 1-bisimilar. Second, update with 𝜒 may not preserve the

path to the black state. In this case the two models become bisimilar,

and thus cannot be distinguished by any 𝜏 .

Cases 𝜓 := [𝐺]𝜒 and𝜓 := ⟨!⟩𝜒 are like the previous one. □

We have the following two theorems as corollaries, noting that

■{𝑎,𝑏 }¬𝑝 ∈ PALC,GALC,APALC.

Theorem4. Both pairsPALC andGAL, andPALC andAPAL,

are incomparable.

Theorem 5. GAL < GALC, GAL < GALC𝑋
, APAL <

APALC, and APAL < APALC𝑋
.

Now we turn to the question of the relative expressivity of

GALC and GALC𝑋
(and of APALC and APALC𝑋

). We

show in Theorem 6 that there are some properties of models that

can be captured by the extended versions of the logics, and cannot

be captured by the conservative versions. The main intuition of

the proof is that having a finite formula 𝜑 we can always assume

that there are some propositional variables that are not in 𝜑 . At the

same time, as the quantification is implicit, we still quantify over

formulas that contain those variables.

Theorem 6. GALC𝑋 ⩽̸ GALC and APALC𝑋 ⩽̸ APALC.

Proof. Let𝜑 := 𝑝∧^𝑏 (¬𝑝∧□𝑎^𝑏𝑝)∧^𝑏 (^𝑎□𝑏¬𝑝∧□𝑎 (¬^𝑏𝑝 →
□𝑏^𝑎^𝑏𝑝)), and ⟨{𝑐}⟩𝑋𝜑 ∈ GALC𝑋

. Assume that there is a

𝜓 ∈ GALC that is equivalent to ⟨{𝑐}⟩𝑋𝜑 . Since 𝜓 has a finite

number of symbols, there must be a 𝑞 ∈ 𝑃 such that 𝑞 does not

occur in𝜓 .

Now consider models𝑀 and 𝑁 in Figure 3. In both of the models,

there are chains starting from 𝑠 and 𝑡 correspondingly of length𝑛+2
for each 𝑛 ∈ N. Chains end with numbered states. In model 𝑁 there

is also an infinite vertical chain starting from state 𝑢. Propositional

variable 𝑝 is true in 𝑠 and 𝑡 , and 𝑞 is true in numbered states at the

ends of finite chains.

𝑠

0
𝑢

1
𝑢

2
𝑢

3
𝑢

. . .

0
𝑙

1
𝑙

2
𝑙

3
𝑙

. . .

𝑡

𝑡𝑢

0
𝑢

1
𝑢

2
𝑢

3
𝑢

. . .

𝑡𝑙

0
𝑙

1
𝑙

2
𝑙

3
𝑙

. . .
𝑢

. . .

Figure 3: Models 𝑀 (left) and 𝑁 (right). Relation for agent 𝑎
is depicted by dashed lines, relation𝑏 is shown by solid lines,
and 𝑐’s relations are double lines. Propositional variable 𝑝 is
true in black states and 𝑞 is true in numbered states.

Let us examine formula ⟨{𝑐}⟩𝑋𝜑 . In order to see that 𝑁𝑡 |=
⟨{𝑐}⟩𝑋𝜑 , consider the following 𝑐-announcement:𝜓𝑐 := □𝑐 (¬𝑝 →
(□{𝑏,𝑐 }𝑞 ∨ ^𝑏𝑝) ∧ 𝑞 → □𝑎¬■{𝑏,𝑐 }¬𝑞). Since the quantification
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over announcements of 𝑐 is implicit, we can use announcements

with 𝑞. Also note that this announcement belongs to ELC𝐺
. In

model 𝑁 , formula ■{𝑏,𝑐 }¬𝑞 is true only in states 𝑡 , 𝑡𝑢 , 𝑡𝑙 , and all

states of the infinite vertical chain including 𝑢.

We argue that the result of updating 𝑁 with the 𝑐-announcement

is presented in Figure 4. It is easy to check that 𝑂𝑡 |= 𝜑 .

𝑡

𝑡𝑢

0
𝑢

𝑡𝑙

Figure 4: Submodel 𝑂 of model 𝑁 .

Pick any non-zero numbered state, i.e. let 𝑛∗ ∈ {𝑛∗ | 𝑛 ∈ N \
{0} and ∗ ∈ {𝑢, 𝑙}}. We have that 𝑁𝑛∗ ̸ |= ¬𝑝 → (□{𝑏,𝑐 }𝑞 ∨ ^𝑏𝑝)
as 𝑝 is true only in the black state and thus cannot be reached by

𝑏, and there is always either a 𝑏- or 𝑐-arrow to a neighbour circle

node with ¬𝑞. Hence, 𝑁𝑛∗ ̸ |= 𝜓𝑐 . Now consider state 0
𝑙
: it holds that

𝑁
0
𝑙 ̸ |= 𝑞 → □𝑎¬■{𝑏,𝑐 }¬𝑞 since there is an 𝑎-arrow to state 𝑢 and

𝑁𝑢 |= ■{𝑏,𝑐 }¬𝑞. On the other hand, there are no𝑎-arrows from 0
𝑢
to

states where ■{𝑏,𝑐 }¬𝑞 holds, since each reachable finite chain ends

with a 𝑞-state. It is left to check that 𝑁0
𝑢 |= ¬𝑝 → (□{𝑏,𝑐 }𝑞 ∨^𝑏𝑝),

and indeed 𝑁0
𝑢 |= □{𝑏,𝑐 }𝑞, and hence 𝑁0

𝑢 |= 𝜓𝑐 .
Pick any circle state apart from 𝑡𝑢 and 𝑡𝑙 . To see that 𝑁◦ ̸ |= ¬𝑝 →

(□{𝑏,𝑐 }𝑞 ∨ ^𝑏𝑝), notice that 𝑁◦ |= ¬𝑝 , 𝑁◦ ̸ |= □{𝑏,𝑐 }𝑞 (𝑞 is false in
the current state) and 𝑁◦ ̸ |= ^𝑏𝑝 (as 𝑝 is true only in the black state,

which is not reachable via 𝑏 from any white circle state apart from

𝑡𝑢 and 𝑡𝑙 ). So, 𝑁◦ ̸ |= 𝜓𝑐 . In both 𝑡𝑢 and 𝑡𝑙 , ^𝑏𝑝 is true and hence the

whole formula is true. Finally, we have 𝑁• |= 𝜓𝑐 vacuously, since
𝑁• ̸ |= ¬𝑝 and 𝑁• ̸ |= 𝑞.

To argue that𝑀𝑠 ̸ |= ⟨{𝑐}⟩𝑋𝜑 , we note that the upper and lower

halves of model 𝑀 (relative to state 𝑠) are bisimilar. Hence, by

Theorem 1, there is no formula of ELC that can be announced by

𝑐 so that the update is asymmetric similar to 𝑂𝑡 : if we preserve a

state in one half, we need to preserve the corresponding state in the

other half. This implies that all updates of𝑀𝑠 with announcements

by 𝑐 do not yield a model isomorphic to 𝑂𝑡 .

To show that no GALC formula𝜓 can distinguish𝑀𝑠 and 𝑁𝑡 ,

we can use formula games studied in [16]. Since the definitions

related to formula games are quite lengthy and due to the lack of

space, we present a sketch of a proof. First,𝜓 can be equivalently

rewritten into a negation-normal form (NNF), where negations

appear only in front of propositional variables. Also, recall that 𝑞

does not appear in𝜓 . Then, we play a game between two players:

the existential player (∃-player) and the universal player (∀-player).
The players take turns according to the form of the current sub-

formula of𝜓 in NNF: the universal player takes ‘universal’ turns

(conjunctions and boxes), and the existential player takes ‘existen-

tial’ turns (propositional variables, disjunctions, and diamonds).

The existential player wins if the current state of a model reached

in a game satisfies propositional variables specified by𝜓 , otherwise

the universal player wins. Hence,𝑀𝑠 |= 𝜓 if and only if the ∃-player
has a winning strategy in the game for𝜓 over𝑀𝑠 .

We play two games simultaneously: one over𝑀𝑠 , and another

one over 𝑁𝑡 . Now, without loss of generality, assume that𝑀𝑠 ̸ |= 𝜓
and 𝑁𝑡 |= 𝜓 . This means that the ∀-player has a winning strategy
in𝑀𝑠 , and the ∃-player has a winning strategy in 𝑁𝑡 . The intuition

is that at the end of the game we will end up in a pair of states

that satisfy the same propositional variables, and thus arrive at a

contradiction. For this, we need to maintain an invariant that after

𝑘-steps of the game, we are in (𝑛 + 1 − 𝑘)-bisimilar states, where 𝑛

is the modal depth of𝜓 .

The case of propositional variables is immediate, and for boolean

cases players perform analogous actions in both models, e.g. choose

the same conjunct for both models in the case of a conjunction.

For epistemic cases, including common knowledge
1
, if a player

chooses a successor in 𝑀 , due to the structure of the models, the

player can choose the same successor in 𝑁 (by ‘the same’ we mean

the state in the same position in𝑁 in Figure 3). The similar situation

is when a player chooses a successor in 𝑁 first. The only exception

is that it either may be possible to make a move from the current

state to 𝑢, which is missing in𝑀 , or the current state in 𝑁 already

lies on the infinite vertical chain, which is also missing in𝑀 .

In the first case, i.e. when one of the players makes a move to

𝑢 in 𝑁 for the first time, by the construction of the models, they

can make a move to the first state of 𝑟 𝑙 -chain in𝑀 , where 𝑟 equals

to the modal depth of the remaining subformula plus one. In such

a way it is guaranteed that the finite chain 𝑟 𝑙 is long enough to

be 𝑟 − 1-bismiliar to 𝑢. In the second case, i.e. when the current

state is already on the infinite chain, we note the ordinal number

pos of the current position on the infinite chain. If pos > 𝑟 , or a

move by a player will take us to some pos′ such that pos′ > 𝑟 , then
in 𝑀 we stay at the current state if it is the last state on 𝑟 𝑙 -chain,

or we move to the last state on 𝑟 𝑙 -chain otherwise. Intuitively, we

play the same moves over the infinite chain and the corresponding

finite chain until we reach deeper states on the infinite chain that

cannot be matched by the same move on the finite one. However,

since the length of the finite chain is 𝑟 and the remaining modal

depth is 𝑟 − 1, and due to the fact that both chains are identically

constructed, it is enough to stay in the last state of 𝑟 𝑙 -chain.

Suppose a player makes a public announcement move, i.e. they

choose subsets of the states in the two models. Observe that the

models are constructed in such a way that if for some chain 𝑟𝑢 or 𝑟 𝑙

its depth is ‘trimmed’ in the update to some𝑚,𝑚 < 𝑟 , then all chains

in the update of the model are trimmed to𝑚. Moreover, trimming

the infinite chain to depth𝑚, makes the updated 𝑁 bisimilar to𝑀

trimmed to depth𝑚. If an update does not include the black state,

then, choosing the corresponding subset in the other model, both

models become 𝑃 \ {𝑞}-bisimilar to a single-white-state model.

Finally, group announcements are treated in a similar fashion

to public announcements. The only twist is that now a formula

𝜓𝐺 ∈ EL𝐺 (𝑃) chosen by a player can include 𝑞. First, notice that

for each state 𝑣 in 𝑀 there is a corresponding state 𝑤 in 𝑁 at

1
Even though games in [16] did not include moves corresponding to common knowl-

edge, it is quite straightforward to expand the definition of a game to include them. For

the box version, the ∀-player chooses a successor reachable via a sequence of relations
marked by agents from the corresponding group. Similarly for the diamond version

and the ∃-player.
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the same position such that 𝑀𝑣 ⇆
𝑛 𝑁𝑤 for all 𝑛 ∈ N (a formal

argument would be similar to [12, Lemma 8.14]). The only special

case to consider is states on the infinite chain in 𝑁 . Without loss

of generality, let us pick 𝑢. This means that in model 𝑀 we are

already on a finite chain of sufficient depth. If a player chooses an

announcement without 𝑞, she chooses the same announcement in

the other model. Now, assume that 𝑞 is in 𝜓𝐺 . Depending on the

resulting updated model, we can construct a 𝜒𝐺 that will have the

same effect. If 𝜓𝐺 is such that a model is trimmed to some finite

depth 𝑘 , then we can use a formula of modal depth 𝑘 + 2 for the

same effect. For example, to trim a model to depth 2, we may use

^𝑐^𝑏^𝑎^𝑏𝑝 in 𝜒𝐺 (see [16] for more intuitions on this). We can

treat similarly the updates when𝜓𝐺 ‘cuts out’ several chains up to

some chain 𝑟 . For example, to cut out chains up to depth 2, we may

use ¬(□{𝑏,𝑐 }𝑞∨(^𝑏□𝑐𝑞∧^𝑏^𝑎^𝑏𝑝)) in 𝜒𝐺 . Combining these two

approaches we can obtain a 𝜒𝐺 for all other intermediate updates.

As a result of these two simultaneous games over 𝑀𝑠 and 𝑁𝑡

we end up in states where the ∃-player (resp. the ∀-player) has a
winning strategy. This contradicts the assumption that the ∀-player
(resp. the ∃-player) has a winning strategy in the other model, or,

equivalently, it contradicts the fact that𝑀𝑠 ̸ |= 𝜓 iff 𝑁𝑡 |= 𝜓 .
The proof of APALC𝑋 ⩽̸ APALC is quite similar. Let

⟨!⟩𝑋𝜑 ∈ APALC𝑋
. We have that 𝑀𝑠 ̸ |= ⟨!⟩𝑋𝜑 exactly for the

same reason as 𝑀𝑠 ̸ |= ⟨{𝑐}⟩𝑋𝜑 : upper and lower halves of 𝑀 are

bisimilar. Above we showed that 𝑁𝑡 |= ⟨𝜓𝑐 ⟩𝑋𝜑 . As 𝜓𝑐 ∈ EL𝑋
,

𝑁𝑡 |= ⟨𝜓𝑐 ⟩𝑋𝜑 implies that 𝑁𝑡 |= ⟨!⟩𝜑 . In order to see that no

𝜓 ∈ APALC can distinguish𝑀𝑠 and 𝑁𝑡 we can apply the same

formula game reasoning as for the case of GALC substituting

EL𝐺
with EL. □

We leave the other direction of Theorem 6 as an open ques-

tion, and conjecture that both pairs GALC and GALC𝑋
, and

APALC and APALC𝑋
are incomparable. We also leave as an

open problem the relative expressivity of GALC and APALC.
Taking into account that APAL and GAL are incomparable [16,

Theorem 5.6], we conjecture that GALC and APALC are in-

comparable as well. The expressivity map of GALC, APALC,
and other connected logics is shown in Figure 5.

5 PROOF SYSTEM
In this section we start with the presentation of a proof system of

GALC and a detailed completeness proof for it. We then discuss

how both are modified to get corresponding results for GALC
𝑋
,

APALC, and APALC
𝑋
.

Let us first introduce an auxiliary notion.

Definition 5.1. Let 𝜑 ∈ GALC, 𝑎 ∈ 𝐴,𝐺 ⊆ 𝐴, and ♯ ∉ 𝑃 . The set
of necessity forms [19] is defined recursively below:

𝜂 (♯) ::= ♯ | 𝜑 → 𝜂 (♯) | □𝑎𝜂 (♯) | [𝜑]𝜂 (♯)

We will denote the result of replacing of ♯ with 𝜑 in a necessity

form 𝜂 (♯) as 𝜂 (𝜑).

Definition 5.2. The proof system of GALC is the following exten-

sion of the proof system of GAL [1]:

(𝐴0) Theorems of propositional logic

(𝐴1) □𝑎 (𝜑 → 𝜓 ) → (□𝑎𝜑 → □𝑎𝜓 )

EL

PAL

ELC GAL

PALC

GALC

GALC𝑋

APAL

APALC

APALC𝑋

??

Figure 5: Overview of the expressivity results. An arrow
from L1 to L2 means L1 ⩽ L2. If there is no symmetric ar-
row, then L1 < L2. This relation is transitive, and we omit
transitive arrows in the figure. An arrow from L1 to L2 is
crossed-out, if L1 ⩽̸ L2. Arrows marked with the question
mark open problems. Dashed arrows depict results known
from literature, and solid arrows show the results proven in
this paper.

(𝐴2) □𝑎𝜑 → 𝜑

(𝐴3) □𝑎𝜑 → □𝑎□𝑎𝜑
(𝐴4) ¬□𝑎𝜑 → □𝑎¬□𝑎𝜑
(𝐴5) [𝜓 ]𝑝 ↔ (𝜓 → 𝑝)
(𝐴6) [𝜓 ]¬𝜑 ↔ (𝜓 → ¬[𝜓 ]𝜑)
(𝐴7) [𝜓 ] (𝜑 ∧ 𝜒) ↔ ([𝜓 ]𝜑 ∧ [𝜓 ]𝜒)
(𝐴8) [𝜓 ]□𝑎𝜑 ↔ (𝜓 → □𝑎 [𝜓 ]𝜑)
(𝐴9) ■𝐺𝜑 → □𝑛𝐺𝜑 for any 𝑛 ∈ N

(𝐴10) [𝐺]𝜑 → [𝜓𝐺 ]𝜑 for any𝜓𝐺 ∈ EL𝐺

MP From 𝜑 → 𝜓 and 𝜑, infer𝜓

NK From 𝜑, infer □𝑎𝜑

NA From 𝜑, infer [𝜓 ]𝜑
IC From {𝜂 (□𝑛𝐺𝜑) | 𝑛 ∈ N}, infer 𝜂 (■𝐺𝜑)

IG From {𝜂 ( [𝜓𝐺 ]𝜑) | 𝜓𝐺 ∈ EL𝐺 }, infer 𝜂 ( [𝐺]𝜑).

We call GALC the minimal set that contains axioms𝐴0–𝐴10 and

is closed under𝑀𝑃 , 𝑁𝐾 , 𝑁𝐴, 𝐼𝐶 , and 𝐼𝐺 .

Like existing complete systems of APAL and GAL [6, 13], this

proof system of GALC is infinitary as it has inference rules that

require an infinite number of premises. Note that one of them is

the infinitary rule for common knowledge, which is less standard

than the usual fixed point approach (see, for example, [8], and also

[21] for an alternative axiomatisation of ELC). In an already infini-

tary system, this treatment is both more intuitive and technically

simpler. The infinitary approach to common knowledge has also
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been discussed in [3], where the authors consider a corresponding

Gentzen-type system.

Lemma 2. IC and IG are truth preserving.

Proof. The proof is a straightforward induction on necessity

forms with the application of the definition of semantics. □

Necessitation rules for common knowledge and group announce-

ments are derivable in GALC.

Lemma 3. Rules ‘From 𝜑 , infer ■𝐺𝜑 ’ and ‘From 𝜑 , infer [𝐺]𝜑 ’ are
derivable in GALC.

Theorem 7. GALC is sound.

Proof. Due to the soundness of GAL, Lemma 2, and the validity

of (𝐴9). □

In order to prove the completeness, we adapt the completeness

proof of APAL from [5–7].

Whenever we will use induction on the formula structure of

some 𝜑 ∈ GALC, we will use the following measure.

Definition 5.3. Let 𝜑 ∈ GALC. The quantifier depth 𝛿∀(𝜑) of 𝜑
is defined inductively as

𝛿∀(𝑝) = 0 𝛿∀( [𝜓 ]𝜑) = 𝛿∀(𝜓 ) + 𝛿∀(𝜑)
𝛿∀(¬𝜑) = 𝛿∀(□𝑎𝜑) = 𝛿∀(𝜑) 𝛿∀(■𝐺𝜑) = 𝛿∀(𝜑)

𝛿∀(𝜑 ∧𝜓 ) = max(𝛿∀(𝜑), 𝛿∀(𝜓 )) 𝛿∀( [𝐺]𝜑) = 𝛿∀(𝜑) + 1

The ■-depth 𝛿■ (𝜑) of 𝜑 is defined similarly to the quantifier depth

𝛿∀ with the following exceptions:

𝛿■ ( [𝐺]𝜑) = 𝛿■ (𝜑) 𝛿■ (■𝐺𝜑) = 𝛿■ (𝜑) + 1

The complexity 𝑐 (𝜑) of 𝜑 is

𝑐 (𝑝) = 1 𝑐 ( [𝜓 ]𝜑) = 𝑐 (𝜓 ) + 3 · 𝑐 (𝜑)
𝑐 (¬𝜑) = 𝑐 (□𝑎𝜑) = 𝑐 (𝜑) + 1 𝑐 (■𝐺𝜑) = 𝑐 (𝜑) + 1

𝑐 (𝜑 ∧𝜓 ) = max(𝑐 (𝜑), 𝑐 (𝜓 )) + 1 𝑐 ( [𝐺]𝜑) = 𝑐 (𝜑) + 1

Let 𝜑,𝜓 ∈ GALC. We have that 𝜑 <∀
■ 𝜓 if and only if 𝛿∀(𝜑) <

𝛿∀(𝜓 ), or, otherwise, 𝛿∀(𝜑) = 𝛿∀(𝜓 ), and either 𝛿■ (𝜑) < 𝛿■ (𝜓 ), or
𝛿■ (𝜑) = 𝛿■ (𝜓 ) and 𝑐 (𝜑) < 𝑐 (𝜓 ).

Lemma 4. Let 𝜑,𝜓, 𝜒 ∈ GALC and 𝐺 ⊆ 𝐴. The following in-

equalities hold:

𝜑 <∀
■ ¬𝜑 [𝜓 ]𝜑 ∧ [𝜓 ]𝜒 <∀

■ [𝜓 ] (𝜑 ∧ 𝜒)

𝜑 <∀
■ 𝜑 ∧𝜓 [𝜓 ]□𝑛𝐺𝜑 <∀

■ [𝜓 ]■𝐺𝜑

𝜑 <∀
■ □𝑎𝜑 [𝜓 ] [𝜓𝐺 ]𝜑 <∀

■ [𝜓 ] [𝐺]𝜑

𝑝 <∀
■ [𝜓 ]𝑝 □𝑛𝐺𝜑 <∀

■ ■𝐺𝜑

𝜓 → ¬[𝜓 ]𝜑 <∀
■ [𝜓 ]¬𝜑 [𝜓𝐺 ]𝜑 <∀

■ [𝐺]𝜑

Our completeness proof is based on the canonical model con-

struction. We will use theories as states in the canonical model.

Definition 5.4. A set 𝑥 is called a theory if it contains all theorems

and is closed under MP , IC, and IG. The smallest theory is GALC.

Theory 𝑥 is consistent if there is no 𝜑 ∈ GALC such that 𝜑,¬𝜑 ∈ 𝑥 .
Theory 𝑥 ismaximal if for all𝜑 ∈ GALC we have that either𝜑 ∈ 𝑥
or ¬𝜑 ∈ 𝑥 .

Lemma 5. Let 𝜑,𝜓 ∈ GALC, if 𝑥 is a theory, then 𝑥 + 𝜑 := {𝜒 |
𝜑 → 𝜒 ∈ 𝑥}, □𝑎𝑥 := {𝜒 | □𝑎 𝜒 ∈ 𝑥}, and [𝜓 ]𝑥 := {𝜒 | [𝜓 ]𝜒 ∈ 𝑥}
are theories as well. Also, 𝑥 + 𝜑 is consistent if and only if ¬𝜑 ∉ 𝑥 .

Proof. An extension of the proof of Lemma 4.11 in [6], where

common knowledge cases are dealt with using (𝐴9) and IC. □

Lemma 6. For all theories 𝑥 and all 𝜑 ∈ GALC, it holds that
𝑥 ⊆ 𝑥 + 𝜑 .

Proof. Let us for some 𝜓 ∈ GALC have that 𝜓 ∈ 𝑥 . Since

𝑥 is a theory and thus contains all the instances of propositional

tautologies,𝜓 → (𝜑 → 𝜓 ) ∈ 𝑥 . As 𝑥 is closed under MP , 𝜑 → 𝜓 ∈
𝑥 , and, by Lemma 5,𝜓 ∈ 𝑥 + 𝜑 . □

Next, we prove the Lindenbaum lemma.

Lemma 7. If 𝑥 is a consistent theory, then it can be extended to a

maximal consistent theory 𝑦 such that 𝑥 ⊆ 𝑦.

Proof. The proof is a variation of the Lindenbaum Lemma for

APAL [6, Lemma 4.12]. We give here a sketch of an extended proof.

Let {𝜑0, 𝜑1, . . .} be an enumeration of formulas of GALC, and
let𝑦0 = 𝑥 . Assume that for some𝑛 ≥ 0, 𝑥 ⊆ 𝑦𝑛 and𝑦𝑛 is a consistent

theory. If ¬𝜑𝑛 ∉ 𝑦𝑛 , then 𝑦𝑛+1 = 𝑦𝑛 +𝜑𝑛 . Otherwise, there are three
cases to consider.

First, if ¬𝜑𝑛 ∈ 𝑦𝑛 and 𝜑𝑛 is not of either the form 𝜂 (■𝐺𝜓 ) or
the form 𝜂 ( [𝐺]𝜓 ), then 𝑦𝑛+1 = 𝑦𝑛 . Second, if ¬𝜑𝑛 ∈ 𝑦𝑛 and 𝜑𝑛 is

of the form 𝜂 (■𝐺𝜓 ), then 𝑦𝑛+1 = 𝑦𝑛 + ¬𝜂 (□𝑛
𝐺
𝜓 ), where ¬𝜂 (□𝑛

𝐺
𝜓 )

is the first formula in the enumeration such that 𝜂 (□𝑛
𝐺
𝜓 ) ∉ 𝑦𝑛 .

Third, if ¬𝜑𝑛 ∈ 𝑦𝑛 and 𝜑𝑛 is of the form 𝜂 ( [𝐺]𝜓 ), then 𝑦𝑛+1 =

𝑦𝑛 + ¬𝜂 ( [𝜓𝐺 ]𝜓 ), where ¬𝜂 ( [𝜓𝐺 ]𝜓 ) is the first formula in the enu-

meration such that 𝜂 ( [𝜓𝐺 ]𝜓 ) ∉ 𝑦𝑛 .
In all these cases it is clear that𝑦𝑛+1 is consistent. Also, using the

inductive construction of𝑦𝑛+1, the fact that 𝑥 ⊆ 𝑦𝑛+1, it is relatively
straightforward to show that 𝑦 =

⋃∞
𝑛=0 𝑦𝑛 is a maximal consistent

theory such that 𝑥 ⊆ 𝑦. □

Now we are ready to define the canonical model, where states

are maximal consistent theories.

Definition 5.5. We call model 𝔐 = (𝔖,ℜ,𝔙), where 𝔖 = {𝑥 |
𝑥 is a maximal consistent theory}, ℜ(𝑎) = {(𝑥,𝑦) | □𝑎𝑥 ⊆ 𝑦}, and
𝔙(𝑝) = {𝑥 | 𝑝 ∈ 𝑥}, the canonical model.

Next, we prove the truth lemma.

Lemma 8. For all maximal consistent theories 𝑥 and 𝜑 ∈ GALC,
𝜑 ∈ 𝑥 if and only if 𝔐𝑥 |= 𝜑 .

Proof. Proofs for boolean, epistemic, some of public announce-

ment cases are quite similar to those in [7, Lemma 11], and can be

shown using the axioms of GALC and Lemma 4. We show here

only the cases that include group announcements and common

knowledge.

Induction hypothesis (IH): For all maximal consistent theories 𝑦

and formulas𝜓 ∈ GALC, if𝜓 <∀
■ 𝜑 , then𝜓 ∈ 𝑦 iff 𝔐𝑦 |= 𝜓 .

Case 𝜑 = [𝜒]■𝐺𝜓 . (⇒): Suppose that [𝜒]■𝐺𝜓 ∈ 𝑥 . Since 𝑥

contains all theorems of GALC, we have for all 𝑛 ∈ N, [𝜒] (■𝐺𝜓 →
□𝑛
𝐺
𝜓 ) ∈ 𝑥 and [𝜒] (■𝐺𝜓 → □𝑛

𝐺
𝜓 ) → ([𝜒]■𝐺𝜓 → [𝜒]□𝑛

𝐺
𝜓 ) ∈ 𝑥

(Proposition 4.46.3 of [12]). UsingMP twice, we get [𝜒]□𝑛
𝐺
𝜓 ∈ 𝑥 for

all 𝑛 ∈ N. By the IH, this is equivalent to ∀𝑛 ∈ N : 𝔐𝑥 |= [𝜒]□𝑛
𝐺
𝜓 .
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The latter is equivalent to the fact that𝔐𝑥 |= 𝜒 implies𝔐
𝜒
𝑥 |= □𝑛

𝐺
𝜓

for all 𝑛. By the semantics of common knowledge we have that

𝔐𝑥 |= 𝜒 implies 𝔐
𝜒
𝑥 |= ■𝐺𝜓 , and the latter is 𝔐𝑥 |= [𝜒]■𝐺𝜓 by

the semantics of public announcements.

(⇐): Assume that 𝔐𝑥 |= [𝜒]■𝐺𝜓 . By the semantics, this is

equivalent to the fact that 𝔐𝑥 |= 𝜒 implies 𝔐
𝜒
𝑥 |= ■𝐺𝜓 . By the

semantics of common knowledge, the latter is∀𝑛 ∈ N : 𝔐
𝜒
𝑥 |= □𝑛

𝐺
𝜓 .

We can ‘fold’ the public announcement back: ∀𝑛 ∈ N : 𝔐𝑥 |=
[𝜒]□𝑛

𝐺
𝜓 . By the IH, ∀𝑛 ∈ N : [𝜒]□𝑛

𝐺
𝜓 ∈ 𝑥 . Observe that this

formula is in a necessity form. Hence, we conclude, by rule IC, that
[𝜒]■𝐺𝜓 ∈ 𝑥 .

Case 𝜑 = [𝜒] [𝐺]𝜏 . (⇒): Suppose that [𝜒] [𝐺]𝜏 ∈ 𝑥 . Since 𝑥 con-

tains all theorems of GALC,we have for all𝜓𝐺 ∈ EL𝐺
, [𝜒] ( [𝐺]𝜏 →

[𝜓𝐺 ]𝜏) ∈ 𝑥 and [𝜒] ( [𝐺]𝜏 → [𝜓𝐺 ]𝜏) → ([𝜒] [𝐺]𝜏 → [𝜒] [𝜓𝐺 ]𝜏) ∈
𝑥 (Proposition 4.46.3 of [12]). UsingMP twice, we get [𝜒] [𝜓𝐺 ]𝜏 ∈ 𝑥
for all 𝜓𝐺 ∈ EL𝐺

. By the IH, this is equivalent to ∀𝜓𝐺 ∈ EL𝐺
:

𝔐𝑥 |= [𝜒] [𝜓𝐺 ]𝜏 . The latter is equivalent to the fact that𝔐𝑥 |= 𝜒

implies𝔐
𝜒
𝑥 |= [𝜓𝐺 ]𝜏 for all𝜓𝐺 ∈ EL𝐺

. By the semantics of group

announcements we have that𝔐𝑥 |= 𝜒 implies𝔐
𝜒
𝑥 |= [𝐺]𝜏 , and the

latter is𝔐𝑥 |= [𝜒] [𝐺]𝜏 by the semantics of public announcements.

(⇐): Assume that 𝔐𝑥 |= [𝜒] [𝐺]𝜏 . By the semantics, this is

equivalent to the fact that 𝔐𝑥 |= 𝜒 implies 𝔐
𝜒
𝑥 |= [𝐺]𝜏 . By the

semantics of group announcements, the latter is ∀𝜓𝐺 ∈ EL𝐺
:

𝔐
𝜒
𝑥 |= [𝜓𝐺 ]𝜏 . We can ‘fold’ the public announcement back: ∀𝜓𝐺 ∈

EL𝐺
: 𝔐𝑥 |= [𝜒] [𝜓𝐺 ]𝜏 . By the IH, ∀𝜓𝐺 ∈ EL𝐺

: [𝜒] [𝜓𝐺 ]𝜏 ∈ 𝑥 .
Observe that this formula is in a necessity form. Hence, we conclude,

by rule IG, that [𝜒] [𝐺]𝜏 ∈ 𝑥 .
Case 𝜑 = ■𝐺𝜓 . (⇒): Assume that ■𝐺𝜓 ∈ 𝑥 . By (𝐴9), ∀𝑛 ∈ N :

□𝑛
𝐺
𝜓 ∈ 𝑥 , which is equivalent, by the IH, to ∀𝑛 ∈ N : 𝔐𝑥 |= □𝑛

𝐺
𝜓 .

This is equivalent to 𝔐𝑥 |= ■𝐺𝜓 by the semantics.

(⇐): Assume that 𝔐𝑥 |= ■𝐺𝜑 . By the semantics, this is equiv-

alent to ∀𝑛 ∈ N : 𝔐𝑥 |= □𝑛
𝐺
𝜑 . Furthermore, by the IH, we have

∀𝑛 ∈ N : □𝑛
𝐺
𝜑 ∈ 𝑥 . Since 𝑥 is closed under IC, we have ■𝐺𝜑 ∈ 𝑥 .

Case 𝜑 = [𝐺]𝜒 . (⇒): Assume that [𝐺]𝜒 ∈ 𝑥 . By (𝐴10), ∀𝜓𝐺 ∈
EL𝐺

: [𝜓𝐺 ]𝜒 ∈ 𝑥 , which is equivalent, by the IH, to ∀𝜓𝐺 ∈ EL𝐺
:

𝔐𝑥 |= [𝜓𝐺 ]𝜒 . This is equivalent to 𝔐𝑥 |= [𝐺]𝜒 by the semantics.

(⇐): Assume that𝔐𝑥 |= [𝐺]𝜒 . By the semantics, this is equiv-

alent to ∀𝜓𝐺 ∈ EL𝐺
: 𝔐𝑥 |= [𝜓𝐺 ]𝜑 . Furthermore, by the IH, we

have ∀𝜓𝐺 ∈ EL𝐺
: [𝜓𝐺 ]𝜑 ∈ 𝑥 . Since 𝑥 is closed under IG, we can

infer that [𝐺]𝜒 ∈ 𝑥 . □

Finally, we can prove the completeness of GALC.

Theorem 8. For all 𝜑 ∈ GALC, if 𝜑 is valid, then 𝜑 ∈ GALC.

Proof. Assume towards a contradiction that 𝜑 is valid and 𝜑 ∉

GALC. Since GALC is a consistent theory, it follows that GALC+¬𝜑
is a consistent theory as well. By Lemma 5, there is a maximal

consistent theory 𝑥 such that GALC + ¬𝜑 ⊆ 𝑥 . By Lemma 6, ¬𝜑 ∈
GALC + ¬𝜑 , and hence ¬𝜑 ∈ 𝑥 . Since 𝑥 is a maximal consistent

theory, it follows that 𝜑 ∉ 𝑥 . According to Lemma 8, 𝜑 ∉ 𝑥 is

equivalent to 𝔐𝑥 ̸ |= 𝜑 , which contradicts 𝜑 being valid. □

The proof system of GALC
𝑋
is the same as in Definition 5.2 with

following differences:

(𝐴10)′ [𝐺]𝜑 → [𝜓𝐺 ]𝜑 for any𝜓𝐺 ∈ ELC𝐺

IG′
From {𝜂 ( [𝜓𝐺 ]𝜑) | 𝜓𝐺 ∈ ELC𝐺 }, infer 𝜂 ( [𝐺]𝜑) .

The completeness proof is exactly as for GALC, with each [𝐺]
replaced by [𝐺]𝑋 and EL𝐺

replaced by ELC𝐺
.

Theorem 9. GALC
𝑋
is sound and complete.

The axiomatisation of APALC is the same as the proof system of

GALC with the following differences:

(𝐴10)′ [!]𝜑 → [𝜓 ]𝜑 for any𝜓𝐺 ∈ EL
IG′

From {𝜂 ( [𝜓 ]𝜑) | 𝜓 ∈ EL}, infer 𝜂 ( [!]𝜑) .
Again, the completeness proof is exactly the same as for GALC,

replacing [𝐺] with [!] and each EL𝐺
with EL.

Theorem 10. APALC is sound and complete.

Finally, the proof system and the completeness of APALC
𝑋
can

be obtained from those of APALC in the same way as for GALC
𝑋
.

Theorem 11. APALC
𝑋
is sound and complete.

6 DISCUSSION
We considered common knowledge in the context of quantified

announcements. In particular, we studied the extensions of GAL

and APAL with the common knowledge modality, both conserva-

tive and with the extended semantics. We observed that difference

in the semantics matters: with the extended semantics we can ex-

press properties we cannot express with the conservative semantics.

We conjecture that the same is true the other way around. This

echoes the results for GAL extended with distributed knowledge

[18]. Moreover, we presented sound and complete axiomatisations

of GALC, GALC
𝑋
, APALC and APALC

𝑋
.

Note that with common knowledge there is a possibility to extend

the scope of quantification beyond both EL and ELC to PALC. This

is also left for future work. We conjecture that the resulting logics

have equal expressive power as APALC
𝑋
and GALC

𝑋
.

The results for GALC and APALC go hand-in-hand with each

other due to the fact that the underlying logics are relatively similar.

We omitted from the discussion, however, an interesting cousin of

GAL and APAL, coalition announcement logic (CAL) [2, 17]. CAL ex-
tends PALwith themodality [⟨𝐺⟩]𝜑 , meaning ‘whatever agents from

group𝐺 announce, there is a simultaneous counter-announcement

by the agents from outside of the group such that 𝜑 holds in the

resulting model’. Thus, CAL has a game-theoretic flavour to it and is

reminiscent of coalition logic [26], alternating-time temporal logic

[4], and game logic [27]. Extending CAL with common knowledge

seems to be complicated, since finding an axiomatisation of CAL is

an open problem. Apart from that, it is worthwhile to investigate

the expressivity of CAL with common knowledge.

We also believe that our approach to common knowledge can

be extended beyond quantified announcements and be applied to

logics with other types of quantified epistemic actions. One of such

logics is arbitrary arrow update logic with common knowledge

(AAULC) introduced in [23], where the author shows that AAULC

is not finitary axiomatisable, but does not provide a proof system.
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