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ABSTRACT
Multi-agent influence diagrams (MAIDs) are a popular form of
graphical model that, for certain classes of games, have been shown
to offer key complexity and explainability advantages over tradi-
tional extensive form game (EFG) representations. In this paper, we
extend previous work on MAIDs by introducing the concept of a
MAID subgame, as well as subgame perfect and trembling hand
perfect equilibrium refinements. We then prove several equivalence
results between MAIDs and EFGs. Finally, we describe an open
source implementation for reasoning about MAIDs and computing
their equilibria.
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1 INTRODUCTION
Multi-agent influence diagrams (MAIDs) are a compact and ex-
pressive graphical representation for non-cooperative games. In-
troduced by Koller and Milch (henceforth K&M) [13, 18], they offer
three key advantages over the classic extensive form game (EFG)
representation. First, MAIDs can depict many games more com-
pactly than EFGs, especially those with incomplete information.
Second, MAIDs encode conditional independencies between vari-
ables. This means large MAIDs can often be decomposed into sev-
eral smaller ones, with potentially exponential speedups for finding
Nash equilibria [13]. Third, MAIDs often make it possible to ex-
plicitly represent aspects of game structure that are obscured in
EFGs. While it is possible to convert any EFG to a MAID of at most
the same size (Section 3.3.2), it is true that EFGs are sometimes bet-
ter suited for modelling asymmetric decision problems. With that
said, every model has its weaknesses, and how useful a particular
representation is rests on its strengths. We further develop both
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the theory and practical tools for MAIDs in order to allow both
researchers and practitioners to make the most of their strengths.

Previous work on MAIDs has focussed on Nash equilibria as
the core solution concept [19]. Whilst this is arguably the most im-
portant solution concept in non-cooperative game theory, if there
are many Nash equilibria we often wish to remove some of those
that are less ‘rational’. Many refinements to the Nash equilibrium
have been proposed [16], with two of the most important being
subgame perfect Nash equilibria [24] and trembling hand perfect
equilibria [25]. The first rules out ‘non-credible’ threats and the sec-
ond requires that each player is still playing a best-response when
other players make small mistakes. On the practical side, while
much software exists for normal or extensive form games, there is
no such implementation for reasoning about games expressed as
MAIDs, despite their computational advantages.

1.1 Contribution
In this paper, we make the following contributions. First, we ex-
tend the applicability of MAIDs by introducing the concept of a
MAID subgame (Section 3.1) and build on this concept to introduce
subgame perfect and trembling hand perfect equilibrium refine-
ments (Section 3.2). Second, we prove several equivalence results
between MAIDs and EFGs, demonstrating the preservation of the
key game-theoretic concepts described above when representing
EFGs as MAIDs and thus further justifying the use of this model.
These proofs are constructive and are based on procedures for con-
verting between EFGs and MAIDs, the full details of which are
included in the supplementary material.1 Third, we report on our
open source codebase for computing our equilibrium refinements
in MAIDs (Section 4).

1.2 Related Work
Our work builds primarily on the seminal work of K&M [13, 18].
More recently, casual influence diagrams (CIDs) have been defined
[4], where the probabilistic arrows in influence diagrams are in-
terpreted as describing a causal relationship, in accordance with
Pearl’s graphical causal models [21]. CIDs model single agents, help-
ing to predict behaviour by identifying the incentives that arise due
to the agent optimising its objective, and have been shown to have
many applications [2, 5, 6, 8, 15]. Our equilibrium refinements for
MAIDs and our implementation are partially targeted at extending
this work on incentives to the multi-agent setting.

1Available online at https://arxiv.org/abs/2102.05008.

Main Track AAMAS 2021, May 3-7, 2021, Online

574

https://arxiv.org/abs/2102.05008


Pfeffer and Gal investigated when an agent is motivated to care
about its decision in the context of MAIDs, identifying four reason-
ing patterns (with associated graphical criteria) that justify a partic-
ular decision choice [22]. Later work showed practical applications
of these reasoning patterns, which can lead to safer human-machine
or machine-machine designs and again reduce the time complexity
of computing Nash equilibria [1]. In this work we implement these
reasoning patterns in our codebase. Building on this, further re-
search could consider which reasoning patterns arise when agents
are playing a certain equilibrium refinement.

Several other formalisms, often partly inspired by MAIDs, have
been proposed for representing and reasoning about games as prob-
abilistic graphical models. For example: networks of influence dia-
grams represent mental models of the different agents as nodes in a
graph and use these to describe and reason about belief structures
[7]; settable systems extend structural equation models to include
the concept of optimisation and hence the idea of a ‘best response’,
which is key to defining game-theoretic equilibria [27]; temporal
action graph games are similar to MAIDs, but can be more compact
for games that involve anonymity or context-specific utility inde-
pendencies [10]. These works, however, focus on the introduction
of novel representations, whereas we focus on deepening the theory
and practice behind an existing representation. It is an interesting
question for further research whether our insights also apply to
these related models.

2 BACKGROUND
In this section, we define EFGs and MAIDs and show how their
graphical representation of games differ with the help of the fol-
lowing example [26].

Example 1 (Job hiring). A company employs an AI system to auto-
mate their hiring process. A naturally hard-working or naturally lazy
worker wants a job at this company and believes that a university
degree will increase their chance of being hired; however, they also
know that they will suffer an opportunity cost from three years of
studying. A hard-worker will cope better with a university workload
than a lazy worker. The algorithm must decide, on behalf of the com-
pany, whether to hire the worker. The company wants to hire someone
who is naturally hard-working, but the algorithm can’t observe the
worker’s temperament directly, it can only infer it indirectly through
whether or not the worker attended university.

We use capital letters 𝑋 for variables and let dom(𝑋 ) denote the
domain of X. An assignment 𝑥 ∈ dom(𝑋 ) to 𝑋 is an instantiation
of 𝑋 denoted by 𝑋 = 𝑥 . 𝑿 = {𝑋1, . . . , 𝑋𝑛} is a set of variables
with domain dom(𝑿 ) = ×𝑛

𝑖=1dom(𝑋𝑖 ) and 𝒙 = {𝑥1, . . . , 𝑥𝑛} is the
set containing an instantiation of all variables in 𝑿 . We let Pa𝑉
denote the parents of a node 𝑉 in a graphical representation and
pa𝑉 be the instantiation of Pa𝑉 . Ch𝑉 , Anc𝑉 , Desc𝑉 , and Fa𝑉 B
Pa𝑉 ∪{𝑉 } are the children, ancestors, descendants, and family of𝑉
with, analogously to pa𝑉 , their instantiations written in lowercase.
Unless otherwise indicated we index mathematical objects with
superscripts 𝑖 ∈ 𝑵 to denote their affiliation with a player 𝑖 (where
𝑵 is a set of players) and with subscripts 𝑗 ∈ N to enumerate them.

2.1 Extensive Form Games
Definition 1 ([14]). An extensive-form game (EFG) G is a tuple
(𝑵 ,𝑇 , 𝑷 ,𝑫, 𝜆, 𝑰 ,𝑈 ),where:
• 𝑵 = {1, . . . , 𝑛} is a set of agents.
• 𝑇 = (𝑽 , 𝑬) is a game tree with nodes 𝑽 that are partitioned
into the sets 𝑽 0, 𝑽 1, . . . , 𝑽𝑛, 𝑳 where 𝑅 ∈ 𝑽 is the root of𝑇 , 𝑳
is the set of leaves of the tree, 𝑽 0 is the set of chance nodes,
and 𝑽 𝑖 is the set of nodes controlled by player 𝑖 ∈ 𝑵 . These
nodes are connected by edges 𝑬 ⊆ 𝑽 × 𝑽 .
• 𝑷 = {𝑃1, . . . , 𝑃 |𝑽 0 |} is a set of probability distributions where
each 𝑃 𝑗 : Ch𝑉𝑗

→ [0, 1] determines the probability of a path
through the game tree that has reached chance node 𝑉 0

𝑗

proceeding to each child node in Ch𝑉 0
𝑗
.

• 𝑫 is a set of decisions, we write 𝑫𝑖
𝑗
⊆ 𝑫 to describe the set

of available decisions at node 𝑉 𝑖
𝑗
∈ 𝑽 𝑖 .

• 𝜆 : 𝑬 → 𝑫 is a labelling function mapping an edge (𝑉 𝑖
𝑗
,𝑉𝑘

𝑙
)

to a decision 𝑑 ∈ 𝑫𝑖
𝑗
.

• 𝑰 = {𝑰 1, . . . , 𝑰𝑛} is a set such that for each player 𝑰 𝑖 ⊂ 2𝑽
𝑖

defines a partition of the vertices controlled by player 𝑖 into
information sets.
• 𝑈 : 𝑳 → R𝑛 is a utility function mapping each leaf node to
a vector that determines the final payoff for each player.

An information set 𝐼 𝑖
𝑗
∈ 𝑰 𝑖 is defined such that for all 𝑉 𝑖

𝑘
,𝑉 𝑖

𝑙
∈

𝐼 𝑖
𝑗
we have 𝑫𝑖

𝑗
B 𝑫𝑖

𝑘
= 𝑫𝑖

𝑙
. In other words, the same player 𝑖 selects

the decision and the same decisions are available at each of the
nodes in an information set. When |𝐼 𝑖

𝑗
| = 1 for all 𝑖 and 𝑗 , G is

a perfect information game. A (behavioural) strategy 𝜎𝑖 for a
player 𝑖 is a set of probability distributions 𝜎𝑖

𝑗
: 𝑫𝑖

𝑗
→ [0, 1] over

the actions available to the player at each of their information sets
𝐼 𝑖
𝑗
.2 A strategy is pure when 𝜎𝑖

𝑗
(𝑑) ∈ {0, 1} for all information sets

𝐼 𝑖
𝑗
and fully mixed when 𝜎𝑖

𝑗
(𝑑) > 0 for all 𝑑 ∈ 𝑫𝑖

𝑗
. A strategy

profile 𝜎 = (𝜎1, . . . , 𝜎𝑛) is a tuple of strategies one for each player
𝑖 ∈ 𝑵 . 𝜎−𝑖 = (𝜎1, . . . , 𝜎𝑖−1, 𝜎𝑖+1, . . . , 𝜎𝑛) denotes the partial strat-
egy profile of all players other than 𝑖 , and so 𝜎 = (𝜎𝑖 , 𝜎−𝑖 ). The
combination of the distributions in 𝑷 with a strategy profile 𝜎 thus
defines a full probability distribution 𝑃𝜎 over paths in G.

𝐼21

𝐼22

𝑉 0ℎ 𝑙

𝑝 1 − 𝑝
𝑉 1
1

𝑔

𝑎

𝑉 1
2

𝑔

𝑎

𝑉 2
1

(4, 3)

𝑗

(−1,−1)

𝑟

𝑉 2
2

(5, 3)

𝑗

(0,−1)

𝑟

𝑉 2
3

(3,−2)

𝑗

(0, 0)

𝑟

𝑉 2
4

(2,−2)

𝑗

(−2, 0)

𝑟

Figure 1: An EFG representation of Example 1.

2Formally, 𝜎𝑖
𝑗
(𝑑) > 0 only if 𝑑 ∈ 𝐷𝑖

𝑘
for any vertex𝑉𝑘 ∈ 𝐼 𝑖𝑗 , and Σ𝑑∈𝐷𝑖

𝑘
𝜎𝑖
𝑗
(𝑑) = 1.
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Figure 1 shows Example 1’s signalling game in extensive form.
Nature, as a chance node𝑉 0, flips a biased coin at the root of the tree
to decide whether the person is hard-working (probability 𝑝) or lazy
(probability 1 − 𝑝). The worker (player 1)’s decision whether to go
(𝑔) or avoid (𝑎) university is represented at nodes {𝑉 1

1 ,𝑉
1
2 } = 𝑽 1 and

there are four nodes {𝑉 2
1 ,𝑉

2
2 ,𝑉

2
3 ,𝑉

2
4 } = 𝑽 2 for the hiring algorithm

(player 2), each with two decision options: reject (𝑟 ) or job offer
( 𝑗 ). These nodes are split into two information sets (dotted lines
between nodes) because the algorithm does not know whether the
person is naturally hard-working. The payoffs for the worker and
the employer respectively are given at the leaves of the tree.

2.2 Multi-Agent Influence Diagrams
Following recent work [4, 9], we depart slightly from the convention
of K&M to distinguish between an influence diagram, which gives
the structure of a strategic interaction, and an influence model,
which adds a particular parametrisation to the diagram.

Definition 2 ([13]). Amulti-agent influence diagram (MAID)
is a triple (𝑵 , 𝑽 , 𝑬), where:
• 𝑵 = {1, . . . , 𝑛} is a set of agents.
• (𝑽 , 𝑬) is a directed acyclic graph (DAG) with a set of vertices
𝑽 connected by directed edges 𝑬 ⊆ 𝑽 × 𝑽 . These vertices are
partitioned into 𝑫 , 𝑼 , and 𝑿 , which correspond to decision,
utility, and chance nodes respectively. 𝑫 and 𝑼 are in turn
partitioned into {𝑫𝑖 }𝑖∈𝑵 and {𝑼 𝑖 }𝑖∈𝑵 corresponding to
their association with a particular agent 𝑖 ∈ 𝑵 .

Definition 3. Amulti-agent influence model (MAIM) is a tu-
ple (𝑵 , 𝑽 , 𝑬 , 𝜃 ) where (𝑵 , 𝑽 , 𝑬) is a MAID and:
• 𝜃 ∈ Θ is a particular parametrisation over the nodes in
the graph specifying a finite domain dom(𝑉 ) for each node
𝑉 ∈ 𝑽 , real-valued domains dom(𝑈 ) ⊂ R for each 𝑈 ∈ 𝑼 ,
and a set of conditional probability distributions (CPDs)
Pr(𝑽 | Pa𝑉 ) for every chance and utility node. Taken to-
gether, the CPDs form a partial distribution Pr(𝑿 , 𝑼 : 𝑫) =∏

𝑉 ∈𝑽\𝑫 Pr(𝑉 | Pa𝑉 ) over the variables in the MAID.
• The value 𝑢 ∈ dom(𝑈 ) of a utility node is a deterministic
function of the values of its parents pa𝑈 ∈ dom(Pa𝑈 ).

Figure 2 a) shows the MAID for Example 1 corresponding to
the EFG in Figure 1. Whether the worker is hard-working or lazy
is decided by nature’s chance node 𝑋 (white circle). The worker’s
decision 𝐷1 and utility 𝑈 1 nodes are depicted as a red rectangle
and diamond respectively. The algorithm’s decision 𝐷2 and utility
𝑈 2 nodes are in blue. To instantiate a MAIM, CPD tables for𝑈 1 and
𝑈 2 would be consistent with the payoffs and value of 𝑝 in Figure 1.

There are two types of directed edge in a MAID. Full edges lead-
ing into 𝑿 ∪ 𝑼 represent probabilistic dependence, as in a Bayesian
network. Dotted edges leading into 𝑫 represent information that is
available to the agent at the time a decision is made (e.g. the edge
𝑋 → 𝐷1). In this way, the values of the parents pa𝐷 of a decision
node 𝐷 represent the decision context for 𝐷 . The CPDs of decision
nodes are not defined when a MAIM is constructed because they
are instead chosen by the agents playing the game. In general, a
player’s decision CPD need not be optimal.

This example demonstrates two clear advantages of MAIDs com-
pared with EFGs. First, in many real world cases, MAIDs make it

𝑋

𝑈 2 𝐷2 𝑈 1

𝐷1

a)

𝐷1

𝐷2

b)

𝐶

c)

Figure 2: A MAIDM a) representation of Example 1, along
with its cyclic relevance graph 𝑅𝑒𝑙 (M) b) (Section 2.5) and
condensed relevance graph 𝐶𝑜𝑛𝑅𝑒𝑙 (M) c) (Section 3.1).

possible to explicitly represent aspects of game structure that are
obscured in the extensive form. For example, in the EFG, informa-
tion sets were drawn to reflect the fact that the algorithm does
not know whether the worker is naturally hard-working or lazy
when it selects its action. However, in the corresponding MAID,
this incomplete information is represented simply by the fact that
there is no edge 𝑋 → 𝐷2. Moreover, the company’s utility 𝑈 2 isn’t
a function of whether the applicant went to university or not – it
only cares whether the applicant is hard-working and whether or
not they hired them. We can infer this from the EFG payoffs in
Figure 1, but in the MAID this is shown instantly by the fact that
there is no edge 𝐷1 → 𝑈 2.

Second, MAIDs can provide a more compact graphical represen-
tation of games [13, 18]. In fact, the MAID representation of a game
need never be bigger than the corresponding EFG and can be smaller
in many cases. For example, there are four nodes 𝑉 2

1 ,𝑉
2
2 ,𝑉

2
3 ,𝑉

2
4 in

Figure 1 which correspond to the company’s decision. In the MAID,
these are combined into one node, 𝐷2.

A further strength of MAIMs derive from them being probabilis-
tic graphical models, and so probabilistic dependencies between
chance and strategic variables can be exploited. We recall the notion
of d-separation, a graphical criterion for determining independence
properties of the probability distribution associated with the graph.
This is necessary for the concept of r-reachability (Section 2.5) and
consequently that of a MAID subgame (Section 3.1).

Definition 4 ([21]). A path 𝑝 in a MAID (𝑵 , 𝑽 , 𝑬) is said to be
d-separated by a set of nodes𝑾 ⊂ 𝑽 if and only if either:
• 𝑝 contains a chain 𝑋 → 𝑌 → 𝑍 or a fork 𝑋 ← 𝑌 → 𝑍 and
𝑌 ∈ 𝑾 .
• 𝑝 contains a collider 𝑋 → 𝑌 ← 𝑍 and ({𝑌 } ∪ Desc𝑌 ) ⊈ 𝑾 .

A set𝑾 d-separates 𝑿 from 𝒀 , denoted 𝑿 ⊥ 𝒀 | 𝑾 , if and only
if𝑾 d-separates every path from a node in 𝑿 to a node in 𝒀 . Sets
of variables that are not d-separated are said to be d-connected,
denoted 𝑿 ̸⊥ 𝒀 | 𝑾 . If 𝑿 and 𝒀 are d-separated conditioning on𝑾 ,
then 𝑿 and 𝒀 are probabilistically independent in the sense that
𝑃 (𝑿 | 𝒀 ,𝑾 ) = 𝑃 (𝑿 | 𝑾 ).

For example, there are several paths from𝑈 2 to𝑈 1 in Figure 2 a):
direct forks through 𝑋 or 𝐷2, a fork through 𝑋 and then a forward
chain through 𝐷1, or a backward chain through 𝐷2 and then a fork
through 𝐷1. If𝑾 = ∅ then𝑈 2 is d-connected to𝑈 1 (𝑈 2 ̸⊥ 𝑈 1 | ∅),
but if𝑾 = {𝑋, 𝐷2} then all of the paths have been d-separated by
conditioning on𝑾 and so𝑈 2 ⊥ 𝑈 1 | 𝑾 .
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2.3 Policies
An agent makes a decision depending on the information it observes
prior to making that decision. Therefore, in a MAIM, a decision
rule 𝜋𝐷 for a decision node 𝐷 is a CPD 𝜋𝐷 (𝐷 | Pa𝐷 ). A partial
policy profile 𝜋𝑨 is an assignment of decision rules 𝜋𝐷 (𝐷 | Pa𝐷 )
to some subset 𝑨 ⊂ 𝑫 and 𝜋−𝑨 is the set of decision rules for all
𝐷 ∈ 𝑫 \ 𝑨. For example, 𝜋𝐷 refers to a decision rule at decision
node 𝐷 and so 𝜋−𝐷 =

∏
𝐷′∈𝑫\{𝐷 } 𝜋𝐷′ (𝐷 ′ | Pa𝐷′) denotes the

partial policy profile over all of the MAIM’s other decision nodes
𝑫 \ {𝐷}. We refer to 𝜋𝑫𝑖 , which describes all the decision choices
made by agent 𝑖 ∈ 𝑵 , as that agent’s policy, 𝜋𝑖 , and we write
𝜋−𝑖 = (𝜋1, . . . , 𝜋𝑖−1, 𝜋𝑖+1, . . . , 𝜋𝑛) to denote the set of policies made
by all agents other than agent 𝑖 . A policy profile 𝜋 assigns a policy
to every agent 𝜋 = (𝜋1, . . . , 𝜋𝑛); it describes all the decisions made
by every agent in the MAIM. We denote spaces of policy profiles
by Π (e.g. Π𝑨, Π𝑖 , and Π).

If for every pa𝑑 ∈ dom(Pa𝐷 ) and 𝑑 ∈ dom(𝐷) we have 𝜋𝐷 (𝑑 |
pa𝐷 ) ∈ {0, 1}, the decision rule is said to be pure or deterministic.
Otherwise, the decision rule is said to be mixed and it is fully
mixed if, for every pa𝐷 and every 𝑑 , we have 𝜋𝐷 (𝑑 | pa𝐷 ) > 0.
Pure, mixed, and fully mixed policies or policy profiles are defined
analogously.

When a partial policy profile 𝜋𝑨 is applied to a MAIMM, a new
MAIMM(𝜋𝑨) is obtained in which each decision node 𝐷 ∈ 𝑨 be-
comes a chance node with a CPD equal to 𝜋𝐷 . In the case of a policy
profile, all decision nodes are turned into chance nodes, and so the
induced MAIMM(𝜋) is now a Bayesian network (utility nodes are
interpreted as chance nodes when a MAIM is viewed as a Bayesian
network). This defines the joint probability distribution Pr𝜋 over
all variables inM and may be used for probabilistic inference.

2.4 Utilities
In an EFG G the expected utility for each player depends on the set
of probability distributions 𝑷 and strategy profile 𝜎 which give a
full probability distribution 𝑃𝜎 over the paths in G. For each path 𝜌

beginning from the root 𝑅 of G’s tree and terminating in a unique
leaf node 𝜌 [𝑳], player 𝑖 receives utility𝑈 (𝜌 [𝑳]) [𝑖] – the 𝑖th entry
in the corresponding payoff vector. By playing strategy profile 𝜎 ,
player 𝑖’s expected utilityU𝑖

G (𝜎) B
∑

𝜌 𝑃
𝜎 (𝜌)𝑈 (𝜌 [𝑳]) [𝑖].

Similarly, the joint distribution Pr𝜋 induced by the policy profile
𝜋 in a MAIMM allows us to define the expected utility for each
player under this policy profile. Agent 𝑖’s expected utility from
policy profile 𝜋 is the sum of the expected value of utility nodes
𝑼 𝑖 given byU𝑖

M (𝜋) B
∑
𝑈 𝑗 ∈𝑼 𝑖

∑
𝑢 𝑗 ∈dom(𝑈 𝑗 )𝑢 𝑗 Pr

𝜋 (𝑈 𝑗 = 𝑢 𝑗 ). We
assume that each agent’s goal is to select a policy 𝜋𝑖 that maximises
its expected utility. Therefore, we can now define what it means
for an agent to optimise 𝜋𝑨 for a set of decisions 𝑨 ⊆ 𝑫𝑖 , given a
partial policy profile 𝜋−𝑨 over all of the other decision nodes inM.
We writeU𝑖

M (𝜋𝑨, 𝜋−𝑨) to denote the expected utility for player 𝑖
under the policy profile 𝜋 = (𝜋𝑨, 𝜋−𝑨).

Definition 5. Let 𝑨 ⊆ 𝑫𝑖 . Player 𝑖’s partial policy 𝜋𝑨 is optimal
for a policy profile𝜋 = (𝜋𝑨, 𝜋−𝑨) ifU𝑖

M (𝜋𝑨, 𝜋−𝑨) ≥ U
𝑖
M (𝜋𝑨, 𝜋−𝑨)

for all 𝜋𝑨 ∈ Π𝑨. Player 𝑖’s policy 𝜋𝑖 is a best response to the
partial policy profile 𝜋−𝑖 assigning policies to the other agents if
U𝑖
M (𝜋

𝑖 , 𝜋−𝑖 ) ≥ U𝑖
M (𝜋

𝑖 , 𝜋−𝑖 ) for all 𝜋𝑖 ∈ Π𝑖 .

2.5 Strategic and Probabilistic Relevance
To optimise a particular decision rule, we often want to knowwhich
other decision rules need to already be known. This is captured by
K&M’s concept of strategic relevance.

Definition 6 ([13]). Let 𝐷𝑘 , 𝐷𝑙 ∈ 𝑫 be decision nodes in a MAIM
M. 𝐷𝑙 is strategically relevant to 𝐷𝑘 (𝐷𝑘 strategically relies on
𝐷𝑙 ) if there exist two policy profiles 𝜋 and 𝜋 ′ and a decision rule
𝜋𝐷𝑘

, such that:
• 𝜋𝐷𝑘

is optimal for 𝜋 .
• 𝜋 differs from 𝜋 ′ only at 𝐷𝑙 .
• 𝜋𝐷𝑘

is not optimal for 𝜋 ′, and neither is any decision rule
𝜋𝐷𝑘

that agrees with 𝜋𝐷𝑘
for all instantiations pa𝐷𝑘

of 𝐷𝑘 ’s
parents where the joint probability Pr𝜋

′ (pa𝐷𝑘
) > 0.

The first two conditions say that if decision rule 𝜋𝐷𝑘
is optimal

for a policy profile 𝜋 , and 𝐷𝑘 does not strategically rely on 𝐷𝑙 , then
𝜋𝐷𝑘

must also be optimal for any policy profile 𝜋 ′ that differs from
𝜋 only at 𝐷𝑙 . The third condition deals with sub-optimal decisions
in response to zero-probability decision contexts.

A related question is probabilistic relevance, which considers
whether the probability distribution of a chance or utility node 𝑋
can influence the optimal policy.

Definition 7. Let 𝐷 be a decision node in a MAIDM. A chance or
utility node 𝑍 ∈ 𝑿 ∪ 𝑼 is probabilistically relevant to 𝐷 if the
set of optimal decision rules for 𝐷 varies with the CPDs assigned
to 𝑍 under some joint policy profile 𝜋 .

We generalise K&M’s graphical criterion, s-reachability, as r-
reachability to determine both strategic relevance and probabilis-
tic relevance. Essentially, the criterion assesses whether knowing
the CPD or decision rule of a node 𝑉 can have positive value of
information [4]. The criterion is sound (if 𝑉 is relevant to 𝐷 , then
𝑉 is r-reachable from 𝐷) and complete (if 𝑉 is r-reachable from 𝐷

then there is some parametrisation 𝜃 of the MAID and some policy
profile 𝜋 such that 𝑉 is relevant to 𝐷). One can then further use
r-reachability to define a relevance graph over 𝑫 .

Definition 8. A node𝑉 is r-reachable from a decision 𝐷 ∈ 𝑫𝑖 in
a MAID,M = (𝑵 , 𝑽 , 𝑬), if a newly added parent 𝑉 of 𝑉 satisfies
𝑉 ̸⊥ 𝑼 𝑖 ∩ Desc𝐷 | Fa𝐷 .

Definition 9. The directed relevance graph forM, denoted by
𝑅𝑒𝑙 (M) = (𝑫, 𝑬𝑅𝑒𝑙 ), is a graph where 𝑫 is the set ofM’s decision
nodes connected by directed edges 𝑬𝑅𝑒𝑙 ⊆ 𝑫×𝑫 . There is a directed
edge from 𝐷 𝑗 → 𝐷𝑘 if and only if 𝐷𝑘 is r-reachable from 𝐷 𝑗 .3

Relevance graphs show which other decisions each decision
depends on. The relevance graph for Example 1’s MAIM in Figure
2 b) is cyclic because each decision node strategically relies on
the other. The worker would be better off knowing the company’s
hiring policy before deciding whether or not to go to university,
but the algorithm would also be better off knowing the worker’s
policy because it doesn’t know the worker’s temperament (lazy
or hard-working). Our second example provides a case of acyclic
strategic relevance.
3The edge directions used here are the same as originally defined by K&M [12] but
reversed compared with those in their later work [13] as this eases our later exposition
of MAID subgames (Section 3.1).
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Example 2 (Taxi competition). Two autonomous taxis, operated by
different companies, are driving along a road with two hotels located
next to one another – one expensive and one cheap. Each taxi must
decide (one first, then the other) which hotel to stop in front of, knowing
that it will likely receive a higher tip from guests of the expensive
hotel. However, if both taxis choose the same location, this will reduce
each taxi’s chance of being chosen by that hotel’s guests.

𝑉 1

𝑒1 𝑐1

𝑉 2
1

(2, 2)

𝑒21

(5, 3)

𝑐21

𝑉 2
2

(3, 5)

𝑒22

(1, 1)

𝑐22

Figure 3: An EFG representation of Example 2, with EFG sub-
games enclosed in dashed boxes.

Because the second taxi can observe which hotel the first taxi
chooses to park in front of, it doesn’t need to know the first taxi’s
policy in order to optimise its own; the second taxi’s decision (𝐷2)
does not strategically rely on the first taxi’s decision (𝐷1). However,
the first taxi would be better off knowing the second taxi’s policy
before deciding its own. For example, with the parametrisation in
Figure 4 e), if the first taxi knows that the second taxi’s policy is
to always park in front of the expensive hotel, the first taxi ought
to always park in front of the cheaper hotel. 𝐷1 does strategically
rely on 𝐷2. In Section 4, we shall see that it is easier to compute
equilibria in MAIMs with acyclic relevance graphs.

𝐷1 𝐷2

𝑈 1 𝑈 2

a)

𝐷1

𝐷2

b)

𝐷2

𝑈 2

c)

𝐷1

𝐷2

d)

𝐷1

𝑈1 e c

𝐷2 e 2 3
c 5 1

𝐷1

𝑈 2 e c

𝐷2 e 2 5
c 3 1

e)

Figure 4: A MAID a) and corresponding relevance graph b)
for Example 2, alongside the only proper MAID subgame c)
highlighted in the (condensed) relevance graph d). The util-
ity nodes’ parametrisation is in e).

3 GAME THEORY FOR MAIDS
In this section, we present novel material. We begin by defining
MAID and MAIM subgames. These set up our discussion of several
equilibrium refinements in MAIMs. Finally, we present and prove a
number of equivalence results between EFGs and MAIMs.

3.1 Subgames
In an EFG, a subtree of the original game tree is an EFG subgame if
it is closed under information sets and descendants. Figure 3 shows
all the EFG subgames (dashed boxes) for the game described by
Example 2. Any game tree is an EFG subgame of itself, and so an
EFG subgame on a strictly smaller set of nodes is called a proper
EFG subgame. We propose an analoguous definition for MAIDs.
Just like for EFGs, MAIM subgames are parts of the game that can
be solved independently.

Definition 10. A subgame base for a MAID (𝑵 , 𝑽 , 𝑬) is a subset
𝑽 ′ ⊆ 𝑽 such that:
• For any 𝑋,𝑌 ∈ 𝑽 ′ and any directed path 𝑋 → · · · → 𝑌 in
M, all nodes on the path are also in 𝑽 ′.
• 𝑽 ′ is closed under r-reachability, i.e. if a node𝑍 is r-reachable
from a decision 𝐷 ∈ 𝑽 ′, then 𝑍 is also in 𝑽 ′.

Definition 11. LetM = (𝑵 , 𝑽 , 𝑬) be a MAID, and let 𝑽 ′ ⊆ 𝑽 be a
subgame base. TheMAID subgame corresponding to 𝑽 ′, is a new
MAIDM ′ = (𝑵 ′, 𝑽 ′, 𝑬 ′) where:
• 𝑵 ′ = {𝑖 ∈ 𝑵 | 𝑫𝑖 ∩ 𝑽 ′ ≠ ∅}, the players restricted to 𝑽 ′.
• 𝑽 ′ is partitioned into 𝑫 ′ = 𝑫 ∩ 𝑽 ′, 𝑼 ′ = 𝑼 ∩ Desc𝑫′ , and
𝑿 ′ = 𝑽 ′ \ (𝑫 ′ ∩ 𝑼 ′).
• 𝑬 ′ is the subset of edges in 𝑬 that connect two nodes in 𝑽 ′.

Analogously, the MAIM subgame of a MAIM (𝑵 , 𝑽 , 𝑬 , 𝜃 ) corre-
sponding to a subset 𝑽 ′ ⊆ 𝑽 and an instantiation 𝒚 of the nodes
𝒀 = 𝑽 \ 𝑽 ′, is the modified MAIM (𝑵 ′, 𝑽 ′, 𝑬 ′, 𝜃 ′) where:
• (𝑵 ′, 𝑽 ′, 𝑬 ′) is the MAID subgame corresponding to 𝑽 ′.
• 𝜃 ′ is like 𝜃 , restricted to nodes in 𝑽 ′. If a node 𝑋 ∈ 𝑽 ′ has
some parents outside of 𝑽 ′ (i.e. in 𝒀 ) then Pr′(𝑋 | pa′

𝑋
) =

Pr(𝑋 | pa′
𝑋
,𝒚′), where Pa′

𝑋
= Pa𝑋 ∩ 𝑽 ′, 𝒀 ′ = Pa𝑋 ∩ 𝒀 , Pr

is the CPD of 𝑋 in 𝜃 , and Pr′ becomes the CPD of 𝑋 in 𝜃 ′.
In fact, only the setting 𝒚 of the nodes that have a child in 𝑽 ′ will
matter. A MAIM subgame is feasible if there exists a policy profile
𝜋 where Pr𝜋 (𝒚) > 0.

In a sequential game with perfect information, the MAIM sub-
games will be in one-to-one correspondence with the subgames in
any corresponding EFG. For example, Figures 3 and 4 show the EFG
and MAID subgames of Example 2. As with EFG subgames, a MAID
is trivially a MAID subgame of itself, as in Figure 4 a). Figure 4 c)
shows the only proper MAID subgame ofM. Two MAIM subgames
are associated with this MAIM subgame: one for each value of 𝐷1.
The additional independencies represented by a MAID sometimes
yields more independently solvable components than identifiable
in an EFG representation; i.e., there can be more subgames in a
MAIM than in a corresponding EFG.

A better sense of MAID subgames can be gained from looking at
the strongly connected components (SCC) of the relevance graph,
where recall that an SCC is a subgraph containing a directed path
between every pair of nodes. A maximal SCC is an SCC that is not
a strict subset of any other SCC. We can use this fact to define a
condensed relevance graph, called the component graph by K&M,
which aggregates each SCC into a single node.

Definition 12. For a givenMAIDM = (𝑵 , 𝑽 , 𝑬), let 𝑪 be the set of
maximal SCCs of its relevance graph𝑅𝑒𝑙 (M). The condensed rele-
vance graph ofM is the directed graph𝐶𝑜𝑛𝑅𝑒𝑙 (M) = (𝑪, 𝑬𝐶𝑜𝑛𝑅𝑒𝑙 ).
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There is an edge 𝑪𝑚 → 𝑪𝑙 between 𝑪𝑚, 𝑪𝑙 ∈ 𝑪 if and only if there
exists 𝐶𝑚 ∈ 𝑪𝑚 and 𝐶𝑙 ∈ 𝑪𝑙 with and edge 𝐶𝑚 → 𝐶𝑙 in 𝑅𝑒𝑙 (M).

Subgraphs of𝐶𝑜𝑛𝑅𝑒𝑙 (M) closed under descendants induceMAID
subgames. Figures 4 b) and d) highlight the nodes of the respective
MAID subgames (since the relevance graph is acyclic here, con-
densing it has no effect). As the condenstion of a directed graph
is always acyclic [3, page 617], games can always be solved via
backwards induction over the condensed relevance graph [13].

3.2 Equilibrium Refinements
MAIDs represent dynamic games of incomplete information – those
in which at least one player 𝑖 does not have perfect information
about the chance variables 𝑿 (commonly interpreted as not know-
ing the type 𝑇 𝑖 of the other agents, where 𝑇 𝑖 defines the payoffs
for agent 𝑖) – and thus admit discussion of the beliefs that agents
possess. In this work, we implicitly view such beliefs as defined by
the induced distribution Pr𝜋 and so eschew further discussion of
them here; in a sense, chance variables can be viewed as decisions
by nature (using fixed stochastic policies).

In non-cooperative games, the most fundamental solution is a
Nash equilibrium [19], a policy profile such that no agent has an
incentive to unilaterally deviate. In other words, every player is
simultaneously playing a best-response against all other players.

Definition 13 ([13]). A full policy profile 𝜋 is aNash equilibrium
(NE) in a MAIM M if, for every player 𝑖 ∈ 𝑵 , U𝑖

M (𝜋
𝑖 , 𝜋−𝑖 ) ≥

U𝑖
M (𝜋

𝑖 , 𝜋−𝑖 ) for all 𝜋𝑖 ∈ Π𝑖 .

The concept of a subgame perfect equilibrium (SPE) was intro-
duced by Reinhard Selten to address the issue that EFGs admit NEs
with non-credible threats – equilibria in which a player threatens to
take some action that, if the player is rational, they would never
actually carry out [24, 25]. In an EFG, a strategy profile is an SPE
if it induces an NE in every EFG subgame; this eliminates all NEs
containing non-credible threats. Our definition of MAID subgames
above allows us to introduce an analogous equilibrium concept.

Definition 14. A full policy profile 𝜋 is a subgame perfect equi-
librium (SPE) in a MAIMM if 𝜋 is an NE in every MAIM subgame
ofM.

𝐷1

𝑒 1
𝑐 0

𝐷1

e c

𝐷2 e 0 1
c 1 0

a)

𝐷1

𝑒 0
𝑐 1

𝐷1

e c

𝐷2 e 1 1
c 0 0

b)

𝐷1

𝑒 1
𝑐 0

𝐷1

e c

𝐷2 e 0 0
c 1 1

c)

Figure 5: The policies for Example 2’s three pure NEs. Only
a) is an SPE.

Figure 5 shows the three pure NEs of Example 2. The policy
profiles in b) and c) are NEs but not SPEs. To see why, consider the
proper MAIM subgame when 𝐷1 = 𝑒 and policy profile b). Here
player 2 obtains utility 3 if they choose 𝑐 and utility 2 if they choose
𝑒 . Therefore, player 2 is making a non-credible threat whenever

𝜋2 (𝐷2 = 𝑒 | 𝐷1 = 𝑒) > 0. For similar reasons, policy profile c) is
also not SPE. Therefore a) is the only SPE of this MAIM.

Within maximal SCCs of 𝑅𝑒𝑙 (M), in which there are no proper
subgames, the agents choose decision rules interdependently. This
can lead to arbitrarily bad decision rules in decision contexts that
occur with probability zero. Trembling hand equilibria offer a useful
NE refinement in these situations [25]. Intuitively, they require
that each player’s policy is still a best response when the other
players make mistakes, or ‘tremble’, with small probability. Let
𝛿𝑘 be a perturbation vector containing, for every 𝐷 ∈ 𝑫 , 𝑑 ∈
dom(𝐷), and decision context pa𝐷 , a value 𝜖𝑑pa𝐷 ∈ (0, 1) such that∑
𝑑∈dom(𝐷) 𝜖

𝑑
pa𝐷 ≤ 1. Then, given aMAIMM, the perturbedMAIM

M(𝛿𝑘 ) is defined such that for every 𝑑 ∈ dom(𝐷) for𝐷 ∈ 𝑫𝑖 , agent
𝑖 must play 𝑑 with probability at least 𝜖𝑑pa𝐷 given pa𝐷 .

Definition 15. A full policy profile 𝜋 is a trembling hand per-
fect equilibrium (THPE) in a MAIMM if there is a sequence of
perturbation vectors {𝛿𝑘 }𝑘∈N such that lim𝑘→∞ |𝛿𝑘 |∞ = 0 and
for each perturbed MAIM M(𝛿𝑘 ) there is an NE 𝜋𝑘 such that
lim𝑘→∞ 𝜋𝑘 = 𝜋 .

Example 3 (Cyber-war). The security agencies for two governments
both use an algorithm to manage their cyber-defence. Their algorithm
decides whether to cyber-attack the other nation’s security agency. If
both agencies attack one another, both suffer some damage (mainly
the opportunity cost of needing to continuously work on upgrading
their defence systems). The attacker never gains much, but if only one
agency attacks the other, the defender suffers a lot more damage.

𝐷1 𝐷2

𝑈 1 𝑈 2

a)

𝐷1

𝐷2

b)

𝐷1

𝑈1 a n

𝐷2 a -2 -4
n 0 0

𝐷1

U2 a n

𝐷2 a -2 0
n -4 0

c)

𝐷1

𝑎 p
𝑛 1-p

𝐷2

𝑎 q
𝑛 1-q

d)

Figure 6: A MAID a), corresponding relevance graph b), util-
ity CPD tables c), and policy profile d) for Example 3.

Figure 6 shows a MAIM with its parametrisation and relevance
graph for Example 3. Using each player’s parametrised policy in
Figure 6 d) this MAIM has two NEs: at 𝑝 = 𝑞 = 1 and 𝑝 = 𝑞 = 0,
either both governments attack (𝑎) or not (𝑛). Figures 7 a) and
c) show player 1’s best response policies for each of these NEs
perturbed by 𝜖 to result in the perturbed MAIMM(𝜖). Figures 7
b) and d) show player 2’s expected utility if they attack (or not) in
response to player 1 using the policy in 7 a) or c) respectively. For
small 𝜖 > 0, player 2’s best response to both the policies in Figures
7 a) and c) is to choose 𝐷2 = 𝑎 and so the NE 𝑝 = 𝑞 = 0 is not robust
against trembles. The NE 𝑝 = 𝑞 = 1 is this MAIM’s only THPE.4

4In the case of a two-player game, a THPE removes all weakly dominated policies.
Here, for both 𝐷1 and 𝐷2 , the pure policy of choosing 𝑛 is weakly dominated by the
pure policy of choosing 𝑎.
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𝐷1

𝑎 1 − 𝜖
𝑛 𝜖

a)

𝐷2 U2
M (𝜋)

𝑎 −2 + 2𝜖
𝑛 −4 + 4𝜖

b)

𝐷1

𝑎 𝜖

𝑛 1 − 𝜖

c)

𝐷2 U2
M (𝜋)

𝑎 −2𝜖
𝑛 −4𝜖

d)

Figure 7: Polices a) and c) for player 1 for each NE in the
original MAIM, shown in Figure 6, perturbed by 𝜖, and the
expected utilities b) and d) for player 2 when choosing each
𝑑 ∈ dom(𝐷2) in response to policies a) and c) respectively.

3.3 Transformations and Equivalences
Both EFGs and MAIMs represent games graphically. In this section,
we provide equivalence results between these models to demon-
strate that alongside the increased compactness and structural clar-
ity of MAIMs, the fundamental game-theoretic notions of subgames
and equilibria are preserved when converting an EFG to a MAIM.

3.3.1 MAIM to EFG. There are many ways to convert a MAIM
into an EFG, but these differ in their computational costs [13, 20].
We give a full and formal transformation procedure, maim2efg,
in the supplementary material based on that of K&M. The idea
is to use a topological ordering ≺ over the nodes of the MAID to
construct the EFG game tree by splitting on each of the nodes in
≺. Because there can be more than one such ordering, the out-
put of maim2efg is a set of EFGs. Our codebase implements a
more efficient transformation, keeping only utility nodes, decision
nodes, and informational parents (

⋃
𝐷∈𝑫 Fa𝐷 ). This information is

enough for computing equilibria, and can offer significant efficiency
gains since the cost of solving an EFG depends on its size, which is
exponential in the length of ≺. The resulting EFG can be fed into
Gambit, a popular tool for solving EFGs [17], though it may not
contain enough information to fully recover the original MAIM.

3.3.2 EFG to MAIM. By encoding the CPDs for each variable in
the MAIM using trees as opposed to tables, MAIMs can represent
any decision-making problem using at most the same space, but
often exponentially less space than an EFG [13]. In general, there
are many MAIMs that can represent a given EFG. For instance,
upon converting the EFG representation (Figure 3) of Example 2
to a MAIM (Figure 4), we could naïvely retain the EFG’s root and
two child nodes as three decision nodes (𝐷1, 𝐷2

𝑎 , and 𝐷2
𝑏
) in the

MAIM. Alternatively, we could recognise that 𝐷2
𝑎 and 𝐷2

𝑏
both

correspond to the same real world variable, the decision made
following 𝐷1, and thus combine them (as shown in Figure 4). In
the supplementary material, we formalise this notion and provide
a procedure efg2maim which maps an EFG to a unique, canonical
MAIM (including those with absent-mindedness [23]).

3.3.3 Equivalences. We now provide a series of equivalence re-
sults between EFGs and MAIMs to fortify the game-theoretic foun-
dations behind our analysis of MAIDs. Results are justified using
intuitive sketches, with full proofs in the supplementary material.

Definition 16. A decision context pa𝐷 for a decision node𝐷 inM
if feasible if there exists a policy profile 𝜋 where Pr𝜋 (pa𝐷 ) > 0. A
decision context pa𝐷 is null if every player always receives utility
0, i.e. U𝑖

M (𝜋
′′ | pa𝐷 ) =

∑
𝑈 𝑗 ∈𝑼 𝑖

∑
𝑢 𝑗 ∈dom(𝑈 𝑗 )𝑢 𝑗 Pr

𝜋 (𝑈 𝑗 = 𝑢 𝑗 |
pa𝐷 ) = 0 for all 𝑖 and any policy profile 𝜋 ′′, or if it is infeasible.

Definition 17. We say that a MAIMM is equivalent to an EFG
G (and vice versa) if there is a bijection 𝑓 : Σ→ Π/∼ between the
strategies in G and a partition of the policies inM (the quotient
set of Π by an equivalence relation ∼) such that:
• 𝜋 ∼ 𝜋 ′ only if 𝜋 and 𝜋 ′ differ only on null decision contexts.
• For every 𝜋 ∈ 𝑓 (𝜎) and every player 𝑖 ,U𝑖

G (𝜎) = U
𝑖
M (𝜋).

We refer to 𝑓 as a natural mapping between G andM.

The reason we use an equivalence relation on the space of poli-
cies is that efg2maim can introduce additional null decision con-
texts: those that do not correspond to any path through the EFG.
Although this equivalence is not exact, it is sufficient for preserving
the essential game-theoretic features of each representation, as
we show below. We begin with a supporting lemma that justifies
the correctness of our procedures maim2efg and efg2maim, and
forms the basis of our other results.

Lemma 1. If G ∈ maim2efg(M) orM = efg2maim(G) then G
andM are equivalent.

This lemma follows directly by construction from the two proce-
dures,maim2efg and efg2maim respectively. The intuition is that
the information sets in an EFG correspond to the non-null decision
contexts in a MAIM, and thus an EFG’s behavioural strategy profile
𝜎 corresponds to a policy profile 𝜋 in the MAIM, and vice versa. As
an immediate consequence, we see that NEs are preserved by our
transformations between EFGs and MAIMs.

Corollary 1. If G ∈ maim2efg(M) orM = efg2maim(G) then
there is a natural mapping 𝑓 between G andM such that 𝜎 is an NE
in G if and only if any 𝜋 ∈ 𝑓 (𝜎) is an NE inM.

For an EFG subgame G′, the variables outside G′ are neither
strategically nor probabilistically relevant to those in the corre-
sponding MAIM subgameM ′. This means that EFG subgames have
equivalent counterparts in the equivalent MAIM, as established by
the following proposition.

Proposition 1. If G ∈ maim2efg(M) orM = efg2maim(G)
then there is a natural mapping 𝑓 between G andM such that, for
every EFG subgame G′ in G there is a MAIM subgameM ′ inM
that is equivalent to G′ under the natural mapping 𝑓 restricted to the
strategies of G′.

This restriction of 𝑓 to the strategies inG′ can bemade precise by
considering only those non-null decision contexts that correspond
to the information sets contained in G′, as in the case for Lemma 1.
Given Proposition 1 and Corollary 1, it can easily be seen that not
only are NEs preserved when representing EFGs as MAIMs, but
so too are SPEs. We remark, however, that as there may be more
subgames in MAIM than in an equivalent EFG, that the criterion of
subgame perfectness may be slightly stronger in the MAIM, and so
not all SPEs in an EFG may be SPEs in the equivalent MAIM. This
additional strength can be useful in ruling out what we intuitively
view as ‘irrational’ behaviour, even when it does not fall under a
particular subgame in the EFG.

Corollary 2. If G ∈ maim2efg(M) orM = efg2maim(G) then
there is a natural mapping 𝑓 between G andM such that if any
𝜋 ∈ 𝑓 (𝜎) is an SPE inM, then 𝜎 is an SPE in G.
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Finally, we derive an equivalence between the THPEs in EFGs
and those in MAIMs. In order to do so, it suffices to prove an equiv-
alence between perturbed versions of the corresponding games
G(𝛿𝑘 ) andM(𝛿𝑘 ), which can easily be done via construction using
efg2maim, and then by applying Lemma 1 and Corollary 1.

Proposition 2. If G ∈ maim2efg(M) orM = efg2maim(G)
then there is a natural mapping 𝑓 between G andM such that 𝜎 is a
THPE in G if and only if any 𝜋 ∈ 𝑓 (𝜎) is a THPE inM.

This series of equivalence results serves to justify MAIDs as an
appropriate choice of game representation. Not only do they provide
computational advantages over EFGs, we have shown that they
preserve the most fundamental game-theoretic concepts commonly
employed in EFGs.

4 IMPLEMENTATION
K&M showed that the explicit representation of dependencies be-
tween variables in MAIDs can substantially reduce the computa-
tional cost of finding an NE [13, 18]. In this section, we describe a
modified version of their algorithm and use MAID subgames to find
all pure SPEs (see also the supplementary material). We show that
MAID subgames exhibit the familiar subgame property of being
useful for ‘generalised backwards induction’ algorithms [11].

Beginning with an arbitrary policy profile 𝜋 (0) across all deci-
sion nodes in the original MAIM,M, we optimise decision rules
associated to each 𝐷 ∈ 𝑫 by iterating backwards through a MAID
subgame ordering from M𝑚 to M0. In what follows, we write
M𝑖 ≺ M 𝑗 ifM 𝑗 is a proper MAID subgame ofM𝑖 , and 𝑫𝑘 for
the decision nodes inM𝑘 . Several MAID subgames can have the
same set of decisions, 𝑫𝑘 , so we choose a single MAID subgame
M𝑘 (one with the fewest nodes 𝑽 ′) for each 𝑫𝑘 and discard the
others. Each MAID in this ordering has an associated MAIM for
each setting of the nodes which have a child in 𝑽 ′.

When considering a MAIM for M𝑚−𝑖 , the decision rules for
all decision nodes in proper MAIM subgames ofM𝑚−𝑖 will have
already been optimised and fixed in previous iterations, so these
are now chance nodes inM𝑚−𝑖 . In addition, none of the decision
nodes𝑫𝑚−𝑖 inM𝑚−𝑖 strategically rely on any of the decision nodes
outside ofM𝑚−𝑖 . Therefore, this step is localised to computing the
optimal decision rules only for 𝑫𝑚−𝑖 .

The next step depends on |𝑫𝑚−𝑖 |. If only one decision node
𝐷 ∈ 𝑫 𝑗 remains, as in Figure 4 c) for example, then its optimal
decision rule is that which maximises player 𝑗 ’s expected utility in
each of the MAIMs (for each value of 𝐷1) for this MAID subgame.
If |𝑫𝑚−𝑖 | > 1, the relevance graph ofM𝑚−𝑖 is cyclic and so the
decision nodes strategically rely on one another. We must therefore
call a subroutine: the MAIMs for the MAID subgame induced by the
policy profile at that step,M(𝜋−𝑫𝑚−𝑖 (𝑖)), are converted to EFGs to
be solved using Gambit [17]. Algorithm 1 shows the full procedure.

It is more efficient to pass the EFGs in the algorithm’s subroutine
to an EFG solver such as Gambit [17], rather than passing an EFG for
the entire original MAIM. In the induced MAIMM(𝜋−𝑫𝑚−𝑖 (𝑖)), all
decision nodes in the proper MAIM subgames have been converted
into chance nodes. In our MAID to EFG transformation we need
only split on decision nodes and their informational parents, so the
size of the EFG is exponential in |Fa𝑫𝑚−𝑖 |. As the time complexity
of solving an EFG depends on its size, the cost of solving a MAIM

Algorithm 1

Input: MAIMM = (𝑵 , 𝑽 , 𝑬 , 𝜃 )
Output: SPE 𝜋

1: initialise 𝜋 (0) as an arbitrary fully mixed policy profile
2: compute an ordering ≺ over the subgamesM0, . . . ,M𝑚 inM
3: for i = 0 to m-1 do
4: compute a best response policy profile 𝜋∗𝑫𝑚−𝑖

for all decision
nodes in 𝑫𝑚−𝑖 usingM(𝜋−𝑫𝑚−𝑖 (𝑖))

5: 𝜋 (𝑖 + 1) ← (𝜋−𝑫𝑚−𝑖 (𝑖), 𝜋∗𝑫𝑚−𝑖
)

6: return 𝜋 (𝑚)

using Algorithm 1 is never greater than solving an equivalent EFG
representation of the original game, and is exponentially faster in
many cases.

Our open-source Python codebase5 implements this procedure,
provides methods for finding and plotting MAIDsM, along with
𝑅𝑒𝑙 (M) and 𝐶𝑜𝑛𝑅𝑒𝑙 (M), and converts any MAIM into an EFG to
be used with Gambit. Our aim is to provide the necessary compu-
tational tools for researchers and practitioners to develop further
applications of MAIDs.

5 DISCUSSION AND CONCLUSIONS
This work has extended previous results on MAIDs by introducing
the concept of a MAID subgame and a range of key equilibrium re-
finements. K&M argued that MAIDs offer several benefits [13]. First,
MAIDs can represent games more concisely than EFGs. Second,
because a parametrised MAID is a probabilistic graphical model, the
probabilistic dependencies between chance and decision variables
can be exploited in order to identify whether decision nodes strate-
gically rely on one another; we used this to define MAID subgames
and our resulting equilibrium refinements. Separately, MAIDs can
lead to substantial savings in the computational cost of finding
an SPE; in Section 4, we have described a modified version of an
algorithm of K&M and implemented it in an open-source codebase.

These benefits of MAIDS, coupled with the theoretical and prac-
tical contributions of this paper, provide a rich basis for future
work. One avenue for such work that we are already pursuing is to
extend the analysis of incentives [2, 4] to the multi-agent setting
by interpreting the directed edges in MAIDs causally. One could
then investigate which variables in the graph each agent has an
incentive to observe or control, and which reasoning patterns are
involved [22], given that all of the agents in the MAID are playing
a certain equilibrium refinement.
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