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ABSTRACT
Various voting rules are based on ranking the candidates by scores

induced by aggregating voter preferences. A winner (respectively,

unique winner) is a candidate who receives a score not smaller

than (respectively, strictly greater than) the remaining candidates.

Examples of such rules include the positional scoring rules and the

Bucklin, Copeland, and Maximin rules. When voter preferences

are known in an incomplete manner as partial orders, a candidate

can be a possible/necessary winner based on the possibilities of

completing the partial votes. Past research has studied in depth

the computational problems of determining the possible and neces-

sary winners and unique winners. These problems are all special

cases of reasoning about the range of possible positions of a can-

didate under different tiebreakers. We investigate the complexity

of determining this range, and particularly the extremal positions.

Among our results, we establish that finding each of the minimal

and maximal positions is NP-hard for each of the above rules, in-

cluding all positional scoring rules, pure or not. Hence, none of

the tractable variants of necessary/possible winner determination

remain tractable for extremal position determination. Tractability

can be retained when reasoning about the top-𝑘 positions for a

fixed 𝑘 . Yet, exceptional is Maximin where it is tractable to decide

whether the maximal rank is 𝑘 for 𝑘 = 1 (necessary winning) but it

becomes intractable for all 𝑘 > 1.
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1 INTRODUCTION
A central task in social choice is that of winner determination—how

to aggregate voter preferences to decide who wins. Relevant scenar-

ios may be political elections, document rankings in search engines,

hiring dynamics in the job market, decision making in multiagent

systems, determination of outcomes in sports tournaments, and

so on [6]. Different voting rules can be adopted for this task, and

the computational social-choice community has investigated the
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algorithmic aspects of various specific instances of rules. We focus

here on rules that are based on ranking the candidates by scores

induced by aggregating voter preferences. A prominent example

is the family of the positional scoring rules: each voter assigns to

each candidate a score based on the candidate’s position in the

voter’s ranking, and a winning candidate is one who receives the

maximal sum of scores. Famous instantiations include the plural-

ity rule (where a winner is most frequently ranked first), the veto

rule (where a winner is least frequently ranked last), their general-

izations to 𝑡-approval and 𝑡-veto, respectively, and the Borda rule

(where the score is the position in the reverse order). There are also

non-positional voting rules that are based on candidate scoring,

such as the Bucklin, Copeland, and Maximin rules.

The seminal work of Konczak and Lang [18] has addressed the

situation where voter preferences are expressed or known in just

a partial manner. More precisely, a partial voting profile consists

of a partial order for each voter, and a completion consists of a

linear extension for each of the partial orders. The framework gives

rise to the computational problems of determining the necessary
winners who win in every completion, and the possible winners who
win in at least one completion. Each of these problems has two

variants that correspond to two forms of winning: having a score

not smaller than any other candidate (i.e., being a co-winner) and a

having a score strictly greater than all other candidates (i.e., being

the unique winner). These computational problems are challeng-

ing since, conceptually, they involve reasoning about the entire

(exponential-size) space of completions. The complexity of these

problems has been thoroughly studied in a series of publications

that established the tractability of the necessary winners for posi-

tional scoring rules [28], and a full classification of a general class

of positional scoring rules (the “pure” scoring rules) into tractable

and intractable for the problem of the possible winners [3, 4, 28].

Yet, the outcome of an election often goes beyond just reasoning

about the maximal score. For example, the ranking among the other

candidates might determine who will be the elected parliament

members, the entries of the first page of the search engine, the

job candidates to recruit, and the finalists of a sports competition.

Studies on social welfare, for instance, concern the aggregation of

voter preferences into a full ranking of the candidates [5, 26]. In the

case of a positional scoring rule, the ranking order is determined

by the sum of scores from voters and some tie-breaking mecha-

nism [22]. When voter preferences are partial, a candidate can be

ranked in different positions for every completion, and we can then

reason about the range of these positions. In fact, the aforemen-

tioned computational problems can all be phrased as reasoning

about the minimal and maximal ranks under different tiebreakers.

A candidate 𝑐 is a possible co-winner if the minimal rank is one

Main Track AAMAS 2021, May 3-7, 2021, Online

638



when the tiebreaker favors 𝑐 most, a possible unique winner if the
minimal rank is one when the tiebreaker favors 𝑐 least, a necessary
co-winner if the maximal rank is one when the tiebreaker favors

𝑐 most, and a necessary unique winner if the maximal rank is one

when the tiebreaker favors 𝑐 least.

We study the computational problems Min{𝜃 } and Max{𝜃 },
where 𝜃 is one of < and >. The input consists of a partial pro-

file, a candidate, a tie-breaking (total) order, and a number 𝑘 , and

the goal is to determine whether 𝑥𝜃𝑘 where 𝑥 is the minimal rank

and the maximal rank, respectively, of the candidate. Our results

are summarized in Table 1 and Table 2 for positional scoring rules

and for other rules, respectively. (We exclude famous rules that are

not naturally expressed as candidate scoring, e.g., Condorcet.)

As Table 1 shows for positional scoring rules, determining the

extremal ranks of a candidate is fundamentally harder than the

𝑘 = 1 counterparts (necessary/possible winners). For example, it is

known that detecting the possible winners is NP-hard for every pure

rule, with the exception of plurality and veto where the problem

is solvable in polynomial time [3, 4, 28]. In contrast, we show that

determining each of the minimum and maximum ranks is NP-hard

for every positional scoring rule, pure or not, including plurality

and veto. In particular, the tractability of the necessary winners

does not extend to reasoning about the maximal rank. The same

goes for the Bucklin and Maximin rules, as can be seen in Table 2.

We also study the impact of fixing 𝑘 and consider the problems

Min{𝜃𝑘} andMax{𝜃𝑘} where the goal is to determine whether 𝑥𝜃𝑘

where, again, 𝑥 is the minimal/maximal rank. As shown in Table 1,

we establish a more positive picture in the case of positional scoring

rules: tractability for the maximum (assuming that the scores are

polynomial in the number of candidates), and tractability of the

minimum under plurality and veto. The degree of the polynomials

depend on 𝑘 , and we show that this is necessary (under standard

assumptions of parameterized complexity) at least for the case

of minimum, where the problem is W[2]-hard for plurality, and

for the case of maximum, where the problem is W[1]-hard for

every positional scoring rule. Tractability for the maximum is also

retained for the non-positional Bucklin rule, as shown in Table 2.

Interestingly, Maximin behaves differently: while it is tractable to

decide whether the maximal rank is at least 𝑘 for 𝑘 = 1 (i.e., the

necessary-winner problem), it is NP-complete for all 𝑘 > 1.

The study of the range of possible ranks, beyond the very top,

is related to the problem of multi-winner election that has been

studied mostly in the context of committee selection. In that respect,

our work can be viewed as reasoning about (necessary/possible)

membership in the committee that consists of the 𝑘 highest ranked

candidates. Yet, common studies consider richer notions of com-

mittee selection that look beyond the individual achievements of

candidates. Indeed, various utilities have been studied for qualifying

the selected committee, such as maximizing the number of voters

with approved candidates [1] and, in that spirit, the Condorcet com-

mittees [10, 12], aiming at a proportional representation via frame-

works such as Chamberlin and Courant’s [9] andMonroe’s [23], and

the satisfaction of fairness and diversity constraints [7, 8]. Moreover,

for some of the famous committee selection rules, determining the

elected committee can be intractable even if voter preferences are

complete [10, 24, 25, 27], in contrast to rank determination (which

is always in polynomial time in the framework we adopt).

The problem of multi-winner determination for incomplete votes

has been studied by Lu and Boutilier [19] in a perspective different

from pure ranking: find a committee that minimizes the maximum

objection (or “regret”) over all possible completions.

Due to lack of space, some of the proofs are excluded from the

paper and are presented in the full version of this work [16].

2 PRELIMINARIES
We begin with some notation and terminology. We focus on posi-

tional scoring rules, and we extend the definitions to other voting

rules in Section 4.

Voting Profiles and Positional Scoring. Let𝐶 = {𝑐1, . . . , 𝑐𝑚} be the
set of candidates (or alternatives) and let𝑉 = {𝑣1, . . . , 𝑣𝑛} be the set
of voters. A voting profile T = (𝑇1, . . . ,𝑇𝑛) consists of 𝑛 linear orders

on 𝐶 , where each 𝑇𝑖 represents the ranking of 𝐶 by 𝑣𝑖 .

A positional scoring rule 𝑟 is a series {®𝑠𝑚}𝑚∈N+ of𝑚-dimensional

score vectors ®𝑠𝑚 = (®𝑠𝑚 (1), . . . , ®𝑠𝑚 (𝑚)) of natural numbers where

®𝑠𝑚 (1) ≥ · · · ≥ ®𝑠𝑚 (𝑚) and ®𝑠𝑚 (1) > ®𝑠𝑚 (𝑚). We denote ®𝑠𝑚 ( 𝑗) by
𝑟 (𝑚, 𝑗). Some examples of positional scoring rules include the plu-
rality rule (1, 0, . . . , 0), the 𝑡-approval rule (1, . . . , 1, 0, . . . , 0) that
begins with 𝑡 ones, the veto rule (1, . . . , 1, 0), the 𝑡-veto rule that
ends with 𝑡 zeros, and the Borda rule (𝑚 − 1,𝑚 − 2, . . . , 0).

Given a voting profile T = (𝑇1, . . . ,𝑇𝑛), the score 𝑠 (𝑇𝑖 , 𝑐, 𝑟 ) that
the voter 𝑣𝑖 contributes to the candidate 𝑐 is 𝑟 (𝑚, 𝑗) where 𝑗 is the

position of 𝑐 in 𝑇𝑖 . The score of 𝑐 in T is 𝑠 (T, 𝑐, 𝑟 ) = ∑𝑛
𝑖=1

𝑠 (𝑇𝑖 , 𝑐, 𝑟 )
or simply 𝑠 (T, 𝑐) if 𝑟 is clear from context. A candidate 𝑐 is a winner
(or co-winner) if 𝑠 (T, 𝑐) ≥ 𝑠 (T, 𝑐 ′) for all candidates 𝑐 ′, and a unique
winner if 𝑠 (T, 𝑐) > 𝑠 (T, 𝑐 ′) for for all candidates 𝑐 ′ ≠ 𝑐 .

We make some conventional assumptions about the positional

scoring rule 𝑟 . We assume that 𝑟 (𝑚, 𝑖) is computable in polynomial

time in𝑚, and the scores in each ®𝑠𝑚 are co-prime (i.e., their greatest

common divisor is one). A positional scoring rule is pure if every
®𝑠𝑚+1 is obtained from ®𝑠𝑚 by inserting a score at some position.

Partial Profiles. A partial voting profile P = (𝑃1, . . . , 𝑃𝑛) consists
of 𝑛 partial orders (i.e., reflexive, anti-symmetric and transitive

relations) on the set 𝐶 of candidates, where each 𝑃𝑖 represents

the incomplete preference of the voter 𝑣𝑖 . A completion of P =

(𝑃1, . . . , 𝑃𝑛) is a complete voting profileT = (𝑇1, . . . ,𝑇𝑛) where each
𝑇𝑖 is a completion (i.e., a linear extension) of the partial order 𝑃𝑖 .

The computational problems of determining the necessary winners
and possible winners for partial voting preferences were introduced

by Konczak and Lang [18].

Given a partial voting profile P, a candidate 𝑐 ∈ 𝐶 is a necessary
winner if 𝑐 is a winner in every completion T of P, and 𝑐 is a possible
winner if there exists a completion T of P where 𝑐 is a winner.

Similarly, 𝑐 is a necessary unique winner if 𝑐 is a unique winner in
every completion T of P, and 𝑐 is a possible unique winner if there
exists a completion T of P where 𝑐 is a unique winner.

The decision problems associated to a positional scoring rule 𝑟

are those of determining, given a partial profile P and a candidate 𝑐 ,

whether 𝑐 is a necessary winner, a necessary unique winner, a possi-

ble winner, and a possible unique winner. We denote these problems

by NW, NU, PW and PU, respectively. A known classification of

the complexity of these problems is the following.
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Table 1: Overview of the results for positional scoring rules. 𝑘 stands for𝑚−𝑘 + 1 where𝑚 is the number of candidates. Results
on parameterized complexity take 𝑘 as the parameter.

Problem plurality, veto pure − {pl., veto} non-pure comment

Min{<} NP-c

W[2]-hard for pl.

NP-c NP-c

NP-c: [Thm. 3.1]

W[2]: [Thm. 3.5]

Max{>} NP-c

W[1]-hard
NP-c

W[1]-hard
NP-c

W[1]-hard
[Thm. 3.2]

[Thm. 3.10]

Min{< 𝑘} P

NP-c for strongly pure w/

poly. scores

?

P: [Thm. 3.4]

NP-c: [Thm. 3.6]

Max{> 𝑘} P P for poly. scores P for poly. scores [Thm. 3.7]

Min{< 𝑘} P P for poly. scores P for poly. scores [Thm. 3.12]

Max{> 𝑘} P NP-c for strongly pure bounded ?

P: [Cor. 3.13]

NP-c: [Thm. 3.14]

Theorem 2.1 (Classification Theorem [3, 4, 28]). Each of NW
and NU can be solved in polynomial time for every positional scoring
rule. Each of PW and PU is solvable in polynomial time for plurality
and veto; for all other pure scoring rules, PW and PU are NP-complete.

We aim at generalizing the Classification Theorem to determine

the minimal and maximal ranks, as we formalize next.

Minimal and Maximal Ranks. The rank of a candidate is its po-

sition in the list of candidates, sorted by the sum of scores from

the voters. However, for a precise definition, we need to resolve

potential ties. Formally, let 𝑟 be a positional scoring rule, 𝐶 be a set

of candidates, T a voting profile, and τ a tiebreaker, which is simply

a linear order over 𝐶 . Let 𝑅T be the linear order on 𝐶 that sorts the

candidates by their scores and then by τ; that is,

𝑅T :=
{
𝑐 ≻ 𝑐 ′ : 𝑠 (T, 𝑐) > 𝑠 (T, 𝑐 ′) ∨ (𝑠 (T, 𝑐) = 𝑠 (T, 𝑐 ′) ∧ 𝑐 τ 𝑐 ′)

}
.

The rank of 𝑐 is the position of 𝑐 in 𝑅T, and we denote it by

rank(𝑐 |T, τ). If T is replaced with a partial voting profile P, then we

define ranks(𝑐 | P, τ) as the set of ranks that 𝑐 gets in the different

completions of P:

ranks(𝑐 | P, τ) := {rank(𝑐 | T, τ) | T extends P}
The minimal and maximal positions in ranks(𝑐 | P, τ) are denoted
by min(𝑐 | P, τ) and max(𝑐 | P, τ), respectively.

Observe the following for a partial profile P and a candidate 𝑐:

• 𝑐 is a possible winner if and only if min(𝑐 | P, τ) = 1 (or

min(𝑐 | P, τ) < 2) for any tiebreaker τ that positions 𝑐 first.

• 𝑐 is a possible unique winner if and only if min(𝑐 | P, τ) = 1

for any tiebreaker τ that positions 𝑐 last.

• 𝑐 is a necessary winner if and only if max(𝑐 | P, τ) = 1 (or

max(𝑐 | P, τ) < 2) for any tiebreaker τ that positions 𝑐 first.

• 𝑐 is a necessary unique winner if and only if max(𝑐 |P, τ) = 1

for any tiebreaker τ that positions 𝑐 last.

To investigate the computational complexity of calculating the

minimal and maximal ranks for a scoring rule 𝑟 , we will consider

the decision problems of determining, given P, 𝑐 , τ and a position 𝑘 ,

whether 𝑋 (𝑐 | P, τ) 𝜃 𝑘 where 𝑋 is one of min and max and 𝜃 is one

of < and >. We denote these problems by Min𝑟 {𝜃 } and Max𝑟 {𝜃 }.
Moreover, we will omit the rule 𝑟 when it is clear from the context.

For example, Min𝑟 {<} (or just Min{<}) is the decision problem

of determining whether min(𝑐 | P, τ) < 𝑘 , and Max𝑟 {>} (or just
Max{>}) decides whether max(𝑐 | P, τ) > 𝑘 .

Observe that for every scoring rule 𝑟 , if we can compute the

scores of the candidates within a complete profile in polynomial

time, then Min{<} and Max{>} are in NP. Also observe that if

Min{<} is solvable in polynomial time, then so is Min{>}. Con-
versely, if Min{<} is NP-complete then Min{>} is coNP-complete.

The same holds for the complexity of Max{>} in comparison to

Max{<}. Hence, in the remainder of the paper we will restrict the

discussion to Min{<} and Max{>}.

Additional Notation. For a set 𝐴 and a partition 𝐴1, . . . , 𝐴𝑡 of 𝐴,

𝑃 (𝐴1, . . . , 𝐴𝑡 ) denotes the partitioned partial order

{𝑎1 ≻ · · · ≻ 𝑎𝑡 : ∀𝑖 ∈ [𝑡], 𝑎𝑖 ∈ 𝐴𝑖 }
and 𝑂 (𝐴1, . . . , 𝐴𝑡 ) denotes an arbitrary linear order on 𝐴 that com-

pletes 𝑃 (𝐴1, . . . , 𝐴𝑡 ). A linear order 𝑎1 ≻ · · · ≻ 𝑎𝑡 is also denoted

as a vector (𝑎1, . . . , 𝑎𝑡 ). The concatenation (𝑎1, . . . , 𝑎𝑡 ) ◦ (𝑏1, . . . , 𝑏ℓ )
is (𝑎1, . . . , 𝑎𝑡 , 𝑏1, . . . , 𝑏ℓ ).

3 POSITIONAL SCORING RULES
In this section, we show that the problems we study are compu-

tationally hard for all positional scoring rules. We start with the

hardness of computing the minimal rank.

Theorem 3.1. For every positional scoring rule 𝑟 , Min𝑟 {<} is NP-
complete.

Proof. Let 𝑟 = {®𝑠𝑚}𝑚>1
be a positional scoring rule. We as-

sume, without loss of generality, that ®𝑠𝑚 (𝑚) = 0 for every𝑚 > 1.

(Otherwise, we can subtract ®𝑠𝑚 (𝑚) from all the entries in the vec-

tor without affecting the ranks in any profile.) The membership of

Min𝑟 {<} in NP is straightforward. We show hardness by a reduc-

tion from the vertex-cover problem: given an undirected graph 𝐺

and an integer 𝑘 , is there a set 𝐵 of 𝑘 or fewer vertices such that

every edge is incident to at least one vertex in 𝐵? This problem is

known to be NP-complete even on regular graphs [15], and we will

assume that 𝐺 is indeed regular.

Let 𝐺 = (𝑈 , 𝐸) be a regular graph with𝑈 = {𝑢1, . . . , 𝑢𝑛}. In the

reduction, the vertices will correspond to candidates, and the edges
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Voter 1 2 · · · ℓ − 1 ℓ, ℓ + 1 ℓ + 2 · · · 𝑛 + 2

𝑃1

𝑒 (𝑖) 𝑐1 𝑐2 · · · 𝑐ℓ−1 {𝑢, 𝑤 } 𝑐ℓ · · · 𝑐𝑛

𝑃1

𝑒 (2) 𝑐2 𝑐3 · · · 𝑐ℓ {𝑢, 𝑤 } 𝑐ℓ+1 · · · 𝑐1

.

.

.

𝑃1

𝑒 (𝑛) 𝑐𝑛 𝑐1 · · · 𝑐ℓ−2 {𝑢, 𝑤 } 𝑐ℓ−1 · · · 𝑐𝑛−1

Figure 1: The voters of the profile P1

𝑒 = (𝑃1

𝑒 (1), . . . , 𝑃1

𝑒 (𝑛)) for
the edge 𝑒 = {𝑢,𝑤} used in the proof of Theorem 3.1. The
other candidates are denoted as 𝐶 \𝑈 = {𝑐1, . . . , 𝑐𝑛}.

will be voters that will need to select one of their incident vertices.

Hence, the edges jointly select a vertex cover. The question will be

whether this vertex cover is small enough. The details follow.

We construct an instance (𝐶, P, τ) under 𝑟 . The candidate set is
𝐶 = 𝑈 ∪ {𝑐∗, 𝑑} and the tiebreaker is τ = 𝑂 ({𝑐∗, 𝑑} ,𝑈 ). The voting
profile P = P1 ◦ T2

is the concatenation of two parts P1
and T2

that

we describe next.

Note that |𝐶 | = 𝑛 + 2. Let ℓ < 𝑛 + 2 be an index where ®𝑠𝑛+2 (ℓ) >
®𝑠𝑛+2 (ℓ + 1) = 0. We know that such ℓ exists due to the definition of

a scoring rule and our assumption that ®𝑠𝑚 (𝑚) = 0 for every𝑚 > 1.

The first part of the profile contains a profile for every edge

P1 =
{
P1

𝑒

}
𝑒∈𝐸 . For every edge 𝑒 = {𝑢,𝑤} ∈ 𝐸, the profile P1

𝑒 =

(𝑃1

𝑒 (1), . . . , 𝑃1

𝑒 (𝑛)) consists of 𝑛 voters, as illustrated in Figure 1.

For every 𝑖 ∈ [𝑛], denote𝑀𝑖 (𝐶 \ 𝑒) = (𝑐𝑖1 , . . . , 𝑐𝑖𝑛 ) where𝑀𝑖 is the

𝑖th circular vote as defined by Baumeister, Roos and Jörg [2]:

𝑀𝑖 (𝑎1, . . . , 𝑎𝑡 ) := (𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑡 , 𝑎1, 𝑎2, . . . , 𝑎𝑖−1) .

Then 𝑃1

𝑒 (𝑖) :=
(
𝑐𝑖1 , 𝑐𝑖2 , . . . , 𝑐𝑖ℓ−1

, {𝑢,𝑤} , 𝑐𝑖ℓ , 𝑐𝑖𝑡+1
, . . . , 𝑐𝑖𝑛

)
is the 𝑖th

voter in P1

𝑒 . This means that in P1

𝑒 , the candidates 𝑢 and𝑤 can only

be at positions ℓ and ℓ + 1, and the other candidates are circulating

at all other positions. The decision whether to rank 𝑢 or𝑤 at the

ℓth position represents the selection of 𝑒 between its vertices, to

construct a vertex cover.

The second part of the profile, T2
, is constructed such that for ev-

ery completion T of P and vertex𝑢 ∈ 𝑈 , the candidate 𝑐∗ defeats𝑢 if

and only if for every edge 𝑒 incident to𝑢, all voters of P1

𝑒 rank𝑢 at the

(ℓ + 1)st position. (This means that none of the edges have selected

𝑢, and so 𝑢 is not in the constructed cover.) Formally, recall that 𝐺

is regular, and let Δ be the common degree of all the vertices of 𝐺 .

The profile T2
consists of Δ copies of (𝑇 2

1
, . . . ,𝑇 2

𝑛 ), as illustrated in

Figure 2. For every 𝑖 ∈ [𝑛], denote 𝑀𝑖 (𝑈 ) = (𝑐𝑖1 , . . . , 𝑐𝑖𝑛 ) and de-

fine 𝑇 2

𝑖
= (𝑐𝑖1 , 𝑐𝑖2 , . . . , 𝑐𝑖ℓ−1

, 𝑑, 𝑐∗, 𝑐𝑖ℓ , 𝑐𝑖𝑡+1
, . . . , 𝑐𝑖𝑛 ). This means that

𝑑 and 𝑐∗ are always at positions ℓ and ℓ + 1, respectively, and the

candidates of𝑈 are circulating at all other positions. This completes

the construction of (𝐶, P, τ).

Voter 1 2 · · · ℓ − 1 ℓ ℓ + 1 ℓ + 2 · · · 𝑛 + 2

𝑇 2

1
𝑢1 𝑢2 · · · 𝑢ℓ−1 𝑑 𝑐∗ 𝑢ℓ · · · 𝑢𝑛

𝑇 2

2
𝑢2 𝑢3 · · · 𝑢ℓ 𝑑 𝑐∗ 𝑢ℓ+1 · · · 𝑢1

.

.

.

𝑇 2

𝑛 𝑢𝑛 𝑢1 · · · 𝑢ℓ−2 𝑑 𝑐∗ 𝑢ℓ−1 · · · 𝑢𝑛−1

Figure 2: The voters of the profile (𝑇 2

1
, . . . ,𝑇 2

𝑛 ) used in the
proof of Theorem 3.1.

We now discuss the correctness of the reduction. Denote by

𝛼 (𝐺) the minimal size of a vertex cover in𝐺 . In the complete proof,

by analyzing the scores of the candidates in P1
and T2

, we show

that for every completion T =
{
T1

𝑒

}
𝑒∈𝐸 ◦ T2

of P it holds that 𝑑

defeats 𝑐∗. For every 𝑢 ∈ 𝑈 , the candidate 𝑐∗ defeats 𝑢 if and only if∑
𝑒∈𝐸 (𝑢) 𝑠 (T1

𝑒 , 𝑢) = 0, where 𝐸 (𝑢) is the set of edges incident to 𝑢.
Then, we show that for any𝑘 it is the case thatmin(𝑐∗ |P, τ) ≤ 𝑘+2 if

and only if 𝛼 (𝐺) ≤ 𝑘 . We conclude the correctness of the reduction

and, hence, the NP-completeness of Min𝑟 {<}. □

Theorem 3.1 stated the hardness ofMin𝑟 {<} for every positional
scoring rule 𝑟 . The next theorem states the hardness ofMax𝑟 {>}
for every such 𝑟 .

Theorem 3.2. For every positional scoring rule 𝑟 , Max𝑟 {>} is
NP-complete.

Proof. This proof uses parts of the proof of Theorem 3.1. Let

𝑟 = {®𝑠𝑚}𝑚>1
be a positional scoring rule. We again assume (w.l.o.g.)

that ®𝑠𝑚 (𝑚) = 0 for every𝑚 > 1. Membership of Max𝑟 {>} in NP

is straightforward. We show hardness by a reduction from the

independent-set problem: given an undirected graph 𝐺 and an

integer 𝑘 , is there any set 𝐵 ⊆ 𝑈 of 𝑘 or more vertices such that

no two vertices in 𝐵 are connected by an edge? Again, we use the

NP-complete variant of the problem where 𝐺 is regular [15].

Let𝐺 = (𝑈 , 𝐸) be a regular graph with𝑈 = {𝑢1, . . . , 𝑢𝑛}, and let

Δ be the degree of all vertices. As in the proof of Theorem 3.1, we

will make every edge (voter) select an incident vertex (candidate).

Let 𝐵 ⊆ 𝑈 be the vertices who receive Δ votes. Observe that 𝐵 is

necessarily an independent set. The question is whether we can

construct a big enough such 𝐵. Details follow.

We construct an instance (𝐶, P, τ) under 𝑟 , as follows. The candi-
dates set is 𝐶 = 𝑈 ∪ {𝑐∗, 𝑑} and the tiebreaker is τ = 𝑂 (𝑈 , {𝑐∗, 𝑑}).
Note that |𝐶 | = 𝑛 + 2. The voting profile is the concatenation

P = P1 ◦ T2 ◦ T3
of three parts described next.

Let ℓ < 𝑛 + 2 be an index such that ®𝑠𝑛+2 (ℓ) > ®𝑠𝑛+2 (ℓ + 1) = 0.

The first two parts P1 =
{
P1

𝑒

}
𝑒∈𝐸 and T2

are the same as in the

proof of Theorem 3.1. Recall that for every edge 𝑒 = {𝑢,𝑤}, only
the positions of 𝑢 and𝑤 are not determined in the voters of P1

𝑒 . The

edge 𝑒 “selects” the vertex that is put in the ℓth position.

The third part, T3
, is constructed such that for every completion

T of P and vertex 𝑢 ∈ 𝑈 it holds that 𝑢 defeats 𝑐∗ if and only if all

voters of P1

𝑒 rank 𝑢 at the ℓth position for every edge 𝑒 incident to

𝑢. (This means that all edges incident to 𝑢 select 𝑢.) Formally, T3

consists of Δ𝑛 copies of the profile (𝑇 3

1
, . . . ,𝑇 3

𝑛+2
), as illustrated in

Figure 3. We start with 𝑇 3

𝑖
= 𝑀𝑖 (𝑢1, . . . , 𝑢𝑛, 𝑑, 𝑐

∗) for the circular
votes as defined in the proof of Theorem 3.1, and then perform the

following change. There exists some 𝑖 ∈ [𝑛 + 2] such that 𝑑 and 𝑐∗

are placed at positions ℓ and ℓ + 1, respectively, in 𝑇 3

𝑖
. In this voter,

switch the positions of 𝑑 and 𝑐∗. This means that in (𝑇 3

1
, . . . ,𝑇 3

𝑛+2
),

the candidate 𝑐∗ is placed at the ℓth position twice, and 𝑑 is placed

at the (ℓ + 1)st position twice.

For the correctness of the reduction, let 𝛽 (𝐺) be the maximal

size of an independent set of𝐺 . In the complete proof, by inspecting

the scores of the candidates in P1,T2
and T3

we show that in each

completion T =
{
T1

𝑒

}
𝑒∈𝐸 ◦ T2 ◦ T3

of P, the candidate 𝑑 is defeated

by all other candidates. For all 𝑢 ∈ 𝑈 , the candidate 𝑢 defeats 𝑐∗ if
and only if

∑
𝑒∈𝐸 (𝑢) 𝑠 (T1

𝑒 , 𝑢) = Δ𝑛 · ®𝑠𝑛+2 (ℓ) where 𝐸 (𝑢) is the set of
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Voter 1 2 · · · ℓ − 1 ℓ ℓ + 1 ℓ + 2 · · · 𝑛 𝑛 + 1 𝑛 + 2

𝑇 3

1
𝑢1 𝑢2 · · · 𝑢ℓ−1 𝑢ℓ 𝑢ℓ+1 𝑢ℓ+2 · · · 𝑢𝑛 𝑑 𝑐∗

𝑇 3

2
𝑢2 𝑢3 · · · 𝑢ℓ 𝑢ℓ+1 𝑢ℓ+2 𝑢ℓ+3 · · · 𝑑 𝑐∗ 𝑢1

.

.

.

𝑇 3

𝑛−ℓ+1
𝑢𝑛−ℓ+1 𝑢𝑛−ℓ+2 · · · 𝑢𝑛−1 𝑢𝑛 𝑑 𝑐∗ · · · 𝑢𝑛−ℓ−2 𝑢𝑛−ℓ−1 𝑢𝑛−ℓ

𝑇 3

𝑛−ℓ+2
𝑢𝑛−ℓ+2 𝑢𝑛−ℓ+3 · · · 𝑢𝑛 𝑐∗ 𝑑 𝑢1 · · · 𝑢𝑛−ℓ−1 𝑢𝑛−ℓ 𝑢𝑛−ℓ+1

𝑇 3

𝑛−ℓ+3
𝑢𝑛−ℓ+3 𝑢𝑛−ℓ+4 · · · 𝑑 𝑐∗ 𝑢1 𝑢2 · · · 𝑢𝑛−ℓ 𝑢𝑛−ℓ+1 𝑢𝑛−ℓ+2

.

.

.

𝑇 3

𝑛+2
𝑐∗ 𝑢1 · · · 𝑢ℓ−2 𝑢ℓ−1 𝑢ℓ 𝑢ℓ+1 · · · 𝑢𝑛−1 𝑢𝑛 𝑑

Figure 3: The voters of the profile (𝑇 3

1
, . . . ,𝑇 3

𝑛+2
) used in the proof of Theorem 3.2.

edges incident to 𝑢. Then, we show that for every 𝑘 it holds that

max(𝑐∗ |P, τ) ≥ 𝑘 +1 if and only if 𝛽 (𝐺) ≥ 𝑘 . Hence the correctness

of the reduction and the NP-completeness of Max𝑟 {>}. □

3.1 Comparison to a Bounded Rank
In the previous section, we established that the problems of com-

puting the minimal and maximal ranks are very often intractable.

We now investigate the complexity of comparing the minimal and

maximal ranks to some fixed rank 𝑘 . Hence, the input consists of

only P, 𝑐 and τ, but not 𝑘 . We denote these problems by Min𝑟 {>𝑘}
and Max𝑟 {<𝑘}. Again, we will omit the rule 𝑟 when it is clear

from the context. For example,Min{<𝑘} is the decision problem of

determining whether min(𝑐 | P, τ) < 𝑘 .

We will show that the complexity picture for Min{<𝑘} and

Max{>𝑘} is way more positive, as we generalize the tractability

of almost all tractable scoring rules for NW and PW. We will also

generalize hardness results from PW to Min{<𝑘}; interestingly,
this generalization turns out to be nontrivial.

In addition to comparing to the fixed 𝑘 , we will consider the

problem of comparing to 𝑘 := 𝑚 − 𝑘 + 1 where 𝑚 is, as usual,

the number of candidates. Note that the position 𝑘 is the 𝑘th rank

from the end (bottom). For instance,Max{>4} decides whether the
candidate can end up in one of the bottom 3 positions.

3.1.1 Complexity ofMin{<𝑘}. We first show that the positional

scoring rules that are tractable for PW, namely plurality and veto,

are also tractable for Min{<𝑘}. This is proved via a reduction to

the problem of polygamous matching [17]: given a bipartite graph

𝐺 = (𝑈 ∪𝑊, 𝐸) and natural numbers 𝛼𝑤 ≤ 𝛽𝑤 for all 𝑤 ∈ 𝑊 ,

determine whether there is a subset of 𝐸 where each 𝑢 ∈ 𝑈 is

incident to exactly one edge and every 𝑤 ∈ 𝑊 is incident to at

least 𝛼𝑤 edges and at most 𝛽𝑤 edges. This problem is known to be

solvable in polynomial time.

Lemma 3.3. The following decision problem can be solved in poly-
nomial time for the plurality and veto rules: given a partial profile P
over a set𝐶 of candidates and numbers 𝛾𝑐 ≤ 𝛿𝑐 for every candidate 𝑐 ,
is there a completion T such that 𝛾𝑐 ≤ 𝑠 (T, 𝑐) ≤ 𝛿𝑐 for every 𝑐 ∈ 𝐶?

To solveMin{<𝑘} given𝐶 , P, τ and 𝑐 , we search for a completion

where 𝑐 defeats more than 𝑚 − 𝑘 candidates. For this goal we

consider every set 𝐷 ⊆ 𝐶 \ {𝑐} of size𝑚 − 𝑘 + 1 and search for a

completion where 𝑐 defeats all candidates of 𝐷 . For that, we iterate

over every integer score 0 ≤ 𝑠 ≤ 𝑛 and use Lemma 3.3 to test

whether there exists a completion T such that 𝑠 (T, 𝑐) ≥ 𝑠 , and for

every 𝑑 ∈ 𝐷 we have 𝑠 (T, 𝑑) ≤ 𝑠 if 𝑐 τ𝑑 or 𝑠 (T, 𝑑) < 𝑠 otherwise.

We conclude that:

Theorem 3.4. For every fixed 𝑘 ≥ 1, Min{<𝑘} is solvable in
polynomial time under the plurality and veto rules.

The polynomial degree in Theorem 3.4 depends on 𝑘 . The follow-

ing result shows that this is unavoidable, at least for the plurality

rule, under conventional assumptions in parameterized complexity.

Theorem 3.5. Under the plurality rule, Min{<} is W[2]-hard for
the parameter 𝑘 .

Proof. We show an FPT reduction from the dominating set prob-
lem, which is the following: Given an undirected graph 𝐺 = (𝑈 , 𝐸)
and an integer 𝑘 , is there a set 𝐷 ⊆ 𝑈 of size 𝑘 such that every

vertex is either in 𝐷 or adjacent to some vertex in 𝐷? This problem

is known to be W[2]-hard for the parameter 𝑘 [11].

Given 𝐺 = (𝑈 , 𝐸), we construct an instance of Min{<} under
plurality where the candidate set is 𝐶 = 𝑈 ∪ {𝑐∗}, the tiebreaker is
τ = 𝑂 ({𝑐∗} ,𝑈 ), and the voting profile is P = {𝑃𝑢 }𝑢∈𝑈 where 𝑃𝑢
is defined as follows. Let 𝑁 (𝑢) be the set of neighbours of 𝑢 ∈ 𝑈

and 𝑁 [𝑢] = 𝑁 (𝑢) ∪ {𝑢}. We define 𝑃𝑢 := 𝑃 (𝑁 [𝑢],𝑈 \ 𝑁 [𝑢], {𝑐∗}).
Hence, the voter with preferences 𝑃𝑢 can vote only for vertices that

dominate 𝑢. In the complete proof, we show that the graph has a

dominating set of size 𝑘 if and only if min(𝑐∗ | P, τ) < 𝑘 + 2. □

Beyond Plurality and Veto. The Classification Theorem (Theo-

rem 2.1) states that PW is intractable for every pure scoring rule 𝑟

other than plurality or veto. While this hardness easily generalizes

to Min𝑟 {<𝑘} for 𝑘 = 2, it is not at all clear how to generalize it

to any 𝑘 > 2. In particular, we cannot see how to reduce PW to

Min𝑟 {<𝑘} while assuming only the purity of the rule. We can, how-

ever, show such a reduction under a stronger notion of purity, as

long as the scores are bounded by a polynomial in the number𝑚 of

candidates. In this case, we say that the rule has polynomial scores.
Note that all of the specific rules mentioned so far (i.e., 𝑡-approval, 𝑡-

veto, Borda and so on) have polynomial scores; an example of a rule

that does not have polynomial scores is 𝑟 (𝑚, 𝑗) = 2
𝑚−𝑗

. Also note

that this assumption is made in addition to our usual assumption

that the scores can be computed in polynomial time.

A rule 𝑟 is strongly pure if the score sequence for𝑚+1 candidates

is obtained from the score sequence for𝑚 candidates by inserting

a new score to either the beginning or the end of the sequence. More

Main Track AAMAS 2021, May 3-7, 2021, Online

642



Voter 1 2 · · · 𝑘 − 1 𝑘 𝑘 + 1 · · · 𝑘 +𝑚 − 1

𝑀1,1 𝑑1 𝑑2 . . . 𝑑𝑘−1
𝑐1 𝑐2 · · · 𝑐𝑚

𝑀1,2 𝑑1 𝑑2 . . . 𝑑𝑘−1
𝑐2 𝑐3 · · · 𝑐1

.

.

.

𝑀1,𝑚 𝑑1 𝑑2 . . . 𝑑𝑘−1
𝑐𝑚 𝑐1 · · · 𝑐𝑚−1

𝑀2,1 𝑑2 𝑑3 . . . 𝑑1 𝑐1 𝑐2 · · · 𝑐𝑚

𝑀2,2 𝑑2 𝑑3 . . . 𝑑1 𝑐2 𝑐3 · · · 𝑐1

.

.

.

𝑀2,𝑚 𝑑2 𝑑3 . . . 𝑑1 𝑐𝑚 𝑐1 · · · 𝑐𝑚−1

.

.

.

𝑀𝑘−1,1 𝑑𝑘−1
𝑑1 . . . 𝑑𝑘−2

𝑐1 𝑐2 · · · 𝑐𝑚

𝑀𝑘−1,2 𝑑𝑘−1
𝑑1 . . . 𝑑𝑘−2

𝑐2 𝑐3 · · · 𝑐1

.

.

.

𝑀𝑘−1,𝑚 𝑑𝑘−1
𝑑1 . . . 𝑑𝑘−2

𝑐𝑚 𝑐1 · · · 𝑐𝑚−1

Figure 4: The voters𝑀𝑖, 𝑗 used in the proof of Theorem 3.6.

formally, 𝑟 = {®𝑠𝑚}𝑚∈N+ is strongly pure if for all 𝑚 ≥ 1, either

®𝑠𝑚+1 = ®𝑠𝑚+1 (1)◦®𝑠𝑚 or ®𝑠𝑚+1 = ®𝑠𝑚◦®𝑠𝑚+1 (𝑚+1). Note that 𝑡-approval,
𝑡-veto and Borda are all strongly pure.

Theorem 3.6. Suppose that a positional scoring rule is strongly
pure, has polynomial scores, and is neither plurality nor veto. Then
Min{<𝑘} is NP-complete for all fixed 𝑘 ≥ 2.

Proof. Let 𝑟 = {®𝑠𝑚}𝑚>1
be a positional scoring rule that sat-

isfies the conditions of the theorem, and let 𝑘 ≥ 1. We show a

reduction from PW under 𝑟 to Min𝑟 {< 𝑘 + 1}. The idea is to add

𝑘 − 1 new candidates and modify the voters so that the new candi-

dates are always the top 𝑘 − 1 candidates, and the score of each of

the original candidates is increased by the same amount.

Consider the input P = (𝑃1, . . . , 𝑃𝑛) and 𝑐 for PW over a set𝐶 of

𝑚 candidates. Let𝑚′ =𝑚 + 𝑘 − 1. Since 𝑟 is strongly pure, there is

an index 𝑡 ≤ 𝑘 − 1 such that

®𝑠𝑚′ = (®𝑠𝑚′ (1), . . . , ®𝑠𝑚′ (𝑡)) ◦ ®𝑠𝑚 ◦ (®𝑠𝑚′ (𝑡 +𝑚 + 1), . . . , ®𝑠𝑚′ (𝑚′)) .

That is, ®𝑠𝑚′ is obtained from ®𝑠𝑚 by inserting 𝑡 values at the top

coordinates and 𝑘 − 1 − 𝑡 values at the bottom coordinates. We

define 𝐶 ′
, P′ and τ′ as follows.

The candidate set is 𝐶 ′ = 𝐶 ∪ 𝐷1 ∪ 𝐷2 where 𝐷1 = {𝑑1, . . . , 𝑑𝑡 }
and 𝐷2 = {𝑑𝑡+1, . . . , 𝑑𝑘−1

}. Denote 𝐷 = 𝐷1 ∪ 𝐷2. The tiebreaker is

τ′ = 𝑂 (𝐷, {𝑐} ,𝐶 \ {𝑐}). The profile P′ is the concatenation Q ◦M
of two voting profiles. The first is Q = (𝑄1, . . . , 𝑄𝑛), where 𝑄𝑖 is

the same as 𝑃𝑖 , except that the candidates of 𝐷1 are placed at the

top positions and the candidates of 𝐷2 are placed at the bottom

positions. Formally,𝑄𝑖 := 𝑃𝑖∪𝑃 (𝐷1,𝐶, 𝐷2). The second,M, consists

of 𝑛 · ®𝑠𝑚′ (1) copies of the profile

{
𝑀𝑖, 𝑗

}
𝑖=1,...,𝑘−1 , 𝑗=1,...,𝑚

where

𝑀𝑖, 𝑗 is 𝑀𝑖 (𝐷) ◦𝑀𝑗 (𝐶) for the circular votes 𝑀𝑖 (𝐷) and 𝑀𝑗 (𝐶) as
defined in the proof of Theorem 3.1. (See Figure 4.) Note that by

the conditions of the theorem, 𝑛 · ®𝑠𝑚′ (1) is polynomial in 𝑛,𝑚.

In the complete proof, we show that the candidates of 𝐷 always

defeat all other candidates, and that 𝑐 is a possible winner for P if

and only if min(𝑐 | P′, τ′) < 𝑘 + 1. □

3.1.2 Complexity of Max{>𝑘}. The following theorem states that

Max{>𝑘} is tractable for every fixed 𝑘 and every positional scoring

rule (pure or not) with polynomial scores.

Theorem 3.7. For all fixed 𝑘 ≥ 1 and positional scoring rules 𝑟
with polynomial scores, Max𝑟 {>𝑘} is solvable in polynomial time.

Next, we prove Theorem 3.7. To determine whether max(𝑐 |
P, τ) > 𝑘 , we search for 𝑘 candidates that defeat 𝑐 in some comple-

tion T, since rank(𝑐 | T, τ) > 𝑘 if and only if at least 𝑘 candidates

defeat 𝑐 in T. For that, we consider each subset {𝑐1, . . . , 𝑐𝑘 } ⊆ 𝐶\{𝑐}
and determine whether these 𝑘+1 candidates can get a combination

of scores where 𝑐1, . . . , 𝑐𝑘 all defeat 𝑐 .

More formally, let 𝐶 be a set of candidates and 𝑟 a positional

scoring rule. For a partial profile P = (𝑃1, . . . , 𝑃𝑛) and a sequence

𝑆 = (𝑐1, . . . , 𝑐𝑞) of candidates from 𝐶 , we denote by 𝜋 (P, 𝑆) the set
of all possible scores that the candidates in 𝑆 can obtain jointly in

a completion: 𝜋 (P, 𝑆) :=
{
(𝑠 (T, 𝑐1), . . . , 𝑠 (T, 𝑐𝑞)) | T completes P

}
.

Note that 𝜋 (P, 𝑆) ⊆ {0, . . . , 𝑛 · ®𝑠𝑚 (1)}𝑞 . When P consists of a single

voter 𝑃 , we write 𝜋 (𝑃, 𝑆) instead of 𝜋 (P, 𝑆). To show that max(𝑐 |
P, τ) > 𝑘 we need to find a sequence 𝑆 = (𝑐1, . . . , 𝑐𝑞) of distinct
candidates where 𝑞 = 𝑘 +1 and 𝑐𝑞 = 𝑐 , and a sequence (𝑠1, . . . , 𝑠𝑞) ∈
𝜋 (P, 𝑆) such that the following holds: for 𝑖 = 1, . . . 𝑘 we have 𝑠𝑖 ≥ 𝑠𝑞
if 𝑐𝑖 τ 𝑐𝑞 and 𝑠𝑖 > 𝑠𝑞 if 𝑐𝑞 τ 𝑐𝑖 . The following two lemmas show that

if such a sequence exists, then we can find it in polynomial time.

Lemma 3.8. Let 𝑞 be a fixed natural number and 𝑟 a positional
scoring rule. Whether (𝑠1, . . . , 𝑠𝑞) ∈ 𝜋 (𝑃, 𝑆) can be determined in
polynomial time, given a partial order 𝑃 over a set of candidates, a
sequence 𝑆 of 𝑞 candidates, and scores 𝑠1, . . . , 𝑠𝑞 .

Proof. We use a reduction to a scheduling problem where tasks

have execution times, release times, deadlines, and precedence con-
straints (i.e., task 𝑥 should be completed before starting task𝑦). This

scheduling problem can be solved in polynomial time [14]. In the

reduction, each candidate 𝑐 is a task with a unit execution time. For

every 𝑐𝑖 in 𝑆 , the release time is min { 𝑗 ∈ [𝑛] : 𝑟 (𝑚, 𝑗) = 𝑠𝑖 }, and the
deadline is 1+max { 𝑗 ∈ [𝑛] : 𝑟 (𝑚, 𝑗) = 𝑠𝑖 }. For the rest of the candi-
dates, the release time is 1 and the deadline is𝑚+1. The precedence

constraints are 𝑃 . It holds that (𝑠1, . . . , 𝑠𝑞) ∈ 𝜋 (𝑃, 𝑆) if and only if

the tasks can be scheduled according to all the requirements. □

From Lemma 3.8 we can conclude that when 𝑞 is fixed and 𝑟 has

polynomial scores, we can construct 𝜋 (P, 𝑆) in polynomial time,

via simple dynamic programming.

Lemma 3.9. Let 𝑞 be a fixed natural number and 𝑟 a positional
scoring rule with polynomial scores. The set 𝜋 (P, 𝑆) can be computed
in polynomial time, given a partial profile P and a sequence 𝑆 of 𝑞
candidates.

From Lemma 3.9 we conclude Theorem 3.7. Note that the polyno-

mial degree depends on 𝑘 . This is unavoidable under conventional

assumptions in parameterized complexity—we canmodify the proof

of Theorem 3.2 to get an FPT reduction from the regular clique

problem, which is W[1]-hard [20], to Max{>}. Therefore:

Theorem 3.10. For every positional scoring rule,Max{>} is W[1]-
hard for the parameter 𝑘 .
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3.1.3 Complexity ofMin{<𝑘}. Recall that 𝑘 :=𝑚 − 𝑘 + 1. We now

show that the problem ofMin{<𝑘} is tractable for every positional

scoring rule with polynomial scores. We find it surprising because

Min{<2} is NP-complete for every pure positional scoring rule

other than plurality and veto, by a reduction from PW.

Given a positional scoring rule 𝑟 and functions 𝑎, 𝑏 : N+ → N+,
we define the (𝑎, 𝑏)-reversed scoring rule, denoted 𝑟𝑎,𝑏 , to be the

one given by 𝑟𝑎,𝑏 (𝑚, 𝑖) = 𝑎(𝑚) −𝑏 (𝑚) ·𝑟 (𝑚,𝑚 +1− 𝑖). For example,

the (1, 1)-reversed rule of plurality is veto, and more generally, the

(1, 1)-reversed rule of 𝑡-approval is 𝑡-veto. Also, the (𝑚, 1)-reversed
rule of Borda is Borda itself. In the following lemma, we use a

generalized notation for our decision problems where, instead of

fixed 𝑘 or 𝑘 , we use a fixed function 𝑓 that is is applied to the

number𝑚 of candidates to produce a number 𝑓 (𝑚).

Lemma 3.11. Let 𝑟 be a positional scoring rule, let 𝑓 , 𝑎, 𝑏 : N+ →
N+, and let ¯𝑓 (𝑚) = 𝑚 + 1 − 𝑓 (𝑚). There exists a reduction from
Min𝑟 {<𝑓 } to Max𝑟𝑎,𝑏 {> ¯𝑓 }, and from Max𝑟 {>𝑓 } to Min𝑟𝑎,𝑏 {< ¯𝑓 }.

Using Lemma 3.11 and Theorem 3.7, we can show that:

Theorem 3.12. Min{<𝑘} is solvable in polynomial time for every
fixed 𝑘 ≥ 1 and positional scoring rule 𝑟 with polynomial scores.

3.1.4 Complexity of Max{>𝑘}. First, for plurality and veto, by

Theorem 3.4 and Lemma 3.11, we can deduce the following:

Corollary 3.13. For every fixed 𝑘 ≥ 1,Max{>𝑘} is solvable in
polynomial time under the plurality and veto rules.

A positional scoring rule 𝑟 is 𝑝-valued, where 𝑝 is a positive

integer greater than 1, if there exists a positive integer 𝑚0 such

that for all𝑚 ≥ 𝑚0, the scoring vector ®𝑠𝑚 of 𝑟 contains exactly 𝑝

distinct values. A rule is bounded if it is 𝑝-valued for some 𝑝 > 1.

Note that for a pure bounded rule there exists some constant 𝑡

such that for every𝑚, the values in ®𝑠𝑚 are at most 𝑡 , since for all

𝑚 > 𝑚0 the vector ®𝑠𝑚 cannot contain values that do not appear in

®𝑠𝑚0
. Combining Theorem 3.6 and Lemma 3.11, we get the following:

Theorem 3.14. Suppose that a positional scoring rule 𝑟 is bounded,
strongly pure, and is neither plurality nor veto. Then Max𝑟 {>𝑘} is
NP-complete for all fixed 𝑘 ≥ 2.

4 ADDITIONAL VOTING RULES
In this section, we consider other, non-positional voting rules. In

each rule, we recall the definition of the score of a candidate that

is used for winner determination (i.e., top-score candidates). Once

we have the score, we automatically get the rank of a candidate,

namely rank(𝑐 | T, τ), and the minimal and maximal ranks, namely

min(𝑐 | P, τ),max(𝑐 | P, τ), respectively, in the same way as the

positional scoring rules. Our results are summarized in Table 2.

4.1 Copeland
We say that a candidate 𝑐 defeats 𝑐 ′ in a pairwise election if the

majority of the votes rank 𝑐 ahead of 𝑐 ′. In the Copeland rule, the

score of 𝑐 is the number of candidates 𝑐 ′ ≠ 𝑐 that 𝑐 defeats in a

pairwise election. A winner is a candidate with a maximal score.

It is known that PW is NP-complete and NW is coNP-complete

with respect to Copeland [28]. We use reductions from PW and

Table 2: Results for non-positional voting rules.

Problem Copeland Bucklin Maximin

PW NP-c [28] NP-c [28] NP-c [28]

NW coNP-c [28] P [28] P [28]

Min{<} NP-c [Thm. 4.1] NP-c [Thm. 4.2] NP-c [Thm. 4.6]

Max{>} NP-c [Thm. 4.1] NP-c [Thm. 4.2] NP-c [Thm. 4.7]

Min{< 𝑘} NP-c [Thm. 4.1] NP-c [Thm. 4.3] NP-c [Thm. 4.6]

Max{> 𝑘} NP-c [Thm. 4.1] P [Thm. 4.4] NP-c [Thm. 4.7]

NW under Copeland to obtain hardness of computing the minimal

and maximal ranks, respectively.

Theorem 4.1. For the Copeland rule,Min{<𝑘} is NP-complete for
all fixed 𝑘 ≥ 2, and Max{>𝑘} is NP-complete for all fixed 𝑘 ≥ 1.

4.2 Bucklin
Under the Bucklin rule, the score of a candidate 𝑐 is the smallest

number 𝑡 such that more than half of the voters rank 𝑐 among the

top 𝑡 candidates. A winner is a candidate with a minimal Bucklin
score. Since we prefer the minimal score rather than the maximal

score, we need to modify the definition of the rank: Let 𝑅′
T be

the linear order on 𝐶 that sorts the candidates by their scores in

increasing order and then by τ. The rank of 𝑐 is the position of 𝑐

in 𝑅′
T, which we denote again by rank(𝑐 | T, τ). It is known that

PW is NP-complete and NW is in polynomial time with respect to

Bucklin [28]. We show that computing the minimal and maximal

ranks is hard for the Bucklin rule.

Theorem 4.2. For the Bucklin rule, both Min{<} and Max{>}
are NP-complete.

Proof. First, Min{<} is NP-complete for Bucklin by a straight-

forward reduction from PW (as PW is the special case ofMin{<2}).
For Max{>}. We show a reduction from the independent-set prob-

lem in 3-regular graphs, as defined in the proof of Theorem 3.2.

Let 𝐺 = (𝑈 , 𝐸) be a 3-regular graph with 𝑈 = {𝑢1, . . . , 𝑢𝑛}. We

construct an instance (𝐶, P, τ) under Bucklin. The candidates set
is 𝐶 = 𝑈 ∪ {𝑐∗, 𝑑} ∪ 𝐹 where 𝐹 = {𝑓1, . . . , 𝑓𝑛−1} and the tiebreaker

is τ = 𝑂 (𝐹,𝑈 , {𝑐∗} , {𝑑}). The voting profile P = P1 ◦ T2
is the

concatenation of two parts described next.

The first part, P1 =
{
𝑃1

𝑒

}
𝑒∈𝐸 , contains a voter for every edge 𝑒 .

For each edge 𝑒 = {𝑢,𝑤} ∈ 𝐸, define 𝑃1

𝑒 = 𝑃 (𝐹, {𝑐∗} , 𝑒,𝑈 \ 𝑒, {𝑑}).
Then, in three arbitrary voters in P1

, switch between 𝑐∗ and 𝑑 (i.e.,

the profile becomes 𝑃1

𝑒 = 𝑃 (𝐹, {𝑑} , 𝑒,𝑈 \𝑒, {𝑐∗})). The second part is
T2 = (𝑇 2

1
, . . . ,𝑇 2

|𝐸 |−4
) where every voter is 𝑇 2

𝑖
= 𝑂 (𝑈 , {𝑐∗} , 𝐹 , {𝑑}).

Overall, there are 2𝑛 + 1 candidates and 2|𝐸 | − 4 voters.

In the complete proof, we show that for all 𝑘 we have 𝛽 (𝐺) ≥ 𝑘

if and only if max(𝑐∗ |P, τ) ≥ 𝑘 + |𝐹 | +1, where 𝛽 (𝐺) is the maximal

size of an independent set in 𝐺 . Thus, Max{>} is NP-hard. □

For comparing the minimal and maximal ranks to some fixed

rank 𝑘 , we show that the complexity is the same as of PW and NW
under Bucklin. Namely, Min{<𝑘} is NP-complete and Max{>𝑘}
can be solved in polynomial time.

The following theorem states the hardness of Min{<𝑘} under
Maximin. The proof is by the same reduction as that of Theorem 4.1.
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Theorem 4.3. For the Bucklin rule, Min{<𝑘} is NP-complete for
all fixed 𝑘 ≥ 2.

In contrast, the following theorem states that Max{>𝑘} is solv-
able in polynomial time for all fixed 𝑘 ≥ 1 under the Bucklin rule.

The proof follows a strategy similar to the proof of Theorem 3.7.

Theorem 4.4. For all fixed 𝑘 ≥ 1,Max{>𝑘} is solvable in polyno-
mial time under the Bucklin rule.

4.3 Maximin
Let 𝑁T (𝑐, 𝑐 ′) be the number of votes that rank 𝑐 ahead of 𝑐 ′ in the

profile T. The score of 𝑐 is 𝑠 (T, 𝑐) = min {𝑁T (𝑐, 𝑐 ′) : 𝑐 ′ ∈ 𝐶 \ {𝑐}}.
A winner is a candidate with a maximal score. Xia and Conitzer [28]

established that under Maximin, PW is NP-complete; we generalize

it and show that Min{< 𝑘} is NP-complete for every 𝑘 > 1. They

also show that NW is tractable, and their polynomial-time algo-

rithm can be easily adjusted to solveMax{> 1} by accommodating

tie-breaking. In contrast, we show that Max{> 𝑘} is NP-complete

for every 𝑘 > 1.

For the hardness results, we use the following technique. For

a profile T and a pair of candidates 𝑐, 𝑐 ′ define the pairwise score
difference 𝐷T (𝑐, 𝑐 ′) = 𝑁T (𝑐, 𝑐 ′) − 𝑁T (𝑐 ′, 𝑐). Note that 𝐷T (𝑐, 𝑐 ′) =

−𝐷T (𝑐 ′, 𝑐) and𝐷T (𝑐, 𝑐 ′) = 2𝑁T (𝑐, 𝑐 ′)−𝑛, so we can define the score
under Maximin to be 𝑠 (T, 𝑐) = min {𝐷T (𝑐, 𝑐 ′) : 𝑐 ′ ∈ 𝐶 \ {𝑐}}. The
following lemma states that we can change the values of 𝐷T to any

other values, as long as the parity of the values is unchanged.

Lemma 4.5 (Main theorem in [21]). Let T be a profile and 𝐹 : 𝐶×
𝐶 → Z be a skew-symmetric function (i.e., 𝐹 (𝑐1, 𝑐2) = −𝐹 (𝑐2, 𝑐1))
such that for all pairs 𝑐, 𝑐 ′ ∈ 𝐶 of candidates, 𝐹 (𝑐, 𝑐 ′) − 𝐷T (𝑐, 𝑐 ′)
is even. There exists a profile T′ such that 𝐷T◦T′ = 𝐹 and |T′ | ≤
1

2

∑
𝑐,𝑐′ ( |𝐹 (𝑐, 𝑐 ′) − 𝐷T (𝑐, 𝑐 ′) | + 1).
If the values |𝐹 (𝑐, 𝑐 ′) −𝐷T (𝑐, 𝑐 ′) | are polynomial in 𝑛 and𝑚, then

T′ of Lemma 4.5 can be constructed in polynomial time. This is

used for establishing the following results.

Theorem 4.6. Under Maximin,Min{<𝑘} is NP-complete for all
fixed 𝑘 ≥ 2.

Proof. Let 𝑘 ≥ 1. We show a reduction from PW toMin{<𝑘+1}
under Maximin. Let P = (𝑃1, . . . , 𝑃𝑛) and 𝑐∗ be an input for PW over

a set 𝐶 of𝑚 candidates. By the proof of Xia and Conitzer [28] that

PW is hard for Maximin, we can assume that for every completion

T of P the score of 𝑐∗ satisfies 𝑠 (T, 𝑐∗) ≤ −2. As in the proof of

Theorem 3.6, the idea is to add 𝑘 − 1 new candidates and modify

the voters so that the new candidates are always the top 𝑘 − 1

candidates, and the score of every original candidate is increased

by the same amount.

We define𝐶 ′, P′ and τ as follows. The candidate set is𝐶 ′ = 𝐶∪𝐷
where 𝐷 = {𝑑1, . . . , 𝑑𝑘−1

} and the tiebreaker is τ = 𝑂 (𝐷, {𝑐∗} ,𝐶 \
{𝑐∗}). The profile P′ = P1◦T2 is the concatenation of two parts. The

first part is P1 = (𝑃 ′
1
, . . . , 𝑃 ′𝑛) where 𝑃 ′𝑖 is the same as 𝑃𝑖 , except that

the candidates of 𝐷 are placed at the bottom positions. Formally,

𝑃 ′
𝑖

:= 𝑃𝑖 ∪ 𝑃 (𝐶,𝑑1, . . . , 𝑑𝑘−1
). Observe that for every 𝑐 ∈ 𝐶 and

𝑑 ∈ 𝐷 , the pairwise score difference 𝐷T1
(𝑐, 𝑑) is the same in every

completions T1 of P1. The same holds for𝐷T1
(𝑑,𝑑 ′) on all 𝑑, 𝑑 ′ ∈ 𝐷 .

The second part, T2, is the complete profile that exists due to

Lemma 4.5 such that for every completion T′ = T1 ◦ T2 of P′, the
pairwise scores differences satisfy:

• 𝐷T′ (𝑑, 𝑐) ∈ {−1, 0, 1} for all 𝑑 ∈ 𝐷 and 𝑐 ∈ 𝐶 ′ \ {𝑑};
• 𝐷T′ (𝑐, 𝑐 ′) = 𝐷T1

(𝑐, 𝑐 ′) for all 𝑐, 𝑐 ′ ∈ 𝐶 .

In the complete proof, we show that 𝑐∗ is a possible winner of P if

and only if min(𝑐 | P′, τ) < 𝑘 + 1. □

Theorem 4.7. Under Maximin, Max{>𝑘} is solvable in polyno-
mial time for 𝑘 = 1 and is NP-complete for all 𝑘 > 1.

Proof. As said earlier, tractability for 𝑘 = 1 is obtained by ad-

justing the NW algorithm of Xia and Conitzer [28]. For 𝑘 > 1, we

show a reduction from exact cover by-3sets (X3C): given a vertex set

𝑈 =
{
𝑢1, . . . , 𝑢3𝑞

}
and a collection 𝐸 = {𝑒1, . . . , 𝑒𝑚} of 3-element

subsets of 𝑈 , can we cover all the elements of 𝑈 using 𝑞 pairwise-

disjoint sets from 𝐸? This problem is known to be NP-complete [13].

Given𝑈 and 𝐸, we construct an instance (𝐶, P, τ) underMaximin.

The candidate set is 𝐶 = 𝑈 ∪ {𝑐∗,𝑤} ∪ 𝐷 where 𝐷 = {𝑑1, . . . , 𝑑𝑘 },
and the tiebreaker is τ = 𝑂 (𝐷, {𝑐∗} ,𝑈 ∪ {𝑤}). The voting profile
P = P1 ◦ T2 is the concatenation of two parts that we describe next.

The first part P1 = {𝑃𝑒 }𝑒∈𝐸 contains a voter for every set in

𝐸. For every 𝑒 ∈ 𝐸, define a complete order 𝑇𝑒 = 𝑂 (𝑤, 𝑐∗,𝑈 \
𝑒, 𝑒, 𝑑1, . . . , 𝑑𝑘 ). The partial order 𝑃𝑒 is obtained from𝑇𝑒 by removing

the relations in (𝑒 ∪ {𝑑1, . . . , 𝑑𝑘−1
}) × {𝑑𝑘 }. Denote T1 = {𝑇𝑒 }𝑒∈𝐸 .

The idea is that ranking 𝑑𝑘 higher than the candidates of 𝑒 indicates

that 𝑒 is in the cover, and ranking 𝑑𝑘 in the last position indicates

that 𝑒 is not in the cover. The second part T2 is the profile that

exists due to Lemma 4.5 such that the pairwise scores differences

of T = T1 ◦ T2 satisfy:

• 𝐷T (𝑤, 𝑐∗) = 𝑚, 𝐷T (𝑤,𝑑1) = −𝑚 − 2, and 𝐷T (𝑤,𝑢) = 𝑚 + 2

for all 𝑢 ∈ 𝑈 .

• 𝐷T (𝑑𝑘 , 𝑑𝑖 ) = 2𝑞 −𝑚 for 𝑖 < 𝑘 , and 𝐷T (𝑑𝑘 , 𝑢) = −𝑚 − 2 for

all 𝑢 ∈ 𝑈 .

• 𝐷T (𝑐1, 𝑐2) ∈ {−1, 0, 1} for every other pair 𝑐1, 𝑐2 ∈ 𝐶 .

In the complete proof, we show that 𝑐∗ always defeats the candi-
dates of𝑈 ∪ {𝑤}, and that there is an exact cover if and only if 𝑐∗

is defeated by all candidates of 𝐷 in some completion. Hence, there

is an exact cover if and only if max(𝑐∗ | P, τ) > 𝑘 . □

5 CONCLUDING REMARKS
We studied the problems of determining the minimal and maximal

ranks of a candidate in a partial voting profile, for positional scoring

rules and for several other voting rules that are based on scores

(namely Bucklin, Copeland and Maximin). We showed that these

problems are fundamentally harder than the necessary and possible

winners that reason about being top ranked. For example, com-

paring the maximal/minimal rank to a given number is NP-hard

for every positional scoring rule, pure or not, including plurality

and veto. For the problems of comparison to a fixed 𝑘 , we have

generally recovered the tractable cases of the necessary winners

(for maximum rank) and possible winners (for minimum rank). An

exception is the Maximin rule, where the problem is tractable for

𝑘 = 1 but intractable for every 𝑘 > 1. Many problems are left for

investigation in future research, including: (a) establishing useful
tractability conditions for an input 𝑘 ; (b) completing a full classi-

fication of the class of (pure) positional scoring rules for fixed 𝑘 ;

and (c) determining the parameterized complexity of the problems

when 𝑘 is the parameter.
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