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ABSTRACT
In this paper we investigate the effect of an underlying social net-

work over agents in a well-known multi-agent resource allocation

problem; the housing market. We first show that, when a hous-

ing market takes place over a social network with more than two

agents and these agents have an option to avoid forwarding infor-

mation about it to their followers, there does not exist an exchange

mechanism that simultaneously satisfies strategy-proofness, Pareto

efficiency, and individual rationality. It is also impossible to find a

strategy-proof exchange mechanism that always chooses an out-

come in a weakened core. These results highlight the difficulty of

taking into account the agents’ incentive of information diffusion

in the resource allocation. To overcome these negative results, we

consider two different ways of restricting the problem; limiting the

domain of preferences and the structure of social networks.
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1 INTRODUCTION
The housing market [24] is one of the most investigated model

for multi-agent resource allocation. In traditional housing markets,

each agent is endowed with a single unit of an indivisible item,

usually referred to as a house, as well as a strict preference over all
the houses in the market. The purpose of housing market problems

is to design an algorithm that takes the preferences and finds an

appropriate exchange/permutation of houses among agents without

monetary compensation. Applications of housing markets include

on-campus housing [1] and live-organ exchange [22].

The literature of mechanism design offers many well-known

results on strategy-proof mechanisms for several variants and ex-

tensions of housing markets. In particular, for traditional housing

markets, choosing the unique strict core for cases of strict prefer-

ences is individually rational (i.e., truth-telling harms no agent),

strategy-proof (i.e., truth-telling is a dominant strategy), and Pareto

efficient (i.e., a socially optimal permutation is achieved). Further-

more, Ma [20] showed that such a mechanism is the only one that

satisfies all the above three requirements.
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From the perspective of computation, a unique strict core in

traditional housing markets can be computed by a polynomial-

time algorithm (mechanism) called top trading cycles (TTC) [24].
Intuitively, in each step of the procedure, each agent points to the

agent who owns the most favorite house remaining in the market.

When a finite number of agents exists, at least one directed cycle

is constructed. Then, for each cycle, the involved agents exchange

houses according to the cycle and are removed from the market

with the houses they received. This algorithm obviously terminates

in polynomial-time. Indeed, designing such polynomial-time algo-

rithms for variants of housing markets is one of the trends in the

field of algorithmic mechanism design [2, 3, 9, 15, 25].

Another recent development in multi-agent resource allocation

and algorithmic mechanism design is to design resource allocation

mechanisms over social networks. In contrast to the traditional auc-

tion model where all the agents/buyers can directly access/observe

the auction’s information, networked models assumed that the in-

formation about the auction is only observed when it is forwarded

through a social network. Li et al. [19] initiated this new trend by

designing a single item auction mechanism that incentivizes agents

to forward information about the mechanism to their followers.

Based on this seminal work, several extended auction mechanisms

have been developed for various complex situations [16, 30, 32, 33].

To the best of our knowledge, there have been virtually no work

on housing markets over social networks, which we refer to as

networked housing markets. One difficulty of extending housing

markets to mechanism design over social networks is that mon-

etary compensation is not allowed in such markets, although in

the auction model the auctioneer is allowed to collect money from

agents/bidders. Indeed, we first show some impossibility results

on networked housing markets; the application of TTC does not

achieve strategy-proofness, and a very weak notion of the core,

which only considers two-agent parent-child blocking coalitions,

cannot be achieved by any strategy-proof mechanism.

Therefore, our main interest in this paper is addressing to what

extent compatibility persists among strategy-proofness (SP) and

other desirable requirements. More specifically, we investigate un-

der which condition (i) TTC satisfies SP and (ii) the above weakened

core becomes compatible with SP in a networked housing market.

This paper investigates two kinds of conditions: on preference do-

main and on the structure of social networks. For the former, we

show that TTC satisfies SP if and only if a given preference domain

satisfies a well-known acyclicity condition. For the latter, we show

that TTC satisfies SP if and only if all the agents are connected to

a special agent called a moderator, who corresponds to the mech-

anism itself. We further show that a modified TTC mechanism

satisfies SP and always chooses an allocation in the weaker notion

of the core if the social network is a directed tree.
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2 LITERATURE REVIEW
Shapley and Scarf [24] proposed TTC and showed that it always

chooses a unique strict core for traditional housing markets. Ma

[20] showed that TTC is the only mechanism that satisfies Pareto

efficiency, individual rationality, and strategy-proofness. In the lit-

eratur, the model of housing markets is extended in several ways,

such as taking into account indifference in preferences [2, 3], mul-

tiple houses per agent [9, 25, 28], and asymmetry over houses [29].

Sönmez [26] showed that choosing the strict core is strategy-proof

if and only if the strict core is essentially single-valued, such as the

cases where each agent has a single house and a strict preference.

Quite a few related works address the approach of weakening

the core over social networks, One is so-called graph-restricted
games, first introduced by Myerson [21], which is one variation of

a cooperative game that deals with how agents make a coalition

and divide its gains among themselves. In a graph-restricted game,

two agents can work in the same coalition only when they share

a communication channel. Igarashi and Elkind [13] considered a

graph-restricted hedonic game, where an agent has a preference

over the coalitions to which she belongs but there is no monetary

transfer among agents. They examined solution concepts (which

define a stable outcome) and the complexity of finding stable out-

comes including the core stability. Both of these works studied

the concept of the core on a network among agents, but did not

consider resource allocations with ordinal preferences.

Our model of networked housing markets also has another inter-

esting feature; the number of agents participating in a mechanism

may vary, according to their actions. In the literature of social

choice theory, many works have studied such variable populations

in resource allocation without monetary compensation. Specifically,

a solidarity property called population monotonicity [6, 18, 23, 31],

requires that the arrival of a new agent affects all the agents who

originally existed in the market in the same direction (i.e., positive

or negative). This idea is quite similar to the incentives of agents to

incentives to shed some followers. However, all these works only

consider such an arrival of a new agent as an external event. To

the best of our knowledge, there is virtually no work on resource

allocation with variable populations based on agents’ actions, and

therefore analyzing the incentives of manipulating the population

in housing markets is quite new.

Li et al. [19] proposed a new model of auctions, in which buyers

are distributed in a social network over which the information on

the auction is propagated. Utilizing a social network, a seller can

advertise the auction to more potential buyers beyond her follow-

ers, as many works studied in network science [5, 7, 14]. Zhao et

al. [33] studied a multi-unit unit-demand auction via social net-

works, where each unit is identical and each buyer requires a unit.

Kawasaki et al. [16] proposed another auction mechanism via so-

cial networks for a multi-unit unit-demand setting. Takanashi et

al. [30] focused on the efficiency of such auctions. However, to

the best of our knowledge, there is no work on mechanism design

for resource allocations over social networks without monetary

compensation. Some works consider resource allocations over so-

cial networks without monetary compensation, while they ignore

agents’ incentives and focused on trades/swaps that are only be-

tween neighbors [10, 12].

3 MODEL
We refer to the model defined in this section as a networked housing
market. A networked housing market has a set of 𝑛 agents 𝑁 =

{1, . . . , 𝑖, . . . , 𝑛} and a set of indivisible objects, usually referred to

as houses, 𝐻 = {ℎ1, . . . , ℎ𝑖 , . . . , ℎ𝑛}. Each agent 𝑖 ∈ 𝑁 is endowed

with house ℎ𝑖 . An allocation 𝑥 = (𝑥𝑖 )𝑖∈𝑁 is a redistribution of the

houses to the agents, where each component 𝑥𝑖 ∈ 𝐻 is a house

assigned to agent 𝑖 under allocation 𝑥 . Let𝑋 be the set of all possible

allocations. Besides the above𝑛 agents, there exists a special agent 𝑠 ,

amoderator. Note that the moderator is neither selfish nor endowed

with any house. In practice, it can be considered as a market itself

or a trusted third party.

For each agent 𝑖 ∈ 𝑁 ∪ {𝑠}, subset 𝑟𝑖 ⊆ 𝑁 \ {𝑖} of agents

denotes her neighbors. Note that the neighborhood relation can be

asymmetric. Each agent 𝑖 ∈ 𝑁 also has strict preference ≻𝑖 over
houses 𝐻 , which is represented as a linear order of all the houses.

We write ℎ ≻𝑖 ℎ′ if agent 𝑖 with preference ≻𝑖 prefers house ℎ over

ℎ′, and ℎ ⪰𝑖 ℎ′ if either ℎ = ℎ′ or ℎ ≻𝑖 ℎ′ holds. Let Π be the set of

all 𝑛! preferences. In sum, for agent 𝑖 ∈ 𝑁 , her type (also known as

private information) 𝜃𝑖 is given as (≻𝑖 , 𝑟𝑖 ).
Now we are ready to describe the mechanism design model con-

sidered in this paper. We restrict our attention to direct revelation

mechanisms, to which each agent declares her type 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
).

Note that we assume partial verification is possible, i.e., agent 𝑖

can only declare 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
) s.t., 𝑟 ′

𝑖
⊆ 𝑟𝑖 . This partial verifica-

tion scheme obviously satisfies a well-known Nested Range Con-
dition [11], which guarantees that the revelation principle holds.

Thus, we can restrict our attention to direct revelation mechanisms

without loss of generality. Let 𝑅(𝜃𝑖 ) denote a set of all possible

types that agent 𝑖 with true type 𝜃𝑖 can declare. That is, for any 𝑖

and any 𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ), 𝑅(𝜃𝑖 ) := {(≻′
𝑖
, 𝑟 ′
𝑖
) | 𝑟 ′

𝑖
⊆ 𝑟𝑖 }.

Let 𝜃 ′ = (𝜃 ′
1
, . . . , 𝜃 ′𝑛) denote a profile of the agents’ declared

types. We also use the following standard notations: 𝜃 ′−𝑖 is a profile
of the agents’ declared types except for agent 𝑖 , (𝜃 ′

𝑖
, 𝜃 ′−𝑖 ) is a profile

of the agents’ declared types where agent 𝑖 declares 𝜃 ′
𝑖
and other

agents declare 𝜃 ′−𝑖 , and 𝑅(𝜃−𝑖 ) is a set of profiles that agents (except
𝑖) can jointly declare when their true type profile is given as 𝜃−𝑖 . For
notation simplicity, let 𝑟 denote profile (𝑟𝑖 )𝑖∈𝑁 for given 𝜃 , which

we sometimes refer as a social network. A social network can be

represented as a directed graph, 𝐺 = (𝑉 , 𝐸), where 𝑉 := 𝑁 ∪ {𝑠},
and for any pair 𝑖, 𝑗 ∈ 𝑁 ∪{𝑠}, an edge (𝑖, 𝑗) ∈ 𝐸 if and only if 𝑗 ∈ 𝑟𝑖 .

Agent 𝑖 is connected if there is a path 𝑠 → · · · → 𝑖 in 𝐺 defined

by reported profile 𝑟 ′. Without loss of generality, we assume that

all agents 𝑁 are connected when they all sincerely report their

followers, i.e., 𝑟 is reported.

A (direct revelation) mechanism 𝑓 is then defined as a function

that takes 𝜃 ′ as input and returns 𝑓 (𝜃 ′) ∈ 𝑋 . Let 𝑓𝑖 (𝜃 ′) denote the
house assigned to agent 𝑖 . In this paper, we further restrict our

attention to feasible mechanisms, which only exchange the houses

of connected agents. Formally, allocation 𝑥 ∈ 𝑋 is feasible under

reported 𝑟 ′ if 𝑥𝑖 = ℎ𝑖 for any agent 𝑖 who is disconnected under 𝑟 ′.
A mechanism is feasible if, for any reported 𝜃 ′, 𝑓 (𝜃 ′) is feasible.

As a result, a mechanism design problem for a networked hous-

ing market is defined as a tuple (𝑁,Π, 𝑟 ), where 𝑁 defines the

maximum population of the market, and both Π and 𝑟 define the

possible action spaces of the agents.
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3.1 Properties
In this section we define four desirable properties for exchange

mechanisms: strategy-proofness, strict core, individual rationality,
and Pareto efficiency. Intuitively, strategy-proofness requires that
telling a true type 𝜃𝑖 is a dominant strategy for each agent 𝑖 ∈ 𝑁 .

Under an allocation in the strict core, no group of agents has an

incentive to jointly deviate from the mechanism. Individual ratio-

nality requires that telling a true type 𝜃𝑖 guarantees, for each agent

𝑖 , a weakly better house than her initial endowment, ℎ𝑖 . Finally,

for given Pareto efficient allocation 𝑥 ∈ 𝑋 , we cannot find another

allocation𝑦 that is weakly better for all the agents 𝑖 ∈ 𝑁 and strictly

better for at least one agent 𝑗 ∈ 𝑁 .

Definition 3.1 (Strategy-Proofness). For a networked housing mar-

ket, a mechanism is said to satisfy strategy-proofness (SP) if, for any
𝑁 , any 𝑖 ∈ 𝑁 , any 𝜃−𝑖 , any 𝜃 ′−𝑖 ∈ 𝑅(𝜃−𝑖 ), and any 𝜃 ′

𝑖
∈ 𝑅(𝜃𝑖 ), it

holds that 𝑓𝑖 (𝜃𝑖 , 𝜃 ′−𝑖 ) ⪰𝑖 𝑓𝑖 (𝜃
′
𝑖
, 𝜃 ′−𝑖 ).

Definition 3.2 (Strict Core). For a networked housing market,

allocation 𝑥 ∈ 𝑋 is said to be in the strict core (SC) under profile 𝜃
if �𝑆 ⊆ 𝑁 such that, under some allocation 𝑦 (≠ 𝑥) ∈ 𝑋 satisfying⋃

𝑖∈𝑆 𝑦𝑖 =
⋃

𝑖∈𝑆 ℎ𝑖 , (a) 𝑦𝑖 ⪰𝑖 𝑥𝑖 holds for any 𝑖 ∈ 𝑆 , and (b) 𝑦 𝑗 ≻𝑗 𝑥 𝑗
holds for some 𝑗 ∈ 𝑆 . Let SC(𝜃 ) be the set of such allocations for

given 𝜃 . For a networked housing market, mechanism 𝑓 is said to

satisfy SC if for any 𝜃 , 𝑓 (𝜃 ) ∈ SC(𝜃 ).
Set 𝑆 of agents is usually called a blocking coalition, where al-

location 𝑦 weakly dominates allocation 𝑥 for coalition 𝑆 . We can

analogously define the weak core (WC) by replacing conditions (a)

and (b) with (c) 𝑦𝑖 ≻𝑖 𝑥𝑖 for any 𝑖 ∈ 𝑆 . In this case, allocation 𝑦

strongly dominates allocation 𝑥 for coalition 𝑆 . Let WC(𝜃 ) be the
weak core for the given 𝜃 , and mechanism 𝑓 is said to satisfy WC

if 𝑓 (𝜃 ) ∈ WC(𝜃 ) for any 𝜃 .
Definition 3.3 (Individual Rationality). For a networked housing

market, feasible allocation 𝑥 ∈ 𝑋 is said to be individually rational
for given 𝜃 if 𝑥𝑖 ⪰𝑖 ℎ𝑖 for any 𝑖 ∈ 𝑁 . Let IR(𝜃 ) be a set of such alloca-
tions under 𝜃 . Mechanism 𝑓 is said to satisfy individual rationality
(IR) if 𝑓 (𝜃 ) ∈ IR(𝜃 ) for any 𝜃 .

Definition 3.4 (Pareto Efficiency). For a networked housing mar-

ket, feasible allocation 𝑥 Pareto dominates another feasible allo-

cation 𝑦 under 𝜃 if 𝑥𝑖 ⪰𝑖 𝑦𝑖 for any 𝑖 ∈ 𝑁 and 𝑥 𝑗 ≻𝑗 𝑦 𝑗 for some

𝑗 ∈ 𝑁 . Let PE(𝜃 ) be a set of feasible allocations that is not Pareto
dominated by any other feasible allocation. Mechanism 𝑓 is said to

satisfy Pareto efficiency (PE) if 𝑓 (𝜃 ) ∈ PE(𝜃 ) for any 𝜃 .
It is obvious that requiring a strict core allocation is stronger than

requiring both IR and PE. Indeed, by choosing 𝑆 = 𝑁 , the definition

of strict core coincides with Pareto efficiency, and choosing 𝑆 =

{𝑖} for each 𝑖 ∈ 𝑁 makes the definition of strict (and weak) core

identical to individual rationality. Formally, for any 𝜃 , both SC(𝜃 ) ⊆
{PE(𝜃 ) ∩ IR(𝜃 )} and SC(𝜃 ) ⊆ WC(𝜃 ) ⊆ IR(𝜃 ) hold.

3.2 Top Trading Cycles
In this paper we apply TTC to our networked housing market

model and propose a modified version of TTC in Section 6. Now

we formally define TTC and briefly review its characteristics.

Definition 3.5 (Top Trading Cycles (TTC) [24]). The top trading

cycles (TTC) mechanism is defined by the following algorithm:

Step 𝑡 (≥ 1). If no agent remains in the market, then the al-

gorithm terminates; otherwise, construct a directed graph

whose vertices correspond to the remaining agents. Each

agent points to the agent who has her favorite house re-

maining in the market. Obviously there is at least one cycle.

Assign to each agent in each cycle the house owned by the

agent to which she points. Remove all such cycles from the

graph and go to Step 𝑡 + 1.

It is easy to observe that TTC always terminates when there

is a finite number of agents. From economic and game theoretic

viewpoints, it also has many attractive characteristics, as described

in the following two theorems.

Theorem 3.6 (Shapley and Scarf [24]). For a traditional hous-
ing market, the strict core is a singleton and TTC chooses it.

Theorem 3.7 (Ma [20]). For a traditional housing market, TTC is
a unique mechanism that satisfies SP, IR, and PE.

4 GENERAL RESULTS
Now we are ready to describe our contributions. We first show that,

strategy-proofness in our networked housing market model can

be decomposed into the robustness against preference misreports

(which is equivalent to strategy-proofness in traditional housing

markets) and the robustness against removal of followers.

Theorem 4.1. Consider mechanism 𝑓 that satisfies SP in a tradi-
tional housing market, and mechanism 𝑓 ∗ for a networked housing
market that is defined by applying 𝑓 for the connected agents. Then,
𝑓 ∗ also satisfies SP for the networked housing market if

∀𝑖 ∈ 𝑁,∀𝜃−𝑖 ,∀𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ),∀𝜃 ′𝑖 = (≻𝑖 , 𝑟 ′𝑖 ) ∈ 𝑅(𝜃𝑖 ),
𝑓 ∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 ) ⪰𝑖 𝑓 ∗𝑖 (𝜃 ′

𝑖
, 𝜃−𝑖 ) .

(1)

In other words, as long as we know that the current mechanism,

like TTC, is strategy-proof in the traditional housing market, it is

adequate to check whether no agent can benefit by just hiding some

of her followers. All the proofs for strategy-proofness provided in

this paper are based on this theorem.

Proof. Since 𝑓 satisfies SP for the traditional housing market

and 𝑓 ∗ behaves identically as 𝑓 for the connected agents,

∀𝑖 ∈ 𝑁,∀𝜃−𝑖 ,∀𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ),∀𝜃 ′′𝑖 = (≻′
𝑖
, 𝑟𝑖 )

𝑓 ∗
𝑖
(𝜃𝑖 , 𝜃−𝑖 ) ⪰𝑖 𝑓 ∗𝑖 (𝜃 ′′

𝑖
, 𝜃−𝑖 )

(2)

holds. Now consider a case where arbitrary agent 𝑖 with true type

𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ) is misrepresenting its type to
ˆ𝜃𝑖 = (≻̂𝑖 , 𝑟𝑖 ) under 𝑓 ,

where 𝑟𝑖 ⊆ 𝑟𝑖 . For any 𝜃−𝑖 , we have

𝑓 ∗𝑖 (𝜃𝑖 , 𝜃−𝑖 ) ⪰𝑖 𝑓 ∗𝑖 ((≻𝑖 , 𝑟𝑖 ), 𝜃−𝑖 )
from (1), and

𝑓 ∗𝑖 ((≻𝑖 , 𝑟𝑖 ), 𝜃−𝑖 ) ⪰𝑖 𝑓 ∗𝑖 ( ˆ𝜃𝑖 , 𝜃−𝑖 )
from (2). Therefore, 𝑓 ∗

𝑖
(𝜃𝑖 , 𝜃−𝑖 ) ⪰𝑖 𝑓 ∗𝑖 ( ˆ𝜃𝑖 , 𝜃−𝑖 ) holds. □

For a networked housing market, TTC is applied for the agents

connected under reported types 𝑟 ; disconnected agents cannot

participate/exchange. The next two theorems show that TTC is

strategy-proof in a networked housing market if and only if there

are fewer than three agents. They give a complete understanding

on the effect of problem restrictions according to 𝑁 .
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𝑠 𝑖 𝑗 𝑘

Figure 1: Social network where SP, IR, and PE are incompat-
ible

Theorem 4.2. For a networked housing market (𝑁,Π, 𝑟 ) with
general 𝑟 , TTC satisfies SP when 𝑛 ≤ 2.

Proof. Since TTC satisfies SP for a traditional housing market,

it suffices, from Theorem 4.1, to show that no agent can benefit

by hiding some of its followers when 𝑛 ≤ 2. Obviously, such a

manipulation occurs only when the two agents are in a parent-

child relation, i.e., 𝑟𝑠 = {𝑖}, 𝑟𝑖 = { 𝑗}, and 𝑟 𝑗 = ∅, and agent 𝑖 is

hiding its child 𝑗 . Furthermore, when agent 𝑖 receives its house ℎ𝑖
as the final assignment, such a manipulation is not beneficial. From

the definition of TTC, agent 𝑖 receives ℎ 𝑗 only if ℎ 𝑗 ≻𝑖 ℎ𝑖 . However,
after such a hiding manipulation, agent 𝑗 becomes disconnected,

and thus 𝑖 receives ℎ𝑖 from the feasibility assumption, which is

worse than original assignment ℎ 𝑗 under truthfully telling 𝑟𝑖 . □

Theorem 4.3. For a networked housing market (𝑁,Π, 𝑟 ) with
general 𝑟 , there does not exist a mechanism that satisfies SP IR, and
PE when 𝑛 ≥ 3.

Proof. Since domain Π of strict preferences is rich enough, TTC

is the unique mechanism that satisfies SP, IR, and PE (from Theo-

rem 3.7). Therefore, we show that TTC violates SP for 𝑛 ≥ 3.

Consider a case with three agents, 𝑖 , 𝑗 , and 𝑘 , where social net-

work 𝑟 is such that 𝑟𝑠 = {𝑖}, 𝑟𝑖 = { 𝑗}, 𝑟 𝑗 = {𝑘}, and 𝑟𝑘 = ∅, and
their preferences are given as follows:

≻𝑖 : ℎ𝑘 ≻ ℎ 𝑗 ≻ ℎ𝑖
≻𝑗 : ℎ𝑘 ≻ ℎ𝑖 ≻ ℎ 𝑗
≻𝑘 : ℎ𝑖 ≻ ℎ𝑘 ≻ ℎ 𝑗

Figure 1 describes social network 𝑟 . TTC returns allocation 𝑥 such

that 𝑥𝑖 = ℎ𝑘 , 𝑥 𝑗 = ℎ 𝑗 , and 𝑥𝑘 = ℎ𝑖 when all the agents truthfully

report their types.

When agent 𝑗 solely prevents forwarding the information to

agent 𝑘 , i.e., reporting 𝑟 ′
𝑗
= ∅, TTC returns another allocation 𝑦

such that 𝑦𝑖 = ℎ 𝑗 and 𝑦 𝑗 = ℎ𝑖 . Since agent 𝑗 strictly prefers ℎ𝑖 to ℎ 𝑗
under her true preference, this manipulation is beneficial, which

violates the definition of strategy-proofness. □

Since TTC is the unique mechanism that satisfies both SP and SC,

theorem 4.3 implies the incompatibility of SP and SC. We therefore

weaken the traditional concept of the core by taking into account

the network structure in a networked housing market. The follow-

ing is one of the weakest variants of the core, which only cares

about coalitions by two agents in a parent-child relation, as well as

deviations by each single agent.

Definition 4.4 (Strict Core for Neighbors (SC4N)). For a networked
housing market, an outcome is said to be in the strict core for neigh-
bors (SC4N) under profile 𝜃 if the strict core condition holds for

any singleton agent 𝑖 ∈ 𝑁 and for any pair 𝑖, 𝑗 of agents such that

there is a path 𝑠 → · · · → 𝑖 → 𝑗 under 𝜃 . Let SC4N(𝜃 ) be the set of
such allocations for given 𝜃 . A mechanism is said to satisfy SC4N if

𝑓 (𝜃 ) ∈ SC4N(𝜃 ) for any 𝜃 .

SC

WC

SC4N

WC4N

IR

PE

Figure 2: Relations among six properties about quality of al-
locations. Each edge between two properties denotes that its
source property implies its destination property.

We can analogously define the weak core for neighbors (WC4N).

For given 𝜃 , let WC4N(𝜃 ) be the set of allocations in the weak core

for neighbors. The relations among SC, WC, SC4N, WC4N, PE, and

IR are described in Fig. 2. Note that both SC4N and WC4N have an

intersection with PE ∩ IR without being in an inclusion relation,

which will be shown in the following two examples. On the other

hand, since the preferences are assumed to be strict, there always

exists a unique allocation in SC, which implies SC4N ∩{PE∩IR} ≠ ∅
(and therefore WC4N ∩ {PE ∩ IR} ≠ ∅).

Example 4.5 (SC4N and PE). Consider three agents 𝑁 = {𝑖, 𝑗, 𝑘}
who have the same social network shown in Fig. 1, i.e., 𝑟𝑠 = {𝑖},
𝑟𝑖 = { 𝑗}, 𝑟 𝑗 = {𝑘}, and 𝑟𝑘 = ∅. Consider the following preferences:

≻𝑖 : ℎ𝑘 ≻ ℎ 𝑗 ≻ ℎ𝑖
≻𝑗 : ℎ𝑖 ≻ ℎ𝑘 ≻ ℎ 𝑗
≻𝑘 : ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 .

Allocation 𝑥 such that 𝑥𝑖 = ℎ 𝑗 , 𝑥 𝑗 = ℎ𝑘 , and 𝑥𝑘 = ℎ𝑖 is Pareto

efficient and individually rational, but not in SC4N; coalition {𝑖, 𝑗}
weakly blocks 𝑥 . On the other hand, another allocation 𝑦 such

that 𝑦𝑖 = ℎ 𝑗 , 𝑦 𝑗 = ℎ𝑖 , and 𝑦𝑘 = ℎ𝑘 is in SC4N, but not Pareto

efficient: allocation 𝑧 such that 𝑧𝑖 = ℎ𝑘 , 𝑧 𝑗 = ℎ𝑖 , and 𝑧𝑘 = ℎ 𝑗 Pareto

dominates 𝑦.

Example 4.6 (WC4N and PE). Consider four agents,𝑁 = {𝑖, 𝑗, 𝑘, ℓ},
and the social network described in Fig. 3, i.e., 𝑟𝑠 = {𝑖}, 𝑟𝑖 = { 𝑗, 𝑘, ℓ},
𝑟 𝑗 = {ℓ}, and 𝑟𝑘 = {ℓ}. Their preferences are given as follows:

≻𝑖 : ℎℓ ≻ ℎ𝑘 ≻ ℎ𝑖 ≻ ℎ 𝑗
≻𝑗 : ℎ𝑖 ≻ ℎ𝑘 ≻ ℎℓ ≻ ℎ 𝑗
≻𝑘 : ℎℓ ≻ ℎ 𝑗 ≻ ℎ𝑘 ≻ ℎ𝑖
≻ℓ : ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎℓ ≻ ℎ𝑘 .

Allocation 𝑥 such that 𝑥𝑖 = ℎ𝑘 , 𝑥 𝑗 = ℎ𝑖 , 𝑥𝑘 = ℎℓ , and 𝑥ℓ = ℎ 𝑗 is

Pareto efficient and individually rational, but not inWC4N; coalition

{𝑖, ℓ} strongly blocks 𝑥 . On the other hand, another allocation 𝑦

such that 𝑦𝑖 = ℎ𝑘 , 𝑦 𝑗 = ℎℓ , 𝑦𝑘 = ℎ 𝑗 , and 𝑦ℓ = ℎ𝑖 is in WC4N, but

not Pareto efficient: allocation 𝑧 such that 𝑧𝑖 = ℎℓ , 𝑧 𝑗 = ℎ𝑘 , 𝑧𝑘 = ℎ 𝑗 ,

and 𝑧ℓ = ℎ𝑖 Pareto dominates 𝑦.

As mentioned above, WC4N is one of the weakest variants of the

core for networked housing markets. However, we obtains another

incompatibility result for WC4N and SP, which emphasizes the

difficulty of achieving SP for networked housing markets.

Theorem 4.7. For a networked housing market (𝑁,Π, 𝑟 ) with
general 𝑟 , there does not exist a mechanism that satisfies SP and
WC4N when 𝑛 ≥ 3.
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𝑠 𝑖

𝑗

𝑘

ℓ

Figure 3: Social network whereWC4N and PE∩ IR are not in
an inclusion relation

Proof. Consider a case with three agents, 𝑖 , 𝑗 , and 𝑘 , where

social network 𝑟 is such that 𝑟𝑠 = {𝑖}, 𝑟𝑖 = { 𝑗, 𝑘}, 𝑟 𝑗 = {𝑘}, and
𝑟𝑘 = ∅, and their preferences are given as follows:

≻𝑖 : ℎ𝑘 ≻ ℎ𝑖 ≻ ℎ 𝑗
≻𝑗 : ℎ𝑘 ≻ ℎ 𝑗 ≻ ℎ𝑖
≻𝑘 : ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘 .

Figure 4 describes the network.

Note that WC4N implies IR. There are three allocations, 𝑥 , 𝑦, and

𝑧, satisfying IR when all the agents truthfully report their types:

𝑥 = (ℎ𝑖 , ℎ𝑘 , ℎ 𝑗 )
𝑦 = (ℎ𝑘 , ℎ 𝑗 , ℎ𝑖 )
𝑧 = (ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 )

However, for both 𝑦 and 𝑧, there is a strongly blocking coalition,

{ 𝑗, 𝑘}, which violates WC4N.

Thus, if a mechanism 𝑓 satisfies both SP and WC4N, it returns

allocation 𝑥 for the above input, in which agent 𝑖 receives her initial

endowment house ℎ𝑖 . In this case, however, agent 𝑖 would have an

incentive not to forward the information to agent 𝑗 ; without agent

𝑗 , the only allocation available, from both feasibility and WC4N, is

to swap the houses between agents 𝑖 and 𝑘 , which results in agent

𝑖 getting a better house, ℎ𝑘 . □

5 PREFERENCE RESTRICTIONS
According to Theorem 4.3, we are interested in the structure of

preferences under which TTC satisfies SP. Here we focus on acyclic
preferences, which have been investigated in the literature of two-

sided matching to guarantee population monotonicity of TTC [18]

and Pareto efficiency of the deferred acceptance mechanism [8].

Indeed, we can show that TTC satisfies SP in a networked housing

market if and only if the preference domain is acyclic.

Definition 5.1 (Acyclic Domain). Domain Π′ ⊆ Π of preferences

is said to be acyclic if for any two preferences, ≻, ≻′∈ Π′
, and for

any three distinct houses, ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 ∈ 𝐻 , it holds that

[ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 ] ⇒ [ℎ𝑖 ≻′ ℎ𝑘 ] .

Intuitively, acyclicity requires that all the involved preferences

share a quite similar form, which can be represented by recursively

applying the following rule from the top of all the preferences:

(1) the number of houses that are ranked at the top by at least

one preference is one or two, and

(2) if there are two such houses, say ℎ𝑖 and ℎ 𝑗 , then all the

involved preferences rank them at the top and second.

𝑠 𝑖 𝑗

𝑘

Figure 4: Social network where SP and WC4N are incompat-
ible

For example, domain Π′ ⊂ Π, which consists of the following four

preferences over five houses ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 , ℎℓ , ℎ𝑚 , is acyclic.

≻ : ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 ≻ ℎℓ ≻ ℎ𝑚
≻′

: ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 ≻ ℎ𝑚 ≻ ℎℓ
≻′′

: ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘 ≻ ℎℓ ≻ ℎ𝑚
≻′′′

: ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘 ≻ ℎ𝑚 ≻ ℎℓ .

Theorem 5.2. For a networked housing market (𝑁,Π′, 𝑟 ) with
𝑛 ≥ 3 and general 𝑟 , TTC satisfies SP if and only if domain Π′ of
preferences is acyclic.

Proof. If (⇐) Part: From the definition of acyclicity, it is easy

to show that, when domain Π′
of preferences is acyclic, there is

a hierarchy over all the houses, in each level of which there are

at most two houses. For example, in the above domain with four

preferences over five houses, the first level consists of two houses,

ℎ𝑖 and ℎ 𝑗 , the second level consists of one house, ℎ𝑘 , and the third

level consists of two houses,ℎℓ andℎ𝑚 . As long as at least one house

of a certain level remains in the market, all the agents in it never

prefer the houses in any lower level. An agent therefore can only

exchange her house with one specific agent (if any) whose house is

in the same level, regardless whether she truthfully forwarded the

information. Furthermore, she can exchange her house with that

agent if and only if both agree to the trade. Therefore, inviting as

many followers as possible is a dominant strategy; for each agent,

having more agents whose houses are in any different level does

not change her final assignment, and having another agent whose

house is in the same level is never disadvantageous. Combining this

observation with the fact that TTC satisfies SP in the traditional

housing market, according to Theorem 4.1, we can see that TTC

satisfies SP in our networked housing market.

Only If (⇒) Part:Assume two preferences, ≻, ≻′∈ Π′
, and three

distinct houses, ℎ𝑖 , ℎ 𝑗 , ℎ𝑘 ∈ 𝐻 , such that

[ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 ] ∧ [ℎ𝑘 ≻′ ℎ𝑖 ] .
There are two possibilities on ≻′

: (i) ℎ𝑘 ≻′ ℎ 𝑗 or (ii) ℎ 𝑗 ≻′ ℎ𝑘 .
For case (i), consider social network 𝑟 such that 𝑟𝑠 = {𝑘}, 𝑟𝑘 =

𝑁 \{𝑖}, 𝑟 𝑗 = {𝑖}, and 𝑟ℓ = ∅ for any ℓ ∈ 𝑁 \{ 𝑗, 𝑘}, and the following
preferences:

≻𝑘=≻, ≻𝑖=≻𝑗=≻′, ≻ℓ is arbitrary for any ℓ ∈ 𝑁 \ {𝑖, 𝑗, 𝑘}.
Also, focus on the cases where agent 𝑘 reports 𝑟 ′

𝑘
= { 𝑗}, under

which only agents 𝑖, 𝑗, 𝑘 are connected when all the other agents

truthfully report their types (see case (i) of Fig. 5).

When all the agents (except 𝑘) report their types truthfully, al-

location 𝑥 returned by TTC is such that 𝑥𝑖 = ℎ𝑘 , 𝑥 𝑗 = ℎ 𝑗 , and

𝑥𝑘 = ℎ𝑖 . When agent 𝑗 solely manipulates by reporting 𝑟 ′
𝑗
= ∅ to

remove 𝑖 from the market, allocation 𝑦 returned by TTC would be

such that 𝑦 𝑗 = ℎ𝑘 and 𝑦𝑘 = ℎ 𝑗 . Thus, agent 𝑗 can benefit from this

manipulation, which violates the definition of SP.
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Case (i)

𝑠 𝑘 𝑗 𝑖

Case (ii)

𝑠 𝑖 𝑘 𝑗

Figure 5: Examples used in proof for only if part of Theo-
rem 5.2. Dotted edges are not reported, and dotted vertices
are not connected.

For case (ii), the following holds:

[ℎ 𝑗 ≻′ ℎ𝑘 ≻′ ℎ𝑖 ] ∧ [ℎ𝑖 ≻ ℎ𝑘 ]
Therefore, by substituting 𝑖 with 𝑗 , 𝑗 with 𝑘 , and 𝑘 with 𝑖 (see case

(ii) of Fig. 5), almost the same argument with case (i) holds. □

Note that, when the preference domain is restricted, the unique-

ness of TTC may not hold. For example, under the domain of single-

peaked preferences for traditional housing markets, the crawler

mechanism, proposed by Bade [4], satisfies SP, PE, and IR, although

its outcome does not coincide with the one returned by TTC. There-

fore, it is possible that some other mechanism also satisfies both SP

and SC in the networked housing market.

6 NETWORK RESTRICTION
In this section, we consider another way to overcome the impossi-

bilities presented in Section 4; restricting the possible structure of

social networks. While the online social networks in practice could

have enormous number of possible structures, other types of social

networks might have some typical and specific structures, such as

trees (although the mechanism cannot observe the exact structure

and each agent can still manipulate the network).

6.1 Pareto Efficiency
We first investigate, under which condition on 𝑟 , SP is achieved by

TTCwithout restricting the domain of preferencesΠ. The following
theorem gives a complete answer to this question. TTC satisfies SP

if and only if 𝑟 is essentially a star with 𝑠 at its center.

Theorem 6.1. For a networked housing market (𝑁,Π, 𝑟 ) with
𝑛 ≥ 3 and a fixed 𝑟 , TTC satisfies SP if and only if 𝑟𝑠 = 𝑁 , i.e., all the
agents are directly connected to the moderator.

Note that agents are allowed to be connected with each other.

However, since all the agents are directly connected to 𝑠 , no benefi-

cial hiding strategy exists. Such a star structure is quite common in

practical social networks, which often have a powerful leader who

directly communicates with all the other members.

Proof. If (⇐) Part: Since all the agents are directly connected

to the moderator, there is no agent 𝑖 who can remove any of her

followers bymisreporting 𝑟 ′
𝑖
. This implies that Eq. (1) of Theorem 4.1

holds for TTC, and therefore TTC satisfies SP.

Only If (⇒) Part: Section 4 already showed that TTC satisfies

SP for 𝑛 ≤ 2. Therefore, to complete the proof for this direction,

it suffices to prove that TTC fails to satisfy SP when there is at

least one agent who is not directly connected to the moderator.

Let 𝑗 be such an agent, and let 𝑖 be one of her parents. Without

Case (i)

𝑠 𝑖 𝑗 𝑘

ℓ

Case (ii)

𝑠 𝑖 𝑗

𝑘

Figure 6: Examples used in proof for only if part of Theo-
rem 6.1. Dotted edges are not reported by agents except for
𝑖, 𝑗, 𝑘 .

loss of generality, we can assume that 𝑖 is directly connected to 𝑠;

otherwise, recursively choose that agent 𝑖 as 𝑗 and find her parent

who is directly connected to 𝑠 .

Consider a situation where all the incoming edges to 𝑗 (except

the one from 𝑖) are removed by their source agents. Now only two

possible cases exist: if agent 𝑖 does not forward the information to

agent 𝑗 , i.e., reports 𝑟 ′
𝑖
∌ 𝑗 , (i) all the agents except 𝑖 get disconnected,

or (ii) at least one agent remains connected.

For case (i), let 𝑘 denote one of 𝑗 ’s direct children; at least one

direct child exists since 𝑛 ≥ 3 and there only remains agent 𝑖 if she

removes 𝑗 (see Case (i) of Fig 6). Note that such 𝑘 is not directly

connected to 𝑠 ; otherwise 𝑘 must still be connected if 𝑗 is removed,

which violates the precondition of this case (i). Now consider the

following preferences of agents 𝑖, 𝑗, 𝑘 :

≻𝑖 : ℎ𝑘 ≻ ℎ 𝑗 ≻ ℎ𝑖 ≻ · · ·
≻𝑗 : ℎ𝑖 ≻ ℎ 𝑗 ≻ ℎ𝑘 ≻ · · ·
≻𝑘 : ℎ𝑖 ≻ ℎ𝑘 ≻ ℎ 𝑗 ≻ · · · .

All other houses, e.g., ℎℓ , are ranked below these three houses.

When agent 𝑖 forwards the information to agent 𝑗 , agent 𝑗 has an

incentive not to forward the information to 𝑘 , which violates SP.

For case (ii), let 𝑘 denote one such connected agent if 𝑖 removes

𝑗 (see Case (ii) of Fig 6). Now consider the following preferences of

agents 𝑖, 𝑗, 𝑘 :

≻𝑖 : ℎ𝑘 ≻ ℎ𝑖 ≻ ℎ 𝑗 ≻ · · ·
≻𝑗 : ℎ𝑘 ≻ ℎ 𝑗 ≻ ℎ𝑖 ≻ · · ·
≻𝑘 : ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘 ≻ · · · .

Agent 𝑖 has an incentive not to forward the information to agent 𝑗 ,

which violates SP. □

In contrast to the preference restriction, we keep preference do-

main Π rich enough in this network restriction approach. Therefore,

TTC is still the only mechanism that satisfies SP, IR, and PE. Hence,

the following corollary holds from Theorem 6.1.

Corollary 6.2. For a networked housing market (𝑁,Π, 𝑟 ) with
𝑛 ≥ 3 and a fixed 𝑟 , there exists a mechanism that satisfies SP, IR, and
PE if and only if 𝑟𝑠 = 𝑁 .

6.2 Strict Core for Neighbors
We next investigate whether SP and SC4N can be compatible when

network structure 𝑟 can be controlled. According to Theorem 4.7,

the existence of multiple paths to an agent seems critical for in-

compatibility. Therefore, in this section we restrict our attention to

social network 𝑟 , which is a directed tree rooted at 𝑠 .

We first introduce a modification to TTC, which restricts the

possible actions of agents. Specifically, each agent can only point to
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(A) Social Network 𝑟

𝑠 𝑖

𝑗

𝑘
ℓ

𝑚
(B) Step 1

𝑠 𝑖

𝑗

𝑘
ℓ

𝑚
(C) Step 2

𝑠 𝑖

𝑗

𝑘
ℓ

𝑚
(D) Step 3

𝑠 𝑖

𝑗

𝑘
ℓ

𝑚

Figure 7: Behavior ofModifiedTTC. Solid edges represent social network, and dash-dotted edges represent constructed directed
graph based on agents’ preferences. Agents who left the market are drawn in gray.

herself, her parent, and her descendants. This restriction is static;

if an agent cannot point to an existing agent in a certain step, then

she cannot point to that agent in any later step.

Definition 6.3 (Modified TTC). The modified TTC mechanism is

defined over tree networks as the following algorithm:

Step 𝑡 (≥ 1). If no agent remains in the market, the algorithm

terminates; otherwise, construct a directed graph whose

vertices corresponds to the remaining agents. Each agent

points to the agent who is her parent, herself, or one of her
descendants and has her favorite house remaining in the

market. There is at least one cycle. Assign to each agent in

each cycle the house owned by the agent to which she points.

Remove all such cycles from the graph and go to Step 𝑡 + 1.

The following example demonstrates how the modified TTC

behaves for a networked housing market.

Example 6.4. Consider the social network with five agents de-

scribed in Fig. 7-(A). The agents’ preferences are given as follows:

≻𝑖 : ℎ𝑚 ≻ ℎ 𝑗 ≻ ℎ𝑘 ≻ ℎℓ ≻ ℎ𝑖
≻𝑗 : ℎ𝑚 ≻ ℎ𝑖 ≻ ℎ 𝑗 ≻ · · ·
≻𝑘 : ℎℓ ≻ ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘 ≻ ℎ𝑚
≻ℓ : ℎ𝑚 ≻ ℎℓ ≻ · · ·
≻𝑚 : ℎ 𝑗 ≻ ℎ𝑘 ≻ ℎ𝑚 ≻ · · · .

Figure 7-(B) describes the pointing relation among agents at the

beginning of Step 1. Notice that although agent 𝑗 prefers ℎ𝑚 and

agent𝑚 prefers ℎ 𝑗 , they cannot point to each other in the modified

TTC; each agent is only allowed to point to herself, her parent, or

her descendants. Thus, they point to 𝑖 and 𝑘 , respectively. Similarly,

although agent ℓ prefers ℎ𝑚 , she is pointing to herself. In this step,

agent ℓ is removed from the market with her own house ℎℓ .

Figure 7 (C) describes the pointing relation among agents at the

beginning of Step 2. Since agent ℓ left the market at the end of Step

1, agent 𝑘 must change the agent to whom she is pointing. She next

prefers ℎ 𝑗 , but is not allowed to point to 𝑗 . Instead she points to

agent 𝑖 , her parent, who has ℎ𝑖 , which is immediately after ℎ 𝑗 in

her preference ≻𝑘 . In this step, there is a cycle: 𝑖 →𝑚 → 𝑘 → 𝑖 .

Finally, in Step 3 (Fig. 7-(C)), agent 𝑗 is removed from the market

with ℎ 𝑗 . Allocation 𝑥 , returned by the modified TTC, becomes

𝑥𝑖 = ℎ𝑚 , 𝑥 𝑗 = ℎ 𝑗 , 𝑥𝑘 = ℎ𝑖 , 𝑥ℓ = ℎℓ , and 𝑥𝑚 = ℎ𝑘 .

Note that allocation 𝑥 in Example 6.4 is strongly blocked by

coalition { 𝑗,𝑚}, and weakly blocked by a one-parent two-children

coalition {𝑘, ℓ,𝑚}. However, these are ignored in both WC4N and

SC4N. Indeed, we can show the following positive characteristic of

the modified TTC for tree networks.

Theorem 6.5. The modified TTC satisfies both SP and SC4N for a
networked housing market (𝑁,Π, 𝑟 ) when 𝑟 is a tree network.

Proof. We first show that the modified TTC satisfies SP. The

modified TTC satisfies SP for the traditional housing market, since

it is equivalent to the TTC where the preference of each agent 𝑖

is modified such that she considers the houses owned by agents

(except her, her parent, and her descendants) are less preferred than

her initial endowment house ℎ𝑖 . Thus, to show that the modified

TTC satisfies SP for the networked housing market, it suffices to

show that agent 𝑖 cannot obtain a strictly better house by declaring

𝜃 ′
𝑖
= (≻𝑖 , 𝑟 ′𝑖 ), where 𝑟 ′

𝑖
⊊ 𝑟𝑖 , compared to the case where she

declares her true type,𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ). Byway of contradiction, assume

agent 𝑖 obtains a strictly better house when she declares 𝑟 ′
𝑖
instead

of 𝑟𝑖 . Let 𝑟 denote a set of agents in the subtrees, each of which is

rooted with each agent in 𝑟𝑖 \ 𝑟 ′𝑖 . In other words, by declaring 𝑟 ′
𝑖

instead of 𝑟𝑖 , the agents in 𝑟 are disconnected from 𝑠 and cannot

participate in the exchange. Since the modified TTC satisfies IR, the

house she obtains when she declares 𝑟 ′
𝑖
cannot be her own house, ℎ𝑖

(otherwise, IR is violated when she declares 𝑟𝑖 ). Assume she obtains

ℎ𝑘 , i.e., the house owned by agent 𝑘 . One of the followings must

hold: (i) 𝑘 is 𝑖’s descendant, or (ii) 𝑘 is 𝑖’s parent.

For case (i), there must exist a pointing sequence starting from 𝑘

toward 𝑖 , via one element in 𝑟 ′
𝑖
when 𝑖 declares 𝑟 ′

𝑖
. In this situation,

if 𝑖 points to 𝑘 , a cycle is formed. When 𝑖 declares 𝑟𝑖 , the behaviors

of agents in the above pointing sequence do not change, since they

cannot point to any agent in 𝑟 . In TTC, if there exists a pointing

sequence toward 𝑖 , the sequence remains until 𝑖 is included in

a cycle and removed from the market. This is also true for the

modified TTC. Since 𝑖 prefers ℎ𝑘 over the house she obtained when

she declares 𝑟𝑖 , 𝑖 eventually points to 𝑘 . Also, the above pointing

sequence is eventually formed. Thus, a cycle is eventually formed

and 𝑖 obtains ℎ𝑘 . This is a contradiction.

For case (ii), when 𝑖 declares 𝑟 ′
𝑖
, there must exist a pointing cycle

𝑎1 → . . . → 𝑎𝑚 → 𝑎1, such that each 𝑎 𝑗 is a child of 𝑎 𝑗+1, and
𝑖 → 𝑗 is included in sequence 𝑎1 → . . . → 𝑎𝑚 . Assume 𝑖 = 𝑎ℓ and

𝑘 = 𝑎ℓ+1, i.e., the cycle is 𝑎1 → . . . → 𝑎ℓ (= 𝑖) → 𝑎ℓ+1 (= 𝑘) →
. . . → 𝑎𝑚 → 𝑎1. Here, agents 𝑎1, . . . , 𝑎ℓ−1 are 𝑖’s descendants, and
𝑎ℓ+1, . . . , 𝑎𝑚 are 𝑖’s ancestors. When 𝑖 declares 𝑟𝑖 , the behaviors of

𝑖’s descendants 𝑎1, . . . , 𝑎ℓ−1 do not change, since they cannot point

to any agent in 𝑟 . On the other hand, agent 𝑎 𝑗 ∈ {𝑎ℓ+1, . . . , 𝑎𝑚},
who is an ancestor of 𝑖 , may point to some agent in 𝑟 , since they are

also descendants of 𝑎 𝑗 . However, if agent 𝑎 𝑗 points to some agent in

𝑟 and is included in a cycle, then the cycle must include 𝑖 → 𝑘 , since

each agent can point only to her parent within her ancestors. Thus,
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𝑖 obtains ℎ𝑘 . This is a contradiction. Therefore, even if 𝑎 𝑗 points to

some agent in 𝑟 , she cannot be included in a cycle. Eventually, she

points to 𝑎 𝑗+1 (or 𝑎1 when 𝑎 𝑗 = 𝑎𝑚). As a result, the above cycle is

formed and 𝑖 obtains 𝑘 . This is a contradiction.

We then show that SC4N also holds. By way of contradiction,

assume there is a pair of agents 𝑖, 𝑗 such that 𝑖 is the parent of 𝑗 , 𝑖

obtains ℎ𝑖 , 𝑗 obtains ℎ 𝑗 , and at least one of them obtains a strictly

better house than her obtained house in the modified TTC.

Assume agent 𝑖 is included in a cycle and removed at Step 𝑘 in

the modified TTC, and agent 𝑗 is included in a cycle and removed

at Step 𝑘 ′ in the modified TTC. Note that in the modified TTC, 𝑖

can point to 𝑗 , and vice versa. Assume 𝑘 < 𝑘 ′ holds. However, at
Step 𝑘 , 𝑗 remains in the market and 𝑖 must point to 𝑗 , since ℎ 𝑗 is at

least as good as her obtained house in the modified TTC. Since 𝑗 is

not included in a cycle in Step 𝑘 , 𝑖 is also not included in a cycle in

Step 𝑘 . This is a contradiction. We obtain a similar contradiction

when 𝑘 > 𝑘 ′ holds.
Thus, 𝑘 = 𝑘 ′ must hold. However, at Step 𝑘 , 𝑖 must point to 𝑗 , and

𝑗 must point to 𝑖 , since ℎ 𝑗 (or ℎ𝑖 ) is at least as good as her obtained

house in the modified TTC. Then 𝑖 and 𝑗 form a cycle; 𝑖 obtains ℎ 𝑗 ,

and 𝑗 obtains ℎ𝑖 . This is a contradiction. □

Trees are also quite common structure of social networks. For

example, a hierarchy among people/agents, such as the univer-

sity president, department deans, laboratory PIs, and other staff

members, results in a tree structure of information diffusion.

7 DISCUSSION
In network auctions, mechanisms based on a diffusion critical tree
(DCT) have been successful [16, 19]. Given 𝜃 ′, agent 𝑗 is a criti-

cal parent of agent 𝑖 , if 𝑖 becomes disconnected when 𝑗 does not

forward the information. If 𝑖 remains connected regardless of the

manipulation of another agent, we assume 𝑠 is the only critical

parent of 𝑖 . There can be multiple critical parents of 𝑖 . We call the

critical parent who is closest to 𝑖 her least critical parent. Then, a
DCT is constructed such that 𝑠 is the root, and for each agent, her

least critical parent becomes her (direct) parent.

For example, if the original social network is given as Fig. 8-(A),

the DCT is given as Fig. 8-(B), assuming all agents truthfully declare

their types/followers. Agent ℓ is connected even when either 𝑗 or 𝑘

does not forward the information. However, if 𝑖 does not forward

the information, ℓ becomes disconnected. Thus, 𝑖 is the least critical

parent of ℓ ; ℓ is directly connected to 𝑖 .

In network auctions, intuitively, we can construct a strategy-

proof mechanism that works with a DCT as follows: for each agent

𝑖 , (1) having more descendants is advantageous, and (2) the tree

structures of other branches do not affect 𝑖’s outcome. For example,

assume agent 𝑗 does not forward the information to agent ℓ . Then,

the DCT changes as described in Fig. 8-(C). Here, compared to

Fig. 8-(B), ℓ , who was a child of 𝑖 , becomes a child of 𝑘 . If property

(2) holds, this manipulation is meaningless for 𝑗 .

However, in a networked housing market, the tree structure of

other branches can crucially affect an agent. Assume we modify

the definition of SC4N such that a pair (𝑖, 𝑗) of agents must be the

parent and the child in the DCT, rather than in the original social

network. Furthermore, we modify the definition of the modified

TTC such that, the parent and descendants are defined based on the

(A) Social Network 𝑟

𝑠 𝑖

𝑗

𝑘

ℓ

(B) True DCT

𝑠 𝑖
𝑗

𝑘

ℓ

(C) Manipulated DCT

𝑠 𝑖 𝑗

𝑘
ℓ

Figure 8: Original social network and two diffusion critical
trees; (B) is under the truth declaration by all agents, and (C)
is under a manipulation by 𝑗 .

DCT rather than the original social network. This further modified

TTC satisfies the above property (1), but it fails to satisfy (2). As a

result, it does not satisfy SP.

More specifically, assume

≻𝑖 : ℎℓ ≻ ℎ 𝑗 ≻ ℎ𝑖 ≻ ℎ𝑘
≻𝑗 : ℎ𝑖 ≻ ℎ 𝑗 ≻ · · ·
≻𝑘 : ℎℓ ≻ ℎ𝑘 ≻ · · ·
≻ℓ : ℎ𝑖 ≻ ℎ𝑘 ≻ ℎℓ ≻ ℎ 𝑗 .

When all the agents truthfully declare their followers, the obtained

DCT is given as Fig. 8-(B).Whenwe apply the further modified TTC,

agent 𝑖 points to ℓ and vice versa; they exchange houses, and agent

𝑗 obtains ℎ 𝑗 . Assume agent 𝑗 does not forward the information to

ℓ . Then the DCT changes as described in Fig. 8-(C). In this case,

agent ℓ cannot point to agent 𝑖 . So, ℓ points to 𝑘 and vice versa;

they exchange houses. Next, agent 𝑖 points to 𝑗 and vice versa; they

exchange houses. Thus, agent 𝑗 obtains ℎ𝑖 , which is better than ℎ 𝑗
for 𝑗 . Intuitively, for agent 𝑗 , agent ℓ is her rival who competes for

ℎ𝑖 . Thus, moving ℓ away from 𝑖 is beneficial.

We obtain an impossibility result that resembles Theorem 4.7

for WC4N defined on the DCT. Not only the further modified TTC,

but also any strategy-proof mechanism defined on the DCT, fails

to satisfy WC4N.

8 CONCLUDING REMARKS
In this paper we tackled a new resource allocation problem called

the networked housing market. This is the very first work that con-

siders agents’ incentives of hiding information in resource alloca-

tion without monetary compensation. As well as two impossibility

results for the general domain, we provided necessary and sufficient

conditions on two problem restrictions under which TTC satisfies

SP, and developed a new mechanism that satisfies both SP and

SC4N when the social network is a tree. Future works include a fur-

ther extension of our model, such as considering additional houses

freely available from a moderator [27], addressing indifferences and

asymmetry of preferences, and allowing multiple houses per agent.

Applying mechanism design over social networks to other multi-

agent resource allocation problems is also an promissing direction.

Furthermore, considering other objectives than Pareto efficiency,

such as maximizing the number of exchanges/swaps [17], would

also be interesting.
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