
Parallel Curriculum Experience Replay in Distributed
Reinforcement Learning

Yuyu Li
University of Science and Technology of China

Hefei, China
yuyuli@mail.ustc.edu.cn

Jianmin Ji
University of Science and Technology of China

Hefei, China
jianmin@ustc.edu.cn

ABSTRACT
Distributed training architectures have been shown to be effective
to improve the performance of reinforcement learning algorithms.
However, their performances are still poor for problems with sparse
rewards, e.g., the scoring task with or without goalkeeper for robots
in RoboCup soccer. It is challenging to solve these tasks in rein-
forcement learning, especially for those that require combining
high-level actions with flexible control. To address these challenges,
we introduce a distributed training framework with parallel cur-
riculum experience replay that can collect different experiences
in parallel and then automatically identify the difficulty of these
subtasks. Experiments on the domain of simulated RoboCup soc-
cer show that, the approach is effective and outperforms existing
reinforcement learning methods.

KEYWORDS
Distributed Training; Reinforcement Learning; Curriculum Learn-
ing
ACM Reference Format:
Yuyu Li and Jianmin Ji. 2021. Parallel Curriculum Experience Replay in
Distributed Reinforcement Learning. In Proc. of the 20th International Con-
ference on Autonomous Agents andMultiagent Systems (AAMAS 2021), Online,
May 3–7, 2021, IFAAMAS, 8 pages.

1 INTRODUCTION
Distributed training architectures, that separate learning from act-
ing and collect experiences from multiple actors running in parallel
on separate environment instances, have become an important tool
for deep reinforcement learning (DRL) algorithms to improve the
performance and reduce the training time [5, 10, 18, 20, 30]. For in-
stance, they have been applied to playing the game of GO [40], the
real-time strategy game of StarCraft II [42, 43], and the multiplayer
online battle arena game of Dota 2 [33].

However, most existing distributed training architectures share
two major limitations. In specific, they assume that their multiple
actors only interact with the same environment, which limits their
ability to collect experiences from different environments. They
focus on collecting experiences for agents working on the original
task and improving their performance on that task, which limits
their ability to learn useful knowledge from subtasks to speed up
the training. These limitations partially explain the decreased per-
formance of distributed training architectures on problems with

Jianmin Ji is the corresponding author.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

sparse rewards, like goal-oriented tasks. In particular, goal-oriented
tasks require an agent to manipulate objects into a desired config-
uration, which are common in the robotics domain [38], e.g., the
scoring task with or without goalkeeper for robots in RoboCup
soccer [22].

On the other hand, curriculum learning [6] has been considered
as a useful tool for DRL to accelerate the learning process for a
sparse-reward problem, e.g., a goal-oriented task, by splitting the
task into a sequence of progressively more difficult subtasks. In
particular, [11] proposed a method named “reverse curriculum”,
which generates a curriculum that allows the robot to gradually
learn to reach the goal from a set of starting positions increasingly
far away from the goal. The assumption behind the method is that,
it is easier for the task starting from a far-away position if the robot
had learned how to achieve the goal starting from nearby positions.
For example, the scoring task without a goalkeeper follows the as-
sumption. However, the assumption may not hold when there was
a goalkeeper, while shooting strategies are quite different for differ-
ent starting positions and the robot does not have to move to nearby
positions to shoot and score. Moreover, to avoid the catastrophic
forgetting problem [27], “reverse curriculum” needs to gradually
collect experiences from the easy-to-hard sequence of tasks and
incrementally expand the experience reply buffer for harder tasks.
This process can seriously reduce the learning efficiency in some
cases, which will be illustrated in our experiments.

In this paper, we address the above issues by combining curricu-
lum learning and distributed reinforcement learning. We show that
the parallel training of the robot with tasks in the curriculum can
improve the performance. In the scoring task with a goalkeeper,
it is observed that experiences obtained from a far-away starting
position can also help the robot to learn proper strategies for nearby
positions. Then training the robot following the reversion of the
curriculum, i.e., following the hard-to-easy task sequence, can also
improve the performance in some cases. Moreover, the parallel
training can effectively mitigate the catastrophic forgetting prob-
lem and improve the learning efficiency for hard tasks.

Based on the distributed training framework, by combining paral-
lel collecting experiences from tasks in the curriculum, we propose
Distributed Parallel Curriculum Experience Replay (DPCER), a dis-
tributed system that can train multiple tasks with different levels
of difficulty at the same time and transfer the knowledge learned
from simple tasks to difficult tasks. Experiments on the domain of
simulated RoboCup soccer show that, the approach is effective and
outperforms existing reinforcement learning algorithms.

The main contributions of the paper are:

Main Track AAMAS 2021, May 3-7, 2021, Online

782

• We show that the parallel training of the robot with tasks in
the curriculum can improve the performance of DRL algo-
rithms.
• We introduce Distributed Parallel Curriculum Experience
Replay (DPCER), a distributed DRL paradigm with parallel
curriculum experience replay for goal-oriented tasks.
• We implement a DRL algorithm under DPCER for the Half
Field Offense (HFO) task [15] in the domain of simulated
RoboCup soccer.
– Experiments show that the algorithm is effective and out-
performs existing DRL algorithms in tests of HFO.

– To the best of our knowledge, this algorithm is the first
algorithm that succeeds in applying distributed DRL in
discrete-continuous (parameterized) hybrid action space [25].

2 RELATEDWORK
2.1 Distributed Training in DRL
To yield more impressive results, a general approach in deep learn-
ing is to use more computational resources [8] and work with
larger datasets [9]. Recently, distributed learning systems have
been applied for deep reinforcement learning. Prior approaches
have relied on asynchronous SGD-style learning (e.g., A3C [28] and
ADPG-R [35]), batched data collection for high GPU throughput
(e.g., GA3C [4], BatchPPO [14]), and more recently, multiple CPU
actors for experience generation and a single GPU learner for model
update (e.g., Ape-X [18], and IMPALA [10]). Our method is different
from these asynchronous gradient methods, as they share gradi-
ents between decentralized learners while we collect experiences
for the learner. Recently, Ape-X and it’s extensions, i.e., D4PG [5],
R2D2 [20], Agent57 [37], have shown state-of-the-art results in sev-
eral benchmarks. Inspired by these methods, our method, DPCER,
also separates the experience generation from the centralized learn-
ing. Different from these methods, DPCER can train multiple tasks
with different levels of difficulty at the same time and transfer the
knowledge learned from simple tasks to difficult tasks.

2.2 Curriculum Learning in DRL
Curriculum learning has been applied to train reinforcement learn-
ing agents for a long time. A recent result is to speed up the training
in robotics domains [24], computer games [44], and Half Field Of-
fense [32], which rely on manually designed curricula. An attempt
to automatically construct curricula is to choosing proper tasks in
the sequence of curriculums during the training process, which can
be considered as a multi-armed bandit problem. The idea has been
successfully applied to supervised sequence learning tasks [13],
discrete sets of environments [26], and continuously parameterized
environments [36]. [2] proposes a “general curriculum” to train a
robot to shoot a ball into a goal based on vision inputs. The idea is
to create a series of tasks, where the agent’s initial state distribution
starts close to the goal state, and is progressively moved farther
away in subsequent tasks, inducing a curriculum of tasks. [11] pro-
poses a method named “reverse curriculum”, which generates a
curriculum that allows the robot to gradually learn to reach the
goal from a set of starting positions increasingly far away from
the goal. The assumption behind the method is that, it is easier for
the task starting from a far-away position if the robot had learned

how to achieve the goal starting from nearby positions. Both of
above methods assume that the goal state is known, while our work
focuses on training all tasks parallelly and controlling the learning
process automatically. Moreover, our approach is implemented in a
distributed training paradigm.

2.3 Parameterized Action Space in DRL
On the other hand, parameterized actions in DRL [25] are com-
posed of discrete actions with continuous action-parameters, which
are very common in computer games and robotics. In computer
games, parametrized actions DRL has been applied in King of Glory
(KOG) [45], a popular mobile multi-player online battle arena game,
and Ghost Story [12], a fantasy massive multi-player online role-
playing game. In robotics, parameterized actions are also involved
in simulated human-robot interaction [21] and terrain-adaptive
bipedal and quadrupedal locomotion [34].

Half Field Offense (HFO), a subtask in the domain of simulated
RoboCup soccer, that a set of offensive agents attempt to score on a
set of defensive agents, is becoming the de facto standard platform
for evaluating various parameterized action DRL algorithms [7, 16,
45]. However, those algorithms require reward shaping to handle
Test 1v0, i.e., the scoring task without goalkeeper, and are unable
to solve Test 1v1, i.e., the scoring task with goalkeeper.

3 PRELIMINARIES
Parameterized actions in DRL [25] are composed of discrete actions
with continuous action-parameters, which provides a framework
for solving complex domains that require combining high-level
actions with flexible control. Notice that, HFO in the RoboCup 2D
soccer, i.e., the experimental environment in the paper, is an MDP
problem with parameterized actions. In HFO, a set of offensive
agents attempt to score on a set of defensive agents. When an agent
chooses an action type ‘Move’, it needs to specify its continuous
parameters for the indicated direction with a scalar power.

Before we delve into the model, we first present a mathematical
formulation of Parameterized Action MDPs (PAMDPs) along with a
DRL algorithm in RoboCup 2D. Thenwe briefly review architectures
that use distributed training to collect replay episodes in DRL. At
last, we specify the definition of curriculum learning in RL and
goal-oriented tasks.

3.1 Parameterized Action MPDs
PAMDPs is a special class of MDPs where the state space is con-
tinuous, S ⊆ R𝑛 , and the action space is defined as the following
parameterized structure:
• A𝑑 = {1, . . . , 𝐾} is a finite set of discrete actions,
• for each discrete action 𝑘 ∈ A𝑑 , X𝑘 ⊆ R𝑚𝑘 is a set of
continuous action-parameters with dimensionality𝑚𝑘 ,
• (𝑘, 𝑥𝑘) is an action, where 𝑘 ∈ A𝑑 and 𝑥𝑘 ∈ X𝑘 .

Then the action space is given by

A =
⋃
𝑘∈A𝑑

{ (𝑘, 𝑥𝑘) | 𝑥𝑘 ∈ X𝑘 },

which is the union of each discrete action with all possible action-
parameters for that action.

Main Track AAMAS 2021, May 3-7, 2021, Online

783

A Parameterized Action Markov Decision Process (PAMDP) [25]
is defined as a tuple ⟨S,A, 𝑃, 𝑅,𝛾⟩, whereS is the set of all states,A
is the parameterized action space, 𝑃 (𝑠 ′ | 𝑠, 𝑘, 𝑥𝑘) is the Markov state
transition probability function, 𝑅(𝑠, 𝑘, 𝑥𝑘 , 𝑠 ′) is the reward function,
and 𝛾 ∈ [0, 1) is the future reward discount factor. An action policy
𝜋 : S → A aims to maximize the the expected discounted return
following the current policy thereafter.

3.2 Multi-Pass Deep Q-Networks
Multi-Pass Deep Q-Networks (MP-DQN) [7] combines DQN [29]
and DDPG [23] to handle parameterized actions. Given a PAMDP
problem, MP-DQN first applies an action-parameter choosing net-
work with parameters 𝜃𝑋 to map a state to a vector of continuous
action-parameters for discrete actions, i.e.,

𝑋 (·;𝜃𝑋) : S → (X1, . . . ,X𝐾) .
We use 𝑋𝑘 (𝑠 ;𝜃𝑋) to denote the 𝑘’th element in the resulting vector,
i.e., the action-parameter in X𝑘 for the discrete action 𝑘 given the
state 𝑠 .

Then MP-DQN uses a Q-network with parameters 𝜃𝑄 to approx-
imate the action-value function, i.e.,

𝑄 (·;𝜃𝑄) : (S × Xe1, . . . ,S × Xe𝐾) → R𝐾 × R𝐾 ,
whereXe𝑘 is the set of vectors of the form xe𝑘 = (0, . . . , 0, 𝑥𝑘 , 0, . . . , 0),
𝑥𝑘 ∈ X𝑘 , which is the joint action-parameter vector where each
𝑥 𝑗 , 𝑗 ≠ 𝑘 is set to zero. This causes all “false gradients” to be zero,
i.e., 𝜕𝑄𝑘

𝜕𝑥 𝑗
= 0 when 𝑗 ≠ 𝑘 , and completely negates the impact of the

network weights for unassociated action-parameters 𝑥 𝑗 from the
input layer, making 𝑄𝑘 only depend on 𝑥𝑘 .

The output of the Q-network is the following matrix:

©«
Q11 · · · 𝑄1𝐾
.
.
.

. . .
.
.
.

𝑄𝐾1 · · · QKK

ª®®¬ ,
where 𝑄𝑖𝑘 is the Q-value for the discrete action 𝑘 generated on the
𝑖’th pass where 𝑥𝑖 is non-zero. Only the diagonal elements 𝑄𝑘𝑘 are
valid and used in the final output.

The loss function w.r.t. parameters 𝜃𝑄 in MP-DQN is:

𝐿𝑄 (𝜃𝑄) = E
[
1
2
(
𝑦 −𝑄𝑘𝑘 (𝑠, 𝑘, xe𝑘 ;𝜃𝑄)

)2]
, (1)

where 𝑦 = 𝑟 + 𝛾 max𝑘′∈A𝑑
𝑄𝑘′𝑘′ (𝑠 ′, 𝑘 ′, xe𝑘′ (𝑠 ′;𝜃−𝑋);𝜃

−
𝑄
)) w.r.t. pa-

rameters 𝜃−
𝑋
, 𝜃−
𝑄
for the target networks.

At last, parameters 𝜃𝑋 are updated so as to maximize the sum of
Q-values with 𝜃𝑄 fixed, i.e., the following loss function:

𝐿𝑥 (𝜃𝑋) = E
[
−

𝐾∑
𝑘=1

𝑄𝑘𝑘
(
𝑠, 𝑘, xe𝑘 ;𝜃𝑄

)]
. (2)

3.3 Distributed Training Architectures in DRL
The distributed training paradigm with experience replay has been
applied in several popular distributed DRL algorithms, like Go-
rila [30], Ape-X [18], D4PG [5], and R2D2 [20]. The paradigm con-
tains following components:
• actor nodes: run in parallel to generate experiences for the
replay buffer,

• learner node: learns from the experience replay buffer and pe-
riodically updates parameters for corresponding actor nodes,
• shared replay buffer : collects experiences from actor nodes
and provides training data to the learner node.

The use of a shared experience replay has the advantages of
tolerating low latency communications and increasing the sample
efficiency.

3.4 Curriculum Learning in DRL
Curriculum learning in DRL is a training methodology that seeks
to increase performance or speed up learning of a target task, by
considering how best to organize and train on experiences acquired
from a series of tasks with different degrees of difficulty. Based on
the following assumptions:
• a task 𝑡𝑖 = ⟨S𝑖 ,A𝑖 , 𝑃𝑖 , 𝑅𝑖 ⟩ is a Markov Decision Process, and
T is a set of tasks.
• DT is the set of all possible transition samples from tasks
in T :

DT = {(s, a, r, s′) | ∃𝑡𝑖 ∈ T s.t. s ∈ S𝑖 ,
a ∈ A𝑖 , s′ ∼ 𝑃𝑖 (·|𝑠, 𝑎), 𝑟 ← 𝑅𝑖 (𝑠, 𝑎, 𝑠 ′)}.

Then a curriculum can be defined as a directed acyclic graph [31]:

C = ⟨V, 𝜀, 𝑔,T⟩,

whereV is the set of vertices, 𝜀 ⊂ {(𝑥,𝑦) | (𝑥,𝑦) ∈ V ×V ∧ 𝑥 ≠ 𝑦}
is the set of directed edges, and 𝑔 : V → P(DT) is a function that
associates vertices to subsets of samples in DT , where P(DT) is
the power set of DT .

We consider approaches that keep the state and action spaces the
same, as well as the environment dynamics, but allow the reward
function and initial/terminal state distributions to vary. Inspired
by [2, 11, 32], we create a series of tasks, where the agent’s initial
state distribution starts close to the goal state, and is progressively
moved farther away in subsequent tasks, inducing a curriculum of
tasks (see Figure 2c).

3.5 Goal-oriented Tasks
Given an MDP problem ⟨S,A, 𝑃, 𝑅,𝛾⟩, a goal-oriented task [11]
is to reach a goal state in 𝑆𝑔 ⊆ S from a starting state in 𝑆0 ⊆
S. A goal-oriented task is binary if its reward function is binary,
i.e., 𝑅(𝑠𝑡) = 1

{
𝑠𝑡 ∈ 𝑆𝑔

}
. It is challenging to solve these tasks in

reinforcement learning, since their natural reward functions are
sparse and optimizing these sparse reward functions directly is less
prone to yielding undesired behaviors. Note that, a scoring task
without a goalkeeper in HFO is such a task, which is considered in
Section 5.3.

An adversarial goal-oriented task generates a goal-oriented task
by involving a competitor in the environment. In specific, it is a
goal-oriented task in a two-player zero-sum stochastic game [39].
Note that, a scoring task with a goalkeeper in HFO is such a task,
which is considered in Section 5.4.

As discussion in previous section, “general curriculum” does
not perform well for adversarial goal-oriented tasks, while our
approach DPCER can improve the performance. Experiments in

Main Track AAMAS 2021, May 3-7, 2021, Online

784

Section 5 show that DPCER is more efficient in both binary and
adversarial goal-oriented tasks.

4 DISTRIBUTED PARALLEL CURRICULUM
EXPERIENCE REPLAY

In this section, we introduce Distributed Parallel Curriculum Expe-
rience Replay (DPCER), a distributed DRL paradigm with parallel
curriculum experience replay for goal-oriented tasks. Following the
paradigm, we implement a distributed DRL algorithm for PAMDP
problems.

Learner

Network

ActorActorActorActor

Network

Replay
Buffer[i]

Network Parameters

Scheduler
Control Learning Process

Sample Experiences

T1, T2, …, Tn

Redis
Cluster

Redis
Cluster

Progress
Signals

Experiences from Ti

Figure 1: The architecture of DPCER. Actor nodes for the
target task 𝑇 and progressively easier tasks 𝑇1, . . . ,𝑇𝑛 gener-
ate experiences to the Redis Cluster. Replay Buffer [𝑖] ac-
cesses data coming from task 𝑇𝑖 from the Redis. Scheduler
accesses progress signals from Actor nodes. Learner node
learns from the training data which is selected by Sched-
uler and updates corresponding network parameters to Re-
dis Cluster.

4.1 Distributed Training Paradigm with
Parallel Curriculum Experience Replay

In the distributed setting, we do not follow the original paradigm,
like “general curriculum”, that trains the agent gradually with a
sequence of progressively more difficult tasks step by step. Instead,
we use the parallel running actor nodes to generate experiences in
this sequence of tasks respectively and train the learner node with
experiences chosen by a scheduler node.

The new paradigm depicted in Figure 1 is specified as follows:
• Splitting a goal-oriented task 𝑇 into a sequence of progres-
sively more difficult tasks ⟨𝑇1, . . . ,𝑇𝑛⟩. In HFO, 𝑇𝑖 specifies
the scoring task whose starting position is closer to the goal
than the starting position of 𝑇𝑗 when 𝑖 < 𝑗 .
• Creating Actor nodes for tasks 𝑇1, . . . ,𝑇𝑛 and the target task
𝑇 .
• Using the parallel running Actor nodes to generate experi-
ences for corresponding Replay Buffers and progress signals
for Scheduler.
• During each training timestep, choosing experiences in a
proper Replay Buffer by Scheduler to train Leaner node.

4.2 Scheduling Polices in DPCER
The scheduling policy for Scheduler is try to maximize Leaner’s
performance on the original task 𝑇 by selecting training samples
from proper Buffer Replays.

Uniform sampling is a scheduling policy that chooses samples
from Buffer Replays uniformly at random, i.e.,

𝑝 (𝑖) = 1
𝑁
, (3)

where 𝑝 (𝑖) denotes the probability of choosing sample from Buffer
Replay [𝑖] and 𝑁 denotes the number of Buffer Replays. DPCER
with the uniform sampling policy is denoted as DPCERu𝑠 .

‘EXP3’[3] is another scheduling policywhich considers the sched-
uling problem as an 𝑁 -armed bandit problem [41] and chooses
proper Buffer Replays by tracking expected returns of them. In
specific, at each time 𝑡

𝑝 (𝑖) = (1 − 𝛾) 𝑤𝑡 (𝑖)∑𝑁
𝑗=1𝑤𝑡 (𝑗)

+ 𝛾
𝑁
, (4a)

𝑤𝑡+1 (𝑖) = 𝑤𝑡 (𝑖) exp
(𝛾 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑖)

𝑝 (𝑖) 𝑁

)
, (4b)

𝑠𝑖𝑔𝑛𝑎𝑙 (𝑖) = 𝑟 (𝑖) 𝑠𝑡𝑒𝑝 (𝑖), (4c)

where 𝛾 is the learning rate, 𝑟 (𝑖) is the profit of choosing Buffer
Replay [𝑖] at time 𝑡 , 𝑠𝑡𝑒𝑝 (𝑖) = 1 if Buffer Replay [𝑖] was chosen at
time 𝑡 and 𝑠𝑡𝑒𝑝 (𝑖) = 0 otherwise. DPCER with the ‘EXP3’ policy is
denoted as DPCERe𝑥𝑝3.

4.3 Parametrized Action DRL Algorithms
under DPCER

Now we apply DPCER to the popular parameterized action DRL
algorithm, MP-DQN, resulting new distributed DRL algorithms in
parameterized action space. Without causing confusion, we also
name new algorithms as DPCERu𝑠 and DPCERe𝑥𝑝3.

Actor nodes in both DPCERu𝑠 and DPCERe𝑥𝑝3 are specified in
Algorithm 1, where the actor nodes number 𝑛 denotes that the
target task is split into 𝑛 − 1 easier tasks. In particular, 𝑛 actor
nodes are created to act in corresponding environments to generate
experiences. Learner node is specified in Algorithm 2. In particular,
the Q-network and the action-parameter choosing network are
training by experiences chosen by Scheduler from Replay Buffers.
Scheduler is specified in Algorithm 3 if ‘EXP3’ is applied.

5 EXPERIMENTS
In this section, we evaluate the performance of DPCER on the
domain of simulated RoboCup soccer. In experiments, we compare
DPCER with “general curriculum” on both binary and adversarial
goal-oriented tasks. In specific, “Scoring goals without goalkeeper”
as illustrated in Figure 2(a) serves as the binary goal-oriented task
and “Scoring goals against goalkeeper” as illustrated in Figure 2(b)
serves as the adversarial goal-oriented task in experiments. The
results show that parallel training of the robot with tasks in the
curriculum can improve the performance.

1Corresponding source codes are available on line: https://github.com/yuyuguru/
Distributed-Parallel-Curriculum-Experience-Replay.

Main Track AAMAS 2021, May 3-7, 2021, Online

785

https://github.com/yuyuguru/Distributed-Parallel-Curriculum-Experience-Replay
https://github.com/yuyuguru/Distributed-Parallel-Curriculum-Experience-Replay

Algorithm 1: Actor nodes
Input: Environment label number 𝑛, updating frequency for

the network 𝑡actors
1 Initialize ENVIRONMENT𝑛 with label number 𝑛 ;
2 𝜃𝑁𝑒𝑡 ← REDISCLUSTER.GetLearnerNetworks() ;
3 𝑡 ← 0 ;
4 while not Learner is finished do
5 𝑠0 ← ENVIRONMENT𝑛 .Reset() ;
6 while episode is not finished do
7 𝑎𝑡 ← 𝜃𝑁𝑒𝑡 (𝑠𝑡);
8 (𝑟𝑡+1, 𝑑𝑡+1, 𝑠𝑡+1) ← ENVIRONMENT.Step(𝑎𝑡) ;
9 Transition.Add(⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡+1, 𝑑𝑡+1, 𝑛⟩) ;

10 𝑡 = 𝑡 + 1;
11 REDISCLUSTER.Rpush(Transition) ;
12 if 𝑡 mod 𝑡actors = 0 then
13 REDISCLUSTER.SetSignalProcess(⟨Signal, 𝑛⟩) ;
14 𝜃𝑁𝑒𝑡 ← REDISCLUSTER.GetLearnerNetworks() ;

Algorithm 2: Learner node
Input: Training steps 𝑇 , all different tasks number 𝑁 ,

replay buffer list RBL
1 𝜃𝑁𝑒𝑡 , 𝜃

−
𝑁𝑒𝑡
← InitializeNetwork()

2 for 𝑖 = 1, 2, ..., 𝑁 do
3 RBL[i]← REDISCLUSTER.GetExperience(i) ⊲ Run as a

threading procedure
4 for 𝑡 = 1, 2, ...,𝑇 do
5 Choose task 𝑖 based on Scheduler’s probability. ⊲

Equation (3) or (4a) ;
6 𝜏 ← RBL[𝑖].sample(BatchSize) ;
7 loss𝑁𝑒𝑡 ← Loss(𝜏 ;𝜃𝑁𝑒𝑡 , 𝜃−𝑁𝑒𝑡) ⊲ Using the loss function

in Equation (1) (2) for MPDQN.;
8 𝜃𝑁𝑒𝑡𝑡+1 ← UpdateParameters(loss𝑁𝑒𝑡 ;𝜃𝑁𝑒𝑡𝑡) ;
9 𝜃−

𝑁𝑒𝑡𝑡+1
← SoftUpdate(𝜃𝑁𝑒𝑡𝑡+1) ;

10 REDISCLUSTER.Set(𝜃𝑁𝑒𝑡);

11 return 𝜃𝑁𝑒𝑡

Algorithm 3: Scheduler with EXP3
Input: expected weight𝑤 (𝑖) = 1 for all 𝑁 tasks

1 while Learner node is not finished do
2 for 𝑛 = 1, 2, ..., 𝑁 do
3 signals← REDISCLUSTER.getSignal(𝑛) ;
4 update𝑤 (𝑛) with signals ⊲ Equation (4b) ;
5 compute 𝑝 (𝑛) ⊲ Equation (4a) ;

6 return 𝑝

5.1 Half Field Offense Domain
The RoboCup 2D Soccer Simulation League works with an ab-
straction of soccer wherein the players, the ball, and the field are

(a) Scoring without Goal-
keeper

(b) Scoring against Goal-
keeper

(c) Nearby and Far-away
Tasks

Figure 2: Goal-oriented Tasks1.

all 2-dimensional objects. The state of a HFO example contains 58
continuously-valued features2, which provides angles and distances
to various on-field objects of importance such as the ball, the goal,
and the other players. All these features range from −1 to 1. A Full
list of state features may be found on HFO’s website3.

The full action space for HFO is: { Dash (power, direction), Turn
(direction), Tackle (direction), Kick (power, direction) }, where all
the directions are parameterized in the range of [−180, 180] degree
and power in [0, 100]. There are 4 discrete actions, i.e., Dash, Turn,
Tackle, Kick, in this parameterized action space.

5.2 Experiment Settings
We apply our algorithms, DPCER𝑢𝑠 and DPCER𝑒𝑥𝑝3, in experi-
ments. We also compare them with algorithms following “general
curriculum”[44]. To make it fair, we implemented three DRL algo-
rithms from MP-DQN (similar to DPCER𝑢𝑠 and DPCER𝑒𝑥𝑝3) fol-
lowing “general curriculum” under distributed training paradigm.
In specific,
• Distributed Baseline (DB): a baseline DRL algorithm that
only implements MP-DQN in the distributed paradigm (APE-
X [18]) without curriculum learning.
• Distributed Baseline Curriculum (DBC): a shared experi-
ence replay DRL algorithm that implements MP-DQN in the
distributed paradigm with “general curriculum” [2] which
following the easy-to-hard sequence of tasks.
• Distributed Reverse Curriculum (DRC): a shared experience
replay DRL algorithm that refines DBC by incrementally
collecting experiences from easier tasks to mitigate the cata-
strophic forgetting problem, which is inspired by “reverse
curriculum” [11].

We also compare our algorithm with a planning algorithm, named
Helios, which is programed by Helios [1], the 2012 RoboCup 2D
champion team.

5.3 Test 1v0: Scoring Goals without Goalkeeper
In this test, the 2D agent is placed at a random position on the
offensive half of the field in the beginning. The task in this test is

2Note that, the number of complete features derived from HeliosAgent2D’s[1] world
model is 58+ 8×𝑇 + 8×𝑂 , where𝑇 is the number of teammates and𝑂 is the number
of opponents.
3https://github.com/LARG/HFO/blob/master/doc/manual.pdf

Main Track AAMAS 2021, May 3-7, 2021, Online

786

binary goal-oriented. Its reward function is binary, i.e.,

𝑟𝑡 = 5I𝑔𝑜𝑎𝑙𝑡 . (5)

We evaluate the performance of all six algorithms introduced
in the experiment setting in Test 1v0. Experimental results are
specified in Figure 3, which illustrates the mean episode reward
and the mean episode length (the shorter the better) during the
training time of these algorithms in 5 cases of the test.

0 200 400 600 800 1000
Iteration(x1000)

0%

20%

40%

60%

80%

100%

M
ea

n
Sc

or
e

Pe
rc

en
t

DPCERexp3(ours)
DPCERus(ours)
DB
DBC
DRC
Helios

0 200 400 600 800 1000
Iteration(x1000)

60

80

100

120

140

160
M

ea
n

Ep
iso

de
 L

en
gt

h

DPCERexp3(ours)
DPCERus(ours)
DB
DBC
DRC
Helios

Figure 3: Experimental results for Test 1v0.

The results show that both DPCER and “general curriculum”
learned how to score while the Distributed Baseline (DB) failed in
the test. Moreover, DPCER is more efficient than “general curricu-
lum”, as both DPCER𝑢𝑠 and DPCER𝑒𝑥𝑝3 perform better than DBC
and DRC. After the training, both DPCER𝑢𝑠 and DPCER𝑒𝑥𝑝3 also
perform better than Helios.

We also provide the learning curve of Q-value for DBC, DRC, and
DPCER𝑒𝑥𝑝3 in Figure 4. Similar to the performance in Figure 3, the
learning curve of Q-value for DPCER𝑢𝑠 is the same as DPCER𝑒𝑥𝑝3.
The results show that, compared with “general curriculum”, DPCER
runs more smoothly and quickly.

200 400 600 800 1000
Iteration(x1000)

0

1

2

3

4

5

Av
er

ag
e

M
ax

 Q
-V

al
ue

DBC in TASK 1
DBC in TASK 2
DBC in TASK 3
DBC in TASK 4

200 400 600 800 1000
Iteration(x1000)

0

1

2

3

4

5

Av
er

ag
e

M
ax

 Q
-V

al
ue

DRC in TASK 1
DRC in TASK 2
DRC in TASK 3
DRC in TASK 4

200 400 600 800 1000
Iteration(x1000)

0

1

2

3

4

Av
er

ag
e

M
ax

 Q
-V

al
ue

DPCERexp3 in TASK 1
DPCERexp3 in TASK 2
DPCERexp3 in TASK 3
DPCERexp3 in TASK 4

Figure 4: Average of maximum Q-value for Test 1v0.

There are various parameterized action DRL algorithms for this
test, while most of them use a reward shaping function as speci-
fied in Equation (6). Table 1 summarizes the performance of these
algorithms and compares them with ours. The results show that
DPCER outperforms others. A demonstration video to illustrate the
performance of DPCER𝑒𝑥𝑝3 in Test 1v0 is available on line4.

5.4 Test 1v1: Scoring Goals Against Goalkeeper
Scoring goals against a goalkeeper is more challenging, since the
goalkeeper’s policy is a highly adept code that is programmed by
Helios[1], the RoboCup 2D champion team. A long distance shot
can easily be blocked by the goalkeeper.

4https://youtu.be/ZOhv-KfT8EQ

Table 1: Performance of algorithms on Test 1v0.

Algorithm Network Scoring Avg. steps
Iteration Percentage to Goal

Helioa — 96.2% 72
P-DDPGb 3M 92.3% 112
a3c.P-DQNc 72M 98.9% 81
MP-DQNd 2M 91.3% 99
DPCER𝑒𝑥𝑝3 1M 99.5% 68

a. The planning algorithm was programed by Helios [1], the 2012 RoboCup 2D champion team.
b. The performance of P-DDPG algorithm with shaping reward in Equation (6) is from [16] .
c. The performance of a3c.P-DQN algorithm with shaping reward in Equation (6) is from [45].
d. The performance of MP-DQN algorithm with shaping reward in Equation (6) is from [7].

* Our algorithm DPCER𝑒𝑥𝑝3 with spare reward in Equation (5).

The reward shaping function is specified below, which is adapted
by most algorithms [7, 16, 17, 45]:

𝑟𝑡 = 𝑑𝑡−1 (𝑎, 𝑏) − 𝑑𝑡 (𝑎, 𝑏) + I𝑘𝑖𝑐𝑘𝑡

+ 3 (𝑑𝑡−1 (𝑏,𝑔) − 𝑑𝑡 (𝑏,𝑔)) + 5I𝑔𝑜𝑎𝑙𝑡 . (6)

The reward function encourages the agent to approach the ball,
i.e., 𝑑 (𝑎, 𝑏) is the distance between the agent and the ball, kick the
ball, dribble the ball towards the goal, i.e., 𝑑 (𝑏,𝑔) is the distance
between the ball and the goal, and score a goal.

We also evaluate the performance of all six algorithms in Test 1v1.
Experimental results are specified in Figure 5. The results show
that both DPCER𝑢𝑠 and DPCER𝑒𝑥𝑝3 are efficient and outperform
all other DRL algorithms. Notice that, both DPCER and “general
curriculum” with incremental curriculum experience replay learned
how to score while other DRL algorithms failed in the test. In
particular, DB and DBC were stuck at some local optimal solutions,
i.e., strategies to approach the ball and dribble towards the goal.

Figure 5: Experimental results for Test 1v1.

We also compare DPCER𝑒𝑥𝑝3 with other existing algorithms
in Table 2. It shows that DPCER𝑒𝑥𝑝3 is effective and outperforms
others, i.e., a planning algorithm and an imitation learning algo-
rithm. A demonstration video that illustrates the performance of
DPCER𝑒𝑥𝑝3 is available on line5.

5.5 Catastrophic Forgetting Problem in
General Curriculum

In this subsection, we discuss the catastrophic forgetting problem
for DPCER and “general curriculum” in the training stage.

5https://youtu.be/7DnVzkU1WHU

Main Track AAMAS 2021, May 3-7, 2021, Online

787

https://youtu.be/ZOhv-KfT8EQ
https://youtu.be/7DnVzkU1WHU

Table 2: Performance of algorithms on Test 1v1.

Algorithm Network Scoring Avg. steps
Iteration Percentage to Goal

Helioa — 81.4% 86
LSTMb unknown 38.8% unknown
DPCER𝑒𝑥𝑝3 2M 98.5% 89

a. The planning algorithm programed by Helios [1].
b. The performance of imitation learning algorithm is from [19].

* Our algorithm DPCER𝑒𝑥𝑝3 is evaluated by 1000 trials.

In Test 1v0, as illustrated by the black curve on the left sub-
figure in Figure 4, the Q-value of DBC for TASK 3 and TASK 4
dropped rapidly. This is due to the catastrophic forgetting problem,
as Learner is trained following the easy-to-hard sequence of tasks
and the ability on scoring at a nearby position was forgotten during
the training process. Although DRC is smoother than DBC, it is still
found from the black curve on the middle sub-figure in Figure 4
that DRC is affected by the forgetting problem. DPCER outperforms
“general curriculum” in this case.

Similarly, in Test 1v1, as illustrated in Figure 6, DPCER outper-
forms “general curriculum” as well.

Figure 6: Experimental results for all tasks in Test 1v1.

5.6 Identifying Difficulty of Tasks
In this subsection, we show that DPCER can automatically identify
the difficulty of tasks and assign proper sampling probabilities for
them in the training stage. As illustrated in Figure 7, DPCER𝑒𝑥𝑝3
adjusts the sampling probabilities for TASK 1-4 at each iteration
in Test 1v0, due to their rewards at the corresponding iteration. In
specific, “exp3” has no prior knowledge on four tasks, then their
sampling probabilities are assigned equivalently to be 0.25 at the
beginning. At the early stage of the training, the rewards for TASK 3
and TASK 4 are increased as both tasks are easier to be learned. Then
their sampling probabilities are also increased, while decreasing the
probabilities for TASK 1 and TASK 2. After 170,000 iterations, the
rewards for TASK 1 and TASK 2 begin to increase. DPCER𝑒𝑥𝑝3 is
aware of the change and properly adjusts the probabilities for tasks.
In the end, DPCER𝑒𝑥𝑝3 considers TASK 1 as the most challenging
task and TASK 4 as the simplest task, which matches with our
intuition that the task starts farther away from the goal is more
difficult, as shown in Figure 2(c).

5.7 Transferring Knowledge among Tasks
As illustrated in Figure 8, we further explore the effect of parallel
curriculum experience replay on the early stage of the training in

200 400 600 800 1000
Iteration(x1000)

0

1

2

3

4

5

M
ea

n
Re

wa
rd

reward in TASK 1
reward in TASK 2
reward in TASK 3
reward in TASK 4

0 200 400 600 800 1000
Iteration(x1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

probability in TASK 1
probability in TASK 2
probability in TASK 3
probability in TASK 4

Figure 7: Experimental results of DPCER𝑒𝑥𝑝3 for all tasks in
Test 1v0.

Test 1v1. The learner is trained from experiences in the curricu-
lum replay buffer, which gathers episodes from actors for TASK 1,
TASK 2, TASK 3 and TASK 4. The learning curve for TASK 4, i.e., the
green curve, in Figure 8 shows that DPCER𝑒𝑥𝑝3 can learn the knowl-
edge on shooting in TASK 4 quickly. Later, DPCER𝑒𝑥𝑝3 can learn
the knowledge on dribbling towards the goal in TASK 3. A video il-
lustrating the phenomenon is available on YouTube6. DPCER allows
the learner to transfer the knowledge on shooting and dribbling to
Task 1 and Task 4, which enables the agent to dribble towards the
goal and make a scoring shot.

50 100 150 200 250 300 350
Iteration(x1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

ea
n

Sc
or

e
Pe

rc
en

t
DPCERexp3 in TASK 1
DPCERexp3 in TASK 2
DPCERexp3 in TASK 3
DPCERexp3 in TASK 4
DBC in TASK 1

Figure 8: Early stage of the training for all tasks in Test 1v1.

6 CONCLUSION
In this paper, we show that the parallel training of the robot with
tasks in the curriculum can improve the performance of DRL algo-
rithms. We introduce Distributed Parallel Curriculum Experience
Replay (DPCER), a distributed training paradigm with parallel cur-
riculum experience replay for goal-oriented tasks. Following the
paradigm, we propose two distributed DRL algorithms, DPCER𝑢𝑠
and DPCER𝑒𝑥𝑝3, in parameterized action space. We test new algo-
rithms on the domain of simulated RoboCup soccer. Experimental
results show that, our algorithms are effective in both binary and
adversarial goal-oriented tasks.

6https://youtu.be/e78opuZ8Vjc

Main Track AAMAS 2021, May 3-7, 2021, Online

788

https://youtu.be/e78opuZ8Vjc

ACKNOWLEDGMENTS
The work is partially supported by the National Major Program for
Technological Innovation 2030 – New Generation Artificial Intel-
ligence (No. 2018AAA0100500), CAAI-Huawei MindSpore Open
Fund, and Anhui Provincial Development and Reform Commis-
sion 2020 New Energy Vehicle Industry Innovation Development
Project "Key System Research and Vehicle Development for Mass
Production Oriented Highly Autonomous Driving".

REFERENCES
[1] Hidehisa Akiyama and Tomoharu Nakashima. 2013. Helios base: An open source

package for the robocup soccer 2d simulation. In Robot Soccer World Cup. 528–
535.

[2] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. 1996.
Purposive behavior acquisition for a real robot by vision-based reinforcement
learning. Machine learning 23, 2-3 (1996), 279–303.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48–77.

[4] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan
Kautz. 2016. Reinforcement learning through asynchronous advantage actor-
critic on a gpu. arXiv preprint arXiv:1611.06256 (2016).

[5] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan
Horgan, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. 2018. Distributed
distributional deterministic policy gradients. In ICLR.

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum Learning. In ICML. 41–48.

[7] Craig J. Bester, Steven D. James, and George D. Konidaris. 2019. Multi-Pass Q-
Networks for Deep Reinforcement Learning with Parameterised Action Spaces.
arXiv preprint arXiv:1905.04388 (2019).

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012. Large
scale distributed deep networks. In Advances in neural information processing
systems. 1223–1231.

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018.
IMPALA: Scalable Distributed Deep-RL with ImportanceWeighted Actor-Learner
Architectures. In ICML.

[11] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse Curriculum Generation for Reinforcement Learning. In
CoRL. 482–495.

[12] Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie
Fan. 2019. Deep Multi-Agent Reinforcement Learning with Discrete-Continuous
Hybrid Action Spaces. In IJCAI.

[13] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In
ICML. 1311–1320.

[14] Danijar Hafner, James Davidson, and Vincent Vanhoucke. 2017. Tensorflow
agents: Efficient batched reinforcement learning in tensorflow. arXiv preprint
arXiv:1709.02878 (2017).

[15] Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram
Kalyanakrishnan, and Peter Stone. 2016. Half field offense: An environment for
multiagent learning and ad hoc teamwork. In AAMAS Adaptive Learning Agents
(ALA) Workshop.

[16] Matthew Hausknecht and Peter Stone. 2016. Deep Reinforcement Learning in
Parameterized Action Space. In ICLR.

[17] Matthew Hausknecht and Peter Stone. 2016. On-policy vs. off-policy updates
for deep reinforcement learning. In Deep Reinforcement Learning: Frontiers and
Challenges, IJCAI 2016 Workshop.

[18] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. 2018. Distributed prioritized experience
replay. In ICLR.

[19] Ahmed Hussein, Eyad Elyan, and Chrisina Jayne. 2018. Deep Imitation Learning
with Memory for Robocup Soccer Simulation. In EANN. 31–43.

[20] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.
2019. Recurrent experience replay in distributed reinforcement learning. In ICLR.

[21] Mehdi Khamassi, George Velentzas, Theodore Tsitsimis, and Costas Tzafestas.
2017. Active exploration and parameterized reinforcement learning applied to a
simulated human-robot interaction task. In IRC. 28–35.

[22] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Coradeschi,
Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. 1997. The

RoboCup Synthetic Agent Challenge 97. In IJCAI. 24–29.
[23] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. In NIPS.

[24] Patrick MacAlpine and Peter Stone. 2018. Overlapping layered learning. Artificial
Intelligence 254 (2018), 21–43.

[25] Warwick Masson, Pravesh Ranchod, and George Konidaris. 2016. Reinforcement
learning with parameterized actions. In AAAI. 1934–1940.

[26] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2019. Teacher-
student curriculum learning. IEEE transactions on neural networks and learning
systems (2019).

[27] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[28] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In ICML. 1928–1937.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[30] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, et al. 2015. Massively parallel methods for deep reinforce-
ment learning. In ICML.

[31] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:
A Framework and Survey. arXiv preprint arXiv:2003.04960 (2020).

[32] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source
task creation for curriculum learning. In AAMAS. 566–574.

[33] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.
[34] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. 2016. Terrain-adaptive

locomotion skills using deep reinforcement learning. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 81:1–81:12.

[35] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Ried-
miller. 2017. Data-efficient deep reinforcement learning for dexterous manipula-
tion. arXiv preprint arXiv:1704.03073 (2017).

[36] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. 2019.
Teacher algorithms for curriculum learning of Deep RL in continuously parame-
terized environments. CoRL (2019).

[37] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. 2020. Agent57: Outperforming
the Atari Human Benchmark. arXiv (2020), arXiv–2003.

[38] Alessandra Sciutti, Ambra Bisio, Francesco Nori, Giorgio Metta, Luciano Fadiga,
and Giulio Sandini. 2013. Robots can be perceived as goal-oriented agents.
Interaction Studies 14, 3 (2013), 329–350.

[39] Yoav Shoham and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press.

[40] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[41] Richard S Sutton and Andrew G Barto. 1998. Reinforcement Learning: An Intro-
duction. MIT press.

[42] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg,WojciechMCzarnecki, AndrewDudzik, AjaHuang, PetkoGeorgiev, Richard
Powell, et al. 2019. AlphaStar: Mastering the real-time strategy game StarCraft II.
DeepMind Blog (2019).

[43] Oriol Vinyals, Igor Babuschkin, Wojciech Marian Czarnecki, Michael Mathieu,
Andrew Dudzik, Junyoung Chung, David H Choi, Richard E Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

[44] Yuxin Wu and Yuandong Tian. 2017. Training Agent for First-Person Shooter
Game with Actor-Critic Curriculum Learning. In ICLR.

[45] Jiechao Xiong, Qing Wang, Zhuoran Yang, Peng Sun, Lei Han, Yang Zheng,
Haobo Fu, Tong Zhang, Ji Liu, and Han Liu. 2018. Parametrized deep q-networks
learning: Reinforcement learning with discrete-continuous hybrid action space.
arXiv preprint arXiv:1810.06394 (2018).

Main Track AAMAS 2021, May 3-7, 2021, Online

789

https://blog.openai.com/openai-five/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Distributed Training in DRL
	2.2 Curriculum Learning in DRL
	2.3 Parameterized Action Space in DRL

	3 Preliminaries
	3.1 Parameterized Action MPDs
	3.2 Multi-Pass Deep Q-Networks
	3.3 Distributed Training Architectures in DRL
	3.4 Curriculum Learning in DRL
	3.5 Goal-oriented Tasks

	4 Distributed Parallel Curriculum Experience Replay
	4.1 Distributed Training Paradigm with Parallel Curriculum Experience Replay
	4.2 Scheduling Polices in DPCER
	4.3 Parametrized Action DRL Algorithms under DPCER

	5 Experiments
	5.1 Half Field Offense Domain
	5.2 Experiment Settings
	5.3 Test 1v0: Scoring Goals without Goalkeeper
	5.4 Test 1v1: Scoring Goals Against Goalkeeper
	5.5 Catastrophic Forgetting Problem in General Curriculum
	5.6 Identifying Difficulty of Tasks
	5.7 Transferring Knowledge among Tasks

	6 Conclusion
	Acknowledgments
	References

