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ABSTRACT
A robust testing program is necessary for containing the spread

of COVID-19 infections before a vaccine becomes available. How-

ever, due to an acute shortage of testing kits (especially in low-

resource developing countries), designing an optimal testing pro-

gram/strategy is a challenging problem to solve. Prior literature

on testing strategies suffers from two major limitations: (i) it does

not account for the trade-off between testing of symptomatic and

asymptomatic individuals, and (ii) it primarily focuses on static test-

ing strategies, which leads to significant shortcomings in the testing

program’s effectiveness. In this paper, we address these limitations

by making five novel contributions. (i) We formally define the op-

timal testing problem and propose the DOCTOR POMDP model

to tackle it. (ii) We solve the DOCTOR POMDP using a scalable

Monte Carlo tree search based algorithm. (iii) We provide a rigor-

ous experimental analysis of DOCTOR’s testing strategies against

static baselines - our results show that when applied to the city of

Santiago in Panama, DOCTOR’s strategies result in ∼40% fewer

COVID-19 infections (over one month) as compared to state-of-the-

art static baselines. (iv) In addition, we analyze DOCTOR’s testing

policy to derive insights about the reasons behind the optimality of

DOCTOR’s testing policy. (v) Finally, we characterize conditions

(of the real world) under which DOCTOR’s optimization would be

of most benefit to government policy makers, and thus requires

significant attention from researchers in this area. Our work com-

plements the growing body of research on COVID-19, and serves as

a proof-of-concept that illustrates the benefit of having an AI-driven

adaptive testing strategy for COVID-19.
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1 INTRODUCTION
COVID-19 (or coronavirus) is an urgent public health crisis - within

nine months, COVID-19 has infected more than 35 million people,

and has resulted in ∼1 million deaths worldwide [42]. It has been

declared as a global pandemic by the World Health Organization

(WHO) [11]. Unfortunately, despite the enforcement of stringent

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

preventive measures, the spread of COVID-19 still does not appear

to be slowing down.

According to the Centers for Disease Control and Prevention

(CDC), there is currently no vaccine to prevent COVID-19, and

the best way to prevent infection is to avoid being exposed to the

COVID-19 virus through social distancing [10]. However, it is diffi-

cult to enforce social distancing for a prolonged period of time, due

to the devastating impact of these orders on peoples’ livelihoods.

This negative impact is most acutely felt in developing countries,

where a majority of the population rely on daily wages for a liv-

ing, and prolonged stay-at-home orders cut off the sole means of

sustenance for this population. In fact, more than 71 million peo-

ple have been pushed to extreme poverty due to social distancing

measures enforced in developing countries [39]. Therefore, finding

new innovative science-backed methods to contain the spread of

COVID-19 is now of the utmost importance.

A robust COVID-19 testing program is necessary for containing

the spread of infections, as it can: (i) help identify and quarantine

infected patients, which can break the chain of COVID-19 trans-

missions and reduce the total number of infections; and at a higher

level, (ii) aggregate results from COVID-19 testing programs can

help epidemiologists and policy makers in determining where com-

munities/states/countries are on the epidemic curve, which enables

them to take more well-informed decisions about the removal of

stay-at-home orders.

However, designing the optimal testing program for COVID-19

is a challenging problem because of three major reasons. First, in

addition to testing individuals with symptoms who show up at the

hospital (i.e., symptomatic testing), the CDC also recommends test-

ing individuals without symptoms in the public (i.e., asymptomatic

testing) in order to detect COVID-19 early and stop transmission

quickly [8]. Second, policy makers (especially in developing coun-

tries) are constrained in the number of tests (both symptomatic

and asymptomatic) that they can conduct on a daily basis, and thus,

they need to strategically allocate their limited number of tests

among symptomatic and asymptomatic patients. Finally, an optimal

testing strategy needs to be adaptive, as the number of sympto-

matic/asymptomatic tests per day should be increased/decreased

adaptively depending on the number of positively diagnosed peo-

ple in previous days of testing. Therefore, policy makers need to

intelligently allocate their limited resources (i.e., limited number of

COVID-19 testing kits) over a prolonged period of time in order to

minimize the total (cumulative) number of COVID-19 infections.

To this date, while almost every country has a COVID-19 test-

ing strategy in place, these strategies are mostly static (i.e., non-

adaptive), potentially causing significant shortcomings in their

effectiveness in containing COVID-19 (we validate this in our ex-

perimental analysis). In this paper, we overcome this limitation via
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three novel contributions. First, we provide a formal definition of

the optimal testing problem and propose the DOCTOR (Design of

Optimal COVID-19 Testing Oracle) model, which casts the opti-

mal testing problem as a Partially Observable Markov Decision

Process (POMDP). Second, we solve DOCTOR’s POMDP model

using a Monte Carlo tree search based algorithm [33]. Our POMDP

based algorithm has three key novelties: (i) it models the spread of

the COVID-19 virus via SEIR model dynamics [2]; (ii) it optimally

trades off between the amount of resources (i.e., testing kits) that

should be invested in symptomatic versus asymptomatic testing

to find the optimal testing strategy; and (iii) our POMDP model

adaptively updates its future long term policy based on aggregate

testing results (i.e., how many symptomatic and asymptomatic tests

came out positive, etc.) from previous rounds. Finally, and most

importantly, we also provide a rigorous experimental analysis of

DOCTOR’s testing strategy against static testing programs to il-

lustrate the effectiveness of our approach. Our experiments reveal

that DOCTOR’s testing strategy was able to outperform state-of-

the-art baselines by achieving ∼40% fewer COVID-19 infections,

when applied to city of Santiago, Panama. The result illustrates

the benefit of having an adaptive strategy. In addition, we analyze

DOCTOR’s testing policy to derive insights about the reasons be-

hind the optimality of DOCTOR’s testing policy. At the end, we also

provide a characterization of the problem conditions in which it is

most advisable to rely on DOCTOR for determining the COVID-19

testing policy.

Tackling COVID-19 requires the collective will of experts from

a variety of disciplines. While a lot of efforts have been made by

AI researchers in developing agent-based models for simulating

the transmission of COVID-19 [21, 41, 46], we believe that AI’s

enormous potential can (and should) be leveraged to design deci-

sion support systems (e.g., in the allocation of limited healthcare

resources such as testing kits) which can assist epidemiologists and

policy makers in their fight against this pandemic. Our work repre-

sents the first step in developing such a decision support system,

and should serve as a proof-of-concept that illustrates the benefit

of having an AI-driven adaptive testing strategy.

2 RELATEDWORK
To the best of our knowledge, very little prior work on COVID-19

has focused on resource allocation problems that arise due to acute

shortages of COVID-19 testing kits (despite this shortage being an

unfortunate reality in many developing countries, such as Nepal

[18]). Nevertheless, we discuss prior work in three related areas.

First, we describe prior work on optimizing COVID-19 testing

strategies. A lot of work has focused on optimizing group (pooled)

testing techniques, in which COVID-19 tests are conducted on blood

samples pooled from several patients in order to reduce the number

of tests required to diagnose a population [4, 28, 37]. This body

of research is complementary to our work, as DOCTOR’s model

employs group testing to conduct tests on asymptomatic individuals,

so it can exploit performance gains due to these optimized group

testing techniques. Also, Singh et al. [35] proposed POMDP based

sequential testing strategies to optimize contact tracing, i.e., given

a confirmed COVID-19 positive diagnosis, which of their contacts

should be tested next. However, DOCTOR looks at a complementary

goal - given a limited number of testing kits, how to optimally

distribute them among symptomatic and asymptomatic individuals.

Second, we describe prior work on epidemiological models for

simulating COVID-19 transmissions. A lot of efforts have been

made by AI researchers to develop SEIR type models and agent

based models which can simulate the progression of COVID-19 in

a population of susceptible individuals [12, 31, 32, 46]. In particular,

to account for high rates of asymptomaticity among COVID-19

patients, three independent prior studies [16, 17, 20] proposed SEIR

models with separate compartments for symptomatic and asymp-

tomatic infections. We build on top of this work by proposing our

own simplified SEIR model which is used by DOCTOR to design

its optimal testing strategies.

Finally, we discuss related work on optimal intervention strate-

gies, i.e., when/how to impose complete and partial lockdowns, etc.,

to contain COVID-19. There is some prior work on using Markov-

ian models (e.g., MDPs, POMDPs) to design adaptive sequential

strategies for imposing (and releasing) lockdown protocols depend-

ing on the current rate of COVID-19 spread [14, 36]. At the same

time, Mikkulainen et al. [26] optimize intervention strategies us-

ing evolutionary optimization techniques. This body of research

is complementary to our work as tackling COVID-19 effectively

requires an optimal testing program applied in conjunction with

an optimal intervention strategy.

3 THE OPTIMAL TESTING PROBLEM
We first describe our SEIR model and other preliminary notation

that helps us define the optimal testing problem.

SEIR Transmission Model. The SEIR model is a popular epi-

demiological model for simulating the progression of an epidemic

through a population of individuals, and it has been used to suc-

cessfully simulate the outbreak of many infectious diseases, e.g.,

Ebola [25], COVID-19 [23, 31], etc. In the standard SEIR model,

a population of 𝑁 individuals is split into four compartments: (i)

Susceptible (S), i.e., individuals who have never been infected or

exposed to the COVID-19 virus; (ii) Exposed (E), i.e., individuals
who have been exposed to the virus, but are not infectious yet;

(iii) Infectious (I), i.e., individuals who have been infected and can

spread infection to other individuals; and (iv) Recovered (R), i.e.,
individuals who have recovered or died from the virus. Each of the

four compartments represent a distinct phase in the progression of

infectious diseases.

Further, to capture the most essential characteristics of COVID-

19 transmission, we made two major adaptations to the standard

SEIR model: (i) similar to He et al. [20], the I class is split into I1
and I2, which represents asymptomatic and symptomatic infected

patients, respectively; (ii) we introduce a new compartment class

namedHospitalization/Quarantine (H/Q), which represents individ-
uals who are either hospitalized or are observing strict quarantine

orders. Our two adaptations are necessary for modeling COVID-19

as (i) there is a high asymptomatic rate of COVID-19 infections

[6, 7, 29], which can not be distinguished by the single I class in the

standard SEIR model; and (ii) introducing the H/Q compartment

enables us to model infected individuals who do not spread infec-

tion to anybody else (either because they are hospitalized or they

observe strict stay-at-home quarantine orders).
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Figure 1: Flow Dynamics of our SEIR Model

Our SEIR model dynamics proceed in a series of discrete time

steps. Let there be a population of 𝑁 individuals that undergo SEIR

model transmission dynamics. Let 𝑇 denote the number of time

steps for which the SEIR model dynamics are allowed to run. Each

individual 𝑛 ∈ {1, 𝑁 } belongs to exactly one compartment at time

𝑡 = 0. At each time 𝑡 ∈ {1,𝑇 }, individuals in each compartment

‘flow’ to the next adjacent compartment at pre-determined rates.

The flow dynamics of our model are explained in Figure 1. In par-

ticular, individuals in S move to E at a rate 𝛼𝑆→𝐸 , individuals in E
move to I1 and I2 at rates 𝛼𝐸→𝐼1 and 𝛼𝐸→𝐼2 , respectively. Similarly,

individuals in I1 and I2 move to R at rates 𝛼𝐼1→𝑅 and 𝛼𝐼2→𝑅 . Also,

individuals inH/Qmove toR at a rate 𝛼𝐻/𝑄→𝑅 . Finally, individuals

in R do not take further part in transmission dynamics (i.e., we

assume infected individuals upon recovery cannot be re-infected).

Our goal in the optimal testing problem is to minimize the cu-

mulative number of individuals that are infected by COVID-19 (i.e.,

individuals in I1 and I2) across 𝑇 time-steps of transmission. In

order to achieve this goal, we need to formulate a sequential testing

policy (formally defined below) that optimally allocates available

testing kits to test symptomatic and asymptomatic individuals. We

now elaborate on this distinction between conducting tests for

symptomatic and asymptomatic individuals.

Symptomatic VS Asymptomatic Testing. As part of the op-
timal testing policy, we assume that the policy maker is allowed to

use his/her available COVID-19 testing kits to conduct two different

kinds of tests: (i) Targeted Symptomatic Testing; and (ii) Random

Asymptomatic Testing.

Targeted Symptomatic Testing (symptomatic testing, in short)

focuses only on the people who exhibit COVID-19 symptoms and

seek care at hospitals. The testing kits that are allocated for symp-

tomatic testing would be distributed (in advance) across different

hospitals. Only patients that show up at hospitals with COVID-19

like symptoms will be tested using these symptomatic testing kits.

In our SEIR model, individuals in I2 can get tested using sympto-

matic testing kits (as all individuals in I2 are symptom-showing

COVID-19 patients). In addition, we assume that a fraction of in-

dividuals in other compartments can suffer from Influenza Like

Illnesses (ILI), and hence these ILI patients also show up at hos-

pitals with COVID-19 like symptoms (we set this ILI fraction to

0.24 in our experiments, based on prior results [34]). Thus, in our

SEIR model, these ILI patients can also be tested with symptomatic

testing kits.

Unfortunately, symptomatic testing is not sufficient by itself, as

(i) a large proportion of COVID-19 patients are asymptomatic (i.e.,

do not exhibit any symptoms), and hence they may never go to hos-

pitals to get treated [6, 7, 29]. However, such asymptomatic patients

can still spread the virus very rapidly among other individuals

[3, 48]. (ii) Further, due to this large population of asymptomatic

virus carriers, it is very difficult for epidemiologists and policy mak-

ers to understand where they are on the epidemic curve solely on

the basis of symptomatic testing. In order to address this issue, we

also consider Random Asymptomatic Testing as an option available

to the policy maker. In our SEIR model, Random Asymptomatic

Testing (asymptomatic testing, in short) focuses on all the indi-

viduals in S, E, I1, I2 and R, and randomly samples𝑚 individuals

uniformly from these compartments to conduct COVID-19 tests on

them (if the testing policy allocates𝑚 testing kits for asymptomatic

testing).

Note that the positive COVID-19 diagnosis rate per test is much

higher for symptomatic tests as compared to asymptomatic tests.

Thus, while asymptomatic tests are essential to tackle infectious

individuals in I1, they are not as efficient as symptomatic tests in

discovering COVID-19 patients. In order to increase the efficiency

of asymptomatic tests, we also incorporate group testing for asymp-

tomatic tests in our optimal testing problem [38, 47].

We now formally define the optimal sequential testing policy.

Our desired testing policy is adaptive, and we assume that we

are allowed to make changes to our testing policy at 𝐷 decision

points (i.e., we are allowed to take 𝐷 sequential actions). For ex-

ample, 𝐷 = 1 corresponds to a static testing policy, whereas if

𝐷 = 𝑇 , then we are allowed to change the testing policy at each

time-step of the SEIR model. In practice, 𝐷 is provided as input

to the problem by policy makers who choose this value based on

how fine-grained a policy they desire. Let 𝐺0 denote the policy

maker’s initial understanding about the proportion of individuals

in S, E, I1 and R (note that the policy maker can only perfectly

observe the number of individuals in I2 and H/Q, but is uncertain

about the number of individuals in the other compartments). Let

B = {⟨𝑏1, 𝑏2⟩ s.t. 𝑏1 ≥ 0, 𝑏2 ≥ 0, 𝑏1 + 𝑏2 = 𝑈𝑐𝑎𝑝 } denote the set of
all possible ways in which 𝑈𝑐𝑎𝑝 testing kits can be divided among

symptomatic and asymptomatic individuals, which represents the

set of possible actions (choices) that can be taken by a policy maker

at every decision point 𝑑 ∈ {1, 𝐷}. Let 𝐵𝑑 ∈ B, ∀𝑑 ∈ {1, 𝐷} denote
the policy maker’s action in the 𝑑𝑡ℎ time step. Upon taking action

𝐵𝑑 , the policy maker ‘observes’ the result of all COVID-19 tests that
were conducted among symptomatic and asymptomatic individuals

(as part of 𝐵𝑑 ), and this updates their understanding of how many

individuals remain in S, E, I1 and R. Let𝐺𝑑 , ∀ 𝑑 ∈ {1, 𝐷} denote the
policy maker’s understanding resulting from 𝐺𝑑−1 with observed
COVID-19 test result information from tests conducted in 𝐵𝑑 . For-

mally, we define a history 𝐻𝑑 , ∀ 𝑑 ∈ {1, 𝐷} of length 𝑑 as a tuple

of past choices and observations 𝐻𝑑 = ⟨𝐺0, 𝐵1,𝐺1, 𝐵2, .., 𝐵𝑑−1,𝐺𝑑 ⟩.
Denote by H𝒅 = {𝐻𝑘 s.t. 𝑘 ≤ 𝑑} the set of all possible histories
of length less than or equal to 𝑑 . Finally, we define a 𝑑-step policy

𝚷𝒅 : H𝒅 → B as a function that takes in histories of length less

than or equal to 𝑑 and outputs an action 𝐵 ∈ B for the current time

step. We now formally define the optimal testing problem.
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Problem 1. Optimal Testing Problem Given as input 𝐺0, in-
tegers 𝑁 , 𝑇 , 𝐷 , and 𝑈𝑐𝑎𝑝 , and SEIR model flow parameter val-
ues (as defined above). Denote by R(𝐻𝐷 , 𝐵𝐷 ) the expected cumu-
lative number of individuals in I1 and I2 at the end of 𝐷 deci-
sion points, given the 𝐷-length history of previous observations
and actions 𝐻𝐷 , along with 𝐵𝐷 (i.e., the action chosen at decision
point 𝐷). Let E𝐻𝐷 ,𝐵𝐷∼Π𝐷

[R(𝐻𝐷 , 𝐵𝐷 )] denote the expectation over
the random variables 𝐻𝐷 = ⟨𝐺0, 𝐵1, .., 𝐵𝐷−1,𝐺𝐷 ⟩ and 𝐵𝐷 , where
𝐵𝑑 are chosen according to Π𝐷 (𝐻𝑑 ), ∀ 𝑑 ∈ {1, 𝐷}, and 𝐺𝑑 are
drawn according to distribution described by 𝐺𝑑−1 (i.e., the obser-
vation that we get when we execute 𝐵𝑑 ). The objective of the op-
timal testing problem is to find an optimal 𝐷-step policy 𝚷

∗
𝑫 =

argminΠ𝐷
E𝐻𝐷 ,𝐵𝐷∼Π𝐷

[R(𝐻𝐷 , 𝐵𝐷 )].

4 DOCTOR POMDP
We cast the optimal testing problem as a POMDP because of three

reasons. First, we have partial observability of the sizes of the S,
E, I1 and R compartments in the optimal testing problem (similar

to POMDPs). Second, similar to sequential POMDP actions, we

are allowed to make 𝐷 sequential changes to the testing policy

(one change per each of the 𝐷 decision points). Finally, POMDP

solvers have recently shown great promise in generating near-

optimal policies efficiently [43–45]. We now explain how we map

the optimal testing problem into a POMDP.

States. A POMDP state in our problem is a tuple 𝑠 =

⟨S, E, I1, I2,H/Q,R⟩, where variables S, E, I1, I2, H/Q and R denote

the number of individuals present inside the corresponding com-

partments of the SEIR model. For a POMDP state to be valid, we

require S + E + I1 + I2 + H + R = 𝑁 . Our POMDP has

(𝑁+5
5

)
states.

Actions. At each decision point 𝑑 ∈ {1, 𝐷}, the policy maker

has a total of𝑈𝑐𝑎𝑝 COVID-19 testing kits that need to be allocated

for testing individuals. An action inside our POMDP is a tuple

𝑎 = ⟨𝑏1, 𝑏2⟩, s.t. 𝑏1 ≥ 0, 𝑏2 ≥ 0 and 𝑏1 + 𝑏2 = 𝑈𝑐𝑎𝑝 . Intuitively, 𝑏1
and 𝑏2 represent the number of testing kits that have been allocated

for testing symptomatic and asymptomatic individuals, respectively.

Our POMDP has 𝑈𝑐𝑎𝑝 + 1 different actions.

Observations. Upon taking a POMDP action, we assume that

the policy maker can “observe" the COVID-19 test results (posi-

tive or negative) of all individuals who were tested as part of the

POMDP action. Formally, upon taking action 𝐵𝑑 at decision point

𝑑 , the POMDP observation is denoted as a binary vector (of length

𝑈𝑐𝑎𝑝 ) Θ =

〈
𝜃1, 𝜃2, . . . , 𝜃𝑈𝑐𝑎𝑝

〉
. The variable 𝜃𝑖 = 1, ∀𝑖 ∈ {1,𝑈𝑐𝑎𝑝 }

represents whether the 𝑖𝑡ℎ individual (who was tested in POMDP

action 𝐵𝑑 ) was diagnosed with COVID-19 (𝜃𝑖 = 1) or not (𝜃𝑖 = 0).

Our POMDP has O(2𝑈𝑐𝑎𝑝 ) observations.
Rewards. The cost 𝑅(𝑠, 𝑎, 𝑠 ′) of taking action 𝑎 in state 𝑠 to reach

state 𝑠 ′ is the number of active infected individuals in state 𝑠 ′. Over
𝐷 decision points, DOCTOR’s cost function serves as a proxy for

minimizing the cumulative number of COVID-19 infections.

Transition & Observation Probabilities. Computation of ex-

act transition and observation probability matrices (𝑇 (𝑠 ′ |𝑠, 𝑎) and
𝑂 (𝑜 |𝑎, 𝑠 ′), respectively) is infeasible in our POMDP because these

matrices are prohibitively large (due to large sized state, action and

observation spaces). Therefore, we follow the paradigm of large-

scale online POMDP solvers [13, 33] by using a generative model

Λ(𝑠, 𝑎) ∼ (𝑠 ′, 𝑜, 𝑟 ) of the transition and observation probabilities.

This generative model allows us to generate on-the-fly samples

from the exact distributions 𝑇 (𝑠 ′ |𝑠, 𝑎) and Ω(𝑜 |𝑎, 𝑠 ′) at low compu-

tational costs. Given an initial state 𝑠 and an action 𝑎, our generative

model Λ simulates the random process of SEIR model dynamics (as

explained in Figure 1) to generate a random new state 𝑠 ′, an obser-

vation 𝑜 and the obtained reward 𝑟 . Simulation is done by “playing"
out our SEIR model to generate sample 𝑠 ′. The observation sample

𝑜 is then determined from 𝑠 ′ and 𝑎. Finally, the reward sample 𝑟

depends on the number of active infected COVID-19 patients in

s’ (as defined above). This simple design of the generative model

allows significant scale and speed up.

Initial Belief State. In our experiments, we initialize the belief

state to be as close as possible to the real-world. In particular, the

initial belief state is uniformly distributed over all POMDP states 𝑠

in which I is set to the current number of COVID-19 infections in

the population of interest. Then I1 and I2 are split from I based on

COVID-19 asymptomatic rate 𝜙 (we experiment with different 𝜙

values). For example, if we instantiate a SEIRmodel for Santiago, the

initial belief state contains all states in which I is equal to current

number of active cases in Santiago. And if we assume the 𝜙 = 0.7,

then |I1 | = 0.7 |I|, and |I2 | = 0.3 |I|.
In this paper, we solve the DOCTOR POMDP model using

POMCP, a well-known online POMDP solver that relies on Monte

Carlo tree search to find near-optimal online policies. For complete-

ness, we provide a brief overview of the POMCP algorithm.

POMCP. POMCP [33] uses UCT based Monte-Carlo tree search

(MCTS) [5] to solve POMDPs. At every stage, given the cur-

rent belief state 𝜖 , POMCP incrementally builds a UCT tree that

contains statistics that serve as empirical estimators (via MC

samples) for the POMDP Q-value function 𝑄 (𝜖, 𝑎) = 𝑅(𝜖, 𝑎) +∑
𝑧
𝑃 (𝑧 |𝜖, 𝑎)𝑚𝑎𝑥𝑎′𝑄 (𝜖 ′, 𝑎′). The algorithm avoids expensive belief

updates by maintaining the belief at each UCT tree node as an

unweighted particle filter (i.e., a collection of all states that were

reached at that UCT tree node via MC samples). In each MC simula-

tion, POMCP samples a start state from the belief at the root node

of the UCT tree, and then samples a trajectory that first traverses

the partially built UCT tree, adds a node to this tree if the end of

the tree is reached before the desired horizon, and then performs a

random rollout to get one MC sample estimate of 𝑄 (𝜖, 𝑎). Finally,
this MC sample estimate of 𝑄 (𝜖, 𝑎) is propagated up the UCT tree

to update Q-value statistics at nodes that were visited during this

trajectory. Note that the UCT tree grows exponentially large with

increasing state and action spaces. Thus, the search is directed to

more promising areas of the search space by selecting actions at

each tree node ℎ according to the UCB1 rule [24], which is given

by: 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎�̂� (𝜖ℎ, 𝑎) + 𝑐
√
𝑙𝑜𝑔(𝑁ℎ + 1)/𝑛ℎ𝑎 . Here, �̂� (𝜖ℎ, 𝑎) rep-

resents the Q-value statistic (estimate) that is maintained at node ℎ

in the UCT tree. Also, 𝑁ℎ is the number of times node ℎ is visited,

and 𝑛ℎ𝑎 is the number of times action 𝑎 has been chosen at tree

node ℎ (POMCP maintains statistics for 𝑁ℎ and 𝑛ℎ𝑎∀𝑎 ∈ 𝐴 at each

tree node ℎ). We use POMCP to solve DOCTOR’s POMDP model.

5 EXPERIMENTAL RESULTS
We provide a comprehensive evaluation of the strengths and weak-

nesses of DOCTOR’s testing policy under a wide variety of condi-

tions. We provide four sets of simulation results. First, we evaluate
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DOCTOR’s effectiveness in controlling the spread of COVID-19 by

applying its testing strategy (in simulation) to the city of Santiago,

Panama (a country with the world’s highest COVID-19 infections

per capita [1]). Second, we analyze whether the performance gains

achieved by DOCTOR’s testing strategy are robust to variations

across a multitude of parameter values. Third, we carefully analyze

key characteristics of DOCTOR’s testing policy to gain unique in-

sights about what DOCTOR has learnt about this problem domain

(of finding optimal testing strategies), and to understand whether

these insights can be translated into actionable lessons for policy

makers as they design testing strategies for COVID-19. Finally, we

characterize conditions (of the COVID-19 epidemic) under which it

would be most beneficial for governments to use DOCTOR’s testing

strategies. Specifially, we provide an easy-hard-easy computational

pattern characterization of optimal testing problems, and show

that DOCTOR’s performance gains are largest for hard problems,

whereas the gains diminish on comparatively easier problems.

All our experiments are run on a 2.8 GHz Intel Xeon proces-

sor with 256 GB RAM. All experiments are averaged over 100

runs. In all experiments, we use a default value of 𝑁 = 89, 000

(which is Santiago’s population [40]), 𝐷 = 30 and 𝑇 = 30 (un-

less specified otherwise). Based on findings in [38, 47], COVID-19

test sensitivity and specificity values are set to 0.90 and 0.99, re-

spectively. Also, we set a default budget constraint of 𝑈𝑐𝑎𝑝 = 500

testing kits per decision point in our experiments (unless specified

otherwise). The POMCP-based DOCTOR model is run with 2
10

Monte-Carlo simulations at each decision point. Further, in all our

experiments, we use results from [15] to instantiate our SEIR model

with the following values of flow rates: 𝛼𝐸→𝐼1 = 7

50
, 𝛼𝐸→𝐼2 = 3

50
,

𝛼𝐼1→𝑅 = 1

14
, 𝛼𝐼2→𝑅 = 1

14
, and 𝛼𝐻/𝑄→𝑅 = 1

14
. In particular, the

value of 𝛼𝑆→𝐸 is dependent on the basic reproduction number of

COVID-19 (𝑅0) and the number of individuals in I, which is de-

noted as 𝛼𝑆→𝐸 =
𝛽 ·S·I
𝑁

, 𝛽 =
𝑅0 ·𝛼𝐼

1
→𝑅 ·𝛼𝐼

2
→𝑅

2
, where 𝛽 represents

the COVID-19 transmission rate. All experiments are statistically

significant under bootstrap-t (𝑝 = 0.05).

Baselines.We compare DOCTOR against four different baseline

testing strategies. We use (i) 100% symptomatic testing (SY in the

figures), i.e., allocate all available testing kits to symptomatic indi-

viduals at each decision point. We use SY as a baseline as this has

been the primary testing strategy used by Panama’s government un-

til now, e.g., Panama had not tested asymptomatic individuals until

4
𝑡ℎ

September, 2020 [30]. Using this baseline allows us to compare

DOCTOR with a real-world government’s effort (in simulation).

Next, we use (ii) 100% asymptomatic testing (ASY), i.e., allocate all

available testing kits to asymptomatic individuals; (iii) 50% sympto-

matic and 50% asymptomatic testing (50-ASY), i.e., equally divide

testing kits among symptomatic and asymptomatic individuals; and

finally (iv) a uniform random testing policy (Random), i.e., select a

random testing action 𝐵𝑑 at every decision point 𝑑 ∈ 𝐷 .

5.1 DOCTOR’s performance in Panama
First, we evaluate the performance of DOCTOR’s testing

policy against all other baselines, when applied to the

city of Santiago, the 5
𝑡ℎ

largest city in Panama. Since

city-level COVID-19 case information is not available for

Panamanian cities, we initialize Santiago’s SEIR model us-

ing Panama’s country-level COVID-19 case information. In

particular, we set the initial SEIR compartment proportions to

⟨S = 97.47%, E = 0.27%, I1 = 0.45%, I2 = 0.19%,R = 1.62%,H/Q = 0%⟩,
which matches the COVID-19 infection numbers in Panama on

2
𝑛𝑑

September, 2020. Note that H/Q is set to zero because we

only count H/Q from the beginning of the testing period. Next,

DOCTOR and the other baselines were used to solve an optimal

testing problem (defined according to this instantiated SEIR model

and the other parameter values described above).

Figure 2 compares the result of executing DOCTOR’s testing

policy against baselines by tracking the evolution of the underlying

SEIR model over 𝐷 = 30 decision points. Figures 2(a), 2(b), 2(c) and

2(d) show the progression in the sizes of S, I, I1 and I2 compartments

of the SEIR model (respectively) over𝐷 = 30 decision points. The X-

axis in these figures represents the different decision points, and the

Y-axis shows the size of the different compartments. For example,

DOCTOR’s testing strategy achieved a size of |S| = 85, 528, |I| = 136,

|I1 | = 120 and |I2 | = 16 after the 30
𝑡ℎ

decision point.

Figure 2(b) shows that DOCTOR significantly outperforms all

baselines - its testing strategies result in ∼ 40% fewer COVID-19

infections by the 30
𝑡ℎ

decision point (as compared to ASY, the next

best performing baseline). Further, this figure shows that SY per-

forms very poorly - it performs ∼ 60% worse than Random and

ASY-50, and it leads to a ∼ 550% increase in COVID-19 infections

over DOCTOR. This establishes the superior performance of DOC-

TOR over SY (and other baselines), which illustrates the potential

benefits of using DOCTOR’s adaptive strategy in Panama.

Figures 2(c) and 2(d) provide a preliminary insight into how

DOCTOR achieves significant reductions in the number of COVID-

19 infections. Specifically, these figures show why baseline testing

strategies fail: (i) ASY performs only ∼ 30% worse than DOCTOR

in minimizing asymptomatic infections |I1 |, but performs ∼ 300%

worse than DOCTOR in minimizing symptomatic infections |I2 |
(since ASY only tests asymptomatic individuals). (ii) On the other

hand, SY performs ∼ 300% worse than DOCTOR in minimizing

|I2 |, and performs ∼ 550% worse than DOCTOR in minimizing

|I1 | (since SY only focuses on symptomatic individuals). (iii) ASY-

50’s behavior is not as extreme as SY (in Figure 2(c)) or ASY (in

Figure 2(d)), yet it performs worse than DOCTOR due to its lack

of adaptivity. (iv) DOCTOR is the only strategy which intelligently

minimizes both |I1 | and |I2 | by adaptively changing the allocation

of testing kits according to the stage of the epidemic. (v) Further,

DOCTOR’s testing strategy results in the largest |S| at the end of

the 30
𝑡ℎ

decision point (Figure 2(a)), which illustrates DOCTOR’s

(relative) success in preventing susceptible individuals in S from

getting infected. These figures show that at least in simulation,

DOCTOR was highly effective in controlling the number of COVID-

19 infections in Santiago.

5.2 Is DOCTOR robust to varying parameters?
Having illustrated DOCTOR’s effectiveness in controlling COVID-

19 infections in Santiago, we now analyze if DOCTOR’s superiority

over baselines is robust to different initial parameter values.

Figures 3(a), 3(b), 3(c) and 3(d) compares the percentage im-

provement achieved (in terms of |I| = |I1 | + |I2 |) by DOCTOR over
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(a) Evolution of S (b) Evolution of I (c) Evolution of I1 (d) Evolution of I2

Figure 2: Evaluating DOCTOR’s performance in Panama

(a) Varying 𝑁 (b) Varying Asymptomatic Rate (c) Varying Test Sensitivity (d) Varying Group Test Pooling Size

Figure 3: Minimal impact on DOCTOR’s performance (over baselines) with variation in parameter values

(a) Varying 𝑁 (b) Varying Asymptomatic Rate (c) Varying Test Sensitivity (d) Varying Group Test Pooling Size

Figure 4: Impact of changing parameter values on DOCTOR’s testing strategy

(a) Varying |I |/𝑁 (b) Varying 𝑅0 (c) Varying Testing Kits Number

Figure 5: Reduction in performance gains achieved by DOCTOR (over baselines) at extreme parameter values.

other baselines with varying values of 𝑁 , COVID-19 asymptomatic

rate (𝜙), test sensitivity (𝛿), and pooling sizes for group testing

(𝜌), respectively. The Y-axes in these figures show the percentage

improvement achieved by DOCTOR over other baselines, whereas

the X-axes show the varying parameter values. For example, when

𝑁 = 100, 000 (in Figure 3(a)), DOCTOR outperforms ASY, ASY-50,

SY and Random by 55%, 83%, 53% and 36%, respectively. Figure 3(a)

shows that (i) DOCTOR consistently outperforms all other base-

lines; and (ii) DOCTOR’s superior performance does not diminish at

higher/lower values of 𝑁 , which illustrates that DOCTOR is robust

to variation in 𝑁 .

Next, in order to account for the large variance in COVID-19

asymptomatic rate (𝜙), test sensitivity (𝛿) and pooling size (𝜌) values

reported in prior literature [6, 7, 29, 38, 47, 49], we experimentally

verify that DOCTOR’s superior performance over baselines does
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(a) 𝑈𝑐𝑎𝑝 = 300 Testing Kits (b) 𝑈𝑐𝑎𝑝 = 500 Testing Kits

Figure 6: Visual representation of DOCTOR’s testing strat-
egy over 30 decision points

not lie on a knife’s edge in terms of the 𝜙 , 𝛿 and 𝜌 values that

are used inside DOCTOR. Figure 3(b) shows that (i) ASY’s perfor-

mance improves significantly with increasing values of 𝜙 . This is

reasonable because when a large fraction of infected individuals

are asymptomatic, it is (near) optimal to allocate all testing kits for

them. (ii) Even at large 𝜙 values, DOCTOR outperforms ASY by

38%. (iii) DOCTOR consistently outperforms all other baselines, and

its performance does not diminish against these other baselines at

larger/smaller 𝜙 . Thus, Figure 3(b) shows that DOCTOR is mostly

robust to variation in 𝜙 (except against ASY, which becomes near

optimal at high 𝜙 values).

Figure 3(c) shows that (i) DOCTOR’s performance improvement

(over baselines) increases with increasing values of 𝛿 . This is rea-

sonable as high 𝛿 values mean that DOCTOR has less uncertainty

to contend with, which leads to better high-quality solutions. (ii)

Even at low test sensitivity values (e.g., 𝛿 = 0.6, as reported in [49]),

DOCTOR outperforms ASY (the next best baseline) by 24%. This

shows that DOCTOR is robust to variation in 𝛿 .

Finally, Figure 3(d) shows that (i) varying 𝜌 minimally impacts

DOCTOR’s performance improvement over ASY (the best perform-

ing baseline); and (ii) all other baselines exhibit degraded perfor-

mance at higher values of 𝜌 . In summary, Figure 3 shows that

across a wide range of parameter values, DOCTOR exhibits 30%

average performance improvement against other baselines, which

illustrates its robustness to changes in these parameter values.

5.3 What did DOCTOR learn?
Having illustrated DOCTOR’s robustness to varying initial condi-

tions, we now analyze its outputted testing policy to gain insights

about the reasons behind the optimality of DOCTOR’s policy.

Figures 6(a) and 6(b) illustrate the testing policy output by DOC-

TOR over 30 decision points with 𝑈𝑐𝑎𝑝 = 300 and 𝑈𝑐𝑎𝑝 = 500, re-

spectively. The X-axis shows the different decision points, whereas

the Y-axis illustrates the action chosen by DOCTOR. For example,

in Figure 6(a), DOCTOR assigned ∼ 195 (and ∼ 105) tests to symp-

tomatic (and asymptomatic) individuals at the 1
𝑠𝑡

decision point.

These figures reveal a crucial insight about DOCTOR’s policies.

Specifically, DOCTOR’s outputted testing policies proceed in two

sequential phases. In the first phase (during the initial few decision

points), DOCTOR spends more effort in testing symptomatic indi-

viduals, e.g., DOCTOR allocates ∼65% of its available testing kits

for symptomatic individuals at the 1
𝑠𝑡

decision point in Figure 6(a).

Over time, as the number of symptomatic individuals diminishes

(due to DOCTOR’s emphasis on testing such individuals), DOCTOR

begins its second phase of testing. In this second phase, DOCTOR

switches its attention towards asymptomatic testing, and gradually

increases the number of testing kits allocated to asymptomatic test-

ing as decision points proceed. For example, the proportion of tests

allocated to asymptomatic testing increases from ∼35% at the 1
𝑠𝑡

decision point to ∼80% at the 30
𝑡ℎ

decision point (Figure 6(a)).

This sequential two-phased nature of testing is a defining char-

acteristic of testing policies output by DOCTOR, and is a key differ-

entiating factor between DOCTOR’s optimal strategies and other

baselines. In addition, DOCTOR needs to account for several other

considerations in finding its optimal policy: (i) what proportion of

resources to invest in symptomatic testing in the 1
𝑠𝑡

phase, (ii) at

what decision point should the 2
𝑛𝑑

phase begin, (iii) at what rate

should the number of resources allocated to asymptomatic testing

be increased in the 2
𝑛𝑑

phase. DOCTOR answers all these questions

via POMDP style look ahead search.

This insight about DOCTOR’s optimal testing strategy has pro-

found policy implications for COVID-19 testing in the real-world.

Even though it might be infeasible for governments of developing

countries to formulate their COVID-19 testing policy by running

computationally heavy POMDP programs, our insights about the

superior performance of two-phased testing policies suggest that

governments should consider investing in testing policies which

(i) start by focusing on symptomatic testing (within the means of

available testing capacity), and (ii) when symptomatic cases start

falling, the policy should switch over gradually to focus more on

conducting random asymptomatic testing.

Next, we also analyze the impact of varying parameter val-

ues on the testing policies output by DOCTOR. To understand

the next set of experiments, we formally define the “average"

POMDP action chosen by DOCTOR’s testing policy over 30 de-

cision points. With 𝑈𝑐𝑎𝑝 testing kits available per decision point,

let the actions chosen by DOCTOR over 30 decision points be{〈
𝑏1
1
, 𝑏1

2

〉
,
〈
𝑏2
1
, 𝑏2

2

〉
,
〈
𝑏3
1
, 𝑏3

2

〉
, . . . ,

〈
𝑏30
1
, 𝑏30

2

〉}
. Let 𝑏

𝑎𝑣𝑔

1
= 1/30

30∑
𝑖=1

𝑏𝑖
1

be the average number of symptomatic tests recommended by

DOCTOR’s policy (per decision point). Then, the “average" POMDP

action (which we represent in Figure 4) is

〈
𝑏
𝑎𝑣𝑔

1
,𝑈𝑐𝑎𝑝 − 𝑏

𝑎𝑣𝑔

1

〉
.

Figures 4(a), 4(b), 4(c) and 4(d) illustrate DOCTOR’s testing pol-

icy with varying values of 𝑁 , 𝜙 , 𝛿 and 𝜌 , respectively. The Y-axes

in these figures show the “average" POMDP action chosen by DOC-

TOR, and the X-axes show varying parameter values.

Figures 4(a) and 4(c) show that ceteris paribus, DOCTOR’s test-

ing policy is minimally affected (in average terms) by changing

values of 𝑁 and 𝛿 . Further, Figure 4(b) shows that upon increasing

𝜙 , DOCTOR allocates an increasing fraction of available testing

kits for asymptomatic individuals, e.g., the proportion of tests for

asymptomatic individuals increased from 65% (𝜙 = 0.1) to 87%

(𝜙 = 0.7). This is expected behavior because with increasing rates

of asymptomaticity, the number of asymptomatic individuals in-

creases, and as a result, random testing of asymptomatic individuals

leads to greater utilities. Similarly, Figure 4(d) shows that with in-

creasing values of 𝜌 , DOCTOR marginally increases the fraction

of testing kits allocated for asymptomatic testing. Again, this is

expected behavior because increasing pooling sizes increases the
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per-test efficiency of conducting tests on asymptomatic individuals,

and as a result, DOCTOR allocates more tests for such individuals.

5.4 When to use DOCTOR?
In this last part of our evaluation, we characterize the conditions in

which it is advisable for resource-strapped governments to rely on

DOCTOR to determine their COVID-19 testing policy. At a high

level, we observe that DOCTOR’s suitability for use often depends

on the stage of the (COVID-19) epidemic at which the new testing

policy is implemented. While we find that DOCTOR’s testing policy

achieves the best performance irrespective of the stage at which it

is implemented, we surprisingly find that DOCTOR’s superiority

over baselines diminishes when its testing strategy is implemented

with either extremely high or extremely low epidemic severity,

which means DOCTOR’s superiority is most pronounced during the

intermediate severity of the epidemic. We illustrate this interesting

phenomenon below.

In order to model different stages of the epidemic, we vary the

values of |I|/𝑁 in our initial SEIR compartment partition, i.e., we

vary the fraction of individuals who belong to the I compartment

before any testing strategy is employed. For simplicity of presen-

tation, we only compare DOCTOR against the best performing

baseline in Figure 5. Note that the best performing baseline can

be different at different parameter values. Figure 5(a) compares

the percentage improvement achieved by DOCTOR over the best

performing baseline with varying values of |I|/𝑁 in the initial

SEIR compartment partition. The X-axis shows increasing values of

|I|/𝑁 , and the 𝑌 -axis shows percentage improvement achieved by

DOCTOR over the best performing baseline. This figure shows that

DOCTOR outperforms the best performing baseline by 40% when

|I|/𝑁 = 0.005 (i.e., intermediate severity). Surprisingly, DOCTOR’s

performance improvement diminishes at extreme values of |I|/𝑁 ,

which represent different high and low epidemic severities.

Upon closer examination, this makes sense as solving the optimal

testing problem at extremely low (i.e., small |I|/𝑁 ) or extremely

high (i.e., large |I|/𝑁 ) epidemic severity represent “easier" problems

to solve from a computational perspective. This is because at small

values of |I|/𝑁 , very few individuals are infected, as a result, almost

any testing strategy can work well at this stage. Similarly, at large

values of |I|/𝑁 , the epidemic has already infected a large propor-

tion of individuals, and beyond this point, almost every testing

strategy (including DOCTOR) will lead to a poor performance. On

the other hand, solving the optimal testing problem with interme-

diate |I|/𝑁 , represents “harder" computational problems because at

this stage, the long-term trade off between investing resources in

asymptomatic versus symptomatic testing is most apparent. As a

result, we truly see the benefits of long-term look ahead search and

policy optimization (techniques used by DOCTOR) when |I|/𝑁 is

in the intermediate range.

Thus, we see an easy-hard-easy computational pattern to prob-

lems solved by DOCTOR with varying values of |I|/𝑁 . In fact,

we see this easy-hard-easy pattern with other parameters as well.

Figure 5(b) compares the percentage improvement achieved by

DOCTOR over the best performing baseline with varying values

of 𝑅0. This figure shows that DOCTOR is only effective when 𝑅0 is

neither too low nor too high. For example, when 𝑅0 = 2.0, DOCTOR

achieves a ∼40% smaller I compartment as compared to baselines.

However, when 𝑅0 = 1.0 (or 𝑅0 = 5.0), DOCTOR’s improvement

over baselines diminishes to 28% (or 11%). Again, this is reasonable

because smaller and larger 𝑅0 values correspond to easier problems

- the disease either does not spread fast (at small 𝑅0) or spreads too

fast (at large 𝑅0), hence almost any testing strategy for reducing the

infection number will perform well (for small 𝑅0) or perform bad

(for large 𝑅0). It is only at intermediate 𝑅0 values (corresponding to

hard problems) that the benefits of sequential adaptive optimization

(i.e., DOCTOR) are realized.

Finally, we also observe this easy-hard-easy pattern when we

vary the testing capacity 𝑈𝑐𝑎𝑝 . Figure 5(c) compares the percent-

age improvement achieved by DOCTOR over the best performing

baseline with varying values of 𝑈𝑐𝑎𝑝 . This figure shows that DOC-

TOR is only effective when 𝑈𝑐𝑎𝑝 is neither too low nor too high.

For example, when 𝑈𝑐𝑎𝑝 = 500, DOCTOR outperforms baselines

by 39%. However, when 𝑈𝑐𝑎𝑝 = 300 (or 𝑈𝑐𝑎𝑝 = 800), DOCTOR’s

improvement over baselines diminishes to 17% (or 28%). Intuitively,

this makes sense as when you have a low capacity of testing (easy

problem), it is optimal to allocate all those tests for symptomatic

patients. In this case, DOCTOR is unable to outperform the SY

baseline. Similarly, with very high testing capacities (easy problem),

it is optimal to allocate all tests for asymptomatic testing. In this

case, DOCTOR is unable to outperform the ASY baseline. It is only

at intermediate 𝑈𝑐𝑎𝑝 values (hard problem) that DOCTOR is able

to outperform all baselines significantly. In summary, Figures 5(a),

5(b) and 5(c) illustrate an interesting easy-hard-easy computational

pattern to problems solved by DOCTOR, and show that DOCTOR’s

performance gains are most pronounced on hard problems. Accord-

ingly, this shows that it is advisable to use DOCTOR for determining

testing strategies in the real-world only when |I|/𝑁 , 𝑅0 and𝑈𝑐𝑎𝑝

values are in the intermediate range, which represent the interme-

diate severity of an epidemic. With extremely high or extremely

low severity, simpler static baselines may be more preferable.

6 CONCLUSION
By evaluating DOCTOR in different real-world scenarios, we re-

veal the two-phased nature of DOCTOR’s testing policies. Addi-

tionally, we illustrate that the benefits of these policies are robust

against variations across different input parameters. Surprisingly,

we also discover that the benefits of DOCTOR’s policy show an

easy-hard-easy computational pattern with some varying input pa-

rameters. Such easy-hard-easy patterns have also been observed in

other problems, e.g., Security Games [22], 3-SAT [9, 27] and Influ-

ence Maximization [19]. In summary, DOCTOR represents a highly

useful decision-aid for governments as they plan their COVID-19

testing strategies, especially during the intermediate stages of the

epidemic. Specifically, DOCTOR’s testing strategies result in ∼40%
fewer COVID-19 infections (thereby leading to lesser loss of life).
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