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ABSTRACT

Autonomous agents are increasingly being deployed amongst hu-
man end-users. Yet, human users often have little knowledge of
how these agents work or what they will do next. This lack of trans-
parency has already resulted in unintended consequences during
AI use: a concerning trend which is projected to increase with the
proliferation of autonomous agents. To curb this trend and ensure
safe use of AI, assisting users in establishing an accurate under-
standing of agents that they work with is essential. In this work, we
present AI Teacher, a user-centered Explainable AI framework to
address this need for autonomous agents that follow a Markovian
policy. Our framework first computes salient instructions of agent
behavior by estimating a user’s mental model and utilizing algo-
rithms for sequential decision-making. Next, in contrast to existing
solutions, these instructions are presented interactively to the end-
users, thereby enabling a personalized approach to improving AI
transparency. We evaluate our framework, with emphasis on its
interactive features, through experiments with human participants.
The experiment results suggest that, relative to non-interactive
approaches, interactive teaching can both reduce the amount of
time it takes for humans to create accurate mental models of these
agents and is subjectively preferred by human users.
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1 INTRODUCTION

Autonomous agents provide services to a broad array of end-users
in homes, offices, hospitals, and beyond. They are expected to col-
laborate with people on complex tasks such as disaster response,
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Figure 1: Our goal is to assist users in establishing accurate

mental models of robot behavior (𝜋𝑅) by designing an AI

Teacher that interactively provides instructions {𝐼1:𝑏 }.

manufacturing, and agriculture [5, 8, 17, 43]. While these agents be-
have according to policies carefully designed by their programmers,
their resulting behavior may not always be intuitive to end-users.
For example, consider a robot designed to support first responders
in rescue operations. To best use and work with the robot, a first
responder might wonder how the robot plans its route to rescue vic-
tims: will it go through uneven terrain if that provides the shortest
path, or will it circumvent said terrain to avoid the risk of accidents?
Knowing the answers to questions such as these is essential for
human end-users to truly realize the benefits of these agents, ensure
safety, and avoid unintended side effects [20, 32].

However, answering such questions can be difficult for end-
users. One reason for this difficulty is that agent1 behavior is often
designed to optimize a latent objective (e.g., time to complete a
task), and not to ensure transparency in the generated behavior. For
instance, the algorithmic paradigms used for designing behavior
(e.g., reinforcement learning [39] and planning under uncertainty
[13, 33]) seek to maximize the cumulative reward, which typically
omits any consideration of AI transparency. Despite this, humans
create mental models of agents they work with and use them to
make inferences and predictions [19, 27]. Unfortunately, without
appropriate interventions, the process of creating these models can
be slow and inaccurate, leading to AI misuse or disuse [12, 23, 32].

Thus, to ensure safe and appropriate use of autonomous agents,
the onus of establishing accurate mental models regarding their
behavior lies with us: AI researchers and designers. Towards this
call to action, we seek to create an interactive AI Teacher that
can assist end-users in establishing accurate understanding of the
behavior of autonomous agents (see Fig. 1). In this work, we focus
on agents that are tasked with performing sequential tasks and
whose behavior can be summarized using a Markovian policy. Rec-
ognizing the need for AI transparency, there is a growing body of
research on explaining AI systems to humans. Most of the work
in this burgeoning area has explored approaches to explaining the

1We use the terms robot and agent interchangeably.
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predictions of machine learning models [10, 29, 42]. Closer to our
focus, multiple formative approaches to explain sequential decision-
making behavior of robots have also been developed in recent years
[21, 38, 40, 44]. Broadly, these approaches computationally gener-
ate human-interpretable instructions (typically, explanations or
examples) to communicate robot objectives.

While these approaches further AI transparency and have in-
spired our work, borrowing terminology from pedagogy [24, 30, 34],
they teach humans about the agent by providing either direct in-
structions or indirect instructions but not both. In approaches that
utilize direct instructions, the teaching algorithm precomputes a set
of informative instructions, typically without any personalization,
which are then presented to the user [21, 38]. Drawing connections
to pedagogy, this setting is analogous to that of the traditional
classroom, where the teacher decides the teaching material and
delivers it to the students while approaches that utilize indirect
teaching provide the users a tool to ask questions and expect them
to learn from exploration analogous to active learning [14, 18, 26].
In contrast, effective human-to-human teaching involves a hybrid
of direct and indirect instructions to allow for effective and per-
sonalized teaching [34]. Direct instructions ensure that the salient
information is conveyed, while indirect instructions allow for the
students to personalize their learning.

Guided by this, we posit that the use of such hybrid strategies
can also benefit the realization of AI transparency. To evaluate
this hypothesis, we make two core contributions in this paper.
First, we develop AI Teacher, a human-in-the-loop Explainable AI
framework to communicate robot behavior to human users. Our
framework computes direct instructions using an algorithm for
sequential decision-making and guides users to learn through in-
direct instructions with an interactive user interface. Second, we
provide a detailed human subject evaluation of our hybrid approach
by applying it on three tasks and benchmarking it against the di-
rect and indirect paradigms to AI transparency. To the best of our
knowledge, these experiments are the first to evaluate the effect
of interactivity on AI transparency and shed light on the utility of
interactivity on improving user’s understanding of autonomous
agents. Experiment results show that a hybrid approach outper-
forms direct instructions in improving user knowledge. The use of
interactivity features enable users to verify individual understand-
ing of robot policy and objectives while keeping users more engaged
during the learning process. Guided by these results, we conclude
with recommendations for design of computational techniques and
interactive systems to improve AI transparency.

2 PRELIMINARIES

Representing Agent Behavior. In the following treatment, we fo-
cus on communicating task-oriented behavior of agents, where the
agent’s task can be modeled as a Markov decision process (MDP)
[33]. Briefly, anMDP is specified using the tuple𝑀 � (𝑆,𝐴,𝑇 , 𝑅,𝛾),
where 𝑠 ∈ 𝑆 is the set of states; 𝑎 ∈ 𝐴 is the set of actions available to
the agent; 𝑇 (𝑠 ′ |𝑠, 𝑎) is the Markovian state transition probabilities;
𝑅(𝑠, 𝑎) the reward function; and 𝛾 the discount factor. The agent
has full observability of the state and acts according to the policy
𝜋𝑅 (𝑠) = 𝑎. This modeling choice is similar to that made in related
work on explaining and summarizing robot behavior [1, 2, 21, 28].

Figure 2: The simulated Rescue robot and its environment.

While we limit our scope to agents whose behavior can be sum-
marized by the Markovian policy 𝜋𝑅 , no assumptions are made
regarding the procedure to compute this policy. This is important
in practice, where the agent policy can be hand-crafted, planned
[33], or learned [39] and, thus, need not to be optimal.

Running Example. Inspired by applications, we design a disaster
response scenario where an autonomous robot is performing rescue
operations. We utilize this disaster response robot, shown in Fig. 2,
as a running example to elaborate on our approach and design
decisions. The robot’s environment is a grid world with various
landmarks. The robot can fully observe its environment and where
it can take one of the following four navigation actions: move up,
move down, move left, or move right. The robot is preprogrammed
to avoid the pond and complete available sub-tasks based on the
following priority: extinguish the fire, clean up the debris, pick up
the patient, and visit the hospital. A sub-task is completed when
the robot reaches the corresponding grid location. Our research
goal is to provide end-users (e.g., a first responder working with
the robot) accurate understanding of the robot behavior.

For this example, the robot’s task is represented as an MDP,
with state 𝑠 including features corresponding to agent location and
status of each sub-task. Similarly, the action space 𝐴 corresponds
to the four navigation actions. The robot behavior is summarized
using a Markovian policy 𝜋𝑅 , which maps its state to action. With
the awareness of robot policy, we posit that the user will be able
to make informed predictions of robot behavior both at the task
(e.g., will the robot extinguish the fire first or pick up the patient?)
and motion level (e.g, which direction will the robot move next?).
This will enable the user to work with the robot effectively both in
unseen and emergent situations.

3 RELATEDWORK

We begin with a brief review of related work on improving trans-
parency in behavior of autonomous agents. Interspersed with this
review, we also draw connections between solutions for improving
transparency to the rich literature on pedagogy.
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The problem of improving transparency in agent behavior is
related to the emerging research areas of AI explainablility, inter-
pretability, and transparency. For a detailed review of these areas in
the context of autonomous agents, we refer the reader to recent sur-
veys by Anjomshoae et al. [3] and Chakraborti et al. [15]. Among
the various threads being actively explored in these emerging areas,
our work on transparency is related to methods for effectively com-
municating agents’ objectives and sequential policies to humans
[2]. In our review, we focus on these methods, with an emphasis
on those that model agent behavior as a Markovian policy.

Researchers in pedagogy have examined a variety of teaching
strategies for the setting of human-to-human teaching [24, 30, 34].
One categorization of these strategies is based on the use of direct
versus indirect instructions. Teaching strategies utilizing direct in-
structions are teacher-centered, involve clear teaching objectives,
and consistent classroom organizations. In contrast, strategies in-
volving indirect instructions are student-centered and encourage
independent learning. Effective teaching typically involves a com-
bination of the two perspectives. The process of improving trans-
parency in AI agents can be viewed from the lens of pedagogy,
wherein the algorithm for improving transparency is the teacher,
the human user corresponds to the student, and the learning objec-
tive reflects an accurate understanding of the agent behavior.

3.1 AI Transparency via Direct Instructions

We first describe methods that utilize direct instructions. A common
theme in these methods is to precompute informative instructions
regarding agent behavior which are then communicated to the
human. The methods differ in their choice of instruction type, ob-
jective criteria, and optimization algorithm.

Instruction Type. Information about the agent can be delivered
to the human using a variety of modalities (e.g., text, images, aug-
mented/virtual reality) and types (e.g., natural language explana-
tions, template-based explanations, demonstrations). To arrive at
methods that can be applied across domains, instruction types such
as policy summaries, important states, and key actions have been
previously explored [21, 22, 25, 28, 38, 41, 44]. Among these, our
work utilizes examples (i.e., state, action-pairs) of agent behavior
as the domain-agnostic instruction, 𝐼 � (𝑠, 𝑎).

Selecting Informative Instructions. Having identified the instruc-
tion type, a teaching algorithm needs a mechanism to select infor-
mative instructions from the set of possible instructions. This is
achieved by specifying an objective criteria to quantify informa-
tiveness of instructions, which is then used within an optimization
routine to select the examples to be shared with the user. Multiple al-
ternatives have been previously explored for the case of examples as
the instruction type, both with and without explicit user modeling.
For instance, Zhan et al. [44] quantify informativeness using the
importance value, Importance(𝑠) = max𝑎 𝑄 (𝑠, 𝑎) − min𝑎 𝑄 (𝑠, 𝑎),
where 𝑄 (𝑠, 𝑎) denotes the expected cumulative reward of a ⟨state,
action⟩ pair. Their teaching algorithm shares the instructions with
the highest importance value with the user. Amir and Amir [1]
also utilize this objective and augment it to ensure diversity in the
generated instructions.

Towards Personalized Instructions. We highlight that Importance
criterion depends only on the task (MDP) and agent policy, thereby
leading to identical instructions for each user. A precursor for per-
sonalized teaching is an objective criteria that depends on the user.
Towards this, Huang et al. [21] provide an approach that explic-
itly represents a user’s mental model of the agent behavior as a
probability distribution over candidate agent rewards. By utilizing
Bayesian Theory of Mind [6], they model the effect that each in-
struction 𝐼 has on the user’s understanding of the agent behavior.
The instruction that improves the user understanding the most
based on this Bayesian model is said to be the most informative
and selected using a greedy algorithm. Lee et al. [28] provide a
related approach where the user is modeled as an inverse reinforce-
ment learner. While these methods model user knowledge, they
rely on direct instructions alone and, thus, have limited freedom
for personalizing instructions.

3.2 AI Transparency via Indirect Instructions

An alternate paradigm for improving AI transparency is to provide
humans the tools to ask questions regarding the agent’s behavior
[14, 18, 26]. Analogous to indirect teaching methods in pedagogy,
this method leaves it to the student (human user) to identify which
information she considers to be the most informative for her learn-
ing experience. Thus, instead of identifying the most informative
instructions, the computational contribution of these methods lies
in effectively answering the questions posed by the user. For in-
stance, Hayes and Shah [18] provide a tractable method to answer
the question, “in which states does the agent perform a queried
action?” While focusing on deterministic plans instead of MDP
policies, Chakraborti et al. [15] discuss several other question types
that have been recently considered.

Assuming that the student knows what she does not know, this
approach can be indeed powerful. However, this assumption of
unknown unknowns may not be generally applicable. Hence, we
explore the use of hybrid teaching strategies. Our insight is that
methods for generating direct instructions can help provide the user
with adequate knowledge about the agent, which the user can refine
and improve upon using the methods for indirect instructions. Guided
by this insight, we design an interactive AI Teacher, which to our
knowledge is the first framework to employ both direct and indirect
instructions to improve transparency in agent behavior.

4 PROBLEM STATEMENT

Consider an agent performing a sequential task, modeled as an
MDP = (𝑆,𝐴,𝑇 , 𝑅,𝛾), based on policy 𝜋𝑅 . Collocated with the agent
is a human user, who has complete knowledge of the task environ-
ment (𝑆,𝐴,𝑇 ) but only an estimate 𝜋𝑈 of the agent’s policy. We
denote the user’s knowledge of the policy as

𝐾𝑈 =
1
|𝑆 |

∑
𝑠∈𝑆

𝟙 [𝜋𝑅 (𝑠) = 𝜋𝑈 (𝑠)] (1)

which describes the fraction of states 𝑠 for which the user’s policy
estimate is correct.𝐾𝑈 = 0means the user has no knowledge, while
𝐾𝑈 = 1 denotes an accurate mental model of the agent behavior.
The user can improve her estimate of the agent policy by requesting
direct and indirect instructions. Each instruction 𝐼 corresponds to a
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(𝑠𝐼 , 𝑎𝐼 )-pair, where the action 𝑎𝐼 = 𝜋𝑅 (𝑠𝐼 ). Direct instructions are
generated by the AI Teacher, while the indirect instructions are
the teacher’s response to user’s question “Which action does the
agent take in state?” Formally, the objective of the AI Teacher is
to generate a sequence of 𝑏 direct instructions to maximize the user
knowledge, argmax𝐼1:𝑏 𝐾𝑈 .

Solving this optimization problem is challenging for a variety of
reasons. First, the AI Teacher needs a mechanism to reason about
the effect of an instruction on user’s knowledge, a latent quantity
that depends on user’s expertise and learning preferences. Second,
the AI Teacher needs a computationally tractable approach to
identify not only the most informative instructions but also their
sequence, as some instructions might be more effective initially.
Lastly, the user can interleave direct instructions with independent
learning (indirect instructions), making the problem of selecting
effective instruction further challenging.

5 TECHNICAL APPROACH: AI TEACHER

To tackle the problem described in Sec. 4, we design the framework
AI Teacher that includes a model of human cognition, an algo-
rithm to select instructions, and an interactive user interface for
teaching. We mathematically represent the user’s mental model
about the agent policy using Griffith’s probabilistic model of cog-
nition [16]. The effect of instructions on the evolution of mental
model is captured using Bayesian Theory of Mind [6]. Given this
representation, we pose the problem of selecting instructions to
maximize user knowledge as a sequential decision-making problem
and solve it using Monte Carlo tree search (MCTS) [11]. Finally, our
framework includes an interactive user interface that allows a user
to self-explore the agent behavior akin to independent learning.

5.1 User Model

To select effective and personalized instructions, AI Teacher needs
a reliable estimate of the human user’s mental model and learning
process. However, modeling these cognitive quantities is challeng-
ing as they depend on latent and user-specific features, such as prior
knowledge, experience, and attention during the teaching process.
In our framework, we leverage results from cognitive science to
arrive at these models for the human user [7, 9].

Mental Model. Theory of Mind (ToM) refers to the human ability
to interpret and predict behavior of others by attributing mental
states (e.g., belief, desire, and intent) to oneself or others [7, 9].
Recent work indicates that humans also attribute ToM to artificial
agents that they observe or interact with [19, 27]. Guided by these
results, to quantify the user’s mental model, we model the user
to have a set of candidate hypotheses 𝐸 about the agent. Each
hypothesis 𝑒 ∈ 𝐸 corresponds to an estimate 𝜋𝑒 of the true agent
policy 𝜋𝑅 . For instance, in our running example (Fig. 2), a user
might have the following candidate hypotheses: (i) the robot will
complete the closest task first, and (ii) the robot will pick up the
patient first because it is driving an ambulance. The user’s mental
model of the policy is represented as a probability distribution over
all candidates, referred to as belief 𝑏. The belief 𝑏 (𝑒) denotes the
probability of the user believing 𝜋𝑒 to be the correct estimate of
the true robot policy. At the start of the teaching process, 𝑏 (𝑒)
summarizes user’s prior knowledge about the agent policy.

Effect of Instructions. Given this mental model, we next utilize
Bayesian Theory of Mind to estimate the effect of an instruction 𝐼
on the user’s belief 𝑏. Mathematically, the updated belief 𝑏 ′ after
receiving an instruction 𝐼 is computed using the Bayes’ rule,

𝑏 ′(𝑒) = Pr(𝑒 |𝐼 ) ∝ Pr(𝐼 |𝑒)𝑏 (𝑒) (2)

where, Pr(𝐼 |𝑒) models the likelihood of the user expecting to receive
instruction 𝐼 from the teacher given 𝜋𝑒 is the correct estimate. In our
implementation, we model this likelihood as Pr(𝐼 |𝑒) = 𝜋𝑒 (𝑎𝐼 |𝑠𝐼 ).
Intuitively, this model prunes those hypotheses from the candidate
set that do not align with the instructions.

Hypothesis Set. A key parameter in our user model is the set of
hypotheses 𝐸. To accurately model users, it is important to spec-
ify the possible hypotheses they might have about the agent, a
challenging task due to the diverse experience and background of
AI users. Nonetheless, to approximate this parameter in practice,
we discuss three methods each with different pros and cons. First,
when users can be surveyed before the teaching process, the set
𝐸 can be designed using their domain expertise. Hypotheses col-
lected using this method will reflect the diversity in users but can
be difficult to translate to mathematical representation. Second, in
cases where users can provide demonstrations of agent’s expected
behavior (e.g., through teleoperating a robot), the hypotheses can
be approximated using algorithms for imitation learning [4]. In
practice, this approach may require prohibitive amount of data;
however, with continued advances in imitation learning, we antici-
pate this approach to be more data-efficient [31]. Last, if users can
be neither surveyed nor provide demonstrations, hypotheses can
be generated through sampling potential agent reward functions.

We utilize the third approach in our experiments. For anMDP
task, with reward given as a linear combination of features (𝑅 =∑
𝑖 𝑤𝑖 𝑓𝑠,𝑎), we first compute a set of candidate hypotheses over

agent rewards as permutations over the feature weights,

𝐸 =

{ ∑
𝑖 𝑣𝑖 𝑓𝑠,𝑎 | 𝑣𝑖 ∈ permutation(𝑤)

}
. (3)

The policy estimate 𝜋𝑒 corresponding to each candidate reward
is then precomputed using MDP solvers, such as policy iteration
or reinforcement learning. We reiterate that modeling cognition is
inherently challenging and that our approach is but one alternative
to arrive at a tractable approximation of the user’s learning process.
To assess the robustness of AI Teacher to this modeling choice,
we conduct both synthetic and human experiments.2

5.2 Instruction Selection

We pose the problem of selecting the optimal sequence of instruc-
tions as a sequential decision-making problem. To do so, we view
the AI Teacher as the decision-maker, who can use its instructions
to improve user knowledge 𝐾𝑈 . Specifically, we define a Teaching
MDP, whose state corresponds to the user belief 𝑏 and action cor-
responds to the teacher’s instruction 𝐼 .3 The state space for this

2Estimation techniques for users’ hypothesis set 𝐸 and likelihood model Pr(𝐼 |𝑒)
remains a fruitful avenue for future research. We design our instruction selection
procedure to be modular, so that it can be readily used with other user models.
3As user belief is a latent quantity, this model can be extended to consider partial
observability and information gathering actions (such as AI Teacher asking questions
to the user). We leave exploration of these extensions to future work and, in this work,
proceed with the assumption of state observability for tractable planning.
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MDP is the continuous set of all possible beliefs. The action space
is the set of all instructions 𝐼 , whose size is equal to the number
of states in the TaskMDP described in Sec. 4. The solution of the
TeachingMDP corresponds to the teaching policy, which maps user
belief to teacher’s instructions. To complete the specification of the
Teaching MDP, transition and reward models are needed. Given
the user model, the transition model is readily available from Eq. 2,
which provides the updated belief (next state in the TeachingMDP)
based on the previous belief (state) and instruction (action). We
define the reward function of the TeachingMDP to reflect the prob-
lem objective of maximizing user knowledge as the belief-weighted
estimate of a user’s knowledge 𝐾𝑈 ,4

𝑅teacher (𝑏 ′, 𝐼 , 𝑏) =
∑
𝑒∈𝐸

𝑏 ′(𝑒)𝐾𝑒 (4)

Having specified the Teaching MDP, we can use MDP solvers
to arrive at the teaching policy. However, as the Teaching MDP
involves a continuous state space and (potentially) large action
space, computationally efficient methods are needed. Thus, we
utilize Monte Carlo tree search (MCTS) forMDP [11], inspired by
its wide use in applications which require fast, online sequential
decision-making and include high branching factors [35, 36]. In
contrast to prior work [21], our approach allows for selecting the
instruction sequence in a non-greedy fashion and for stochastic
domains. Here, we describe the essential details for using MCTS
to select instructions. For a detailed description of MCTS, we refer
the reader to the survey by Browne et al. [11].

Briefly, MCTS involves creation of a tree using the following
steps: selection, expansion, simulation, and backpropagation. In our
application, the root node of the MCTS tree represents the prior
belief of a user, for instance, a uniform distribution over candidate
hypotheses. Each edge represents an instruction 𝐼 = (𝑠, 𝑎) and each
child node consists of the updated belief 𝑏 ′(𝑒). The output of the
MCTS algorithm is the best instruction for a given belief. In prac-
tice, it is often easier to demonstrate agent trajectories instead of
disjoint state, action-pairs. This feature can be readily incorporated
in MCTS, via its simulation step, by constraining successive instruc-
tions to correspond to a trajectory. In our implementation, we use
trajectories of length 5 to generate instructions; drawing connec-
tion to the pedagogy, our user interface refers to each trajectory
(sequence of 5 instructions) as a lesson. Thus, in combination with
the user model, the MCTS algorithm method generates sequence
of direct instructions to improve knowledge of the (modeled) user.

5.3 Avenues of Interactivity

In addition to the direct instructions computed as described above,
the AI Teacher includes interactive features to allow for inde-
pendent learning: namely, indirect instructions and quiz problems.
When interacting with theAI Teacher, a user can design a subset of
the instructions. Specifically, the user can request context-specific
examples of agent behavior by asking the question, “which action
does the agent take in state?” This feature is achieved through an
interactive user interface, which allows users to modify the state of
the task (e.g., robot position and environment features). We refer to
4The choice of reward function is informed by the fact that a user canmaintain multiple
hypotheses 𝑒 ∈ 𝐸 regarding the robot policy. 𝐾𝑒 is user knowledge specific to one
hypothesis 𝑒 . If a user maintains only one hypothesis, then 𝐾𝑈 = 𝐾𝑒 . However, since
a user might have multiple hypotheses, we utilize the belief-weighted average.

these customizable indirect instructions as custom instructions.
These instructions help users verify user-specific assumptions or
theories about the agent policy and enable our approach to be
student-centered to the extent desired by the user.

Further, to facilitate engagement, AI Teacher also gives the user
quizzes according to a predefined schedule. In the quiz problems,
AI Teacher presents a state and asks the user to predict the agent’s
action in the given state. The quiz problems can be selected in a
variety of methods, e.g., randomly, based on user’s learning thus far,
or using the MCTS algorithm. In our framework, we use the first
state of each lesson selected by the MCTS algorithm. For purposes
of fair evaluation against baselines, we do not provide feedback
to the user for their response. However, the users can utilize the
mechanism for custom instructions to check if their response is
accurate.

6 EXPERIMENTAL DOMAINS

We design three simulated domains inspired by a different real-life
application to evaluate our framework: autonomous navigation,
disaster response, and recycling. For generating direct instructions
in each domain, we approximate the free parameter 𝐸 of the user
model as described in Sec. 5.1. While the environments chosen in
our experiments are simulations of real-world settings, they are
challenging and have reasonably large state spaces. In contrast to
domains used in prior work [21, 28], which involve deterministic
state transitions, our work also considers stochastic environments
and dynamic elements, e.g., the conveyor belt in the recycling envi-
ronment. Towards ensuring the generalizability of our framework,
our environments are different in their state and action spaces.

Rescue Robot. As the first task, we utilize the disaster response
scenario shown in Fig. 2. The robot’s environment is specified as
a 10 × 10 grid and includes five landmarks: (fire, debris, patient,
hospital, pond). The location of each landmark is fixed, but a subset
of them may be absent in each problem instance. The task state 𝑠
is defined as (𝑥,𝑦, 𝑠fire, 𝑠debris, 𝑠patient, 𝑠hospital, 𝑠pond), where (𝑥,𝑦)
denote robot position and 𝑠landmark is a Boolean variable indicating
whether that landmark is present or absent in the scene. The state
and action spaces are of size 3,200 and 4, respectively. The robot
policy is computed by providing positive rewards for completing
sub-tasks in the correct order and a negative reward for entering
the pond. Thus, the robot learns to avoid the pond and complete
available sub-tasks based on the following priority: extinguish the
fire, clean up the debris, pick up the patient, and visit the hospital.
A user seeking to understand the robot behavior in this task will
need to identify the robot’s priority list over sub-tasks and the
requirement of avoiding the pond. The user’s hypothesis set 𝐸 is
approximated using 25 candidates.

Navigation Robot. The second task models a robot navigating a
room that includes five doors and patched areas as shown in Fig. 3.
At each time step, the robot can take one of the four actions: move
forward, move backward, turn left (counterclockwise) or turn right
(clockwise). Like the first domain, the environment is a 10× 10 grid.
The task state is defined as robot position (𝑥,𝑦) and orientation
𝜃 ∈ [0◦, 90◦, 180◦, 270◦]. The state space has a size of 400 and
we generate 32 candidates to approximate the user’s hypothesis
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Figure 3: The Navigation robot and its environment.

set, 𝐸. The robot’s objective (unknown to the user) is to enter the
closest odd-numbered door and to avoid the even-numbered doors
and the patched areas. Despite its small state space and perceived
simplicity, we empirically observe that many human users had the
most difficulty understanding the robot behavior in this domain
(relative to other two domains, which have larger state spaces). One
potential explanation for this is that the robot policy has behaviors
which are counter to user’s preconceptions. For example, the robot
moves backwards, whereas the users might expect it to go forwards.

Recycling Robot. The third task models a recycling robot work-
ing in a waste management plan, depicted in Fig. 4. The robot’s
environment includes three bins (one each for trash, recycling, and
compost) and a conveyor belt divided into six regions. The conveyor
belts move forward each time step, and new items are introduced
in the lowest row. The size of the state space of this task is ≈ 80,000,
which encodes items on the conveyor belt and with robot. To gain
transparency into robot behavior and ensure that it is managing
waste correctly, the user seeks to understand which item does the
robot pick up from the conveyor belt. To generate the ground truth
robot policy, we assign different values to each item and some areas
on the conveyor belt are unreachable. For this domain, the user’s
hypothesis set 𝐸 is approximated using 24 candidates.

7 EXPERIMENTS WITH SIMULATED USERS

Prior to evaluating with human participants, we validate our ap-
proach in Oz-of-Wizard experiments [37]. The simulation studies
are an essential pilot experiments to be run before conducting
resource-intensive human studies. By simulating the user, we have
access to their mental model and can assess the evolution of latent
quantities (such as user knowledge). In these experiments, we eval-
uate the direct instruction component of our system against three
algorithms: Importance Advising [44], the approach of Huang et al.
[21], and random selection of instructions.

In the interest of space, we defer a detailed discussion of the nu-
merical experiments and results to the supplementary text. Briefly,
through these experiments, we observe that our approach outper-
forms all baselines across the three tasks when AI Teacher has
access to the correct user model. In the more challenging case of
user model mismatch, our approach is still robust in improving
user knowledge. These numerical experiments establish confidence

Figure 4: The Recycling robot and its environment.

in the ability of our approach to generate effective direct instruc-
tions and help us select baselines for evaluations with human users,
which are discussed next.

8 EXPERIMENTS WITH HUMAN USERS

We conduct a user study with 24 participants (aged 18−31 years, 11
females and 13males) recruited from Rice University with approval
from the Rice University Institutional Review Board (IRB). Through
a pre-experiment survey, most participants indicated no prior ex-
perience with robots, but some were users of AI systems such as
Siri or Google Assistant. The goal of this experiment is two-fold.
First, to confirm whether the encouraging results observed with
simulated users translate to human users. Second, to discover the
role of interactivity (i.e., hybrid teaching strategy) on improving
transparency in agent policies.

8.1 Experiment: Design and Procedure

We evaluate our approach (denoted as Hybrid) against two base-
line strategies: direct instructions (denoted as Direct) and indirect
instructions (denoted as Custom). The approach of Huang et al.
[21] is used as the Direct strategy baseline, as it is the baseline
that outperformed other baselines in our experiments with simu-
lated users. The Custom strategy corresponds to a variant of our
approach without any direct instructions. Specifically, in Custom,
the users need to learn the agent policy by requesting custom in-
structions described in Sec. 5.3. Thus, the experiment has one factor
(the teaching strategy) with three levels.

We employ a within-subject repeated measures design. Through
an interactive user interface (UI), each participant is tasked with
learning the policy of the three robots described in Sec. 6 in the
following order: Rescue, Navigation, and Recycle.5 We vary the
order of the teaching strategies to account for any ordering effects.
For each of the 6(= 3!) orderings, four participants performed the
study. After providing informed consent, the participants are asked
to complete a short demographic survey and are briefed about the
experiment. To help participants get familiar with the UI, we design
a training session where the experiment supervisor (one of the
authors) walks the participant through the task.

5A video demonstration of the UI is included in the supplementary material.
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For each domain and teaching strategy, the participants have a
budget of 25 instructions to learn the robot policy. For the Direct
strategy, all instructions are generated by the teaching algorithm
[21]. For the Custom strategy, all instructions are custom designed
by the user by asking questions. For the Hybrid strategy, a partici-
pant has the freedom of allocating the budget between direct and
custom instructions. For direct instructions, in both Direct and Hy-
brid settings, we group five consecutive (𝑠, 𝑎)-tuple as a trajectory.
Once a participant starts a direct instruction, they are required to
complete the entire trajectory which will cost them five instructions
from the budget. After a participant uses all 25 instructions, they
proceed to a post-task subjective survey and an objective exam.

The objective exam is composed of 20 multiple-choice questions,
where a participant is presented with a state and asked to predict
the robot’s action. Half of these questions are sampled randomly
from the robot’s state space (denoted as Random questions) and
the rest are designed by the authors based on our domain expertise
of the robot (denoted as Expert Selected questions). The use of
both Random and Expert Selected questions allows us to evaluate
the user’s understanding of the robot policy in a wide sample of
states. These questions are followed by one ranking question to
evaluate participants’ understanding of the robot objectives. Here,
the participants are given a list of suggested robot objectives and
are asked to rank them. The participants can also remove any of
the suggested objectives and add their own explanations of robot
behavior. After completing the three domains, the participants
complete a post-experiment survey regarding their overall learning
experience, perceived role of interactive features, preference over
custom and direct instructions, and any open-ended comments.

8.2 Results

Participants learn robot policies despite a small teaching bud-

get. For each robot, the participants score high on both types of
the multiple-choice questions regarding robot policy (𝑀 = 75%,
𝑆𝐷 = 21% across tasks and participants) and the ranking questions
regarding robot objectives (𝑀 = 3.56, 𝑆𝐷 = 1.67, out of 5 respec-
tively, across all domains and participants). Despite the large state
space of the recycling robot (approximately 80,000 states), many
participants find it intuitive and are able to quickly build an accurate
mental model of the robot’s policy and objectives. This result shows
that humans have an incredible ability to generalize from a small
number of examples. On the other hand, a number of participants
find the navigation task to be the most challenging despite its small
state space (400 states). This domain is challenging because the
navigation robot’s behavior is less intuitive to human users (e.g.,
the robot can move backward). This observation indicates that the
complexity of an AI transparency problem does not only depend
on the complexity of the state space, action space, or the task itself,
but also on the familiarity to users.

Participants’ learning experience depends on the teach-

ing strategy. Fig. 5 indicates that participants respond differently
to different teaching strategies. To statistically evaluate this effect,
we conduct the non-parametric Friedman test. We find a statis-
tically significant effect of teaching strategy on users’ subjective
perception of the learning experience (𝑝 = 0.049). While the effect
of teaching strategy on participants’ understanding of robot policies

Figure 5: Aggregate results on the post-task objective exams

from the experiments with human users.

(𝑝 = 0.17) and objectives (𝑝 = 0.22) is not statistically significant,
potentially due to the sample size (𝑁 = 24), the differences on ob-
served learning performance are meaningful and motivate further
exploration. We elaborate on these differences next.

Hybrid strategy outperforms Direct Strategy. As shown in
Fig. 5 (top, middle), the Hybrid strategy results in higher scores than
the Direct strategy in predicting the robot’s actions in all domains
and across question types. Particularly in the Recycling domain,
the Hybrid approach (𝑀 = 90%, 𝑆𝐷 = 13%) improves the partici-
pants understanding by 32.1% compared with the Direct approach
(𝑀 = 68.15%, 𝑆𝐷 = 20.15%). We posit that the participants utilize
direct instructions to form an initial, high-level understanding of
the robots, then they utilize custom instructions to clarify corner
cases and to verify different hypotheses with a small number of
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Figure 6: Results from the post-experiment survey.

instructions. As one participant notes in their post-experiment sur-
vey, “...the combination of teacher (direct) and custom examples is
most useful because it helps you think about new cases and then
gives you the tools to test them. I could definitely see how someone
could run through the teacher’s examples without paying attention
if there isn’t the interactivity of the custom examples.” Subjectively,
the participants also prefer Hybrid over Direct approach (Fig. 6).

Hybrid strategy performs comparably to Custom strategy.

This trend indicates that human users are capable of identifying
critical states that provide the information about the robot that they
are previously unaware or unsure of. We posit one reason for the
observed performance of the Custom strategy is that the user know
what they do not know better than the AI Teacher user model can
predict and, thus, can choose instructions as effectively as the AI
Teacher. In a follow-up study, we plan to compare the overlap
between direction and indirect instructions to further analyze hu-
man’s ability to self-identify critical states as well as to evaluate
the accuracy of our human model.

Participants prefermechanisms for independent learning.

The Hybrid and Custom approaches provide the participants an
option to learn independently. By creating their own instructions,
the participants verify user-specific assumptions. From analyzing
the post-experiment survey, we observe a positive trend of utiliz-
ing the interactivity features. 92% of the participants rate custom
instructions as important (rating ≥ 5 on a Likert-scale of 7) in their
learning experience, and 63% of the participants rate quiz problems
as important. As one of the participants writes, “[t]he custom ex-
amples allowed me to test my hypothesis of what was going on
with the priority of tasks. It was hard to figure out the edge cases
without being able to use custom examples. The quizzes allowed me
to think of new examples and were very useful in combination with
the custom examples that allowed me to test these new examples.”
A number of participants also comment in their feedback that they
enjoy the design of the AI Teacher’s user interface and making
the learning as a game helps significantly with paying attention
(particularly from a participant self-identified with ADHD).

Participants prefer the ability to choose between direct

and custom instructions. Further, through the survey, three-
fourths of the participants indicate that they prefer to (a) receive
both direct and indirect instructions and (b) choose the relative
proportion of each instruction type themselves rather than having

an AI teacher to allocate the teaching budget. These responses indi-
cate that participants subjectively prefer receiving both direct and
indirect instructions, and further highlight the utility of providing
participants both instruction types and the degree of freedom to
select between them.

9 CONCLUDING REMARKS

Interactive teaching of agent behavior to humans can reduce the
amount of time it takes for humans to create mental models of
agents, improve the performance of human-AI teams, and prevent
catastrophic consequences caused by poor understanding of AI
systems. In this work, we provide AI Teacher, a framework that
generates salient examples of agent behavior using a modified
Monte Carlo tree search algorithm and includes a user interface to
enable teacher-guided exploration of agent behavior. In contrast
to prior approaches, AI Teacher provides both direct and indi-
rect instructions to allow for personalized machine teaching. We
conduct and report on numerical experiments and a user study to
evaluate our approach and the role of interactivity in explaining
robot behavior in three Markovian robot tasks. Experiment results
show interactivity improves user understanding of robot policies
and objectives with a small number of instructions, and methods
with interactivity features are highly preferred by human users.

Implication for Designing Explainable and Transparent

AI. While existing work focuses on computational methods that
generate instructions which help users acquire models of robots,
we argue that in absence of interactivity, users are not able to
clarify user-specific confusionwith only direct instructions. Indirect
instructions can address the needs and preferences of individual
users. Future XAI systems should leverage on humans’ ability of
self exploring and independent learning, while providing guidance
through computational methods to generate direct instructions. The
community can consider diving deeper into studies from education
and psychology to design helpful interactivity features.

Future Directions. Our framework offers several avenues for
future work. First, we are interested in improving upon the user’s
cognitive model used by theAI Teacher, by learning its parameters
from data and adapting it during the learning process. Second, even
though our framework is demonstrated for explaining robot behav-
ior, it is a generalized machine teaching framework. Hence, we plan
to explore performance of our approach on other machine teach-
ing tasks. Last, we are interested in incorporating personalization
during the generation of direct instructions through information
gathering actions.
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