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ABSTRACT
Intrinsic rewards can improve exploration in reinforcement learn-
ing, but the exploration process may suffer from instability caused
by non-stationary reward shaping and strong dependency on hy-
perparameters. In this work, we introduce Decoupled RL (DeRL) as
a general framework which trains separate policies for intrinsically-
motivated exploration and exploitation. Such decoupling allows
DeRL to leverage the benefits of intrinsic rewards for exploration
while demonstrating improved robustness and sample efficiency.
We evaluate DeRL algorithms in two sparse-reward environments
with multiple types of intrinsic rewards. Our results show that
DeRL is more robust to varying scale and rate of decay of intrin-
sic rewards and converges to the same evaluation returns than
intrinsically-motivated baselines in fewer interactions. Lastly, we
discuss the challenge of distribution shift and show that divergence
constraint regularisers can successfully minimise instability caused
by divergence of exploration and exploitation policies.
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1 INTRODUCTION
Exploration is one of the essential challenges in reinforcement learn-
ing (RL). RL algorithms often use simple randomised methods, e.g.
applying 𝜖-greedy policies [41] or adding random noise to continu-
ous actions [17]. Such exploration techniques may be inefficient on
tasks where rewards are sparse. One category of exploration tech-
niques which has been found to be particularly effective in sparse-
reward environments are intrinsic rewards [6, 7, 11, 28, 30, 31].
These additional rewards 𝑟 𝑖 are computed by the agent and added
to the extrinsic reward 𝑟𝑒 provided by the environment for a com-
bined reward signal 𝑟 = 𝑟𝑒 + 𝜆𝑟 𝑖 with some weighting factor 𝜆.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Intrinsic rewards incentivise the exploration of novel or underex-
plored parts of the environment commonly using self-supervised
predictions in the environment [6, 30, 31, 33] or (pseudo-) counts
of states [25, 36, 39].

Unfortunately, optimising for this combined feedback introduces
three challenges. (1) Intrinsic rewards lead to non-stationary
rewards as they are designed to diminish with more completed ex-
ploration. Such non-stationary reward shaping violates the Markov
assumption and can cause the learning progress to be inconsis-
tent. (2) Intrinsically-motivated exploration is sensitive to
the scale 𝜆. If intrinsic rewards are too large, they might heavily
distort training and introduce non-stationary noise to the optimisa-
tion. On the other hand, we show that small intrinsic rewards have
no sufficient impact and do not incentivise exploration as intended
(Figure 4). (3) Intrinsically-motivated exploration is sensitive
to the rate of decay which intrinsic rewards rely on throughout
training. Similar to their scale, we show that slowly decaying intrin-
sic rewards disrupt training whereas quickly vanishing intrinsic
rewards have insufficient impact on exploration (Figure 5).

These challenges lead to a significant dependency of intrinsic
rewards on hyperparameters. Additionally, determining these hy-
perparameters for scale and rate of decay is task-dependent due to
the scale of extrinsic rewards and required exploration in the respec-
tive task. Current approaches usually address the difficulties caused
by sensitivity to hyperparameters using a large hyperparameter
search to find effective parameterisation of amethod. However, such
a search can be considered an exploration by itself, and introduces
bias in reported results focusing only on runs with best-identified
hyperparameters and disregarding the considerable computational
cost involved [29]. We argue that this bias is particularly harmful in
approaches focusing on exploration as best-identified hyperparame-
ters may steer exploration towards the solution of an environment,
effectively shifting the achieved exploration from the proposed
method to the hyperparameter search. All these properties make
the practical application of such methods difficult [38] and motivate
the need for more robust approaches.

Motivated by these challenges and success in off-policy RL [9,
12, 13, 35, 44], we propose to separate the RL training into two sep-
arate policies. We train an exploration policy 𝜋𝛽 with the combined
signal of extrinsic and intrinsic rewards. Simultaneously, we train
an exploitation policy 𝜋𝑒 using only extrinsic rewards on the data
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collected by the exploration policy. We refer to this approach asDe-
coupled RL (DeRL)∗. Using such decoupling addresses challenges
(1)–(3) of previous application of intrinsic rewards. The exploration
policy is optimised using the combined objective of extrinsic and
intrinsic rewards as in typical intrinsically-motivated RL, but it is
only trained to generate data for the training of the exploitation
policy. The exploitation policy is thereby decoupled from the chal-
lenges of training with intrinsic rewards and optimised to be an
effective policy in the given environment. Our experiments show
that DeRL leverages the benefits of intrinsically-motivated explo-
ration while stabilising its inherent sensitivity to scale and rate of
decay of intrinsic rewards.

We implement and evaluate two versions of DeRL built upon
on-policy actor-critic and off-policy Q-learning with five types of
intrinsic rewards [6, 30, 31, 39] in two learning environments that
focus on exploration. We analyse the sensitivity of DeRL and RL
baselines to the scale and the rate of decay of intrinsic rewards to
verify the general dependency of these methods on the hyperpa-
rameters of intrinsic rewards and show that DeRL is more robust
to varying hyperparameters. Additionally, the exploitation policy
of several DeRL algorithms is able to converge to higher evaluation
returns using up to ∼ 40% fewer interactions and reaches higher
returns in some tasks compared to intrinsically-motivated RL base-
lines. Such improved robustness and sample efficiency can justify
the additional cost of training a second policy. However, we also
observe that DeRL still suffers from variability in the off-policy
optimisation of the exploitation policy 𝜋𝑒 in several tasks. We hy-
pothesise that distribution shift caused by the divergence of 𝜋𝑒 and
𝜋𝛽 leads to these instabilities, and show that regularisers can be
applied to restrict divergence of both policies [43], reducing devia-
tions in returns of exploration and exploitation policies and further
improving robustness to hyperparameters of intrinsic rewards.

2 BACKGROUND
2.1 Markov Decision Process
We formulate an environment as a Markov Decision Process (MDP)
[14] defined as a tuple (S,A,P,R, 𝛾 ). S and A denote the sets of
states and actions, respectively, and P : S × A ↦→ ∆(S) represents
the transition function defining a probability distribution over the
next state given current state and applied action. The agent receives
rewards for a given transition following R : S × A × S ↦→ R. The
objective is to learn a policy 𝜋 : S ↦→ ∆(A) which maximises the
expected discounted returnsE𝜋

[∑∞
𝑡=0 𝛾

𝑡R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) | 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 )
]

with discount factor 𝛾 ∈ [0, 1).

2.2 Intrinsically-Motivated Exploration
A variety of methods have been proposed to replicate the explo-
ration incentive of curiosity in RL [3, 26, 27] guided by the idea
that agents should be incentivised to explore novel or poorly un-
derstood parts of the environment. Therefore, intrinsic rewards are
defined which reward the agent for such exploration. Over time, the
agent should become less “curious” and exploitation will gradually
take over. There are two common branches of intrinsic rewards

∗We provide an implementation of DeRL and the Hallway environment at https:
//github.com/uoe-agents/derl

for exploration: (1) count-based and (2) prediction-based intrinsic
rewards.

2.2.1 Count-based Intrinsic Rewards. Count-based intrinsic rewards
are inverse proportional to the visitations of encountered states.

𝑟 𝑖𝑡 B
1√
𝑁 (𝑠𝑡 )

(1)

Thereby, agents are incentivised to visit states within the envi-
ronment which are less frequently encountered. Likewise, agents
are discouraged from visiting frequently encountered states which
are deemed less valuable for exploration. While this approach is
easily applicable in small, discrete state spaces, pseudo-counts have
to be computed for large or continuous state spaces where en-
countering any state multiple times is rare. These pseudo-counts
can be computed using density models predicting visitations of
states [4, 25] or using locality-sensitive [2] hash functions [39].

2.2.2 Prediction-based Intrinsic Rewards. A separate approach de-
fines intrinsic rewards using predictions in the environment. Schmid-
huber [33] proposed an intrinsic reward defined as the error of
predicting the next state given the current state and action. How-
ever, stochastic and thereby unpredictable dynamics within the
environment lead to the so-called “noisy TV problem” [5], i.e. the
exploration signal remains high in the presence of unpredictability,
which remains a major challenge of these approaches.

Intrinsic curiosity module (ICM): Pathak et al. [30] propose
to learn efficient state representations 𝜙(𝑠) and assign an intrinsic
reward for the prediction error of the next state

𝑟 𝑖𝑡 B
(
𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡+1)

)2
(2)

where 𝜙 is a learned self-supervised state-representation trained
using an inverse-dynamics objective: given a representation of the
current state 𝜙(𝑠𝑡 ) and next state 𝜙(𝑠𝑡+1) predict the applied action
𝑎𝑡 . Through this representation, the model learns to encode infor-
mation which can be affected by the agent’s actions. The intrinsic
reward is given by the error of the prediction 𝜙(𝑠𝑡+1) of the next
state given current state 𝑠𝑡 and applied action 𝑎𝑡 .

Rewarding impact-driven exploration (RIDE):Raileanu and
Rocktäschel [31] propose to reward the agent for applying actions
which lead to significant change in the environment. Such change is
defined as the difference between embeddings of consecutive states,
where the embedding function 𝜙 is trained using an inverse dynam-
ics model identical to ICM [30]. In order to avoid the agent going
back and forth between a group of states, an episodic state-count
𝑁𝑒𝑝 is added to the objective.

𝑟 𝑖𝑡 B
(𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡 ))2√

𝑁𝑒𝑝 (𝑠𝑡+1)
(3)

Randomnetwork distillation (RND): Burda et al. [6] propose
a simplified prediction-based intrinsic reward which optimises a
state representation function 𝜙 to mimic a randomly initialised,
fixed target representation 𝜙 .

𝑟 𝑖𝑡 B
(
𝜙(𝑠𝑡 ) − 𝜙(𝑠𝑡 )

)2
(4)
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Figure 1: Visualisation of Decoupled Reinforcement Learning (DeRL) training loop.

3 RELATEDWORK
Liu et al. [19] propose a new objective for Meta-RL optimisation
to decouple exploration and exploitation. Using such an objective,
they train separate exploration and exploitation policies guided
by task-specific information for fast adaptation to novel scenarios.
For multi-agent RL, Liu et al. [20] learn separate exploration and
exploitation policies using off-policy RL to focus coordinated explo-
ration across multiple agents towards underexplored parts within
the state space. However, a mixture of both policies is applied to
explore whereas our work fully decouples both policies and their
training. Furthermore, both of these approaches consider the meta-
learning and multi-agent settings, respectively, and do not address
the challenge of single-agent exploration we focus on.

Independently from our work,Whitney et al. [42] propose to con-
currently train an exploration policy using only intrinsic rewards
and train a task policy using off-policy soft Double-DQN [40]. They
apply a factored policy of both the task and exploration policies
with optimisations focused on fast adaptation of the exploration
policy. In contrast, we fully decouple both trained policies and find
that training of the task policy using on-policy actor-critic algo-
rithms with off-policy correction leads to higher returns and less
sensitivity to hyperparameters in several tasks. Furthermore, we
evaluate DeRL with several intrinsic rewards whereas Whitney
et al. [42] use a single count-based intrinsic reward which is also
used for optimisitic initialisation [32].

4 DECOUPLED REINFORCEMENT LEARNING
In this work, we propose to decouple exploration and exploitation
into two separate policies to improve sample efficiency and reduce
sensitivity to hyperparameters of intrinsic rewards. We train an
exploration policy 𝜋𝛽 with the intent to explore the environment.
Using the data collected by the exploration policy, we train a sep-
arate exploitation policy 𝜋𝑒 , as visualised in Figure 1. Separating
exploration and exploitation in this way enables training of the
exploration policy with intrinsic rewards without modifying the
training objective of the exploitation policy.

Formally, an agent trains an exploration policy 𝜋𝛽 to maximise
the sum of intrinsic and extrinsic rewards,

𝜋𝛽 ∈ argmax
𝜋
E

[
∞∑
𝑡=0

𝛾𝑡
(
𝑟𝑒𝑡 + 𝜆𝑟 𝑖𝑡

)
| 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 )

]
(5)

= argmax
𝜋
E
[
𝐺𝑒+𝑖
𝑡 | 𝑎𝑡 ∼ 𝜋 (𝑠𝑡 )

]
(6)

with 𝐺𝑒+𝑖 denoting the discounted returns computed using the
combination of extrinsic and intrinsic rewards with scaling factor

𝜆 and discount factor 𝛾 ∈ [0, 1). During training of 𝜋𝛽 , experience
samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) with extrinsic rewards are collected in D.

In addition to this typical intrinsically-motivated RL, we train a
separate exploitation policy 𝜋𝑒 to maximise only expected cumula-
tive extrinsic rewards using experience accumulated in D with 𝐺𝑒𝑡
denoting discounted extrinsic returns.

𝜋𝑒 ∈ argmax
𝜋
E

[
∞∑
𝑡=0

𝛾𝑡𝑟𝑒𝑡 | (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) ∼ D
]

(7)

= argmax
𝜋
E
[
𝐺𝑒𝑡 | (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) ∼ D

]
(8)

Both exploration policy 𝜋𝛽 and exploitation policy 𝜋𝑒 can be
trained using any RL algorithm given the defined objectives. We op-
timise the exploration policy 𝜋𝛽 as RL with intrinsic rewards [3, 26,
27], whereas we train 𝜋𝑒 every 𝑇𝐷𝑒𝑐 timesteps on experience from
D which is generated by 𝜋𝛽 ’s interaction in the environment. Note
that D only contains extrinsic rewards and is off-policy data for
the optimisation of 𝜋𝑒 as it was generated by following 𝜋𝛽 . There-
fore, training the exploitation policy using experience generated
by the exploration policy requires off-policy RL. Off-policy RL is
concerned with the optimisation of a policy using experience gen-
erated within the environment by following a separate behaviour
policy. Below, we propose two methods to apply such decoupled
RL using an actor-critic and Q-learning framework.

4.1 Decoupled Actor-Critic
In order to use on-policy RL algorithms to train 𝜋𝑒 using D, off-
policy correction must be applied to account for differences in
trajectory distributions of both 𝜋𝑒 and 𝜋𝛽 .

One technique for off-policy correction is importance sampling
(IS). In the following, we train 𝜋𝑒 using an on-policy actor-critic
RL algorithm with state value function 𝑉 , parameterised by 𝜃 , and
policy 𝜋𝑒 , parameterised by 𝜙 . We optimise the latter by minimising
the actor loss given in Equation (9)

L(𝜙) = E
[
−𝜌(𝑎𝑡 |𝑠𝑡 ) log𝜋𝑒 (𝑎𝑡 |𝑠𝑡 ;𝜙) 𝐴𝑒 (𝑠𝑡 ) | (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) ∼ D

]
(9)

with bootstrapped advantage estimates𝐴𝑒 (𝑠𝑡 ) and ISweights 𝜌(𝑎𝑡 |𝑠𝑡 ).

𝐴𝑒 (𝑠𝑡 ) =
(
𝑟𝑒𝑡 + 𝛾𝑉 (𝑠𝑡+1;𝜃 ) −𝑉 (𝑠𝑡 ;𝜃 )

)
(10)

𝜌(𝑎𝑡 |𝑠𝑡 ) = 𝜋𝑒 (𝑎𝑡 |𝑠𝑡 ;𝜙)
𝜋𝛽 (𝑎𝑡 |𝑠𝑡 )

(11)

Similarly, the value loss for 𝜋𝑒 using IS weights can be defined
as follows:
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Algorithm 1 Decoupled Actor-Critic
Initialise: parameters 𝜙 , 𝜃 and 𝜋𝛽
D ← ∅
𝑖 ← 0
for ep = 0, . . . , 𝑁𝑒𝑝 do
𝑎𝑡 ∼ 𝜋𝛽 (𝑠𝑡 )
𝑠𝑡+1, 𝑟𝑒𝑡 ← environment step with 𝑎𝑡
Update 𝜋𝛽 using RL on intrinsic rewards (Equation (6))
D ← D ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1)
𝑖 ← 𝑖 + 1
if 𝑖 mod 𝑇𝐷𝑒𝑐 = 0 then
Update 𝜙 with Equation (9) and D
Update 𝜃 with Equation (12) and D
D ← ∅

end if
end for

L(𝜃 ) = E
[
𝜌(𝑎𝑡 |𝑠𝑡 )

(
𝑉 (𝑠𝑡 ;𝜃 ) −

(
𝑟𝑒𝑡 + 𝛾𝑉 (𝑠𝑡+1;𝜃 )

) )2
| (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) ∼ D

]
(12)

The IS weights, 𝜌 , can cause inconsistent returns during off-
policy training through exploding weights when 𝜋𝑒 (𝑎𝑡 |𝑠𝑡 ;𝜙) ≫
𝜋𝛽 (𝑎𝑡 |𝑠𝑡 ) or vanishing weights for 𝜋𝑒 (𝑎𝑡 |𝑠𝑡 ;𝜙) ≪ 𝜋𝛽 (𝑎𝑡 |𝑠𝑡 ) [8]. In
particular, such instabilities occur when one policy assigns ap-
proximately zero probability for some action. Various techniques
have been proposed to address such exploding weights, including
clipping of importance weights [10, 23] to minimise vanishing or
exploding gradients. The pseudocode for Decoupled Actor-Critic
optimisation of 𝜋𝑒 can be found in Algorithm 1.

4.2 Decoupled Deep Q-Networks
Instead of optimising 𝜋𝑒 using actor-critic algorithms with off-
policy corrections, we can also apply off-policy algorithms such as
Q-learning without the need for any correction. In this work, we
consider optimising 𝜋𝑒 using Deep Q-Networks (DQN) [22]. For
DQN optimisation, the following loss is minimised

L(𝜃 ) = E
[(
𝑄(𝑠𝑡 , 𝑎𝑡 ;𝜃 ) −𝑄(𝑠𝑡 )

)2
| (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1) ∼ D

]
(13)

with target Q-values 𝑄(𝑠𝑡 ) and 𝜃 denoting the parameters of the
periodically updated target network.

𝑄(𝑠𝑡 ) = (𝑟𝑒𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎
′;𝜃 )) (14)

Pseudocode for Decoupled Deep Q-Networks of 𝜋𝑒 can be found
in Algorithm 2. Note that D is only used for a single update in
Decoupled Actor-Critic, whereas in Decoupled Deep Q-Networks
D represents a replay buffer [18] which is continually filled with
experience.

5 EVALUATION
We evaluate DeRL in two learning environments with a variety of
RL algorithms and intrinsic rewards. In particular, we investigate
the following three hypotheses: (1) Intrinsically-motivated RL is
sensitive to varying scale 𝜆 and rate of decay of intrinsic rewards,

Algorithm 2 Decoupled Deep Q-Networks
Initialise: parameters 𝜃 and 𝜋𝛽
D ← ∅
𝑖 ← 0
for ep = 0, . . . , 𝑁𝑒𝑝 do
𝑎𝑡 ∼ 𝜋𝛽 (𝑠𝑡 )
𝑠𝑡+1, 𝑟𝑒𝑡 ← environment step with 𝑎𝑡
Update 𝜋𝛽 using RL on intrinsic rewards (Equation (6))
D ← D ∪ (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑒𝑡 , 𝑠𝑡+1)
𝑖 ← 𝑖 + 1
if 𝑖 mod 𝑇𝐷𝑒𝑐 = 0 then

Update 𝜃 with Equation (13) and D
end if

end for

(2) DeRL is more robust than intrinsically-motivated RL baselines
to varying scale and rate of decay, and (3) DeRL leads to similar or
improved returns and sample efficiency compared to intrinsically-
motivated RL baselines.

5.1 Algorithms
Baselines: As baselines, we consider on-policy RL algorithms Ad-
vantage Actor-Critic (A2C) [21] and Proximal Policy Optimisation
(PPO) [34]. Both algorithms are trained using the combined reward
𝑟𝑡 = 𝑟𝑒𝑡 + 𝜆𝑟 𝑖𝑡 with some weighting factor 𝜆 and various intrinsic
reward definitions as stated below.

DeRL: For our decoupled RL optimisation, we consistently train
𝜋𝛽 usingA2C aswe found it to bemore robust than PPO. As intrinsic
rewards, we use Count and ICM to train 𝜋𝛽 . For the optimisation
of 𝜋𝑒 , we consider A2C and PPO for Decoupled Actor-Critic and
Decoupled Deep Q-Networks based on DQN. We refer to these
algorithms as DeA2C, DePPO and DeDQN.

5.2 Intrinsic Rewards
Count-based:We consider two count-based intrinsic rewards com-
puting intrinsic rewards following Equation (1). Count directly
stores and increments state occurrences in a table. Hash-Count
first groups states using the SimHash function [39].

Prediction-based: Besides count-based intrinsic exploration
definitions, we consider ICM [30], RND [6], and RIDE [31] as
prediction-based approaches. For details on these intrinsic rewards,
see Section 2.2.2.

5.3 Environments
DeepSea is an environment proposed as part of the Behaviour
Suite (Bsuite) for RL [24], visualised in Figure 2. The environment
targets the challenge of exploration and represents a 𝑁 × 𝑁 grid
where the agent starts in the top left and has to reach a goal in
the bottom right location. At each timestep, the agent moves one
row down and can choose one out of two actions. For each row,
both actions are randomly assigned to left and right movement.
The agent observes the current location as a 2D one-hot encoding
and receives a small negative reward of −0.01

𝑁
for moving right and

0 reward for moving left. Additionally, the agent receives a reward
of +1 for reaching the goal and the episode ends after 𝑁 timesteps.
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Figure 2: DeepSea environment, from Osband et al. [24].

The difficulty of the exploration in DeepSea can be adjusted using
𝑁 : the larger 𝑁 , the harder it becomes for the agent to reach the
goal location for optimal returns of 0.99. We evaluate all algorithms
in the DeepSea task for 𝑁 ∈ {10, 14, 20, 24, 30}.

Hallway is a new environment proposed as part of this work
to represent domains where exploration and exploitation are mis-
aligned, visualised in Figure 3. In DeepSea, agents receive reward by
reaching states at the end of the environment, so intrinsic rewards
for exploration strongly align with extrinsic rewards from the envi-
ronment. We hypothesise that tasks in which intrinsic and extrinsic
rewards are not well aligned require carefully balanced exploration
through intrinsic rewards. Motivated by this hypothesis, we design
the Hallway environment in which an agent is located in a hallway
starting on the left. A goal can be reached by moving 𝑁𝑙 cells to the
right. In contrast to DeepSea, the goal is not necessarily located at
the right end of the hallway, but there might be further 𝑁𝑟 empty
cells to the right of the goal location. At each timestep, the agent
can choose between three actions: move left, stay or move right.
The agent receives a reward of +1 for reaching the goal for the first
time and every time it stays at the goal location for 10 steps. There-
fore, the agent needs to learn to move to the goal and stay there for
the remaining timesteps of the episode to collect further reward.
Episodes end after 2𝑁𝑙 steps and small negative reward of −0.01
is assigned for moving right or stay. Hallway tasks, in particular
with 𝑁𝑟 > 0, require exploration through intrinsic rewards to be
carefully balanced because staying at the goal for optimal returns
and exploration are not aligned. We evaluate all algorithms in the
Hallway environment with 𝑁𝑙 ∈ {10, 20, 30} and 𝑁𝑟 either being 0
or equal to 𝑁𝑙 .

5.4 Implementation Details
We compute n-step returns [37] to reduce the bias of value estimates
in all algorithms. On-policy training uses four parallel, synchronous
environments and an additional entropy regularisation term in the
policy loss [21]. Double-DQN [40] targets are computed for DQN.
For details on the conducted hyperparameter search as well as all
values used throughout experiments, see Appendix A†.

We train all algorithms for 100,000 episodes and evaluate every
1,000 episodes for a total of 100 evaluations by applying the greedy
(evaluation) policy in the respective task for 8 episodes. Following
recent suggestions for evaluation in deep RL [1], we report averaged
evaluation returns and stratified bootstrap 95% confidence intervals

†All appendices are available online at https://arxiv.org/pdf/2107.08966.pdf.

Figure 3: Hallway environment.

using 5,000 samples for the bootstrapping across five random seeds.
Optimal returns are indicated using a dashed horizontal line. A
weighting factor of 𝜆 = 1 is used for the combined reward signal
unless stated otherwise.

5.5 Hyperparameter Sensitivity
To investigate our first two hypotheses, we train all baselines and
DeRL algorithms on the combined reward 𝑟 = 𝑟𝑒 + 𝜆𝑟 𝑖 in DeepSea
𝑁 = 10 and Hallway 𝑁𝑙 = 𝑁𝑟 = 10 with varying 𝜆 and rates of
decay. We confirm our first hypothesis that intrinsically-motivated
RL is indeed highly sensitive to scale and decay rate of intrinsic
rewards, not learning at all or reaching significantly lower eval-
uation returns for many hyperparameter values. In particular in
the Hallway environment where exploration and extrinsic rewards
are misaligned, all algorithms exhibit significant dependency on
carefully tuned scale and rate of decay. We further confirm our sec-
ond hypothesis that DeRL algorithms are more robust to varying
scale and decay rate of intrinsic rewards, reaching higher returns
across a wider range of hyperparameters. Figures 4 and 5 show
sensitivity of all baselines and DeRL algorithms with Count and
ICM. Sensitivity analysis for all remaining intrinsic rewards can be
found in Appendix C.

Scale of intrinsic rewards:We consider 𝜆 ∈ {0.01, 0.1, 0.25, 0.5,
1.0, 2.0, 4.0, 10.0, 100.0} to analyse the sensitivity to varying scale of
intrinsic rewards. Figure 4 shows average evaluation returns for all
values of 𝜆 for baselines and DeRL. Average returns and bootstrap
confidence intervals are computed across five seeds before the
average over all 100 evaluations is computed. In DeepSea 𝑁 = 10,
DeA2C and DeDQN exhibit improved robustness by reaching close
to optimal returns for almost all values of 𝜆. In contrast, DePPO and
the baselines are found to be more sensitive in particular to large
values of 𝜆. In Hallway, all algorithms exhibit larger variance for
varying 𝜆 compared to DeepSea with no significant learning being
observed for large or small values of 𝜆, with DeA2C and DePPO
demonstrating slightly more robustness. These results indicate
the sensitivity to values of 𝜆. Even small deviations can make the
difference between learning and not learning at all.

Decay of intrinsic rewards: We also investigate the sensitiv-
ity of intrinsically-motivated baselines and DeRL algorithms to
the rate of decay of intrinsic rewards. For count-based intrinsic re-
wards, the rate of decay can be determined by the increment of the
state count 𝑁 (𝑠). For a sensitivity analysis, we consider increments
{0.01, 0.1, 0.2, 1.0, 5.0, 10.0, 100.0}. For deep prediction-based intrin-
sic rewards, we consider learning rates {1𝑒−9, 1𝑒−8, 2𝑒−8, 1𝑒−7, 5𝑒−7,
1𝑒−6, 1𝑒−5, 1𝑒−4, 1𝑒−3} determining the rate of decay. Figure 5 shows
average evaluation returns of baselines and DeRLwith varying rates
of decay in both DeepSea 𝑁 = 10 and Hallway 𝑁𝑙 = 𝑁𝑟 = 10. A2C
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Figure 4: Average evaluation returns in DeepSea 10 and Hallway 𝑁𝑙 = 𝑁𝑟 = 10 with 𝜆 ∈ {0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0}.
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return concentrated to the right for all hyperparameter values.
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Figure 5: Average evaluation returns in DeepSea 10 and Hallway 𝑁𝑙 = 𝑁𝑟 = 10 with varying rates of decay. Shading indicates
95% confidence intervals.

is shown to be more robust to varying rates of decay in both envi-
ronments compared to PPO. DePPO demonstrates larger sensitivity
compared to A2C, but DeA2C and DeDQN are again shown to be
the most robust algorithms, especially with Count intrinsic rewards,
exhibiting high evaluation returns for most considered values in
DeepSea 𝑁 = 10. Similar to 𝜆 sensitivity, we observe very signif-
icant dependency on the rate of decay in the Hallway task with
DeA2C exhibiting improved robustness to varying values.

5.6 Evaluation Returns
Lastly, we report evaluation returns of all algorithms across all
DeepSea and Hallway tasks in Table 1. Average returns and stan-
dard deviations are computed across all 100 evaluations after being
averaged across five seeds to indicate achieved returns as well as
sample efficiency. Additionally, we present normalised returns with
95% confidence intervals across both environments in Figure 6, and
tables with maximum achieved evaluation returns at any evaluation
and learning curves for each individual task in Appendix B.

In DeepSea, DeDQNperforms best out of all algorithms (Figure 6).
DeDQN converges to returns comparable to or higher than the best
performing baselines exhibiting highest average evaluation returns
in all tasks but DeepSea 20. DeA2C and DePPO demonstrate similar
returns and sample efficiency in some of these tasks (see Figures 9a

and 9b). In DeepSea 24 (Figure 9d) and harder Hallway tasks with
𝑁𝑙 = 20, 𝑁𝑟 = 0 and 𝑁𝑙 = 𝑁𝑟 = 30 (Figures 11b and 11f), the
exploitation policies of DeA2C and DePPO converge to the highest
returns and are shown to be more sample efficient reaching high
returns after up to 40% fewer episodes of training compared to
the best performing baselines. Generally, we can see that DeA2C
learns the optimal policy in the majority of Hallway tasks for some
of the five executed runs, but fails to converge to such behaviour
consistently. Instead, the majority of baselines and some DeRL runs
learn to reach the goal but move back and forth between the goal
and its left neighboured cell. Presumably, consistently staying at
the goal is rarely discovered due to the small negative reward of
staying at a cell.

However, we also observe some failure cases for DeRL algo-
rithms. DeDQN achieves low returns in the Hallway environment
compared to both on-policy DeA2C and DePPO. Also, significant
variance can be observed for baselines and DeRL algorithms in
harder DeepSea and most Hallway tasks. Off-policy optimisation is
theoretically independent of the policy generating training samples,
and in DeA2C and DePPO IS weight correction is applied to correct
for the off-policy training data. However, we believe distribution
shift [12] is causing inconsistent returns when optimising the ex-
ploitation policy from data generated by 𝜋𝛽 . Figure 7 visualises
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Table 1: Average evaluation returns and a single standard deviation in all DeepSea and Hallway tasks over 100,000 episodes.
The highest achieved returns in each task are highlighted in bold together with all returns within a single standard deviation.
For DeRL algorithms, evaluations are executed using the exploitation policy.

Alg DeepSea 10 DeepSea 14 DeepSea 20 DeepSea 24 DeepSea 30 Hallway 10-0 Hallway 10-10 Hallway 20-0 Hallway 20-20 Hallway 30-0 Hallway 30-30

A2C 0.93 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.67 ± 0.05 0.49 ± 0.09 0.42 ± 0.02 0.50 ± 0.03 0.28 ± 0.08 0.42 ± 0.08
A2C Count 0.98 ± 0.07 0.94 ± 0.16 0.74 ± 0.10 0.11 ± 0.15 −0.01 ± 0.00 0.85 ± 0.01 0.85 ± 0.02 0.61 ± 0.03 0.55 ± 0.06 −0.33 ± 0.15 −0.06 ± 0.07
A2C Hash-Count 0.98 ± 0.07 0.96 ± 0.15 0.39 ± 0.14 0.53 ± 0.12 −0.01 ± 0.00 0.85 ± 0.01 0.85 ± 0.03 0.56 ± 0.03 0.55 ± 0.06 −0.34 ± 0.15 −0.13 ± 0.11
A2C ICM 0.87 ± 0.20 0.69 ± 0.31 0.54 ± 0.23 0.46 ± 0.30 0.08 ± 0.12 0.62 ± 0.17 0.57 ± 0.17 0.27 ± 0.12 0.78 ± 0.27 1.16 ± 0.47 0.64 ± 0.38
A2C RND 0.06 ± 0.01 0.19 ± 0.02 −0.01 ± 0.00 −0.01 ± 0.00 −0.01 ± 0.00 −0.12 ± 0.02 −0.07 ± 0.00 −0.20 ± 0.01 −0.24 ± 0.00 −0.24 ± 0.01 −0.12 ± 0.00
A2C RIDE 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.85 ± 0.04 0.85 ± 0.02 0.70 ± 0.00 0.62 ± 0.00 0.37 ± 0.04 0.28 ± 0.08

PPO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PPO Count 0.84 ± 0.10 0.70 ± 0.17 0.46 ± 0.19 0.17 ± 0.18 0.20 ± 0.15 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01
PPO Hash-Count 0.86 ± 0.08 0.77 ± 0.13 0.34 ± 0.14 0.28 ± 0.20 0.12 ± 0.13 0.39 ± 0.11 0.10 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
PPO ICM 0.84 ± 0.17 0.28 ± 0.17 0.00 ± 0.03 0.12 ± 0.17 0.00 ± 0.03 0.05 ± 0.15 0.11 ± 0.15 0.02 ± 0.16 0.08 ± 0.19 −0.04 ± 0.08 −0.02 ± 0.14
PPO RND 0.26 ± 0.12 0.15 ± 0.08 −0.01 ± 0.00 0.00 ± 0.00 −0.01 ± 0.00 −0.04 ± 0.04 −0.04 ± 0.11 −0.21 ± 0.06 −0.17 ± 0.09 −0.27 ± 0.10 −0.27 ± 0.11
PPO RIDE 0.73 ± 0.08 0.00 ± 0.00 0.00 ± 0.02 −0.01 ± 0.00 −0.01 ± 0.00 −0.10 ± 0.03 0.02 ± 0.08 −0.21 ± 0.03 −0.08 ± 0.08 −0.32 ± 0.04 −0.29 ± 0.08

DeA2C Count 0.98 ± 0.10 0.65 ± 0.23 0.42 ± 0.16 0.07 ± 0.10 0.09 ± 0.08 0.84 ± 0.07 0.84 ± 0.09 0.42 ± 0.02 0.70 ± 0.01 0.55 ± 0.00 0.22 ± 0.02
DeA2C ICM 0.86 ± 0.19 0.52 ± 0.28 0.27 ± 0.24 0.08 ± 0.14 0.05 ± 0.11 0.77 ± 0.18 0.80 ± 0.17 0.44 ± 0.15 0.53 ± 0.20 0.52 ± 0.34 0.97 ± 0.51
DePPO Count 0.61 ± 0.20 0.92 ± 0.18 −0.01 ± 0.01 0.63 ± 0.27 −0.01 ± 0.00 0.73 ± 0.10 0.80 ± 0.08 0.56 ± 0.01 0.55 ± 0.04 −0.20 ± 0.17 −0.06 ± 0.07
DePPO ICM 0.61 ± 0.18 0.37 ± 0.17 0.00 ± 0.01 −0.01 ± 0.00 0.00 ± 0.00 0.82 ± 0.11 0.81 ± 0.11 0.64 ± 0.16 0.57 ± 0.07 −0.01 ± 0.25 0.26 ± 0.06
DeDQN Count 0.98 ± 0.09 0.95 ± 0.17 0.40 ± 0.08 0.53 ± 0.27 0.10 ± 0.10 −0.13 ± 0.04 −0.15 ± 0.04 −0.05 ± 0.05 −0.12 ± 0.08 −0.17 ± 0.07 −0.10 ± 0.06
DeDQN ICM 0.94 ± 0.20 0.59 ± 0.40 0.16 ± 0.12 0.24 ± 0.25 0.05 ± 0.12 −0.09 ± 0.09 0.02 ± 0.16 −0.11 ± 0.09 −0.19 ± 0.08 −0.26 ± 0.08 −0.19 ± 0.08

unstable IS weights for DeA2C in the DeepSea task with 𝑁 = 14
averaged over five seeds. These appear to correlate with some of
the noticeable drops in returns throughout training, indicating the
negative impact of divergence of exploration and exploitation poli-
cies on RL training of 𝜋𝑒 . Even when applying Retrace(𝜆) [23] to
clip IS weights, similar results are observed.

6 EXPLORATION USING ONLY INTRINSIC
REWARDS

Prior work on intrinsic rewards for exploration investigated the ef-
fectiveness of training using only intrinsic rewards and no extrinsic
rewards from the environment [6, 11, 30, 31]. Motivated by these
experiments, we also investigate the possibility of optimising the
exploration policy 𝜋𝛽 using only intrinsic rewards. Such optimisa-
tion would likely lead to increased robustness to hyperparameters
of intrinsic rewards as they would not be combined with extrinsic
rewards of the environment. However, we also find that the optimi-
sation of 𝜋𝛽 without extrinsic rewards causes further divergence
of 𝜋𝛽 and 𝜋𝑒 . It should be noted that the evaluation policy is still
trained using extrinsic rewards.

We conduct experiments in the DeepSea 10 and Hallway 𝑁𝑙 =
𝑁𝑟 = 20 tasks training DeA2C with Count intrinsic rewards for
20,000 episodes. Results are averaged across three seeds and we
directly compare optimising 𝜋𝛽 using either the sum of extrinsic
and intrinsic rewards (orange) or only using intrinsic rewards (blue)
in Figure 8. We find that training the exploration policy with only
intrinsic rewards does lead to increased divergence of both policies
seen in IS weights (top right) and the KL divergence (bottom right).
Training of the exploitation policy appears to suffer from such
differences in the more challenging Hallway task, but in DeepSea
the exploitation policy was successfully trained to solve the task
despite the exploration policy never reaching high returns. Our re-
sults show the feasibility of training 𝜋𝛽 using only intrinsic rewards
but also the challenge of increased distribution shift.

7 DIVERGENCE CONSTRAINTS
In order to address distribution shift caused by diverging explo-
ration and exploitation policies, we investigate the application of
divergence constraints proposed in the literature of offline RL [16].
These auxiliary objectives are introduced to the optimisation and
enforce 𝜋𝑒 and 𝜋𝛽 to not diverge significantly by introducing a term
𝛼𝐷(𝜋𝑒 , 𝜋𝛽 ) to the optimisation loss. This term is based on a distance
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Figure 8: Evaluation and training returns, IS weights and KL-divergence of exploration and exploitation policy for training of
DeA2Cwith Count in (a) DeepSea 10 and (b) Hallway 𝑁𝑙 = 𝑁𝑟 = 20 with intrinsic and extrinsic rewards or only intrinsic rewards
as training signal for 𝜋𝛽 , and with KL-divergence constraints with coefficients 𝛼𝛽 and 𝛼𝑒 . Evaluation and training returns are
achieved using the exploitation and exploration policies, respectively. Shading indicates 95% confidence intervals.

measure 𝐷 between the distribution of policies 𝜋𝛽 and 𝜋𝑒 and some
weighting hyperparameter 𝛼 . A common distance measure is the
Kullback-Leibler (KL) divergence, which has been applied in offline
RL [15], which can be written as following.

𝐷𝐾𝐿(𝜋𝑒 (𝑠𝑡 ), 𝜋𝛽 (𝑠𝑡 )) = E𝑎∼𝜋𝑒 (· |𝑆)
[
log𝜋𝑒 (𝑎 |𝑠𝑡 ) − log𝜋𝛽 (𝑎 |𝑠𝑡 )

]
(15)

For more distance measure candidates between two policies, see
Wu et al. [43] which found these metrics to perform comparably.

In DeRL, divergence constraints can be directly applied to the
optimisation of either the exploration 𝜋𝛽 or exploitation policy 𝜋𝑒 ,
i.e. can choose to keep 𝜋𝛽 close to 𝜋𝑒 and likewise can enforce 𝜋𝑒
to stay close to 𝜋𝛽 . We consider either of these directions as well
as a combination of both constraints.

We evaluate the application of KL constraints as regularisers
in the policy loss of the exploration policy, 𝛼𝛽𝐷𝐾𝐿(𝜋𝛽 , 𝜋𝑒 ), and ex-
ploitation policy, 𝛼𝑒𝐷𝑒 (𝜋𝑒 , 𝜋𝛽 ), with varying weights 𝛼𝛽 and 𝛼𝑒 ,
respectively. These constraints are applied in both settings intro-
duced in Section 6 with 𝜋𝛽 being optimised using only intrinsic
(green) or intrinsic and extrinsic rewards (red) with results shown
in Figure 8 for selected constraint coefficients. We find KL diver-
gence constraints successfully address distribution shift and thereby
keep both policies close to each other, even if 𝜋𝛽 is only trained
using intrinsic rewards. Such minimised divergence also leads to
reduced variability of returns in both tasks. These results indicate
the feasibility of training 𝜋𝛽 using only intrinsic rewards and the ef-
fectiveness of divergence constraints to minimise distribution shift.
We further evaluate the sensitivity of DeA2C with KL divergence
constraints and show that such regularisation can improve robust-
ness. For figures showing distribution shift, training and evaluation
returns for a range of KL constraint coefficients, 𝛼𝛽 and 𝛼𝑒 as well
the conducted sensitivity analysis, see Appendix D.

8 CONCLUSION
In this work, we proposed Decoupled RL (DeRL) which decouples
exploration and exploitation into two separate policies. DeRL op-
timises the exploration policy with additional intrinsic rewards
to incentivise exploration and trains the exploitation policy using
only extrinsic rewards from data generated by the exploration pol-
icy. Based on this general framework, we formulate Decoupled
Actor-Critic and Decoupled Deep Q-Networks and evaluated in
two sparse-reward environments. Our results demonstrate that
intrinsically-motivated RL is highly dependent on careful hyperpa-
rameter tuning of intrinsic rewards, indicating the need for more
robust solutions. We show that decoupling exploration and exploita-
tion is possible and does lead to significant benefits in robustness to
varying scale and rate of decay of intrinsic rewards. Furthermore,
we identify distribution shift as a challenge in separating the RL
optimisation into two policies with separate optimisation objec-
tives and investigate the application of divergence constraints to
minimise such divergence of both policies. Our results demonstrate
the effectiveness of divergence constraint regularisation and indi-
cate improved sample efficiency of DeRL in some tasks by reaching
high returns in fewer interactions in the environment. Lastly, we
demonstrated the feasibility of training the exploration policy using
only intrinsic rewards. Alongside divergence constraints, such a
training setting seems a promising directions for further research
into decoupled exploitation and exploration.
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