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ABSTRACT
High-performing teams learn intelligent and efficient communi-
cation and coordination strategies to maximize their joint utility.
These teams implicitly understand the different roles of heteroge-
neous team members and adapt their communication protocols
accordingly. Multi-Agent Reinforcement Learning (MARL) seeks
to develop computational methods for synthesizing such coordina-
tion strategies, but formulating models for heterogeneous teams
with different state, action, and observation spaces has remained an
open problem. Without properly modeling agent heterogeneity, as
in prior MARL work that leverages homogeneous graph networks,
communication becomes less helpful and can even deteriorate the
cooperativity and team performance. We propose Heterogeneous
Policy Networks (HetNet) to learn efficient and diverse communi-
cation models for coordinating cooperative heterogeneous teams.
Building on heterogeneous graph-attention networks, we show that
HetNet not only facilitates learning heterogeneous collaborative
policies per existing agent-class but also enables end-to-end train-
ing for learning highly efficient binarized messaging. Our empirical
evaluation shows that HetNet sets a new state of the art in learn-
ing coordination and communication strategies for heterogeneous
multi-agent teams by achieving an 8.1% to 434.7% performance
improvement over the next-best baseline across multiple domains
while simultaneously achieving a 200× reduction in the required
communication bandwidth.
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1 INTRODUCTION
High-performing human teams benefit from communication to
build and maintain shared mental models to improve team effec-
tiveness [24, 26]. Information sharing is key in building team cog-
nition, and enables teammates to cooperate to successfully achieve
shared goals [21, 26, 31]. Typical communication patterns across
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human teams widely differ based on the task or role the human as-
sumes [43]. The field of MARL [7] has sought to develop agents that
autonomously learn coordination and communication strategies
to emulate high-performing human-human teams [5, 8, 46, 51, 52].
Yet, these approaches have fallen short in properly modeling hetero-
geneity and communication overhead in teaming [10, 11, 25, 53].

Heterogeneity in robots’ design characteristics and their roles
are introduced to leverage the relative merits of different agents
and their capabilities [30, 32, 34, 35] We define a heterogeneous
robot team as a group of cooperative agents that are capable of
performing different tasks and may have access to different sensory
information. We categorize agents with similar state, action, and
observation spaces in the same class. In such a heterogeneous set-
ting, communicating is not straightforward as agents do not speak
the same “language”; we consider scenarios in which agents have
different action-spaces and observation inputs from the environ-
ment (i.e., due to different sensors) or may not even have access to
any observation input (i.e., lack of sensors, broken or low-quality
sensors). The dependency generated via sensor-lax or sensor-void
agents on agents with strong sensing capabilities makes efficient
communication protocols for cooperation a requirement rather than
an additional modeling technique for performance improvement.

While MARL researchers have increasingly focused on develop-
ing computational models of team communication [28, 53], most of
these prior frameworks fail to explicitly model the heterogeneity of
composite teams and fail to explicitly quantify and reduce the team’s
communication overhead to support decentralized, bandwidth-
limited teaming. We define a composite team as a group of het-
erogeneous agents that perform different tasks according to their
respective capabilities while their tasks are co-dependent on accom-
plishing an overarching mission [2, 4, 32]. Agents in a composite
team can inherently have different state, action, and observation
spaces and yet, must still communicate essential information. With-
out a proper model for teaming, heterogeneous agents will not
be able to reason about the heterogeneity in their team and share
information accordingly to achieve team cognition. Therefore, com-
munication may become unhelpful and deteriorate the MARL per-
formance [54]. More recent prior work, such asMAGIC [28], utilized
centralized schedulers and focused on communication efficiency to
achieve improved high team performance. In this work, we intend
to push the boundaries beyond this goal and seek to significantly
reduce the bandwidth needs for communication to minimize com-
munication overhead and facilitate practical implementation of our
framework by designing a decentralized execution paradigm.

Inspired by heterogeneous communication patterns across hu-
man teams, we propose Heterogeneous Policy Networks (HetNet) to
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learn efficient and diverse communication models for coordinating
cooperative heterogeneous robot teams. The key to our approach
is the design of an end-to-end communication learning model with
a differentiable encoder-decoder channel to account for the hetero-
geneity of inter-class messages, “translating” the encoded messages
into a shared, intermediate language among agents of a composite
team. Our empirical validation shows that HetNet’s novel graph-
based architecture achieves a new SOTA in learning emergent
cooperative behaviors in complex, heterogeneous domains. HetNet
achieves this result while also reducing communication overhead
through intelligent message binarization, compressing the num-
ber of communicated bits needed by more than 200× per round of
communication over the best performing baseline. Contributions:

(1) We develop a novel, end-to-end heterogeneous graph-attention
architecture for MARL that facilitates learning efficient, het-
erogeneous communication protocols among cooperating
agents to accomplish a shared task.

(2) We design a differentiable encoder-decoder communication
channel to learn efficient binary representations of states as
an intermediate language among agents of different types to
improve their cooperativity. Our binarized communication
model achieves 200× reduction in the number of communi-
cated bits per round of communication over baselines while
also setting a new SOTA in team performance.

(3) We develop Multi-Agent Heterogeneous Actor-Critic (MA-
HAC) to learn class-wise cooperation policies in composite
robot teams. Our results show the per-class critic structure
achieves better performance over a centralized critic while
having fewer model parameters than a per-agent critic.

(4) We present empirical evidence that show HetNet is robust
to varying bandwidth limitations and team compositions,
setting a new SOTA in learning emergent cooperative poli-
cies by achieving at least an 8.1% to 434.7% performance
improvement over baselines and across domains.

2 RELATEDWORK
MARL with Communication – Recently, the use of communi-
cation in MARL has been shown to enhance the collective perfor-
mance of learning agents in cooperative MARL problems [9, 10, 18,
23, 29, 33, 38, 40, 50, 52, 53]. DIAL [13] and CommNet [40] displayed
the capability to learn a discrete and continuous communication
vectors, respectively. While DIAL considers the limited-bandwidth
problem, neither of these approaches are readily applicable to com-
posite teams or capable of performing attentional communication.
TarMAC [10] achieves targeted communication through an atten-
tion mechanism which improves performance compared to prior
work. Nevertheless, TarMAC requires high-bandwidth message
passing channels and its architecture is reported to perform poorly
in capturing the topology of interaction [23]. SchedNet [20] explic-
itly addresses the bandwidth-related concerns. However, in Sched-
Net agents learn how to schedule themselves for accessing the
communication channel, rather than learning the communication
protocols from scratch. In our approach, we explicitly address the
heterogeneous communication problem where agents learn diverse
communication protocols and intermediate language representa-
tions to use among themselves for cooperation. Our model enables

agents to perform attentional communication and sending limited-
length digitized messages through class-specific encoder-decoder
channels, addressing the limited-bandwidth issues.

MARLwith Graph Neural Networks (GNN) – Prior work on
MARL have sought to utilize GNNs tomodel a communication struc-
ture among agents [1]. Deep Graph Network (DGN) [17] represents
dynamic multi-agent interaction as a graph convolution to learn
cooperative behaviors. This seminal work in MARL demonstrates
that a graph-based representation substantially improves perfor-
mance. In [37], an effective communication topology is proposed
by using hierarchical GNNs to propagate messages among groups
and agents. G2ANet [23] proposed a game abstraction method com-
bining a hard and a soft-attention mechanism to dynamically learn
interactions between agents. More recently, MAGIC [28] introduced
a scalable, attentional communication model for learning a cen-
tralized scheduler to determine when to communicate and how to
process messages through graph-attention networks. While these
prior work have successfullymodeledmulti-agent interactions, they
are not designed to address heterogeneous teams directly. HetNet,
on the other hand, is designed to capture the heterogeneity among
agents and learn an efficient shared language across agents with
different action and observation spaces to improve cooperativity.

Heterogeneity inMulti-agent Systems – In [6], several types
of heterogeneity induced by agents of different capabilities are dis-
cussed. As opposed to homogeneous teams, the diversity among
agents in heterogeneous teams makes it challenging to hand-design
intelligent communication protocols [6]. In [49], a control scheme is
hand-designed for a heterogeneousmulti-agent system bymodeling
the interaction as a leader-follower system. More recently, HMAGQ-
Net [27] utilized GNNs and Deep Deterministic Q-network (DDQN)
to facilitate coordination among heterogeneous agents (i.e., those
with different state and action spaces). Going beyond this prior
work, we build our HetNet model based upon an actor-critic frame-
work and generalize the problem formulation for state-, action-
and observation-space heterogeneities. Moreover, HetNet facilitates
learning efficient binary representations of states as an intermediate
language among agents of different types to improve cooperativity.

3 PRELIMINARIES
3.1 Problem Formulation
Founding on a standard Partially Observable MDP (POMDP) [19],
we formulate a new problem setup termed as Multi-Agent Hetero-
geneous POMDP (MAH-POMDP), which can be represented by a 9-
tuple ⟨C,N , {S (𝑖) }𝑖∈C, {A (𝑖) }𝑖∈C, {Ω (𝑖) }𝑖∈C, {O𝑖 }𝑖∈C, 𝑟 ,T , 𝛾⟩. C
is set of all available agent classes in the composite robot team
and the index 𝑖 ∈ C shows the agent class. N =

∑
⟨𝑖∈C⟩ 𝑁

(𝑖) is
the total number of collaborating agents where 𝑁 (𝑖) represents
the number of agents in class 𝑖 . {S (𝑖) }𝑖∈C is a discrete joint set of
state-spaces. For each class-dependent state-space, S (𝑖) , we have
S (𝑖) =

[
𝑠
𝑖1
𝑡 , 𝑠

𝑖2
𝑡 , · · · , 𝑠

𝑖
𝑁 (𝑖 )
𝑡

]
, where 𝑠𝑖 𝑗𝑡 represents the state-vector of

agent 𝑗 of the 𝑖-th class, at time 𝑡 . {A (𝑖) }𝑖∈C , is a discrete joint set
of action-spaces. For each state-dependent action-space, A (𝑖) , we
have A (𝑖) =

[
𝑎
𝑖1
𝑡 , 𝑎

𝑖2
𝑡 , · · · , 𝑎

𝑖
𝑁 (𝑖 )
𝑡

]
, forming the joint action-vector

of agents of class 𝑖 at time 𝑡 . {Ω (𝑖) }𝑖∈C is similarly defined as the
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joint set of observation-spaces, including class-specific observa-
tions. 𝛾 ∈ [0, 1) is the temporal discount factor for each unit of time
and T is the state transition probability density function.

At each timestep, 𝑡 , each agent, 𝑗 , of the 𝑖-th class can receive (if
the observation input is enabled for class 𝑖) a partial observation
𝑜
𝑖 𝑗
𝑡 ∈ Ω (𝑖) according to some class-specific observation function
{O (𝑖) }𝑖∈C : 𝑜𝑖 𝑗𝑡 ∼ O (𝑖) (·|𝑠). If the environment observation is not
available for agents of class 𝑖 , agents in the respective class will not
receive any input from the environment (e.g., lack of sensory inputs).
Regardless of receiving an observation or not, at each time, 𝑡 , each
agent, 𝑗 , of class 𝑖 , takes an action, 𝑎𝑖 𝑗𝑡 , forming a joint action vector
𝑎 =

(
𝑎

11
𝑡 , 𝑎

12
𝑡 , · · · , 𝑎

𝑖1
𝑡 , · · · , 𝑎

𝑖 𝑗
𝑡

)
. When agents take the joint action

𝑎, in the joint state 𝑠 and depending on the next joint-state, they
receive an immediate reward, 𝑟 (𝑠, 𝑎) ∈ R, shared by all agents and
regardless of their classes. Our objective is to learn optimal policies
per existing agent-class to solve the MAH-POMDP by maximizing
the total expected, discounted reward accumulated by agents over
an infinite horizon, i.e., arg max𝜋 (𝑠) ∈Π E𝜋 (𝑠)

[∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 |𝜋 (𝑠)
]
.

3.2 Actor-Critic (AC) Methods
Actor-Critic (AC) methods [3, 15] are an approach to RL that utilize
function approximation, in which each agent 𝑗 has a policy, 𝜋 𝑗

𝜃
(𝑎 |𝑠),

parameterized by 𝜃 , that specifies which action, 𝑎, to take in each
state, 𝑠 , to maximize the expected future discounted reward. AC
methods apply gradient ascent to the actor’s parameters, 𝜃 , based
upon a critic, 𝑄𝜙 (𝑠, 𝑎), action-value function [44], parameterized
by 𝜙 , where 𝑄𝜙 (𝑠, 𝑎) approximately solves the credit-assignment
problem [41]. By the policy gradient theorem [42], the expected
reward maximization (i.e., the AC objective), 𝐽 (𝜃 ), is maximized
via ∇𝜃 𝐽 (𝜃 ) = E𝜋 𝑗

𝜃

[
∇𝜃 log𝜋 𝑗

𝜃
(𝑎 𝑗𝑡 |𝑜

𝑗
𝑡 )𝑄𝜙 (𝑜 𝑗𝑡 , 𝑎

𝑗
𝑡 )

]
, where 𝑎 𝑗𝑡 and 𝑜 𝑗𝑡

are the action and observation of agent 𝑗 , respectively.
3.3 Graph Neural Networks
GNNs are a class of deep neural networks that capture the struc-
tural dependency among nodes of a graph via message-passing
between the nodes, where each node aggregates feature vectors
of its neighbors to compute a new feature vector [17, 48, 55]. The
canonical feature update procedure via graph convolution operator
can be shown as ℎ̄′

𝑗
= 𝜎

(∑
𝑘∈𝑁 ( 𝑗)

1
𝑐 𝑗𝑘
𝜔ℎ̄𝑘

)
, where ℎ̄′

𝑗
is the up-

dated feature vector for node 𝑗 , 𝜎 (.) is the activation function and,
𝜔 represents the learnable weights. 𝑘 ∈ 𝑁 ( 𝑗) includes the immedi-
ate neighbors of node 𝑗 where 𝑘 is the index of neighbor, and 𝑐 𝑗𝑘 is
the normalization term which depends on the graph structure. A
common choice of 𝑐 𝑗𝑘 is

√
|𝑁 ( 𝑗)𝑁 (𝑘) |. In an 𝐿-layer aggregation, a

node 𝑗 ’s representation captures the structural information within
the nodes that are reachable from 𝑗 in 𝐿 hops or fewer. However,
the fact that 𝑐 𝑗𝑘 is structure-dependent can impair generalizability
of GNNs when scaling the graph’s size. Thus, a direct improvement
is to replace 𝑐 𝑗𝑘 with attention coefficients, 𝛼 𝑗𝑘 , computed via Eq. 1.
In Eq. 1, �̄�𝑎𝑡𝑡 is the learnable weight, ∥ represents concatenation,
and 𝜎 ′(.) is the LeakyReLU nonlinearity. The Softmax function is
used to normalize the coefficients across all neighbors 𝑘 , enabling
feature dependent and structure free normalization [45, 47].

𝛼 𝑗𝑘 = softmax𝑘
(
𝜎 ′

(
�̄�𝑇

𝑎𝑡𝑡

[
𝜔ℎ̄ 𝑗 ∥ 𝜔ℎ̄𝑘

] ))
(1)

4 METHOD
In this section, we first present an overview of the communication
problems and constraints considered in our work. We then describe
how to construct a heterogeneous graph given a problem state and
present the building block layer, whichwe refer to as Heterogeneous
Graph-Attention (HetGAT) layer, and develop a binarized encoder-
decoder communication channel to account for the heterogeneity
of messages passed among agents. Eventually, we cover the logistics
of utilizing HetGAT layers to assemble our heterogeneous policy
network, HetNet, of arbitrary depth.

4.1 Communication Problem Overview
In this work, we are concerned with the problem of coordinating a
robot team via fostering direct communication among interacting
agents. We consider MARL problems wherein multiple agents in-
teract in a single environment to accomplish a task which is of a
cooperative nature. We are particularly interested in scenarios in
which the agents are heterogeneous in their capabilities, meaning
agents can have different state, action and observation spaces in
forming a composite team. To collaborate effectively, agents must
share messages that express their observations under a Centralized
Training and Distributed Execution (CTDE) paradigm [14, 20].

In learning an end-to-end communicationmodel, we take a series
of problems and constraints into consideration: (1) heterogeneous
messages, where agents of different classes have different action
and observation spaces, resulting in different interpretations of
sent/received messages; (2) Attentional and scalable communica-
tion protocols, such that agents incorporate attention coefficients
depending on the agent/class they are communicating with for co-
ordinating with teammates in any arbitrary team sizes; (3) Learning
communication models for Low-Size, -Weight, and -Power (Low-
SWAP) systems, where due to limited communication bandwidth,
agents must learn to communicate in a highly efficient shared in-
termediate “language” (e.g., limited-length binarized messages); (4)
Limited-range communications, where agents can only exchange
messages when they are within a close proximity.

4.2 Heterogeneous Communication Model
GNNs previously used in MARL operate on homogeneous graphs
to learn a universal feature update and communication scheme
for all agents [17, 23, 28, 37], which fails to explicitly model the
heterogeneity among agents.We instead cast the cooperativeMARL
problem into a heterogeneous graph structure, and propose a novel
heterogeneous graph-attention network capable of learning diverse
communication strategies based on agent classes. Compared to
homogeneous graphs, a heterogeneous graph can have nodes and
edges of different types that can have different types of attributes.
This advantage greatly increases a graph’s expressivity and enables
straightforward modeling of complicated, composite teams.

Given our MAH-POMDP formulation in Section 3.1, we directly
model each agent class 𝑖 ∈ C as a unique node type. This approach
allows agents to have different types of state-space content, S (𝑖) , as
input features according to their classes, as well as enabling different
types of action spaces, A (𝑖) . Communication channels between
agents are modeled as directed edges connecting the corresponding
agent nodes. When two agents move to a close proximity of each
other such that those agents fall within communication range, we
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Figure 1: Overview of our multi-agent heterogeneous attentional communication architecture in a CTDE paradigm. At each
time point 𝑡 = 𝑡0, each agent 𝑗 of class 𝑖 generates a local embedding from its own inputs, by passing its input data through
class-specific preprocessing units (i.e., a CNN or a fully-connected NN) and an LSTM cell. Each agent then sends the embedding
to a class-specific encoder-decoder networks to generate a binarized message, 𝑚 𝑗𝑘

𝑡 , from its local neighbor 𝑘 . The message
information is decoded and leveraged by the receiving agent to compute the action probabilities as its policy output.

add bidirectional edges to allow message passing between them.
We use different edge types to model different class combinations of
the sender and receiver agents to allow for learning heterogeneous
communication protocols and intermediate representations.

To form our novel architecture for modeling heterogeneous in-
teractions, we add a State Embedding Node (SEN) into the hetero-
geneous graph to train a critic network. SEN serves as a central
node where we aggregate all the important meta-data from the
MARL environment (i.e., number of agents, N , world size, current
time step, etc.) and use the embeddings for critic training. The SEN
forms a one-way connection to the agent nodes (i.e., from an agent
to the SEN) to receive messages from them during training. The
SEN’s learned embeddings are used as input of a critic network
consisting of one Fully-Connected (FC) layer for state-dependent
value estimation. We note that, since there are no edges pointing
from the SEN to any agent nodes, during the execution phase, the
SEN can be safely removed without affecting an agent’s own policy
output, which complies with our underlying CTDE paradigm.

Accordingly, we present an overview of our multi-agent hetero-
geneous attentional communication architecture in Fig. 1. At each
time, 𝑡 , the features of each agent (i.e., each node of the heteroge-
neous graph) are generated through a class-specific feature prepro-
cessor. We utilize separate modules to preprocess an agent’s state-
vector, 𝑠𝑖 𝑗𝑡 , and observation, 𝑜𝑖 𝑗𝑡 , since depending on the agent’s
class, the environment observation input may not be available (e.g.,
an action agent in a perception-action composite team). Each pre-
procecssing module contains one CNN or a fully-connected unit

followed by one LSTM cell to enable reasoning about temporal
information. As shown in Fig. 1, the generated embeddings are
then passed into a HetGAT communication channel including a
class-specific encoder-decoder network and a Gumbel-Softmax [16]
unit to generate a binarized message,𝑚𝑡 , for an agent, 𝑗 .

4.3 Binarized Communication Channels
The feature update process in a HetGAT layer is conducted in two
steps: per-edge-type message passing followed by per-node-type fea-
ture reduction. When modeling multi-agent teams, we reformulate
the computation process into two phases: a sender phase and a
receiver phase. Fig. 2 shows the computation flow during the sender
and receiver phases for an agent, 𝑗 , of class 𝑖 .

During the sender phase, the agent, 𝑗 , of class 𝑖 ∈ C, processes
its input feature, ℎ 𝑗 , using a class-specific weight matrix, 𝜔𝑖 ∈
R𝑑

′×𝑑 , where 𝑑 and 𝑑 ′ are the input and output feature dimensions,
respectively. The agent also transformsℎ 𝑗 into the assignedmessage
dimension using a class-specific encoder, 𝜔𝑒𝑛𝑐

𝑖
∈ R𝑛×𝑑 , where 𝑛

is the communication channel band-width. Next, we leverage a
universal binarization process utilizing Gumbel-Softmax to convert
the message into 0s and 1s for all classes as an efficient, intermediate
language. The binarized message is then sent to neighboring agents.

During the receiver phase, agent, 𝑗 , of class 𝑖 , processes all the re-
ceived messages using a class-specific decoder, 𝜔𝑑𝑒𝑐

𝑖
∈ R𝑑′×𝑛 . Next,

for each type of the communication edge that an agent is connected
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Figure 2: The sender and receiver phases of the feature up-
date process in a HetGAT layer for one agent, 𝑗 , of class 𝑖.

to, the HetGAT layer computes per-edge-type aggregation result by
weighing received messages, along the same edge-type with nor-
malized attention coefficients, 𝛼𝑒𝑑𝑔𝑒𝑇 𝑦𝑝𝑒 . The aggregation results
are then merged with the agent’s own transformed embedding,
𝜔𝑖ℎ 𝑗 , to compute the output features. The feature update formula
for an agent is shown in Eq. 2, where 𝑗 and 𝑘 are agent indexes and,
𝑖, 𝑙 ∈ C are class indexes; such that, 𝑖2𝑙 is an 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 and means
“from class 𝑖 to class 𝑙”.𝑚 𝑗𝑘

𝑡 is the decoded message computed by
Eq. 3 and, Δ𝑙 ( 𝑗) include agent 𝑗 ’s neighbors that belong to class 𝑙 .

Class (𝑖) : ℎ̄′𝑗 = 𝜎
(
𝜔𝑖ℎ̄ 𝑗 +

∑
𝑙 ∈C

∑
𝑘∈𝑁𝑙 ( 𝑗)

𝛼𝑖2𝑙
𝑗𝑘
𝑚

𝑗𝑘
𝑡

)
(2)

𝑚
𝑗𝑘
𝑡 = 𝜔𝑑𝑒𝑐

𝑖 (GumbelSoftmax(𝜔𝑒𝑛𝑐
𝑙

ℎ𝑘 )) (3)
Note that we have 𝑙 = 𝑖 for intra-class communication. When
computing attention coefficients in a heterogeneous graph, we
adapt Eq. 1 into Eq. 4 to account for heterogeneous channels.

𝛼𝑖2𝑙
𝑗𝑘

= softmax𝑘
(
𝜎 ′

(
�̄�𝑇

𝑎𝑡𝑡

[
𝜔𝑖ℎ̄ 𝑗 ∥ 𝜔𝑖2𝑙 ℎ̄𝑘

] ))
(4)

As discussed in Section 4.2, we add an SEN to the graph during
centralized training with a state-dependent critic network. The
feature update formula of the SEN is shown in Eq. 5. Here, feature
vectors from all agents are passed to the SEN after being processed
with edge-specific weights, 𝜔𝑒𝑑𝑔𝑒𝑇 𝑦𝑝𝑒 . The attention coefficients
for the SEN are computed in a similar manner as in Eq. 4.

SEN : ℎ̄′𝑠 = 𝜎
(
𝜔𝑠ℎ̄𝑠 +

∑
𝑖∈C

∑
𝑗 ∈𝑁 (𝑖 )

𝛼𝑖2𝑠𝑒𝑛𝑠 𝑗 𝜔𝑖2𝑠𝑒𝑛ℎ̄ 𝑗
)

(5)

To stabilize the learning process, we adapt the multi-head extension
of the attentionmechanism [45] to fit our heterogeneous setting.We
use 𝐿 independent HetGAT (sub-)layers to compute node features
in parallel and then merge the results by concatenation operation
for each multi-head sub-layer in HetNet except for the last layer
which employs averaging. As a result, each type of communication
channel is split into 𝐿 independent, parallel sub-channels.

4.4 Heterogeneous Policy Network (HetNet)
At each timestep, 𝑡 , a HetGAT layer corresponds to one round of
message exchange between neighboring agents and feature update
within each agent. By stacking several HetGAT layers, we construct
the Heterogeneous Policy Network (HetNet) model that utilizes
multi-round communication to extract high-level embeddings of
each agent for decision-making. For the last HetGAT layer in Het-
Net, we set each agent’s output feature dimension to the size of its
action-space, specific to its class, 𝑖 . Then, for each agent node, we
add a Softmax layer on top of its output to obtain a probability distri-
bution over actions that can be used for action sampling, resulting
in class-wise stochastic policies. Accordingly, the computation pro-
cess of each agent’s policy remains local for distributed execution,
and the SEN is no longer needed during execution/testing.

5 TRAINING AND EXECUTION
5.1 Multi-agent Heterogeneous Actor-Critic
We present our modified Multi-Agent Heterogeneous Actor-Critic
(MAHAC) framework for learning class-wise coordination policies.
We assign one policy per existing class, 𝜋𝑖 ∈ {Π}C , each of which
is parametrized by 𝜃𝑖 . The trained actor network on the heteroge-
neous graph contains one set of learnable weights per agent class,
which due to the message-passing nature of GNN updates, can be
distributed to individual agents in the execution phase. Accordingly,
in MAHAC, the policy for each class, 𝜋𝑖 , is updated by a variant of
the basic AC objective (see Section 3.2, shown in Eq. 6. We leverage
an on-policy training paradigm for MAHAC.

∇
𝜃𝑖
𝐽 (𝜃𝑖 ) =

1
𝑁

N(𝑖 )∑
𝑗=1

𝑇∑
𝑡=1

∇
𝜃𝑖

log𝜋𝑖
(
𝑎
𝑖 𝑗
𝑡 |𝑜𝑖 𝑗𝑡 , �̄�𝑡

) ((
𝑇∑

𝑡′=𝑡
𝛾𝑡

′−𝑡𝑟 𝑖 𝑗 (𝑠𝑖 𝑗 , 𝑎𝑖 𝑗 )
)
− 𝑏 (𝑡 )

)
(6)

In Eq. 6, 𝑎𝑖 𝑗𝑡 and 𝑜𝑖 𝑗𝑡 represent the joint actions taken and joint
observations received (if applicable for class 𝑖) by agents at time,
𝑡 . �̄�𝑡 represents the message-vector received by agent 𝑗 from its
neighbors. The term

∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 𝑖 𝑗 (𝑠𝑖 𝑗 , 𝑎𝑖 𝑗 ) calculates the total dis-
counted future reward from current timestep to end of an episode.
Moreover, 𝑏 (𝑡) is a temporal baseline function leveraged to reduce
the variance of the gradient updates in MAHAC. We utilize the
value-estimates via our critic network as the baseline function [22]1.

5.2 Critic Architecture Design for HetNet
In this section, we propose and assess several MAHAC architectures
to investigate the utility of: (1) fully-centralized critic, 𝑏 (𝑡) (i.e., one
critic signal for all), (2) per-class critics, 𝑏𝑖 (𝑡) (i.e., one critic signal
per class of agents) and (3) per-agent critics, 𝑏𝑖 𝑗 (𝑡) (i.e., individual
critic signals for each agent) to learn class-wise policies.
1We provide our code at https://github.com/CORE-Robotics-Lab/HetNet
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In the fully-centralized critic implementation for HetNet, we
stack an FC layer on top of SEN’s output feature for critic prediction
of the value estimate. The same predicted critic value is used in the
policy gradient update for all agents of all classes. The target value
for training the critic output is the average returns (i.e., discounted
sum of future rewards) over all agents. Thus, in this architecture
one centralized critic network “criticizes” the actions of all agents.
Note that this approach still complies with our CTDE paradigm,
since the actor network is implemented on a GNN structure.

For the per-class critic implementation, we split the critic head
into one critic head per existing agent class to separate the critic
estimation for different types of agents. The critic split is done while
the critic is estimated based on a class-specific SEN’s output feature.
During training, the target value for each class of critic output is the
average returns over the same class of agents. Algorithm 1 provides
a pseudocode to train HetNet with the per-class critic architecture.

In our per-agent critic implementation for HetNet, the critic
network outputs one critic value for each agent. This is achieved
by concatenating the SEN’s output feature with each agent node’s
output embedding to serve as the input of class-specific critic heads.
The per-agent critic estimation is used for each agent’s policy up-
date where the target value for training is the returns of that agent.

6 EMPIRICAL EVALUATION
6.1 Evaluation Environments
We evaluate the utility of HetNet against several baselines in three
cooperative MARL domains (a homogeneous and two heteroge-
neous) that require learning collaborative behaviors. Please refer
to the supplementary for environment and model details.

Predator-Prey (PP) [38] – For the homogeneous domain, we
adopt the Predator-Prey (PP) [38] in which the goal is for𝑁 predator
agents with limited vision to find a stationary prey and move to
its location. The agents in this domain all belong to the same class
(i.e., identical state, observation and action spaces).

Predator-Capture-Prey (PCP) – For the first heterogeneous
domain, we modify the PP to create a new environment, which we
refer to as Predator-Capture-Prey (PCP), to include a composite
team. In PCP, we have two classes of predator and capture agents.
Agents of the predator class have the goal of finding the prey with
limited vision (similar to agents in PP). Agents of the capture class,
have the goal of locating the prey and capturing it with an additional
capture-prey action in their action-space, while not having any
observation inputs (e.g., lack of scanning sensors).

FireCommander (FC) [36] – In the second heterogeneous do-
main, the FireCommander [36], two classes of perception and action
agents must collaborate as a composite team to extinguish a propa-
gating firespot. At each timestep, the firespot propagates to a new
location according to the FARSITE [12] model, while the previous
location is still on fire. All firespots are initially hidden to agents
and need to be discovered before being extinguished. As such, per-
ception agents are tasked to scan the environment to detect the
firespots while action agents (no observation inputs) are required
to move and extinguish a firespot that has been discovered by a
perception agent before. Note that since firespots propagate, both
perception and action agents need to continue to explore the map
and collaborate until all firespots are extinguished.

Algorithm 1: The Per-class training procedure for HetNet.
1: Input: Agent classes, 𝑖 ∈ C, number of agents in each class,

N (𝑖) , number of episodes per epoch 𝐾 , maximum allowed
steps for each episode, 𝑇 , learning rate, 𝜂.

2: Initialize: Per-class policy parameters {𝜃𝑖 } for {𝜋𝑖 } and
per-class critic parameters {𝜙𝑖 } for {𝑉 𝑖 }, 𝑖 ∈ C

3: while not converged do
4: Sample a random environment instance
5: for 𝑘 = 1 to 𝐾 do
6: Get initial observations {𝑜11

1 , 𝑜
12
1 , ..., 𝑜

𝑖 𝑗
1 }, 𝑖 ∈ C, 𝑗 ∈ N (𝑖)

7: for 𝑡 = 1 to 𝑇 do
8: Perform message passing and feature reduction
9: Store critic predictions {𝑉 𝑖

𝑡 }, 𝑖 ∈ C
10: Sample actions: 𝑎𝑖 𝑗𝑡 ∼ 𝜋𝑖 (∗ | 𝑜𝑖 𝑗𝑡 ), 𝑖 ∈ C, 𝑗 ∈ N (𝑖)

11: Step through environment using {𝑎11
𝑡 , 𝑎

12
𝑡 , · · · , 𝑎

𝑖 𝑗
𝑡 },

receive next observations and rewards:
{𝑜11

𝑡+1, 𝑜
12
𝑡+1, ..., 𝑜

𝑖 𝑗
𝑡+1}, {𝑟

11
𝑡 , 𝑟

12
𝑡 , ..., 𝑟

𝑖 𝑗
𝑡 }

12: if environment_solved then: Terminate early end if
13: end for
14: end for
15: for 𝑖 ∈ C do
16: Compute rewards-to-go 𝑅𝑖𝑡 and GAE advantages 𝐴𝑖𝑡
17: ∇𝐽 (𝜃𝑖 ) = 1

𝑁

∑N (𝑖 )
𝑗=1

∑𝑇
𝑡=1 ∇ log𝜋𝑖

(
𝑎
𝑖 𝑗
𝑡 |𝑜𝑖 𝑗𝑡

)
𝐴𝑖𝑡

18: Critic loss: 𝐿(𝑉 𝑖 ) = 1
𝑁

∑N (𝑖 )
𝑗=1

∑𝑇
𝑡=1

(
𝑉 𝑖
𝑡 − 𝑅𝑖𝑡

)2

19: Joint update: 𝜃𝑖 = 𝜃𝑖 + 𝜂∇𝐽 (𝜃𝑖 ), 𝜙𝑖 = 𝜙𝑖 − 𝜂∇𝐿(𝑉 𝑖 )
20: end for
21: end while

6.2 Baselines
We benchmark two variants of our framework, i.e. HetNet-Binary
and HetNet-Real, against four end-to-end communicative MARL
baselines: (1) CommNet [40], (2) IC3Net [38], (3) TarMAC [10] and,
(4) MAGIC [28]. For our HetNet-Real variant, we remove the bina-
rization process (i.e., Gumbel-Softmax) and the encoder-decoder
network from the communication channel. Accordingly, agents
directly send their generated embeddings (i.e., the LSTM cell out-
put) to a class-specific communication edge in HetGAT layers. The
HetNet-Real utilizes continuous, agent-specific embeddings to gen-
erate limited-length, real-valued numbers which allow for greater
expressivity in the message-space. The real-valued numbers require
more communication band-width and higher memory storage as
compared to HetNet-Binary (see Section 6.3). We note that, for all
four baselines, i.e. CommNet [40], IC3Net [38], TarMAC [10] and,
MAGIC [28], we directly pulled the respective authors’ publicly
available code-bases and hyperparameters for training. Note that
we observed some performance discrepancies while directly using
MAGIC’s public repository (i.e., github.com/MAGIC).

6.3 Results, Ablation Studies, and Discussion
Here, we empirically validate the performance of our frameworks,
across homogeneous and heterogeneous teaming domains and
against the introduced baselines. Next, we present an ablation
study to investigate the required communication overhead for each
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Table 1: Reported results are Mean (± Standard Error (SE)) from 50 evaluation trials. For all tests, the final training policy at
convergence is used for each method. As shown, HetNet outperforms all baselines in all three domains.

Method Homogeneous Domain (PP) Heterogeneous Domain #1 (PCP) Heterogeneous Domain #2 (FC)
Avg.

Cumulative R
Avg. Steps
Taken

Avg.
Cumulative R

Avg. Steps
Taken

Avg.
Cumulative R

Avg. Steps
Taken

TarMAC [10] -0.563 ± 0.030 18.4 ± 0.46 -0.548 ± 0.031 17.0 ± 0.80 -109.2 ± 6.26 248.1 ± 6.97
IC3Net [38] -0.342 ± 0.015 9.69 ± 0.26 -0.411 ± 0.019 11.5 ± 0.37 -187.2 ± 0.79 276.0 ± 5.51

CommNet [40] -0.336 ± 0.012 8.97 ± 0.25 -0.394 ± 0.019 11.3 ± 0.34 -253.2 ± 1.01 292.7 ± 3.07
MAGIC [28] -0.386 ± 0.024 10.6 ± 0.50 -0.394 ± 0.017 10.8 ± 0.45 -267.6 ± 10.9 298.1 ± 23.3
HetNet [Ours] -0.232 ± 0.010 8.30 ± 0.25 -0.364 ± 0.017 9.98 ± 0.36 -9.862 ± 2.77 46.40 ± 2.90

(a) Homogeneous Domain (PP) (b) Heterogeneous Domain (PCP)

Figure 3: Average steps taken (± SE) by each method across
episodes and three different random seeds as training pro-
ceeds. HetNet outperforms all baselines in both domains.

method (Section 6.3.2). We then present evidence to support the ef-
fects of communication on collaboration performance (Section 6.3.3)
as well as to determine the sensitivity of HetNet to key variables
such as number of agents (Section 6.3.4). Additionally, we investi-
gate the effects of the critic structures proposed in Section 5.2 on
HetNet’s performance (Section 6.3.5).

6.3.1 Baseline Comparison. Fig. 3 depicts the average steps taken
(± standard error) by each method across episodes as training pro-
ceeds in PP and PCP domains. In both domains, PP and PCP, HetNet
outperforms all baselines by converging to a more efficient coordi-
nation policy (i.e., fewer steps taken). We also tested the learned
coordination policies at convergence by each of the baselines in PP,
PCP and FC domains. The results of this test are presented in Table 1
where the reported results are mean (± Standard Error (SE)) from
50 evaluation trials with different random-seed initializations. As
shown, HetNet outperforms all baselines in all three domains. Addi-
tionally, in the same experiment, the coordination policy learned by
our HetNet-Binary with 64-bits message dimensionality achieved
9.90±0.58 average steps taken in the PCP domain; showing better
performance than all baselines while significantly compressing the
communication bandwidth (see Fig. 4). The heterogeneous poli-
cies learned by our model set the SOTA for learning challenging
cooperative behaviors for composite teams.

6.3.2 Ablation Study #1: Communication Bandwidth. In this exper-
iment, we compute the Communication Bandwidth (CB) for each
baseline as the number of bits required to communicate messages
per round of communication during evaluation (i.e., converged

Figure 4: Communicated bits per round of communication
vs. performance in PCP for different methods. HetNet facil-
itates binarized messages among agents which requires sig-
nificantly less CB as compared to real-valued baselines.

policies deployed for test). As shown in Fig. 4, HetNet facilitates bi-
narized communication among agents which requires significantly
less CB as compared to real-valued baselines (i.e., one bit per bi-
nary value vs. 64 bits in single-precision floating-point format [39]).
HetNet-Binary with 64 and 32-bits messages, respectively, achieve
more than 100× and 200× lower CB while showing better perfor-
mance than real-valued baselines.

6.3.3 Ablation Study #2: Effects of Communication. We assess the
impact of the communication on cooperation performance of the
composite team. We present two experiments in the PCP domain
for comparing HetNet’s performance: (1) with Full, Half and No
communication among agents and (2) with different binary mes-
sage dimensions (number of bits). As depicted in Fig. 5a, HetNet
performs significantly better with full communication while the
performance drop for half-communication (i.e., limited range) is
not considerable. As such, the results show that our model, HetNet
has robustness to degradation in communication range. Addition-
ally, as shown in Fig. 5b, a gradual degradation in performance is
observed by decreasing message dimensionality rather than a sharp
drop-off. HetNet’s performance improves with longer messages as
the learned intermediate language will have greater expressivity.

6.3.4 Ablation Study #3: Scalability to Number of Agents in the Com-
posite Team. In this experiment, we evaluated the scalability of our
HetNet-Binary to different number of agents in the composite team.
Specifically, we tested HetNet-Binary in PCP domain with (2P, 1C),
(3P, 3C) and (4P, 6C) team compositions, where P and C represent
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(a) Communication range. (b) Message dimensionality. (c) Scalability to num. of agents.

Figure 5: Analyzing HetNet’s performance with and without communication (Fig. 5a) and across different binary message
dimensions (Fig. 5b) in the PCP domain. Communication policy learned by HetNet improves the cooperativity among agents
and the performance improves with larger message sizes. Fig. 5c depicts results for analyzing HetNet’s ability to scale to
different number of agents. As shown, HetNet-Binary can successfully scale to different sizes of the composite team.

predator and capture agents, to evaluate the scalability to different
team sizes. The results of this experiment are presented in Fig. 5c.
As shown, HetNet’s GNN-based architecture can successfully scale
to different combinations of the composite team by approximately
converging at the same rates.

6.3.5 Ablation Study #4: Effects of the Critic Structures. Finally, we
investigate the utility and performance of the three critic structures
proposed in Section 5.2 onHetNet’s performance in the PCP domain.
We utilized our HetNet-Real variant for this experiment. Fig. 6a
shows the learning curves during training for centralized, per-class,
and per-agent critic structures in the PCP domain. The test results
for coordination policies learned by each of the critic architectures
are presented in Fig. 6b, showing the average number of steps
taken to win the game by deploying the converged policies by each
critic design. As depicted, HetNet-Real shows similar performance
with per-class and per-agent critics, both having better results than
the centralized critic, decreasing the number of steps of episode
completion by 0.20 (10.01 → 9.81). The performance benefit can be
attributed to the ability to utilize individual and class-wise rewards,
both of which help to capture the heterogeneity in the received
feedback from the environment.

7 CONCLUSION
Motivated by the diverse communication patterns across collab-
orating human teams, we present a communicative, cooperative
MARL framework for learning heterogeneous cooperation policies
among agents of a composite team. We propose Heterogeneous
Policy Network (HetNet), a heterogeneous graph-attention based
architecture, and introduce the Multi-Agent Heterogeneous Actor-
Critic (MAHAC) learning paradigm for training HetNet to learn
class-wise cooperation policies. We push the boundaries beyond
performance considerations as in prior work by equipping Het-
Net with a binarized encoder-decoder communication channel to
facilitate learning a new and highly efficient encoded language
for heterogeneous communication. We empirically show HetNet’s
superior performance against several baselines in learning both
homogeneous and heterogeneous cooperative policies. We provide

(a) Training Performance. (b) Converged Performance.

Figure 6: Learning curves during training as well as the test
results (average number of steps taken) for final policies
learned by centralized, per-class and per-agent critic archi-
tectures in the PCP domain.

empirical evidence that show: (1) our binarized model achieves
more than 200× reduction in communication overhead (i.e., mes-
sage bits) per round of communication while also outperforming
baselines in performance, (2) HetNet is robust to varying bandwidth
limitations and team compositions.
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