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ABSTRACT
We study wisdom-of-the-crowd effects in liquid democracy on net-

works where agents are allowed to apportion parts of their voting

weight to different proxies. We show that in this setting—unlike

in the standard one where voting weight is delegated in full to

only one proxy—it becomes possible to construct delegation struc-

tures that optimize the truth-tracking ability of the group. Focusing

on group accuracy we contrast this centralized solution with the

setting in which agents are free to choose their weighted delega-

tions by greedily trying to maximize their own individual accuracy.

While equilibria with weighted delegations may be as bad as with

standard delegations, they are never worse and may sometimes be

better. To gain further insights into this model we experimentally

study quantal response delegation strategies on random networks.

We observe that weighted delegations can lead, under specific con-

ditions, to higher group accuracy than simple majority voting.
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1 INTRODUCTION
Liquid democracy [5] is a form of proxy voting [2, 10, 20, 31, 37]

where proxy votes are also delegable, thereby giving rise to so-called

transitive delegations. In such a system each voter may choose to

cast her vote directly, or to delegate her vote to a proxy, who may

in turn decide whether to vote or delegate, and so pass the votes

she has accrued further to yet another proxy. The voters who retain

their votes cast their ballots, which now carry the weight given

by the number of delegations they accrued. The system has been

implemented in decision-support tools like LiquidFeedback [3] and

has been object of much research (see [34] for an overview).

Contribution. Our paper studies aspects of the truth-tracking

properties of liquid democracy when agents are allowed to express

delegations consisting of the apportionment of shares of a unit

weight (i.e., the agent’s voting weight) to their proxies. This func-

tionality is available in some implementations of liquid democracy

(e.g. on the platform Congressus of the French Pirate Party). We first

interpret these weights probabilistically, that is, as mixing of pure

delegations. The issue we are after is to understand the extent to

which weighted delegations could help the truth-tracking behavior
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of liquid democracy. We make four contributions. First, we show
that in this more general setting it is always possible for the agents

to achieve maximal group accuracy by centrally coordinating their

delegations (Theorem 3). Second, we extend the strategic model

of liquid democracy developed in [4, 38] to the setting involving

weighted delegations. In games in which agents greedily try to

maximize their individual accuracies we show that weighted dele-

gations enable equilibria that are better in terms of group accuracy,

with respect to equilibria with pure delegations (Theorem 4). This,

however, comes at the cost of a higher price of anarchy with respect

to games with pure delegations. Third, we provide an interpretation

of weighted delegations alternative to mixing, in which weights

are modeled as shares of voting power that agents apportion to

their proxies. This model leads to an alternative notion of utility in

delegation games, and therefore to different equilibria. We prove

the resulting notion of equilibrium to be weaker than the proba-

bilistic one (Theorem 7). Fourth, we provide experimental evidence,

via simulations, of high truth-tracking performance of weighted

delegations even in decentralized settings, if agents are boundedly

rational according to the quantal response model [29].

Related Work. Three main lines of research in liquid democracy

may be broadly identified. First, papers have pointed to potential

weakenesses of voting with transitive delegations and suggested

alternative schemes for liquid democracy, specifically focusing on

delegation methods. Problems the literature has focused on include:

delegation cycles and the failure of individual rationality in multi-

issue voting [7, 9]; poor accuracy of group decisions as compared to

those achievable via direct voting in non-strategic settings [8, 26],

as well as strategic ones [4]; issues related to power [38]; and impos-

sibility results concerning proxy selection [22]. In response to these

issues research has focused on the development of better behaved

delegation schemes, e.g.: delegations with some level of central-

ized control [26]; delegations with preferences over trustees [7] or

over gurus [17]; multiple delegations [19]; complex delegations like

delegations to a majority of trustees [11]; dampened delegations

[6]; breadth-first delegations [28]. Second, papers have focused on

computational aspects of some of the themes mentioned above, like

the computation of equilibria in delegation games [17] or the reso-

lution of cycles [15]. Finally, implementations of liquid democracy

for real-world applications have been studied [27, 34].

Our paper is a contribution to the first line of research men-

tioned above and is most directly related to [8, 26], which studied

the truth-tracking properties of liquid democracy as opposed to

direct voting. In particular [26] showed that no ‘local’ probabilistic

procedure for proxy-selection can guarantee that liquid democracy

is, at the same time, never less accurate (in large enough graphs)

and sometimes strictly more accurate than direct simple majority

voting. These negative results have been further strengthened along
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several lines in [8]. Like these papers we study delegations from

a probabilistic perspective, but we use probabilistic delegations to

leverage existing generalizations of the Condorcet jury theorem

([32, 36]) in which agents are assigned weights depending on their

accuracy. Our starting point is to exploit these results to determine

delegation graphs which are optimal in terms of truth-tracking

performance. We then compare this centralized approach with a

decentralized one in which agents choose their delegations with

the sole aim of improving their individual accuracy. Besides the

aforementioned [8, 26] the idea of weighted delegations has been

proposed and studied in other papers on liquid democracy and

proxy voting (see [1, 13, 19]). Our paper further develops the theory

of weighted delegation schemes in a truth-tracking context.

Outline. Section 2 introduces our model and Section 3 describes

a centralized mechanism to use weighted delegations in order to

achieve optimal group accuracy. Section 4 studies weighted dele-

gations from a game-theoretic perspective and focuses on group

accuracy in equilibrium. Section 5 studies an alternative model of

weighted delegations based on the transfer of voting power. Section

6 presents our experimental results and Section 7 concludes.

2 WEIGHTING PROXIES
2.1 Binary Truth-Tracking with Delegations
Our model is based on the binary voting setting for truth-tracking

[12, 16, 21]. The setting has already been applied to the study of

liquid democracy by [4, 8, 26].

A finite set of agents 𝑁 = {1, 2, . . . , 𝑛} have to vote on whether

to accept or reject an issue. The vote is supposed to track the correct

state of the world, that is, whether it is best to accept or reject the

issue. Both options are assumed to have equal prior probability. The

agents’ ability to make the right choice is represented by the agent’s

accuracy 𝑞𝑖 ∈ [0.5, 1], for 𝑖 ∈ 𝑁 , corresponding to the conditional

probability of 𝑖 accepting (respectively, rejecting) the issue if it is

indeed best to accept (respectively, reject) it. Each agent is endowed

with one vote and the result of such an election is determined

by (weighted) majority. Agents may accrue voting power through

delegations.When agent 𝑖 delegates to agent 𝑗 wewrite𝑑𝑖 = 𝑗 . Then

d = (𝑑1, 𝑑2, . . . , 𝑑𝑛) is called a delegation profile (or simply a profile)
and is a vector describing each agent’s delegation. Equivalently,

delegation profiles can be thought of as maps d : 𝑁 → 𝑁 , where

d(𝑖) = 𝑑𝑖 . When 𝑑𝑖 = 𝑖 , agent 𝑖 votes on her own behalf. We call

such an agent a guru. Any agent who is not a guru, is called a

delegator. For profile d, and 𝐶 ⊆ 𝑁 , 𝐺𝑢 (𝐶, d) denotes the set of all
gurus from𝐶 in d, i.e.,𝐺𝑢 (𝐶, d) = {𝑖 ∈ 𝐶 | 𝑑𝑖 = 𝑖}. We write𝐺𝑢 (d)
instead of 𝐺𝑢 (𝑁, d) to denote the set of all gurus. A profile d can

be represented by a directed graph (the delegation graph of d). An
edge→ from agent 𝑖 to 𝑗 exists whenever 𝑑𝑖 = 𝑗 . A path in d from 𝑖

to 𝑗 , i.e., 𝑖 → 𝑖1 → · · · → 𝑖𝑘 → 𝑗 , is called a delegation chain. When

a delegation chain exists from 𝑖 to a guru 𝑗 we denote 𝑖’s guru by

𝑑∗
𝑖
= d∗ (𝑖) = 𝑗 . A delegation cycle is a chain where the first and last

agents coincide. A cycle of length one (𝑖 → 𝑖) is called a loop.
The weight accrued by an agent via delegations in d is:

𝑤d (𝑖) =
{
|{ 𝑗 ∈ 𝑁 | d∗ ( 𝑗) = 𝑖}| if 𝑖 ∈ 𝐺𝑢 (d)
0 otherwise

(1)

As gurus are the only ones voting in d they accrue the power

transferred by delegators through delegation chains. Observe that

because of delegation cycles

∑
𝑖∈𝑁 𝑤d (𝑖) may be smaller than 𝑛.

That is, voting weight is lost by delegation cycles. This is in line

with the intuition that agents not linked to a guru fail to relay their

votes to the mechanism (see also [9]).

Finally, we assume delegations to be constrained by a network

represented by an undirected graph 𝑅 = ⟨𝑁, 𝐸⟩. In this paper we

assume 𝑅 to be connected: any pair of agents 𝑖, 𝑗 ∈ 𝑁 are linked

by a path in 𝑅. For 𝑖 ∈ 𝑁 , 𝑅(𝑖) denotes the neighborhood of 𝑖 , i.e.,

𝑅(𝑖) = {𝑖}∪ { 𝑗 ∈ 𝑁 | (𝑖, 𝑗) ∈ 𝐸}. Agents are able to delegate only to
agents in their neighborhoods. We write 𝑅′(𝑖) to denote 𝑅(𝑖)\{𝑖}.

2.2 Weighted Delegations
We generalize the above setting by allowing agents to apportion

parts of their voting power to different proxies: 𝑖’s delegation

amounts now to a stochastic vectorD𝑖 = (𝐷𝑖1, . . . , 𝐷𝑖𝑛) ∈ R𝑛≥0
with∑

𝑗 ∈𝑁 𝐷𝑖 𝑗 = 1. We call such delegations weighted delegations. A pro-

file of weighted delegations (weighted profile) is an𝑛×𝑛-dimensional

stochastic matrix D = (D1, . . . ,D𝑛), and D is the collection of all

such profiles. A standard delegation profile d corresponds then to

a degenerate stochastic matrix where each row contains only one

1 entry. We will be referring to standard delegations also as pure
delegations. We use notation (D′

𝑖
,D−𝑖 ) to refer to a profile obtained

from D by replacing D𝑖 with D′
𝑖
.

A weighted profile D defines a weighted directed graph 𝐺 (D) =(
𝑁,

𝑥−→
)
where for any pair of 𝑖, 𝑗 ∈ 𝑁 , a directed edge 𝑖

𝐷𝑖 𝑗−−−→ 𝑗

from 𝑖 to 𝑗 with weight 𝐷𝑖 𝑗 exists whenever 𝐷𝑖 𝑗 > 0. Weighted

delegation chains, cycles and loops can then be defined on these

graphs as we did for graphs of pure delegations.

2.3 Agents’ Weights after Delegations
Several interpretations of a voter’s weight become possible under

weighted delegations. Here we deal with two interpretations. The

first one is based on a probabilistic interpretation of the weights,

and it will be the one we use to develop our framework. Later, in

Section 5, we are going to interpret weights also as direct transfers

of shares of voting weight, and compare the two approaches.

Each weighted profile D can be thought of as describing a prob-

ability distribution over pure profiles where the probability of a

pure profile d is Pr(d) = Π𝑖∈𝑁𝐷𝑖d(𝑖) . The weight transfer of 𝑖 in D,
is the vector 𝒕𝑖D = (𝑡D (𝑖, 1), . . . , 𝑡D (𝑖, 𝑛)) describing how 𝑖’s weight

is distributed in expectation among all guru agents, where:

𝒕D (𝑖, 𝑗) =
∑

d∈𝑠 (D)
1d∗ (𝑖)=𝑗 Pr(d) (2)

where 𝑗 ∈ 𝑁 , 𝑠 (D) denotes the support of (the probability distribu-

tion over pure profiles induced by) D, and 1d∗ (𝑖)=𝑗 is the indicator
that 𝑗 is the guru of 𝑖 in d, i.e., 1d∗ (𝑖)=𝑗 = 1 if d∗ (𝑖) = 𝑗 , otherwise 0.

We will refer to this as the expected weight approach (cf. the notion

of local delegation mechanisms in Kahng et al. [26]).

Under Equation (2) the weight that agent 𝑖 accrues consists sim-

ply of the sum of the weights she receives from all agents:

𝑤D (𝑖) =
∑
𝑗 ∈𝑁

𝑡D ( 𝑗, 𝑖). (3)

Main Track AAMAS 2022, May 9–13, 2022, Online

1483



1 3 4 2 5

0.5 1

1 0.5 0.5

0.5

1

Figure 1: Delegation graph of Example 1

Equation (3) defines, for each D, vector wD = (𝑤D (1), . . . ,𝑤D (𝑛)),
which we call the weight distribution of D, assigning a weight to

each agent. Then we denote by Gu(D) = {𝑖 ∈ 𝑁 | 𝑤D (𝑖) > 0} the
set of gurus in D, that is, the set of agents with positive weight in

the weight distribution of D. It is worth observing that

∑
𝑖∈𝑁 𝑤D (𝑖)

can be less than 𝑛, because agents may end up having no guru in

pure profiles where they delegate into delegation cycles. In such

cases, the agent loses the weight corresponding to the probability

attached to such pure profiles.

Example 1. Consider a set of agents 𝑁 = {1, 2, 3, 4, 5}, with
weighted profile D, such that 𝐷11 = 1 (i.e., maintaining her full
voting weight), D2 = (. . . , 𝐷22 = 0.5, . . . , 𝐷25 = 0.5), D3 = (𝐷31 =

0.5, . . . , 𝐷33 = 0.5, . . . ), 𝐷43 = 1, and 𝐷52 = 1. The delegation graph
is as in Figure 1. By the expected weight approach, for the component
consisting of agents 1, 3 and 4, agent 4 always fully delegates to 3,
while agent 3 is expected to keep half of the delegation from 4 and half
of her own weight, then𝑤D (4) = 0 and𝑤D (3) = 1× 0.5+ 1× 0.5 = 1.
The remaining weight in this component is delegated to agent 1, i.e.,
𝑤D (1) = 2. Then for the component consisting of 2 and 5, the two
agents form a delegation cycle with probability 0.5, while in the other
possible standard profile (with probability 0.5), agent 2 is the only
guru. Therefore𝑤D (2) = 1 and𝑤D (5) = 0. SowD = (2, 1, 1, 0, 0). Ob-
serve that

∑
𝑖∈𝑁 𝑤D (𝑖) = 4 < 𝑛 = 5, since agents 2 and 5 are caught

in a cycle with probability 0.5, thereby losing one unit of weight.

2.4 Group Accuracy with Weighted Delegations
Each agent 𝑖 with positive weight in the weight distribution wD
votes with accuracy 𝑞𝑖 and weight𝑤D (𝑖). We are interested in the

accuracy of the group decision when these votes are aggregated

by weighted majority. This accuracy is nothing but the probability

that a coalition of gurus𝐶 ⊆ Gu(D) with majority weight, i.e., such

that

∑
𝑖∈𝐶 𝑤D (𝑖) >

∑
𝑖∈Gu(D)\𝐶 𝑤D (𝑖), contains agents that all vote

correctly, while all agents in Gu(D)\𝐶 vote incorrectly. That is:

𝑞D =
∑

𝐶∈W(D)

∏
𝑖∈𝐶

𝑞𝑖

∏
𝑖∈Gu(D)\𝐶

(1 − 𝑞𝑖 ), (4)

whereW(D) is the set ofwinning coalitions, i.e.,W(D) = {𝐶 ⊆ 𝑁 |∑
𝑖∈𝐶 𝑤D (𝑖) >

∑
𝑖∈Gu(D)\𝐶 𝑤D (𝑖)}. In case of ties, if

∑
𝑖∈𝐶 𝑤D (𝑖) =∑

𝑖∈Gu(D)\𝐶 𝑤D (𝑖), one of the two coalitions at random is added to

W(D). When dealing with pure delegation profiles d we will also

write 𝑞d for the group accuracy determined by d.

Example 2 (Example 1 cnt’d). We use Example 1 with accuracy
𝒒 = (0.9, 0.9, 0.6, 0.6, 0.6). Consider the expected weight approach, i.e.,
wD = (2, 1, 1, 0, 0) (Gu(D) = {1, 2, 3}). Then all winning coalitions
are W(D) = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} (assume agent {2, 3} is
randomly chosen between the tied coalitions {1} and {2, 3}). Then
take an instance of the winning coalition {1, 2}, such that the accuracy
of this winning coalition is computed by assuming agent 1 and 2 vote

correctly, i.e., with probabilities 𝑞1 = 0.9 and 𝑞2 = 0.9, while agent 3

votes incorrectly with probability 1−𝑞3 = 0.4. That is 𝑞1𝑞2 (1−𝑞3) =
0.324. The group accuracy is the sum of all accuracies of these winning
coalitions, i.e., 𝑞D = 0.324 + 0.054 + 0.054 + 0.486 = 0.918.

3 CENTRALIZEDWEIGHTED DELEGATIONS
3.1 Optimal Truth-Tracking
Our motivation to study weighted delegations comes from known

generalizations of the Condorcet jury theorem showing that the

chance that the voting outcome of the group is correct is maximized

if a weighted majority rule is used with a specific choice of weights:

Theorem 1 (Grofman et al. [21]). The group accuracy is maxi-

mal if each agent 𝑖 is assigned a weight proportional to log

(
𝑞𝑖

1−𝑞𝑖

)
.

Proof sketch. Under the proposed weight distribution, for any

winning coalition 𝑁1 ⊆ 𝑁 (with 𝑁 − 𝑁1 = 𝑁2), it holds that

Π𝑖∈𝑁1
𝑞𝑖Π𝑖∈𝑁2

(1 − 𝑞𝑖 ) > Π𝑖∈𝑁1
(1 − 𝑞𝑖 )Π𝑖∈𝑁2

𝑞𝑖 , because taking

the logarithm of both sides of the equivalent formula Π𝑖∈𝑁1

𝑞𝑖
1−𝑞𝑖 >

Π𝑖∈𝑁2

𝑞𝑖
1−𝑞𝑖 , we get

∑
𝑖∈𝑁1

log

(
𝑞𝑖

1−𝑞𝑖

)
>

∑
𝑖∈𝑁2

log

(
𝑞𝑖

1−𝑞𝑖

)
, as de-

sired. That is, a coalition with probability to make a correct decision

(𝑁1) higher than its complement (𝑁2) always has more weight. □

We can leverage Theorem 1 to solve the optimal delegation prob-

lem: given a set of agents with different individual accuracies, what

is the weighted delegation graph that maximizes group accuracy?

We develop an answer to this question in two steps. First, to fix

intuitions, we provide a solution for complete networks (Algorithm

1), and then move to connected networks (Algorithm 2).

3.2 Centralized Delegations in Complete Nets
In complete networks all agents can delegate to all other agents.

We propose an algorithm that uses one-hop weighted delegations

to reallocate weight from the less accurate to the more accurate

voters in the group. We define the optimal weight of each 𝑖 ∈ 𝑁 by:

𝑤★
𝑖 = 𝑛 ·

log
𝑞𝑖

1−𝑞𝑖∑
𝑗 ∈𝑁 log

𝑞 𝑗

1−𝑞 𝑗

. (5)

Notice that this weight is larger than 1 for the more accurate agents

whereas it is smaller for the less accurate ones and, as desired, it is

proportional to log
𝑞𝑖

1−𝑞𝑖 . The idea behind the algorithm (Algorithm

1) is then to have the agents 𝑖 with 𝑤★
𝑖

> 1 apportion their full

weight to themselves, and have each agent 𝑗 with𝑤★
𝑗
< 1 apportion

share𝑤★
𝑖
−1 of the excess weight 1−𝑤★

𝑗
to each agent 𝑖 , normalized

by the total excess weight of the 𝑖 agents. Notice that if all agents are

equally accurate (𝑁 = 𝑁3), Algorithm 1 returns the trivial profile.

We use Example 2 to illustrate Algorithm 1.

Example 3 (Example 2 cnt’d). We first compute log
𝑞𝑖

1−𝑞𝑖 for
all 𝑖 ∈ 𝑁 as (0.9542, 0.9542, 0.1761, 0.1761, 0.1761). Then𝑤★

𝑖
is com-

puted by normalizing the above vector by the entire weight, which is in
total 5 votes, and for 𝑖 ∈ 𝑁 ,𝑤★

𝑖
are (1.958, 1.958, 0.3613, 0.3613, 0.3613).

Hence we can observe that 𝑤★
1
and 𝑤★

2
are larger than their initial

weight 1, and then they do not delegate. For any other agents 𝑖 ∈
{3, 4, 5}, they delegate the surplus weight above𝑤★

𝑖
= 0.3613 to agents
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Algorithm 1 Optimal delegations in complete networks

Input: w★

Initialize: 𝑁1 = {𝑖 ∈ 𝑁 | 𝑤★
𝑖

< 1}, 𝑁2 = {𝑖 ∈ 𝑁 | 𝑤★
𝑖

> 1},
𝑁3 = {𝑖 ∈ 𝑁 | 𝑤★

𝑖
= 1},𝑤 =

∑
𝑖∈𝑁2

(𝑤★
𝑖
− 1).

Delegate:
• For 𝑖 ∈ 𝑁3: 𝐷𝑖𝑖 = 1.

• For 𝑖 ∈ 𝑁2: 𝐷𝑖𝑖 = 1.

• For 𝑖 ∈ 𝑁1: for all 𝑗 ∈ 𝑁2, 𝐷𝑖𝑖 = 𝑤★
𝑖
, 𝐷𝑖 𝑗 = (1 −𝑤★

𝑖
)
𝑤★

𝑗
−1

𝑤
Return: D

1 and 2 equally since 𝑤★
1
= 𝑤★

2
. Therefore the returned profile is D,

in which 𝐷11 = 𝐷22 = 1, 𝐷3 = (0.31935, 0.31935, 0.3613, 0, 0), 𝐷4 =

(0.31935, 0.31935, 0, 0.3613, 0), and𝐷5 = (0.31935, 0.31935, 0, 0, 0.3613).
Then for all 𝑖 ∈ 𝑁 ,𝑤D (𝑖) = 𝑤★

𝑖
.

Theorem 2. If 𝑅 is complete, Algorithm 1 outputs an element of
arg maxD∈D 𝑞D.

Proof. Observe first that agents in 𝑁1 have optimal weight

below 1, and this requires them to delegate part of their weight to

agents in 𝑁2 whose optimal weight is above 1. Then for all agents

in 𝑁3, their optimal weight is exactly 1. Therefore they just need

to be single gurus to reach their optimal weight, i.e., for all 𝑖 ∈ 𝑁3,

by the algorithm, 𝐷𝑖𝑖 = 1 and 𝑤D (𝑖) = 1 = 𝑤★
𝑖
. We then consider

𝑁1 and 𝑁2 in turn. Note that no weight is lost in the returned

weighted profile since the only cycles are loops. First consider all

agents in 𝑁1. By Algorithm 1, for all 𝑖 ∈ 𝑁1, 𝐷𝑖𝑖 = 𝑤★
𝑖
, and for

all 𝑗 ∈ 𝑁 \ {𝑖}, 𝐷 𝑗𝑖 = 0, thus 𝑤D (𝑖) = 𝐷𝑖𝑖 = 𝑤★
𝑖
. For the surplus

weight of 𝑖 , i.e., 1 − 𝑤★
𝑖
, she delegates a proportion of it to each

agent in 𝑁2. The proportion is decided by

𝑤★
𝑗
−1

𝑤 for all 𝑗 ∈ 𝑁2, that

is agent 𝑗 is expected to receive weight amount of (1 −𝑤★
𝑖
)
𝑤★

𝑗
−1

𝑤
from all 𝑖 ∈ 𝑁1. Then any agent 𝑗 ∈ 𝑁2, in total, is expected to

receive

∑
𝑖∈𝑁1

(1 −𝑤★
𝑖
)
𝑤★

𝑗
−1

𝑤 . Moreover, 𝐷 𝑗 𝑗 = 1, which indicates 𝑗

is expected to delegate all her weight to herself, i.e., amount of 1.

Notice that for all agents in 𝑁1 and 𝑁2,

∑
𝑘∈𝑁1∪𝑁2

𝑤★
𝑘
= |𝑁1 | + |𝑁2 |,

and hence

∑
𝑘∈𝑁1

(1 −𝑤★
𝑘
) = |𝑁1 | −

∑
𝑘∈𝑁1

𝑤★
𝑘
=
∑
𝑘∈𝑁1∪𝑁2

𝑤★
𝑘
−

|𝑁2 | −
∑
𝑘∈𝑁1

𝑤★
𝑘
=
∑
𝑘∈𝑁2

𝑤★
𝑘
− |𝑁2 | =

∑
𝑘∈𝑁2

(𝑤★
𝑘
− 1). Therefore

𝑗 collects
∑
𝑘∈𝑁2

(𝑤★
𝑘
− 1)

𝑤★
𝑗
−1

𝑤 + 1 = 𝑤★
𝑗
. □

The next example shows how optimal accuracy via weighted

delegations may be higher than that achievable via pure delegations.

Example 4 (Example 3 cnt’d). Let us continue with Example 3.
In that example the optimal pure delegation profile is the one in which
only one delegation happens: an agent with accuracy of 0.6 delegates
to an agent with accuracy of 0.9. Then the optimal (pure profile)
majority accuracy is 0.918, which is lower than the optimal accuracy,
0.92664, of the weighted profile D in Example 3.

Intuitively, pure delegations allow for only discrete weights and

can therefore only approximate a weight distribution among gurus

in which each winning coalition 𝐶 of agents is more accurate than

the corresponding losing coalition 𝑁 \𝐶 .

Remark 1. It is worth discussing Algorithm 1 in the context of
the GreedyCap algorithm of [26]. GreedyCap is a local probabilistic

Algorithm 2 Optimal delegations in general networks

Input: w∗
, 𝑅 = ⟨𝑁, 𝐸⟩

Initialize: 𝐴 = 0
𝑛×𝑛

, ∀𝑖 ∈ 𝑁1, 𝑗 ∈ 𝑁 , 𝐷𝑖, 𝑗 = 0, 𝑁1 = {𝑖 ∈ 𝑁 |
𝑤★
𝑖
< 1}, 𝑁2 = {𝑖 ∈ 𝑁 | 𝑤★

𝑖
> 1}.

Determine Paths: For all 𝑖, 𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 ), select an arbitrary

acyclic path 𝐿𝑖 𝑗 in 𝑅.

Label Required Transfer of Weight: For all (𝑘, 𝑘 ′) ∈ 𝐿𝑖 𝑗 :

• For 𝑖 ∈ 𝑁1, 𝑗 ∈ 𝑁2: 𝑒
𝑖, 𝑗

𝑘,𝑘′
= (1 −𝑤★

𝑖
)

𝑤★
𝑗
−1∑

ℓ∈𝑁
2
(𝑤★

ℓ −1) .

• For 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑅′(𝑖): A𝑖, 𝑗 =
∑
𝑘∈𝑁1,𝑘

′∈𝑁2
𝑒
𝑘,𝑘′

𝑖, 𝑗
−∑

𝑘∈𝑁2,𝑘
′∈𝑁1

𝑒
𝑘,𝑘′

𝑗,𝑖
, if

∑
𝑘∈𝑁1,𝑘

′∈𝑁2
𝑒
𝑘,𝑘′

𝑖, 𝑗
−∑

𝑘∈𝑁2,𝑘
′∈𝑁1

𝑒
𝑘,𝑘′

𝑗,𝑖
> 0.

Remove Cycles: For 𝑐 ∈ C(A), and (𝑘, 𝑘 ′) ∈ 𝑐:

A𝑘,𝑘′ = A𝑘,𝑘′ − min(ℓ,ℓ′) ∈𝑐 (Aℓ,ℓ′).
Decide Weights: For 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑅′(𝑖):

• If A𝑖,𝑖′ > 0: 𝐷𝑖,𝑖′ = A𝑖,𝑖′/(
∑
ℓ∈𝑅′ (𝑖),Aℓ,𝑖>0

Aℓ,𝑖 + 1);
• 𝐷𝑖,𝑖 = (∑ℓ∈𝑅′ (𝑖),Aℓ,𝑖>0

Aℓ,𝑖 + 1 −∑
ℓ∈𝑅′ (𝑖),A𝑖,ℓ>0

A𝑖,ℓ )/(
∑
ℓ∈𝑅′ (𝑖),Aℓ,𝑖>0

Aℓ,𝑖 + 1).
Return: D

delegation algorithm, with a centralized element: a cap on the max-
imal number of delegations, which avoids the creation of too much
correlation among voters and thus preserving wisdom-of-the-crowd
effects. Algorithm 1 implements a fully centralized approach to group
accuracy by assuming delegations to be centrally determined.

3.3 Centralized Delegations in Connected Nets
We extend now Algorithm 1 to the case of connected networks.

We fix some notation before introducing the algorithm. Given

a non-negative matrix A ∈ R𝑛×𝑛≥0
, 𝐺 (A) = ⟨𝑁, 𝐸 (A)⟩, denotes the

directed graph of A as above. Let C(A) denote all cycles in 𝐺 (A).
Algorithm 2 generalizes the idea of Algorithm 1 to connected

networks as follows. Similar to Algorithm 1, each agent, expected to

delegate (i.e., in 𝑁1), transfers part of her excess weight to an agent,

who expects to receive delegations (i.e., in 𝑁2). Then the Deter-
mine Paths component first decides an acyclic path between each

such pair of agents, and Label Required Transfer of Weight
component labels the expected transfer weight amount on each

edge on the path. Hence for each node, some incoming and out-

going edges are labeled with weight (one edge might have several

labels), and we aggregate the net expected transfer amount between

the node and each neighbor. Note that cycles may exist to introduce

noise, therefore we break every cycle by subtracting the minimum

amount among all edge labels in the cycle, by the component Re-
move Cycles. Finally by the Decide Weights component, each

agent decides her delegation strategy by computing the proportion

of each expected outgoing weight in total incoming weight (includ-

ing her initial weight). An illustration of the algorithm follows.

Example 5. Consider a network with 4 agents𝑁 = {1, 2, 3, 4}, with
accuracies 𝒒 = (0.5, 0.9, 0.6, 0.9). Let𝑅 be as in Figure 2 (top). By Equa-
tion (5) the optimal weight distribution isw★ = (0, 1.831, 0.338, 1.831),
and therefore 𝑁1 = {1, 3} and 𝑁2 = {2, 4}.

We first determine the weight transfer paths, and assume that
𝐿1,2 = {(1, 2)}, 𝐿1,4 = {(1, 2), (2, 3), (3, 4)}, 𝐿3,4 = {(3, 4)}, and
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𝐿3,2 = {(3, 4), (4, 2)}. Then we compute weight transfers. For instance,
agent 1 should transfer amount (1 −𝑤★(1)) 𝑤★ (2)−1∑

𝑖∈𝑁
2
(𝑤★ (𝑖)−1) = 0.5 to

agent 2. Therefore for each path in 𝐿1,2, i.e., (1, 2), 𝑒1,2
1,2

= 0.5. Similarly
we label all required transfer weights and aggregate amounts on each
edge, and obtain the labeled graph in Figure 2 (middle). Observe that
there is a cycle formed by agents 2, 3 and 4. Such cycle is broken by
subtracting amount 0.169 from each edge in the cycle and obtain the
acyclic graph in Figure 2 (bottom).

Finally we compute the weighted profile. Let us take agent 4 as
an instance. Since 4 is expected to transfer 0.162 to agent 2, while
simultaneously receive 0.662 from 3, 0.162 takes 9.75% among her
received amount 0.662 plus her initial weight amount of 1. We thus
obtain 𝐷42 = 9.75% and 𝐷44 = 1 − 𝐷42 = 90.25%. Similarly we have
𝐷12 = 100%, 𝐷22 = 100%, 𝐷34 = 66.2%, and 𝐷33 = 33.8%.

We can prove that Algorithm 2 achieves optimal accuracy:

Theorem 3. Algorithm 2 outputs an element of arg maxD∈D 𝑞D.

Proof. First recall that w★
is the optimal weight distribution

given by Theorem 1. Then notice that in the algorithm, we transfer

the amount of (1 − 𝑤★
𝑖
)

𝑤★
𝑗
−1∑

ℓ∈𝑁
2
(𝑤★

𝑗
−1) from each 𝑖 ∈ 𝑁1 to each

𝑗 ∈ 𝑁2, by the Label Required Transfer of Weight component,

since we can find a path from any agent in 𝑁1 to any agent in 𝑁2 in

the connected network 𝑅. These transfers are not cyclical because

of Remove Cycles which takes care of removing such cycles.

So at this point the algorithm has constructed an acyclic graph

encoding the required transfer A𝑖 𝑗 of expected weight between

any pair of agents 𝑖 and 𝑗 . This amount needs to be normalized for

each agent by the Decide Weights routine. For any agent 𝑖 ∈ 𝑁 ,

if she is required to transfer positive weight 𝐴𝑖,𝑖′ to a neighbor

𝑖 ′ ∈ 𝑅(𝑖), the weighted strategy D𝑖𝑖′ should be the proportion

of A𝑖𝑖′ in her total required incoming weight, plus her original

endowed weight, i.e.,

∑
ℓ∈𝑅′ (𝑖),Aℓ,𝑖>0

Aℓ,𝑖 +1. The obtained weighted

profile D thus ensures that for any pair of agents 𝑖 ∈ 𝑁1 and

𝑗 ∈ 𝑁2, 𝒕D (𝑖, 𝑗) = (1−𝑤★
𝑖
)

𝑤★
𝑗
−1∑

ℓ∈𝑁
2
(𝑤★

ℓ −1) . Therefore by Equation (3),

𝒘D = 𝒘★
as desired. □

We observe that the connectedness of 𝑅, which we assume

throughout the paper, is necessary for Theorem 3 to go through

(an example to this effect is provided in the appendix). Observe

also that if 𝑅 is complete, the path 𝐿𝑖 𝑗 between any pair of agents

1 2 3

4

1 2 3

4

0.169

0.831
1

0.331

1 2 3

4

0.662
1

0.162

Figure 2: Network underlying Example 5 (top) and depiction
of intermediate steps of Algorithm 5 (middle and bottom)

𝑖 ∈ 𝑁1 and 𝑗 ∈ 𝑁2 can be selected to be the one-hop edge (𝑖, 𝑗).
Algorithm 2 reduces then to Algorithm 1.

4 DECENTRALIZED DELEGATIONS
Algorithms 1 and 2 provide us with tractable (with time complexity

polynomial in 𝑁 ) centralized mechanisms to achieve weighted del-

egations that are truth-tracking optimal. We move now to define

a setting in which agents decide their delegations autonomously,

assuming they greedily aim at maximizing their own individual

accuracy. We are interested in determining—analytically in this sec-

tion, and empirically later in Section 6—the effects of decentralized

delegations on the truth-tracking performance of the group.

4.1 Weighted Delegation Games
Agents’ utilities. The utility that an agent 𝑖 obtains if 𝑗 acts as

her guru is given by 𝑢𝑖 : 𝑁 → R. We assume here that such utility

is given simply by the accuracy that 𝑖 inherits through delegation,

that is: 𝑢𝑖 (d) = 𝑞d∗ (𝑖) when d∗ (𝑖) exists, and 𝑢𝑖 (d) = 0 otherwise.

In other words, given a pure profile d, 𝑖’s utility is the accuracy of

her guru under d [4]. In weighted profiles each agent may transfer

weight to several gurus so the above setting can be extended by

assigning to 𝑖 a utility equal to the average of the accuracies of 𝑖’s

gurus, weighted by the weights that 𝑖 transfers to those gurus.

Formally, given a weighted profile D and its associated weight

transfer profile 𝒕D (𝑖) for agent 𝑖 (recall Equation (2)), 𝑖’s utility is

given by:

𝑈𝑖 (D) =
∑
𝑗 ∈𝑁

𝑞 𝑗 𝑡D (𝑖, 𝑗) . (6)

Observe that vector 𝒕D (𝑖) can be interpreted as a probability distri-

bution over 𝑖’s gurus when none of 𝑖’s weight is lost due to cycles.

Equation (6) then gives us the expected individual accuracy of 𝑖 in

𝐷 or, in other words, the expectation E(𝑢𝑖 ) over 𝑢𝑖 given D.

Delegation Games. Equipped with the notion of utility we move

to define delegation games as structures 𝐺 = ⟨𝑁, 𝑅, 𝑆,𝑈 ⟩, where
𝑁 = {1, 2, . . . , 𝑛} is the set of agents, 𝑅 is an undirected connected

graph, 𝑆 = {𝑠𝑖 }𝑖∈𝑁 is the strategy space of each agent 𝑖 ∈ 𝑁 , where

𝑠𝑖 = D𝑖 such that

∑
𝑗 ∈𝑅 (𝑖) 𝐷𝑖 𝑗 = 1, and 𝑈 is the function defined

by Equation (6). Observe that, since𝑈𝑖 equals the expectation over

𝑢𝑖 given the distribution over pure profiles induced by a weighted

profile D, the corresponding delegation game can be viewed as

the mixed-strategy version of the delegation game with pure dele-

gations. By Nash theorem (see [33]) we therefore know that such

games always have Nash Equilibria (NE), and we call such equilibria

𝑈 -NE. We will also write E(𝐺) to denote the set of all𝑈 -NE of 𝐺 .

It has already been shown that the pure delegation variant of these

games (where D𝑖 is a degenerate probability vector) also always

admits a NE [4, Th. 1].

An important feature of𝑈 -NE is that they contain only weighted

delegation cycles of length 1 (loops):

Lemma 1. In a𝑈 -NE the only weighted delegation cycles are loops.

Proof sketch. In any cycle (excluding loops), any agent obtains

utility through all caught-in-cycle agents’ delegations out of the

cycle, while some weight is still lost because of the cycle. Then the
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agent, who can obtain maximal utility by her delegations out of the

cycle, can always be strictly better off by breaking the cycle. □

4.2 Group Accuracy in Equilibrium
So what is the truth-tracking quality of equilibria in weighted

delegation games? We answer this question by first comparing

group accuracy 𝑞D when D is a 𝑈 -NE, w.r.t. when D is a pure

delegation equilibrium. We then establish a bound on how bad

group accuracy may be in equilibrium using price of anarchy.

Weighted vs. pure equilibria. Weighted delegations make it pos-

sible to achieve higher group accuracy in equilibrium by balancing

weight among maximally accurate agents. As a result NE in del-

egation games with weighted profiles can be shown to be never

worse that NE with pure delegations and to be better in some cases.

Given a delegation game on 𝑁 , let us denote with 𝑁 ∗ = {𝑖 ∈ 𝑁 |
∀𝑗 ∈ 𝑁,𝑞𝑖 ≥ 𝑞 𝑗 } the set of maximally accurate agents in 𝑁 .

Theorem 4. Any profile D∗ of a game 𝐺 , such that for all 𝑖 ∈ 𝑁 ∗

wD∗ (𝑖) = 𝑛
|𝑁 ∗ | , is a𝑈 -NE and D∗ ∈ arg maxD∈E (𝐺) 𝑞D .

Proof. First we show that if a weighted profile D is a𝑈 -NE, for

all 𝑖 ∈ 𝑁 \ 𝑁 ∗
,𝑤D (𝑖) = 0, that is the entire weight is concentrated

in 𝑁 ∗
. Notice that no cycle exists in D by Lemma 1. Assume the

above condition does not hold. Since the network is connected,

each agent has access to any agents in 𝑁 ∗
. There must exists some

agent 𝑗 ∈ 𝑁 \ 𝑁 ∗
, such that D𝑗 𝑗 > 0, and she can change her

strategy to have gurus only in 𝑁 ∗
to be better off. Therefore for

any NE D,
∑
𝑖∈𝑁 ∗ 𝑤D (𝑖) = 𝑛. Then by Theorem 1, the NE D, such

that for all 𝑖 ∈ 𝑁 ∗
,𝑤D (𝑖) = 𝑛/|𝑁 ∗ |, optimizes group accuracy for

𝑁 ∗
. Furthermore, by the Condorcet jury theorem, which states that

larger group of agents (with homogeneous accuracy higher than

0.5) enhances group accuracy (see [36, Th. 1]), no NE D in which

𝐺𝑢 (D) is a strict subset of 𝑁 ∗
has higher group accuracy. □

Then, the following example shows that there exist delegation

games in which D∗
has strictly better group accuracy than any

equilibrium in pure delegation strategies.

Example 6. Consider a delegation game where there are 7 agents,
5 of which have maximal accuracy 𝑞∗ = 0.9. Any pure delegation
NE with maximal group accuracy would involve a pair of maximally
accurate agents who get each a weight of 2. These two agents form
a winning coalition, but they have a lower group accuracy than the
remaining three gurus, i.e., 0.00081 = 𝑞∗2 (1 −𝑞∗)3 < 𝑞∗3 (1 −𝑞∗)2 =

0.00729. So the resulting group accuracy, 0.98496, is strictly worse
than that of D∗, 𝑞D∗ = 0.99144 in Theorem 4.

Price of Anarchy. We define the price of anarchy of a game 𝐺 as:

PoA(𝐺) = maxD∈D 𝑞D
minD∈E (𝐺) 𝑞D

. (7)

When restricting to the price of anarchy in games with pure dele-

gations (and therefore one pure delegation NE) we refer to PoApure .
So Equation (7) gives us a measure of how much group accuracy is

‘lost’ in equilibrium, in the worst case, with respect to what would

be achievable via Algorithm 2.

Theorem 5. When |𝑁 | → ∞, PoA → 1

𝑞∗ , where𝑞
∗ is the accuracy

of a maximally accurate agent in 𝑁 .

Proof. Let D be the weighted profile for which 𝑞D is maximal

and let D′
be the𝑈 -NE profile for which 𝑞D′ is minimal. D′

is the

case when all agents delegate to the same guru, which has accuracy

𝑞∗. Then, since each 𝑞𝑖 ∈ (0.5, 1], by the law of large numbers as

|𝑁 | → ∞, 𝑞D → 1 and by construction 𝑞D′ = 𝑞∗. □

The same argument can be applied to the setting with pure

delegations, obtaining the same asymptotic value for PoApure .
In the non-asymptotic case, since weighted delegations enable

optimal group accuracy (Theorem 2) while pure delegations do not

(Example 4), the PoA in delegation gameswith weighted delegations

is trivially higher than that in the case of pure delegations:

Corollary 1. PoA ≥ PoApure .

5 WEIGHTS AS SHARES OF POWER
We have so-far developed our theory based on the expected weight

approach of Equations (2) and (3). This is not the only way in which

agents’ weights can be interpreted under weighted delegations. In

this section we briefly highlight another interpretation, which we

call limit weight approach, and relate it to the previous one.

5.1 The Limit Weight Approach
Each weighted profile D describes the direct transfer of voting

weight between any two agents: 𝐷𝑖 𝑗 is the share of 𝑖’s power

transfered to 𝑗 . The indirect transfer of weight, via transitive del-

egations, is described therefore by the powers of D. For example,

D2

𝑖 𝑗
=
∑
𝑘∈𝑁 𝐷𝑖𝑘𝐷𝑘 𝑗 is the share of power transfered in two steps

from 𝑖 to 𝑗 . In this view the weight transfer of agent 𝑖 consists of

the transfer of 𝑖’s weight in the limit, described by the vector

𝒕D (𝑖) = lim

𝑘→∞
1𝑖D𝑘

(8)

when such limit exists,
1
and where 1𝑖 is the 𝑛-dimensional vector

where all elements are 0s except for the 𝑖-th one which is 1. This

approach describes to whom 𝑖’s original weight of 1 ’flows’ in D,
and an agent’s weight is then (cf. Equations (2) and (3)):

�̊�D (𝑖) =
∑
𝑗 ∈𝑁

𝒕D ( 𝑗)𝑖 , (9)

defining the weight distribution ẘD = (�̊�D (1), . . . , �̊�D (𝑛)). We

refer to this as the limit weight approach.
The two approaches are compared in the following two examples:

Example 7. As in Example 1, consider 𝑁 = {1, 2, 3, 4, 5}, with
weighted profile D, such that 𝐷11 = 1 (i.e., maintaining her full
voting weight), D2 = (. . . , 𝐷22 = 0.5, . . . , 𝐷25 = 0.5), D3 = (𝐷31 =

0.5, . . . , 𝐷33 = 0.5, . . . ),𝐷43 = 1, and𝐷52 = 1 (recall Figure 1). By the
limit weight approach, for the component consisting of 1, 3 and 4, since
agent 1 is the only absorbing node in the component (in the delegation
graph), all weight in that component ‘flows’ to her. Hence �̊�D (1) = 3,
while �̊�D (3) = �̊�D (4) = 0. Then for the component consisting of 2

and 5, we observe that it is strongly connected and aperiodic because
of the loop at 2. Then in the limit, agent 2 always keeps half of the
stabilized weight and delegates half to agent 5, while agent 5 always
delegates the amount back to 2. Therefore �̊�D (2) = 2 × 2

3
= 4/3

1
It is worth remarking that the inexistence of lim𝑘→∞ D𝑘

does not necessarily imply

the inexistence of lim𝑘→∞ 1𝑖D𝑘
.
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and �̊�D (5) = 2/3. So ẘD = (3, 4/3, 0, 0, 2/3). Unlike in the expected
weight case (Example 1) there is therefore no weight loss in ẘD.

Example 8 (Example 1 cnt’d). We use Example 1 with accuracy
𝒒 = (0.9, 0.9, 0.6, 0.6, 0.6) and, unlike in Example 2 where we applied
the expected weight approach, we apply the limit weight approach. The
weight distribution is �̊�D = (3, 4/3, 0, 0, 2/3) and the group accuracy
is then𝑞D = 0.9 since agent 1 is the dictator (agent 1alone is a winning
coalition), and is therefore lower than that in the expected weight case.

Remark 2. The limit weight approach is related to the so-called
influence matrices studied in the literature on the DeGroot model
[14, 25] and on power in organizations [18, 23, 24]. Both these strands
of literature define limit influence notions as done in Equation (8).

5.2 Expected vs. Limit Weight
Sufficient conditions for equivalence. The two notions of weight

coincide under specific conditions on the delegation graph:

Theorem 6. Let D be a weighted delegation profile. If all cycles in
D are loops of weight 1, then for all 𝑖 ∈ 𝑁 : 𝒕D (𝑖) = 𝒕D (𝑖).

Proof. First of all note that since all cycles contained in the

delegation graph are loops, each closed strongly connected com-

ponent of the delegation graph is aperiodic.
2
We can then apply

known theorems about the convergence of stochastic matrices (e.g.,

[35, Theorem 12], [25, Theorem 8.1]) to conclude that for all 𝑖 ∈ 𝑁 ,

lim𝑘→∞ 1𝑖D𝑘
exists. Then for any agent 𝑖1 ∈ 𝑁 , part of her weight

is accrued by some agents delegating their full weight to themselves

(loops of weight 1). Let one such agent be 𝑖ℓ ∈ 𝑁 . Assume a path

from 𝑖1 to 𝑖ℓ is 𝑖1 → 𝑖2 → · · · → 𝑖ℓ . Then the amount of weight

flowing from 𝑖1 to 𝑖ℓ through this path is

∏
1≤ 𝑗<ℓ−1

𝐷 𝑗 𝑗+1, and un-

der the expected weight approach, 𝒕D (𝑖1, 𝑖ℓ ) is the sum of weights

flowing through all paths from 𝑖1 to 𝑖ℓ , which is identical to the 𝑖ℓ ’s

element of lim𝑘→∞ 1𝑖1D𝑘
. We conclude that 𝒕D (𝑖1) = 𝒕D (𝑖1). □

That is, if delegations are such that all gurus delegate their full

weights to themselves, and no other cycle exists, then Equations

(3) and (9) define the same values. A direct corollary of the result is

that expected and limit weight coincide in pure delegation profiles.

Equilibria in expected and limit weight. We can then use Theorem

6 to establish that NE in expected weight are also equilibria in limit

weight. Recall that we refer to the former as 𝑈 -NE. We will refer

then to equilibria under the limit weight approach as 𝑈 -NE, where

the utility function is defined as (cf. Equation (6)):

𝑈𝑖 (D) =
∑
𝑗 ∈𝑁

𝑞 𝑗 𝒕D (𝑖) 𝑗 . (10)

Theorem 7. If a weighted profile D is a 𝑈 -NE of a delegation
game 𝐺 , it is also a𝑈 -NE of 𝐺 where𝑈 is replaced by 𝑈 .

Proof sketch. The only cycles are loops in D (Lemma 1). If all

loops are of weight 1, D is a 𝑈 -NE (Theorem 6). If not all loops

are with weight 1, we can still show that no agent has a 𝑈 -better

response because all gurus are maximally accurate under �̊� . □

2
We recall that a component of a directed graph is a subgraph, which is: strongly

connected if there exists a path from every node to every node; it is aperiodic if there

are no two cycles in the graph whose length is divided by an integer larger than 1; it

is closed if there exists no edge from the component to a node outside it.

The other direction of the theorem does not hold, however:

Example 9. Consider 𝑁 = {1, 2} with 𝒒 = (0.9, 0.9) and they are
connected in the underlying network. Profile 𝐷11 = 0.5, 𝐷12 = 0.5,
and 𝐷21 = 1 is a𝑈 -NE. Since the delegation graph is aperiodic, under
the limit weight approach, each agent still obtains maximal utility
of 0.9. However, the profile contains a cycle of weight 0.5 and cannot
therefore be a𝑈 -NE by Lemma 1.

6 EXPERIMENTS
To gain further insights into the effects of decentralized weighted

delegations on group accuracy, under both the expected and limit

weight approaches, we proceed with a set of experiments.

6.1 Experimental Setting
Agents are constrained in their delegations by a random network

which will be treated as a parameter. Agents try to maximize their

own utility as per Equation (6). However, they are assumed to be

boundedly rational and achieve this maximization only imperfectly.

To this aim we model agents’ strategic behavior with the so-called

quantal response model [29], which has already been applied suc-

cessfully to other strategic contexts in social choice (e.g., see [30]).

Logit quantal response. The quantal response model assumes that

agents choose their strategies with noise. The probability (belief

distribution) of choosing a pure delegation is positively related

to the utility of that delegation, and agents respond to the others’

strategies assuming that all agents have the same belief distribution,

until an equilibrium is reached.

More precisely, we assume a special case of the quantal response

model, known as logit quantal response (LQR). Based on a given

weighted profile D, an agent 𝑖 ∈ 𝑁 responds in that profile by

changing her individual weighted strategy to D′ = (D′
𝑖
,D−𝑖 ), such

that for any neighbor 𝑗 ∈ 𝑅(𝑖),

𝐷 ′
𝑖 𝑗 =

𝑒𝜆𝑈𝑖 (𝐷𝑖 𝑗=1,D−𝑖 )∑
𝑘∈𝑅 (𝑖) 𝑒𝜆𝑈𝑖 (𝐷𝑖𝑘=1,D−𝑖 )

, (11)

where 𝜆 is a parameter indicating the error level agents are subject

to. So 𝜆 = 0 corresponds to a uniformly random choice, while

as 𝜆 → ∞ the choices approach optimality. Note that we replace

𝑈𝑖 (D) in Equation (11) by 𝑈𝑖 (D) for the limit weight approach.

We implement an iterated LQR model starting with the trivial

profile D0
where for all 𝑖 ∈ 𝑁 , 𝐷0

𝑖𝑖
= 1. Agents then apply LQR

iteratively according to a fixed round robin sequence. By way of

illustration, let agent 1 be the first agent responding to D0
. Her

response would beD1 = (D1

1
,D0

−1
), such that for all 𝑗 ∈ 𝑅(1),𝐷1

1𝑗
=

𝑒
𝜆𝑞𝑗∑

𝑘∈𝑅 (1) 𝑒
𝜆𝑞𝑘

, since for all 𝑘 ∈ 𝑅(1), 𝑈1 (𝐷1𝑘 = 1,D0

−1
) = 𝑞𝑘 . Then

agent 2 responds toD1
by LQR, and so and on until no agent changes

her strategy any more, reaching a so-called LQR equilibrium. By

[29, Th. 2], we know that as 𝜆 → ∞ this LQR equilibrium converges

to one of the Nash equilibria of the delegation game.

Parameters. In the simulations we manipulate the following

parameters. We consider the two weight models: the expected

weight model underpinning utility 𝑈𝑖 of Equation (6), and the

limit weight model underpinning utility 𝑈𝑖 of Equation (10). We

then consider different error levels in the LQR model by varying
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Figure 3: Estimated group accuracy, average accuracy, and Gini coefficient for iterated LQR in expected weight games 𝑤 (top)
and limit weight games �̊� (bottom) on random networks. The red line on the leftmost plots denotes the estimated accuracy of
simple majority. Underlying network density 𝑝: - : 0.8, - : 0.6, - : 0.4, - : 0.2

𝜆 ∈ {0, 2, 4, 6, 8, 10, 20, 40, 60, 80}. Finally, we consider different lev-
els of density in the underlying network varying the probability of

any two nodes being connected with 𝑝 ∈ {0.2, 0.4, 0.6, 0.8}.

Criteria. We study the effects of the above parameters on three

properties of weighted delegation profiles: group accuracy, average

accuracy, and Gini coefficient. Group accuracy is defined in Equa-

tion (4). The average accuracy is simply the weighted mean of all

gurus’ accuracies, based on a given weight distribution. Finally, the

Gini coefficient measures the equality of the weight distribution:

the higher the index is, the more unequal the distribution is.

Setup. We set 𝑛 = 30. Agents’ accuracies are independently

drawn from the same Gaussian distribution (𝜇 = 0.7, 𝜎 = 0.075)

and values are forced within the [0.5, 1] range. For each parameter

configuration we perform 50 runs to obtain our data. As group

accuracy involves exponential-time computations, we estimate it

via a Monte Carlo approximation sampling 2
𝑛−1/100, i.e., 5368709

times, random coalitions for each computation. The experiments

have been run on a university cpu cluster with 1GB memory.

6.2 Findings
We highlight two findings. First (leftmost plots), group accuracy 𝑞D
remains high for noisy response strategies and decreases sharply

as 𝜆 grows above a certain threshold (8 in the expected and 20 in

limit weight setting). This is due to the fact that as 𝜆 grows, LQR

approximates a pure delegation response, which is known to lead

to lower group accuracy [4, 38]. Importantly, however, if 𝜆 takes

specific values (in {2, 4, 6} for𝑤 , or 10 for �̊� ) the experiments show

that weighted delegations achieve group accuracy that outperforms

the accuracy of a simple majority (i.e., the standard one-man-one-

vote wisdom of the crowd). The difference between the two has

been tested as significant (threshold set to 0.05) via t-test between

50 samples of the approximated group accuracy for each parameter

combination (all 𝑝’s and 𝜆 ∈ {2, 4, 6}, resp. {10}, under 𝑤 , resp.

�̊� ) and 50 samples of the approximated group accuracy for simple

majority. We consider this finding particularly interesting in the

context of current literature (e.g., [8, 26]) as it points to the possi-

bility of decentralized delegation schemes that support, rather than

hinder, wisdom-of-the-crowd effects in liquid democracy.

Second, the trends on group accuracy are matched by the Gini

coefficient (middle plots), which grows from near 0 values (equal

distribution of power) to near 1 values (full inequality) as 𝜆 grows.

Intuitively, as quantal responses tend towards pure delegations,

the group is able to identify the most accurate agents, who then

accrue all weight. Also, identifying the most accurate agents be-

comes easier as the network grows denser. In line with these trends,

the average accuracy (rightmost plots) grows from 𝜇 = 0.7 to the

accuracy of the most accurate agents (∼ 0.83) as 𝜆 grows.

7 CONCLUSIONS
We studied a variant of liquid democracy with weighted proxies.

Interpreting weights as probabilities we showed that centralized

delegations enable optimal group accuracy, and that decentralized

delegations may enable better equilibria than in the pure delegation

case. We complemented these findings with experimental observa-

tions showing howweighted delegations may boost group accuracy

also in decentralized settings with boundedly rational agents.

The work presented relies on a connectedness assumption on

the underlying network, which we aim at lifting in future work.

Although we provided some results about the limit weight approach

to weighted delegations, much more has to be understood about

that setting. It would also be interesting to investigate experimen-

tally the effects of different network classes on group accuracy,

expanding the scope of our simulations. Finally, analytical results

about quantal response and group accuracy (e.g., PoA w.r.t. quantal

response equilibria) appear worth pursuing.
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