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ABSTRACT
Multi-agent task allocation methods seek to distribute a set of tasks
fairly amongst a set of agents. In real-world settings, such as fruit
farms, human labourers undertake harvesting tasks, organised each
day by farm manager(s) who assign workers to the fields that are
ready to be harvested. The work presented here considers three
challenges identified in the adaptation of a multi-agent task alloca-
tion methodology applied to the problem of distributing workers to
fields. First, the methodology must be fast to compute so that it can
be applied on a daily basis. Second, the incremental acquisition of
harvesting data used to make decisions about worker-task assign-
ments means that a data-backed approach must be derived from
incomplete information as the growing season unfolds. Third, the
allocation must take “fairness” into account and consider worker
motivation. Solutions to these challenges are demonstrated, show-
ing statistically significant results based on the operations at a soft
fruit farm during their 2020 and 2021 harvesting seasons.
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1 INTRODUCTION
Due to the increasing demand for soft fruits and shortages in sea-
sonal workers [4, 9, 11], farms are requiring innovative solutions
for managing their workforce during the fruit harvesting season.
Typically, on such farms, each day a harvest manager determines
which fields are ready for picking, how many “team leaders” (and
thus teams) there will be, and which workers should be assigned
to each team. Managing hundreds of seasonal workers with vari-
ous skill levels is a time consuming process. To prevent crop loss,
maximise yield and minimise staff time, workers are frequently
organised into groups or “teams” and this must be done efficiently.

Our aim is to automate the process of assigning workers to fields,
attempting to optimise the performance of a given workforce each
day. Our longer term aim is to develop amethodology that will allow
a farm to easily integrate robots in their workforce. In the not-too-
distant future, robots may soon be filling gaps in the shortages of
Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

seasonal workers [2, 9, 10, 14, 15]; and therefore, robotic co-workers
will need to be managed alongside the human workforce. In [6], we
explored how to manage a team of workers within the field. Here
we investigate how to assign workers to a team each day. In both
these works, the worker’s (agent’s) species is agnostic: human or
robot. Hence we anticipate the ability to adopt our methodology
seamlessly for human-only and human-robot workforces.

A key challenge in multi-agent and multi-robot systems is to
decide which tasks should be assigned to which agents (or robots)
so that the overall execution of amission (set of tasks to be executed
within a particular overall timeframe) is efficient: resources are
used effectively, so that time and energy are not wasted and, often,
some reward is maximised. Many different types of task allocation
mechanisms (such as auction-inspired approaches [3, 7, 8, 12]) have
been explored within the multi-agent systems (MAS) and multi-
robot systems (MRS) communities, generally addressing what are
referred to as multi-robot task allocation (MRTA) problems.

2 METHOD
Our method involves two steps: (i) creating an initial solution using
a modified version of Round-Robin (RR); and (ii) improving the
solution to minimise the variance across estimated per-field harvest
times. This section presents our base method and three variants.

2.1 Create Initial Solution
2.1.1 Standard RR. To create an initial solution, we implemented
a standard RR scheduler due to its low computational cost [13].
We first order the fields and workers, considering fields as bidders
and workers as items. Workers are sorted slowest first, using their
average picking speed over all fruits. Fields are sorted by yield
(lowest first). RR assigns the first item (worker) to the first bidder
(field), the second to the second bidder and so on. After one task has
been assigned to each bidder, the bidders are iterated over to assign
each a second task, and so on until all tasks have been allocated.

2.1.2 Repaired RR. During some of our experiments, we found that
a high proportion of the pickers were assigned to fields containing
fruit that they had no prior experience of picking. We therefore
modified the RR scheduler so that a worker is only assigned to a field
containing a type of fruit that the worker has picked before. This
algorithm results in each field having (roughly) an equal number
of workers assigned to it.

2.2 Improve Solution
The second step in our method improves the solution by reas-
signing workers from fields requiring less picking time to fields
requiring more picking time. The method implemented also aims
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to keep the staff time down, and maintain a mix of highly-skilled
and low-skilled workers within a single field. This section outlines
the specifics of reducing the difference in picking time between the
fields, followed by two improvements to this method.

2.2.1 Δ𝑒𝑝𝑡-smoothed variant. This variant involves first comput-
ing the estimated picking time (𝑒𝑝𝑡 ) for each field (𝑓 ) for a par-
ticular date (𝑑), assuming it is picked by a specific team of workers
(𝑊 ). This is calculated by dividing the estimated yield (for field 𝑓 on
date 𝑑) by the sum of the workers’ picking speeds (𝑤.𝑝𝑠), as shown
in Equation 1:

𝑒𝑝𝑡 (𝑓 ,𝑊 ,𝑑) = 𝑓 .𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑦𝑖𝑒𝑙𝑑 (𝑑)∑
𝑤∈𝑊 𝑤.𝑝𝑠 (𝑓 .fruit) (1)

We start with a list of pairs of fields that is sorted by the difference
in estimated picking time between the two fields (Δ𝑒𝑝𝑡 ). The pair
of fields with the largest Δ𝑒𝑝𝑡 appears first, and the rest are taken
in descending order of Δ𝑒𝑝𝑡 . Then the algorithm searches for the
picker who, when moved from the field with the shortest picking
time to the field with the longest picking time (in each pair of fields),
produces a reduced Δ𝑒𝑝𝑡 . We call this the “candidate worker”. If no
worker is moved (i.e. because moving a worker would increase Δ𝑒𝑝𝑡
or the field with the shortest duration has two or fewer workers),
then the pair of fields is removed from the list of all pairs of fields.
The algorithm continues until the list of pairs of fields is empty.

2.2.2 Δ𝑒𝑝𝑡-repaired variant. In executing the method described in
Section 2.2.1, workers with a high picking speed could be moved
to a field containing a fruit they are less skilled at, to decrease the
execution time of the field they were moved from. This could result
in the worker being assigned a type of fruit they have no experience
of picking. To prevent this situation, we modified the baseline
algorithm as follows. After a candidate worker (to move) has been
identified, the algorithm compares all remaining workers to the
candidate. If the candidate worker is not skilled and another worker
(being considered) has experience (and the difference in picking
time, Δ𝑒𝑝𝑡 , is still lower), then the alternative worker is selected
(and becomes the candidate). If both workers have experience, then
the worker with the (positive) largest difference in picking speed
will be selected. For example, if worker 𝐴 has a picking speed of 0
for fruit 𝑝 and 5 for fruit 𝑞, and worker 𝐵 has a picking speed of 3
for fruit 𝑝 and 1 for fruit 𝑞, then worker 𝐴 will be moved to pick
fruit 𝑞.

2.2.3 Balanced variant. To maintain a balance of fast/slow pickers
across the fields, if the fields contain the same fruits, then we com-
pare the mean picking speeds of both fields and check this against
the worker’s picking speed. The aim of this step is to keep the mean
picking speeds of the fields similar, e.g. so that all the “champion”
(best) pickers are not grouped into a single team. This seems to
result in higher overall satisfaction across the team of workers, as
reported by farm managers.

2.3 Experiments and Results
Our experiments are performed on the data provided by a large
commercial fruit farm. Historic data from the whole of the 2020
picking season (175 picking days) for strawberry and raspberry
fields (25 field in total) has been provided. For 2021, cherries and

blackberries are also included. For the 2021 picking season, data
was provided incrementally; results presented here are for up to
6th September 2021, which involved 117 picking days and 29 fields.
An experiment consists of running each method variant (below) to
compute the estimated picking times per day across each season.

Our baseline is the Actual teams that were deployed by farm
managers during each day of each picking season (2020 and 2021).
Four variants of our method are compared:

RR0 The standard RR algorithm, described in Section 2.1.1.
RR1 The repaired RR algorithm, described in Section 2.1.2.
RR2 The Δ𝑒𝑝𝑡-smoothed variant (described in Section 2.2.1),

modifying the output of RR0. When just using the Δ𝑒𝑝𝑡-
smoothed variant, the candidate worker that reduces the
Δ𝑒𝑝𝑡 the most is moved.

RR3 The combined variant, modifying the repaired RR output
(labeled RR1 above), using the Δ𝑒𝑝𝑡-smoothed (described
in Section 2.2.1), repaired (Section 2.2.2) and balanced (Sec-
tion 2.2.3) improvements.

As shown in Figure 1, the combined variant (RR3) produces the
lowest execution time (difference between the start and end times
of each day, based on the 𝑒𝑝𝑡 ) in comparison to the alternative
methods. This result is statistically significant for both data sets.

(a) 2020 historic data (b) 2021 live data
(F=60.10, p=0.000) (F=5.09, p=0.000)

Figure 1: Execution time and ANalysis Of VAriance
(ANOVA) [1, 5] statistics.

3 CONCLUSION
This paper explores automating the daily process of assigning pick-
ers to the fields of a soft fruit farm, a process which is currently
performed manually by farm managers. We developed several vari-
ations on the standard Round Robin method of distributing tasks
to agents and compared our approach to the teams actually de-
ployed by a commercial fruit farm. The difference in execution
time between the actual teams and four variants of our method is
statistically significant. Our combined variant methodology (RR3)
produced the lowest execution time.
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