
Improving Generalization with Cross-State Behavior
Matching in Deep Reinforcement Learning

Extended Abstract

Guan-Ting Liu
National Taiwan University

Taipei, Taiwan
f07944014@ntu.edu.com

Guan-Yu Lin
National Taiwan University

Taipei, Taiwan
r09944017@ntu.edu.tw

Pu-Jen Cheng
National Taiwan University

Taipei, Taiwan
pjcheng@csie.ntu.edu.tw

ABSTRACT
Representation learning on visualized input is an essential yet chal-
lenging task for deep reinforcement learning (RL). To help the RL
agent learn more general and discriminative representation among
various states, we present cross-state self-constraint (CSSC). This
novel technique regularizes representation learning by comparing
state embedding similarities across different state-action pairs. We
test our proposed method on the OpenAI Procgen benchmark with
Rainbow and PPO and demonstrate significant improvement across
most Procgen environments.

KEYWORDS
Reinforcement Learning; Generalization; Behavior Matching
ACM Reference Format:
Guan-Ting Liu, Guan-Yu Lin, and Pu-Jen Cheng. 2022. Improving Gen-
eralization with Cross-State Behavior Matching in Deep Reinforcement
Learning: Extended Abstract. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Reinforcement learning (RL) has achieved tremendous success in
mastering video games [8] and the game of Go [12]. While training
agents using deep reinforcement learning algorithms, we usually
assume that the agent could extract appropriate features from dif-
ferent states and take actions accordingly. However, as more and
more research works (Zhang et al. [15], Song et al. [13], Dabney
et al. [3]) have pointed out, even well-trained RL agents that learn
from visualized input tend to memorize spurious patterns rather
than understanding the essential generic features of a given state.
For example, an agent might pay more attention to the change of
irrelevant background rather than noticing the obstacles or enemies
[13].

In order to improve RL agent’s generalization ability in the new
environment, various regularization methods like stochastic policy
[4] and data augmentation [6] have been proposed and tested. Data
augmentation like random crop [6] or random convolution [7] have
also been proposed recently and provide considerable generaliza-
tion enhancement to the unseen levels of various environments
(Tassa et al. [14], Cobbe et al. [2], Cobbe et al. [1]). The agent acts
on multiple augmented views of the same input and learns from
these prior injected data. However, modifying state information

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

(injecting prior information to the data) may be risky or detrimental
for representation learning because vital features may be altered
or lost. For example, flipping state images might change the corre-
sponding behavioral meaning, and cropping the input image might
lose critical features like the position of enemies appearing on edge.

To avoid losing the informative features of the visualized input,
we choose a different approach. As human learners, we try to rec-
ognize general patterns across numerous states and act accordingly.
In other words, if a well-trained agent conducts the same action (or
behavior) in two different states, we would infer that the agent has
conceived similar feature patterns in these states. Based on this in-
tuition, we designed a novel constraint that performs regularization
directly in the representation space of the learning agent.

We test this novel constraint in combination with Rainbow [5]
and PPO [11], two of the most well-known algorithms in RL. We
design the proposed cross-state self-constraint (CSSC) by compar-
ing the similarity of multiple state pairs according to the action
sequences taken by the rational agent.

2 METHOD
2.1 Behavior Definition
We describe a typical Markov Decision Process(MDP) as (𝑋 , A,
R, P, 𝛾) with state space 𝑋 , action space A, reward function R,
state transition function P and discount factor 𝛾 . The agent would
take an action 𝑎𝑖 at state 𝑥𝑖 and then being transited to 𝑥𝑖+1 by
the environment with a given step reward 𝑟𝑖 . Here we define the
behavior set 𝐵𝑛

𝑖
= {(𝑎𝑖 , 𝑎𝑖+1, ..., 𝑎𝑖+𝑛−1) |𝑎 ∈ 𝐴} as a set of action

series of length n taken by the agent since state 𝑥𝑖 . For 𝑏𝑛𝑖 ∈ 𝐵𝑛
𝑖

and 𝑏𝑛
𝑗
∈ 𝐵𝑛

𝑗
, 𝑏𝑛

𝑖
= 𝑏𝑛

𝑗
only if 𝑎𝑖+𝑝 = 𝑎 𝑗+𝑝 for 0 ≤ 𝑝 ≤ 𝑛 − 1. With

this definition in mind, we can infer that if the agent conduct the
behavior 𝑏2

𝑖
= (𝑙𝑒 𝑓 𝑡, 𝑓 𝑖𝑟𝑒) at state 𝑥𝑖 , it would move left in state 𝑥𝑖

and fire in the next state 𝑥𝑖+1. In the following paragraph we coin
terms like unigram, bigram and trigram for behaviors of length one,
two and three respectively.

2.2 Implementation of Cross-State
Self-Constraint in combination with
Rainbow and PPO

For each sample of state triples(𝑥𝑝 , 𝑥𝑞, 𝑥𝑟) ∈ 𝑋 with (𝑏𝑛𝑝 , 𝑏𝑛𝑞 , 𝑏𝑛𝑟) ∈
𝐵𝑛 and 𝑏𝑛𝑝 = 𝑏𝑛𝑞 ≠ 𝑏𝑛𝑟 , we decompose the estimator 𝑥𝑝𝑞𝑟 and define
it as:

𝑥𝑝𝑞𝑟 := 𝑥𝑝𝑞 − 𝑥𝑝𝑟 = 𝑒𝜃 (𝑥𝑝) · 𝑒𝜃 (𝑥𝑞) − 𝑒𝜃 (𝑥𝑝) · 𝑒𝜃 (𝑥𝑟) (1)

where 𝑒𝜃 is the encoder function with weight 𝜃 that maps the pixel
input to 1-D array feature vector with shape like [element 0, element

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1675

1, ..., element n-1] as the state representation. We directly perform
inner-product on 𝑒𝜃 (𝑥𝑝) and 𝑒𝜃 (𝑥𝑞) to calculate the representation
similarity 𝑥𝑝𝑞 between 𝑥𝑝 and 𝑥𝑞 . Please note that the encoder
function is the same part of the original base model used for feature
extraction on visualized input. To sample these state triplets without
modifying the base DQN or PPO algorithm, we collect these state
triples in the same batch of transitions used to calculate Bellman
loss or policy loss. For policy-based algorithms and DQN without
prioritized replay [10], we pair up the state triples for each transition
in the sample and calculate the CSSC loss as follows:

L𝐶𝑆𝑆𝐶 = − 1
𝑁𝐷𝑠

∑︁
(𝑝,𝑞,𝑟) ∈𝐷𝑠

ln𝜎 (𝑥𝑝𝑞𝑟) (2)

where 𝐷𝑠 represents the sample batch of size 𝑁𝐷𝑠
from the re-

play buffer and 𝜎 is the sigmoid function. Then, we train the base
algorithm in combination with the auxiliary CSSC loss as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑏𝑎𝑠𝑒 + 𝛽𝑐𝑠𝑠𝑐 · L𝐶𝑆𝑆𝐶 (3)

where 𝛽𝑐𝑠𝑠𝑐 is the hyperparameter to control the contribution of
CSSC during training.

In the case of Rainbow with CSSC, we design the loss function in
combination with the importance sampling (IP) weight as follows:�L𝑡𝑜𝑡𝑎𝑙 = (�L𝑅𝑎𝑖𝑛𝑏𝑜𝑤

⊕
(𝛽𝑐𝑠𝑠𝑐 · �L𝐶𝑆𝑆𝐶)) ⊙𝑊𝐼𝑃 (4)

where
⊕

and ⊙ are element-wise add and multiplication respec-
tively.

We find that setting 𝛽𝑐𝑠𝑠𝑐 to 0.01 with Rainbow and 0.1 with PPO
works well in most cases, so we stick with these settings for all the
experiment conducted in the next section.

3 EXPERIMENT
Our primary goal for CSSC is to enhance the generalization capa-
bility of the RL algorithm to unseen levels. Thankfully, OpenAI
Procgen[1] presents a collection of procedurally generated envi-
ronments where the training and testing environments differ in
visual appearance and layout structure. Therefore, we evaluate
CSSC in the following ways: (i) generalization improvement on 16
easy-mode games (ii) generalization improvement on 16 easy-mode
games with PPO on OpenAI Procgen.

We use the IMPALA CNN architecture recommended by Cobbe
et al. [1] for the Rainbow and PPOmodel on the Procgen benchmark
in the following experiments. All the experiments in this paper are
conducted in the single-agent setting. We use “unigram CSSC" or
“bigram CSSC" to indicate the behavior length used to pair up the
state triplet for CSSC.

3.1 Generalization on Procgen with Rainbow
As Cobbe et al. [1] have suggested, we conduct 25 million timesteps
of training on 200 levels and evaluate on full distribution of testing
levels across 16 Procgen games in easy mode. We test unigram
CSSC in comparison with vanilla Rainbow and plot the result in
Figure 1.

3.2 Generalization on Procgen in Easy mode
with PPO

We test CSSC with PPO on all 16 games of the Procgen benchmark
in Easy mode. We conduct 25 million timesteps of training on 200
levels and evaluate on full testing levels across all 16 Procgen games.
From normalized score shown in Table 1 we can tell that CSSC helps
reduce the gap between training and testing performance. Because
our proposed method is orthogonal to other approaches, we test
CSSC in combination with UCB-DrAC, the state-of-the-art data
augmentation method proposed by Raileanu et al. [9].

Figure 1: Improved percentage of Rainbow with unigram
CSSC on 16 Procgen games in easy mode. Each bar represents
mean and STD improved percentage from 3 independent
seeds.

Table 1: Mean normalized score of PPO in OpenAI Procgen
Easy Mode

Model PPO
Mode Easy (16 env.)
Regu-
larization

No unigram
CSSC

UCB
− DrAC

unigram
CSSC
+ UCB
− DrAC

Train 0.5678 0.5529 0.5594 0.5626
Test 0.3331 0.3506 0.3927 0.4085
Improve.
(test)

0.0% 5.26% 17.92% 22.64%

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1676

REFERENCES
[1] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. 2020.

Leveraging Procedural Generation to Benchmark Reinforcement Learning.
arXiv:1912.01588 [cs.LG]

[2] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. 2018.
Quantifying Generalization in Reinforcement Learning. arXiv:1812.02341 [cs.LG]

[3] Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G.
Bellemare, and David Silver. 2020. The Value-Improvement Path: Towards Better
Representations for Reinforcement Learning. arXiv:2006.02243 [cs.LG]

[4] Matthew Hausknecht and Peter Stone. 2015. The Impact of Determinism on
Learning Atari 2600 Games. In AAAI Workshop on Learning for General Compe-
tency in Video Games. Austin, Texas, USA. http://www.cs.utexas.edu/users/ai-
lab?hausknecht:aaai15

[5] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2017. Rainbow: Combining Improvements in Deep Reinforcement Learning.
arXiv:1710.02298 [cs.AI]

[6] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and
Aravind Srinivas. 2020. Reinforcement Learning with Augmented Data.
arXiv:2004.14990 [cs.LG]

[7] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. 2019. Network Random-
ization: A Simple Technique for Generalization in Deep Reinforcement Learning.
arXiv:1910.05396 [cs.LG]

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(February 2015), 529—533. https://doi.org/10.1038/nature14236

[9] Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus.
2020. Automatic Data Augmentation for Generalization in Deep Reinforcement
Learning. arXiv preprint arXiv:2006.12862 (2020).

[10] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
Experience Replay. arXiv:1511.05952 [cs.LG]

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

[12] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nature 550, 7676 (October 2017), 354—359. https://doi.org/
10.1038/nature24270

[13] Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. 2019.
Observational Overfitting in Reinforcement Learning. arXiv:1912.02975 [cs.LG]

[14] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de
Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq,
Timothy Lillicrap, and Martin Riedmiller. 2018. DeepMind Control Suite.
arXiv:1801.00690 [cs.AI]

[15] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. 2018. A Study on
Overfitting in Deep Reinforcement Learning. arXiv:1804.06893 [cs.LG]

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1677

https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1812.02341
https://arxiv.org/abs/2006.02243
http://www.cs.utexas.edu/users/ai-lab?hausknecht:aaai15
http://www.cs.utexas.edu/users/ai-lab?hausknecht:aaai15
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/2004.14990
https://arxiv.org/abs/1910.05396
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://arxiv.org/abs/1912.02975
https://arxiv.org/abs/1801.00690
https://arxiv.org/abs/1804.06893

	Abstract
	1 Introduction
	2 Method
	2.1 Behavior Definition
	2.2 Implementation of Cross-State Self-Constraint in combination with Rainbow and PPO

	3 Experiment
	3.1 Generalization on Procgen with Rainbow
	3.2 Generalization on Procgen in Easy mode with PPO

	References

