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ABSTRACT
My doctoral dissertation is intended as the compound of four pub-
lications considering: structure and randomness in planning and
reinforcement learning, continuous control with ensemble deep de-
terministic policy gradients, toddler-inspired active representation
learning, and large-scale deep reinforcement learning costs.
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1 STRUCTURE AND RANDOMNESS IN
PLANNING AND REINFORCEMENT
LEARNING

Planning in large state spaces inevitably needs to balance the depth
and breadth of the search. It has a crucial impact on the performance
of a planner and most manage this interplay implicitly. We1 present
a novel method Shoot Tree Search (STS), which makes it possible to
control this trade-off more explicitly by redesigning the expansion
phase of the Monte-Carlo Tree Search (MCTS) [4]. Given a leaf and
a planning horizon 𝐻 , the method expands 𝐻 consecutive vertices
according to the in-tree policy and add them to the search tree.
Our algorithm can be understood as an interpolation between two
celebrated search mechanisms: MCTS and random shooting [1].

We tested the STS algorithm in the Google Research Football
(GRF) [18] and Sokoban domains. GRF is an advanced, physics-
based simulator of the game of football that facilitates the Football
Academy consisting of 11 scenarios highlighting various tactical
and strategical difficulties. Table 1 compares STS to two baselines:
model-free PPO [21] and model-based AlphaZero [23] with a minor
environment-specific modification. STS Conv. completely solves
8 out of 11 academies and is the best or close to the best on the
remaining 3. Sokoban is a well-known combinatorial puzzle where
the agent’s goal is to push all boxes to the designed spots and

1[8] is the joint work with K. Czechowski, P. Kozakowski, Ł. Kuciński and P. Miłoś
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deciding whether a level of Sokoban is solvable or not is PSPACE-
complete [9]. The STS learning curve dominates the MCTS learning
curve throughout training and, since the difficulty of Sokoban levels
increases progressively, it achieves a significant improvement in
the final solved rate from 89.5% to 91%.

Our experiments presented here and in the paper support the
hypothesis that STS builds a more efficient search tree. Having
empirically verified the efficiency of multi-step expansion in many
challenging scenarios, we argue that it could be included in a stan-
dard MCTS toolbox.

2 CONTINUOUS CONTROLWITH ENSEMBLE
DEEP DETERMINISTIC POLICY GRADIENTS

The growth of deep reinforcement learning (RL) has brought multi-
ple exciting tools and methods to the field of decision-making and
control [12–14, 20, 26]. This rapid expansion makes it important
to understand the interplay between individual elements of the RL
toolbox. We2 approach this task from an empirical perspective by
conducting a study in the continuous control setting. We present
multiple insights including:

(1) an average of multiple actors trained from the same data
boosts performance;

(2) the existingmethods are unstable across training runs, epochs
of training, and evaluation runs;

(3) the critics’ initialization plays a major role in ensemble-based
actor-critic exploration.

(4) a commonly used additive action noise is not required for
effective training;

(5) a strategy based on posterior sampling explores better than
the approximated UCB;

(6) the weighted Bellman backup can neither augment nor re-
place the clipped double Q-Learning;

We show how existing RL tools can be brought together in a novel
way, giving rise to the Ensemble Deep Deterministic Policy Gradi-
ents (ED2) method, to yield state-of-the-art results on continuous
control tasks from OpenAI Gym MuJoCo. ED2 is an off-policy al-
gorithm for continuous control, which constructs an ensemble of
streamlined versions of TD3 [12] agents. Figure 1 shows the results
of ED2 contrasted with three strong baselines: SUNRISE [19] (an
ensemble-based method), SOP [26], and SAC [13]. In both Hopper
and Walker environments, ED2 achieves state-of-the-art perfor-
mance exceeding all the baseline results but SUNRISE on Walker.
ED2 substantially improves the results on the two hardest tasks,

2[16] is the joint work with M. Olko, M. Królikowski, J. Świątkowski, M. Andrychowicz
(Google Brain), Ł. Kuciński and P. Miłoś
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Table 1: Comparison of selected algorithms on GRF. Entries are rounded solved rates. PPO results come from [18].
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PPO 0.90 0.10 0.70 0.65 0.90 1.00 0.65 0.90 0.90 1.00 0.90
AlphaZero 0.81 0.50 0.31 0.31 0.99 1.00 0.45 0.89 0.70 0.00 0.00

ST
S MLP 1.00 0.78 1.00 0.97 1.00 1.00 0.94 0.97 1.00 0.94 0.94

Conv. 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97

Figure 1: The average test returns (solid lines) across training and the 95% bootstrap confidence interval (shaded regions) over 30 seeds.

Ant and Humanoid, significantly outperforming the baselines. ED2
is also more sample-efficient, achieving the same performance as
the next best method with up to 3x fewer environment interactions
on Ant. Moreover, experiments in the paper show that ED2 is more
stable than the baselines across training runs, epochs of training,
and evaluation runs.

We believe that our findings can be useful to both RL researchers
and practitioners and allow them to build on top of our work while
avoiding pitfalls that we described and tested empirically. From the
practical side, ED2 is conceptually straightforward, easy to code,
and does not require knowledge outside of the existing RL toolbox.

3 TODDLER-INSPIRED ACTIVE
REPRESENTATION LEARNING

Human toddlers are incredibly adept at learning to associate objects
to names, and to recognise object instances despite variations in
point of view, distractors, and occlusion. As these are the first steps
that the human visual system goes through in the process of acquir-
ing the capabilities of adulthood, they are seen as providing critical
clues for developing artificial vision systems. Recent research [24]
has shown that a toddler’s ability to learn is supported by a number
of innate strategies, such as the way in which objects are held or
how head motions are used to robustly attend to objects of inter-
est. We1 aim to investigate whether such strategies also result in
improved visual learning in artificial agents and if these strategies
can be recovered by the agent trained without supervision to learn
good visual representation, by developing methods that facilitate
deep reinforcement learning.

This is a work in progress. We specified the toy task in the Gym-
MiniWorld [7], tuned the PPO [21] agent to the environment, and
1Joint work with J. F. Henriques and W. Xie from VGG, University of Oxford.

run the preliminary experiments with rewards being an improve-
ment of the SimCLR [6] objective trained in the inner-loop (the
outer-loop being the RL agent training). The next steps include
adopting the [5] findings on how to train from a loss as a reward
signal and tuning SimCLR to the training from sequential observa-
tions stream, in contrast to i.i.d. samples from an offline dataset.

4 LARGE-SCALE DEEP REINFORCEMENT
LEARNING COSTS

Recent progress in high-performance computing hardware and
deep learning has ushered in a new generation of deep RL al-
gorithms supported by large networks trained on abundant data.
These have achieved multiple breakthroughs in a range of challeng-
ing domains [2, 3, 22, 25]. However, these depend on the availability
of exceptionally large computational resources that necessitate sim-
ilarly substantial energy consumption. As a result, these methods
are costly to train and develop, both financially, due to the cost of
hardware and electricity or cloud compute time, and environmen-
tally, due to the carbon footprint required to fuel modern tensor
processing hardware. In this paper, we2 will measure how much it
costs, both financially and environmentally, to reproduce the results
of state-of-the-art large-scale deep RL methods [10, 11, 15, 17] and
propose actionable strategies to reduce the costs. This work is yet
to begin.
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