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ABSTRACT
High-performing human teams leverage intelligent and efficient
communication and coordination strategies to collaboratively max-
imize their joint utility. Inspired by teaming behaviors among hu-
mans, I seek to develop computational methods for synthesizing
intelligent communication and coordination strategies for collabo-
rative multi-robot systems. I leverage both classical model-based
control and planning approaches as well as data-driven methods
such as Multi-Agent Reinforcement Learning (MARL) to provide
several contributions towards enabling emergent cooperative team-
ing behavior across both homogeneous and heterogeneous (includ-
ing agents with different capabilities) robot teams. In future work,
I aim to investigate efficient ways to incorporate humans’ teaming
strategies for robot teams and directly learn team coordination
policies from human experts.
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1 INTRODUCTION
While multi-robot systems are capable of executing time-sensitive,
complex, and large-scale problems, it is challenging to efficiently
coordinate such systems and to optimize the collaborative behavior
among robots. Communication is a key necessity to achieve an
effective coordinated policy among agents. This process, in fact,
emulates high-performing human teams where communication
is leveraged to build team cognition and maintain shared mental
models to improve team effectiveness [7, 9].

In tackling the problem of designing or learningmulti-agent coor-
dination strategies through end-to-end models, I specifically focus
my studies around three major problems that are less addressed in
prior work: (1) heterogeneous teaming, (2) complex multi-faceted
objective(s), and (3) restless and dynamic environments. In the fol-
lowing, I describe each of these challenges.

Heterogeneity in robots’ characteristics and roles are introduced
to leverage the relative merits of different agents’ capabilities [8, 11].
A group of heterogeneous robots that are collaborating on a number
of co-dependent tasks to accomplish an overarching mission form
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a composite robot team [1, 11, 15]. Due to inherently different state-
and action-spaces of agents in a composite team, communication,
coordination, and consequently collaboration is not straightforward
and requires proper considerations to model the interactions among
heterogeneous agents. Additionally, such heterogeneity in a com-
posite team implicitly entails a multi-faceted team objective such
that several disjoint and sometimes competing objectives need to
be successively and actively carried out to successfully accomplish
a mission. For instance, such multi-faceted team objectives occur
when a team of surveillance robots is required to simultaneously
monitor a wildfire while providing their human collaborators on
the ground with online information regarding their proximity to
the fire [12]. Such multi-agent coordination problem becomes even
more challenging when robots have to collaborate in a dynamic
environment (e.g., a propagating wildfire) since dynamic environ-
ments are restless; meaning regardless of robots’ collective actions,
the states of the environment continually change [11, 12].

2 MODEL-BASED MULTI-AGENT PLANNING
AND CONTROL METHODS

To enable a highly efficient and intelligent team behavior, in Seraj
and Gombolay [12], I design a low-level control strategy toward
a human-centered robot coordination. Such a system is desired in
a variety of applications; as an example, deploying a fleet of Un-
manned Aerial Vehicles (UAVs) to actively monitor a propagating
wildfire in support of human firefighters on the ground. In [12], I
propose a decentralized control framework that leverages a model-
predictive mechanism to coordinate a UAV team for tracking the
moving firefronts while simultaneously enabling the firefighters to
receive online information regarding their time-varying proximity
to fire. To facilitate our multi-faceted objective, we develop a dual-
criterion objective function based on Kalman uncertainty residual
and weighted multi-agent consensus protocol. Our simulated evalu-
ations as well as physical robot experiments in a multi-robot testbed
demonstrated efficacy of our framework and a significant team co-
ordination boost over prior model-based and RL-based methods.

An issue that we faced in [12] was that a connected communica-
tion graph was required at all times for the control architecture to
work properly. The team’s communication network, however, may
be disconnected at times and its links may have varying strengths
due to environment constraints. In Seraj et al. [10], we tackle this
problem by designing a model-reference multi-agent adaptive con-
troller that achieves team convergence even for a network of robots
with a disconnected communication graph. We derive an adaptive
control law for a leader-follower networked system that provably
converges to mimic any desired network structure even though the
real communication topology remains unknown to the robots.
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My works in [10] and [12] enable adaptive, decentralized, and
multi-objective controllers to coordinate a team of robots at the
low-level control input to collectively perform active target track-
ing and field monitoring tasks. A natural next step then is to study
the team coordination and collaboration strategies at the high-level
planning/scheduling and decision-making stages. I studied the prob-
lem of coordinated planning of a multi-UAV team for cooperative
surveillance and tracking of a restless environment in [13] (cur-
rently under peer-review in JAAMAS). In Seraj et al. [13], I utilized
a similar model-predictive mechanism as in [12] to enable UAVs
with the ability to reason about their cooperation plan for collabo-
rative surveillance through actively estimating the changing states
of their environment. Particularly, we consider safety-critical and
time-sensitive scenarios where only a limited number of UAVs are
available for allocation. A central contribution of our work in [13]
is a set of analytical temporal and tracking-error bounds that al-
low UAVs to enable probabilistically-guaranteed coordination in
tracking dynamic targets. Our quantitative evaluations validate the
performance of our method accumulating 7.5× and 9.0× smaller
tracking-error than two model-based and RL benchmarks.

Next, in an attempt to simultaneously tackle both the high-
level planning and the low-level control stages of the coordination
hierarchy, in Seraj et al. [11], I develop an efficient hierarchical
coordination framework for a composite robot team composed
of perception-only and action-only agents. In a perception-action
composite team, perception agents are first tasked to explore an
unknown environment to find an initial set of dynamic targets.
Estimated target-states are then communicated to action agents
(unable to sense) to perform a specific manipulation on those tar-
gets [1, 11, 14, 15]. Accordingly, agents in such composite teams can
inherently have different state, action, and observation spaces and
yet, must still coordinate efficiently to cooperatively accomplish
their mission [2, 14]. My proposed framework in [11] consists of two
modules: (1) a Multi-Agent State-Action-Reward-Time-State-Action
(MA-SARTSA) algorithm under partially observable Semi-MDPs as
the high-level decision-making module to enable perception agents
to learn to surveil in a restless environment with unknown number
of dynamic targets and (2) a low-level coordinated control module
that ensures probabilistically-guaranteed support for action agents.
Our empirical and physical experiments show that our method en-
ables effective collaboration in a perception-action composite team
to accomplish complex missions, such as aerial wildfire fighting.

3 LEARNING END-TO-END MULTI-AGENT
COORDINATION POLICIES

As a next step to my previous studies, I made several contributions
towards leveraging data-driven approaches to develop end-to-end
differentiable models for learning coordination strategies.

High-performing human teams benefit from communication to
build and maintain shared mental models to improve team effec-
tiveness. However, typical communication patterns across human
teams widely differ based on the responsibility or role the human
assumes. Inspired by heterogeneous communication patterns across
human teams, in [14], we propose Heterogeneous Policy Networks
(HetNet) to learn efficient and diverse communication models for
coordinating cooperative heterogeneous robot teams. The key to

our approach is the design of heterogeneous graph attention net-
works for an end-to-end communication learning model with a
differentiable, binarized encoder-decoder channel to account for
the heterogeneity of inter-class messages. HetNet enables “trans-
lating” the encoded messages into a shared, intermediate language
among agents of a composite team, such as the perception-action
teams described in Section 2. Our binarized communication model
in Seraj et al. [14] achieves 200× reduction in the communication
bandwidth over the best performing baseline while also setting
a new SOTA in team performance, achieving an 8.1% to 434.7%
performance improvement over baselines and across domains.

In addition to communication, individuals in high-performing
human teams also benefit from the theory of mind [3] and mak-
ing strategic decisions by recursively reasoning about the actions
(strategies) of other human members [4]. Such hierarchical ratio-
nalization alongside with communication facilitate meaningful and
strategic cooperation in human teams. Inspired by this behavior
in strategic human teams, in [6], we propose a novel information-
theoretic, fully-decentralized cooperative MARL framework, called
InfoPG, where agents iteratively rationalize their action-decisions
based on their teammates’ actions. We study cooperative MARL un-
der the assumption of bounded rational agents and leverage action-
conditional policies into policy gradient objective to accommodate
our assumption. By leveraging the k-level reasoning paradigm from
cognitive hierarchy theory [5], we propose a cooperative MARL
framework in which naive, nonstrategic agents are improved to
sophisticated agents that iteratively reason about the rationality
of their teammates for decision-making. Our quantitative results
show that InfoPG sets the SOTA performance in learning emer-
gent cooperative behaviors by converging faster and accumulating
higher team rewards over several recent prior work.

4 FUTUREWORK: FROM HUMAN EXPERTS
TO ROBOT TEAMS

In future work, I intend to investigate efficient ways to incorpo-
rate humans’ teaming strategies for robot teams and directly learn
team coordination policies from human experts through developing
methods for Multi-Agent Learning from Demonstration (MA-LfD).
Through LfD, we can enables robot teams to learn humans’ preferred
way to communicate/collaborate, which may not be optimal but
may be more natural. Moreover, LfD methods resolve the reward
specification challenges in MARL. Particularly, I intend to tackle:

(1) How can we teach a team of robots by showing them the
preferred way to do a task?

(2) How can we leverage heterogeneous demonstrations from a
group of human experts for teaching a composite robot team
to accomplish a shared task (i.e., teaching a robot soccer
team, or a perception-action robot team)?

(3) What are the dynamics/logistics required for an effective
collaboration between a team of humans and a team of robots
in cooperative and mixed-cooperative tasks?

Through conducting rigorous human-subject studies where a group
of humans provide collaborative strategies to satisfy a shared ob-
jective, we can collect required data for training an MA-LfD archi-
tecture generalized for multiple teachers and students, particularly,
to learn heterogeneous coordination policies for composite teams.
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