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ABSTRACT
Ineffective traffic signal control is one of the major causes of con-
gestion in urban road networks. Dynamically changing traffic con-
ditions and live traffic state estimation are fundamental challenges
that limit the ability of the existing signal infrastructure in render-
ing individualized signal control in real-time. We use deep rein-
forcement learning (DRL) to address these challenges. Due to eco-
nomic and safety constraints associated with training such agents
in the real world, a practical approach is to do so in simulation
before deployment. Domain randomisation is an effective tech-
nique for bridging the reality gap and ensuring effective transfer
of simulation-trained agents to the real world. In this paper, we
develop a fully-autonomous, vision-based DRL agent that achieves
adaptive signal control in the face of complex, imprecise, and dy-
namic traffic environments. Our agent uses live visual data (i.e. a
stream of real-time RGB footage) from an intersection to exten-
sively perceive and subsequently act upon the traffic environment.
Employing domain randomisation, we examine our agent’s gener-
alisation capabilities under varying traffic conditions in both the
simulation and the real-world environments. In a diverse validation
set independent of training data, our traffic control agent reliably
adapted to novel traffic situations and demonstrated a positive trans-
fer to previously unseen real intersections despite being trained
entirely in simulation.
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1 INTRODUCTION
Road traffic congestion remains a major problem around the world,
resulting in significant economic and environmental repercussions.
One of the most effective ways to mitigate traffic congestion is
by intelligently managing the signal infrastructure. Current sig-
nal control systems operate either on fixed time frames (Webster
method [20]) or use in-road sensors (inductive loops [5]) to extend
or shorten green signals when needed. Widely-used adaptive signal
control methods (such as SCOOT [13] and SCAT [33]) largely rely
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on manually-designed signal phase plans. These plans are designed
to be dynamically selected according to the volume of the traffic
detected by inductive loops. The loop sensors are commonly placed
close to the intersection and are not activated until vehicles pass
through them, providing only partial information on the traffic
conditions. Consequently, the signals are unable to perceive and
react to changing traffic patterns in real time. Transportation op-
erators often have to manually override signal phase decisions to
keep up with the evolving traffic conditions. Currently, no tool
exists that achieves autonomous signal control optimised for a junc-
tion’s specific geometrical layout and dynamically changing traffic
distribution.

Deep Reinforcement Learning (DRL) is one of the most promi-
nent subfields in AI, holding the promise of enabling agents to learn
sophisticated behaviors automatically while making decisions in
real time. One of the most enticing possibilities that DRL (a mecha-
nism combining reinforcement and deep learning) presents is the
ability to train the agents to perform tasks solely from raw sensory
inputs, while the traditional RL methods relied on predetermined
environment features for decision making. DRL has enabled agents
to learn sensory perception and control in an ‘end-to-end’ fashion
(i.e. directly mapping from sensory inputs to action outputs) elimi-
nating the need for hand engineering of task-specific features by
domain experts [27]. DRL involving learning visual features and
a control policy jointly (end-to-end) has been successfully applied
to several domains ranging from sophisticated video games [4, 14]
to robotics [21, 23] and transportation infrastructure optimization
[7, 8, 11]. While DRL agents can learn complex control policies from
raw sensory data, they suffer from poor generalizability. Devising
agents that can generalize well to a wide range of environmental
variations and bridge the gap between simulated and real-world
environments, is a significant challenge.

In this paper, we develop end-to-end trainable signal control
agents that respond to the actual traffic conditions in real time.
In essence, our signal control agents generate and execute signal
phases based on the prevailing traffic state. They learn to adjust
their signal control strategy based on the feedback they get from
the traffic environment. Domain randomization [37] is employed to
enhance the generalization capabilities and subsequently achieve a
robust distributional shift of the signal control agents we create. The
idea is to expose the agent to as many possible variations of a traffic
setting in order to make it invariant to factors such as junction
layout, traffic distribution, background, illumination and camera
viewpoint. We show that this domain randomization approach leads
to a significant performance boost as the agent’s vision-based per-
ception becomes invariant not only to particular conditions but
also to the training domain. Our results (Fig. 6) demonstrate that
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Figure 1: Examples of visual domain randomisation in our signal control experiments. (a) A clear sky scene. (b) A night scene.
(c) A rainy scene. (d) A snowy scene, all generated in Traffic3D (www.traffic3d.org), our simulator.

signal control policies learned entirely in simulation, transfer ef-
fectively to previously unseen real-world intersections. This marks
the significance of realistic simulation environments in training
real-world-deployable DRL agents, alleviating the requirement for
tedious data collection in the physical world, as well as of risky and
costly on-site training.

2 RELATEDWORK
Over the years, traffic signals have evolved from being pre-timed
(fixed time given to all green phases based on historical traffic
demand without considering potential fluctuations in traffic flow
patterns) [26, 40] to adaptive - using loop sensors (real-time traffic
demand is used to configure green phase duration) [13, 34]. Induc-
tive loops detect the presence of passing vehicles, prompting the
signals to allow the queuing vehicles to pass through. Adopting
adaptive signal control has helped in reducing bottlenecks around
intersections during peak times. However, this method heavily re-
lies on hand-crafted rules which fail to address the dynamic traffic
flows effectively enough. Conventionally-used inductive loops have
a narrow operational range as they only gather traffic data (vehicle
density) in their immediate area. Alternatively, we use cameras to
have a wider coverage of traffic and enhance the quality of traffic
detection. Roadside surveillance cameras have already emerged as
powerful tools in effectively enforcing speed limits and reducing
road fatalities.

Real-world traffic phenomena are characterised by highly-stochastic
dynamics. To increase signal efficiency, signals must be constantly
monitored and frequently adjusted to regulate the dynamic traf-
fic flows. RL enables greater real-time responsiveness and con-
stant optimization of actual traffic flows. RL agents are inherently
adaptive and are capable of responding to changes in the environ-
ment. The majority of research on RL-based adaptive signal control
([6, 12, 24, 38]) is conducted using relatively simplified traffic state
information, based on hand-engineered traffic features (i.e. a vector
specifying the presence of vehicles at the intersection and their
respective speed information). However, real-world traffic evolu-
tion is influenced by many factors (such as different road users -
pedestrians and cyclists, accidents, weather and road conditions).
These features, while being crucial, are not considered in state-of-
the-art signal control. In contrast, our signal control methodology
is based on live camera feed rendering an extensive representation
of the prevailing traffic state (including key traffic information such
as flows, types of vehicles, weather and lighting conditions, etc.).
Close to vision-based signal control, [16, 28] used simple 2D-visual

representations of the traffic environment, ignoring the visual com-
plexities of urban traffic and did not show the effectiveness of their
technique on real data. Our signal control agent is exposed to a
rich traffic simulation environment [9, 10] (illustrated in Fig. 1) and
achieves remarkable performance on previously unseen real-life
images (see Fig. 6).

3 METHOD AND NOTATION
3.1 Reinforcement Learning
In a basic RL setting [35], an agent learns to achieve a goal by dy-
namically interacting with an uncertain environment. A standard
RL framework is mathematically modelled as a Markov Decision
Process (MDP), which is defined as a tuple < 𝑆,𝐴,𝑇 , 𝑅,𝛾 >, where
𝑆 and 𝐴 are the state and action spaces respectively. 𝛾 ∈ (0, 1)
denotes the discount factor, which models the relevance of im-
mediate rewards over the future rewards. After observing a state,
an agent working under the policy; 𝜋 : 𝑆 ↦→ 𝐴 produces an ac-
tion. Given current state 𝑠𝑡 and action 𝑎𝑡 , the transition function
𝑇 : 𝑆 × 𝐴 × 𝑆 ↦→ R+ determines the distribution of the next state
𝑠𝑡+1. The reward function 𝑅 is determined by 𝑅 : 𝑆 × 𝐴 ↦→ R. An
episode 𝜏 ∼ M with horizon 𝐻 is a sequence of state, action, re-
ward (𝑠0, 𝑎0, 𝑟0, . . . , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻 ) at every time-step 𝑡 . The discounted
episodic return of 𝜏 is determined by 𝑅𝑡 =

∑𝐻
𝑡=0 𝛾

𝑡𝑟𝑡 . Given the
agent’s policy 𝜋 , the expected episodic return is defined by 𝐸𝜋 [𝑅𝜏 ].
The expected episodic return is maximized by optimal policy 𝜋∗

𝜋∗ = argmax
𝜋

𝐸𝜏∼M,𝜋 [𝑅𝜏 ] . (1)

A deep neural network (𝜋𝜃 ) with parameters𝜃 in high-dimensional
RL settings represents policy 𝜋∗. The agent aims to learn 𝜃∗ that
achieves highest expected episodic return,

𝜃∗ = argmax
𝜃

𝐸𝜏∼M,𝜋 [𝑅𝜏 ] . (2)

3.2 Policy-based Reinforcement Learning
Neural Network-based function approximation [22], for mapping
input traffic state to a traffic signal control action, is essential for
RL to be effective in high-dimensional large state spaces. Instead
of implementing a dominant value function-based off-policy RL
(Q-learning [39]), we explore an alternative on-policy RL (Policy
Gradient) [36] for our signal control task.

The value function-based methods approximate the state-value
function or state-action value function (i.e. how rewarding each
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state is or state-action pair is) and the policy is implicitly derived
from the learned value function [3]. In contrast, policy-based meth-
ods directly update the policy parameters (i.e. a vector of probabili-
ties to conduct actions under a specific state) along the direction to
maximize a predefined objection (for e.g. average expected reward)
[36]. One of the main advantages of policy-based methods over
value-based methods is that they can learn stochastic policies (i.e.
they keep exploring potentially more rewarding actions), while
value-based algorithms are inclined towards learning deterministic
policies. In real-world environments such as traffic settings that are
characterised by uncertainty, an effective policy must be stochas-
tic [36]. Prior work on autonomous signal control demonstrated
policy-based RL’s superior performance over value-based RL [30].

In this work, we directly estimate a stochastic policy using an
independent function approximator (DNN), whose input is some
representation of the current state of the environment (𝑠𝑡 ), it gener-
ates as output action selection probabilities (from which an action
𝑎𝑡 is sampled) and whose weights are the policy parameters. The
objective stated in Eq. 2 can be achieved using policy gradient RL
by stepping in the direction of 𝐸 [𝑅𝜏∇𝑙𝑜𝑔𝜋 (𝜏)]. This gradient can
be converted into a surrogate loss function (𝐿PG);

𝐿PG = 𝐸 [𝑅𝜏 log𝜋 (𝜏)] = 𝐸
[
𝑅𝑡

𝐻∑︁
𝑡=0

log𝜋 (𝑎𝑡 |𝑠𝑡 )
]

(3)

such that the gradient of 𝐿PG is equal to policy gradient.

4 OUR AUTONOMOUS TRAFFIC SIGNAL
CONTROL METHODOLOGY

In this section, we describe our signal control agent’s implemen-
tation, including the MDP settings; state, action, reward specifica-
tions.

4.1 Problem Definition
Our goal is for our agent to learn a real-world-deployable signal con-
trol policy by leveraging diverse traffic data gathered in a visually
realistic traffic simulator. In this paper, we develop a fully-actuated
agent that learns to control traffic signals in real time based solely
on live footage of the traffic situation of the area the signals affect.
To ensure reliable transfer to real-world traffic settings, we progres-
sively train our signal control agent on diverse traffic conditions
(such as adverse weather and lighting conditions) in simulation.

4.2 Traffic Model Simulation
DRL agents require millions of samples (i.e. interactions with the
environment) to learn meaningful policies. Although data gathered
in the real world will provide precise signals about the dynamics of
the traffic environment, it may suffer from lack of visual diversity as
it is costly to gather comprehensive data (i.e. traffic distribution on
clear sky, snow, rain, evening and dimly-lit nights, various junction
configurations) in the real world. In consequence, simulation is
deemed as a safe, cost-effective and controlled tool to train DRL
agents. In this work, we train our signal control agent in a variety
of complex traffic conditions created using an open-source multi-
agent road transportation-based simulation environment with a
visual element; Traffic3D (https://traffic3d.org/) [9, 10]. Traffic3D
is capable of creating realistic traffic scenarios including extreme

traffic and ambient conditions. Situations such as crashes and ob-
stacles do occur and form part of the agent’s training. The signal
control agent, therefore, learns to deal with them.

4.3 Traffic Movement Simulation
Traffic movement is defined as the vehicles navigating across an
intersection (from an entrance lane to an exit lane). In this paper,
we trained an agent on four-legged standard intersections. We de-
fine a set of admissible vehicle movements, eight standard signal
phases and safety rules (e.g. the minimum prescribed time before
signal phase changes) as per the Traffic Signs Manual by the De-
partment for Transport (UK) [1]. In the simulation environment
utilised, Traffic3D, vehicles follow the fundamental rules of motion
(based on their mass, friction and other forces such as gravity) and
react appropriately to their input parameters to navigate through
the network. To mimic real-world traffic trends, simulations are
initialised to reproduce real traffic data obtained at different times
of day.

5 LEARNING ENVIRONMENT SETUP: MDP
SETTINGS

Our simulated traffic environment is illustrated in Fig. 1. At each
MDP time-step, the signal control agent interacts with the traffic
environment every 𝑇 seconds (i.e the agent senses the prevailing
traffic state using the live camera-feed, based on which it decides a
certain signal phase configuration and implements it for𝑇 seconds).
The smaller the 𝑇 , the more often the agent will be asked to make
a signal control decision (i.e. configuration of signal phases). Fol-
lowing are the MDP settings for our signal control agent; including
state, action spaces and reward design.

5.1 State Space
Our agent directlymaps RGB images (depicting the prevailing traffic
state) to actions (controlling the traffic signals), demonstrating end-
to-end learningwithout any pre-specification of traffic environment
features (such as vehicle density, type, etc). For faster computation,
we downsize the input images to a compact resolution of 100 x
100, having experimentally verified that this does not impair our
agent’s decision making. Furthermore, the smaller resolution of
the images helps the agent to generalize better to new settings;
images containing fewer details of the traffic environment prevent
overfitting. Our results in Sec. 7 verify this.

5.2 Action Space
While policy-based DRL can handle both continuous and discrete
action spaces, a few prior control optimization research works have
shown that discrete action spaces work much better [2, 15]. This
is because discretization of actions makes learning a good control
policy potentially simpler. Therefore, for our signal control task, we
define a set of discrete actions 𝐴 such that each computed action
corresponds to each phase. For instance, an action 𝑎1 corresponds
to a phase 𝑝1 (i.e. < 𝑎1 ↦→ 𝑝1 >). At each MDP time-step, our signal
control agent selects one of the available phases to be implemented
for a duration of 𝑇 seconds (e.g. 5𝑠). This implies that at each MDP
step, a green signal is implemented for a minimum time duration of
𝑇 seconds. After𝑇 seconds elapse, based on the state perceived, the
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Figure 2: Our Signal Control Agent’s Network Architecture.

agent may decide to have the same signal phase or change it. Mini-
mum/maximum signal time durations dictated by traffic regulations
are conveniently accommodated by our decision making.

5.3 Reward Design
Both delay and throughput are often-usedmetrics to evaluate/optimize
the overall state of the traffic. Throughput and delay are inversely
proportional to each other and optimizing one also optimizes the
other. In this paper, we focus on optimizing the traffic throughput
across the intersections and subsequently, reducing the intersection
traversal time and delay for vehicles; a task for which we define
two reward functions: (1) a positive success reward (e.g. +1) for
every civil vehicle passing safely through the intersection; and (2)
a penalty (e.g. -1) for every civil vehicle waiting at the start of the
intersection. Besides civil vehicles, we also include emergency ve-
hicles (such as ambulances, police cars and fire-trucks) and public
transport vehicles (such as buses) in our experiments. We associate
a higher reward of (e.g. +5) for their passing through the inter-
section and a higher penalty of (e.g. -5) for their waiting at the
intersection.

5.4 Learning Protocol
To learn an effective policy 𝜋𝜃 (a|s) via DRL that maximizes reward
over all policies, our signal control agent is supported by a deep
convolutional neural network (DCNN) as a non-linear function
approximator, where action 𝑎 at time 𝑡 can be drawn by:

𝑎𝑡 ∼ 𝜋 (𝑠𝑡 |𝜃 ) (4)

where, 𝜃 denotes the model parameters and 𝑠𝑡 is the 100𝑥100𝑥3
RGB image representing the current observation of the traffic envi-
ronment. Based on the implemented actions and predefined reward
function, the rewards are observed and gradients are computed, as
per Eq. 5,

∇𝜃 𝐽 (𝜃 ) ≈
1
𝑁

𝑁∑︁
𝑖=1

( 𝑇∑︁
𝑡=1
∇𝜃 𝑙𝑜𝑔𝜋𝜃

(
𝑎𝑖𝑡 |𝑠𝑖𝑡

) ) ( 𝑇∑︁
𝑡=1
𝑟
(
𝑠𝑖𝑡 , 𝑎

𝑖
𝑡

) )
(5)

where 𝐽 (𝜃 ) denotes the loss function.
where 𝑇 = 100, 𝑁 = 10. A local maximum in 𝐽 (𝜃 ) is searched by
ascending the gradient of the policy with respect to parameters
𝜃 . ∇𝜃 𝐽 (𝜃 ) is the policy gradient and 𝛼 is a step-size parameter.
The policy is updated in the direction of the gradient (Eq. 6) to
encourage actions leading to good outcomes and discourage less

Figure 3: Quantitative results demonstrating our autonomous
traffic signal control agent’s performance during training
against the baselines; fixed-time [20], adaptive [20] and RL-
based [28] signal control.

desirable ones.
𝜃 ← 𝜃 + 𝛼∇𝜃 𝐽 (𝜃 ) (6)

5.5 Network Architecture
In the current work, we employ a deep neural network with a small
number of hidden layers. Additionally, we use batch normalization
to prevent overfitting. Batch Normalization is a widely used regular-
ization technique that enables more stable and faster training with
improved convergence and generalization of deep neural networks
(DNNs) [25]. In this work, we use a convolutional neural network
(CNN) as CNNs exploit the advantage of spatial coherence in visual
data. Our deep learning network comprises three convolutional
layers and one fully-connected layer. This network architecture
yields positive signal control in varied traffic conditions.

5.6 Domain Randomisation
Domain randomization has been previously used to successfully
transfer simulation-trained RL agents to the real world [18, 31, 37].
In this work, to reduce the reality gap between the simulated and
real-world environments, we modify the basic version of our traffic
simulation environment to the distribution of many simulations
in order to foster effective skill transfer. The wider the simulation
settings variation, the more likely the agent is to capture the real-
world dynamics. Fig. 1 depicts some examples of these altered
environments. Different aspects of the traffic environment such
as lighting or weather conditions are modified to force the agent
to learn the essential features i.e. objects of interest. The intuition
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Figure 4: Graphs depicting our signal control agent’s performance based on average junction travel time (y-axis) over the total
number of vehicles observed during the training (x-axis). We compare our DRL approach for traffic optimization; with (red
line) and without (blue line) transfer learning. Our learning curves showing vehicles’ junction travel time include experiments;
(a) In the presence of emergency vehicles. (b) On a dimly-lit night. (c) On a rainy evening. (d) On a snowy day. (e) On a random
junction with different (never seen before) geometry.

behind applying domain randomization to our signal control task
is that by altering various aspects of our simulated environment
(e.g. different weather and lighting conditions), we produce a signal
control policy that is less likely to overfit to a certain simulated
environment and more likely to successfully transfer to the real-
world traffic settings. Our results are aligned with this intuition,
reflecting the emergence of an effective real-world (as shown on
physical CCTV images) transferable signal control policy trained
using only simulator-generated data (Fig.6).

5.7 Domain Randomization Protocol
As effective generalization is essential to RL agents’ real-world
deployment, in this work, we focus on solving the problem of
generalization between traffic scenes that visually differ from each
other via domain randomization. Domain randomization methods
use data from a source domain to improve the performance of
the learned model on a target domain. To ensure our vision-based
agent’s generalizability to dynamically changing traffic conditions
both in simulated and real-world settings, we define (a) a source
domain and (b) a target domain. To achieve domain randomization,
we train our agent to act in the source domain (based on the learning
protocol outlined in Sec. 5.4) and reuse its acquired knowledge
from the source domain to learn to effectively operate in the target
domain. We initialize our agent’s convolutional neural network
(CNN) in the target domain with our agent’s pre-trained CNN
parameters from the source domain. The agent is then tuned to
operate in the target domain, based on Eq. 7,

∇𝜃 𝐽 (𝜃 ) ≈
1
𝑁

𝑁∑︁
𝑖=1

(𝑇×𝑖∑︁
𝑡=1
∇𝜃 𝑙𝑜𝑔𝜋𝜃

(
𝑎𝑖𝑡 |𝑠𝑖𝑡

) ) (𝑇×𝑖∑︁
𝑡=1
𝑟
(
𝑠𝑖𝑡 , 𝑎

𝑖
𝑡

) )
(7)

where T = 10 and N = 10 and the policy is updated in the direction
of the gradient based on Eq. 6.

5.8 Network (Signal Policy) Visualization
Saliency maps are amongst the most popular techniques used to
interpret the decisions made by neural networks. Our visualization
methodology is based on Grad-CAM (Gradient-weighted Class Ac-
tivation Mapping) [32]. Our method takes as inputs - a pre-trained
network (i.e. pre-trained signal control agent) and an image (depict-
ing the traffic environment). The output is produced in the form

Figure 5: Real-World Deployment Schema at Scotch Corner,
London (using existing TfL camera infrastructure).

of an attention map (i.e. a heatmap). Our Grad-CAM based visual-
ization method makes use of the gradient information flowing into
the last convolutional layer of the pre-trained CNN to determine
the importance of each neuron for making a certain signal control
decision. To obtain a localization map for a particular signal control
phase regime decision 𝑝 , the Grad-CAM method first computes the
gradient of the score 𝑦𝑝 (before softmax) with respect to the feature
maps 𝐴𝑘 ;

𝑔𝑝 (𝐴𝑘 ) =
𝜕𝑦𝑝

𝜕𝐴𝑘
(8)

where 𝑘 is the channel index. Then, the gradients are averaged as
the neural importance weight 𝛼𝑝

𝑘
in each channel;

𝛼
𝑝

𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑦𝑝

𝜕𝐴𝑘
𝑖,𝑗

(9)

where (𝑖, 𝑗 ) and 𝑍 are the spatial index and spatial resolution of the
feature map respectively. Finally Grad-CAM is a weighted sum of
feature maps (followed by a ReLU operator);

𝐻
𝑝

𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (
∑︁
𝑘

𝛼
𝑝

𝑘
𝐴𝑘 ) (10)

This gives a Grad-CAM implementation, in which the heatmap
produced is of the same size as feature maps.

6 EXPERIMENTS AND RESULTS
The goal of this paper is to optimize the performance of existing
traffic signal infrastructure using DRL. However, when applying
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DRL for signal control, ascertaining a priori the empirical settings
that will yield a successful/sustainable signal control policy, is vir-
tually impossible. Hence, we conducted a set of sensitivity analysis
experiments to assess the robustness of our signal control agent to
variation in pertinent empirical settings such as the RL algorithm
(actor-only [36] or actor-critic [19]), reward signal and camera ori-
entation (used to capture visual input data). Our sensitivity analysis
research findings reflected that to effectively optimize the traffic
flows through intersections, a combination of visual traffic data
captured with a front-camera view, policy-based RL algorithm and
positive-negative rewards worked effectively in a wide range of
traffic situations. For brevity, we omit our sensitivity analysis re-
sults in the current paper. We use this combination of empirical
settings in all our simulation-based experiments. While we have no
control over camera location or angle for experiments carried out
on real-life footage, this does not appear to have adverse effects on
the performance of our agent.

We categorize our experiments as (1) DRL-based autonomous
signal control. (2) Domain Randomization to ensure the agent’s
generalizability to environment variations. All our experiments
are based on the network architecture described in Sec. 5.5 and
illustrated in Fig. 2. Traffic environment specifications, including
traffic model and flow details are outlined in Sec. 4.2 and Sec. 4.3,
respectively.

6.1 DRL Autonomous Traffic Signal Control
This experiment is conducted on a clear day setting (illustrated in
Fig. 1(a)). We select the following performance metric to evaluate
our autonomous signal control strategy;
Junction Travel Time: is defined as the time interval between
vehicles arriving at the junction stop-line and vehicles reaching at
the end of the junction. The longer a vehicle is forced to wait at the
start of the junction, the higher its junction travel-time will be. We
take the moving average of 100 vehicles’ junction travel-time to
capture their long-range trend. Lower journey travel-time indicates
better signal control.

We compare our research findings against the following conven-
tional and RL-based baselines:
Standard (non-adaptive) signal control [20]: follows the signal
control policy that uses predefined signal phase regimes (widely
used for steady traffic conditions).
Induction loop-based (adaptive) signal control [20]: a loop de-
tects approaching vehicles along each incoming lane and an elec-
tronic impulse is sent to the signal circuit - to switch the red signal
to green.
Deep policy gradient-based (adaptive) signal control [28]: a
policy gradient algorithm for vision-based traffic signal control
(close to our work). The state and action specifications are similar to
our proposedmethod (outlined in Sec. 5).While depending on visual
input, the signal control agent is being trained on simplistic/non-
realistic camera footage following a less diversified and rigorous
approach, hindering its deployability to real settings. The reward
signal is based on total cumulative delay (for further details, see
[28]). Another vision-based signal control [16] is a value-based
approach while our sensitivity analysis experiments demonstrated
more-effective signal control using policy-based methods.

Our signal control agent’s training graph, including the average
junction travel time of the total number of vehicles observed during
the simulation is shown in Fig. 3. Our signal control agent signif-
icantly outperforms both conventional (fixed-time and adaptive)
and RL-based signal control methods; intelligently adjusting signals
to different traffic situations. Also, as compared to the other DRL-
based approach [28] which demonstrates high variance in learning,
our method demonstrates faster and more stable (with sustainable
policy) learning. We believe that the use of cumulative delay in
the baseline [28] leads to inferior performance, as this metric is
ambiguous and it does not inform the agent about delays faced
by individual vehicles. Fixed-time and loop-induced signal control
methods perform the worst. These methods fail to timely modify
agents’ traffic optimization decisions as per the dynamically chang-
ing traffic flow patterns, as there is no learning involved. However,
even a learning-based DRL agent relying on vehicle count as the
traffic state information performs comparably to loop-induced sig-
nal control. We note that using visual traffic data to optimize signals
has several benefits including detection of vehicles’ type, precise
position of vehicles and estimation of speed of vehicles based on
their position in consecutive frames.

6.2 Domain Randomization Experiments
The main objective of applying domain randomization is to provide
enough variability in the simulation environment at training time
so that the agent is able to generalize to real-world settings at
testing time. Following is the set of our domain randomization
experiments;

6.2.1 Different vehicle types/models. Here, our agent learns to pri-
oritize the traversal of emergency vehicles (such as police cars,
fire engines and ambulances) through the intersection. We asso-
ciate a higher positive reward (+5) for every emergency vehicle’s
traversal through the intersection and a higher negative reward
(-5) for every emergency vehicle waiting at the intersection. We
conduct two experiments in this setup: (1) With knowledge transfer
from the source domain (signal control on a clear day, outlined in
Sec. 6.1); in the target domain experiment, we train our agent to
effectively recognise and respond to the presence of emergency
vehicles by reusing previously-learned knowledge from the source
task. The source experiment only included the civil vehicles. (2)
Without knowledge transfer; we initialize our agent with random
neural network parameters to prioritize navigation of emergency
vehicles. In both transfer and non-transfer experiments, we use a
mixture of civil and emergency vehicles in the ratio 10:1. As seen in
Fig. 4 (a) (red), the agent equipped with an overall understanding
of the traffic environment (from the source task the agent learns to
optimize traffic flows on a clear sky day after approx. 22000 time-
steps into training) quickly learns (after approx. 5000 time-steps
into fine-tuning) to prioritize emergency vehicles’ swift movement
through the intersection via transfer learning. In contrast, train-
ing our agent with random parameters to prioritize navigation of
emergency vehicles demonstrated relatively slow learning (blue).

6.2.2 Dimly-lit night. Since our signal control agent perceives its
environment using vision, we believe it is important to validate its
agility when subjected to dim lighting (illustrated in Fig. 1 (b)). Our
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Figure 6: Images demonstrating attention visualization real-world intersections in London city on clear, smoggy, rainy, night
and distorted scenes (Marble Arch, Piccadilly Circus, Gunnersbury Lane, Scotch Corner and Oxford Circus obtained from live
TfL cameras). There is clear attention on emergency and public transport vehicles and the lane with higher traffic density (in
the absence of public transport vehicles); obstructions (e.g. raindrops on camera), adverse lighting and smog do not affect the
network’s performance.

experiments in this set-up include; (1)With transfer from the source
domain (signal control including emergency vehicles, outlined in
Sec. 6.2.1); in the target domain experiment, we reuse a previously-
learned policy from the source domain. (2) Without transfer; we
train our agent from scratch with random neural network initial-
izations on a dimly-lit night. As seen in Fig. 4 (b), the agent relying
on previously-acquired skill-set (red) learns to minimize the junc-
tion travel time for individual vehicles almost instantaneously. In
contrast, the agent with the random neural network initializations
(blue) takes longer to learn. The target experiment agent’s basic
understanding of the traffic scene and its ability to learn a clearly
structured topology in the regular lattice of pixels from the visual
input data (from source task the agent learns to optimize traffic
flows after approx.27000 time-steps into training and fine-tuning),
allows it to quickly adapt to the changing lighting conditions.

6.2.3 Rainy evening. Here, our agent learns to optimize traffic
flows in the presence of rain (illustrated in Fig. 1 (c)). For these ex-
periments, we simulate in Traffic3D rain of 10𝑚𝑚/ℎ. In this setup,
we conduct two experiments: (1) With transfer from the source do-
main (signal control including emergency vehicles and dim-lighting,
outlined in Sec. 6.2.2); in the target domain experiment, we reuse
a previously-learned policy from the source domain. (2) Without
transfer; we initialize our agent with random neural network pa-
rameters to optimize the flow of traffic on a rainy evening. As seen
in the graph of Fig. 4 (c), the agent making use of learned policy
(red) learns to reduce junction travel time for individual vehicles
almost instantaneously. A heavy rain of 10𝑚𝑚/ℎ has little/no effect
on our agent’s ability to interpret the fundamental traffic scene
(from source task the agent learns to optimize traffic flows after
approx.27𝐾 time-steps into training). In contrast, the agent initial-
ized with random neural network parameters (blue) does not have
any pre-existing knowledge to build on, in consequence, it learns
relatively slowly.

6.2.4 Snowy day. Here, our agent learns to optimize traffic flows
in the presence of snow (illustrated in Fig. 1 (d)). In this setup,
we conduct two experiments; (1) With transfer from the source
domain (signal control including emergency vehicles, as well as
dim lighting and rain, outlined in Sec. 6.2.3); in the target domain
experiment, we reuse a previously-learned policy from the source
domain. (2) Without transfer; we initialize our agent with random
neural network parameters to optimize the traffic flows on a snowy
day. The results shown in Fig. 4 (d) indicate initial negative transfer
as agent learning via transfer learning (red) performs worse than
the agent using the random initializations (blue). We attribute this
performance to the fact that snow, being opaque in nature, causes
visibility degradation and occlusion; significantly modifying the
agent’s visual input. This affects the agent’s prior understanding of
the traffic scene and its object localization potential; leaving fewer
points of visual reference from formerly-possessed knowledge. In
contrast, the agent with random initializations begins learning in
the presence of snow and gradually learns to optimize the flow
of traffic. This type of experiment informs us as per the need to
pre-train agents for snowy scenes prior to deployment.

6.2.5 Different Junction Layout. Here, we establish the ease of de-
ployment of our signal control agent to new junctions with varied
topologies/structures. Our experiments in this set-up include: (1)
With transfer from the source domain (signal control including
emergency vehicles, as well as dim-lighting and rain, outlined in
Sec. 6.2.4); in the target domain experiment, the agent reuses the
previously-learned policy from the source domain. (2) Without
transfer; the agent is trained with random neural network initial-
izations to optimize traffic flows through a new (visually different)
junction. The difference between the junction layouts in the source
(4-legged junction) and target (2-legged junction) domains is that
the 4-legged junction has four traffic lights and the 2-legged junc-
tion has two traffic lights. The results of these experiments are
shown in Fig. 4 (e). Initially, the agent equipped with a learned
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Figure 7: Images demonstrating attention visualization on unrelated (non-traffic) scenes, after the network has been trained on
a cross-junction scene. Areas of significant attention, visualised in red, appear in random places in these images.

policy starts worse than the agent with random initializations, but
it learns an effective policy to optimize traffic flows much faster.
Owing to the pre-trained agent’s understanding of the basic traffic
entities such as vehicles, lane-markings, it adapts its behavior to
the varied junction layout. In contrast, the agent using the random
initializations devotes considerable time to exploring the traffic
environment from the beginning, slowly learns its intrinsic feature
representation, before it subsequently optimizes the traffic flows
through the intersection. This is an indication that it is not only
feasible, but also desirable to re-use a previously trained agent on a
new intersection layout.

7 DEPLOYMENT AND EVALUATION IN THE
REAL-WORLD

Our vision-based signal control system is real-world deployable
without the need for expensive infrastructure upgrades. For exam-
ple, Transport for London publishes real-time footage from its net-
work of traffic cameras in the city of London (www.tfljamcams.net).
Illustrated in Fig. 5, is the proposed execution of DRL-based signal
control on a real-world intersection (in this case Scotch Corner,
London). Our signal control agent will sense the environment in
real time using raw camera footage. It will then process this in-
formation and determine a signal optimization policy to move the
traffic through the intersection as efficiently as possible. Lastly, via
software integration/API, the agent will send commands to the con-
troller to implement the optimized signal phase plan. At settings
monitored by multiple cameras, it is possible to combine all streams
to obtain an extensive state of the intersection and apply our signal
control DRL algorithm on the combined input space.

Aiming to evaluate the deployment readiness of our vision-based
signal control method, we demonstrate the attention visualization
of our signal control policy (trained entirely on simulated footage
of a four-legged intersection on Traffic3D) on TfL CCTV images
of intersections in London; Piccadilly Circus, Gunnersbury Lane,
Scotch Corner, Marble Arch and Oxford Circus (illustrated in Fig. 6),
which have significantly different layouts. While no actions are
taken in this experiment, the attention visualisation demonstrates
that our policy is able to accurately recognise different vehicles on
real intersections (i.e. public transport and emergency vehicles to
give them priority access of the intersection). Additionally, Figs. 6(e)-
(h) demonstrate the successful attention visualization of our signal
control policy on real-world intersections, on the scenes affected
by heavy rain, night-time lighting and distorted camera output. In
the absence of public transport and emergency vehicles, attention
can be seen on the lane with higher traffic density (around the

vehicles closer to the intersection), in line with the training the
agent has experienced. Testing our signal control policy on varied
real-world traffic data provides us with a close proxy of our DRL-
based agent’s performance in real-world traffic settings. While even
the smallest of perturbations to an agent’s input state representation
can lead to undesirable outcomes, the use of domain randomization
counters this issue by exposing the agent to a variety of settings
during training. Fig. 6 demonstrates our agent’s ability to transfer
from simulation to real-world settings comprising visual traffic data
captured with camera angles we have no control over, different
weather conditions (clear and rain), lighting (day and night) and
types of intersection layouts to which the agent has never been
exposed to during its training phase. This strongly indicates that
our agent does not overfit to the training data and is robust to
distributional shift.

To further validate the efficacy of our DRL-based signal control
agent, we applied attention visualisation in the same way to a set
of unrelated (non-traffic) scenes (www.gettyimages.co.uk). This is
common practice in attention visualisation-based system verifica-
tion; it confirms that the trained policy is only acting upon relevant
features [17, 29]. Our signal control policy trained on traffic scenes
shows attention at random places on the unrelated scenes ( Fig. 7).
This strongly emphasizes that our agent learns to recognise and
act upon features that are relevant to the traffic optimization task.

8 CONCLUSION
We presented a vision-based, end-to-end trainable autonomous traf-
fic signal control agent. Our agent optimizes traffic based solely on
live visual traffic data, without hand-crafted traffic state features.
Our agent, which has been trained with domain randomisation,
achieves individualized signal control that autonomously adapts
to varying junction types, traffic distribution, weather and lighting
conditions, both in simulation and the real world. Using attention
visualization, we advance towards explainable AI and translate our
agent’s signal control decisions into a human-understandable form.
This further helps us gain insight into our end-to-end (jointly learn-
ing perception and control) signal control approach. We further
highlight the importance of using simulations to train autonomous
agents by demonstrating that the agent trained entirely on simu-
lated scenes employing domain randomization produces a signal
control policy that can be successfully transferred to the real world
with no pre-training. In the future, we intend to deploy multi-agent
RL to control networks of intersections, exploring formal logic
and probabilistic verification of our signal control agent and the
underlying simulation.
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