
Autonomous Swarm Shepherding Using Curriculum-Based
Reinforcement Learning

Aya Hussein
University of New South Wales

Canberra, Australia
a.hussein@adfa.edu.au

Eleni Petraki
Faculty of Education, University of Canberra

Canberra, Australia
eleni.petraki@canberra.edu.au

Sondoss Elsawah
University of New South Wales

Canberra, Australia
s.elsawah@adfa.edu.au

Hussein A. Abbass
University of New South Wales

Canberra, Australia
h.abbass@unsw.edu.au

ABSTRACT
Autonomous shepherding is a bio-inspired swarm guidance ap-
proach, whereby an artificial sheepdog guides a swarm of artificial
or biological agents, such as sheep, towards a goal. While the suc-
cess in this guidance depends on the set of behaviours exhibited by
the sheepdog, the main source of complexity for learning effective
behaviours lies within the highly non-linear dynamics featured
among the swarm members as well as between the swarm and
the sheepdog. Attempts to apply reinforcement learning (RL) to
shepherding have so far relied greatly on rule-based algorithms for
calculating waypoints to guide the RL algorithm. In this paper, we
propose a curriculum-based approach for RL that does not rely on
any external algorithm to pre-determine waypoints for the sheep-
dog. Instead, the approach uses task decomposition by formulating
shepherding in terms of two sub-tasks: (1) pushing an agent from
a start to a target location and (2) selecting between collecting
scattered agents or driving the biggest cluster of agents to the goal.
Simple-to-complex curriculum learning is used to accelerate the
learning of each sub-task. For the first sub-task, the complexity is
gradually increased over training time, whereas for the second sub-
task a simplified environment is designed for initial learning before
proceeding with the main environment. The proposed approach
results in high-performance shepherding with a success rate of
about 96%. While curriculum learning was found to expedite the
learning of the first sub-task, it was not as efficient for the second
sub-task. Our analyses highlight the need for the careful design of
the curriculum to ensure that skills acquired in intermediate tasks
are useful for the main tasks.

KEYWORDS
Curriculum Learning; Hierarchical Reinforcement Learning; Swarm
Guidance; Machine Teaching

ACM Reference Format:
Aya Hussein, Eleni Petraki, Sondoss Elsawah, and Hussein A. Abbass. 2022.
Autonomous Swarm Shepherding Using Curriculum-Based Reinforcement
Learning. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
9 pages.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Swarm navigation behaviours have been extensively studied by re-
searchers. In their review of robot swarms’ applications, Brambilla
et al. [6] identified navigation as one of the four key behaviours
that are necessary for swarms to tackle real-life complex problems.
Swarm navigation algorithms have been largely inspired by navi-
gation strategies found in Nature (e.g. flocking [8]). However, the
application of such strategies in a fully distributed manner is not
always practical for robotic systems involving simple swarm mem-
bers. For instance, to enable scattered swarm members to cluster
into a single group, these members need to possess the ability to
calculate their positions in the environment or to have sensors with
sensing ranges spanning the whole environment to sense every
other member in the environment. Another example is flocking
towards a distant target, which would require swarm members
to perform complex path planning. These requirements may not
be always possible for simple swarm members operating in large
environments.

One bio-inspired strategy that supports the navigation of swarm
members with low capabilities (relative to the navigation task) is
shepherding, which is naturally exhibited in the guidance of sheep
swarms. In shepherding, a sheepdog is used to influence sheep
movements to guide them to a given destination. The use of a
sheepdog in this setting facilitates the control of the swarm due
to the cognitive and physical superiority of the dog compared to
swarm members [2]. A well-trained sheepdog uses such cognitive
and physical advantages and exploits sheep’s behavioural tenden-
cies to herd the flock into a designated target area [43]. As such,
shepherding strategies enable the efficient guidance and control of
simplistic swarm members by employing a more capable agent.

Mathematical modelling of sheepdog-sheep interactions enabled
the reproduction of the shepherding capability in robot systems.
Robot-based shepherding has potential applications in several civil
and military domains [26]. Research on using a robotic agent for
herding ducks and sheep in a paddock has already shown some
promising results [11, 46]. The use of a robotic sheepdog is antici-
pated to be a cost-effective solution given the high cost of training
and keeping biological sheepdogs. Past studies also suggested that
robot-based shepherding could improve sheep safety whilst avoid-
ing extra stress on the sheep [47].

Most existing shepherding strategies use rule-based algorithms
for controlling the sheepdog behaviour [9, 13, 39, 44, 45]. However,

Main Track AAMAS 2022, May 9–13, 2022, Online

633

in real environments, the sheepdog behaviour may need to be
adjusted in response to variations in environmental conditions
or sheep behaviour. For instance, Evered et al. [11] showed that
the response of biological sheep to a robotic sheepdog changes
over time as the sheep get accustomed to the robot. Learning-based
algorithms are thus preferred due to their ability to adapt to changes
in the task. Only a handful of studies used learning algorithms for
shepherding. However, the existing learning-based shepherding
algorithms either achieved very low performance [7, 15] or relied
on external rule-based shepherding algorithms to calculate the
waypoints for the shepherd and used these waypoints as input
to the learning algorithm [16, 33]. Using a rule-based algorithm
for waypoints calculation is an oversimplification of the learning
problem by turning it into a mere scaling problem [33].

This work aims to propose a reinforcement learning (RL)–based
approach for learning an effective shepherding policy. To overcome
the complexity of the learning process, the shepherding problem is
first divided into a hierarchy of two sub-tasks: (1) the lower sub-task
is learning to push one or more agents from position 𝐴 to position
𝐵 and (2) the higher sub-task is deciding on whether the shepherd
should collect scattered agents (i.e. push the furthest sheep towards
the center of mass of all the sheep) or drive the largest cluster to the
goal (i.e. push the center of the largest sheep cluster towards the
goal). A simple curriculum is then used to speed up the learning of
each sub-task by commencing with simple scenarios, which then
grow in complexity over time.

2 RELATEDWORK
Lien et al. [23] defined shepherding behaviours as those in which
external agents control the movement of a swarm of agents. Lien et
al. identified four types of shepherding behaviours: driving, cover-
ing, patrolling, and collecting. Driving is the guidance of a swarm
from one location to a goal location. Covering is guiding the swarm
to visit all locations in the environment. Collecting comprises gath-
ering scattered swarm members. Finally, patrolling involves pro-
tecting a designated region by preventing swarm members from
entering it.

One of the common shepherding applications found in nature
is the use of a sheepdog to guide the motion of a sheep swarm. A
significant body of research has focused on the sheepdog behaviour
to both understand and replicate it. Strömbom et al. [39] have
found that sheepdog operation is made up of two key behaviours:
collecting scattered sheep and driving the swarm once collected
towards the goal area. Strömbom et al. [39] proposed an algorithm
that resembles the sheepdog behaviour. In this algorithm, the collect
behaviour is achieved by moving the sheepdog behind the furthest
sheep and then along the vector from the furthest sheep to the global
center of mass (GCM) of the swarm. For the driving behaviour, the
sheepdog moves behind the GCM of the clustered sheep, facing
the goal, and then moves along the vector from GCM to the goal
area. The algorithm was shown to mimic the behaviour of a natural
sheepdog.

Variants of Strömbom et al. [39]’s algorithm were proposed to
improve task performance in terms of success rate and completion
time. For instance, Hepworth et al. [20] argued that sheep agents
demonstrate heterogeneous behaviours such that some sheep have

more influence on the swarm than others. Consequently, Hepworth
et al. [20] proposed that the center of influence (CoI) should be
used instead of GCM when driving heterogeneous sheep. Another
variant was proposed in [9] by imposing circular paths on sheepdog
motion when approaching driving and collecting points. It was sug-
gested that such circular paths are necessary to avoid undesirable
swarm fragmentation.

However, rule-based algorithms for shepherding are prone to dra-
matic performance drops in response to low-to-moderate changes
in the environment. For instance, El-Fiqi et al. [9] showed that the
presence of obstacles in the environment severely impacts the per-
formance such that with an obstacle density of as low as 4%, the
success rate of a single-sheepdog shepherding scenario drops to
zero. El-Fiqi et al. [9] suggested the need for increasing the number
of sheepdogs to enable success in such environments.

The low adaptability of existing rule-based algorithms to task
characteristics imposes additional limits on their performance. For
instance, Strömbom et al. [39] found that the performance of their
single sheepdog algorithm drops notably (in terms of success rate
and task time) as the number of sheep increases. Lien and Pratt [24]
also argued that existing algorithms can handle small swarms using
a single sheepdog, but require multiple sheepdogs for swarms of 40
or more sheep. This is well inferior to the capabilities of biological
sheepdogs, as a single sheepdog can herd swarms of 80 or more
sheep [39].

The above discussed limitations of rule-based shepherding al-
gorithms call for shepherding algorithms that can adjust their be-
haviour based on some given task characteristics. Learning-based
algorithms naturally address the requirement for adaptation due
to their inherent learning capabilities. Go et al. [16] used RL for
shepherding tasks involving one sheepdog and multiple sheep. As
the complexity of the shepherding problem is very high due to its
large state and action spaces, Go et al. [16] used waypoints which
are the driving/collection positions as calculated from Strömbom’s
algorithm. Go et al. discretised these waypoints and included them
in the observation vector of SARSA algorithm, which is used for
learning discrete actions for the sheepdog. A positive reward is
given to the RL agent when the sheepdog reaches its waypoint.
A similar attempt has been presented in [33] where Strömbom’s
algorithm is also used to calculate a waypoint for the sheepdog.
The relative directional vectors between the sheepdog and the way-
point is then used as the observation vector. A deep reinforcement
learning algorithm is used to generate continuous sheepdog ac-
tions. Continuous motion actions are preferred over discrete ones
to enable smooth motion when executed on an actual robot.

While using waypoints as input for a learning algorithm makes
learning significantly easier, this directly compromises the advan-
tage of learning. This is because the problem is reduced to learning
to move from location 𝐴 to location 𝐵 in a straight line to get the
maximum reward, such that both 𝐴 and 𝐵 are provided as input to
the RL algorithm. This is also noticed by Nguyen et al. [33] who
found out that their formulation turned the problem into a scaling
problem.

Two studies presented learning-based shepherding algorithms
without relying on waypoints calculated from external rule-based
shepherding algorithms. Clayton and Abbass [7] used hierarchical
genetic RL to evolve a policy for the sheepdog. They used task

Main Track AAMAS 2022, May 9–13, 2022, Online

634

decomposition to design a multi-part reward function to facilitate
learning of the different skills needed for shepherding. However,
their analysis showed that the success rate achieved by the learnt
policy was about 50%. The other study by Gee and Abbass [15] de-
composed the task into two sub-tasks: collect and drive. They used
supervised learning to learn suitable behaviours for each sub-task
given data collected from humans operating a simulated sheepdog.
The reported results showed low performance as the success rate
was just about 32%.

Following this discussion of existing shepherding algorithms,
two key findings can be concluded. First, learning-based algorithms
for shepherding are required as they can naturally adapt to different
contexts. Second, only a handful of studies presented learning-based
algorithms for shepherding such that they either achieved very low
performance or oversimplified the learning problem in a way that
voids the advantages of learning. This paper addresses this research
gap by using an approach based on curriculum learning to enable
learning effective shepherding policies without relying on external
shepherding algorithms. The next section gives a brief introduction
to curriculum learning and discusses some of its key directions in
RL domains.

3 CURRICULUM LEARNING
In RL domains, researchers have been studying various techniques
to enable efficient learning of complex tasks. Task decomposition
is one of the earliest attempts for accelerating RL [18]. It works by
analysing a complex task into multiple partitions (or sub-tasks) such
that learning the sub-tasks is easier than learning the whole task.
Several approaches based on task decomposition have been used in
the context of RL. These approaches include reward shaping where
a reward is given when the agent reaches a milestone [18], hierar-
chical learning where temporal abstraction is used for tasks with
temporally extended actions [28, 40], modular learning where dif-
ferent sub-tasks use different partitions of the state space [5, 19, 38],
and learning sub-tasks independently [14, 42]. Reward shaping and
hierarchical learning aim to mitigate the impact of sparse rewards
on the complexity of long-horizon tasks, whereas modular learning
and learning sub-tasks independently address the effect of large
state and action spaces on the complexity of learning.

While task decomposition uses a divide-and-conquer style for
learning, curriculum learning is concerned with the question of
how learning should be progressed over time. In this work, we use
the term curriculum in a way that aligns with its use in the ML
literature, but we are aware that this term refers to a more com-
prehensive process in the human education literature [1, 21]. The
emergence of curriculum-based approaches in ML can be traced
back to 1993 when Elman [10] highlighted the importance of start-
ing small when it comes to teaching a complex task to an ML model.
Elman suggested that machine learners, akin to human beings,
show improved learning capacity when learning starts with simple
concepts before advancing to more complex ones. More recently,
the term curriculum learning was introduced by Bengio et al. [4] to
refer to the training strategies that organise training examples ac-
cording to their level of difficulty such that easier examples are used
for learning before more difficult ones. Bengio et al. showed that

curriculum learning outperforms traditional non-curriculum train-
ing strategies in terms of both the speed of convergence and the
magnitude of generalisation error. Subsequent studies confirmed
these findings for different supervised learning tasks [3, 17, 22].

In RL domains, Narvekar et al. [30] reviewed existing approaches
to, and proposed a framework for, curriculum learning. Their frame-
work formulates curriculum learning in terms of three steps: (1)
task generation (2) sequencing, and (3) transfer learning. Task gen-
eration is the process of creating a useful set of intermediate tasks
which are used to facilitate learning of the main task. In the simplest
case, no intermediate tasks are generated as only samples from the
main task are used for learning. In this case, samples in the replay
buffer, where past state-action-reward experience tuples are stored,
can be sequenced in order of importance [36] or complexity [35].
No transfer learning is employed for the case with no intermediate
tasks. In the more generic case, one or more intermediate tasks
can be used which allows the learning to start under simplified
settings before proceeding with the more complex setting. Interme-
diate tasks might be generated by introducing changes to one or
more elements of the Markov Decision Process (MDP) of the main
task: state space, action space, initial states, goal states, transfer
function, and/or reward function [31, 41]. Different sequencing
methods can be used for ordering the intermediate tasks including:
simple-to-complex ordering [12], relying on a human for specify-
ing the sequence [34], or formulating the sequencing as a search
problem [32]. As the intermediate tasks have different MDPs, trans-
fer learning is used to transfer knowledge from these tasks to the
main task. Depending on the RL algorithm used for learning and
the differences in MDPs between the intermediate and main tasks,
transfer learning can be achieved by transferring policy and value
functions, task model, training instances, or partial policies.

Our work employs both task decomposition and curriculum
learning for facilitating the learning of the shepherding task. Task
decomposition is achieved by analysing the shepherding problem
and decomposing it into two sub-tasks. Then, curriculum learning
with intermediate tasks is used within each sub-task to speed up
their learning. Intermediate tasks are linearly sequenced to generate
a simple-to-complex curriculum such that knowledge is transferred
between tasks in the curriculum by transferring the policy and
value functions.

4 PROBLEM STATEMENT
The single-sheepdog multiple-sheep shepherding problem consists
of a sheepdog 𝛽 with a position 𝑃𝑡

𝛽
= (𝑥𝛽 , 𝑦𝛽) at time 𝑡 and a swarm

of 𝑁 sheep {𝜋1, 𝜋2, ...𝜋𝑁 } with positions 𝑃𝑡𝜋𝑖 = (𝑥𝜋𝑖 , 𝑦𝜋𝑖) for agent
𝜋𝑖 at time 𝑡 . All the agents are deployed within a continuous-space
environment of dimensions 𝐿×𝐿. The environment has a designated
goal area described in terms of the goal center 𝑃𝐺 = (𝑥𝐺 , 𝑦𝐺)
and radius 𝑅𝐺 . The positions of the sheepdog, sheep, and goal
centre are randomly initialised in each shepherding scenario. The
maximum linear velocity of the sheepdog and the sheep is 𝑉𝛽 and
𝑉𝜋 , respectively. 𝛽 is assumed to be spatially aware of its position
𝑃𝑡
𝛽
, the positions of all the swarm members 𝑃𝑡𝜋𝑖∀𝑖 ∈ [1, 𝑁], and the

goal center 𝑃𝐺 . The objective is to gather all the sheep in the goal
area within a predefined amount of time𝑇𝑚𝑎𝑥 . The task comes to an
end at 𝑡𝑒𝑛𝑑 either when all the sheep are successfully homed to the

Main Track AAMAS 2022, May 9–13, 2022, Online

635

Parameter 𝑅𝜋𝜋 𝑅𝜋𝛽 𝑅Λ 𝑊𝜋𝜋 𝑊𝜋𝛽 𝑊Λ 𝑉𝜋 𝑉𝛽
Value 0.4 45 5 1.05 1.0 2.0 1.5 1.0

Table 1: Sheep and sheepdog parameters.

goal area or when 𝑇𝑚𝑎𝑥 is reached, whichever happens first. The
task is considered successful if and only if the following condition
is met:

| |𝑃𝑡𝑒𝑛𝑑𝜋𝑖 − 𝑃𝐺 | | < 𝑅𝐺 ∀𝑖 ∈ [1, 𝑁] (1)

such that | |𝑃𝑡𝑒𝑛𝑑𝜋𝑖 −𝑃𝐺 | | is the Euclidean distance between 𝑃𝑡𝑒𝑛𝑑𝜋𝑖 and
𝑃𝐺 .

5 METHODOLOGY
The aim of a shepherding algorithm is to generate a set of sheepdog
actions that leads to successful operation given the state vector of
a swarm of sheep in the environment. Changes in the state vector
are caused by the behaviour exhibited by the swarm of sheep. In
this paper, it is assumed that the sheep behaviour is determined by
a set of rules that characterise the key behavioural tendencies of
biological sheep. The sheep model is described in subsection 5.1.
Meanwhile, the behaviour of the sheepdog is determined through
learning. Subsection 5.2 analyses the learning into two sub-tasks
and uses curriculum learning to learn each sub-task.

5.1 Sheep Behaviour
The behaviour of the sheep agents is determined by a set of prede-
fined equations to mimic the behaviours of actual sheep, akin to
previous studies (e.g. [13, 16, 24, 27, 43]). Three forces are used to
determine sheep movement in the current work: cohesion, separa-
tion, and sheep-to-sheepdog repulsion. The total force applied on
sheep agent 𝜋𝑖 at time 𝑡 is denoted 𝐹 𝑡𝜋𝑖 and is calculated according
to the equation:

𝐹 𝑡𝜋𝑖 =𝑊𝜋Λ𝐹
𝑡
𝜋𝑖Λ𝜋𝑖

+𝑊𝜋𝜋 𝐹
𝑡
𝜋𝑖𝜋−𝑖 +𝑊𝜋𝛽𝐹

𝑡
𝜋𝑖𝛽

(2)

𝐹 𝑡
𝜋𝑖Λ𝜋𝑖

is the cohesion force that pushes 𝜋𝑖 towards the local center
of mass of its neighbours; i.e other sheep within the attraction
range 𝑅Λ of 𝜋𝑖 . 𝐹 𝑡𝜋𝑖𝜋−𝑖 is the separation force used to avoid collisions
between 𝜋𝑖 and other sheep within the separation radius 𝑅𝜋𝜋 of
𝜋𝑖 . 𝐹 𝑡𝜋𝑖𝛽 is the repulsion force that causes 𝜋𝑖 to escape from the

sheepdog in the direction of the vector ®(𝑃𝛽 − ®𝑃𝜋𝑖). 𝐹 𝑡𝜋𝑖𝛽 is only
applied if 𝜋𝑖 is within the influence range of the sheepdog 𝑅𝜋𝛽 such
that the magnitude of this force is inversely proportional to the
distance between 𝛽 and 𝜋𝑖 . The parameters𝑊𝜋Λ,𝑊𝜋𝜋 , and𝑊𝜋𝛽

are the weights determining the influence of the three forces on
the total force. Table 1 lists the setting of the sheep parameters.

5.2 Sheepdog Behaviour
Given the problem statement specified in Section 4, the sheepdog
is required to learn an appropriate behaviour to successfully and ef-
ficiently complete the shepherding task. Two performance metrics
are used in this work to evaluate the sheepdog behaviour: success
rate and task completion time. Past studies describe the sheepdog
behaviour in terms of two key behaviours: collecting and driv-
ing [16, 33, 39]. Collecting is about guiding scattered sheep agents

towards the center of mass of the swarm; whereas driving is about
guiding a cluster of sheep towards the goal. The two behaviours
are inherently similar in terms of the pushing effect that causes the
movement of an entity (single sheep or a cluster of sheep) from
its initial position 𝑃𝑎 towards a target position 𝑃𝑏 . Thus, using a
learning lens, it does not seem very useful to consider the collect
and drive behaviours as two distinct sub-tasks. Alternatively, the
two behaviours can be considered a single sub-task with different
input parameters. Given this formulation, the shepherding task can
be divided into a hierarchy of two sub-tasks. The first sub-task is
pushing an entity from 𝑃𝑎 to 𝑃𝑏 and is concerned with generating
the low-level actions for the sheepdog movement. The second sub-
task ismode selectionwhich is concerned with selecting a high-level
action (collect or drive) such that the parameters of the first sub-
task, 𝑃𝑎 and 𝑃𝑏 , are set accordingly. The rest of this section presents
the details of how RL is used for learning these two sub-tasks.

5.2.1 The pushing sub-task. The scenarios used for learning the
pushing sub-task include a single sheep acting as the entity to
be pushed, a sheepdog, and a goal location which are randomly
initialised at positions 𝑃𝑎 , 𝑃𝛽 , and 𝑃𝑏 , respectively. To push an entity
from position 𝑃𝑎 to position 𝑃𝑏 , the sheepdog needs to receive as
input 𝑃𝑎 , 𝑃𝑏 , and its own position 𝑃𝛽 . These variables form the state
space of the pushing sub-task 𝑆𝑝𝑢𝑠ℎ as follows:

𝑆𝑝𝑢𝑠ℎ = {
𝑥𝛽 − 𝑥𝐵

𝐿
,
𝑦𝛽 − 𝑦𝐵

𝐿
,
𝑥𝐴 − 𝑥𝐵

𝐿
,
𝑦𝐴 − 𝑦𝐵

𝐿
} (3)

All variables are normalised by dividing them by the length of the
environment 𝐿. The final states 𝑆𝑝𝑢𝑠ℎ

𝐹
are defined as those where

the following condition holds:

| |𝑃𝑎 − 𝑃𝑏 | | < 𝑅𝐺 (4)

As 𝑃𝑎 , 𝑃𝑏 , and 𝑃𝛽 can be any position in the environment, the initial
states for the pushing sub-task can be any state except for the final
states 𝑆𝑝𝑢𝑠ℎ

𝐼
= 𝑆𝑝𝑢𝑠ℎ \ 𝑆𝑝𝑢𝑠ℎ

𝐹
. The action space is defined in terms

of the velocity of the sheepdog 𝐴𝑝𝑢𝑠ℎ = {𝑣𝑥 , 𝑣𝑦} where 𝑣𝑥 and 𝑣𝑦
∈ (−1, 1) refer to the velocity components along the 𝑥 and 𝑦 axes,
respectively. The agent is given a penalty of −0.06 for every time
step spent in this sub-task and is given a reward of 15 when the
condition in Equation 4 is met.

Curriculum learning is used to accelerate the learning of this sub-
task by starting with simplified pushing scenarios then gradually
moving towards more complex ones. The complexity of a pushing
scenario is controlled by manipulating the distribution of 𝑆𝑝𝑢𝑠ℎ

𝐼

with respect to 𝑆𝑝𝑢𝑠ℎ
𝐹

. This is operationalised by limiting 𝐷0
𝑎,𝑏

and
𝐷0
𝑎,𝛽

which are the initial distances between 𝑃𝑎 and 𝑃𝑏 and between
𝑃𝑎 and 𝑃𝛽 , respectively. In the beginning of the learning, 𝐷0

𝑎,𝑏
and

𝐷0
𝑎,𝛽

are limited to very small values. Then 𝐷0
𝑎,𝑏

and 𝐷0
𝑎,𝛽

increase
over time based on the agent’s performance in the last 𝜔 training
iterations.

Algorithm 1 shows the steps used for training the pushing sub-
task. 𝐷0

𝑎,𝑏
and 𝐷0

𝑎,𝛽
are first initialised to make 𝑃𝑎 at most 𝑑0 units

away from both the shepherd’s influence range and the goal region
(lines 2-3). Agent performance ismonitored using the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝐻𝑖𝑠𝑡𝑜𝑟𝑦
variable which is used to calculate the success rate in the previous
𝜔 training episodes (line 4). Before each training episode, if the

Main Track AAMAS 2022, May 9–13, 2022, Online

636

success rate is found to be greater than a performance threshold 𝜃 ,
𝐷0
𝑎,𝑏

and 𝐷0
𝑎,𝛽

are increased by 𝛿 (lines 6-9). A new scenario is then
randomly initialised and used for training the RL agent (lines 10-11).
The result of the training scenario is logged in the 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝐻𝑖𝑠𝑡𝑜𝑟𝑦
variable (line 12-16).

Algorithm 1 Training for the pushing sub-task.
1: INPUT 𝜔 , L, 𝑇𝑚𝑎𝑥 , 𝑑0, 𝛿 , 𝜃 ,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
2: 𝐷0

𝑎,𝛽
= 𝑅𝛽𝜋 + 𝑑0

3: 𝐷0
𝑎,𝑏

= 𝑅𝐺 + 𝑑0
4: successHistory = zeros(𝜔)
5: for 𝑖𝑡𝑟 = 1, 2, ..,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
6: if mean(successHistory) > 𝜃 then
7: 𝐷0

𝑎,𝛽
= 𝐷0

𝑎,𝛽
+ 𝛿

8: 𝐷0
𝑎,𝑏

= 𝐷0
𝑎,𝑏

+ 𝛿

9: end if
10: scenario = initialise_scenario(𝐷0

𝑎,𝛽
, 𝐷0

𝑎,𝑏
)

11: arrived = trainRL(scenario)
12: if arrived then
13: successHistory[𝑚𝑜𝑑 (𝑖𝑡𝑟, 𝜔)] =1
14: else
15: successHistory[𝑚𝑜𝑑 (𝑖𝑡𝑟, 𝜔)] =0
16: end if
17: end for

Deep deterministic policy gradient (DDPG) [25] is used as the RL
agent for the pushing sub-task. The actor and critic networks have
four hidden layers, each with 64 neurons. The discounting factor is
set to 0.98 and the learning rate is 0.002. The exploration model used
is Gaussian noise with variance = 0.005. Matlab’s Reinforcement
Learning Toolbox has been used for implementing the DDPG agent.

5.2.2 Mode selection sub-task. The scenarios used for the mode
selection sub-task involve a swarm of 𝑁 sheep randomly initialised
in a square of length 𝐿

2 and center (𝑥𝑐 , 𝑦𝑐) such that 𝑥𝑐 ∈ (𝐿4 ,
3𝐿
4)

and 𝑦𝑐 ∈ (𝐿4 ,
3𝐿
4). Existing shepherding algorithms assume that a

sheepdog needs to first collect all sheep together and then drive the
clustered swarm towards the goal location. The proposed approach
also incorporate these two modes of operation (i.e. collect and drive),
however no strict rule is imposed on when each mode should be
activated. Instead, we leave it to the learning algorithm to find
when each of these modes should be put into operation. When the
collect mode is activated, the shepherd locates the furthest sheep
and applies the 𝑝𝑢𝑠ℎ action to move this sheep towards the largest
sheep cluster. On the other hand, when the drive mode is activated,
the shepherd finds the largest sheep cluster and applies the 𝑝𝑢𝑠ℎ
action to move it towards the goal.

The mode selection sub-task is modelled as a semi-Markov Deci-
sion Process [40] with two temporally abstracted actions 𝐴𝑚𝑜𝑑𝑒 =

{𝑐𝑜𝑙𝑙𝑒𝑐𝑡, 𝑑𝑟𝑖𝑣𝑒}.When the action 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 is selected, the pushing sub-
task is executed with 𝑃𝑎 = (𝑥𝜋∗ , 𝑦𝜋∗) and 𝑃𝑏 = (𝑥𝐿𝐶𝐶𝑀 , 𝑦𝐿𝐶𝐶𝑀),
such that 𝜋∗ is the furthest sheep from the GCM of the swarm
and 𝐿𝐶𝐶𝑀 is the centre of mass of the largest sheep cluster. As for
the 𝑑𝑟𝑖𝑣𝑒 action, it is performed by executing the pushing sub-task
with 𝑃𝑎 = (𝑥𝐿𝐶𝐶𝑀 , 𝑦𝐿𝐶𝐶𝑀) and 𝑃𝑏 = (𝑥𝐺 , 𝑦𝐺). The duration for

a single execution of the 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 or 𝑑𝑟𝑖𝑣𝑒 action is denoted by 𝜏

and can range between 1 and 𝜏𝑚𝑎𝑥 . An action terminates when the
condition in Equation 4 is met or after 𝜏𝑚𝑎𝑥 steps from its start. The
agent gets a reward of 30 when all sheep are at the goal area, other-
wise it gets a small negative reward of -0.005𝜏 at the end of each
action execution. The state space for the mode selection sub-task
comprises state variables reflecting the mean and standard devia-
tion of the number of neighbours per sheep, the distance between
the sheepdog and the furthest sheep to the swarm, and the average
distances between each of: the sheep and the goal, the sheep and
the sheepdog, and the sheep and the furthest sheep to the swarm.
The state space 𝑆𝑚𝑜𝑑𝑒 is formed as follows:

𝑆𝑚𝑜𝑑𝑒 = {
𝜇𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑁 − 1
,
𝜎𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

𝑁 − 1
,
1
𝐿
𝐷𝜋∗,𝛽 , (5)

1
𝐿

∑
𝑖=1..𝑁

𝐷𝜋𝑖 ,𝐺

𝑁
,
1
𝐿

∑
𝑖=1..𝑁

𝐷𝜋𝑖 ,𝛽

𝑁
,
1
𝐿

∑
𝑖=1..𝑁

𝐷𝜋𝑖 ,𝜋
∗

𝑁
}

such that 𝜇𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 and 𝜎𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 are the mean and standard
deviation of the number of neighbours per sheep, and 𝐷𝑥,𝑦 is the
Euclidean distance between 𝑥 and 𝑦. The term 1

𝑁−1 is used to
normalise the first two state variables, whereas the term 1

𝐿
is used

to normalise the other four variables.
Curriculum learning is employed for this sub-task by designing

a simplified environment where the learning starts. The simplified
environment is created by using a state space that is smaller than
the state space of the main task by reducing dimensions of the
environment and the number of sheep. Once the performance in
the simplified environment is satisfactory, learning continues in the
main environment. The benefits of using the simplified environment
is two fold. First, the state space is greatly reduced which lowers
the learning complexity. Second, the average episode length is
reduced which mitigates the negative effects of the sparse reward
on learning efficiency [29].

Proximal Policy Optimization (PPO) [37] is used for learning this
sub-task. The actor and critic networks have two hidden layers,
each with 64 neurons. The discounting factor is set to 0.999 and the
learning rate is 0.005. Matlab’s Reinforcement Learning Toolbox
has been used for implementing the PPO agent.

6 EXPERIMENTAL RESULTS
This section presents the details of the training experiments con-
ducted for the two sub-tasks defined in Section 5.2. The resulting
sheepdog behaviour is then evaluated to assess its efficacy.

6.1 Pushing Sub-task
6.1.1 Training: The parameters used for the pushing sub-task are
listed in Table 2. For comparison purposes, another set of non-
curriculum training experiments have been conducted to train the
DDPG agent on the pushing sub-task. For the non-curriculum train-
ing, the positions of the sheep, sheepdog, and goal are randomly
initialised in the environment with no limits on the initial position-
ing of the sheep with respect to the sheepdog and the goal. Fifteen
training experiments were run for both the curriculum and the
non-curriculum approaches where each training experiment lasted
for 10,000 training episodes.

Main Track AAMAS 2022, May 9–13, 2022, Online

637

Parameter 𝑇𝑚𝑎𝑥 𝐿 𝑁 𝑅𝐺 𝑑0 𝜃 𝜔 𝛿

Value 250 60 1 2.2 1.0 80% 30 0.3
Table 2: Training parameters for pushing sub-task. The last
four parameters are used only by the curriculum-based
training experiments.

The episode rewards obtained in different episodes of the curricu-
lum approach cannot be directly compared due to the differences
in episode complexity. As the complexity changes based on 𝐷0

𝑎.𝛽

and 𝐷0
𝑎,𝑏

, the reward obtained in each episode is normalised using
the following equation:

𝑅 = (𝑅 + |𝑅𝑚𝑖𝑛 |) ∗
𝐷𝑎,𝛽 + 𝐷𝑎,𝑏

2 ∗ 𝐷𝑚𝑎𝑥
(6)

such that 𝑅 is the episode reward, 𝑅𝑚𝑖𝑛 is the minimum value
of episode reward, and 𝐷𝑚𝑎𝑥 is the maximum possible distance
between any two points in the environment, which is calculated
as

√
2𝐿. The top part of Figure 1 shows the average normalised

reward over time. It can be seen that the average normalised reward
obtained by the curriculum learning approach increased notably
overtime. Meanwhile, the non-curriculum learning had very rare
successful episodes that it could not learn at all. The bottom part of
Figure 1 shows average scenario complexity (calculated as 𝐷𝑎,𝛽 +
𝐷𝑎,𝑏) over time. For the curriculum learning approach, scenario
complexity increased at a high rate in early episodes as the DDPG
agent was relatively fast at reaching the performance threshold
𝜃 required to move to higher levels of complexity. As learning
progresses, the DDPG agent needed more time to find a policy
that meets the required threshold, hence the slower increase in
complexity.

6.1.2 Evaluation: After completing the training of the pushing
sub-task, the resulting policy from each training experiment has
been evaluated under 100 scenarios leading to 1500 evaluation
scenarios. In these evaluation scenarios, 𝐷0

𝑎,𝛽
and 𝐷0

𝑎,𝑏
were set to

their maximum value of 𝐷𝑚𝑎𝑥 . The results demonstrate the high
performance achieved in terms of the success rate (mean = 91.3%,
SD = 4.8) and the episode length (mean = 119.1, SD = 58.9 steps).
Out of these policies, three achieved a success rate of 97% thus has
been used as input when learning the mode selection sub-task.

6.2 Mode Selection Sub-task
6.2.1 Training: After learning the skill of pushing a sheep from
its location to a target location, the sheepdog starts learning the
next sub-task of selecting between collecting scattered sheep or
driving the biggest cluster to the goal area. A separate PPO agent
is trained on the mode selection sub-task. To use the curriculum
approach within this task, a simplified task has been designed using
the parameters listed in Table 3. The agent was first trained in the
simplified environment for 500 episodes then continued training in
the main environment for 10,000 episodes. For comparison, another
set of non-curriculum training experiments have been conducted
by starting the training directly in the main environment. Figure 2
shows the average episode reward obtained by both the curriculum
and the non-curriculum approaches in the main environment. The

Figure 1: Training results of the pushing sub-task. Thick
lines represent the mean and shades represent the standard
error.

Task L 𝑁 𝑇𝑚𝑎𝑥 𝑅𝐺 𝜏𝑚𝑎𝑥

Simplified 50 15 150 8.7 10
Main 200 50 350 15.8 10

Table 3: Parameters for the simplified and main tasks used
for learning the mode selection sub-task. The simplified
task is only used in the curriculum approach.

non-curriculum based approach was slightly faster than the cur-
riculum approach in this environment even though the curriculum
approach was pre-trained in the simplified environment.

6.2.2 Evaluation: After training, the learnt policies are evaluated
to assess their performance and to gain insights into the reason be-
hind the lack of benefit of the curriculum used for themode selection
sub-task. To do this, the policy resulting from each training experi-
ment has been evaluated under 100 randomly initialised scenarios.
Figure 3 shows that the policies obtained from the curriculum and
non-curriculum approaches achieve fairly similar performance. The
success rate achieved by the curriculum and non-curriculum ap-
proaches is (mean = 94.7%, SD =4.04) and (mean = 95.9%, SD =2.12),
whereas the task time recorded is (mean = 1710.4 , SD =581.4 time
steps) and (mean = 1710.7 , SD =536.4 time steps); respectively.

To understand why the curriculum was not effective in speeding
up the learning of the mode selection sub-task, the policies obtained
in the simplified environment are compared to those from the main

Main Track AAMAS 2022, May 9–13, 2022, Online

638

Figure 2: Average training episodes for the mode selection
sub-task when trained with and without a curriculum.

Figure 3: Average success rate and episode length achieved
by the mode selection sub-task in the main environment.

environment. The numbers of collect and drive actions are logged
for each evaluation scenario. Then, scenario time is divided evenly
into five intervals to inspect trends in the policies’ behaviour over
time. Figure 4 shows the average percentage of collect and drive
actions in the simplified task (upper part) and in the main task, both
when trained with a curriculum (left bottom part) and without a
curriculum (right bottom part). In the three sub-figures, the length
of the bars decreases as tasks finish execution over time. Policies
from the simplified tasks rarely uses the collect action which means
that they drive sheep sub-clusters directly to the goal. Due to the
small size of the simplified environment, this policy is very useful
as the distance between the sheep and the goal is relatively small.
This makes pushing a sheep sub-cluster to the fixed position of the
goal more efficient than pushing the sub-cluster towards another
moving sub-cluster.

However, when transferring this policy to the main environ-
ment, it did not work well due to the large distances between the

Figure 4: Average percentage of collect and drive actions ex-
ecuted by the sheepdog over five intervals of scenario time.
The length of the bars decreases as more and more tasks fin-
ish execution over time.

sheep and the goal. In this case, collecting the sheep together be-
fore driving them toward the goal resulted in better performance.
Policies obtained from the curriculum and non-curriculum training
experiments exhibit very similar behaviours where about 60% of
the actions executed in the first interval are collect. But then, the
percentage of collect actions diminish dramatically in favor of drive
actions. It is worth noting though that even in the first time interval,
drive actions are executed for about 40% of the time. By visually
inspecting the behaviour, it was shown that the sheepdog would
sometimes drive sheep sub-clusters without collecting them when
at least one sub-cluster is very close to the goal or when sub-clusters
are very distant from each other. A visual representation of the
sheepdog behaviour in different scenarios is provided in a video 1.

7 DISCUSSION
The results obtained in Section 6 indicate a number of interesting
findings. First, the use of curriculum learning was necessary to
enable the efficient learning of the pushing sub-task. This finding
confirms previous results in the literature regarding the advantages
of curriculum learning in goal-oriented tasks with continuous state
and action spaces [12]. Without curriculum, the DDPG agent had
very rare successes, which were insufficient to discover a useful
policy for the pushing sub-task. In contrast, using a curriculum that
starts with easy tasks where the sheepdog, sheep, and the goal are
very close to each other meant that the initial states of the MDP
are very close to its goal states. The likelihood of success in easy
tasks was sufficiently high that the agent could utilise the received
reward to find a useful policy. The progressive increase in task
complexity over time ensured that the next task is never too hard
given the current capability of the agent.

1https://youtu.be/vvyVTbaXzPk

Main Track AAMAS 2022, May 9–13, 2022, Online

639

Unlike the pushing sub-task, the curriculum used to learn the
mode selection sub-task did not improve the learning experience.
The post-learning analyses performed in Section 6.2 show that the
policies learnt in the simplified environment differed significantly
from those for the main environment. In other words, though both
environments are different instances of the same task, policies that
work best for the simplified environment are not scalable enough
to maintain their superiority in the main environment. This find-
ing highlights a key advantage of the RL algorithm used for this
sub-task, but also raises a question about how to best design a cur-
riculum for learning. The advantage is that the RL algorithm shows
a high level of adaptability to the environment such that the sheep-
dog behaviour changed notably to maintain its high performance
across different environments. This links back to the main moti-
vation for designing a learning-based shepherding algorithm that
can adapt to changes in the environment, as discussed in Section 2.
However, the question that needs further investigation relates to
the design of a curriculum to accelerate learning. Particularly, how
to design a simplified task for the curriculum such that optimal
policies in the simplified setting share some notable aspects with
those in the main setting.

Another interesting finding is that the sheepdog behaviour fol-
lowing the learnt policies have some differences to the sheepdog
behaviour specified by the existing rule-based algorithms. Rule-
based algorithms specify that the sheep must be collected in one
cluster before driving them towards the goal. If any fragments oc-
cur during driving, the shepherd has to recollect the sheep again
before continuing the driving. In contrast, the policies learnt by the
PPO agent exhibit a more diverse set of behaviours. They tend to
collect the sheep first in most cases, unless the sheep are very close
to the goal or sheep clusters are very far from each other. This is
another important advantage of RL-based shepherding algorithms
as several aspects of the state of the sheep can be used as input
when deciding on the best action.

8 CONCLUSION AND FUTUREWORK
The shepherding problem is highly complex due to the non-linearity
of swarm behaviour. Previous studies using RL for shepherding
relied on external rule-based algorithms to calculate the waypoints
for the shepherd to simplify learning. However, this compromises
the advantages of learning by limiting the space of behaviours the
sheepdog can learn. In this work, we address the complexity of
the shepherding problem by using a curriculum learning approach.
Task decomposition is used by decomposing the shepherding prob-
lem into a hierarchy of two sub-tasks: (1) push an agent from its
location to a target location and (2) select between collecting scat-
tered agents or driving the largest cluster of agents toward the
goal. A simple-to-complex curriculum was designed to expedite
the learning of each sub-task. The evaluation results demonstrate
the effectiveness of the proposed approach as measured by the
average success rate of 95.6% and task time of 1017 steps. The re-
sults show that curriculum learning was effective for the pushing
sub-task where the non-curriculum approach was unsuccessful. On
the contrary, the curriculum used for the second sub-task has not
improved learning. The analyses showed that the policies learnt in
the simplified environment are not sufficiently scalable to maintain

their superiority in the main environment. Future work should
investigate how to design simplified tasks such that learning in the
simplified setting leads to speeding up learning in the main target
task.

Our analyses also showed that the learnt policies exhibit diverse
behaviours based on the status of the sheep. Unlike rule-based
approaches that require all the sheep to be collected in one clus-
ter before being driven to the goal, the learnt policies allow the
shepherd sometimes to drive sub-clusters to the goal when this is
more efficient. For rule-based algorithms, the performance of the
sheepdog drops as the size of the sheep swarm increases [39] due
to the strict requirement on driving all the sheep together. By al-
lowing adaptive shepherding behaviours, similar to those exhibited
by the learnt policies as discussed in Section 6.2, a single agent can
handle large swarms by driving smaller sub-clusters separately. In
future work, we will aim to investigate how a single sheepdog can
learn efficient policies to shepherd swarms of different sizes and
characteristics.

ACKNOWLEDGMENTS
This work was funded by the Australian Research Council Discov-
ery Grant number DP200101211.

REFERENCES
[1] Hussein Abbass, Eleni Petraki, Aya Hussein, Finlay McCall, and Sondoss Elsawah.

2021. A model of symbiomemesis: machine education and communication as
pillars for human-autonomy symbiosis. Philosophical Transactions of the Royal
Society A 379, 2207 (2021), 20200364. https://doi.org/10.1098/rsta.2020.0364

[2] Hussein A Abbass and Robert A Hunjet. 2021. Smart shepherding: Towards
transparent artificial intelligence enabled human-swarm teams. Shepherding
UxVs for Human-Swarm Teaming: An Artificial Intelligence Approach to Unmanned
X Vehicles (2021), 1–28.

[3] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. Advances in
Neural Information Processing Systems (2015).

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. 41–48.

[5] Andrea Bonarini, Alessandro Lazaric, and Marcello Restelli. 2007. Reinforce-
ment learning in complex environments through multiple adaptive partitions. In
Congress of the Italian Association for Artificial Intelligence. Springer, 531–542.

[6] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. 2013.
Swarm robotics: a review from the swarm engineering perspective. Swarm
Intelligence 7, 1 (January 2013), 1–41. https://doi.org/10.1007/s11721-012-0075-2

[7] Nicholas R Clayton and Hussein Abbass. 2019. Machine teaching in hierarchical
genetic reinforcement learning: Curriculum design of reward functions for swarm
shepherding. In 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE,
1259–1266. https://doi.org/10.1109/CEC.2019.8790157

[8] Fei Dai, Ming Chen, Xianglin Wei, and Huibin Wang. 2019. Swarm Intelligence-
Inspired Autonomous Flocking Control in UAV Networks. IEEE Access 7 (2019),
61786–61796. https://doi.org/10.1109/ACCESS.2019.2916004

[9] Heba El-Fiqi, Benjamin Campbell, Saber Elsayed, Anthony Perry, Hemant Kumar
Singh, Robert Hunjet, and Hussein A Abbass. 2020. The Limits of Reactive
Shepherding Approaches for Swarm Guidance. IEEE Access 8 (2020), 214658–
214671.

[10] Jeffrey L Elman. 1993. Learning and development in neural networks: The
importance of starting small. Cognition 48, 1 (1993), 71–99.

[11] Mark Evered, Peter Burling, Mark Trotter, et al. 2014. An investigation of predator
response in robotic herding of sheep. International Proceedings of Chemical,
Biological and Environmental Engineering 63 (2014), 49–54.

[12] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse curriculum generation for reinforcement learning. In
Conference on robot learning. PMLR, 482–495.

[13] Daniel Y. Fu, Emily S. Wang, Peter M. Krafft, and Barbara J. Grosz. 2018. In-
fluencing Flock Formation in Low-Density Settings. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems (Stock-
holm, Sweden) (AAMAS ’18). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1613–1621.

Main Track AAMAS 2022, May 9–13, 2022, Online

640

https://doi.org/10.1098/rsta.2020.0364
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1109/CEC.2019.8790157
https://doi.org/10.1109/ACCESS.2019.2916004

[14] Teruo Fujii, Yoshikazu Arai, Hajime Asama, and Isao Endo. 1998. Multilayered
reinforcement learning for complicated collision avoidance problems. In Proceed-
ings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), Vol. 3. IEEE, 2186–2191.

[15] Alexander Gee and Hussein Abbass. 2019. Transparent machine education
of neural networks for swarm shepherding using curriculum design. In 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8. https:
//doi.org/10.1109/IJCNN.2019.8852209

[16] Clark Kendrick Go, Bryan Lao, Junichiro Yoshimoto, and Kazushi Ikeda. 2016. A
reinforcement learning approach to the shepherding task using SARSA. In 2016
International Joint Conference on Neural Networks (IJCNN). IEEE, 3833–3836.

[17] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated curriculum learning for neural networks. In
international conference on machine learning. PMLR, 1311–1320.

[18] Vijaykumar Gullapalli and Andrew G Barto. 1992. Shaping as a method for
accelerating reinforcement learning. In Proceedings of the 1992 IEEE international
symposium on intelligent control. IEEE, 554–559.

[19] Tobias Helms, Steffen Mentel, and Adelinde Uhrmacher. 2016. Dynamic State
Space Partitioning for Adaptive Simulation Algorithms. In Proceedings of the 9th
EAI International Conference on Performance Evaluation Methodologies and Tools.
149–152.

[20] Adam J Hepworth, Kate J Yaxley, Daniel P Baxter, Keith F Joiner, and Hussein
Abbass. 2020. Tracking Footprints in a Swarm: Information-Theoretic and Spatial
Centre of Influence Measures. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2217–2224.

[21] Aya Hussein, Sondoss Elsawah, Eleni Petraki, and Hussein A Abbass. 2021. A
machine education approach to swarm decision-making in best-of-n problems.
Swarm Intelligence (2021). https://doi.org/10.1007/s11721-021-00206-5

[22] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann.
2015. Self-paced curriculum learning. In Twenty-Ninth AAAI Conference on
Artificial Intelligence.

[23] Jyh-Ming Lien, O Burchan Bayazit, Ross T Sowell, Samuel Rodriguez, and
Nancy M Amato. 2004. Shepherding behaviors. In IEEE International Confer-
ence on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, Vol. 4. IEEE,
4159–4164.

[24] Jyh-Ming Lien and Emlyn Pratt. 2009. Interactive Planning for Shepherd Motion..
In AAAI Spring Symposium: Agents that Learn from Human Teachers. 95–102.

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[26] Nathan K Long, Karl Sammut, Daniel Sgarioto, Matthew Garratt, and Hussein A
Abbass. 2020. A comprehensive review of shepherding as a bio-inspired swarm-
robotics guidance approach. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence 4, 4 (2020), 523–537.

[27] Reem E. Mohamed, Saber Elsayed, Robert Hunjet, and Hussein Abbass. 2021. A
Graph-based Approach for Shepherding Swarms with Limited Sensing Range.
In 2021 IEEE Congress on Evolutionary Computation (CEC). 2315–2322. https:
//doi.org/10.1109/CEC45853.2021.9504706

[28] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-
Efficient Hierarchical Reinforcement Learning. Advances in Neural Information
Processing Systems 31 (2018), 3303–3313.

[29] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. 2018. Overcoming Exploration in Reinforcement Learning with Demon-
strations. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
6292–6299. https://doi.org/10.1109/ICRA.2018.8463162

[30] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey. Journal of Machine Learning Research 21 (2020), 1–50.
[31] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source

task creation for curriculum learning. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems. 566–574.

[32] Sanmit Narvekar and Peter Stone. 2019. Learning Curriculum Policies for Re-
inforcement Learning. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems (Montreal QC, Canada) (AAMAS
’19). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 25–33.

[33] Hung The Nguyen, Tung Nguyen, Vu Phi Tran, Matthew Garratt, Kathryn
Kasmarik, Sreenatha Anavatti, Michael Barlow, and Hussein A Abbass. 2020.
Continuous Deep Hierarchical Reinforcement Learning for Ground-Air Swarm
Shepherding. arXiv preprint arXiv:2004.11543 (2020).

[34] Bei Peng, James MacGlashan, Robert Loftin, Michael L Littman, David L Roberts,
andMatthew ETaylor. 2018. Curriculum design formachine learners in sequential
decision tasks. IEEE Transactions on Emerging Topics in Computational Intelligence
2, 4 (2018), 268–277.

[35] Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. 2018. Self-paced
prioritized curriculum learning with coverage penalty in deep reinforcement
learning. IEEE transactions on neural networks and learning systems 29, 6 (2018),
2216–2226.

[36] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In International Conference on Learning Representations (ICLR).

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[38] Christopher Simpkins and Charles Isbell. 2019. Composable modular reinforce-
ment learning. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 33. 4975–4982.

[39] Daniel Strömbom, Richard P Mann, Alan M Wilson, Stephen Hailes, A Jennifer
Morton, David JT Sumpter, and Andrew J King. 2014. Solving the shepherding
problem: heuristics for herding autonomous, interacting agents. Journal of the
royal society interface 11, 100 (2014), 20140719.

[40] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[41] Matthew E Taylor and Peter Stone. 2009. Transfer learning for reinforcement
learning domains: A survey. Journal of Machine Learning Research 10, 7 (2009).

[42] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Man-
nor. 2017. A deep hierarchical approach to lifelong learning in minecraft. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

[43] Yusuke Tsunoda, Yuichiro Sueoka, and Koichi Osuka. 2017. On statistical analysis
for shepherd guidance system. In 2017 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, 1246–1251.

[44] Yusuke Tsunoda, Yuichiro Sueoka, Teruyo Wada, and Koichi Osuka. 2020.
Sheepdog-type robot navigation: Experimental verification based on a linear
model. In 2020 IEEE/SICE International Symposium on System Integration (SII).
IEEE, 1144–1149.

[45] Richard Vaughan, Neil Sumpter, Andy Frost, and Stephen Cameron. 1998. Robot
sheepdog project achieves automatic flock control. In Proc. Fifth International
Conference on the Simulation of Adaptive Behaviour, Vol. 489. 493.

[46] Richard Vaughan, Neil Sumpter, Jane Henderson, Andy Frost, and Stephen
Cameron. 2000. Experiments in automatic flock control. Robotics and autonomous
systems 31, 1-2 (2000), 109–117.

[47] Kate J Yaxley, Keith F Joiner, and Hussein Abbass. 2021. Drone approach param-
eters leading to lower stress sheep flocking and movement: sky shepherding.
Scientific reports 11, 1 (2021), 1–9.

Main Track AAMAS 2022, May 9–13, 2022, Online

641

https://doi.org/10.1109/IJCNN.2019.8852209
https://doi.org/10.1109/IJCNN.2019.8852209
https://doi.org/10.1007/s11721-021-00206-5
https://doi.org/10.1109/CEC45853.2021.9504706
https://doi.org/10.1109/CEC45853.2021.9504706
https://doi.org/10.1109/ICRA.2018.8463162

	Abstract
	1 Introduction
	2 Related work
	3 Curriculum Learning
	4 Problem statement
	5 Methodology
	5.1 Sheep Behaviour
	5.2 Sheepdog Behaviour

	6 Experimental results
	6.1 Pushing Sub-task
	6.2 Mode Selection Sub-task

	7 Discussion
	8 Conclusion and Future Work
	Acknowledgments
	References

