
Lazy-MDPs: Towards Interpretable RL by Learning When to Act
Alexis Jacq

∗

Google Research, Brain Team

Paris, France

alexisjacq@google.com

Johan Ferret
∗

Google Research, Brain Team

Inria, Scool Team

CRIStAL, CNRS, Université de Lille

Olivier Pietquin

Google Research, Brain Team

Paris, France

pietquin@google.com

Matthieu Geist

Google Research, Brain Team

Paris, France

mfgeist@google.com

ABSTRACT
Traditionally, Reinforcement Learning (RL) aims at deciding how to
act optimally for an artificial agent. We argue that deciding when to
act is equally important. As humans, we drift from default, instinc-

tive or memorized behaviors to focused, thought-out behaviors

when required by the situation. To enhance RL agents with this

aptitude, we propose to augment the standard Markov Decision

Process and make a newmode of action available: being lazy, which
defers decision-making to a default policy. In addition, we penalize

non-lazy actions in order to enforce minimal effort and have agents

focus on critical decisions only. We name the resulting formalism

lazy-MDPs. We study the theoretical properties of lazy-MDPs, ex-

pressing value functions and characterizing greediness and optimal

solutions. Then we empirically demonstrate that policies learned

in lazy-MDPs generally come with a form of interpretability: by

construction, they show us the states where the agent takes control

over the default policy. We deem those states and corresponding

actions important since they explain the difference in performance

between the default and the new, lazy policy. With suboptimal poli-

cies (even uniform random) as default, we observe that agents are

still able to get close to and sometimes outperform DQN on Atari

games while only taking control in a limited subset of states.

KEYWORDS
Reinforcement Learning; Markov Decision Processes; Explainability

ACM Reference Format:
Alexis Jacq

∗
, Johan Ferret

∗
, Olivier Pietquin, and Matthieu Geist. 2022. Lazy-

MDPs: Towards Interpretable RL by Learning When to Act. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Decision-making is about providing answers to a standard ques-

tion: "how to act?". While Markov Decision Processes (MDPs) [34]

provide the canonical formalism to ask this question, Reinforce-

ment Learning (RL) provides algorithms to answer it. In this work,

we study a different question: "when and how to act?". There are
several motivations for this particular question. First, in many tasks

there is only a handful of states that are critical and require complex

decision-making, while in other states the action has less impact

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

Figure 1: High-level overview of a lazy-MDP.

than the own dynamic of the MDP (for example, the orientation of

a falling piece in Tetris has no importance until it reaches the floor).

Another motivation is that of learning on top of an existing policy:

one might be able to learn a better policy by learning when to take

control over this default policy (this is the case in many human-

robot interactions [26], for example self-driving cars that would

let the human drive except in critical situations, robots assisting

surgery, etc). Default policies can take arbitrary forms: controllers,

handcrafted policies, programs, and many others.

To study this alternative question, we need an alternative formal-

ism. Instead of starting from scratch, we propose to augment the

existing MDP framework (see Fig. 1): we extend the action space

with a novel action, the lazy action; and we modify the reward func-

tion to penalize agents when they take control (i.e. pick an action

from the original action space). Choosing the lazy action defers the

decision-making process to a default policy. Augmenting the MDP

framework means that we can take any decision-making problem

that can be expressed as an MDP and turn it into a lazy-MDP. Since

defaulting is a discrete action, we chose to focus on discrete actions

setting for simplicity, but everything could be adapted to contin-

uous control (for instance using two actors, a default one and a

learned one; and one critic for each).

Lazy-MDPs have interesting properties for interpretability: states

where the policy diverges from the default hold information. In

more details, we leverage the statewise differences between the

default policy and the new, lazy-policy to make sense of what is

needed to get performance improvement with respect to the default

Main Track AAMAS 2022, May 9–13, 2022, Online

669

policy (under arbitrary default policies) or to make sense of the

overall task (under specific default policies). An important point

we want to highlight is that the type of interpretability we consider

here is different from explanations [29]. Explanations, in the context

of RL, would bring answers to "why" questions (either about agent

behavior or the importance of actions), which is not what we tackle

here.

Our contributions are the following: 1) we propose a novel for-

malism called lazy-MDP that provides modified decision-making

problems where agents have to learn when and how to act, 2) we

study lazy-MDPs from a theoretical point of view and prove that

we can characterize optimality, which depends on the third-party

policy and the value of the penalty for taking control, and 3) we

study lazy-MDPs empirically, showing that they lead to learning

an interpretable partition of the states. We also study how mak-

ing control less frequent (by increasing the penalty) impacts the

score of agents. In hard exploration tasks, reducing the frequency

of controls can even lead to improved performance.

2 RELATEDWORK
While the idea of constraining policies to adopt a default behavior

as often as possible in MDPs is to the best of our knowledge novel,

it lives at the crossroads of several subfields of RL reviewed here.

Residual RL. Residual approaches [21, 39] consist in learning

a residual policy, whose action is added to that of a base policy to

get the resulting action. By its nature, residual RL is restricted to

continuous control problems, where the sum of two actions is still

a valid action. In contrast, the lazy-MDP abstraction is applicable

to discrete control problems.

Exploration-consciousRL.Herewe discuss related augmented

MDPs. Shani et al. [37] show that exploration-conscious RL [44] can

be solved via a surrogate MDP, where the dynamics are obtained

by a linear interpolation of the dynamics induced by the current

policy and those induced by a fixed policy; same for rewards. This

amounts to learning a policy that is optimal given that the actual

behavior is a fixed mixture of that policy and a base one. In com-

parison, the policies learned in lazy-MDPs are more controllable

in the sense that they can switch between the base policy and a

learned policy on the basis of states, and serve the subtly different

purpose of learning when and how to act.

Interpretable RL. There are several types of interpretability

studied in the literature. Many works try to quantify the influ-

ence of parts of the inputs on the decisions of the agents. This

can be done via post-hoc gradient methods, using actual policy

gradients [48, 50] or finite-difference estimates [17, 33], coupled

with saliency maps as visualizations. Another way to do so is by

training ad-hoc interpretable models [12, 25] or programs [45, 46]

to mimic the non-interpretable models used as policy networks.

Others try to make sense of the representations learned by agents,

using dimensionality reduction techniques [50] or state aggrega-

tion methods [42]. Another focus is to select trajectories that are

representative of the overall behavior of the RL agent [1, 2]. Fi-

nally, some works try to recover the approximate preferences of

the agent, under the form of a reward function, or coefficients for

a known reward decomposition [9, 22]. While interesting on their

own, none of the mentioned works explicitly tackle the question of

identifying states that are crucial to the decision-making process.

The action-gap [8] and importance advising [43] are quantities that

hint at this aspect. As we show in Sec. 7.2, both suffer from several

shortcomings compared to the proposed method.

Credit assignment in RL. Temporal credit assignment consists

in associating specific actions to specific results (i.e. task success

or high returns). Existing approaches complement or modify RL

algorithms by either decomposing observed returns as the sum of

redistributed rewards along observed trajectories [3, 13, 20, 35] or

incorporating hindsight information into the RL process [14, 18, 27].

Our approach is related but differs in several points: it is tied to

(and aims at making sense of) performance improvements instead

of outcomes, and it comes from an abstraction over MDPs (which

is still parametric but with dramatically less parameters).

Temporal abstractions in RL. Options are common temporal

abstractions in RL [4, 5, 32, 41]. They consist in triples (I, 𝜋, 𝛽)
where I is a set of states the option can be initiated into, 𝜋 is the

policy that selects actions when the option is active, and 𝛽 is a ran-

dom variable that gives the per-state probability of terminating the

option. In general, learning options from scratch is hard, prone to

collapse to single-action options, and less efficient than standard RL.

Huang et al. [19] introduceMarkov Jump Processes (MJPs), in which

the agent both takes action and controls the frequency at which

observations are received. Higher frequencies induce an increasing

auxiliary cost to model scenarios where observations are limited. In

essence, they propose to learn when to observe, while we propose to

learn when to take control. In a related way, Biedenkapp et al. [10]

propose skip-MDPs, which decompose policies in the combination

of a behavior policy (i.e.which selects the action) and skip policy (i.e.
which selects the number of timesteps the action will be repeated

for). Skip-MDPs does not exactly learn when to act as it perma-

nently plays a decided action. This work rather shows that in most

of situations an action need to be repeated in consecutive states,

but as there are no states where the agent is deferring the control to

an independent policy, they do not highlight the states where the

agent decisions has a strong impact on the resulting behaviour and

reward. Note that dynamic action repetition [23, 38] is conceptually

similar, but is not formalised as an abstraction over MDPs.

Regularized RL. Regularization in RL [15] is a well-studied

topic. In particular, entropic regularization [30] encourages learned

policies to be as random as possible in all states. In contrast, when

the default policy is uniform random, policies learned in lazy-MDPs

are encouraged to be entirely random in a subset of all states only.

Also, Kullback-Leibler regularization [47] encourages policies to

stay close to their previous iterate during learning. In contrast, poli-

cies learned in lazy-MDPs act identically to the default policy in a

subset of all states, and can act in arbitrary ways in the others. An-

other way to ensure that the behavior of an agent does not diverge

from a baseline behavior is to apply regularization on the state

visitation distribution, instead of the action distribution induced by

the policy [16, 24].

3 FRAMEWORK
We use theMarkov Decision Process (MDP) formalism. AnMDP is a

tuple𝑀 = (S,A, 𝛾, 𝑟,P, 𝛿0) whereS is a state space,A is a discrete

action space, 𝛾 ∈ [0, 1] is a discount factor, 𝑟 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]S×A

Main Track AAMAS 2022, May 9–13, 2022, Online

670

is a reward function, P ∈ ΔS×A
S is a transition kernel (here Δ𝑋

𝑌
is the set of functions that map an element of 𝑋 to a probability

distribution over 𝑌), and 𝛿0 is the distribution of the initial state.

We note the subspace of absorbing states S𝑎𝑏𝑠 ⊆ S. Absorbing
states deterministically transition to themselves with zero rewards.

In the following, we assume that we are in the infinite-horizon

setting, and that 𝛾 < 1, but the proposed formalism is applicable to

the finite-horizon setting as well. Given an MDP, a policy 𝜋 ∈ ΔA
S

maps states to probability distributions over actions is used to dict a

behavior. The value function 𝑉 𝜋 (𝑠) = E𝜋 [
∑∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠]
measures the expectation of the delayed rewards by following a

policy 𝜋 starting at 𝑠 . Similarly, the action value function𝑄𝜋 (𝑠, 𝑎) =
E𝜋 [

∑∞
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎0 = 𝑎] measures the expectation of the

delayed rewards by following a policy 𝜋 starting with action 𝑎

at state 𝑠 . Another value function that we will use in section 5

is 𝑍𝜋 (𝑠, 𝑎) = E𝜋 [
∑∞
𝑡=0

𝛾𝑡 I{𝑠𝑡 ∉ S
abs

}|𝑠0 = 𝑠, 𝑎0 = 𝑎
]
, which is

the expected discounted sum of steps before the agent meets a

terminating state.

We now define theLazyMarkovDecisionProcess (lazy-MDP).
A lazy-MDP is a tuple𝑀+ = (𝑀,𝑎, 𝜋, 𝜂), where𝑀 = (S,A, 𝛾, 𝑟,P, 𝛿0)
is the base MDP, 𝑎 the lazy action that defers decision making to

the default policy 𝜋 ∈ ΔS
A and 𝜂 ∈ R is a penalty. The reward

function is that of the base MDP, except that all actions but the

lazy one incur an additional reward of −𝜂. Hence, a lazy-MDP is

also an MDP. It can be written as𝑀+ = (S,A+, 𝛾, 𝑟+,P+, 𝛿0). While

S, 𝛾, 𝛿0 are conserved from the base MDP, A+, 𝑟+ and P+ depend

on their equivalents in the base MDP, and on 𝜋 and 𝜂:

A+ = A ∪ {𝑎},

𝑟+ (𝑠, 𝑎) =
{
𝑟 (𝑠, 𝑎) − 𝜂, if 𝑎 ∈ A,∑

𝑎∈A 𝜋 (𝑎 |𝑠)𝑟 (𝑠, 𝑎), if 𝑎 = 𝑎,

P+ (𝑠 ′ |𝑠, 𝑎) =
{
P(𝑠 ′ |𝑠, 𝑎), if 𝑎 ∈ A,∑
𝑎∈A 𝜋 (𝑎 |𝑠)P(𝑠 ′ |𝑠, 𝑎), if 𝑎 = 𝑎.

In what follows, we will use the notation 𝑋+ to distinguish func-

tions or distributions over the augmented action space A+.

4 SOLVING LAZY-MDPS
In this section, we provide a characterization of the optimality in

lazy-MDPs, similarly to what is done for regular MDPs. The derived

results have two main implications. First (in Sec. 4.2 and 4.3), we

identify what we call the lazy-gap, which quantifies the importance

of taking control or not in a given state. Then (in Sec. 4.4), we

show that taking control or not depending on the sole value of this

lazy-gap leads to optimal behavior in the lazy-MDP. All statements

are proven in the Appendix.

4.1 Value functions
Let 𝜋+ (𝑎 ∈ A+ |𝑠) be a policy in the lazy-MDP. If the agent chooses

the lazy action 𝑎, the performed action 𝑎 ∈ A is sampled according

to the default policy 𝜋 . We formalize the resulting lazy policy (in

the base MDP) as follows:

𝜋 (𝑎 ∈ A|𝑠) = 𝑃

[
(𝑎 ∼ 𝜋+) ∪ (𝑎 ∼ 𝜋+ ∩ 𝑎 ∼ 𝜋)

]
,

= 𝜋+ (𝑎 |𝑠) + 𝜋+ (𝑎 |𝑠)𝜋 (𝑎 |𝑠),

satisfying

∑
𝑎∈A 𝜋 (𝑎 |𝑠) = 1. A crucial point is that 𝜋 has the same

dynamics in the baseMDP as 𝜋+ in the corresponding lazy-MDP.We

are interested in the value function𝑉
𝜋+
+ (𝑠), which is the value of 𝜋+

in the lazy-MDP, and takes the penalties into account.Wewould like

to decompose𝑉
𝜋+
+ (𝑠) as a function of𝑉 𝜋 (𝑠) (i.e. the value function

associated with 𝜋 in the base MDP) and a cost function 𝐶𝜋+ (𝑠):

𝑉
𝜋+
+ (𝑠) = 𝑉 𝜋 (𝑠) +𝐶𝜋+ (𝑠) .

Theorem 1. 𝐶𝜋+ (𝑠) satisfies the following Bellman equation:

𝐶𝜋+ (𝑠) = −𝜂 (1 − 𝜋+ (𝑎 |𝑠)) + 𝛾E𝑎∼𝜋,𝑠′∼P(· |𝑠,𝑎)𝐶
𝜋+ (𝑠 ′).

While 𝑉 𝜋
is the expected discounted sum of rewards obtained

by following 𝜋 in the base MDP, the cost 𝐶𝜋+
can be interpreted as

the expected discounted sum of the incurred penalties. For instance,

a policy that never picks the lazy action (i.e. ∀𝑠, 𝜋+ (𝑎 |𝑠) = 0) gets a

maximal cost:

𝑉
𝜋+
+ = 𝑉 𝜋 − 𝜂

1 − 𝛾
.

4.2 Q-functions
Let𝑄

𝜋+
\𝑎 (𝑠, 𝑎 ∈ A) be the value (in the lazy-MDP) of taking another

action than the default one:

𝑄
𝜋+
\𝑎 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) − 𝜂 + 𝛾E𝑠′

[
𝑉
𝜋+
+ (𝑠 ′)

]
= 𝑟 (𝑠, 𝑎) − 𝜂 + 𝛾E𝑠′

[
𝑉 𝜋 (𝑠 ′) +𝐶𝜋+ (𝑠 ′)

]
= 𝑄𝜋 (𝑠, 𝑎) − 𝜂 + 𝛾E𝑠′

[
𝐶𝜋+ (𝑠 ′)

]
,

and 𝜋\𝑎 (𝑎 ∈ A|𝑠) be the policy obtained by excluding the lazy

action from 𝜋+, i.e. assuming 𝜋+ (𝑎 |𝑠) < 1:

∀𝑎 ∈ A, 𝜋\𝑎 (𝑎 |𝑠) =
𝜋+ (𝑎 |𝑠)∑

𝑎′≠𝑎
𝜋+ (𝑎′ |𝑠)

=
𝜋+ (𝑎 |𝑠)

1 − 𝜋+ (𝑎 |𝑠)
.

We can express the value function 𝑉
𝜋+
+ as a function of 𝑄

𝜋+
\𝑎 :

Property 1.

𝑉
𝜋+
+ (𝑠) =(1 − 𝜋+ (𝑎 |𝑠))E𝑎∼𝜋\�̄�

[
𝑄
𝜋+
\𝑎 (𝑠, 𝑎)

]
+ 𝜋+ (𝑎 |𝑠)

(
E𝑎∼𝜋

[
𝑄
𝜋+
\𝑎 (𝑠, 𝑎)

]
+ 𝜂

)
.

We then have the expression for𝑄
𝜋+
+ (𝑠, 𝑎 ∈ A+), the Q-function

of 𝜋+ in the lazy-MDP:

Property 2.

𝑄
𝜋+
+ (𝑠, 𝑎) =

𝑄
𝜋+
\𝑎 (𝑠, 𝑎) if 𝑎 ≠ 𝑎,

E𝑎∼𝜋

[
𝑄
𝜋+
\𝑎 (𝑠, 𝑎)

]
+ 𝜂 if 𝑎 = 𝑎.

4.3 Greediness
A policy 𝜋+ is greedy wrt 𝑄+ (noted 𝜋+ ∈ G(𝑄+)) if and only if:

∀𝑠 ∈ S, 𝜋+ (·|𝑠) ∈ arg max

𝜋+ (· |𝑠)
E𝑎∼𝜋+

[
𝑄+ (𝑠, 𝑎)

]
.

Main Track AAMAS 2022, May 9–13, 2022, Online

671

Given a Q-function𝑄 , a useful quantity to construct a greedy policy

is what we call the lazy-gap, noted 𝐺𝑄 (𝑠):

𝐺𝑄 (𝑠) = max

A
𝑄 (𝑠, ·) − E𝜋

[
𝑄 (𝑠, 𝑎)

]
,

which is the gap between the value of the best action (inA) and the

expected action-value when the immediate next action is picked

by the default policy (as defined by 𝑄) in the lazy-MDP (i.e., with
costs taken into account). In order to be greedy with respect to a

policy𝑄+, one needs to choose the lazy action if𝐺𝑄+\�̄� (𝑠) ≤ 𝜂, and

to take the argmax of 𝑄+\𝑎 otherwise (over A).

Property 3. The following policy 𝜋+ is greedy with respect to𝑄+:

𝜋+ (·|𝑠) =

I

{
𝑎∈arg maxA 𝑄+\�̄� (𝑠,𝑎)

}
|arg maxA 𝑄+\�̄� (𝑠,𝑎) | if 𝐺𝑄+\�̄� (𝑠) > 𝜂,

I

{
𝑎 = 𝑎

}
otherwise.

Since the greediness as constructed above does not depend on

the value of the lazy action 𝑄+ (𝑠, 𝑎), we can define a greedy policy

in the lazy-MDP with respect to a Q-function of the base MDP:

G(𝑄) (·|𝑠) :=

I

{
𝑎∈arg maxA 𝑄 (𝑠,𝑎)

}
|arg maxA 𝑄 (𝑠,𝑎) | if 𝐺𝑄 (𝑠) > 𝜂,

I

{
𝑎 = 𝑎

}
otherwise.

4.4 Optimality
We define the greedy operator T , that maps a Q-function to the

immediate reward plus the average value of the next state according

to the greedy policy:

T𝑄 (𝑠, 𝑎 ∈ A) := 𝑟 (𝑠, 𝑎) − 𝜂 + 𝛾E𝑠′∼P(· |𝑠,𝑎),𝑎′∼G(𝑄) (· |𝑠′)

[
𝑄 (𝑠 ′, 𝑎′)

]
.

Theorem 2. T is a 𝛾-contraction, and converges to 𝑄∗
:= 𝑄

𝜋∗
+

\𝑎
where 𝜋∗+ is the optimal policy in the lazy-MDP.

This allows us to identify the optimal policy to take decisions in

the augmented action space A+.

Corollary 1. 𝜋∗+ is a deterministic policy that verifies 𝜋∗+ (𝑎 |𝑠) > 0

if and only if 𝐺∗ (𝑠) > 𝜂, with 𝐺∗ = 𝐺𝑄∗ is the lazy-gap under the
optimal action-value in the lazy-MDP.

5 SETTING THE COST
Given a known base MDP, we may want to find the minimal cost

𝜂min such that the lazy action is taken in at least one state, as well

as the maximal cost 𝜂max such that the lazy action is not taken in

all states. From Prop. 1:

𝜂min = inf

{
𝜂 > 0 s.t. ∃𝑠, 𝐺∗ (𝑠) < 𝜂

}
,

𝜂max = sup

{
𝜂 > 0 s.t. ∃𝑠, 𝐺∗ (𝑠) > 𝜂

}
,

where𝐺∗
is the lazy-gap associated with the optimal value function

𝑄
𝜋∗
+

\𝑎 . Taking 𝜂 between these two values allows to train agents that

decide when to act in a non-trivial way. One can then equate states

where the agent takes control as important states, under the right 𝜂.

5.1 𝜼max
When 𝜂 is equal or larger than the lazy-gap in all states, the optimal

policy consists in deferring all actions to the default policy, which

induces no cost. Thus, 𝜂max is simply equal to the maximal lazy-gap

under the default policy.

Theorem 3. Let 𝑄𝜋 (𝑠, 𝑎 ∈ A) be the Q-function of the default
policy in the base MDP. Then: 𝜂max = max𝑠 𝐺𝑄 �̄� (𝑠).

5.2 𝜼min
One cannot apply a similar treatment to 𝜂min, due to most actions

being non-default and corresponding costs having to be taken into

account. However, if 𝜂 is smaller or equal to the lazy-gap in all

states, an optimal agent will follow the optimal policy of the base

MDP 𝜋∗, and the incurred cost will be equal to −𝜂 multiplied by

the fictitious Q-value associated with 𝜋∗ for a reward function that

is 0 in absorbing states and 1 otherwise:

𝑍𝜋∗
(𝑠, 𝑎) = I{𝑠 ∉ S𝑎𝑏𝑠 } + 𝛾E𝑠′

[
E𝜋∗

[
𝑍𝜋∗

(𝑠 ′, ·)
]]

By construction 𝐶𝜋∗ (𝑠) = −𝜂E𝜋∗ [𝑍𝜋∗ (𝑠, ·)], where 𝐶𝜋∗ (𝑠) is the
cost for always following 𝜋∗ from 𝑠 . If no absorbing state is ever

reached, we have 𝑍𝜋∗ (𝑠, 𝑎) = 1

1−𝛾 for all state 𝑠 and action 𝑎. How-

ever, in practice the MDPs we consider have terminal states and

eventually end. 𝑍𝜋∗
can thus have different values under different

state-action couples, impacting the value of 𝜂min. Its value is given

by the following theorem:

Theorem 4. Let 𝜋∗ be the optimal policy in the base MDP, and
𝑄∗ (𝑠, 𝑎 ∈ A) the associated Q-function. Then:

𝜂min = min

𝑠
max

𝑎

𝑄∗ (𝑠, 𝑎) − E𝜋
[
𝑄∗ (𝑠, ·)

]
1 +

(
E𝜋∗

[
𝑍𝜋∗ (𝑠, ·)

]
− E𝜋

[
𝑍𝜋∗ (𝑠, ·)

]) ,
with 𝜂min ≥ 0.

We empirically validate these boundaries over different lazy-

MDPs and report the results in Appendix ??. As expected, when 𝜂 <

𝜂min no lazy actions are ever selected, andwhen𝜂 > 𝜂max, the agent

always chooses the lazy action. We discuss how to approximate

𝜂min and 𝜂max in the next section.

6 LEARNINGWHEN AND HOW TO ACT
Since lazy-MDPs can be described as augmented MDPs, standard

RL algorithms can still be used to provide policies that maximize

the cumulative sum of rewards (which include a cost when taking

control). As a result, by converting an MDP into a lazy-MDP, RL

agents learn when and how to act without any change to their

workings. We now discuss design choices for the two parameters

of lazy-MDPs: the cost 𝜂 and the third-party policy 𝜋 .

Value of cost. Regarding 𝜂, the explicit expressions for the

bounds we provided guarantee meaningful behavior from optimal

Main Track AAMAS 2022, May 9–13, 2022, Online

672

policies (i.e. not always defaulting and not always taking control).

Estimating 𝜂max is feasible since the default policy 𝜋 is supposed

available. It requires to estimate its action-values (for instance, us-

ing SARSA [36]) so that the maximal lazy-gap can be approximated

(either by taking the maximum gap across the known set of states,

or using rollouts to get approximate coverage). To estimate 𝜂min,

usually one does not have access to the optimal Q-function 𝑄∗
of

the base MDP nor to 𝑍𝜋∗
. In that case, a solution is to use value it-

eration or Q-learning [49] to get approximations𝑄𝜃 and 𝑍𝜃 , where

𝑍𝜃 is obtained by replacing all the rewards by ones in the loss used

to learn 𝑄𝜃 .

Choice of the default policy. Regarding the choice of 𝜋 , we

argue that taking a random policy (with, say, uniform action prob-

abilities) is the simplest option available: it does not require any

knowledge about the task, and is on par with the idea that the

agent should take control only when actions actually matter (i.e., a
specific action is noticeably better than uniform sampling). Doing

so results in a type of regularization that is conceptually close to

entropic regularization, except that the agent has incentive to be as

random as possible in a subset of the states only. In some cases, in-

cluding complex scenarios, alternative options might be preferable:

having to take control too often could lead to a high cumulative cost

and discourage exploration, unless 𝜂 is properly tuned. Similarly to

residual learning, an interesting substitute is a known, suboptimal

policy. In that case, the agent has incentive to take control in states

where the base policy is noticeably suboptimal.

Interpretability of lazy policies. Due to the cost of taking

control, the lazy policies that are learned should only take con-

trol in a handful of states. We hope that this leads to increased

interpretability for several reasons: the subset of states (and the

corresponding controls) can be assessed against expert knowledge,

and the performance of the learned policy can be compared to that

of the base policy to ensure that the gains are sufficient and jus-

tify the overhead. Specifically, we argue that there are two special

cases where lazy actions indeed give information about the overall
importance (and unimportance) of states:

(1) with a uniform random policy as default (and the right

penalty), an optimal agent should only pick its actions when

selecting among optimal actions brings a substantial advan-

tage over picking the action at random. Therefore, we argue

that states where the agent defers its actions are likely to

be unimportant in the sense that the agent is content with

acting randomly.

(2) with a mixture between optimal and uniform random policy

as default (and the right penalty), an optimal agent should

only pick its actions when selecting among optimal actions

brings a substantial advantage over often selecting among

optimal actions. Therefore, we argue that states where the

agent picks its actions are likely to be important in the sense

that the agent is not content with acting almost optimally.

More broadly speaking, lazy actions give information about the
specific importance of states so as to improve on the performance of
the default policy.

We study the interpretability of solutions empirically in the next

section.

G

S

Figure 2: Left: Rivers and Bridges environment. The agent
starts up left (S) and has to cross the rivers through the
bridges to reach the goal point (G). Falling in the water is
punished by R = −100 and reaching the goal is rewarded
by R = 1. The default policy is the optimal 𝜋∗ everywhere
but on the bridges where it is uniformly random. Right:
Heatmap of the resulting lazy-gap using 𝜂 = 𝜂min = 0. As
expected the lazy-gap is zero everywhere but on the bridges
where optimal agents learn to take control. This result is
valid for any value of 𝜂 < 𝜂max.

7 EXPERIMENTS
In this section, we empirically address the following questions:

1) Do policies from lazy-MDPs learn to take control when it matters?

2) Are the partitions of states where the agent decides or not to

act interpretable? 3) How does reducing the frequency of agent

controls (by increasing the cost 𝜂) affect its returns? Details about

implementations and the choice of hyperparameters can be found

in Appendix ??.

7.1 Taking control when it matters
We first study the behavior of lazy policies on small discrete prob-

lems, where the exact solutions can be approached as well as values

for 𝜂min and 𝜂max.

Rivers and Bridges. A simple environment that illustrates how

lazy-MDPs work is a gridworld involving some dangerous path-

ways – where the agent needs to provide precise controls, while

other states are safe – the agent can rely on the default policy.

We implemented a basic scenario in which the agent has to cross

three rivers by taking slippery bridges. We call this environment

Rivers and Bridges (R&B), which is illustrated in Fig 2. Falling in

the water is penalized by a strong negative reward (R = −100),

while reaching the goal point beyond the rivers results in a small

positive reward (R = 1). To simulate the slipperiness of the bridges,

we take as default policy the policy that is optimal everywhere

but on the bridges where it is uniformly random. That way, the

agent should trust the default policy everywhere but on the bridges

where it should take the control despite the cost. As there is at least

one state where the policy is optimal, applying Theorem 4, we get

𝜂min = 0. As shown in Fig. 2 right, we verify that for any 𝜂 such that

0 < 𝜂 ≤ 𝜂max, the lazy-gap 𝐺
∗ (𝑠) is only positive on the bridges,

which means an optimal agent only takes control in those states,

and justifies the application of lazy-MDPs to evaluate where and

when to trust a default behavior.

Main Track AAMAS 2022, May 9–13, 2022, Online

673

T

D

K

P

(a) (b) 𝜂 = 0.008

(c) 𝜂 = 0.02 (d) 𝜂 = 0.05

Figure 3: (a): Key-Door-Treasure environment. (b-d): Policies
learned in the lazy-MDP by value iteration, with a uniform
random default policy, and increasing 𝜂. Centered points
in gray cells identify lazy actions, color indicates learned
action-values (blue=lowest, red=highest). With 𝜂 increasing,
the policy learns to reduce its controls to states that allow it
to progress from one room to another as well as those in the
vicinity of the goal state.

Key-Door-Treasure [31] (KDT) is a variant of the classic Four
Rooms task [40] with a harder exploration problem: the agent needs

to grab a key, open the door and get to the location of the treasure

(in that order) to solve the task. The agent is only rewarded when

reaching the treasure. We study the nature of the solutions learned

in the lazy-MDP version of KDT under several values of 𝜂, with

a uniform random default policy. The results are shown in Fig. 3.

They match our intuition: the higher the value of 𝜂, the fewer the

states in which the agent takes control; until the agent only acts in

the most crucial states (i.e. to pass from one room to another or to

get to the treasure).

7.2 Interpretability
To study interpretability, we usemore complex environments where

the behaviour of an RL agents is not trivially interpretable. Wemake

the hypothesis that lazy-MDPs can help at explaining which states

and what actions are important in order to get high returns. In this

study, we op for a qualitative measure of importance and show (via

corresponding frames) the states of importance as the ones where

the agent decides to take control over the uniform random, default

policy. We look at lazy policies learned in the lazy-MDP version

of Atari 2600 games from the Arcade Learning Environment [7].

We focus on games where timing plays a central role, such as Pong,

Breakout and Ms Pacman. We use a standard DQN agent [28],

whose implementation we take from the Dopamine framework [11].

We display a representative portion of a lazy agent trajectory in

Breakout in Fig. 4, which is well aligned with our intuition of the

timing of this task: critical controls happen when the ball gets back

to the paddle, while the remaining controls have limited impact on

subsequent success. We also display key moments of a lazy agent

trajectory in Ms Pacman in Fig. 5. The agent alternates between

defaulting (most of the time) and taking control (sparsely, either for

a single frame or a sequence of frames) in order to escape ghosts, to

obtain power-ups and defeat ghosts, or to collect multiple bonuses

in a row. Finally, we display a representative portion of episode

in Bowling in Fig. 6. The agent takes control when aiming with

the ball, and defers control to the default policy when the ball is

moving towards the pins, during which actions have no effects on

the outcome of the throw. All in all, the timing of the agent controls

matches our intuitions.

We also compared the importance as quantified by the lazy-gap

with usual measures, such as the action-gap [8], which measures

the difference between the best and the second best action values

at a given state (maxA 𝑄 (𝑠, ·) − maxA\𝑎∗ 𝑄 (𝑠, ·)), and importance

advice [43], which measures the difference between the best and the

worst action values at a given state (maxA 𝑄 (𝑠, ·) − minA 𝑄 (𝑠, ·)).
Fig. ?? in Appendix ?? displays the state importance according

to these measures on the KDT environment. As visible, the lazy-

gap only attributes importance to states with key actions (picking

up the key, passing through doors, reaching the treasure). On the

other hand, the action-gap uniformly emphasizes all states along

the trajectory of the optimal policy, while the importance advice is

dominated by the proximity to the reward and does not discriminate

key actions.

7.3 Doing less for better exploration
A side effect of lazy-MDPs with a uniform random default policy is

that they push agents to maintain randomness in states where act-

ing randomly is affordable (i.e. does not impact future performance

too much). This is helpful in hard exploration tasks, where local

minima make the exploration more difficult. Actually, encouraging

randomness in the policy via lazy-MDPs has two benefits: it reg-

ularizes behaviors and avoids determinism, and it rewards smart

exploration where the random actions are only taken when it is

safe to explore. To study the role of lazy-MDPs for exploration, we

add a distractor state (i.e. an absorbing state with a small reward)

in the upper-left room in KDT so as to introduce a local minimum.

Q-learning agents, even when explicitly increasing exploration (e.g.

with linearly decayed epsilon-greedy action selection), mostly fail

and always go for the distractor. In that situation, augmenting the

MDP as a lazy-MDP with a uniform random default policy en-

courages random behaviors over consecutive steps, which helps

exploring and going past the local minimum. We illustrate this

effect on Fig. 7. For that experiment, we used tabular Q-learning

with learning rate 𝛼 = 0.5, epsilon-greedy exploration starting at

𝜖0 = 0.1 and linearly decayed until 𝜖∞ = 0, 𝛾 = 0.99, and a reward

𝑟 = 0.1 for the apple. Episodes that did not end in an absorbing

Main Track AAMAS 2022, May 9–13, 2022, Online

674

Figure 4: Illustration of the policy learned in the lazy-MDP version of Breakout (𝜂 = 0.1, with a uniform randomdefault policy):
the agent learns to take control (colored frames) only moments before the ball has to be hit in order not to lose.

Figure 5: Illustration of the policy learned in the lazy-MDP version of Ms Pacman (𝜂 = 0.5, with a uniform random default
policy). Frames are ordered from left to right, top to bottom, and correspond to non-consecutive frames from a single episode
of interaction. At the beginning of the episode, the agent is immobile for a few frames, during which it defaults its actions to
avoid penalties (frame 1). Once free to move, it keeps defaulting its actions and collecting nearby bonuses (frames 2-4) until
ghosts become close enough. The agent then sparsely takes control (colored frames), be it to obtain power-ups (frames 5 & 7),
and later on eat the ghosts (frames 6 & 12), or collect several bonuses in a row (frames 10-11).

Figure 6: Illustration of the policy learned in the lazy-MDP version of Bowling (𝜂 = 0.04, with a uniform random default policy).
The agent learns to only take control (colored frames) when preparing to throw the ball. This is the only time it can control
the orientation of the throw, which is key to knock pins down. In subsequent timesteps, its actions have no effects on the ball,
and accordingly the lazy action is picked instead.

Main Track AAMAS 2022, May 9–13, 2022, Online

675

T

D

K

P

A

(a) 𝜂 = 0

T

D

K

P

A

(b) 𝜂 = 0.03

T
A

P

K

D

(c) 𝜂 = 0.05 (d)

Figure 7: We add an apple which grants a small reward to
KDT. It acts as a distractor for exploration. (a-c): Asymptotic
state occupancy measure of q-learning for different values
of the cost 𝜂, before the agent has the key. We can see that q-
learning in the original MDP (𝜂 = 0) is attracted to the local
optimum, while q-learning in the lazy-MDP avoids the local
optimum and eventually learns the optimal behavior (when
𝜂 = 0.03). (d): Scores (excluding the cost) of q-learning with
different values of 𝜂. Only the agent solving the lazy-MDP
with 𝜂 = 0.03 converges to the optimal behavior. Both state
occupancy measures and performance curves are averaged
over 100 seeds.

state (i.e. treasure or apple) were ended after 1000 steps. Under the

right cost (𝜂 = 0.03) lazy policies keep exploring after finding the

small reward, and eventually find the key and the treasure, leading

to a reward that justifies the cost for taking control. With a cost

too high (𝜂 = 0.05), lazy policies never take control.

This motivates investigating if such an effect of taking less con-

trol while achieving higher returns can be observed in more com-

plex games, requiring function approximation. Hence we converted

hard exploration tasks in Atari to lazy-MDPs, including dense re-

ward tasks (Bank Heist, Frostbite, Ms Pacman, Zaxxon) and sparse

reward tasks (Gravitar, Private Eye), as classified in [6]. As previ-

ously, we used uniform random default policies and several values

for the cost 𝜂 (0.005, 0.01, 0.02, 0.05, 0.1, 0.2) and reported the per-

centage of the score (with respect to a standard DQN agent [28]) as

a function of the resulting frequency of control taking (when the

lazy policy does not choose the lazy action) in figure 8. Reported

values are averaged over 3 seeds. We observe that in most cases,

Figure 8: Percentage of the score of a standard DQN agent
achieved by lazy-policies learned with different values of 𝜂
and uniformly random default policy on hard exploration
tasks of Atari. The x-axis represents the fraction of controls
taken and the y-axis the percentage of the DQN baseline
score reached. Each value is averaged over 3 seeds. Score 0%
correspond to getting no reward and score 100% correspond
to getting as much reward as a standard DQN.

reducing the frequency of control taking does not decrease the

score too much (up to almost 100% of the score in Gravitar with less

than 10% of control, 80% of the score with less than 30% of control

in Zaxxon and more than 100% of the score with 20% of control

on Private Eye). Moreover, we even observed in Frostbite that the

lazy policy learned with low penalties achieved 200% of the score,

confirming that lazy-MDP can also have applications for improved

exploration.

8 CONCLUSION
In this work, we studied a novel paradigm for decision-making:

learning when and how to act. We proposed lazy-MDPs, natural

abstractions over MDPs that are well-suited for this learning prob-

lem, and showed that RL could still be used to provide solutions in

that setting. We studied the theoretical properties of lazy-MDPs, in-

cluding value functions and optimality. In experiments, we showed

that lazy-MDPs present an interesting edge: when converted back

to the original MDPs, the policies learned in lazy-MDPs tend to be

more interpretable, as they highlight states where taking control is

crucial to achieve increased returns. With uniform random default

policies, we show that policies learned in lazy-MDPs via DQN per-

form close to policies learned in standard MDPs, while only taking

control in a fraction of the states; and can even reach higher scores

in hard exploration tasks.

Main Track AAMAS 2022, May 9–13, 2022, Online

676

REFERENCES
[1] D. Amir and O. Amir. Highlights: Summarizing agent behavior to people. In

International Conference on Autonomous Agents and Multiagent Systems, 2018.
[2] Y. Amitai and O. Amir. "I don’t think so": Disagreement-based policy summaries

for comparing agents. arXiv preprint arXiv:2102.03064, 2021.
[3] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and

S. Hochreiter. Rudder: Return decomposition for delayed rewards. In Advances
in Neural Information Processing Systems, 2019.

[4] P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI
Conference on Artificial Intelligence, 2017.

[5] A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygün, P. Hamel, D. K. Toyama,

J. J. Hunt, S. Mourad, D. Silver, et al. The option keyboard: Combining skills in

reinforcement learning. In Advances in Neural Information Processing Systems,
2019.

[6] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos.

Unifying count-based exploration and intrinsic motivation. In Advances in neural
information processing systems, 2016.

[7] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 2013.

[8] M. G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, and R. Munos. Increasing

the action gap: New operators for reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2016.

[9] I. Bica, D. Jarrett, A. Hüyük, and M. van der Schaar. Learning "what-if" expla-

nations for sequential decision-making. In International Conference on Learning
Representations, 2021.

[10] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. Towards TempoRL: learning

when to act. International Conference on Machine Learning, BIG workshop, 2021.
[11] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare. Dopamine:

A Research Framework for Deep Reinforcement Learning. arXiv preprint
arXiv:1812.06110, 2018. URL http://arxiv.org/abs/1812.06110.

[12] Y. Coppens, K. Efthymiadis, T. Lenaerts, A. Nowé, T. Miller, R. Weber, and D. Mag-

azzeni. Distilling deep reinforcement learning policies in soft decision trees. In

IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.
[13] J. Ferret, R. Marinier, M. Geist, and O. Pietquin. Self-attentional credit assignment

for transfer in reinforcement learning. In International Joint Conference on
Artificial Intelligence, 2019.

[14] J. Ferret, O. Pietquin, and M. Geist. Self-imitation advantage learning. In Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 2021.

[15] M. Geist, B. Scherrer, and O. Pietquin. A theory of regularized markov decision

processes. In International Conference on Machine Learning, 2019.
[16] M. Geist, J. Pérolat, M. Laurière, R. Elie, S. Perrin, O. Bachem, R. Munos, and

O. Pietquin. Concave utility reinforcement learning: the mean-field game view-

point. arXiv preprint arXiv:2106.03787, 2021.
[17] S. Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing and understanding

atari agents. In International Conference on Machine Learning, 2018.
[18] A. Harutyunyan, W. Dabney, T. Mesnard, M. Gheshlaghi Azar, B. Piot, N. Heess,

H. P. vanHasselt, G.Wayne, S. Singh, D. Precup, et al. Hindsight credit assignment.

In Advances in Neural Information Processing Systems, 2019.
[19] Y. Huang, V. Kavitha, and Q. Zhu. Continuous-time markov decision processes

with controlled observations. In Allerton Conference on Communication, Control,
and Computing, 2019.

[20] C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale, A. Ahuja,

and G. Wayne. Optimizing agent behavior over long time scales by transporting

value. Nature communications, 2019.
[21] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow,

and S. Levine. Residual reinforcement learning for robot control. In International
Conference on Robotics and Automation, 2019.

[22] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez. Explainable

reinforcement learning via reward decomposition. In IJCAI/ECAI Workshop on
Explainable Artificial Intelligence, 2019.

[23] A. Lakshminarayanan, S. Sharma, and B. Ravindran. Dynamic action repetition

for deep reinforcement learning. In AAAI Conference on Artificial Intelligence,
2017.

[24] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov.

Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274,
2019.

[25] G. Liu, O. Schulte, W. Zhu, and Q. Li. Toward interpretable deep reinforcement

learning with linear model u-trees. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2018.

[26] V. B. Meresht, A. De, A. Singla, and M. Gomez-Rodriguez. Learning to switch

between machines and humans. arXiv preprint arXiv:2002.04258, 2020.
[27] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney,

T. Stepleton, N. Heess, A. Guez, et al. Counterfactual credit assignment in model-

free reinforcement learning. In International Conference on Machine Learning,
2021.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, et al. Human-level control through deep reinforcement learning.

Nature, 2015.
[29] C. Molnar. Interpretable machine learning. Lulu. com, 2020.

[30] G. Neu, A. Jonsson, and V. Gómez. A unified view of entropy-regularized markov

decision processes. arXiv preprint arXiv:1705.07798, 2017.
[31] J. Oh, Y. Guo, S. Singh, and H. Lee. Self-imitation learning. In International

Conference on Machine Learning, 2018.
[32] D. Precup. Temporal abstraction in reinforcement learning. University of Mas-

sachusetts Amherst, 2000.

[33] N. Puri, S. Verma, P. Gupta, D. Kayastha, S. Deshmukh, B. Krishnamurthy, and

S. Singh. Explain your move: Understanding agent actions using specific and rel-

evant feature attribution. In International Conference on Learning Representations,
2019.

[34] M. L. Puterman. Markov Decision Processes. Wiley, 1994.

[35] D. Raposo, S. Ritter, A. Santoro, G. Wayne, T. Weber, M. Botvinick, H. van Hasselt,

and F. Song. Synthetic returns for long-term credit assignment. arXiv preprint
arXiv:2102.12425, 2021.

[36] G. A. Rummery and M. Niranjan. Online Q-learning using connectionist systems,
volume 37. Citeseer, 1994.

[37] L. Shani, Y. Efroni, and S. Mannor. Exploration conscious reinforcement learning

revisited. In International Conference on Machine Learning, 2019.
[38] S. Sharma, A. S. Lakshminarayanan, and B. Ravindran. Learning to repeat:

Fine grained action repetition for deep reinforcement learning. In International
Conference on Learning Representations, 2017.

[39] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling. Residual policy learning. arXiv
preprint arXiv:1812.06298, 2018.

[40] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT

Press, 2018.

[41] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework

for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.
[42] N. Topin andM. Veloso. Generation of policy-level explanations for reinforcement

learning. In AAAI Conference on Artificial Intelligence, 2019.
[43] L. Torrey and M. Taylor. Teaching on a budget: Agents advising agents in

reinforcement learning. In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, 2013.

[44] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering. A theoretical and

empirical analysis of expected sarsa. In IEEE symposium on adaptive dynamic
programming and reinforcement learning, pages 177–184, 2009.

[45] A. Verma, H. M. Le, Y. Yue, and S. Chaudhuri. Imitation-projected programmatic

reinforcement learning. In Advances in Neural Information Processing Systems,
2019.

[46] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically

interpretable reinforcement learning. In International Conference on Machine
Learning, 2019.

[47] N. Vieillard, T. Kozuno, B. Scherrer, O. Pietquin, R. Munos, and M. Geist. Lever-

age the average: an analysis of kl regularization in rl. In Advances in Neural
Information Processing Systems, 2020.

[48] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas.

Dueling network architectures for deep reinforcement learning. In International
Conference on Machine Learning, 2015.

[49] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 1992.
[50] T. Zahavy, N. Ben-Zrihem, and S. Mannor. Graying the black box: Understanding

dqns. In International Conference on Machine Learning, 2016.

Main Track AAMAS 2022, May 9–13, 2022, Online

677

http://arxiv.org/abs/1812.06110

	Abstract
	1 Introduction
	2 Related work
	3 Framework
	4 Solving lazy-MDPs
	4.1 Value functions
	4.2 Q-functions
	4.3 Greediness
	4.4 Optimality

	5 Setting the cost
	5.1 normalnormaleta max
	5.2 normalnormaleta min

	6 Learning when and how to act
	7 Experiments
	7.1 Taking control when it matters
	7.2 Interpretability
	7.3 Doing less for better exploration

	8 Conclusion
	References

