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ABSTRACT
Wireless Rechargeable Sensor Networks (WRSNs) are especially
promising in large-area monitoring tasks that are previously impos-
sible to complete by traditional Wireless Sensor Networks (WSNs).
Mobile Chargers (MCs) in WRSNs are to cooperatively charge bat-
tery drained sensor nodes high efficiently and with a guarantee of
sensors survival. Considering the unpredictability and high dynam-
ics of WRSNs during the charging process, Multi-Agent Reinforce-
ment Learning (MARL) is an attractive alternative to schedule the
cooperation among MCs. However, most existing MARL methods
are based on Decentralized Partially Observable Markov Decision
Processes (Dec-POMDP), a general framework to describe decentral-
ized agents making decisions at the same time step. Nevertheless,
MCs in WRSNs perform charging asynchronously since the charg-
ing time of each sensor node varies. To address the problem of
asynchronous behavior, we first formulate an Asynchronous Dec-
POMDP (AD-POMDP). We then propose an algorithm called Asyn-
chronous and Scalable Multi-agent Proximal Policy Optimization
(ASM-PPO) that allows asynchronous learning and decision-making
in AD-POMDP based on two popular multi-agent reinforcement
learning methods in Dec-POMDP. Furthermore, ASM-PPO takes
advantage of the translation invariance in WRSNs to avoid the
huge input space dimensions caused by centralized training. The
evaluation results not only indicate that our method achieves much
charging efficiency and the longer lifetime of sensor nodes, but also
demonstrate that ASM-PPO has advantages in terms of stability
and scalability over existing methods.
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1 INTRODUCTION
Wireless Sensor Networks (WSNs) are a special network paradigm
that uses a large number of wireless sensor nodes for sensing, data
collecting and processing [1, 23, 28]. A sensor node in WSNs can
only work within a short period of time, due to the limited energy
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Figure 1: An example of a WRSN with three MCs

supply. Consequently, large-area monitoring tasks cannot be ful-
filled by traditional WSNs because of the two reasons as follows:
(1) The heavy network traffic of large-scale networks need dramati-
cally more energy in wireless communication. (2) It is impossible to
change batteries manually in a large area, in which there are hun-
dreds of sensor nodes scattered within a range of several kilometers
running out of energy at every second. In comparison, Wireless
Rechargeable Sensor Networks (WRSNs) are more powerful, as they
are capable of sensing continuously through in-network charging.
With in-network charging of WRSNs, a number of Mobile Charg-
ers (MCs) move within a WRSN to charge sensor nodes with low
batteries.

Due to the uneven workloads of different sensor nodes, MCs are
desired to make runtime decisions cooperatively to maximize the
efficiency of charging and to guarantee the survival of low-battery
sensor nodes simultaneously. In large-scale WRSNs, multiple MCs
equipped with resonant coils roam around the network and fully
recharge the sensor nodes wirelessly, as shown in Figure 1. There-
fore, how to schedule MCs to shorten the moving distance of MCs
so that more energy can be transmitted to the working sensor nodes
in WRSNs is the most important issue in cooperative charging.

In general, the scheduling methods of MC can be divided into
two categories: off-line and online. (1) Off-line scheduling methods
are also called static methods. They assume a constant network
topology as well as a deterministic pattern of energy consumption
rate so that MC can have a fixed charging sequence in each charging
cycle [5, 19, 30]. (2) Online approaches require dying sensor nodes
to submit charging requests to MC or the Base Station (BS), then
the MC is able to rearrange the order of charging tasks according
to the predefined charging strategy, and make charging decisions
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dynamically [13, 17, 18, 27]. Unfortunately, such a manner of rule-
based decision-making is either infeasible or inefficient for the
long-term optimization, especially in large-scale unpredictable or
highly dynamic WRSNs [6].

Multi-Agent Reinforcement Learning (MARL) has shown great
potential in solving sequential decision-making problems, in which
multiple autonomous agents aim to optimize the long-term return
[9, 20, 24, 29]. Nevertheless, it is inappropriate to use the prob-
lem model of Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) [22], a framework that can be applied to a
wide range of MARL methods, for cooperative charging in WRSNs.
The reason is rooted in the synchronous nature of the time step
definition of the Dec-POMDP. A Dec-POMDP framework assumes
synchronized action execution over agents, while MCs in WRSNs
complete charging operations at different time points. Suppose we
set the length of a time step to be short. Then one charging action
of the MC will span multiple time steps. At these time steps, the
action space of the MC is restricted to the uncompleted charging
action only, and this causes training much inefficient. On the other
hand, if we extend the time step to be long enough to guarantee that
MCs make decisions synchronously, then those MCs with shorter
action execution time will have a long idle time. Therefore, the
traditional MARL algorithms based on Dec-POMDP, such as MAP-
PDG [20], QMIX [24], and MAPPO [29], would work inefficiently
in cooperative charging.

Recently, Chen et al. [6] proposed VarLenMARL to make MCs
collaboratively learn a dynamic charging strategy. VarLenMARL
is a MARL framework that supports the asynchronous decision-
making process by using a Synchronized Delay-Tolerant Trajectory
Collection (SDTTC) mechanism instead of the traditional trajectory
data collection mechanism in MARL. The main idea of SDTTC is
to use the current interactive information of the decision-making
agent and the latest information of other agents as padding data
to fill in the trajectory data for the training process. Unfortunately,
for the decision-making agent, these padding data of other agents
are not instant information at the exact same global time slot. Such
padding data cause the following two bad results: (1) The decision-
making agent has to take more time to find useful information from
the trajectory. (2) The previous normal training process of the agent
become unstable as it is interfered with by these padding data.

In this paper, we first propose an Asynchronous Dec-POMDP
(AD-POMDP) as the problem model for asynchronous decision-
making scenarios such as the cooperative charging problem in
WRSNs. We then propose a new approach called Asynchronous
and Scalable Multi-agent Proximal Policy Optimization (ASM-PPO),
which adopts the mechanisms in two popular multi-agent rein-
forcement learning methods in Dec-POMDP, Independent Proximal
Policy Optimization (IPPO) [9] and Multi-Agent Proximal Policy
Optimization (MAPPO) [29], as a solution to the problem of AD-
POMDP. In ASM-PPO, agents only use their own trajectory data,
without padding data, to train independently and asynchronously,
similar to IPPO. We adopt a Centralized Training and Decentral-
ized Execution (CTDE) structure to process the global information
to tackle the environment non-stationary caused by independent
training and to learn the collaborative strategy, as that in MAPPO.
Finally, since the MCs and the sensor nodes in a WRSN are both iso-
morphic, the information of different sensor nodes share the same

form, i.e., the input state information of MC has the translation
invariance. Considering this fact, we construct a special parameter
sharing component with a heterogeneous convolution kernel and a
GRU (Gate Recurrent Unit) unit [7] to process the isomorphic infor-
mation of different MCs. This component is able to avoid the huge
dimension of the input space of the centralized value function in
ASM-PPO and thus solve the stability and the scalability problems,
since an extremely wide or deep model is harmful to the training
stability in reinforcement learning [3, 4, 11].

The contributions of this paper are summarized as follows:
1) We formulate a new framework, AD-POMDP, to model the

problem for asynchronous operations of multiple agents,
such as the cooperative charging problem in WRSNs.

2) We propose an asynchronous MARL algorithm, ASM-PPO,
for AD-POMDP. ASM-PPO combines the trajectory collec-
tion mechanism in IPPO with the CTDE structure in MAPPO
so that all agents can infer their collaborative policy using
data collected from asynchronous decision-making scenarios
while maintaining the stability of ASM-PPO.

3) We design a new network component consisting of a het-
erogeneous convolution kernel and a GRU cell by taking
advantage of the translation invariance of MCs, which im-
proves the scalability without increasing the parameters that
need to be learned in ASM-PPO.

4) We perform evaluations of our algorithm and other methods
in a variety of WRSNs scenarios. The results demonstrate
that ASM-PPO improves the performance of a general MARL
algorithm and learns a better cooperative charging schedule
strategy in WRSNs than the state-of-the-arts.

The rest of this paper is organized as follows. Section 2 reviews
the related schemes and methods. Section 3 presents the WRSN
model and the problem formulation. Section 4 demonstrates our
AD-POMDP and ASM-PPO in detail. Section 5 validates the perfor-
mance of ASM-PPO against the state-of-the-arts. Section 6 gives a
conclusion of the paper and points out the future work.

2 RELATEDWORK
To guarantee the lifetime of sensor nodes while minimizing the
charging cost of MCs, researchers have devoted efforts in a variety
of directions in the past few years. From the aspect of the charging
cycle of MCs, off-line charging schemes [5, 19, 30] assume that
an MC predetermines the node charging order and the moving
path before departure from the BS. Off-line charging schemes are
only applicable to WSNs with a relatively stable rate of energy
consumption and a rather static topology. Nevertheless, realistic
WRSNs usually have burst data flow or dynamic topology changes,
since events occur randomly. Online charging schemes [13, 17,
18, 27] enable an MC preferentially chooses the sensor node that
should be charged urgently. The charging sequence of an MC is
dynamically determined according to the status of sensor nodes.
Unfortunately, it is still extremely difficult for online schemes to find
the long-term optimal charging strategies for WRSNs in scenarios
of complex topologies and dynamic events [6].

Multi-Agent Reinforcement Learning (MARL) has shown its
great potential inmany real-world sequential decision-making prob-
lems, especially in making the macro operation strategies, such as
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those in gaming or in economics. Traditional MARL algorithms,
such as MADDPG [20], COMA [10], QMIX [24] and MAPPO [29],
use Dec-POMDP [22] as the problem model. In Dec-POMDP agents
determine their actions according to their own partial observations.
In these MARL methods, agents observe their own observations,
freeze the time step to compute the optimal decisions, and then
apply their actions at the same time step. Unsurprisingly, such
MARL methods struggle to solve tasks with asynchronous working
agents like WRSNs. In WRSNs, operations such as charging and
moving take different intervals from time to time. Therefore, it is
significantly inefficient in training in these traditional WRSNs, as
they assume that all agents are performing one operation within
one time step.

Researchers have proposed a number of solutions to the problems
in which one operation takes variable periods of time. For instance,
some methods redefine a time step to be long enough to guarantee
that all tasks are completed [21], or extend a Dec-POMDP to be a
hierarchical framework with macro-actions [2]. Such methods are
still not well-suited for cooperative charging problems. Lengthen
each time step makes an MC idling for a long period of time, if
this MC only needs a rather short time period in task execution.
Moreover, using the hierarchical framework for Dec-POMDPmakes
the problemmuch more complicated, because different actions such
as charging and waiting do not have hierarchical characteristics.

So far, there have been two major structures proposed for MARL
to Dec-POMDP. The first is Decentralizing Training and Decentral-
izing Execution (DTDE). DTDE decomposes a MARL problem into
multiple decentralized and single-agent problems. DTDE allows
an agent to regard other agents as a part of the environment and
thus the agent can learn its policy only through its own observa-
tion independently [9, 12, 25]. While easy to handle the scalability
problem caused by the increase of the number of agents, DTDE
suffers from theoretical limitations including a non-stationary en-
vironment and sensitivity to partial observability [26]. The other
structure is CTDE. CTDE improves upon DTDE by using a central-
ized critic to process the global state during centralized training. In
addition, CTDE uses several decentralized actors to process local
observations[10, 20, 29].

Although CTDE can solve the problem of partial observability of
MARL, there is still a huge input space dimension for the centralized
critic, especiallywhen there are a large number of agents. ForMARL,
an extremely wide or deep network is harmful to training stability
[3, 4, 11]. Thus, how to make the model small enough to improve
the stability and training speed, while ensuring that the model
capacity is sufficient to learn the complex functions is a critical
issue in MARL.

3 PROBLEM FORMULATION
In this section, we present the WRSN network model in detail
and give the statement of the objective problem for cooperative
charging.

3.1 Network Model
In this paper, we study the problem of cooperative charging in a two-
dimensional 𝐿-meter-square WRSN. The WRSN is configured with
𝑀 homogeneous MCs in addition to 𝑁 homogeneous stationary

Table 1: Major Notations for WRSN

Notation Description

𝐿 Side length of the area
𝑁 Number of sensor nodes
𝑀 Number of MCs
𝑠𝑘 Sensor node with ID 𝑘

𝑚 𝑗 MC with ID 𝑗

𝐸𝑠 Maximum battery capacity of sensor nodes
𝜉𝐸𝑠 Minimum battery capacity of sensor nodes
𝐸𝑐 Battery capacity of MCs

𝐸
[𝑡𝑘
𝑖
]

𝑟𝑒𝑠 Residual energy of 𝑠𝑘 at 𝑡𝑖
𝐸
[𝑡 𝑗
𝑖
]

𝑟𝑒𝑠 Residual energy of𝑚 𝑗 at 𝑡𝑖
ℎ𝑠 Energy threshold for sensor nodes
ℎ𝑐 Energy threshold for MCs
𝐿𝑜𝑐𝑖 Location of sensor node or MC with ID 𝑖

𝜌 Energy transfer efficiency
𝑡𝑖 𝑖-th time slot of global system clock
𝑇
𝑗
𝑖

𝑖-th time step of𝑚 𝑗 ’s local clock
𝑇
𝑗
−𝑖 Number of time slots to finish𝑚 𝑗 ’s action
𝜂 Average charging utility

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎
Charging cost of𝑚 𝑗 in time step 𝑇 𝑗

𝑖

𝐸
[𝑇 𝑗

𝑖
]

𝑚𝑜𝑣 Moving cost of𝑚 𝑗 in time step 𝑇 𝑗
𝑖

𝜃 Request miss rate
N𝑚𝑖𝑠𝑠 Number of missed requests
N𝑟𝑒𝑞 Number of total requests

sensor nodes and a base station (BS) located in the center of the
area. The major notations for WRSN are listed in Table 1.

In a WRSN, all sensor nodes are randomly placed in a field to
be monitored. Each sensor node is equipped with a rechargeable
Lithium battery with different limited capacities. The maximum
battery capacity of these sensor nodes is 𝐸𝑠 , and the minimum 𝜉𝐸𝑠 .
As events may occur unpredictably around any sensor node and
cause the subsequent burst data flow from the sensor node, the
energy consumption rate of sensor nodes is dynamically chang-
ing. To model random events, we assume that the occurrence of
an event follows the Poisson Distribution with parameter 𝜆. The
duration of an event follows the Exponential Distribution with
parameter 𝜇. When the remaining energy of a sensor node falls
below a pre-defined threshold ℎ𝑠 , the sensor node initiates a charg-
ing request that carries its ID, location, residual energy, current
energy consumption rate, and a timestamp. This charging request
finally reaches the global request pool in the BS, through multi-hop
forwarding. The sensor node can only be recharged by one MC at
a time. If the sensor node cannot be recharged in time, it will go to
sleep and not be able to provide any services in WRSN.

MCs in a WRSN are deployed to the location point same as that
of the BS initially. Once a charging request arrives at the BS, the
BS broadcasts it to all of the MCs. Then an MC that has a battery
capacity 𝐸𝑐 chooses to serve the charging request according to its
own strategy. The MC moves to the location close enough to the
selected sensor node in a straight line, and fully recharges the node
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wirelessly. We assume that all MCs have the same energy transfer
efficiency 𝜌 . 𝜌 is the ratio of the energy received by the sensor node
to the energy transmitted by the MC. When MC completes the
charging task, it continues to choose to serve the next request, or
stay where it is now to wait for serving another charging request.
When the residual energy of an MC falls below the threshold ℎ𝑐 , it
will move back to the BS for energy provisioning to be prepared
for the next charging cycle.

3.2 Problem Formulation
We define a global system clock and the MC’s local clock in aWRSN.
The global system clock represents the notion of the world time in
a WRSN. The global system clock is used for global time and the
duration of the 𝑖-th time slot 𝑡𝑖 in the global system clock is short
enough. Note that, the unit for this global clock is a time slot, and
the time unit for an agent is a time step. The length of a time step is
variable and the length of a time slot is constant, as the time slot is
a global concept. In an MC, 𝑇 𝑗

𝑖
is the 𝑖-th time step in terms of the

local clock of MC𝑚 𝑗 . All of the MCs share the same global system
clock and each MC has its own private local clock. The local clock
of two MCs can be different because MCs are performing charging
operations asynchronously. Within a local time step,𝑚 𝑗 can finish
an action, e.g., a charging task that𝑚 𝑗 moves to the node location
and fully recharges the node, or a waiting task in which𝑚 𝑗 keeps
idling. Consequently, as the length of executing each operation is
different, the duration of each local time step 𝑇 𝑗

𝑖
is variable.

Given the network model, global and local time clock as de-
scribed above, the cooperative charging problem is to schedule
multiple MCs to serve different charging tasks simultaneously. The
objective of this problem is jointly maximizing the average charging
utility of MCs and minimizing the number of dead sensor nodes.

Firstly, we define the first optimization objective, namely the
average charging utility 𝜂 of these𝑀 MCs, as Equation (1):

𝜂 =
1
𝑀

𝑀∑︁
𝑗=1

𝜌
∑𝑇 𝑗

𝑇
𝑗

𝑖
=1

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎∑𝑇 𝑗

𝑇
𝑗

𝑖
=1

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎
+ 𝐸 [𝑇

𝑗

𝑖
]

𝑚𝑜𝑣

(1)

subject to:

0 ≤ 𝜌 ≤ 1,

0 ≤
𝑇 𝑗∑︁

𝑇
𝑗

𝑖
=1

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎
≤ 𝐸𝑐 ,

0 ≤
𝑇 𝑗∑︁

𝑇
𝑗

𝑖
=1

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎
+ 𝐸 [𝑇

𝑗

𝑖
]

𝑚𝑜𝑣 ≤ 𝐸𝑐 .

where𝑇 𝑗 is the total number of time steps for MC𝑚 𝑗 using its own

local clock, 𝐸 [𝑇
𝑗

𝑖
]

𝑐ℎ𝑎
the total amount of energy provided by𝑚 𝑗 to a

sensor node in the time step 𝑇 𝑗
𝑖
, while 𝐸 [𝑇

𝑗

𝑖
]

𝑚𝑜𝑣 is the energy spent

in moving of𝑚 𝑗 in the time step 𝑇 𝑗
𝑖
. Apparently, a lower 𝐸 [𝑇

𝑗

𝑖
]

𝑚𝑜𝑣 is
better.

To minimize the number of dead sensor nodes, we turn to mini-
mize the missing rate of charging requests 𝜃 . As shown in Equation

(2), 𝜃 is the ratio between the number of unserved charging requests,
N𝑚𝑖𝑠𝑠 , and the total number of charging requests N𝑟𝑒𝑞 , which is
the number of sensor nodes deaths caused by not being recharged
in time, to the number of the total charging requests N𝑟𝑒𝑞 .

𝜃 =
N𝑚𝑖𝑠𝑠

N𝑟𝑒𝑞
(2)

subject to:
0 ≤ N𝑚𝑖𝑠𝑠 ≤ N𝑟𝑒𝑞

4 ASM-PPO
4.1 AD-POMDP
To solve the problem of cooperative charging, MCs in a WRSN
should collectively accomplish charging tasks asynchronously. How-
ever, since the current Dec-POMDP framework requires synchro-
nous decision-making, it is inappropriate to model such a coop-
erative charging problem as a Dec-POMDP. This section presents
AD-POMDP as an improved problem model.

AD-POMDP is defined as a tupleM = ⟨N ,S,O,A,Ω,𝑈 , 𝑃, 𝑅,𝛾⟩,
whereN ≡ {1, 2, ..., 𝑀} is a finite set of𝑀 agents, S the global state
space of all agents. O ≡ {O1, ...,O𝑀 } and A ≡ {A1, ...,A𝑀 } are
the observation space and the action space, respectively. Among
them, O 𝑗 is the observation space of agent 𝑗 and A 𝑗 the action
space of agent 𝑗 .

As agents in AD-POMDP make decisions asynchronously. In
AD-PODMP, at time slot 𝑡𝑖 , there is a set of available agents N ′,
N ′ ⊆ N . Only the agents in N ′ need to make decisions at time
slot 𝑡𝑖 . N ′ is obtained from function 𝑈 : S → 𝑁 ′, given the global
state S. Corredpondingly, the observation vector 𝒐 of agents N ′
can be obtained from function Ω : S × N ′ → ON′ . Agent 𝑗 in N ′
selects an action 𝑎 𝑗 ∈ A 𝑗 according to its own observation, form
a joint action vector 𝒖 ∈ AN′ . The joint action execution of these
agents results in a transition to the next global state 𝑠 ′ ∈ S through
transition function 𝑃 : S × AN′ → S. 𝒓 is a reward vector from
the reward function 𝑅 : S × AN′ × S → R |N′ | . Finally, 𝛾 ∈ (0, 1]
is the discount factor.

Now we present the key elements of the AD-POMDP for the
cooperative charging problem in WRSNs. Note that our proposed
algorithm uses the CTDE framework. When conducting central-
ized training in a simulation environment, we can easily obtain
the information of all MCs at the same time slot. Meanwhile, in
decentralized execution, each MC obtains its local observation at
different time slots according to its own local clock and performs
its action asynchronously.

Observation Space: We denote the local observation of MC
𝑚 𝑗 at global system clock time slot 𝑡𝑖 as 𝑜

[𝑡𝑖 ]
𝑗

. 𝑜 [𝑡𝑖 ]
𝑗

includes the
information of the MC itself and the information of the charging
request from sensor nodes. The information of an MC is defined as

a tuple
〈
𝑇
𝑗
−𝑖 , 𝐿𝑜𝑐 𝑗 , 𝐸

[𝑡 𝑗
𝑖
]

𝑟𝑒𝑠

〉
, where 𝑇 𝑗

−𝑖 denotes the number of global

system clock slots to finish the current charging task of MC𝑚 𝑗 ,

𝐿𝑜𝑐 𝑗 is the location of𝑚 𝑗 , and 𝐸
[𝑡 𝑗
𝑖
]

𝑟𝑒𝑠 is the residual energy of𝑚 𝑗

at time slot 𝑡𝑖 . For the decision-making agent, 𝑇 𝑗
−𝑖 will be zero. In

order to make the information form of different MC consistent,
and to make better use of MCs’ translation invariance, we still
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keep these variable in the local observation. The information of
a sensor node obtained from its charging request is defined as a

tuple
〈
𝐿𝑜𝑐𝑘 , 𝐸

[𝑡𝑘
𝑖
]

𝑟𝑒𝑠 , 𝑝𝑘𝑠

〉
. In this tuple, 𝐿𝑜𝑐𝑘 is the location of sensor

node 𝑠𝑘 , 𝐸
[𝑡𝑘
𝑖
]

𝑟𝑒𝑠 the residual energy of 𝑠𝑘 at time slot 𝑡𝑖 , and 𝑝𝑘𝑠 the
energy consumption rate when the sensor node sends this request.
Therefore, for the decision-making agent𝑚 𝑗 , its local observation

includes its own information
〈
𝑇
𝑗
−𝑖 , 𝐿𝑜𝑐 𝑗 , 𝐸

[𝑡 𝑗
𝑖
]

𝑟𝑒𝑠

〉
, and 𝑁𝑛𝑒𝑎𝑟 tuples〈

𝐿𝑜𝑐𝑘 , 𝐸
[𝑡𝑘
𝑖
]

𝑟𝑒𝑠 , 𝑝𝑘𝑠

〉
obtained from the charging requests sent by the

𝑁𝑛𝑒𝑎𝑟 nearest nodes from𝑚 𝑗 . In addition, if there are not so many
charging requests in the current request pool, the remaining node
information will be filled with zeros.

State Space: We denote the global state of 𝑚 𝑗 at time slot 𝑡𝑖
as 𝑠 [𝑡𝑖 ]

𝑗
. 𝑠 [𝑡𝑖 ]

𝑗
is the concatenation of the local observations from

all agents at 𝑡𝑖 . Suppose at time slot 𝑡𝑖 ,𝑚 𝑗 is to make a decision
and another agent𝑚 𝑗 ′ is on its way to sensor node 𝑠𝑘 . For global
state 𝑠 [𝑡𝑖 ]

𝑗
,𝑇 𝑗
−𝑖 in 𝑜

[𝑡𝑖 ]
𝑗

is zero and𝑇 𝑗 ′

−𝑖 in 𝑜
[𝑡𝑖 ]
𝑗 ′ is the number of time

steps𝑚 𝑗 ′ needs to complete the current charging task. When𝑚 𝑗 ′

becomes inactive due to low remaining energy before𝑚 𝑗 gose back
to the BS, the observation of𝑚 𝑗 ′ is replaced by a specific zero vector.
Such a specific zero vector is also called Death Masking [29]. Note
that the form of the local observation 𝑜

[𝑡𝑖 ]
𝑗

of each agent in the

global state 𝑠 [𝑡𝑖 ]
𝑗

is consistent. Therefore, it is convenient to use the
heterogeneous convolution kernel to avoid the huge input space
dimension of a centralized critic and to improve the scalability of
our algorithm.

Action Space: We denote the action of𝑚 𝑗 at its own local time
step𝑇 𝑗

𝑖
as 𝑎 [𝑇

𝑗

𝑖
] . Since each agent chooses 𝑁𝑛𝑒𝑎𝑟 charging requests

sent by the nearest nodes from the agent itself, the agent should
select one of these requests and complete it, or wait for the next
better charging request. Therefore, the dimension of the action
space of agent𝑚 𝑗 is 𝑁𝑛𝑒𝑎𝑟 + 1. Suppose there are only 𝑛 < 𝑁𝑛𝑒𝑎𝑟

charging requests in the request pool, the remaining 𝑁𝑛𝑒𝑎𝑟 − 𝑛

actions will all be invalid actions.
Reward Function: The local reward of𝑚 𝑗 at its own local time

step 𝑇
𝑗

𝑖+1 is 𝑟 [𝑇
𝑗

𝑖+1 ] . According to the two optimization goals for
cooperative charging mentioned above, we need to increase the
amount of energy transmitted into the network while reducing
the moving distance of MCs and the number of dead sensor nodes
in the network. To include these objectives, we define 𝑟 [𝑇

𝑗

𝑖+1 ] as
follows:

𝑟 [𝑇
𝑗

𝑖+1 ] =
𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎

𝐸
[𝑇 𝑗

𝑖
]

𝑐ℎ𝑎
+ 𝐸 [𝑇

𝑗

𝑖
]

𝑚𝑜𝑣

− 𝛼
N [𝑇

𝑗

𝑖
]

𝑚𝑖𝑠𝑠

N [𝑇
𝑗

𝑖
]

𝑚𝑖𝑠𝑠
+ N [𝑇

𝑗

𝑖
]

𝑟𝑒𝑞

(3)

where 𝛼 is used to adjust the two ratios in the reward function. As
shown in Equation (3), the two ratios in 𝑟 [𝑇

𝑗

𝑖+1 ] reflect: (1) the rela-
tion between the charging energy of𝑚 𝑗 and the moving distance,
and (2) the relation between the total number of dead nodes and
the total number of requests received. This reward function also
reflects the collisions in which multiple chargers move towards
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Figure 2: Comparison of the trajectory collection mecha-
nisms under Dec-POMDP, SDTTC, and our proposed AD-
POMDP. (a) Dec-POMDP collects all the joint information at
the same time slot as a trajectory. (b) In SDTTCMC 1 collects
the data covered by shadow and puts them together into one
trajectory. (c) In AD-POMDP MC 1 only collect its own tra-
jectory, namely the part covered by shadow.

the same sensor node. As such collisions significantly reduce the
charging utility, MCs will get a lower reward if collision arises.

4.2 Trajectory Collection Mechanism
To train the MARL algorithm, we first need to collect the trajectory
data composed of the interaction information of all agents, such as
global states, local observations, actions, rewards, etc. However, the
original trajectory collection mechanism of Dec-POMDP, which
requires collecting the joint actions and joint observations of all
agents at the same time step, is no longer applicable to AD-POMDP.
Therefore, for AD-POMDP, we only collect the trajectory of agent
𝑚 𝑗 based on its own local clock 𝑇 𝑗

𝑖
asynchronously. For𝑀 agents

in each episode, we collect 𝑀 trajectories which will be used for
ASM-PPO training together.

To illustrate the difference in the trajectory collectionmechanism
of Dec-POMDP, Synchronized Delay-Tolerant Trajectory Collection
(SDTTC) mechanism [6], and AD-POMDP, we use the following
example setup. Suppose 𝑠 𝑗

𝑖
is the global state of agent 𝑗 at local time

step 𝑇 𝑗
𝑖
, 𝑜 𝑗

𝑖
the observation of agent 𝑗 at 𝑇 𝑗

𝑖
, and 𝑎

𝑗
𝑖
the action of

agent 𝑗 at 𝑇 𝑗
𝑖
. For brevity, we do not consider other data collected,

such as rewards.
Dec-POMDP requires the collection of interactive information

of all agents at the same time step, as shown in Figure 2(a), the
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Figure 3: ASM-PPO architecture. The dark arrow indicates
the data flow of forwarding propagation, and the light arrow
indicates the data flow of gradient backpropagation.

trajectory collected is:
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2
2), ...]

Since the joint interaction information of all agents cannot be
collected in asynchronous decision-making scenarios, SDTTC re-
quires each agent to collect a trajectory, and to use the latest data
of the other agents as padding data, as shown in Figure 2(b). The
trajectories of MC 1 and MC 2 are:
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1
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We can see that in the trajectory of MC 1 collected by SDTTC, the
padding data of MC 2 is incomplete due to the missing data of MC
2 in𝑇 2

1 , which will interfere with the training process. AD-POMDP
requires each agent to collect only its own interaction information
without padding data, as shown in Figure 2(c). Correspondingly,
the trajectories of MC 1 and MC 2 are as follows:
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1
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Therefore, the trajectory collection mechanism in AD-POMDP
enables agents to collect trajectories asynchronously. Furthermore,
this mechanism is relatively more flexible as well as stable, and
reduces the storage of redundant padding data.

4.3 Architecture
Our ASM-PPO is designed on the basis of AD-POMDP. This al-
gorithm follows the CTDE framework with parameter sharing,
where all agents share the same policy 𝜋𝜙 (𝑎 |𝑜) and centralized
value function 𝑉𝜑 (𝑠). In the actor network and the critic network
of our algorithm, there is a heterogeneous convolution kernel and
a GRU unit, as illustrated in Figure 3. We adopt the learning mech-
anism of MAPPO in designing ASM-PPO because MAPPO uses
stochastic policy and is more suitable for task scenarios with large
randomness like cooperative charging in WRSNs.

In a WRSN, the forms of the local observations of each agent are
consistent. Therefore, for the centralized critic network in ASM-
PPO, we can easily use a parameter-sharing heterogeneous convo-
lution kernel to process the local observations of different agents
in the global state. In ASM-PPO, the heterogeneous convolution
kernel is instantiated by MLP (Multi-Layer Perceptron), and is used
to extract the current features of different agents, or to check the

Algorithm 1 ASM-PPO

Input: A set of𝑀 agents𝑚 𝑗 with their shared policy 𝜋𝜙 (𝑎 |𝑜)
Output: A trained collaborative policy 𝜋𝜙 (𝑎 |𝑜)
1: Initialize parameters 𝜙 for policy 𝜋𝜙 (𝑎 |𝑜) and parameters 𝜑 for

critic 𝑉𝜑 (𝑠)
2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1→ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥 do
3: Set data buffer 𝐷 = {}
4: Initialize 𝜏1, ..., 𝜏𝑀 empty lists
5: Initialize ℎ10,𝜋 , ..., ℎ

𝑀
0,𝜋 actor RNN states

6: Initialize ℎ10,𝑉 , ..., ℎ
𝑀
0,𝑉 critic RNN states

7: for 𝑡 = 1→ 𝑇 do
8: for all available agents 𝑎 do
9: Obtain 𝜏𝑎2 = (𝑠𝑎𝑡 , 𝑜𝑎𝑡 , 𝑟𝑎𝑡 )
10: Complete a step 𝜏𝑎

𝑡−1 ← 𝜏𝑎1 ∪ 𝜏
𝑎
2

11: 𝜏𝑎 ← 𝜏𝑎 ∪ 𝜏𝑎
𝑡−1

12: 𝑝𝑎𝑡 , ℎ
𝑎
𝑡,𝜋 = 𝜋 (𝑜𝑎𝑡 , ℎ𝑎𝑡−1;𝜙)

13: 𝑢𝑎𝑡 ∼ 𝑝𝑎𝑡
14: 𝑣𝑎𝑡 , ℎ

𝑎
𝑡,𝑉

= 𝑉 (𝑠𝑎𝑡 , ℎ𝑎𝑡−1,𝑉 ;𝜑)
15: Obtain 𝜏𝑎1 = (𝑠𝑎𝑡 , 𝑜𝑎𝑡 , ℎ𝑎𝑡,𝜋 , ℎ𝑎𝑡,𝑉 , 𝑢

𝑎
𝑡 )

16: end for
17: Execute actions 𝒖𝒕
18: end for
19: for all agents 𝑎 do
20: 𝐷 ← 𝐷 ∪ 𝜏𝑎
21: end for
22: Compute rewards-to-go 𝑅𝑡 in 𝐷

23: Compute advantage estimates 𝐴𝑡 in 𝐷

24: Adam update 𝜙 on 𝜋𝜙 like PPO
25: Adam update 𝜑 on 𝑉𝜑 like PPO
26: end for

"busy" degree of these MCs. We use a GRU cell to process the out-
put of different agents from the heterogeneous convolution kernel,
which can improve the scalability without increasing the param-
eters that need to be learned in ASM-PPO when the number of
agents increases. Additionally, to overcome the partial observabil-
ity in AD-POMDP and to fully utilize the GRU, the hidden state in
the GRU of the critic and the actor networks are also forwarded
throughout an episode. Compared with LSTM (Long Short-Term
Memory) [14], GRU has fewer parameters, faster training speed,
and requires fewer data in training. Hence GRU is more suitable for
reinforcement learning. Eventually, the output of a GRU cell will
be fed into the rest of the critic network.

In the actor network, the local observations of 𝑚 𝑗 transport
directly through the heterogeneous convolution kernel, the GRU
cell, and the rest of the actor network, since there is no need to
process other agents’ information. Moreover, there are only a few
charging requests in the request pool at the beginning of a charging
cycle or when WRSN is not so busy. This leads to a large number
of unavailable actions in the action space at these time steps. These
illegal actions slow down the training speed of the model, if we
treat all these actions as waiting actions. To avoid this problem,
ASM-PPO uses action mask [16] to mask out the invalid actions
in both the forward and backward pass, by replacing the weight
of the unavailable action with a large enough negative number. In
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Table 2: Network Parameters

Parameter Value

Side length of the area 𝐿 1000m
Number of sensor nodes 𝑁 100 to 500
Number of MCs𝑀 3 to 7
Maximum battery capacity of sensor nodes 𝐸𝑠 100J
Minimum battery capacity of sensor nodes 𝜉𝐸𝑠 0.6 × 100J
Battery capacity of MCs 𝐸𝑐 10kJ
Energy threshold for sensor nodes ℎ𝑠 0.3
Energy threshold for MCs ℎ𝑐 0.3
Energy transfer efficiency 𝜌 0.9
Charging power of MC 𝑝𝑐 2W
Moving power of MC 𝑝𝑐 5W
Moving speed of MC 𝑝𝑐 5m/s
Poisson Distribution 𝜆 1
Exponential Distribution 𝜇 1
Action window sizse 𝑁𝑛𝑒𝑎𝑟 5
Reward coefficient 𝛼 1
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Figure 4: Comparison of the performance of MCs in different
methods in terms of charging utility.

this way, when we use the Softmax function to calculate the logits
of each action, the logits of these unavailable actions will be close
enough to zero.

In the training process, we update the actor network 𝜋𝜙 (𝑎 |𝑜) and
the critic network 𝑉𝜑 (𝑠) just like the original MAPPO. For 𝑉𝜑 (𝑠)
in ASM-PPO, the gradient will only flow through the kernel which
processes the observation of the decision-making agent, as shown
by the light arrow in Figure 3. The pseudocode for ASM-PPO is
shown in Algorithm 1.

5 EVALUATION
5.1 Configurations
In the evaluation of algorithms, we implemented a WRSN using
existing source codes [8]. The configurations of the WRSN have
listed in Table 2. On such aWRSN, we compare ASM-PPOwith mTS
[17], MCDE [27], IPPO [9], MAPPO with VarlenMARL framework
[6], and MAPPO with AD-POMDP. MAPPO with AD-POMDP is
an ablation experiment to test the structure consisting of a hetero-
geneous convolution kernel and GRU cell in ASM-PPO.
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Figure 5: Comparison of all algorithms in terms of the aver-
age charging utility and the request miss rate under different
sensor nodes.
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Figure 6: Comparison of all algorithms in terms of the aver-
age charging utility and the request miss rate under different
MCs

For the network structure, we take the WRSN with 5 MCs as an
example. The actor and critic network of IPPO both consist of three
hidden layers of 32, 64, 64 units. In MAPPO with the VarlenMARL
framework and with AD-POMDP, the actor network consists of
one hidden layer of 32 units and five hidden layers of 64 units.
And critic network consists of one hidden layer of 120 units and
four hidden layers of 64 units. For ASM-PPO, the actor and critic
network both consist of two hidden layers of 32 and 64 units, one
GRU layer whose hidden state dim is 64, and two hidden layers of
64 units. All of these networks utilize ReLU (Rectified Linear Units)
non-linearity and Hardswish non-linearity [15] for the last layer.

The performance of each method in WRSN was measured with
average charging utility 𝜂, as defined in Equation (1), and request
missing rate 𝜃 , as defined in Equation (2), in one episode. In this
paper, one episode refers to a single charging cycle that MCs start
from the BS to perform charging tasks until all MCs have returned
to the BS due to low remainder energy. For a fair comparison, the
evaluation results are averaged over five different random seeds.
Furthermore, we make all MARL methods use the same hyper-
parameters as those of ASM-PPO. To improve the generalization
ability of the scheduling algorithm, the positions of all sensor nodes
are randomly determined before each episode in the training pro-
cess. We also use the relative distance and direction between the
decision-making MC and another MC or sensor node, namely the
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Figure 7: Ablation experiments demonstrating the effect of the heterogeneous convolution kernel and GRU unit in ASM-PPO.

relative position, to replace the absolute location coordinate of that
MC or sensor node.

5.2 Evaluation Results
We first study the performance of each MC in WRSN with 200 sen-
sor nodes and 5MCs. The results are depicted in Figure 4. Obviously,
in ASM-PPO, the MCs can transmit more energy into the network,
while keeping a relatively shorter moving distance. Meanwhile,
MCs in ASM-PPO perform much better in terms of load balanc-
ing than the traditional online methods such as mTS and MCDE.
Especially in mTS, MC 3 achieves a much higher charging utility
than all other MCs. This is because the MARL method can learn
the long-term optimal cooperative charging strategy and enable all
MCs to get a higher reward, while the MCs in traditional rule-based
methods are difficult to handle the large-scale and highly dynamic
WRSNs.

We then carry out the evaluations in WRSNs with various set-
tings to test the generation ability of these methods. Figure 5 show
the experimental results in WRSNs with 5 MCs and 100 to 500 sen-
sor nodes. ASM-PPO can stably achieve 6% higher charging utility
and 8% lower request miss rate in comparison with existing frame-
works. In comparison, VarLenMARL has poor stability, and the
performance of VarLenMARL changes significantly. It can also be
seen from the figure that as the number of sensor nodes increases,
the decrease in the distance between sensor nodes improves the
average charging utility. However, the large set of sensor nodes
also increases the burden on the MCs, making the request miss rate
increase at the same time.

In Figure 6, we fix 200 sensor nodes and change the number of
MCs from 3 to 7. It can be seen from the figure that ASM-PPO is
still superior to other methods, and there is an improvement of
5% in terms of the charging utility and 9% in terms of the request
missing rate. Compared with the high scalability of ASM-PPO,
when the number of MCs is greater than 5, the performance of
VarLenMARL drops sharply. The main reason is that the increase
in the number of MCs increases the size of the padding data in
the collected trajectories and this interferes with the stability of
the algorithm. Interestingly, the increase in the number of MCs
enables them to transmit more energy into the network, but the
charging utility decreases, as well. This is because the average
number of sensor nodes that each MC needs to serve is reduced.
This is equivalent to the scenario that the sensor nodes become
sparse for MCs. Consequently, the charging utility becomes lower.

To further evaluate ASM-PPO, we compare the learning curve of
MAPPO and ASM-PPO in a WRSN with 200 sensor nodes and 3 to 7
MCs in Figure 7. It can be found that in scenarios of different num-
bers of agents, ASM-PPO can all converge quickly. The convergence
process of ASM-PPO is also quite stable, since the learning curve of
our ASM-PPO does not change much under different random seeds.
This demonstrates the importance of the heterogeneous convolu-
tion kernel and GRU unit for algorithm training. In comparison,
when the number of agents increases, MAPPO may converge to a
sub-optimal strategy prematurely, or the convergence of MAPPO
slows down. These results show that a too large critic network will
indeed affect the stability of training. In conclusion, the structure
consisting of a heterogeneous convolution kernel and GRU cell is
beneficial to the training stability and scalability of the algorithm.

6 CONCLUSION
This paper studies the cooperative charging problem in large-scale
highly dynamic WRSNs. We first propose AD-POMDP as the prob-
lem formulation for asynchronous decision-making scenarios. With
AD-POMDP, we propose ASM-PPO to learn the dynamic and adap-
tive charging strategy for MCs. ASM-PPO allows agents to behave
asynchronously. ASM-PPO is equipped with a special component
consisting of a heterogeneous convolution kernel and GRU cell to
address the stability and scalability issues. The evaluation results
demonstrate that ASM-PPO is much competitive to traditional as
well as MARL scheduling methods in terms of average charging
utility and request miss rate. Furthermore, the ablation experiments
between MAPPO with AD-POMDP and ASM-PPO show that the
special component we proposed can well improve the stability and
scalability ofMARL. Additionally, althoughwe test these algorithms
on a simplified WRSN model, MCs can still learn to cooperate in
the complex environment with obstacles, water, etc., in the train-
ing process of MARL. We aim to further improve the scalability
of ASM-PPO with GNN, and apply this algorithm to more generic
asynchronous decision-making scenarios.
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