
Lyapunov Exponents for Diversity in Differentiable Games
Jonathan Lorraine
University of Toronto

Paul Vicol
University of Toronto

Jack Parker-Holder
University of Oxford

Tal Kachman
Radboud University

Luke Metz
Google Research, Brain Team

Jakob Foerster
University of Oxford

ABSTRACT
Ridge Rider (RR) is an algorithm for finding diverse solutions to
optimization problems by following eigenvectors of the Hessian
(“ridges”). RR is designed for conservative gradient systems (i.e., set-
tings involving a single loss function), where it branches at saddles
— easy-to-find bifurcation points. We generalize this idea to non-
conservative, multi-agent gradient systems by proposing a method
– denoted Generalized Ridge Rider (GRR) – for finding arbitrary
bifurcation points. We give theoretical motivation for our method
by leveraging machinery from the field of dynamical systems. We
construct novel toy problems where we can visualize new phenom-
ena while giving insight into high-dimensional problems of interest.
Finally, we empirically evaluate our method by finding diverse so-
lutions in the iterated prisoners’ dilemma and relevant machine
learning problems including generative adversarial networks.

KEYWORDS
Multi-agent Learning; Machine Learning; Deep Learning

ACMReference Format: Jonathan Lorraine, Paul Vicol, Jack Parker-Holder,
Tal Kachman, Luke Metz, Jakob Foerster. 2022. Lyapunov Exponents for
Diversity in Differentiable Games. In Proc. of the 21st Int’l Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS ’22), Online, May 9–13,
2022, IFAAMAS, 11 pgs.

1 INTRODUCTION
In machine learning it is often useful to select particular solutions
with desirable properties that an arbitrary (global or local) minimum
might not have. For example, finding solutions in image classifica-
tion using shapes which generalize more effectively than textures.
Important instances of this in single-objective minimization are
seeking solutions that generalize to unseen data in supervised learn-
ing [1, 2], in policy optimization [3], and generative models [4].
Many real-world systems are not so simple and instead involve
multiple agents each of which uses a different subset of parameters
to minimize their own objective. Some examples are generative ad-
versarial networks (GANs) [5, 6], actor-critic models [6], curriculum
learning [7–10], hyperparameter optimization [11–17], adversarial
examples [18, 19], learning models [20–22], domain adversarial
adaptation [23], neural architecture search [24–28], multi-agent
settings [29] and meta-learning [30–32]. In these settings, the aim
is to find one equilibrium (of potentially many equilibria) where
agents exhibit some desired behavior.

Correspondence to: Jonathan Lorraine lorraine@cs.toronto.edu Proc. of the 21st
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13, 2022, Online.
© 2022 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

For example, in the iterated prisoners’ dilemma (Sec. 5), solutions
favoring reciprocity over unconditional defection result in higher
returns for all agents. In GANs, solutions often generate a subset of
the modes from the target distribution [33], and in Hanabi, some
solutions coordinate far better with humans [34]. Existing methods
often find solutions in small subspaces – even after many random
restarts, as shown in Table 1. By finding a diverse set of equilibria in
these games, we may be able to (a) find solutions with a better joint
outcome, (b) develop stronger generative models in adversarial
learning, or (c) find solutions that coordinate better with humans.

Recently, Ridge Rider (RR) [35] proposed a general method for
finding diverse solutions in single-objective optimization. RR is a
branching tree search, which starts at a stationary point and then
follows different eigenvectors of the Hessian (“ridges”) with negative
eigenvalues, moving downhill from saddle point to saddle point.
In settings where multiple agents each have their own objective
(i.e., games), the relevant generalization of the Hessian — the game
Hessian [36] in Eq. 6 — is not symmetric. Thus, in general, the game
Hessian has complex eigenvalues (EVals) with associated complex
eigenvectors (EVecs), making RR not directly applicable.

In this paper, we generalize RR to multi-agent settings by leverag-
ing machinery from dynamical systems. We connect RR with meth-
ods for finding bifurcation points, i.e. points where small changes
in the initial parameters lead to very different learning dynamics
and optimization outcomes. We propose novel metrics, inspired
by Lyapunov exponents [37] that measure how quickly learning
trajectories separate. Our contributions include:

• Connections between finding diverse solutions and Lya-
punov exponents, allowing us to leverage the broad body of
work in dynamical systems.

• Proposing a method, Generalized Ridge-Rider (GRR), that
scales to high-dimensional differentiable games.

• Compared to existing methods, GRR finds diverse solutions
in the IPD, spanning cooperation, defection and reciprocity.

• Lastly, we present larger-scale experiments on GANs — a
model class of high interest to the ML community.

2 BACKGROUND
App. Table 4 summarizes our notation. Consider the single-objective
optimization problem:

𝜽 ∗ := argmin𝜽L(𝜽) (1)

We denote the gradient of the loss at parameters 𝜽 𝑗 by 𝒈 𝑗 :=
𝒈(𝜽 𝑗) := ∇𝜽L(𝜽) |𝜽 𝑗 . We can locally minimize the loss L using
gradient descent with step size 𝛼 :

𝜽 𝑗+1 = 𝜽 𝑗 − 𝛼𝒈 𝑗 (2)

Due to the potential non-convexity of the L, multiple stationary
points can exist, and gradient descent will only find a particular
solution based on the initialization 𝜽 0.

Main Track AAMAS 2022, May 9–13, 2022, Online

842

2.1 Ridge Rider
Ridge Rider (RR) [35] finds diverse solutions in single-objective
minimization problems. The method first finds a saddle point, either
analytically, e.g. in tabular reinforcement learning, or byminimizing
the gradient norm.

Then, RR branches the optimization procedure following dif-
ferent directions (or “ridges”) given by the EVecs of the Hessian
H = ∇𝜽𝒈 = ∇𝜽 (∇𝜽L). Full computation of the eigendecomposi-
tion of H , i.e. its EVecs and EVals, is often prohibitively expensive;
however, we can efficiently access a subset of the eigenspaces via
Hessian-vector products H𝒗 = ∇𝜽 ((∇𝜽L)𝒗) [38–41].
2.2 Optimization in Games
Instead of simply optimizing a single loss, optimization in games
involves multiple agents, each with a loss function that can depend
on other agents. For simplicity, we look at 2-player games with
players (denoted by 𝐴 and 𝐵) who want to minimize their loss –
L𝐴 (𝜽𝐴, 𝜽𝐵) or L𝐵 (𝜽𝐴, 𝜽𝐵) – with their parameters – 𝜽𝐴 or 𝜽𝐵 .

𝜽 ∗𝐴 ∈argmin𝜽𝐴L𝐴 (𝜽𝐴,𝜽
∗
𝐵), 𝜽

∗
𝐵 ∈argmin𝜽𝐵L𝐵 (𝜽

∗
𝐴,𝜽𝐵) (3)

If L𝐵 and L𝐴 are differentiable in 𝜽𝐵 and 𝜽𝐴 , we say the game
is differentiable. One of the simplest optimization methods is to
find local solutions by simply following the players’ gradients, but
this is unstable when the game Hessian has complex EVals [42].
Here, 𝒈 𝑗

𝐴
:= 𝒈𝐴 (𝜽

𝑗

𝐴
, 𝜽 𝑗

𝐵
) is an estimator for ∇𝜽𝐴L𝐴 |𝜽 𝑗

𝐴
,𝜽 𝑗

𝐵
, and the

simultaneous gradient update is:

𝜽 𝑗+1
𝐴

= 𝜽 𝑗

𝐴
− 𝛼𝒈 𝑗

𝐴
, 𝜽 𝑗+1

𝐵
= 𝜽 𝑗

𝐵
− 𝛼𝒈 𝑗

𝐵
(SimSGD)

We simplify notation with the concatenation of all players’ parame-
ters (or joint-parameters) 𝝎 := [𝜽𝐴, 𝜽𝐵] ∈R𝑑 and the joint-gradient
vector field �̂� : R𝑑 → R𝑑 , denoted at the 𝑗𝑡ℎ iteration by:

�̂� 𝑗 := �̂�(𝝎 𝑗) := [𝒈𝐴 (𝝎 𝑗),𝒈𝐵 (𝝎 𝑗)] = [𝒈 𝑗

𝐴
,𝒈 𝑗

𝐵
] (4)

We write the next iterate in (SimSGD) with fixed-point operator 𝑭 :
𝝎 𝑗+1=𝑭𝑆𝐺𝐷 (𝝎 𝑗)=𝝎 𝑗 − 𝛼�̂� 𝑗 (5)

The Jacobian of the fixed point operator 𝑭 – denoted 𝑱 – is use-
ful for analysis, including bounding convergence rates near fixed
points [43] and finding points where local changes to parameters
may cause convergence to qualitatively different solutions [44]. The
fixed point operator’s Jacobian crucially depends on the Jacobian of
the joint-gradient �̂�, which is called the game Hessian [45] because
it generalizes the Hessian:

Ĥ := ∇𝝎 �̂� =

[
∇2
𝜽𝐴

L𝐴 ∇𝜽𝐴∇𝜽𝐵L𝐴
∇𝜽𝐵∇𝜽𝐴L⊤

𝐵
∇2
𝜽𝐵
L𝐵

]
(6)

𝑱 𝑆𝐺𝐷 := ∇𝝎𝑭𝑆𝐺𝐷 (𝝎)= 𝑰 − 𝛼Ĥ (7)
In Fig. 2 we show a game with a solution that we can only converge
to by using an appropriate optimizer. Thus, we need to incorporate
information about the optimizer when generalizing RR, which we
do by working with the (largest) EVals/EVecs of 𝑱 instead of (most
negative) EVals/EVecs of Ĥ .

We can understand the difference between optimization with
a single and multiple objectives as follows: In single-objective op-
timization following the gradient forms trajectories from a con-
servative vector field because Ĥ = H is the Hessian of the loss
which is symmetric and has real EVals. However, in games with
multiple objectives, Ĥ can be non-symmetric and have complex

EVals, resulting in a non-conservative vector field from optimiza-
tion, opening the door to many new phenomena.

3 METHODS FOR GENERALIZING RR
Here, we present two key contributions for generalizing RR to
games. We first connect diversity in optimization to the general
concept of bifurcations, places where a small change to the param-
eters causes a large change to the optimization trajectories. Second,
we introduce Lyapunov exponents [37] and easy-to-optimize vari-
ants as a tool for finding these aforementioned bifurcations.

3.1 Connecting Diversity and Bifurcations
In dynamical systems, bifurcations are regions of the parameter
space where small perturbations result in very different optimiza-
tion trajectories, and in general a dynamical system can contain a
variety of different types of bifurcations. In contrast, in conservative
gradient vector fields, saddle points are the only relevant class of
bifurcations. As a consequence, their EVecs play a key role in the
shape of the phase portraits, which are geometric representations
of the underlying dynamics. In particular, the negative EVecs are
orthogonal to separatrices [46], boundaries between regions in our
systemwith different dynamical behavior, thus providing directions
to move in for finding different solutions. This perspective provides
a novel view on RR. RR branches at saddle points, the only relevant
class of bifurcation points in single loss optimization.

However, in the dynamical systems literature, many bifurcation
types have been studied [37]. This inspires generalizing RR to non-
conservative gradient fields (e.g. multi-agent settings) where a broad
variety of bifurcations occur. See Fig. 2 for a Hopf bifurcation [44]
or Fig. 7 for various others.

3.2 Lyapunov Exponents for Bifurcations
Using tools from dynamical systems research we look at how to
find general bifurcation points. Our objectives are inspired by the
Lyapunov exponent, which measures asymptotic separation rates
of optimization trajectories for small perturbations. We propose a
similar quantity, but for finite length trajectories. Given a 𝑘-step
trajectory generated by our fixed point operator 𝑭 – i.e., optimizer –
with initialization 𝝎0 and Jacobian at iteration 𝑗 of 𝑱 𝑗 , we measure
the separation rate for an initial, normalized displacement 𝒅 with:

𝜆𝑘 (𝝎0, 𝒅) =
1
𝑘

𝑘∑
𝑗=0

𝛾 𝑗 (𝝎0, 𝒅), (8)

where 𝛾 𝑗 (𝝎0, 𝒅) := log(𝒅⊤ (𝑱 𝑗 (𝝎0))⊤ 𝑱 𝑗 (𝝎0)𝒅) (9)

We call 𝛾 𝑗 the 𝑗𝑡ℎ Lyapunov term. When 𝑘 = 0, the 𝜆 are called
the local Lyapunov exponents, while as 𝑘 → ∞ these are called the
(global) Lyapunov exponents [47]. For a variable 𝑘 , we denote this
as the 𝑘-step or truncated Lyapunov exponent. Fig. 1 visualizes the
exponents’ calculation providing additional intuition. For notational
simplicity, we suppress the dependency of 𝑱 𝑗 on 𝝎0 going forward.

Within a basin of attraction to a given fixed point the global
Lyapunov exponent is constant [37]. Intuitively, this is because an
arbitrarily high number of Lyapunov terms near the fixed point
dominate the average defining the exponent in Eq. 8. This property
prevents us from optimizing the global exponent using gradients,
making it a poor objective for bifurcations. As such, our interest in
the truncated exponent is motivated from multiple directions:

Main Track AAMAS 2022, May 9–13, 2022, Online

843

Figure 1: Visualization of the components to a Lyapunov ex-
ponent 𝜆𝑘 (𝝎0, 𝒅) described in Eqs. 8, 9, which measures how
quickly trajectories separate starting at a point 𝝎0 in direc-
tion 𝒅. Here, the optimization trajectory iterates 𝝎 𝑗 accumu-
late at a fixed point𝝎∗. We show two displacements – 𝒅1 and
𝒅2 – resulting in separate "perturbed" trajectories shown in
𝑏𝑙𝑢𝑒 and 𝑔𝑟𝑒𝑒𝑛. We measure the separation rate between the
true and perturbed trajectories at the 𝑗𝑡ℎ optimizer iteration
with the Lyapunov term 𝛾 𝑗 (𝝎0, 𝒅). The exponent 𝜆𝑘 (𝝎0, 𝒅) is
the average of the first 𝑘 terms. See Fig. 6 for actual trajecto-
ries on a toy problem used in an exponent calculation.

(1) Non-zero gradient signals for finding bifurcations
(2) Computationally tractability
(3) A better separation rate description for the finite trajectories

used in practice
However, unlike the global exponent, the truncated version lacks
theoretical results.

In more than one dimension, the 𝑘-step Lyapunov exponent is
a function of the specific direction of the perturbation 𝒅 [46]. We
look at using the direction for maximal separation — i.e., the max
𝑘-step Lyapunov exponent:

𝜆𝑚𝑎𝑥
𝑘

(𝝎0) = max
𝒅, ∥𝒅 ∥=1

𝜆𝑘 (𝝎0, 𝒅) (10)

For dynamical systems with basins of attraction, common in op-
timization, the max exponent is largest on the boundary between
basins, which motivates maximizing the max exponent to find bifur-
cations. The max exponent can be evaluated by finding the largest
EVal of an average of the Jacobians over the optimization steps [37]:

𝑱 † :=
1
𝑘

𝑘∑
𝑗=0

(𝑱 𝑗)⊤ (𝑱 𝑗), (11)

𝜆𝑚𝑎𝑥
𝑘

(𝝎0) = max
𝜆∈Sp(𝑱 †)

|𝜆 | (12)

Importantly, in higher dimensions one eigenvalue dominates the
spectrum of 𝑱 after a large number of steps [48, 49] and is thus a
point of maximal exploration in our solution space.

We note some practical points for computing these exponents:
when 𝑘 = 0 the max exponent is the max eigenvalue of 𝑱 0. As
𝑘 → ∞ and our fixed point operator converges to a fixed point 𝝎∗,
the max exponent is the max EVal of 𝑱 at 𝝎∗. Calculating 𝜆𝑚𝑎𝑥

𝑘
is

easiest when𝑘 = 0 or𝑘→∞, e.g., by power iteration on the relevant
𝑱 . For intermediary 𝑘 , directly using leading EVals of 𝑱 † involves re-
evaluating the entire optimization trajectory many times. Instead,
it is often easier to work with bounds. A simple lower bound is
formed by using the leading EVec at any single step, or an upper
bound by using the leading EVec at each step, which are tight as
𝑘 → ∞ [48]. We investigate these strategies in App. Fig. 9.

Pl
ay
er

1
St
ra
te
gy

Player 2 Strategy

Joint-playergrad.log-norm
log(∥𝒈∥)

Figure 2: The phase portrait for two standard optimization
algorithms on the mixed small IPD and Matching pennies
problem. We show trajectories following the gradient with
simSGD in red and LOLA [29] – a method for learning in
games – in blue. All initializations of SimSGD only find the
solution in the top right, because the center solution has
imaginary EVals, while LOLA finds all solutions. For com-
parisons over more test problems see App. Fig. 8.

Commonly, our goal is to obtain many qualitatively different so-
lutions from a single starting point, whichmotivates simultaneously
optimizing the exponents corresponding to multiple different di-
rections. Relatedly, the sum of positive global Lyapunov exponents
gives an estimate of the Kolmogorov–Sinai or metric entropy by
Pesin’s theorem [50]. We use this to motivate different performance
metrics in Section 4.2.

4 PROPOSED ALGORITHMS
Having given an overview of the key mathematical concepts, we
now present our overall algorithm. First, we introduce a general
branching-tree search framework for finding diverse solutions in
differentiable games. Next, we present our method – Generalized
Ridge Rider (GRR) – which implements this framework using trun-
cated Lyapunov exponents (Eq. 10) as the branching criterion. Lastly,
we highlight the differences between GRR and RR.

4.1 Branching Optimization Tree Searches
Our framework is a generalized version of RR and contains the
following components:

(1) A method for finding a suitable starting point for our branch-
ing process - see Fig. 6.

(2) A process for selecting branching directions (or perturbations)
from a given branching point - see Fig. 4.

(3) A prescription for how to continue the optimization process
along a given branch after the initial perturbation.

(4) A re-branching decision rule, i.e., when to go back to step
(2). This was important in RR because optimizers in high-
dimensional non-convex ML problems often finish at saddle
points [51].

(5) Lastly, a metric to rank the different solutions.

Main Track AAMAS 2022, May 9–13, 2022, Online

844

Repeat
branching when
progress stops

Branch in different
directions d0

d1

𝜽*,{1}
d0

d2

𝜽*,{1,1}

Starting point
allowing diverse

solutions
Optimize

each branch

𝜽start

d0

d1

𝜽*,{i,j}
Leaves and
nodes are
solutions ...𝜽*,{i,j,k}

d2

Figure 3: Visualization of branching optimization tree
search. The key components are: (1) selecting the starting
point, (2) creating different branches, (3) optimizing each
branch, and (4) choosing when to re-branch.

We visualize this process in Fig. 3. RR is an instance of this general
process, where each component is suitable for single-objective
optimization. In the next section, we present another instance of
this method, designed for optimization in games. We include a
more detailed description of branching tree searches in App. Alg. 1,
highlighting the important changes compared to RR.

4.2 Generalized Ridge Rider (GRR)
Starting point: Motivated by Section 3.2, we look at optimizing
the maximal 𝑘-step Lyapunov exponent from Eq. 10 to obtain our
starting point:

L(𝝎0) = −𝜆𝑚𝑎𝑥
𝑘

(𝝎0) = − max
𝒅, ∥𝒅 ∥=1

𝜆𝑘 (𝝎0, 𝒅) (13)

However, using a single exponent only guarantees trajectory sepa-
ration in a single direction. If we want to branch across multiple
bifurcations in different directions, we need an objective using ex-
ponents in multiple, different directions. We look at the simple
objective choice summing over exponents:

Lsum
𝑛 (𝝎0) = − max

𝒅1,...,𝒅𝑛

𝑛∑
𝑙=1

𝜆𝑘 (𝝎0, 𝒅𝑙), (14)

such that ∥𝒅𝑙 ∥ = 1, 𝒅⊤
𝑙
𝒅𝑚 = 0 for all 𝑙,𝑚 ∈ 1, . . . , 𝑛, 𝑙 ≠𝑚 (15)

Intuitively, the constraint guarantees we have different directions
to separate in, by making them orthogonal. It is straightforward
to evaluate this objective, by evaluating the top-𝑛 EVals of the
matrix from Eq. 11. More generally, convex functions of the 𝑘-step
exponents in different directions form reasonable objectives that
are more amenable to optimization. Specifically, we also look at:

Lmin
𝑛 (𝝎0) = − max

𝒅1,...,𝒅𝑛

min
𝑙=1...𝑛

𝜆𝑘 (𝝎0, 𝒅𝑙) (16)

such that ∥𝒅𝑙 ∥ = 1, 𝒅⊤
𝑙
𝒅𝑚 = 0 for all 𝑙,𝑚 ∈ 1, . . . , 𝑛, 𝑙 ≠𝑚 (17)

Branching the parameter optimization: We must choose
what direction to branch in; our procedure for evaluating Lyapunov
exponent objectives creates natural candidates. Specifically, evalu-
ating the max exponent involves finding the direction maximizing
trajectory separation, which we re-use for branching. Notably, this
is the most negative EVal of the Hessian if we start at a saddle point
and use SGD when calculating the trajectories, generalizing the
choice from RR. For each direction, we can move in both a positive
and negative direction, giving two branches.

Pl
ay
er

1
St
ra
te
gy

Joint-playergrad.log-norm
log(∥𝒈∥)

GRR – Our Method – at a Saddle Bifurcation

Pl
ay
er

1
St
ra
te
gy

Player 2 Strategy

GRR at a Hopf Bifurcation
Figure 4: We show branching at different types of bifur-
cations, obtained by optimizing a Lyapunov exponent as
shown in Fig. 6. In each setup, we have two EVecs and branch
in opposite directions, giving four paths, displayed in dif-
ferent colors. Steps with the eigenvector have magenta cir-
clesmarking boundaries.Top: In the small IPD, finding, then
branching at a saddle – where the joint-player grad. log-
norm log(∥�̂�∥) is 0 – allows us to find defect-defect and tit-
for-tat solutions.Bottom: In theMixed Problemof Small IPD
and Matching Pennies, branching at the Hopf bifurcation
allows us to find both solutions. Here, there are no saddle
points near the bifurcation, so RR’s starting point does not
allow branching to find both solutions.

Also, we must choose how far to move in the directions. If we
move too far, we may leap into entirely different parts of the pa-
rameter space – e.g., missing interesting regions and recovering
similar solution modes. If we are not exactly at a bifurcation – only
near it – then we may need to move some minimum distance to
cross the separatrix and find a new solution. We look at two simple
strategies to move sufficiently far. First, we try taking a single step
with the normalized exponent direction scaled according to the
exponent. Second, we look at taking small steps in the exponent
direction until the alignment with the joint-gradient flips, which
generalizes RR’s “riding a ridge” (following an EVec of the Hessian)
while it is a descent direction.

Main Track AAMAS 2022, May 9–13, 2022, Online

845

Optimizing each branch: For optimization in games, the sta-
bility properties of solutions can crucially depend on optimizer
choice [52]. One should choose an optimizer suited to the prob-
lem. In our experiments, we use Learning with Opponent Learning
Awareness (LOLA) [29] which can converge to periodic solutions
and is attracted to high-welfare solutions in the IPD. In Section 6.1.1
we contrast finding diverse solutions using LOLA with simultane-
ous SGD (simSGD) – a method that works well for single-objective
optimization, but cannot find periodic solutions. App. A summarizes
other optimizer choices.

Re-branching: In single-objective optimization in ML, our opti-
mizer often finishes at a high-dimensional saddle [51], which makes
re-branching important. Specifically, we can re-branch at the saddle
in negative EVec directions to try to find critical points with less
negative EVecs. In our setup, we are interested in re-branching if
our optimizer finishes at a point where EVals of the Jacobian of the
fixed point operator 𝑱 are greater than 1. These are directions where
our optimizer will continue moving the parameters. [53] observed
EVals of 𝑱 larger than 1 at the end of GAN training, indicating that
we may want to re-branch for games in machine learning.

4.3 Comparing GRR and RR
RR is a branching optimization search specifically for single-objective
optimization –which is less general than optimization in games – so
it can outperform GRR. E.g., non-conservative systems have more
bifurcation types than conservative ones. If we are only concerned
with saddle bifurcations, we can just find a saddle stationary point
by minimizing the gradient norm. We know that this (relatively)
easy-to-find stationary point lies on the separatrix. However, Hopf
bifurcations are not necessarily near stationary points. Thus opti-
mizing gradient norms does not work in general, while optimizing
a Lyapunov exponent does (Fig. 2).

While it might be overkill to find a separatrix with Lyapunov
exponents in a single-objective setting, we take some lessons from
GRR back to RR. It is useful to view RR as a method for finding bi-
furcations and branching across them. This motivates ways to sort
between different stationary points to start at – an open problem
from RR. For example, using the point with the largest Kolmogorov-
Sinai entropy [50]. At stationary points, this is simply the (negative)
sum of negative EVals. Another limitation of RR is effectively esti-
mating the most negative EVals of the Hessian. It is often simpler –
in computation and implementation – to estimate the leading EVals
of the Jacobian of the fixed point operator 𝑱 instead of the most
negative eigenvalues of the Hessian Ĥ . In Section 6.2.3 we show
that our method saves Hessian-vector product evaluations when
estimating EVecs in setups from RR.

5 EXPERIMENTAL SETTING
We experimentally investigate GRR on a variety of problems sum-
marized in this section and described in detail in App. C.1. We chose
these as they cover different types of dynamics and contain differ-
ent kinds of bifurcations. Some are standard benchmarks, while
others – i.e., Random Subspaces – are novel to this work. We also
summarize our gradient computation for these problems.

Matching Pennies is a simplified 2-parameter version of rock-
paper-scissors. This problem’s game Hessian has purely imaginary

EVals unlike the small IPD, but only a single solution. Thus, by itself,
is a poor fit for evaluating methods for a diversity of solutions, but
nevertheless a useful test when probing GRR behavior.

The Iterated Prisoners’ Dilemma (IPD) is the discounted, in-
finitely iterated Prisoner’s Dilemma [54]. Each agent’s policy condi-
tions on the actions in the prior time step, so there are 5 parameters
for each agent – the probability of cooperating initially and those
given both agents’ preceding actions. There are several different
relevant equilibria in the IPD, including unconditional defection
(DD), leading to the worst-case joint outcome, and tit-for-tat (TT),
where agents initially cooperate, then copy the opponents’ action
(giving a higher reward). We turn the IPD into a differentiable game
by calculating the analytical expected return as a function of the
joint policy of the two agents.

The Small IPD is a 2-parameter simplification of IPD, which
has both DD and TT Nash equilibria, allowing us to visualize op-
timization difficulties from the full-scale IPD. However, the game
Hessian has strictly real EVals, unlike the full-scale IPD.

Mixing Small IPD and Matching Pennies interpolates be-
tween the Small IPD and Matching pennies games with an inter-
polation factor 𝜏 ∈ [0, 1]. This problem has two solutions – one
where both players cooperate and one where both players select
actions uniformly, with a Hopf bifurcation separating these.

Generative Adversarial Networks (GANs): We use a setup
from [55, 36, 56], where the task is to learn a Gaussian mixture
distribution using GANs. The data is sampled from a multimodal
distribution to investigate the tendency to collapse on a subset of
modes during training – see App. Fig. 16 for the ground truth.

Random Subspace IPD/GAN: To see how robustly we can find
bifurcations with the exponents, we construct more complicated toy
problems by taking higher-dimensional problems and optimizing in
a random subspace. For each player, we select a random direction
to optimize in, by sampling a vector v with entries from 𝑈 [0, 1]
and normalizing it. Additionally, we select a random offset b from
whatever an appropriate initialization is for the higher-dimensional
problem. So, the first player controls 𝑥-coordinate and optimizes
the loss L𝐴 (v𝐴𝑥 + b𝐴, v𝐵𝑦 + b𝐵), while the second player controls
the 𝑦-coordinate and optimizes L𝐵 (v𝐴𝑥 + b𝐴, v𝐵𝑦 + b𝐵).

Single-objective problems: We apply our method to find bi-
furcations on single-objective optimization problems. There are
various relevant problems in machine learning, but we focus on
comparisons with RRs EVec estimation in MNIST classification.

Optimizing the starting point objective: To optimize these
objectives, we use automatic differentiation libraries (like Jax [41]
or PyTorch [40]) to compute gradients through methods that cal-
culate our Lyapunov exponent-inspired objectives. The scalability
of this approach depends on the implementation of our exponent
calculation, which can depend on estimating the top eigenvalues
of the positive semi-definite (PSD) symmetric matrix in Eq. 11. In
simple settings we can differentiate through the full spectrum calcu-
lation via jax.linalg.numpy.eigh; we investigate this on the toy
experiment in Sec. 6.1.2 and the IPD in Sec. 6.2.1. However, in ML,
the matrix from Eq. 11 is typically too large for the full spectrum.
Directly estimating the top EVals with an iterative method allows
us to (automatically) differentiate through them. We differentiate
through jax.numpy.linalg.eigh in Fig.6 and investigate using
power iteration with Hessian-vector products in App. Fig. 9.

Main Track AAMAS 2022, May 9–13, 2022, Online

846

lo
ss

L
(𝝎

0)
=
−𝜆

𝑚
𝑎
𝑥

𝑘
(𝝎

0)

optimization iteration

ar
gu

m
en
to

fE
Va

la
rg
(𝜆
)

log-norm of EVal log(|𝜆 |)

EVals of Jac. of fixed point operator Sp(𝑱) EVals of game Hessian Sp(Ĥ)

Figure 5: We display gradient descent optimization on the 1-step max Lyapunov exponent objective (Eq. 13) on the IPD. Take-
away: We effectively reduce our loss and correspondingly raise the max EVal of 𝑱 . Left: We display our loss – i.e., the negative
Lyapunov exponent objective– as optimization progresses.Middle:Wevisualize the spectrumof the Jacobian of our fixed point
operator in log-polar coordinates as optimization progresses. The spectrum is shown with a scatter-plot in blue, with a pro-
gressively larger alpha at each iteration. The final spectrum is shown in red. A vertical red line is shown where the EVal norm
equals 1, signifying the cutoff between (locally) convergent and divergent eigenspaces. We effectively maximize the norm of
the largest EVal. Right: We display the spectrum of the game Hessian. A horizontal red line is shown where the real part of
the EVal transitions from negative to positive, signifying the cutoff between (locally) convergent and divergent eigenspaces
under gradient flow. Log-polar coordinates are required to see structure in the spectrum.

6 EXPERIMENTAL RESULTS
First, in Sec. 6.1 we use the diagnostic problems to demonstrate
and ablate the key parts of our algorithms – i.e. optimizer choice
(Sec. 6.1.1), starting point selection (Sec. 6.1.2), and branching (Sec.
6.1.3). Next, in Sec. 6.2 we scale GRR to large-scale problem settings
by (a) demonstrating that we improve RR’s EVec estimation for
neural network classifiers in Sec. 6.2.3, and (b) calculating Lyapunov
exponents for GANs in Sec. 6.2.4.
6.1 Diagnostic Experiments
6.1.1 Optimizer Choice. Here, we give a system with complex
EVecs showing (a) the importance of selecting a convergent opti-
mizer in GRR, and (b) an example task where RR cannot be applied.
Fig. 2 shows the phase portrait for baseline methods on our Mixed
Problem. LOLA (and other game optimizers) can find both solutions,
while naïvely following the gradient always finds a single solution.
6.1.2 Starting Point Selection. Fig. 6 shows the effect of optimizing
the starting point for the max 10-step Lyapunov exponent on the
Mixed Problem. We find gradient-based optimization can find bi-
furcations. Next, Fig. 9 contrasts different direction choices for the
exponent calculation. We find that re-estimating the top EVecs at
each iteration performs best, though the simple methods also work.
App. Fig. 10 shows the max 𝑘-step exponent for multiple numbers
of steps 𝑘 , showing that a moderate number of steps – e.g., 10 – al-
lows us to find bifurcations. App. Fig. 15 shows different Lyapunov
exponent objectives, trying to guarantee trajectory divergence in
multiple directions. We can find bifurcations while guaranteeing
trajectory separation in every direction.

Impact of inner optimizer choices on bifurcation structure: App.
Fig. 11 contrasts the exponents for LOLA and simSGD, showing
that we find optimizer-dependent bifurcations. App. Fig. 12 investi-
gates the impact of optimization-algorithm parameter choices on
bifurcation structure. This shows that if the step size is too large,
the optimizer does not converge, resulting in bifurcations between
complicated limit cycle trajectories [57], and making GRR difficult
to apply.

Starting points on single-objective problems: App. Fig. 13 inves-
tigates our algorithm in single-objective problems, showing that
our method finds bifurcations in the same setup as RR. App. Fig. 14
shows our method on the logistic map, giving intuition for our
method on a canonical example for bifurcations.

6.1.3 Branching at Bifurcations. In Fig. 4 we demonstrate branch-
ing at bifurcations to find multiple solutions to toy problems. This
shows the branching process, and an explicit example where RR’s
starting point does not work, but GRR’s does. The small IPD has a
saddle bifurcation, while the Mixed Problem has a Hopf bifurcation.

6.1.4 A Range of Complicated Toy Problems. In Fig. 7 we look
at calculating Lyapunov exponents on toy problems with more
complicated bifurcation structures. We create a variety of more
complex toy problems by taking the high-dimensional IPD and
GAN problems and selecting a random subspace to optimize in. We
can effectively highlight bifurcations in this setup.

6.2 Scaling the Results
6.2.1 Optimizing Lyapunov Exponents on IPD. Here, we investigate
our ability to use gradient-based optimizers on Lyapunov exponents
in the IPD. Fig. 5 shows the feasibility of using gradient descent to
tune the 1-step max Lyapunov exponent. App. Fig. 18 optimizes
an objective using multiple exponents, showing that we effectively
optimize multiple exponents, which gives trajectory separation in
multiple directions. App. Fig. 19 compares objectives using mul-
tiple exponents, showing that using the minimum of the top 𝑛

exponents gives trajectory separation in all 𝑛 directions, unlike
the naïve choice of optimizing their sum. The sum of exponents
finds solutions separating extremely fast in the top directions, while
(slowly) converging in the bottom directions. In contrast, the min of
the exponents does not allow convergence in the bottom directions.
App. Fig. 20 compares optimizing the 𝑘-step max Lyapunov expo-
nent for variable 𝑘 , showing that we effectively minimize multi-step
exponents in higher-dimensional problems if required.

Main Track AAMAS 2022, May 9–13, 2022, Online

847

Pl
ay
er

1
St
ra
te
gy

M
ax

10-step
Lyapunov

Exponent

Calculating the exponent
Pl
ay
er

1
St
ra
te
gy

Player 2 Strategy
Optimizing the exponent

Figure 6: Calculation and optimization of a max 10-step Lya-
punov exponent from Eq. 10 on the mixed small IPD and
Matching Pennies problem. Gradient-based optimization on
this objective effectively finds the bifurcation. Top:We show
a heatmap of the exponent, and visualize the calculation of
each exponent in two regions. This involves simulating 10-
step trajectories shown in red starting at the black points,
then finding a direction that maximizes trajectory separa-
tion. We use this exponent to find bifurcations – in this case
between the solution in the top right and the center. Bottom:
Weshowoptimization trajectories for gradient ascent on the
exponent for a grid of initializations. For a variety of start-
ing points, the optimization procedure finds large exponent
locations (final iterate shown with red circles).

6.2.2 GRR Applied to the IPD. Here, we use our method on the IPD,
where existing methods have difficulty finding diverse solutions.
There are two solution modes: ones where both agents end up de-
fecting and cooperating respectively. Table 1 compares our method
to baselines of following gradients and LOLA, each run with ran-
dom initializations. Our method finds both solutions modes, unlike
existing approaches. We found that it was sufficient to use the max
Lyapunov exponent as our objective, which only guarantees sepa-
ration in 1 direction. Similarly, we found that it was sufficient to
use a 1-step or local Lyapunov exponent objective, though we may
require more steps to find bifurcations in other problems.

Pl
ay
er

1
St
ra
te
gy

M
ax

10-step
Lyapunov

Exponent

Player 2 Strategy

Random subspace test problems

D
is
cr
im

in
at
or

Generator

Figure 7: We show the Lyapunov exponent heatmap (as
in Fig. 6) on more complicated toy problems to see how
robustly we can find different bifurcations. The exponent
peaks near where trajectories (shown in red) separate, show-
ing that we find various bifurcations. See App. Fig. 17 for
other sampled subspaces. Sec. 5 describes how we construct
these examples by taking higher-dimensional problems and
optimizing them in a random subspace. Top: An IPD sub-
space with multiple Hopf bifurcations. Bottom: A GAN sub-
space with various bifurcations.

6.2.3 Improving RR’s EVec Estimation. We investigate efficiently
finding the most negative EVecs in RR by estimating the largest
EVecs of the Jacobian of our fixed point operator. We measure
efficiency by comparing the number of Hessian-vector product
(HVP) evaluations because HVP evaluations dominate the cost of
EVec estimation here. Table 2 shows howmanyHVP evaluations we
require to reach different MNIST classifier accuracies by following
EVecs. Our method can more efficiently use HVP evaluations than
the RR method because we do not need to repeatedly re-estimate
the most negative EVal.

We stress that this problem is not designed to train a single,
strong classifier; it is easy to simply train our network by following
the gradient to 100% train accuracy. This problem was selected from
RR’s experiments because it requires us to accurately and efficiently
estimate negative EVecs many times. A downstream use of this is
training an ensemble of classifiers for generalization.

Main Track AAMAS 2022, May 9–13, 2022, Online

848

Player 1 Loss Player 1 Strategy Distribution, [min, max]

Search Strategy L [min, max] 𝑝 (𝐶0) 𝑝 (𝐶 |𝐶𝐶) 𝑝 (𝐶 |𝐶𝐷) 𝑝 (𝐶 |𝐷𝐶) 𝑝 (𝐶 |𝐷𝐷)
GRR: tune max Lyap + top EVec branch + simSGD [1.000, 2.000] [.003, .999] [.032, .999] [.004, .884] [.001, .912] [.000, .013]
GRR: tune max Lyap + top EVec branch + LOLA [1.000, 2.000] [.002, .999] [.063, .993] [.001, .910] [.000, .922] [.005, .103]
20 Random init + SimSGD [1.997, 1.998] [.043, .194] [.142, .480] [.041, .143] [.055, .134] [.001, .001]
20 Random init + LOLA [1.000, 1.396] [.000, 1.00] [.093, 1.00] [.000, .966] [.057, 1.00] [.000, .947]
1 Random init + top EVec branch [2.000, 2.000] [.001, .003] [.027, .030] [.003, .007] [.008, .009] [.000, .000]

Table 1:We show strategies for finding diverse solutions in the iterated prisoner’s dilemma (IPD). Takeaway: Ourmethod finds
solutions at both loss modes, while existing approaches of using random initializations, then following the gradient or using
LOLA do not find diverse solutions. The IPD has two solution modes – i.e., solutions where both agents end up defecting with
a loss of 2 and where both agents end up cooperating with a loss of 1 (like tit-for-tat). We assess which modes were found by
showing (P)layer 1’s strategy, which is the chance of (C)ooperating given both players’ last action – ex., 𝑝 (𝐶 |𝐷𝐶) is the chance if
previously P1 defected and P2 cooperated. We compare GRR flavors with just following gradients via SimSGD and LOLA [29]
from random (init)ializations. We compare with 20 random inits because GRR follows at most 20 branches, and because we
have 10 EVecs in either direction (+/-). GRR only branches in directions where EVals of the Jacobian of the fixed point operator
are greater than 1 (i.e., trajectories locally diverge) as visualized in Fig. 5 (middle). We look at the impact of starting at an
approximate bifurcation in GRR, by branching on the EVecs at a random init. If the max Lyapunov exponent is not tuned,
then each branch finds the same solution.

MNIST Accuracy

HVP Evaluations Our method Method from RR

10 000 19%(+8%) 11%
100 000 89%(+6%) 83%
1 000 000 93%(+2%) 91%

Table 2: We show how many HVP evaluations we require
to reach different MNIST classifier accuracies by following
EVecs, repeating the exp. in RR’s Fig. 4. This experiment is
not designed to train a single strong classifier, but to test our
ability to efficiently follow negative EVecs – see Sec. 6.2.3.

6.2.4 Calculating Lyapunov Exponents for GANs. Here, we investi-
gate scaling our exponent calculations to machine learning models
where the (game) Hessian is so large we cannot materialize it and
can only use Hessian-vector products. Specifically, we use the GAN
described in Section 5. We look at calculating our exponent for
various hyperparameters and random re-starts. We evaluate the
quality of using our exponent to find diverse solutions, by calcu-
lating the log-probability of samples from an ensemble of GANs
from the top 5 optimization branches. Table 3 shows the mean and
standard deviation (over 10 random restarts) of the max 10-step Lya-
punov exponent and the resulting ensemble’s log-probability. Each
GAN was trained for 10 000 updates, so evaluating each ensemble
cost approximately 50 000 evaluations of both players’ gradients.
In contrast, each exponent cost less than 1000 evaluations of both
gradients to compute.

This shows that we effectively scale our exponent calculation
to larger models of interest from machine learning, and find that a
large (mean) exponent aligns with regions where we can branch to
train the strongest ensemble of GANs.

Init scale, step size Max Lyap Coeff Ensemble log-prob

0.001, 1.0 0.952 ± 0.834 −16 342 ± 817
0.1, 1.0 6.485 ± 1.155 −13 691 ± 1317
10.0, 1.0 0.053 ± 0.128 −46 659 ± 26 793
0.001, 0.1 0.849 ± 0.765 −12 321 ± 126
0.1, 0.1 6.571 ± 0.953 −10 846 ± 256
10.0, 0.1 −0.012 ± 0.014 −23 459 ± 12 693

Table 3: We display the mean and standard deviation (over
10 random restarts) of the max 10-step Lyapunov exponent
and the log-probability of an ensemble of 5 GANs obtained
by branching in the top 5 directions at the initialization. We
show that the better performing ensembles also have higher
Lyapunov coefficients as well as demonstrating that our ex-
ponent calculation is scalable to larger problems. The best
GANs log-prob. from the best ensemble was −12 861 ± 356,
which is worse than the ensemble’s performance of−10 846±
256. This indicates that each GAN may be learning a differ-
ent part of the data distribution (samples in App. Fig. 16).

7 CONCLUSION
In this paper we introduced Generalized Ridge Rider, an extension
of the Ridge Rider algorithm to settings with multiple losses. We
showed that, in these settings, a broader class of bifurcation points
needs to be considered, and that GRR indeed discovers them in a
variety of problems. Experimentally, we isolate each component of
GRR demonstrating their effectiveness, and show that – in contrast
to baseline methods – GRR obtains a diversity of qualitatively differ-
ent solutions in multi-agent settings such as the iterated prisoner’s
dilemma. We also provide empirical justification for our method
by using tools from the dynamical systems literature, allowing
us to find arbitrary bifurcations. This hints at a multitude of ap-
proaches and tools from dynamical systems, that can be used for
understanding game dynamics and learning diversity.

Main Track AAMAS 2022, May 9–13, 2022, Online

849

REFERENCES
[1] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge,

Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are
biased towards texture; increasing shape bias improves accuracy and
robustness. In ICLR, 2018.

[2] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard
Zemel, Wieland Brendel, Matthias Bethge, and Felix A Wichmann.
Shortcut learning in deep neural networks. Nature Machine Intelli-
gence, 2(11):665–673, 2020.

[3] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-BaptisteMouret.
Robots that can adapt like animals. Nature, 521(7553):503–507, 2015.

[4] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Ku-
mar, Stefano Ermon, and Ben Poole. Score-based generative modeling
through stochastic differential equations. In ICLR, 2020.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2672–2680, 2014.

[6] David Pfau and Oriol Vinyals. Connecting generative adversarial
networks and actor-critic methods. arXiv:1610.01945, 2016.

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason We-
ston. Curriculum learning. In International Conference on Machine
Learning (ICML), pages 41–48, 2009.

[8] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn
Powell, Bob McGrew, and Igor Mordatch. Emergent tool use from
multi-agent autocurricula. In ICLR, 2019.

[9] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki,
Julien Perolat, Max Jaderberg, and Thore Graepel. Open-ended learn-
ing in symmetric zero-sum games. In International Conference on
Machine Learning (ICML), pages 434–443, 2019.

[10] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve,
Arthur Szlam, and Rob Fergus. Intrinsic motivation and automatic
curricula via asymmetric self-play. In International Conference on
Learning Representations (ICLR), 2018.

[11] Justin Domke. Generic methods for optimization-based modeling. In
Artificial Intelligence and Statistics, pages 318–326, 2012.

[12] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-
based hyperparameter optimization through reversible learning. In
International Conference on Machine Learning (ICML), pages 2113–
2122, 2015.

[13] Jonathan Lorraine and David Duvenaud. Stochastic hyperparameter
optimization through hypernetworks. arXiv preprint arXiv:1802.09419,
2018.

[14] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and
Roger Grosse. Self-tuning networks: Bilevel optimization of hyperpa-
rameters using structured best-response functions. In International
Conference on Learning Representations (ICLR), 2019.

[15] Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David Duvenaud,
and Geoffrey Hinton. Teaching with commentaries. In International
Conference on Learning Representations, 2020.

[16] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing mil-
lions of hyperparameters by implicit differentiation. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages
1540–1552, 2020.

[17] Aniruddh Raghu, Jonathan Lorraine, Simon Kornblith, Matthew Mc-
Dermott, and David K Duvenaud. Meta-learning to improve pre-
training. Advances in Neural Information Processing Systems, 34, 2021.

[18] Avishek Joey Bose, Gauthier Gidel, Hugo Berrard, Andre Cianflone,
Pascal Vincent, Simon Lacoste-Julien, and William L Hamilton. Ad-
versarial example games. arXiv preprint arXiv:2007.00720, 2020.

[19] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial exam-
ples: Attacks and defenses for deep learning. IEEE Transactions on

Neural Networks and Learning Systems, 30(9):2805–2824, 2019.
[20] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A game

theoretic framework for model based reinforcement learning. In
International Conference on Machine Learning, 2020.

[21] Pierre-Luc Bacon, Florian Schäfer, Clement Gehring, Animashree
Anandkumar, and Emma Brunskill. A Lagrangian method for inverse
problems in reinforcement learning. lis.csail.mit.edu/pubs, 2019.

[22] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc
Bacon. Control-oriented model-based reinforcement learning with
implicit differentiation. arXiv preprint arXiv:2106.03273, 2021.

[23] David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-Domain-
adversarial learning: Theory and algorithms for unsupervised domain
adaptation with neural networks, 2021. URL https://openreview.net/
forum?id=WqXAKcwfZtI.

[24] Barret Zoph and Quoc V Le. Neural architecture search with rein-
forcement learning. arXiv preprint arXiv:1611.01578, 2016.

[25] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regu-
larized evolution for image classifier architecture search. In AAAI
Conference on Artificial Intelligence, volume 33, pages 4780–4789, 2019.

[26] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differen-
tiable architecture search. In ICLR, 2019.

[27] Will Grathwohl, Elliot Creager, Seyed Kamyar Seyed Ghasemipour,
and Richard Zemel. Gradient-based optimization of neural network
architecture. In Workshop ICLR, 2018.

[28] George Adam and Jonathan Lorraine. Understanding neural archi-
tecture search techniques. arXiv preprint arXiv:1904.00438, 2019.

[29] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon White-
son, Pieter Abbeel, and Igor Mordatch. Learning with opponent-
learning awareness. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMA), pages 122–130, 2018.

[30] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swer-
sky, Joshua B Tenenbaum, Hugo Larochelle, and Richard S Zemel.
Meta-learning for semi-supervised few-shot classification. In Inter-
national Conference on Learning Representations, 2018.

[31] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey
Levine. Meta-learning with implicit gradients. In Proceedings of
the 33rd International Conference on Neural Information Processing
Systems, pages 113–124, 2019.

[32] Mengye Ren, Eleni Triantafillou, Kuan-Chieh Wang, James Lucas,
Jake Snell, Xaq Pitkow, Andreas S Tolias, and Richard Zemel. Flex-
ible few-shot learning with contextual similarity. arXiv preprint
arXiv:2012.05895, 2020.

[33] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
generative adversarial networks. In International Conference on Ma-
chine Learning (ICML), pages 214–223, 2017.

[34] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster.
“Other-Play” for zero-shot coordination. In International Conference
on Machine Learning (ICML), pages 4399–4410, 2020.

[35] Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam
Lerer, Alistair Letcher, Alexander Peysakhovich, Aldo Pacchiano, and
Jakob Foerster. Ridge Rider: Finding diverse solutions by follow-
ing eigenvectors of the Hessian. In Advances in Neural Information
Processing Systems (NeurIPS), pages 753–765, 2020.

[36] David Balduzzi, Sebastien Racaniere, James Martens, Jakob Foerster,
Karl Tuyls, and Thore Graepel. The mechanics of n-player differen-
tiable games. In International Conference on Machine Learning (ICML),
pages 354–363, 2018.

[37] Anatole Katok and Boris Hasselblatt. Introduction to the Modern
Theory of Dynamical Systems. Cambridge University Press, 1997.

[38] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural
Computation, 6(1):147–160, 1994.

Main Track AAMAS 2022, May 9–13, 2022, Online

850

https://openreview.net/forum?id=WqXAKcwfZtI
https://openreview.net/forum?id=WqXAKcwfZtI

[39] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/.

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in PyTorch. 2017.

[41] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: Com-
posable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[42] James P Bailey, Gauthier Gidel, and Georgios Piliouras. Finite regret
and cycles with fixed step-size via alternating gradient descent-ascent.
In Conference on Learning Theory, pages 391–407, 2020.

[43] Dimitri Bertsekas. Nonlinear Programming. Athena Scientific, 2008.
[44] Jack K Hale and Hüseyin Koçak. Dynamics and Bifurcations, volume 3.

Springer Science & Business Media, 2012.
[45] Alistair Letcher, David Balduzzi, Sébastien Racaniere, James Martens,

Jakob Foerster, Karl Tuyls, and Thore Graepel. Differentiable game
mechanics. The Journal of Machine Learning Research, 20, 2019.

[46] Michael Tabor. Chaos and Integrability in Nonlinear Dynamics: An
Introduction. Wiley-Interscience, 1989.

[47] Rodney CL Wolff. Local Lyapunov exponents: Looking closely at
chaos. Journal of the Royal Statistical Society, 1992.

[48] Vittorio Loreto, Giovanni Paladin, Michele Pasquini, and Angelo
Vulpiani. Characterization of chaos in random maps. Physica A:
Statistical Mechanics and its Applications, 232(1-2):189–200, 1996.

[49] Tal Kachman, Shmuel Fishman, and Avy Soffer. Numerical implemen-
tation of the multiscale and averaging methods for quasi periodic
systems. Computer Physics Communications, 221:235–245, 2017.

[50] Yakov Borisovich Pesin. Characteristic Lyapunov exponents and
smooth ergodic theory. Uspekhi Matematicheskikh Nauk, 1977.

[51] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney.
PyHessian: Neural networks through the lens of the Hessian. In IEEE
International Conference on Big Data (Big Data), pages 581–590, 2020.

[52] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi
Le Priol, Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas.
Negative momentum for improved game dynamics. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS),
pages 1802–1811, 2019.

[53] Jonathan Lorraine, David Acuna, Paul Vicol, and David Duve-
naud. Complex momentum for learning in games. arXiv preprint
arXiv:2102.08431, 2021.

[54] William Poundstone. Prisoner’s Dilemma/John Von Neumann, Game
Theory and the Puzzle of the Bomb. Anchor Press, 1993.

[55] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

[56] Alistair Letcher, Jakob Foerster, David Balduzzi, Tim Rocktäschel, and
Shimon Whiteson. Stable opponent shaping in differentiable games.
In International Conference on Learning Representations, 2018.

[57] Steven H Strogatz. Nonlinear Dynamics and Chaos with Student
Solutions Manual: With Applications to Physics, Biology, Chemistry,
and Engineering. CRC Press, 2018.

[58] Guido Van Rossum and Fred L Drake Jr. Python reference manual.
Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[59] Travis E Oliphant. Python for scientific computing. Computing in
Science & Engineering, 9(3):10–20, 2007.

[60] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing
USA, 2006.

[61] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The
NumPy array: A structure for efficient numerical computation. Com-
puting in Science & Engineering, 13(2):22–30, 2011.

[62] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor,
Sebastian Berg, Nathaniel J Smith, et al. Array programming with
NumPy. Nature, 585(7825):357–362, 2020.

[63] John D Hunter. Matplotlib: A 2d graphics environment. Computing
in Science & Engineering, 9(3):90–95, 2007.

[64] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python. 2001.

[65] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1990.

[66] Yong Liu and Xin Yao. Ensemble learning via negative correlation.
Neural Networks, 12(10):1399 – 1404, 1999.

[67] Samarth Sinha, Homanga Bharadhwaj, Anirudh Goyal, Hugo
Larochelle, Animesh Garg, and Florian Shkurti. Diversity inducing
information bottleneck in model ensembles. AAAI, 2021.

[68] Andrew Slavin Ross, Weiwei Pan, Leo A. Celi, and Finale Doshi-
Velez. Ensembles of locally independent prediction models. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI, 2020.

[69] Zelda Mariet and Suvrit Sra. Diversity networks: Neural network
compression using determinantal point processes. In International
Conference on Learning Representations (ICLR), May 2016.

[70] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving
adversarial robustness via promoting ensemble diversity. In Interna-
tional Conference on Machine Learning (ICML), 2019.

[71] Joel Lehman and Kenneth O. Stanley. Exploiting open-endedness
to solve problems through the search for novelty. In Proceedings of
the Eleventh International Conference on Artificial Life (Alife XI). MIT
Press, 2008.

[72] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey
Levine. Diversity is all you need: Learning skills without a reward
function. In International Conference on Learning Representations
(ICLR), 2019.

[73] Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and
Stephen Roberts. Effective diversity in population-based reinforce-
ment learning. In Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[74] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality di-
versity: A new frontier for evolutionary computation. Frontiers in
Robotics and AI, 3:40, 2016.

[75] Guodong Zhang, Xuchan Bao, Laurent Lessard, and Roger Grosse. A
unified analysis of first-order methods for smooth games via integral
quadratic constraints. Journal of Machine Learning Research, 22(103):
1–39, 2021.

[76] Guodong Zhang, Yuanhao Wang, Laurent Lessard, and Roger Grosse.
Near-optimal local convergence of alternating gradient descent-
ascent for minimax optimization.

[77] Galina M Korpelevich. The extragradient method for finding saddle
points and other problems. Matecon, 12:747–756, 1976.

[78] Waïss Azizian, IoannisMitliagkas, Simon Lacoste-Julien, andGauthier
Gidel. A tight and unified analysis of gradient-based methods for a
whole spectrum of differentiable games. In International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

Main Track AAMAS 2022, May 9–13, 2022, Online

851

https://www.tensorflow.org/
http://github.com/google/jax

[79] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and
games with predictable sequences. Advances in Neural Information
Processing Systems, 26:3066–3074, 2013.

[80] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and
Haoyang Zeng. Training gans with optimism. In International Con-
ference on Learning Representations (ICLR 2018), 2018.

[81] Guodong Zhang and Yuanhao Wang. On the suboptimality of nega-
tivemomentum forminimax optimization. In International Conference
on Artificial Intelligence and Statistics, pages 2098–2106. PMLR, 2021.

[82] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and
Simon Lacoste-Julien. A variational inequality perspective on gener-
ative adversarial networks. In International Conference on Learning
Representations (ICLR), 2018.

[83] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The nu-
merics of gans. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 1823–1833, 2017.

[84] Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. On finding
local Nash equilibria (and only local Nash equilibria) in zero-sum
games. arXiv preprint arXiv:1901.00838, 2019.

[85] Florian Schäfer, Anima Anandkumar, and Houman Owhadi. Com-
petitive mirror descent. arXiv preprint arXiv:2006.10179, 2020.

[86] YuanhaoWang, Guodong Zhang, and Jimmy Ba. On solving minimax
optimization locally: A follow-the-ridge approach. In International
Conference on Learning Representations (ICLR), 2019.

[87] Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse.
Implicit regularization in overparameterized bilevel optimization. In
ICML 2021 Beyond First Order Methods Workshop, 2021.

[88] Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tiru-
mala, Junhyuk Oh, Gauthier Gidel, Hado van Hasselt, and David
Balduzzi. Pick your battles: Interaction graphs as population-level ob-
jectives for strategic diversity. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems (AAMA),
pages 1501–1503, 2021.

[89] Oriol Vinyals, Igor Babuschkin,WojciechMCzarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, et al. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nature, 575, 2019.

[90] Yaodong Yang, Ying Wen, Jun Wang, Liheng Chen, Kun Shao, David
Mguni, and Weinan Zhang. Multi-agent determinantal q-learning.
In International Conference on Machine Learning (ICML), 2020.

[91] Andrei Lupu, Hengyuan Hu, and Jakob Foerster. Trajectory diversity
for zero-shot coordination. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, 2021.

[92] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[93] Bruce Abramson. The Expected-Outcome Model of Two-Player Games.
Morgan Kaufmann, 2014.

[94] David Silver, AjaHuang, Chris JMaddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of
Go with deep neural networks and tree search. Nature, 2016.

[95] Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M
Jonker. A0c: Alpha zero in continuous action space. arXiv preprint
arXiv:1805.09613, 2018.

[96] Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Kaelbling, and
Tomás Lozano-Pérez. Monte Carlo tree search in continuous spaces
using Voronoi optimistic optimization with regret bounds. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2020.

[97] Weichao Mao, Kaiqing Zhang, Qiaomin Xie, and Tamer Basar. Poly-
hoot: Monte-carlo planning in continuous space mdps with non-
asymptotic analysis. Advances in Neural Information Processing Sys-
tems, 33, 2020.

[98] Steven M LaValle et al. Rapidly-exploring random trees: A new tool
for path planning. Technical Report, Iowa State University, USA, 1998.

[99] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic
planning. The International Journal of Robotics Research, 2001.

[100] Samuel Rodriguez, Xinyu Tang, Jyh-Ming Lien, and Nancy M Amato.
An obstacle-based rapidly-exploring random tree. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2006.

[101] Gulshan Singh and Kalyanmoy Deb. Comparison of multi-modal
optimization algorithms based on evolutionary algorithms. In Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pages 1305–1312, 2006.

[102] Ka-Chun Wong. Evolutionary multimodal optimization: A short
survey. In Advances in Evolutionary Algorithms Research. 2015.

[103] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An
evolutionary computation perspective. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, 2019.

[104] Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano,
Luke Metz, Tal Kachman, and Jakob Foerster. Using bifurcations for
diversity in differentiable games. In ICML 2021 Beyond First Order
Methods Workshop, 2021.

[105] E Christopher Zeeman. Population dynamics from game theory. In
Global Theory of Dynamical Systems, pages 471–497. Springer, 1980.

[106] Ger Yang, David Basanta, and Georgios Piliouras. Bifurcation mech-
anism design—from optimal flat taxes to better cancer treatments.
Games, 9(2):21, 2018.

[107] Thiparat Chotibut, Fryderyk Falniowski, Michał Misiurewicz, and
Georgios Piliouras. The route to chaos in routing games: When is
price of anarchy too optimistic? Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[108] Georgios Piliouras. Catastrophe by design in population games:
Destabilizing wasteful locked-in technologies. InWeb and Internet
Economics: 16th International Conference (WINE), page 473, 2020.

[109] Stefanos Leonardos and Georgios Piliouras. Exploration-exploitation
inmulti-agent learning: Catastrophe theorymeets game theory. arXiv
preprint arXiv:2012.03083, 2020.

[110] Jakub Bielawski, Thiparat Chotibut, Fryderyk Falniowski, Grzegorz
Kosiorowski, Michał Misiurewicz, and Georgios Piliouras. Follow-the-
regularized-leader routes to chaos in routing games. arXiv preprint
arXiv:2102.07974, 2021.

[111] Yun Kuen Cheung and Georgios Piliouras. Vortices instead of equi-
libria in minmax optimization: Chaos and butterfly effects of online
learning in zero-sum games. In Conference on Learning Theory, 2019.

[112] Yun Kuen Cheung and Yixin Tao. Chaos of learning beyond zero-
sum and coordination via game decompositions. In International
Conference on Learning Representations (ICLR), 2020.

[113] Yuzuru Sato, Eizo Akiyama, and J Doyne Farmer. Chaos in learning
a simple two-person game. Proceedings of the National Academy of
Sciences, 99(7):4748–4751, 2002.

[114] Ioannis Panageas and Georgios Piliouras. Average case performance
of replicator dynamics in potential games via computing regions of
attraction. In Proceedings of the 2016 ACM Conference on Economics
and Computation, pages 703–720, 2016.

[115] Boyu Zhang and Josef Hofbauer. Equilibrium selection via replicator
dynamics in 2x2 coordination games. International Journal of Game
Theory, 44(2):433–448, 2015.

[116] Sai Ganesh Nagarajan, David Balduzzi, and Georgios Piliouras. From
chaos to order: Symmetry and conservation laws in game dynamics.
In International Conference on Machine Learning (ICML), 2020.

Main Track AAMAS 2022, May 9–13, 2022, Online

852

