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ABSTRACT
In the Binary Networked Public Goods (BNPG for short) game,

every player needs to decide if she participates in a public project

whose utility is shared equally by the community. We study the

problem of deciding if there exists a pure strategy Nash equilibrium

(PSNE) in such games. The problem is already known to be

NP-complete. This casts doubt on predictive power of PSNE in

BNPG games. We provide fine-grained analysis of this problem

under the lens of parameterized complexity theory. We consider

various natural graph parameters and show W[1]-hardness, XP,
and FPT results. Hence, our work significantly improves our

understanding of BNPG games where PSNE serves as a reliable

solution concept. We finally prove that some graph classes, for

example path, cycle, bi-clique, and complete graph, always have a

PSNE if the utility function of the players are same.
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1 INTRODUCTION
In a public goods game, players need to decide if they contribute

in a public project and, if yes, then how much. The outcome of

such public projects is typically shared equally by all the players.

Public goods games are effective in modeling tension between

individual cost vs community well beings [16, 24]. One of the well-

explored variants of the above game is the networked public goods
game where we assume a network structure on the players and

the utilities of individual players depend on the action of them and

their neighbors only [2].

An important class of networked public goods game is the binary
networked public goods (BNPG for short) game where players only

need to decide if they participate (play 1) in the public project

or not (play 0) [10]. Although this seems restricted, such games

are still powerful enough to model various important real world

application scenarios. For some motivating examples, let us think of

an air-borne virus pandemic like Covid-19 where individuals need

to decide whether to wear a mask or not. While individuals may feel
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uncomfortable while wearing a mask, the benefits of herd immunity,

if achieved by a large fraction of population wearing a mask,

will be shared by the entire community. Indeed, there are reports

that a considerable fraction of population refuse to wear a mask

during Covid-19 pandemic [3, 27]. Another important application

is whether to report a crime or not. While individuals who report

crimes may be at risk, the benefit of having lower crime rates will

be enjoyed by the entire community. The general observation at

many places is that crimes are often under-reported [21].

Computing a pure strategy Nash equilibrium (PSNE) in any game

is a fundamental question. The concept of Nash equilibrium guides

social planner to predict how players will act in a strategic setting

and act accordingly. We know that the Exists-PSNE problem,

where we are asked to decide if a BNPG game has a PSNE, is

NP-complete [29]. In this work, we provide a comprehensive study

of the parameterized complexity of the Exists-PSNE problem.

Related Work. The immediate predecessor of our work is [29]

where the authors initiate the algorithmic question of Exists-

PSNE. Our work broadly belongs to the field of graphical games

where there is a graph structure on the players and a player’s

utility depends only on the actions of her neighbors [14]. A central

question in graphical games is to find complexity of the problem of

computing an equilibrium [8, 9, 11]. Network public goods games

are a special case of graphical games where the utility of players

depends only on the sum of the “efforts” put in by neighbors

and the cost of her action. Many models of the network public

goods game have been explored which are fine-tuned to different

applications. Important examples of such applications include eco-

nomics, research collaboration, social influence, etc. [4, 5, 25, 26].

The BNPG model is closely related to that proposed in Bramoullé et

al. [2]. There are however two qualitative distinctions (a) Bramoullé

et al. focus on the continuous investment model whereas BNPG

model focuses on binary investment decisions and (b) Bramoullé et

al. assume homogeneous concave utilities whereas BNPG model

considers amore general setting. Supermodular network games [20]

and best-shot games (which is actually a special case of BNPG game)

[7], etc. [10, 17, 18] are other important variations of graphical

games. In the model of Supermodular network games, each agent’s

payoff is a function of the aggregate action of its neighbors and

it exhibits strategic complementarity. An important example of

supermodular games on graphs are technology adoption games

which have been studied in the social network literature [12, 15, 22].

Parameters. As Exists-PSNE is NP-complete [29], we provide

a comprehensive study of the parameterized complexity of the

Exists-PSNE problem w.r.t. the following parameters:

• Maximum Degree: Many applications of BNPG games

involve human beings as nodes in the network. Due to
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human cognitive limitation, such graphs often exhibit small

maximum degree. With this motivation, we consider the

maximum degree of the graph as our parameter.

• Diameter: Graphs which involve human beings as nodes

tend to have a small diameter. Therefore, we consider the

diameter of the graph as our parameter.

• Distance from tree and complete graph: Trees and complete

graphs are important classes of graphs in the context of

BNPG games. It is already known from previous work

that Exists-PSNE is polynomial-time solvable for trees and

complete graphs. Therefore the next natural question would

be to check the tractibility of those instances where the

graphs are quite close to being a tree or a complete graph.

For this purpose, we consider the parameters distance from

tree, which is also known as circuit rank, and distance from

complete graphs [Definition 4.13].

• Treedepth and Treewidth: We also consider treedepth and

treewidth as parameters as they have often turned out to

be useful parameters to obtain a fixed-parameter-tractable

(FPT) algorithm for many classical problems for which it

is known that the problem is polynomial-time solvable for

trees.

• Number of participating and non-participating players: One
may wish to know what are the equilibria during a pandemic

like Covid-19 example where most and least people wear

masks. For such scenarios, the number of participating (who

play 1) and non-participating players (who play 0) are the

natural parameters.

2 PRELIMINARIES
For a set X, we denote its power set by 2

X
. We denote the set

{1, . . . , 𝑛} by [𝑛]. For 2 setsX andY, we denote the set of functions

from X to Y by YX
.

Let G = (V, E) be an undirected graph with 𝑛 vertices. An edge

between 𝑢, 𝑣 ∈ V is represented by {𝑢, 𝑣}. In a graph G, we denote

the degree of any vertex 𝑣 by 𝑑 (𝑣). For a subset U ⊆ V of vertices

(respectively a subset F ⊆ E of edges), we denote the subgraph

induced by U (respectively F ) by G[U] (respectively G[F ]). A
Binary Networked Public Goods (BNPG for short) game can be

defined on G as follows. The set of players isV . The strategy set

of every player is {0, 1}. We denote the number of neighbors of

𝑤 in G who play 1 in the strategy profile (𝑥𝑣)𝑣∈V by 𝑛𝑤 ; that

is, 𝑛𝑤 = |{𝑢 ∈ V : {𝑢,𝑤} ∈ E, 𝑥𝑢 = 1}|. For a strategy profile

(𝑥𝑣)𝑣∈V ∈ {0, 1} |V |
, the utility 𝑈𝑤 ((𝑥𝑣)𝑣∈V ) of player (without

abusing the notation much)𝑤 ∈ V is defined as follows.

𝑈𝑤 ((𝑥𝑣)𝑣∈V ) = 𝑈𝑤 (𝑥𝑤 , 𝑛𝑤) = 𝑔𝑤 (𝑥𝑤 + 𝑛𝑤) − 𝑐𝑤 · 𝑥𝑤
where 𝑔𝑤 : N ∪ {0} −→ R+ is a non-decreasing function in

𝑥 and 𝑐𝑤 ∈ R+ is a constant. We denote a BNPG game by

(G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ). For any number 𝑛 ∈ N ∪ {0}
and function 𝑔 : N∪ {0} −→ R+, we define Δ𝑔(𝑛) = 𝑔(𝑛 + 1) −𝑔(𝑛).
In general, every player𝑤 ∈ V has a different mapping function

𝑔𝑤 (.) and hence we call this version of the game a heterogeneous
BNPG game. If not mentioned otherwise, by BNPG game, we refer

to a heterogeneous BNPG game. In this paper, we also study the

following three special cases — (i) homogeneous: 𝑔𝑤 = 𝑔 for all

𝑤 ∈ V , (ii) fully homogeneous: homogeneous and 𝑐𝑤 = 𝑐 for

all 𝑤 ∈ V and (iii) strict: for every player 𝑤 ∈ V , we have

𝑈𝑤 (𝑥𝑤 = 0, 𝑥−𝑤) ≠ 𝑈𝑤 (𝑥𝑤 = 1, 𝑥−𝑤) for every strategy profile

𝑥−𝑤 of other players. So a BNPG game is strict if and only if

Δ𝑔𝑤 (𝑘) ≠ 𝑐𝑤 , ∀𝑤 ∈ V,∀𝑘 ∈ {0, 1, . . . , 𝑑 (𝑤)}
A strategy profile (𝑥𝑣)𝑣∈V is called a pure-strategy Nash

Equilibrium (PSNE) of a BNPG game if we have 𝑈𝑣 (𝑥𝑣, 𝑥−𝑣) ≥
𝑈𝑣 (𝑥 ′𝑣, 𝑥−𝑣) ∀𝑥 ′𝑣 ∈ {0, 1},∀𝑣 ∈ V . We call the problem of deciding

if there exists a PSNE in BNPG games as Exists-PSNE.

For a player𝑤 in a BNPG game (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ),
we define her best response function 𝛽𝑤 : {0, 1, . . . , 𝑛 − 1} −→
2
{0,1} \ {∅} as follows. For every 𝑘 ∈ {0, 1, . . . , 𝑛 − 1} and 𝑎 ∈ {0, 1},

we have 𝑎 ∈ 𝛽𝑤 (𝑘) if and only if, for every strategy profile 𝑥−𝑤 of

players other than𝑤 where exactly 𝑘 players in the neighborhood

of𝑤 play 1, we have 𝑈𝑤 (𝑥𝑤 = 𝑎, 𝑥−𝑤) ≥ 𝑈𝑤 (𝑥𝑤 = 𝑎′, 𝑥−𝑤) for all
𝑎′ ∈ {0, 1}. The following lemma proves that, for every function

𝛽𝑤 , there is a function 𝑔𝑤 : N ∪ {0} −→ R+ and constant 𝑐𝑤 such

that 𝛽𝑤 is the best response function.

Lemma 2.1 (★). Let 𝛽 : {0, 1, . . . , 𝑛 − 1} −→ 2
{0,1} \ {∅} be an

arbitrary function. Then we can compute in polynomial (in 𝑛) time
a function 𝑔 : N ∪ {0} −→ R+ and constant 𝑐 such that 𝛽 is the
corresponding best response function.

We call a function 𝑓 : N ∪ {0} −→ R+ sub-additive if 𝑓 (𝑥 +𝑦) ≤
𝑓 (𝑥) + 𝑓 (𝑦) for every 𝑥,𝑦 ∈ N∪{0} and additive if 𝑓 (𝑥 +𝑦) = 𝑓 (𝑥) +
𝑓 (𝑦). We call a BNPG game (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) sub-
additive (respectively additive) if 𝑔𝑣 is sub-additive (respectively

additive) for every 𝑣 ∈ V .

Parameterized Complexity. A parameterized problem is

represented by the tuple (𝑥, 𝑘), where 𝑘 is the parameter. Fixed
parameter tractability (FPT) refers to the solvability of a given

instance (𝑥, 𝑘) in time 𝑓 (𝑘) · 𝑝 ( |𝑥 |), where 𝑝 is a polynomial in the

input size |𝑥 | and 𝑓 is an arbitrary computable function of 𝑘 . We

use the notation O∗ (𝑓 (𝑘)) to denote 𝑂 (𝑓 (𝑘)𝑝𝑜𝑙𝑦 ( |𝑥 |)). There is a
hierarchy of complexity classes above FPT, such as W [1], W [2],

para- NP, and showing that a parameterized problem is hard for

one of these complexity classes would imply that the problem may

not be fixed-parameter tractable. XP is the class of parameterized

problems that can be solved in time 𝑛𝑓 (𝑘) , where 𝑘 is the parameter,

𝑛 is the input size and 𝑓 is some computable function.

Definition 2.2. [6] A tree decomposition of a graph 𝐺 is a pair

T = (𝑇, {𝑋𝑦}𝑡 ∈𝑉 (𝑇 ) ), where 𝑇 is a tree whose every node 𝑡 is

assigned a vertex subset 𝑋𝑡 ⊆ 𝑉 (𝐺), called a bag, such that the

following three conditions hold:

(1)

⋃
𝑡 ∈𝑉 (𝑇 ) 𝑋𝑡 = 𝑉 (𝐺). In other words, every vertex of 𝐺 is in

at least one bag.

(2) For every {𝑢, 𝑣} ∈ 𝐸 (𝐺), there exists a node 𝑡 of 𝑇 such that

bag 𝑋𝑡 contains both 𝑢 and 𝑣 .

(3) For every 𝑢 ∈ 𝑉 (𝐺), the set 𝑇𝑢 = {𝑡 ∈ 𝑉 (𝑇 ) : 𝑢 ∈ 𝑋𝑡 },
i.e., the set of nodes whose corresponding bags contain 𝑢,

induces a connected subtree of 𝑇 .

Definition 2.3. [6] The width of tree decomposition T =

(𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) equals max𝑡 ∈𝑉 (𝑇 ) |𝑋𝑡 | − 1, that is, the maximum

size of its bag minus 1. The treewidth of a graph 𝐺 , denoted by

𝑡𝑤 (𝐺), is the minimum possible width of a tree decomposition of

𝐺 .
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Definition 2.4. [13] An elimination forest 𝑇 of a graph 𝐺 =

(𝑉 , 𝐸) is a rooted forest on the same vertex set 𝑉 such that, for

every edge {𝑢, 𝑣} ∈ 𝐸, one of 𝑢 and 𝑣 is an ancestor of the other.

The depth of𝑇 is the maximum number of vertices on a path from

a root to a leaf in 𝑇 . The tree-depth 𝑡𝑑 (𝐺) of a graph G is the

minimum depth among all possible elimination forests.

3 TECHNICAL CONTRIBUTIONS
Our main technical contributions in this paper are the hardness

results. First we show that Exists-PSNE is para-NP-hard with

respect to the maximum degree of the graph as parameter

[Theorem 4.1]. We prove this by exhibiting a non-trivial reduction

from (3, B2)-SAT. Next we show that Exists-PSNE is W[1]-hard
parameterized by treedepth [Theorem 4.3]. We prove this by

exhibiting a non-trivial reduction from General Factor. We also

show an important reduction from heterogeneous game to fully

homogeneous game which allows us to prove that the hardness

results for maximum degree, treedepth, diameter hold even for fully

homogeneous games [Theorems 4.7 and 4.8].

We complement the hardness result for treedepth by designing

a non-trivial dynamic programming based XP algorithm

parameterized by treewidth [Theorem 4.11]. Our XP algorithm also

yields a fixed-parameter tractability for the combined parameter

“treewidth+maximum degree”.

Lastly, using some standard techniques, we bridge the gap

between tractibility and intractibility by showing (i)W[2]-hardness
for the parameters- the number of participating (who play 1) and

non-participating players (who play 0) [Theorems 4.5 and 4.6],

(ii) fixed-parameter tractability for parameters like vertex-cover

number [for strict games], circuit rank and distance from complete

graphs [Theorems 4.12, 4.14 and 4.15] and (iii) existence of PSNE

in Fully homogeneous games for important classes of graphs like

path, complete graph, cycle, and bi-clique [Theorem 4.16].

4 RESULTS
We begin with presenting our results for Exists-PSNE. In the

interest of space, we omit some proofs; they are marked ★. They

are available in the full version [19].

4.1 Hardness Results
The Exists-PSNE problem is already known to beNP-complete [29].

We strengthen this result significantly in Theorem 4.1 by proving

para-NP-hardness by the maximum degree and the number of

different utility functions. We use theNP-complete problem (3, B2)-
SAT to prove some of our hardness results [1]. The (3, B2)-SAT
problem is the 3-SAT problem restricted to formulas in which

each clause contains exactly three literals, and each variable occurs

exactly twice positively and twice negatively.

Theorem 4.1. Exists-PSNE isNP-complete for sub-additive strict
BNPG games even if the underlying graph is 3-regular and the
number of different utility functions is 2. In particular, Exists-PSNE
parameterized by (maximum degree Δ, the number of different utility
functions) is para-NP-hard even for sub-additive strict BNPG games.

Proof. The Exists-PSNE problem clearly belongs to NP. To
show itsNP-hardness, we reduce from the (3, B2)-SAT problem. The

high-level idea of our proof is as follows. For every clause in (3, B2)-
SAT instance, we create a vertex in the Exists-PSNE instance. Also,

for every literal we create a vertex in the Exists-PSNE instance. We

then add the set of edges and define the best-response functions in

such a way that all the clause vertices play 1 in any PSNE and a set

of literal vertices play 1 in a PSNE if and only if there is a satisfying

assignment where the same set of literal vertices is assigned true.

We now present our construction formally.

Let (X = {𝑥𝑖 : 𝑖 ∈ [𝑛]}, C = {𝐶 𝑗 : 𝑗 ∈ [𝑚]}) be

an arbitrary instance of (3, B2)-SAT. We define a function 𝑓 :

{𝑥𝑖 , 𝑥𝑖 : 𝑖 ∈ [𝑛]} −→ {𝑎𝑖 , 𝑎𝑖 : 𝑖 ∈ [𝑛]} as 𝑓 (𝑥𝑖 ) = 𝑎𝑖 and

𝑓 (𝑥𝑖 ) = 𝑎𝑖 for 𝑖 ∈ [𝑛] and consider the following instance

(G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) of Exists-PSNE.
V = {𝑎𝑖 , 𝑎𝑖 : 𝑖 ∈ [𝑛]} ∪ {𝑦 𝑗 : 𝑗 ∈ [𝑚]}

E = {{𝑦 𝑗 , 𝑓 (𝑙 𝑗
1
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

2
)}, {𝑦 𝑗 , 𝑓 (𝑙 𝑗

3
)} : 𝐶 𝑗 = (𝑙 𝑗

1
∨ 𝑙 𝑗

2
∨ 𝑙 𝑗

3
),

𝑗 ∈ [𝑚]} ∪ {{𝑎𝑖 , 𝑎𝑖 } : 𝑖 ∈ [𝑛]}
We observe that the degree of every vertex in G is 3. We

now define (𝑔𝑣)𝑣∈V and (𝑐𝑣)𝑣∈V . ∀𝑗 ∈ [𝑚], 𝑐𝑦 𝑗
= 4, 𝑔𝑦 𝑗

(0) =

1000, 𝑔𝑦 𝑗
(1) = 1003, 𝑔𝑦 𝑗

(2) = 1008, 𝑔𝑦 𝑗
(3) = 1013, 𝑔𝑦 𝑗

(4) = 1018.

∀𝑖 ∈ [𝑛], 𝑐𝑎𝑖 = 𝑐𝑎𝑖 = 4, 𝑔𝑎𝑖 (0) = 𝑔𝑎𝑖 (0) = 1000, 𝑔𝑎𝑖 (1) = 𝑔𝑎𝑖 (1) =
1005, 𝑔𝑎𝑖 (2) = 𝑔𝑎𝑖 (2) = 1010, 𝑔𝑎𝑖 (3) = 𝑔𝑎𝑖 (3) = 1015, 𝑔𝑎𝑖 (4) =

𝑔𝑎𝑖 (4) = 1018.

It follows from the definition that both the above functions are

sub-additive. Also, one can easily verify that the above functions

give the following best-response functions for the players.

∀𝑖 ∈ [𝑛], 𝛽𝑎𝑖 (𝑘) = 𝛽𝑎𝑖 (𝑘) =
{

1 if 𝑘 ≤ 2

0 otherwise

∀𝑗 ∈ [𝑚], 𝛽𝑦 𝑗
(𝑘) =

{
0 if 𝑘 = 0

1 otherwise

From the best-response functions, it follows that the game is strict.

We now claim that the above BNPG game has a PSNE if and only if

the (3, B2)-SAT instance is a yes instance.

For the “if” part, suppose the (3, B2)-SAT instance is a yes

instance. Let ℎ : {𝑥𝑖 : 𝑖 ∈ [𝑛]} −→ {true, false} be a satisfying
assignment of the (3, B2)-SAT instance. We consider the following

strategy profile for the BNPG game.

• ∀𝑗 ∈ [𝑚], 𝑠 (𝑦 𝑗 ) = 1

• ∀𝑖 ∈ [𝑛], 𝑠 (𝑎𝑖 ) = 1 if and only if ℎ(𝑥𝑖 ) = true

• ∀𝑖 ∈ [𝑛], 𝑠 (𝑎𝑖 ) = 0 if and only if ℎ(𝑥𝑖 ) = true

We observe that, since ℎ is a satisfying assignment, the player 𝑦 𝑗
for every 𝑗 ∈ [𝑚] has at least one neighbor who plays 1 and thus 𝑦 𝑗
does not have any incentive to deviate (from playing 1). For 𝑖 ∈ [𝑛]
such that ℎ(𝑥𝑖 ) = true, the player 𝑎𝑖 has at least one neighbor,

namely 𝑎𝑖 , who plays 0 and thus 𝑎𝑖 does not have any incentive to

deviate (from playing 1); on the other hand the player 𝑎𝑖 has all her

neighbor playing 1 , and thus she is happy to play 0. Similarly, for

𝑖 ∈ [𝑛] such that ℎ(𝑥𝑖 ) = false, both the players 𝑎𝑖 and 𝑎𝑖 have no

incentive to deviate. This proves that the above strategy profile is a

PSNE.

For the “only if” part, let (𝑠 (𝑎𝑖 )𝑖∈[𝑛] , 𝑠 (𝑎𝑖 )𝑖∈[𝑛] , 𝑠 (𝑦 𝑗 ) 𝑗 ∈[𝑚] ) be a
PSNE for the BNPG game.We claim that 𝑠 (𝑦 𝑗 ) = 1 for every 𝑗 ∈ [𝑚].
Suppose not, then there exists a 𝑡 ∈ [𝑚] such that 𝑠 (𝑦𝑡 ) = 0. Let

the literals in clause 𝐶𝑡 be 𝑙𝑡
1
, 𝑙𝑡

2
, 𝑙𝑡

3
. Then 𝑠 (𝑓 (𝑙𝑡

𝑖
)) = 0,∀𝑖 ∈ [3]
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𝑢1 𝑢2 · · · 𝑢𝑛

𝑢 ′
1

𝑢 ′
2

· · · 𝑢 ′𝑛 𝑢 ′
𝑛+1

𝑑1

𝑑2
𝑎 {1,2} · · ·

Figure 1: Graph H in the proof of Theorem 4.3.

otherwise the player 𝑦𝑡 will deviate form 0 and play 1. But then the

player 𝑓 (𝑙𝑡
1
) will deviate to 1 as 𝑦𝑡 plays 0 which is a contradiction.

We now claim that we have 𝑠 (𝑎𝑖 ) ≠ 𝑠 (𝑎𝑖 ) for every 𝑖 ∈ [𝑛]. Suppose
not, then there exists an 𝜆 ∈ [𝑛] such that 𝑠 (𝑎𝜆) = 𝑠 (𝑎𝜆). If 𝑠 (𝑎𝜆) =
𝑠 (𝑎𝜆) = 1, then both the players 𝑎𝜆 and 𝑎𝜆 have incentive to deviate

to 0. On the other hand, if 𝑠 (𝑎𝜆) = 𝑠 (𝑎𝜆) = 0, then both the players

𝑎𝜆 and 𝑎𝜆 have incentive to deviate to 1. This proves the claim. We

now consider the assignment ℎ : {𝑥𝑖 : 𝑖 ∈ [𝑛]} −→ {true, false}
defined asℎ(𝑥𝑖 ) = true if and only if 𝑠 (𝑎𝑖 ) = 1 for every 𝑖 ∈ [𝑛]. We

claim that ℎ is a satisfying assignment for the (3, B2)-SAT formula.

Suppose not, then ℎ does not satisfy a clause, say𝐶𝛾 , 𝛾 ∈ [𝑚]. Then
the player 𝑦𝛾 has incentive to deviate to 0 as none of its neighbors

play 1 which is a contradiction. □

For the remainder of this subsection, we describe a game using

the best response functions for the sake of simplicity of presentation.

This suffices as due to Lemma 2.1, we can always compute the utility

functions using the best response functions in polynomial time.

We next consider treedepth as parameter. Problems on graphs

which are easy for trees are often fixed-parameter-tractable with

respect to treedepth as parameter. We show that this is not the

case for our problem. Towards that, we use the General Factor

problem which is W[1]-hard parameterized by treedepth [23].

Definition 4.2 (General Factor). Given a graph G = (V, E)
and a set 𝐾 (𝑣) ⊆ {0, ..., 𝑑 (𝑣)} for each 𝑣 ∈ V , compute if there

exists a subset F ⊆ E such that, for each vertex 𝑣 ∈ V , the number

of edges in F incident on 𝑣 is an element of 𝐾 (𝑣). We denote an

arbitrary instance of this problem by (G = (V, E), (𝐾 (𝑣))𝑣∈V ).

Theorem 4.3. Exists-PSNE for BNPG games is W[1]-hard
parameterized by treedepth.

Proof. To prove W[1]-hardness, we reduce from General

Factor parameterized by treedepth to BNPG game.

Let

(
G = ({𝑣𝑖 : 𝑖 ∈ [𝑛]} , E ′) , (𝐾 (𝑣𝑖 ))𝑖∈[𝑛]

)
be an arbitrary

instance of General Factor. The high level idea of our

construction is as follows. For each vertex and edge in the graph G
associated with General Factor instance, we add a node in the

graphH (where the BNPG game is defined) associated with Exists-

PSNE problem instance. On top of that we add some extra nodes and

edges in H and appropriately define the best response functions

of every player in H so that a set of nodes in H corresponding to

a set F of edges belonging to G play 1 in a PSNE if and only if F
makes General Factor a yes instance. We now formally present

our construction.

We consider a BNPG game on the following graph H = (V, E).
See Figure 1 for a pictorial representation of H .

V = {𝑢𝑖 : 𝑖 ∈ [𝑛]} ∪ {𝑎 {𝑖, 𝑗 } : {𝑣𝑖 , 𝑣 𝑗 } ∈ E ′}
∪ {𝑢 ′𝑖 : 𝑖 ∈ [𝑛 + 1]} ∪ {𝑑1, 𝑑2}

E = {{𝑢𝑖 , 𝑎 {𝑖, 𝑗 }}, {𝑢 𝑗 , 𝑎 {𝑖, 𝑗 }} : {𝑣𝑖 , 𝑣 𝑗 } ∈ E ′} ∪ {{𝑢𝑖 , 𝑢 ′𝑖 } : 𝑖 ∈ [𝑛]}
∪ {{𝑑1, 𝑢

′
𝑖 }, {𝑑2, 𝑢𝑖 } : 𝑖 ∈ [𝑛]} ∪ {{𝑑1, 𝑢

′
𝑛+1

}, {𝑑2, 𝑢
′
𝑛+1

}}

Let the treedepth of G be 𝜏 . Create a graph G′
by adding the

vertices 𝑑1, 𝑑2 and the set of edges {{𝑑1, 𝑣𝑖 }, {𝑑2, 𝑣𝑖 } : 𝑖 ∈ [𝑛]} ∪
{𝑑1, 𝑑2} to the graph G. The treedepth of G′

is at most 𝜏 + 2. We

claim that the treedepth ofH is at most 𝜏 + 3. To see this, we begin

with a elimination tree of G′
and replace 𝑣𝑖 with𝑢𝑖 for every 𝑖 ∈ [𝑛].

Let S = {𝑢 ′
𝑖

: 𝑖 ∈ [𝑛 + 1]} ∪ {𝑎 {𝑖, 𝑗 } : {𝑣𝑖 , 𝑣 𝑗 } ∈ E ′}. ∀𝑢 ′ ∈ S, add
an edge between 𝑢 ′ and 𝑢 in the elimination tree where 𝑢,𝑣 are

neighbors of 𝑢 ′ in H and 𝑢 is descendant of 𝑣 in the elimination

tree. This results in a valid elimination tree forH and hence, the

treedepth of H is at most 𝜏 + 3.

We now describe the best-response functions of the vertices in

H to complete the description of the BNPG game.

∀𝑖 ∈ [𝑛], 𝛽𝑢𝑖 (𝑘) =
{

1 if 𝑘 − 1 ∈ 𝐾 (𝑣𝑖 )
0 otherwise

∀𝑖 ∈ [𝑛 + 1], 𝛽𝑢′
𝑖
(𝑘) =

{
1 if 𝑘 = 2

0 otherwise

∀{𝑣𝑖 , 𝑣 𝑗 } ∈ E ′, 𝛽𝑎{𝑖,𝑗 } (𝑘) = {0, 1} ∀𝑘 ∈ N ∪ {0}

𝛽𝑑1
(𝑘) =

{
1 if 𝑘 = 0 or 𝑘 = 𝑛

0 otherwise

, 𝛽𝑑2
(𝑘) =

{
1 if 𝑘 = 0

0 otherwise

We claim that the above BNPG game has a PSNE if and only if

the General Factor instance is a yes instance.

For the “if” part, suppose the General Factor instance is a yes

instance. Then there exists a subset F ⊆ E ′
such that for all 𝑖 ∈ [𝑛],

the degree of 𝑣𝑖 in G[F ] is an element of the set𝐾 (𝑣𝑖 ). We consider

the strategy profile 𝑥 = (𝑥𝑣)𝑣∈V .

∀𝑖 ∈ [𝑛], 𝑥𝑢𝑖 = 𝑥𝑢′
𝑖
= 1, 𝑥𝑢′

𝑛+1

= 0

∀{𝑣𝑖 , 𝑣 𝑗 } ∈ E ′, 𝑥𝑎{𝑖,𝑗 } =

{
1 if {𝑣𝑖 , 𝑣 𝑗 } ∈ F
0 otherwise

, 𝑥𝑑1
= 1, 𝑥𝑑2

= 0

Now we argue that 𝑥 is a PSNE for the BNPG game. Clearly no

player 𝑎 {𝑖, 𝑗 }, {𝑣𝑖 , 𝑣 𝑗 } ∈ E ′
deviates as both 0 and 1 are her best-

responses irrespective of the action of their neighbors. The player

𝑑1 does not deviate as she has exactly 𝑛 neighbors playing 1. The

player 𝑢 ′
𝑖
, 𝑖 ∈ [𝑛] does not deviate as she has exactly 2 neighbors

playing 1. The player 𝑢 ′
𝑛+1

does not deviate as she has exactly 1

neighbor playing 1. The player 𝑑2 does not deviate as she has at

least 1 neighbors playing 1. Note that ∀𝑖 ∈ [𝑛], the number of

neighbors of 𝑢𝑖 playing 1 excluding 𝑢 ′
𝑖
and 𝑑2 (which in this case is

𝑛𝑢𝑖 − 1 as 𝑥𝑑2
= 0, 𝑥𝑢′

𝑖
= 1) is the same as the number of edges in F

which are incident on 𝑣𝑖 in G. Hence, ∀𝑖 ∈ [𝑛], the player 𝑢𝑖 does
not deviate as (𝑛𝑢𝑖 − 1) ∈ 𝐾 (𝑣𝑖 ). Hence, 𝑥 is a PSNE.

Main Track AAMAS 2022, May 9–13, 2022, Online

874



For the “only if” part, let 𝑥 = (𝑥𝑣)𝑣∈V be a PSNE of the BNPG

game. We claim that we have 𝑥𝑑1
= 1, 𝑥𝑢𝑖 = 𝑥𝑢′

𝑖
= 1,∀𝑖 ∈

[𝑛], 𝑥𝑢′
𝑛+1

= 0, 𝑥𝑑2
= 0. To prove this, we consider all cases for

(𝑥𝑢𝑖 )𝑖∈[𝑛] .

(1) Case – ∀𝑖 ∈ [𝑛] 𝑥𝑢𝑖 = 1: We have 𝑥𝑑2
= 0 as 𝑛𝑑2

> 0

otherwise 𝑑2 would deviate. This implies that 𝑥𝑢′
𝑛+1

= 0

since 𝑛𝑢′
𝑛+1

≤ 1( as 𝑥𝑑2
= 0). Now we consider the following

sub-cases (according to the values of 𝑥𝑑1
and 𝑥𝑢′

𝑖
, 𝑖 ∈ [𝑛]):

• (𝑥𝑑1
= 1, ∃𝑘 ∈ [𝑛] such that 𝑥𝑢′

𝑘
= 0 ). Here 𝑥𝑢′

𝑘
will then

deviate to 1 as 𝑛𝑢′
𝑘
= 2. Hence, it is not a PSNE.

• (𝑥𝑑1
= 1,∀𝑖 ∈ [𝑛] 𝑥𝑢′

𝑖
= 1). This is exactly what we claim

thus we have nothing to prove in this case.

• (𝑥𝑑1
= 0, ∃𝑘 ∈ [𝑛] such that 𝑥𝑢′

𝑘
= 1). Here 𝑥𝑢′

𝑘
will then

deviate to 0 as 𝑛𝑢′
𝑘
= 1. Hence, it is not a PSNE.

• (𝑥𝑑1
= 0,∀𝑖 ∈ [𝑛] 𝑥𝑢′

𝑖
= 0). The player 𝑑1 will deviate to 1

as 𝑛𝑑1
= 0. Hence, it is not a PSNE.

(2) Case – ∃𝑘1, 𝑘2 ∈ [𝑛] such that 𝑥𝑢𝑘
1

= 1 and 𝑥𝑢𝑘
2

= 0: We

have 𝑥𝑑2
= 0 as 𝑛𝑑2

> 0 otherwise 𝑑2 would deviate. This

implies that 𝑥𝑢′
𝑛+1

= 0 since 𝑛𝑢′
𝑛+1

≤ 1 (as 𝑥𝑑2
= 0). Now we

consider the following sub-cases (according to the values of

𝑥𝑑1
and 𝑥𝑢′

𝑖
, 𝑖 ∈ [𝑛]):

• (𝑥𝑑1
= 1,∀𝑖 ∈ [𝑛] 𝑥𝑢′

𝑖
= 0). Here 𝑢 ′

𝑘1

will deviate to 1 as

𝑛𝑢′
𝑘

1

= 2. So, it isn’t a PSNE.

• (𝑥𝑑1
= 1,∀𝑖 ∈ [𝑛] 𝑥𝑢′

𝑖
= 1). Here 𝑢 ′

𝑘2

will deviate to 0 as

𝑛𝑢′
𝑘

2

= 1. So, it isn’t a PSNE.

• (𝑥𝑑1
= 1, ∃𝑖, 𝑗 ∈ [𝑛] such that 𝑥𝑢′

𝑖
= 1 and 𝑥𝑢′

𝑗
= 0 ). Here

𝑑1 will deviate to 0 as 0 < 𝑛𝑑1
< 𝑛 (there are at least 2

neighbours of 𝑑1 which play 0 and at least 1 neighbour of

𝑑1 which plays 1). Hence, it is not a PSNE.

• (𝑥𝑑1
= 0,∀𝑖 ∈ [𝑛] 𝑥𝑢′

𝑖
= 0). Here 𝑑1 will deviate to 1 as

𝑛𝑑1
= 0. So, it isn’t a PSNE.

• (𝑥𝑑1
= 0,∃𝑖 ∈ [𝑛] such that 𝑥𝑢′

𝑖
= 1). Here 𝑢 ′

𝑖
will deviate

to 0 as 𝑛𝑢′
𝑖
≤ 1 and hence, it is not a PSNE.

(3) Case – ∀𝑖 ∈ [𝑛] 𝑥𝑢𝑖 = 0: For every 𝑖 ∈ [𝑛], we must have

𝑥𝑢′
𝑖
= 0 so that 𝑢 ′

𝑖
doesn’t deviate. We have the following

sub-cases (according to the values of 𝑥𝑑1
, 𝑥𝑑2

and 𝑥𝑢′
𝑛+1

):

• (𝑥𝑑1
= 0, 𝑥𝑢′

𝑛+1

= 0). Here 𝑑1 deviates to 1 as 𝑛𝑑1
= 0 and

hence, it is not a PSNE.

• (𝑥𝑑1
= 0, 𝑥𝑢′

𝑛+1

= 1) . Here 𝑢 ′
𝑛+1

deviates to 0 as 𝑛𝑢′
𝑛+1

≤ 1.

So, it isn’t a PSNE.

• (𝑥𝑑1
= 1, 𝑥𝑢′

𝑛+1

= 0, 𝑥𝑑2
= 0) . Here 𝑑2 deviates to 1 as

𝑛𝑑2
= 0. So, it isn’t a PSNE.

• (𝑥𝑑1
= 1, 𝑥𝑢′

𝑛+1

= 0, 𝑥𝑑2
= 1). Here 𝑢 ′

𝑛+1
deviates to 1 as

𝑛𝑢′
𝑛+1

= 2 and hence, it is not a PSNE.

• (𝑥𝑑1
= 1, 𝑥𝑢′

𝑛+1

= 1, 𝑥𝑑2
= 0) .Here 𝑢 ′

𝑛+1
deviates to 0 as

𝑛𝑢′
𝑛+1

= 1 and hence, it is not a PSNE.

• (𝑥𝑑1
= 1, 𝑥𝑢′

𝑛+1

= 1, 𝑥𝑑2
= 1).Here 𝑑2 deviates to 0 as

𝑛𝑑2
> 0. So, it isn’t a PSNE.

So if 𝑥 = (𝑥𝑣)𝑣∈V is a PSNE of the BNPG game, then we have

𝑥𝑑1
= 1, ∀𝑖 ∈ [𝑛], 𝑥𝑢′

𝑖
= 1, 𝑥𝑢′

𝑛+1

= 0,∀𝑖 ∈ [𝑛] 𝑥𝑢𝑖 = 1, 𝑥𝑑2
= 0. Now

consider the set F = {{𝑣𝑖 , 𝑣 𝑗 } : 𝑥𝑎{𝑖,𝑗 } = 1, {𝑣𝑖 , 𝑣 𝑗 } ∈ E ′}. Note
that ∀𝑖 ∈ [𝑛], the number of neighbors of 𝑢𝑖 playing 1 excluding

𝑢 ′
𝑖
and 𝑑2 (which in this case is 𝑛𝑢𝑖 − 1 as 𝑥𝑑2

= 0, 𝑥𝑢′
𝑖
= 1) is the

same as the number of edges in F which are incident on 𝑣𝑖 in G.
Since ∀𝑖, 𝑛𝑢𝑖 − 1 ∈ 𝐾 (𝑣𝑖 ), the number of edges in F incident on

𝑣𝑖 in General Factor instance is an element of 𝐾 (𝑣𝑖 ). Hence, the
General Factor instance is a yes instance. □

Corollary 4.4. Exists-PSNE for BNPG games is W[1]-hard
parameterized by treewidth and pathwidth.

We next consider the diameter (𝑑) of the graph as our

parameter and prove para-NP-hardness in Observation 1. It follows

immediately from the fact that the reduced instance in the NP-
completeness proof of Exists-PSNE for BNPG games in [29] has

diameter 2.

Observation 1. Exists-PSNE for BNPG games is NP-complete
even for graphs of diameter at most 2. In particular, the Exists-PSNE
problem for BNPG games is para-NP-hard parameterized by diameter.

We next consider a variant of Exists-PSNE where at most

𝑘0 (respectively 𝑘1) players are playing 0 (respectively 1) in the

PSNE. We denote this variant as 𝑘0-Exists-PSNE (resp. 𝑘1-Exists-

PSNE). Obviously there is a brute force XP algorithm which runs

in time O∗
(
𝑛𝑘0

)
(respectively O∗

(
𝑛𝑘1

)
). We show that 𝑘0-Exists-

PSNE (resp. 𝑘1-Exists-PSNE) is W[2]-hard parameterized by 𝑘0

(respectively 𝑘1). For this, we reduce from the Dominating Set

problem parameterized by the size of dominating set which is

known to be W[2]-hard [6].

Theorem 4.5 (★). 𝑘0-Exists-PSNE for BNPG games isW[2]-hard
parameterized by 𝑘0.

Theorem 4.6 (★). 𝑘1-Exists-PSNE for BNPG games isW[2]-hard
parameterized by 𝑘1 even for fully homogeneous BNPG games.

Till now we have mostly focused on heterogeneous BNPG

games. We next consider fully homogeneous BNPG games and

show the following by reducing from the Exists-PSNE problem on

heterogeneous BNPG games.

Theorem 4.7. The following results hold even for fully
homogeneous games.

(1) Exists-PSNE isNP-complete even if the diameter of the graph
is at most 4.

(2) Exists-PSNE is W[1]-hard with respect to the parameter
treedepth of the graph.

(3) 𝑘0-Exists-PSNE is W[2]-hard parameterized by 𝑘0.

Proof. We first present a reduction from the Exists-PSNE

problem on heterogeneous BNPG games to the Exists-PSNE

problem on fully homogeneous BNPG games. Let (G = (V =

{𝑣𝑖 : 𝑖 ∈ [𝑛]}, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) be any heterogeneous BNPG

game. We now construct the graph H = (V ′, E ′) for the instance
of the fully homogeneous BNPG game.

V ′ = {𝑢𝑖 : 𝑖 ∈ [𝑛]} ∪
⋃
𝑖∈[𝑛]

V𝑖 ,

where V𝑖 = {𝑎𝑖𝑗 : 𝑗 ∈ [2 + (𝑖 − 1)𝑛]},∀𝑖 ∈ [𝑛]

E ′ = {{𝑢𝑖 , 𝑢 𝑗 } : {𝑣𝑖 , 𝑣 𝑗 } ∈ E} ∪
⋃
𝑖∈[𝑛]

E𝑖 ,

where E𝑖 = {{𝑎𝑖𝑗 , 𝑢𝑖 } : 𝑗 ∈ [2 + (𝑖 − 1)𝑛]},∀𝑖 ∈ [𝑛]
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Let us define 𝑓 (𝑥) = ⌊ 𝑥−2

𝑛 ⌋ + 1, ℎ(𝑥) = 𝑥 − 2 − (𝑓 (𝑥) − 1)𝑛. We

now define best-response strategies 𝛽 for the fully homogeneous

BNPG game on H .

𝛽 (𝑘) =


1 if 𝑘 = 0 or 𝑘 = 1

{0, 1} if Δ𝑔𝑣𝑓 (𝑘 ) (ℎ(𝑘)) = 𝑐𝑣𝑓 (𝑘 ) , 𝑘 > 1

1 if Δ𝑔𝑣𝑓 (𝑘 ) (ℎ(𝑘)) > 𝑐𝑣𝑓 (𝑘 ) , 𝑘 > 1

0 if Δ𝑔𝑣𝑓 (𝑘 ) (ℎ(𝑘)) < 𝑐𝑣𝑓 (𝑘 ) , 𝑘 > 1

This finishes description of our fully homogeneous BNPG game

onH . We now claim that there exists a PSNE in the heterogeneous

BNPG game on G if and only if there exists a PSNE in the fully

homogeneous BNPG game on H .

For the “only if” part, let 𝑥∗ = (𝑥∗𝑣 )𝑣∈V be a PSNE in the

heterogeneous BNPG game on G. We now consider the following

strategy profile 𝑦 = (𝑦𝑣)𝑣∈V′ for players in H .

∀𝑖 ∈ [𝑛]𝑦𝑢𝑖 = 𝑥∗𝑣𝑖 ;𝑦𝑤 = 1 for other vertices𝑤

Clearly the players in ∪𝑖∈[𝑛]V𝑖 do not deviate as their degree

is 1 and 𝛽 (0) = 𝛽 (1) = 1. In 𝑦, we have 𝑛𝑢𝑖 = 𝑛𝑣𝑖 + 2 + (𝑖 − 1)𝑛 ≥
2 and 𝑛𝑣𝑖 ≤ 𝑛 − 1 for every 𝑖 ∈ [𝑛]. If 𝑥∗𝑣𝑖 = 1, then we have

Δ𝑔𝑣𝑖 (𝑛𝑣𝑖 ) ≥ 𝑐𝑣𝑖 . We have 𝑓 (𝑛𝑢𝑖 ) = 𝑖 and ℎ(𝑛𝑢𝑖 ) = 𝑛𝑣𝑖 . This implies

that Δ𝑔𝑣𝑓 (𝑛𝑢𝑖 )
(ℎ(𝑛𝑢𝑖 )) ≥ 𝑐𝑣𝑓 (𝑛𝑢𝑖 )

. So 𝑢𝑖 does not deviate as 1 is

the best-response. If 𝑥∗𝑣𝑖 = 0, then we have Δ𝑔𝑣𝑖 (𝑛𝑣𝑖 ) ≤ 𝑐𝑣𝑖 . This

implies that Δ𝑔𝑣𝑓 (𝑛𝑢𝑖 )
(ℎ(𝑛𝑢𝑖 )) ≤ 𝑐𝑣𝑓 (𝑛𝑢𝑖 ) . So 𝑢𝑖 does not deviate as

0 is the best-response. Hence, 𝑦 is a PSNE.

For the “if” part, suppose there exists a PSNE (𝑥∗𝑣 )𝑣∈V′ in the

fully homogeneous BNPG game on H . Clearly 𝑥∗𝑣 = 1 for all 𝑣 ∈
∪𝑖∈[𝑛]V𝑖 as 𝑛𝑣 ≤ 1. Now we claim that the strategy profile 𝑥 =

(𝑥𝑣𝑖 = 𝑥∗𝑢𝑖 )𝑖∈[𝑛] forms a PSNE for the heterogeneous BNPG game

on G. We observe that if 𝑥∗𝑢𝑖 = 1, then Δ𝑔𝑣𝑓 (𝑛𝑢𝑖 )
(ℎ(𝑛𝑢𝑖 )) ≥ 𝑐𝑣𝑓 (𝑛𝑢𝑖 )

for 𝑖 ∈ [𝑛]. This implies that Δ𝑔𝑣𝑖 (𝑛𝑣𝑖 ) ≥ 𝑐𝑣𝑖 . So 𝑥𝑣𝑖 = 1 is the

best-response for 𝑣𝑖 in G and hence, she does not deviate. Similarly,

If 𝑥∗𝑢𝑖 = 0, then Δ𝑔𝑣𝑓 (𝑛𝑢𝑖 )
(ℎ(𝑛𝑢𝑖 )) ≤ 𝑐𝑣𝑓 (𝑛𝑢𝑖 )

. This implies that

Δ𝑔𝑣𝑖 (𝑛𝑣𝑖 ) ≤ 𝑐𝑣𝑖 . So 𝑥𝑣𝑖 = 0 is the best-response for 𝑣𝑖 ∈ V and

hence, it won’t deviate. Hence, 𝑥 is a PSNE in the heterogeneous

BNPG game on G.
We now prove the three statements in the theorem as follows.

(1) We observe that, if the diameter of G is at most 2, then the

diameter of H is at most 4. Hence, the result follows from

Observation 1.

(2) We observe that the treedepth ofH is at most 1more than the

treedepth of G. Hence, the result follows from Theorem 4.3.

(3) We observe that there exists a PSNE where at most 𝑘 players

play 0 in the heterogeneous BNPG game on G if and only

if there exists a PSNE where at most 𝑘 players play 0 in the

fully homogeneous BNPG game on H . Hence, the result

follows from Theorem 4.5.

□

We next show that Exists-PSNE for fully homogeneous BNPG

games is para-NP-hard parameterized by the maximum degree of

the graph again by reducing from heterogeneous BNPG games.

Theorem 4.8 (★). Exists-PSNE for fully homogeneous BNPG
games is NP-complete even if the maximum degree Δ of the graph is
at most 9.

4.2 XP Algorithm for the parameter treewidth
Our next result is an XP algorithm for the Exists-PSNE problem

when parameterized by treewidth. Towards that, we introduce the

notion of “feasible function” in Definition 4.9 and prove a related

algorithmic result in Lemma 4.10.

Definition 4.9. Let G =(V ,E) be a graph with maximum degree

Δ. Let 𝑓 : 𝑉 → [Δ] ∪ {0} be a function where 𝑉 ⊆ V . We call

a function 𝑓 feasible if there exists a strategy profile 𝑆 of all the

players in G such that for each 𝑢 ∈ 𝑉 , number of neighbours of 𝑢

playing 1 in the strategy profile 𝑆 is 𝑓 (𝑢).

Lemma 4.10 (★). Let G =(V ,E) be a graph with maximum degree
Δ. Let𝑉 ⊆ V . Then the set of all feasible functions 𝑓 : 𝑉 → [Δ]∪{0}
can be computed in time O∗ (Δ |𝑉 |).

We now present a O∗ (Δ𝑂 (𝑘) ) time XP algorithm for Exists-

PSNE where 𝑘 is the treewidth of the input graph. Note

that the running time of O∗ (Δ𝑂 (𝑘) ) implies that Exists-

PSNE is fixed-parameter tractable for the combined parameter

“treewidth+maximum degree”.

Theorem 4.11. Let G be an n-vertex graph given together with its
tree decomposition of treewidth at most 𝑘 . Then there is an algorithm
running in time O∗ (Δ𝑂 (𝑘) ) for Exists-PSNE in BNPG game on G
where Δ is the maximum degree of graph G.

Proof Sketch. Let (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) be any

instance of Exists-PSNE for BNPG games. Let (𝛽𝑣 (.))𝑣∈V be the

set of the best response functions. Let T = (𝑇, {𝑋𝑡 }𝑡 ∈𝑉 (𝑇 ) ) be a
nice tree decomposition of the input 𝑛-vertex graph G that has

width at most 𝑘 . Let T be rooted at some node 𝑟 . For a node 𝑡 of

T , let 𝑉𝑡 be the union of all the bags present in the subtree of T
rooted at 𝑡 , including 𝑋𝑡 . We solve the Exists-PSNE problem using

dynamic programing. Let 𝑁1 (𝑋𝑡 ) denote set of vertices inV \𝑉𝑡
which is adjacent to at least one vertex in 𝑋𝑡 . Let 𝑁2 (𝑋𝑡 ) denote
set of vertices in 𝑉𝑡 \ 𝑋𝑡 which is adjacent to at least one vertex in

𝑋𝑡 .Let 𝑐 [𝑡, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] = 1 (resp. 0) denote that

there exists (resp. doesn’t exist) a strategy profile 𝑆 of all the players

in G such that for each 𝑢 ∈ 𝑋𝑡 , 𝑢 plays 𝑥𝑢 , number of neighbours

of 𝑢 in 𝑁1 (𝑋𝑡 ) (resp. 𝑁2 (𝑋𝑡 )) playing 1 is 𝑑1

𝑢 (resp. 𝑑2

𝑢 ) and none

of the vertices in 𝑉𝑡 deviate in the strategy profile 𝑆 . Before we

proceed, we would like to introduce some notations. Let 𝑉 be a

set of vertices and 𝑆1 = (𝑥𝑣)𝑣∈𝑉 , 𝑆2 = (𝑥𝑣)𝑣∈𝑉 \{𝑤 } be two tuples.

Then 𝑆1 \{𝑥𝑤} := 𝑆2 and 𝑆2∪{𝑥𝑤} := 𝑆1. Also, we denote an empty

tuple by 𝜙 . Clearly 𝑐 [𝑟, 𝜙, 𝜙, 𝜙] indicates whether there is a PSNE
in G or not. We now present the recursive equation to compute

𝑐 [𝑡, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] for various types of node in T .

Leaf Node: For a leaf node 𝑡 we have that 𝑋𝑡 = 𝜙 . Hence,

𝑐 [𝑡, 𝜙, 𝜙, 𝜙] = 1.

Join Node: For a join node 𝑡 , let 𝑡1, 𝑡2 be its two children. Note

that 𝑋𝑡 = 𝑋𝑡1
= 𝑋𝑡2

.

Now we proceed to compute 𝑐 [𝑡, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
].

Let F be a set of tuples (𝑑 ′𝑣)𝑣∈𝑋𝑡
such that there is a strategy

profile 𝑆 such that for each 𝑣 ∈ 𝑋𝑡 , its response is 𝑥𝑣 , the number of

neighbours in𝑁1 (𝑥),𝑉𝑡1
\𝑋𝑡1

and𝑉𝑡2
\𝑋𝑡2

playing 1 is𝑑1

𝑣 , 𝑑
′
𝑣, 𝑑

2

𝑣−𝑑 ′𝑣
respectively. Using Lemma 4.10 we can find the set F in time

O∗ (Δ𝑘 ). Then 𝑐 [𝑡, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] is equal to the
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following formula:

0 ∨
∨

(𝑑′
𝑣 )𝑣∈𝑋𝑡 ∈F

(
𝑐 [𝑡1, (𝑥𝑣)𝑣∈𝑋𝑡

, (𝑑1

𝑣 + 𝑑2

𝑣 − 𝑑 ′𝑣)𝑣∈𝑋𝑡
, (𝑑 ′𝑣)𝑣∈𝑋𝑡

]

∧ 𝑐 [𝑡2, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 + 𝑑 ′𝑣)𝑣∈𝑋𝑡
, (𝑑2

𝑣 − 𝑑 ′𝑣)𝑣∈𝑋𝑡
]
)

Introduce Node: Let 𝑡 be an introduce node with a child 𝑡 ′ such
that𝑋𝑡 = 𝑋𝑡 ′∪{𝑢} for some𝑢 ∉ 𝑋𝑡 ′ . Let 𝑆

′ = (𝑥𝑣)𝑣∈𝑋𝑡
be a strategy

profile of vertices in 𝑋𝑡 . Let 𝑛
′
𝑣 denote the number of neighbours of

𝑣 playing 1 in 𝑆 ′. Let 𝑔 : V ×V → {0, 1} be a function such that

𝑔({𝑢, 𝑣}) = 1 if and only if {𝑢, 𝑣} ∈ E. We now proceed to compute

𝑐 [𝑡, 𝑆 ′, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
]. If there is no strategy profile 𝑆 where

∀𝑣 ∈ 𝑋𝑡 ,the number of neighbours of 𝑣 in 𝑁1 (𝑋𝑡 ) (resp. 𝑁2 (𝑋𝑡 ))
playing 1 is 𝑑1

𝑣 (resp. 𝑑
2

𝑣 ) , then clearly 𝑐 [𝑡, 𝑆 ′, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] =

0. Due to Lemma 4.10, we can check the previous statement in

O∗ (Δ𝑘 ) by considering a bipartite subgraph of G between 𝑋𝑡 and

𝑁1 (𝑋𝑡 ) (or 𝑁2 (𝑋𝑡 )). Otherwise, we have the following:
𝑐 [𝑡, 𝑆 ′, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] =

0 if ∃𝑣 ∈ 𝑋𝑡 , 𝑥𝑣 ∉ 𝛽𝑣 (𝑛′𝑣 + 𝑑1

𝑣 + 𝑑2

𝑣 )
𝑐 [𝑡 ′, 𝑆 ′ \ {𝑥𝑢 }, (𝑑1

𝑣 + 𝑔({𝑣,𝑢}))𝑣∈𝑋𝑡′ , (𝑑
2

𝑣 )𝑣∈𝑋𝑡′ ] if 𝑥𝑢 = 1

𝑐 [𝑡 ′, 𝑆 ′ \ {𝑥𝑢 }, (𝑑1

𝑣 )𝑣∈𝑋𝑡′ , (𝑑
2

𝑣 )𝑣∈𝑋𝑡′ ] otherwise

Forget Node: Let 𝑡 be a forget node with a child 𝑡 ′ such that

𝑋𝑡 = 𝑋
′
𝑡 \ {𝑤} for some 𝑤 ∈ 𝑋𝑡 ′ . Let 𝑆0 = (𝑥𝑣)𝑣∈𝑋𝑡

∪ {𝑥𝑤 = 0},
𝑆1 = (𝑥𝑣)𝑣∈𝑋𝑡

∪ {𝑥𝑤 = 1} be two strategy profiles of vertices in 𝑋 ′
𝑡 .

Let 𝑔 : V ×V → {0, 1} be a function such that 𝑔({𝑢, 𝑣}) = 1 if and

only if {𝑢, 𝑣} ∈ E. We now have the following:

𝑐 [𝑡, (𝑥𝑣)𝑣∈𝑋𝑡
, (𝑑1

𝑣 )𝑣∈𝑋𝑡
, (𝑑2

𝑣 )𝑣∈𝑋𝑡
] =∨

𝑑1

𝑤 ,𝑑
2

𝑤 :0≤𝑑1

𝑤 ,𝑑
2

𝑤 ≤Δ

(
𝑐 [𝑡 ′, 𝑆0, (𝑑1

𝑣 )𝑣∈𝑋𝑡′ , (𝑑
2

𝑣 )𝑣∈𝑋𝑡′ ]

∨ 𝑐 [𝑡 ′, 𝑆1, (𝑑1

𝑣 )𝑣∈𝑋𝑡′ , (𝑑
2

𝑣 − 𝑔({𝑣,𝑤}))𝑣∈𝑋𝑡′
)

Due to space constraints, we refer the reader to the full version

of our paper for the proof of correctness of the above recursive

equations. Now we consider the time complexity of our algorithm.

Total number of cells in the dynamic programming table which we

created is O∗ (Δ𝑂 (𝑘) ). For each cell, we spend at most O∗ (Δ𝑂 (𝑘) )
time if we are computing the table in a bottom up fashion. Hence,

the running time is O∗ (Δ𝑂 (𝑘) ). □

4.3 Tractable Results
To conclude our fine-grained analysis of the Exists-PSNE problem,

we bridge the gap between the tractablility and intractibility by

showing some tractable results. Our first result is an FPT algorithm

for Exists-PSNE for strict games when parameterized by the vertex

cover number.

Theorem 4.12 (★). There is a O∗ (2vc(G)) time algorithm for
Exists-PSNE for strict BNPG games where vc(G)is the vertex cover
number.

Our next result shows that we can always find a PSNE for additive

BNPG games in O(𝑛) time. This complements the intractable result

for subadditive BNPG games.

Observation 2 (★). There exists an O(𝑛) time algorithm to find
a PSNE in an additive BNPG game.

We next consider circuit rank and distance from complete graph

as parameter. These parameters can be thought of distance from

tractable instances (namely tree and complete graph). They are

defined as follows.

Definition 4.13. Let the number of edges and number of vertices

in a graph G be 𝑚 and 𝑛 respectively. Then 𝑑1 (circuit rank) is

defined to be𝑚 − 𝑛 + 𝑐 (𝑐 is the number of connected components

in the graph) and 𝑑2 (distance from complete graph) is defined to

be
𝑛 (𝑛−1)

2
−𝑚. Note that circuit rank is not the same as feedback

arc set.

Yu et al. presented an algorithm for Exists-PSNE on trees in

[29]. It turns out that their algorithm can be appropriately modified

to get the following observation.

Observation 3. [29] Given a BNPG game on a tree T = (V, E), a
subset of vertices U ⊆ V and a strategy profile (𝑥𝑢 )𝑢∈U ∈ {0, 1}U ,
there is a polynomial time algorithm for deciding if there exists a
PSNE (𝑦𝑣)𝑣∈V ∈ {0, 1}V for the BNPG game such that 𝑥𝑢 = 𝑦𝑢 for
every 𝑢 ∈ U.

Now by using the observation 3 as a subroutine, we exhibit an

FPT algorithm for the parameter circuit rank.

Theorem 4.14. There is an algorithm running in time O∗ (4𝑑1 )
for Exists-PSNE in BNPG games where 𝑑1 is the circuit rank of the
input graph.

Proof. Let (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) be any instance of

Exists-PSNE for BNPG games. Let the graph G have 𝑐 connected

components namely, G1 = (V1, E1), . . . ,G𝑐 = (V𝑐 , E𝑐 ). For every
𝑖 ∈ [𝑐], we decide if there exists a PSNE inG𝑖 ; clearly there is a PSNE

in G if and only if there is a PSNE in G𝑖 for every 𝑖 ∈ [𝑛]. Hence,
in the rest of the proof, we focus on the algorithm to decide the

existence of a PSNE in G𝑖 . We compute a minimum spanning tree

T𝑖 in the connected component G𝑖 . Let E ′
𝑖
⊂ E𝑖 be the set of edges

which are not part ofT𝑖 ; let |E ′
𝑖
| = 𝑑𝑖

1
andV ′

𝑖
= {𝑣𝑖

1
, 𝑣𝑖

2
, . . . , 𝑣𝑖

𝑙
} ⊆ V𝑖

be the set of vertices which are endpoints of at least one edge in E ′
𝑖
.

Of course, we have |V ′
𝑖
| = ℓ ≤ 2𝑑𝑖

1
. For every tuple 𝑡 = (𝑥 ′𝑣)𝑣∈V′

𝑖
∈

{0, 1}𝑙 , we do the following.

(1) For each 𝑣 ∈ V ′
𝑖
, let 𝑛𝑡𝑣 be the number of neighbours of 𝑣 in

G𝑖 [E ′
𝑖
] ( subgraph of G𝑖 containing the set of nodes V𝑖 and

the set of edges E ′
𝑖
) who play 1 in 𝑡 . We now define 𝑔𝑡𝑣 for

every player 𝑣 ∈ V as follows.

𝑔𝑡𝑣 (𝑘) =
{
𝑔𝑣 (𝑘 + 𝑛𝑡𝑣) if 𝑣 ∈ V ′

𝑖

𝑔𝑣 (𝑘) otherwise

(2) We now decide if there exists a PSNE (𝑦𝑣)𝑣∈V𝑖
∈ {0, 1}V𝑖

in

the BNPG game (T𝑖 , (𝑔𝑡𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

) such that 𝑦𝑣 = 𝑥 ′𝑣
for every 𝑣 ∈ V ′

𝑖
; this can be done in polynomial time due

to Observation 3. If such a PSNE exists, then we output yes.

If we fail to find a PSNE for every choice of tuple 𝑡 , then we

output no. The running time of the above algorithm (for G𝑖 )

is O∗
(
2
|V′

𝑖 |
)
. Hence the overall running time of our algorithm

is O∗
(∑𝑐

𝑖=1
2
|V′

𝑖 |
)

≤ O∗
(
2

2𝑑1

)
= O∗

(
4
𝑑1

)
. We now argue
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correctness of our algorithm. We observe that it is enough to argue

correctness for one component.

In one direction, let 𝑥∗ = (𝑥∗𝑣 )𝑣∈V𝑖
be a PSNE in the BNPG

game (G𝑖 , (𝑔𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

). We now claim that (𝑥∗𝑣 )𝑣∈V𝑖
is also

a PSNE in the BNPG game on (T𝑖 , (𝑔𝑡𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

) where 𝑡 =
(𝑥∗𝑣 )𝑣∈V′

𝑖
. Let 𝑛

G𝑖
𝑣 and 𝑛

T𝑖
𝑣 be the number of neighbors of 𝑣 ∈ V𝑖

in G𝑖 and T𝑖 respectively who play 1 in 𝑥∗. With 𝑛𝑡𝑣 defined as

above, we have 𝑛
G𝑖
𝑣 = 𝑛

T𝑖
𝑣 + 𝑛𝑡𝑣 for 𝑣 ∈ V ′

𝑖
and 𝑛

G𝑖
𝑣 = 𝑛

T𝑖
𝑣 for

𝑣 ∈ V𝑖 \V ′
𝑖
. Hence, we have Δ𝑔𝑡𝑣 (𝑛

T𝑖
𝑣 ) = Δ𝑔𝑣 (𝑛T𝑖𝑣 +𝑛𝑡𝑣) = Δ𝑔𝑣 (𝑛G𝑖

𝑣 )
for 𝑣 ∈ V ′

𝑖
and Δ𝑔𝑡𝑣 (𝑛

T𝑖
𝑣 ) = Δ𝑔𝑣 (𝑛G𝑖

𝑣 ) for 𝑣 ∈ V𝑖 \ V ′
𝑖
. If 𝑥∗𝑣 = 1

where 𝑣 ∈ V𝑖 , then Δ𝑔𝑣 (𝑛G𝑖
𝑣 ) ≥ 𝑐𝑣 and thus we have Δ𝑔𝑡𝑣 (𝑛

T𝑖
𝑣 ) ≥ 𝑐𝑣 .

Hence, 𝑣 does not deviate in T𝑖 . Similarly, if 𝑥∗𝑣 = 0 where 𝑣 ∈ V𝑖 ,

then Δ𝑔𝑣 (𝑛G𝑖
𝑣 ) ≤ 𝑐𝑣 and thus we have Δ𝑔𝑡𝑣 (𝑛

T𝑖
𝑣 ) ≤ 𝑐𝑣 . Hence, 𝑣

does not deviate in T𝑖 . Hence (𝑥∗𝑣 )𝑣∈V is also a PSNE in BNPG

game (T𝑖 , (𝑔𝑡𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

) where 𝑡 = (𝑥∗𝑣 )𝑣∈V′
𝑖
(which means

our Algorithm returns YES).

In the other direction, let (𝑥∗𝑣 )𝑣∈V𝑖
be the PSNE in BNPG game

on (T𝑖 , (𝑔𝑡𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

) where 𝑡 = (𝑥∗𝑣 )𝑣∈V′
𝑖
(which means our

Algorithm returns YES). We claim that (𝑥∗𝑣 )𝑣∈V𝑖
is also a PSNE

in BNPG game (G𝑖 , (𝑔𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

). If 𝑥∗𝑣 = 1 for 𝑣 ∈ V𝑖 ,

then Δ𝑔𝑡𝑣 (𝑛
T𝑖
𝑣 ) ≥ 𝑐𝑣 . This implies that Δ𝑔𝑣 (𝑛G𝑖

𝑣 ) ≥ 𝑐𝑣 and thus

𝑣 does not deviate in G𝑖 . Similarly, if 𝑥∗𝑣 = 0 for 𝑣 ∈ V𝑖 , then

Δ𝑔𝑡𝑣 (𝑛
T𝑖
𝑣 ) ≤ 𝑐𝑣 . This implies that Δ𝑔𝑣 (𝑛G𝑖

𝑣 ) ≤ 𝑐𝑣 and thus 𝑣 does

not deviate in G𝑖 . Hence (𝑥∗𝑣 )𝑣∈V is also a PSNE in BNPG game on

(G𝑖 , (𝑔𝑣)𝑣∈V𝑖
, (𝑐𝑣)𝑣∈V𝑖

). □

Yu et al. presented an algorithm for Exists-PSNE on complete

graphs in [29]. It turns out that their algorithm can be appropriately

modified to get the following observation.

Observation 4. [29] Given a BNPG game on a complete graph
G = (V, E), and an integer 𝑘 , there is a polynomial time algorithm
for deciding if there exists a PSNE where exactly 𝑘 players play 1 and
returns such a PSNE if it exists.

Now by using the observation 4 as a subroutine, we exhibit an

FPT algorithm for the parameter distance from complete graph.

Theorem 4.15. There is an algorithm running in time O∗ (4𝑑2 ) for
Exists-PSNE in BNPG games where 𝑑2 is the distance from complete
graph.

Proof. Let (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ) be any instance of

Exists-PSNE for BNPG games. If 𝑑2 ≥ 𝑛
2
, then iterating over all

possible strategy profiles takes time O∗ (2𝑛) ≤ O∗ (4𝑑2 ). So allow

us to assume for the rest of the proof that 𝑑2 < 𝑛
2
. Let us define

V ′ = {𝑢 ∈ V : ∃𝑣 ∈ V, 𝑣 ≠ 𝑢, {𝑢, 𝑣} ∉ E}; we have |V ′ | ≤ 2𝑑2.

For every strategy profile 𝑦 = (𝑦𝑢 )𝑢∈V′ , we do the following.

For each 𝑣 ∈ V \ V ′
, let 𝑛′𝑣 be the number of neighbors of 𝑣

in V ′
who play 1 in 𝑦. We now define 𝑔′𝑣 (ℓ) = 𝑔𝑣 (ℓ + 𝑛′𝑣) for

every ℓ ∈ N ∪ {0} and every player 𝑣 ∈ V \ V ′
. For every 𝑘 ∈

{0, . . . , |V \V ′ |}, we decide (using the algorithm in Observation 4)

if there exists a PSNE 𝑥𝑘 = (𝑥𝑘𝑣 )𝑣∈V\V′ in the BNPG game (G[V \
V ′], (𝑔′𝑣)𝑣∈V\V′, (𝑐𝑣)𝑣∈V\V′) where exactly 𝑘 players play 1. If

𝑥𝑘 exists, then we output yes if ((𝑦𝑢 )𝑢∈V′, (𝑥𝑘𝑣 )𝑣∈V\V′) forms a

PSNE in the BNPG game (G = (V, E), (𝑔𝑣)𝑣∈V , (𝑐𝑣)𝑣∈V ).

If the above procedure fails to find a PSNE, then we output no.

The running time of the above algorithm is O∗
(
2
|V′ |

)
≤ O∗

(
4
𝑑2

)
.

We now argue correctness.

Clearly, if the algorithm outputs yes, then there exists a PSNE

for the input game. On the other hand, if there exists a PSNE

((𝑦𝑢 )𝑢∈V′, (𝑥𝑣)𝑣∈V\V′) ∈ {0, 1}V in the input game, then let us

consider the iteration of our algorithm with the guess (𝑦𝑢 )𝑢∈V′ .

Let the number of players playing 1 in (𝑥𝑣)𝑣∈V\V′ be 𝑘 . If 𝑥𝑣 = 1

where 𝑣 ∈ V \ V ′
, then Δ𝑔𝑣 (𝑛′𝑣 + 𝑘 − 1) ≥ 𝑐𝑣 and thus we have

Δ𝑔′𝑣 (𝑘 − 1) ≥ 𝑐𝑣 . Similarly, if 𝑥𝑣 = 0 where 𝑣 ∈ V \ V ′
, then

Δ𝑔𝑣 (𝑛′𝑣 + 𝑘) ≤ 𝑐𝑣 and thus we have Δ𝑔′𝑣 (𝑘) ≤ 𝑐𝑣 . Hence, we

observe that (𝑥𝑣)𝑣∈V\V′ forms a PSNE in the BNPG game (G[V \
V ′], (𝑔′𝑣)𝑣∈V\V′, (𝑐𝑣)𝑣∈V\V′). Let (𝑥 ′𝑣)𝑣∈V\V′ be the PSNE of the

BNPG game (G[V \V ′], (𝑔′𝑣)𝑣∈V\V′, (𝑐𝑣)𝑣∈V\V′) where exactly
𝑘 players play 1 returned by the algorithm in Observation 4. We

observe that every player inV ′
has the same number of neighbors

playing 1 in both the strategy profiles ((𝑦𝑢 )𝑢∈V′, (𝑥𝑣)𝑣∈V\V′)
and ((𝑦𝑢 )𝑢∈V′, (𝑥 ′𝑣)𝑣∈V\V′). So no player in V ′

will deviate in

the strategy profile ((𝑦𝑢 )𝑢∈V′, (𝑥 ′𝑣)𝑣∈V\V′). If 𝑥 ′𝑣 = 1 where

𝑣 ∈ V \ V ′
, then Δ𝑔′𝑣 (𝑘 − 1) ≥ 𝑐𝑣 and thus we have Δ𝑔𝑣 (𝑛′𝑣 +

𝑘 − 1) ≥ 𝑐𝑣 . Hence, 𝑣 does not deviate in the strategy profile

((𝑦𝑢 )𝑢∈V′, (𝑥 ′𝑣)𝑣∈V\V′). Similarly, if 𝑥 ′𝑣 = 0 where 𝑣 ∈ V \ V ′
,

then Δ𝑔′𝑣 (𝑘) ≤ 𝑐𝑣 and thus we have Δ𝑔𝑣 (𝑛′𝑣 + 𝑘) ≤ 𝑐𝑣 . Hence, 𝑣

does not deviate in the strategy profile ((𝑦𝑢 )𝑢∈V′, (𝑥 ′𝑣)𝑣∈V\V′).
Hence, ((𝑦𝑢 )𝑢∈V′, (𝑥 ′𝑣)𝑣∈V\V′) also forms a PSNE in the input

BNPG game and thus the algorithm outputs yes. This concludes

the correctness of our algorithm. □

Wefinally show that a PSNE always exists for fully homogeneous

BNPG games for some important graph classes and such a PSNE

can be found in O(𝑛) time.

Theorem 4.16 (★). There is always a PSNE in a fully homogeneous
BNPG game for paths, complete graphs, cycles, and bi-cliques.
Moreover, we can find a PSNE in O(𝑛) time.

5 CONCLUSION AND FUTUREWORK
We have studied parameterized complexity of the Exists-PSNE

problem for the BNPG games with respect to various important

graph parameters. We exhibited intractibility w.r.t. the parameters

like maximum degree, diameter, treedepth, number of players

playing 1 and 0. We complemented this by showing FPT algorithms

parameterized by circuit rank, treewidth+maximum degree, and the

distance from complete graph. We also showed that PSNE always

exists in a fully homogeneous BNPG game for paths, complete

graphs, cycles and bi-cliques.

Our work leaves some important questions open. For example,

canwe show PPAD-Hardness for finding Nash Equilibrium in BNPG

games. Another immediate research direction is to study if our

algorithmic results could be extended to other types of more general

public goods games. Another research direction could be to look at

social welfare functions in the context of BNPG game. We can also

consider BNPG games with altruism introduced in [28] and try to

resolve its parameterized complexity.
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