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ABSTRACT

This paper presents a new multi-agent model for simulating mal-

ware propagation in device-to-device (D2D) 5G networks. This

model allows to understand and analyze mobile malware-spreading

dynamics in such highly dynamical networks. Additionally, we

present a theoretical study to validate and benchmark our pro-

posed approach for some basic scenarios that are less complicated

to model mathematically and also to highlight the key parame-

ters of the model. Our simulations identify critical thresholds for

"no propagation" and for "maximum malware propagation" and

make predictions on the malware-spread velocity as well as device-

infection rates. To the best of our knowledge, this paper is the first

study applying agent-based simulations for malware propagation

in D2D.
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1 INTRODUCTION

D2D communications is one of the key emerging technologies for

5G networks and beyond. It enables a direct exchange of data be-

tween mobile devices, which extends coverage for devices lacking

direct access to the cellular infrastructure and therefore enhances

the network capacity. However, security issues are very challenging

for D2D systems as malware can easily compromise mobile devices

and propagate across the decentralized network. Compromised de-

vices represent infection threats for all of their connected neighbors

as they can, in their turn, propagate malware through susceptible

devices and form an epidemic outbreak. This enables attackers to
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infect a larger population of devices and to launch cyber- and phys-

ical malicious attacks. Therefore, it is of great importance to have a

good understanding of vulnerability and security issues, particu-

larly of the malware propagation processes, in such networks and

to be able to design optimal defense strategies.

Modeling malware propagation in D2D is challenging due to the

complexity of such networks induced for example by topology or

device mobility. In order to cope with this, D2D can be investigated

and analyzed using analytical models (e.g., stochastic geometry,

stochastic processes, etc.). Some of these approaches have been

proposed to model malware spreading in D2D networks [11, 20, 21].

Nevertheless, classical simulation and analytical tools are often not

suitable for capturing the global dynamics of complex systems.

In this paper we propose to tackle the problem from the perspec-

tive of complex-systems science and present a new agent-based

model (ABM) in order to analyze and understand malware propaga-

tion in D2D networks. For this, the agent-based simulation approach

provides the possibility to simulate complex-systems dynamics and

to test theories about local behaviors and their emergence. Un-

like traditional techniques of simulation, based on mathematical or

stochastic models, multi-agent simulation is more suitable for com-

plex problem modeling and simulation. In fact, applying classical

simulation and analytical tools, such as differential equations, to

complex systems often produces undesired complications. Indeed,

many challenges that arise in the traditional numerical modeling

come from the fact that individual actions (activities that result in

a modification of the system) and their impact on the dynamics of

the system are often underrepresented. Usually, individual behav-

iors, i.e., decisions made at the individual or group level, cannot

be incorporated into these simulations. On the other hand, in a

multi-agent simulation, the model is not a set of equations as in

mathematical models, but a set of entities. Here agents represent

the set of all the simulated individuals, objects encode the set of all

represented passive entities, and the environment is the topological

space where agents and objects are located and which they can

move in and act upon.

Although agent-based simulations have been successfully used

to model complex systems in different areas like biology, sociology,

political science and economics, it is still insufficiently explored in

the field of telecommunication networks, specifically for malware

spreading in D2D. In this work, we aim to shed more light on
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whether such highly dynamical D2D networks can be treated as

a complex system and whether complex-systems science can give

insights on the emergent properties of malware propagation. The

main contributions of this paper are as follows:

• We propose in Sections 3 and 4 a new ABM for studying

malware propagation in D2D 5G+ networks and we formally

prove its correctness for predicting different agents status

over the time.

• We perform a theoretical study in Section 5 to estimate the

critical values of the model’s parameters and to identify the

most important ones to consider for simulations.

• Finally, in Section 6 we perform simulations to study and un-

derstand malware-spreading dynamics. Some critical thresh-

olds have been identified. Important aspects like malware

infection rates and velocities have been also studied to under-

stand how they will evolve as functions of the parameters.

2 RELATEDWORK

ABMs are effective and robust tools in simulating complex and dy-

namic phenomena like epidemic spreading. Thesemodels have been

used primarily in epidemiological studies of infectious diseases and

have recently gained a great importance also in the epidemiological

modeling as can be seen from the vast literature in the context of

the COVID-19 pandemic, see for example [2, 6, 15, 16].

However, ABMs are still in their infancy with regard to telecom-

munication networks. Some ABMs have been proposed in the liter-

ature for IoT networks. Authors in [4, 13, 19] proposed ABMs for

analyzing IoT systems. Other applications of ABMs to telecommu-

nication networks are proposed in [17] and [18], where authors

analyzed the effectiveness of ABMs to understand self-organization

in peer-to peer and ad-hoc networks. These studies provide further

motivation to our investigation on applying ABMs for studying

malware spreading dynamics in D2D 5G networks.

Let us again mention that conventionally D2D systems are mod-

eled using analytical methods (e.g., stochastic geometry) which

have proven to be powerful tools for modeling spatial device and

road systems. In this context, the authors in [20] and [21] present a

framework for the modeling and understanding of malware spread

in D2D with mobile devices and study some strategies of both de-

fenders and attackers. The proposed model is based on an analytical

approach and does not consider urban environments. In view of

this, a standard SIR model is presented in [12], to study malware

propagation in D2D considering urban environments but mobility

was not taken into account. Even though the obtained results were

promising, some questions remained open regarding the conver-

gence of the malware propagation speed, the shape theorem of the

infection and the critical thresholds. This mainly comes from the

fact that the dynamics of the system were insufficiently captured.

3 SYSTEM MODEL

This section gives a detailed description of the D2D malware prop-

agation model in urban environments. In this ABM description,

devices are represented as reactive agents that move in the environ-

ment and have a variety of capabilities like neighborhood discovery

and malware propagation. In short terms, the system has the follow-

ing composition. We consider an urban environment. At initial time,

devices are placed randomly on the streets (we make the simplify-

ing assumption that devices that are situated in buildings are not to

be taken into account : this can be justified by the high frequencies

used in 5G). The devices move independently and randomly at a

constant speed. Moreover, two devices can communicate directly

with each other if they are close enough and on the same street. Let

us note that this approach takes shadowing into account, but not

interference. At time zero, a virus is introduced carried by a device

near to the center of the city. The virus can now propagate from

one device to another if they can communicate for a sufficiently

long time that represents the discovery time plus the transmission

time.

3.1 Street systems and devices

We consider our urban street environment 𝐸 as a two-dimensional

planar Poisson–Voronoi tessellation (PVT, see [5]) induced by a

homogeneous Poisson point process (PPP)𝑋𝐸 of positive intensity 𝜆.

The PVT is a one-parameter segment process that has been shown

to be a good fit for the street systems of European cities (see [8–10]).

It has been widely used to model different urban environments as

random tessellations , since it allows to go beyond specific urban

topologies. We will denote by 𝑆 the set of edges of 𝐸 (representing

the streets). The devices are placed on 𝑆 as a linear PPP of intensity

𝜃 , thus forming a Cox point process (CPP) on the plane with random

intensity measure Λ(𝐵) = 𝜃 |𝑆 ∩ 𝐵 | for every measurable 𝐵 ∈ R2.
Here |𝑆 ∩ 𝐵 | stands for the total length of 𝑆 in the area 𝐵.

3.2 ABM for malware propagation in D2D

We note first that the environment is modeled as an undirected

graph, relying on some stochastic-geometry concepts, as described

in Section 3.1. Then, we define our malware-propagation system in

D2D as a finite number of agents, states, actions and rules,

MAS := ⟨A, St,Act, R,T⟩.
More precisely, we consider a set of 𝑛 agents A = { 𝑎𝑖 : 𝑖 ∈ [1, 𝑛] }
corresponding to devices and a state space St = {susceptible, infected}.
Further, Act = {"move", "discover", "connect", "infect"} denotes the
set of actions that each agent can perform according to its state. R

represents the set of the behavioral rule base. Time T is assumed to

be divided in time units called slots, where each slot 𝑘 is represented

by a positive integer.

Initially, agents are distributed on the edges of 𝐸 (i.e., streets

of the city) as described in Section 3.1. One agent of type infected
is introduced around the center of the map. Then, formally, each

agent 𝑎𝑖 is defined at each time slot by a tuple

M𝑖,𝑘 := ⟨𝑋𝑖,𝑘 ,𝑉𝑖,𝑘 , 𝑁𝑖,𝑘 ,Act𝑖,𝑘 , 𝜉𝑖,𝑘 ,𝑇
(𝐼 )
𝑖,𝑘
⟩.

Here, 𝑋𝑖,𝑘 specifies the agent’s location in terms of coordinates at

time 𝑘𝑑𝑡 , 𝑉𝑖,𝑘 = 𝑣 represents the agent’s moving speed and 𝑁𝑖,𝑘 the

knowledge base, representing what each agent 𝑎𝑖 knows about its

neighboring agents and the environment at time slot 𝑘 . Further,

𝜉𝑖,𝑘 ∈ St represents the state of agent 𝑎𝑖 and Act𝑖,𝑘 is the set of

actions that can be performed by 𝑎𝑖 . Finally, 𝑇
(𝐼 )
𝑖,𝑘

represents the

first time when 𝑎𝑖 becomes infected. It will be updated during the

simulation depending on the agent’s interactions. 𝑇
(𝐼 )
𝑖,0

is set to +∞
for initially susceptible agents and 0 for the infected one. The state
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of 𝑎𝑖 ∈ A at 𝑘𝑑𝑡 for 𝑘 ≥ 1 is given by

𝜉𝑖,𝑘 :=

{
susceptible if 𝑘𝑑𝑡 < 𝑇

(𝐼 )
𝑖,𝑘−1,

infected if 𝑘𝑑𝑡 ≥ 𝑇 (𝐼 )
𝑖,𝑘−1 .

In particular, the state of 𝑎𝑖 at a step 𝑘 of the simulation is com-

puted using the variables (𝑇 (𝐼 )
𝑖,𝑘−1)𝑎𝑖 ∈A from the previous step. This

formula also implies that the states of the agents will not change

between the steps 0 and 1. It will be indeed the case since we will

consider a time step 𝑑𝑡 smaller than 𝜌 . (See Section 4.2).

3.3 Agent behavior and states

Let us describe the three different behaviors of agents: mobility,

communication and infection.

3.3.1 Mobility behavior. Devices move at the same constant speed

𝑣 , starting from a base position, and repeating indefinitely the fol-

lowing street-adapted random-waypoint model:
• Each device independently picks a destination on the street.

For this we sample a random point 𝑃 in the plane using a

Gaussian distribution centered on the device 𝑋 , and with a

standard deviation equal to𝜎𝑋 = (15min)×𝑣 . The destination
we take for 𝑋 is then the closest point of 𝑃 in 𝐸. This choice

of 𝜎𝑋 shows that devices will go to destinations that they

can reach in an average time of 15min if they take a straight

path.

• Devices move to their destinations following the shortest

path along the streets.

• Once arrived, devices go back to their starting position fol-

lowing the shortest path along the streets (anchored move-

ment).

3.3.2 Communication behavior. In order to exchange messages,

two communicating devices/agents must obey the following rules:

• (RAD): The Euclidean distance between the two devices is

less than a given constant threshold 𝑟 .

• (LOS): The two devices are on the same street.

The first rule supposes that the emission power of the devices is a

constant and that we do not take into account interference. The sec-

ond rule means that the signal cannot go through the buildings and

that reflections and diffractions are not taken into account. In sym-

bols, for 𝑋𝑖 (𝑡) the position of device 𝑎𝑖 at time 𝑡 and N(𝑎𝑖 , 𝑎 𝑗 ) :=
{𝑡 ≥ 0 : ∥𝑋𝑖 (𝑡) − 𝑋 𝑗 (𝑡)∥ < 𝑟 and ∃𝑠 ∈ 𝑆 such that (𝑋𝑖 (𝑡), 𝑋 𝑗 (𝑡)) ∈
𝑠}, we have that 𝑎𝑖 and 𝑎 𝑗 are connected at time 𝑡 if and only if

𝑡 ∈ N (𝑎𝑖 , 𝑎 𝑗 ).

3.3.3 Infection behavior. We will follow a standard SI compart-

mental model, very similar to SIR which is a classical approach

in epidemiology often used within the framework of differential

equations. However, unlike the latter, in a D2D context, users are

constrained to be positioned on streets and are mobile, two aspects

that are usually not represented in epidemiological studies. The

SI model is formulated by first partitioning devices into two dis-

tinct categories called susceptible (S) and infected (I). At time zero,

only one device will be in the infected state, while a CPP 𝑋𝑆 with

intensity 𝜃 will define the susceptible devices, independent of the

former one given the PVT tessellation. When an infected device

is connected to a susceptible device for a time longer than a given

threshold 𝜌 , the susceptible device will become infected. More pre-

cisely, if the device 𝑎𝑖 is infected at time 𝑡 and if [𝑡, 𝑡+𝜌] ∈ N (𝑎𝑖 , 𝑎 𝑗 ),
then 𝑎 𝑗 is infected at (𝑡 + 𝜌).

3.3.4 Agent states. Agent states specify what state an agent is in.

Agent-state transitions are driven by the rule base R that imple-

ments the reactive behavior of agents. It allows to select actions to

take for agent 𝑎𝑖 depending on its current local state 𝜉𝑖,𝑘 and its

knowledge base 𝑁𝑖,𝑘 . More specifically, we write R = {Θ} where
Θ(𝜉𝑖,𝑘 , 𝑁𝑖,𝑘 ) are the active rules that map the set of states and ob-

servations to actions for reactive tasks

Θ : (𝜉𝑖,𝑘 , 𝑁𝑖,𝑘 ) −→ Act𝑖,𝑘 .

Let 𝑇
(𝐶)
𝑖, 𝑗

be the connection duration between agents 𝑎𝑖 and 𝑎 𝑗 and

𝜌 be the needed time for the virus transmission from one agent

to another. Then the principal rule-based function is described as

follows.

• Malware infection rule: If agent 𝑎𝑖 is infected, agent 𝑎 𝑗 is

susceptible (𝜉𝑖,𝑘 = infected, 𝜉 𝑗,𝑘 = susceptible ) and 𝑎𝑖 was

connected to 𝑎 𝑗 for a time longer than the infection threshold

(𝑇
(𝐶)
𝑖, 𝑗
≥ 𝜌), then the state of agent 𝑎 𝑗 will be transited from

susceptible to infected (the action infect will be activated),

Θ𝐼 : (𝜉𝑖,𝑘 , 𝑁𝑖,𝑘 ) −→ Infect.

A more detailed description of the algorithm associated to malware

infection will be given in Section 4.

4 AGENT-BASED SIMULATION

In this section we present more details on the implementation of

our multi-agent simulation tool. Let us denote by

P := {𝑑𝑡, 𝜌, 𝑟, 𝜆, 𝜃, 𝑣}
the set of key model parameters where 𝑑𝑡 represents the elapsed

time in each step, 𝜌 and 𝑟 represent respectively connection time

needed for virus transmission and communication radius of agents.

𝜆 is the intensity of Voronoi seeds (seed/km
2
), 𝜃 is the intensity of

susceptible agents (agent/km) and 𝑣 denotes agents speed (km/h).

Other parameters such as the dimensions (𝐻1, 𝐻2) of the map can

be added to this list, but we will not focus on these in our study. For

the most part of the manuscript, we give the same speed to all the

agents in order to keep a restraint number of parameters. However,

we can easily have a more general model where the speeds of the

agents are distributed following some probability law. Each agent

could have for example a speed taken uniformly at random in some

interval [𝑣1, 𝑣2].
Our simulation is done over steps, each step corresponds to a time

instant 𝑘𝑑𝑡 . In the following we will denote byM𝑘 the model at

step 𝑘 . It represents the map, the agents and all their attributes (co-

ordinates, states, etc.) at step 𝑘 . In the simulation, we first generate

a random map, then the agents, and after that we run the function

Step(M𝑘 ), that updates the variables of the model, taking it from

a step 𝑘 to the next step 𝑘 + 1, for a number 𝑘max of iterations.

Algorithm 1 describes the entry function of the simulation. The

function GenerateMap(𝜆) returns a random PVT with parameter

𝜆, whereas the function Generate(𝜃, 𝑣) returns the set of agents

A := A𝑆 ∪ {𝑎𝑖0 }, whereA𝑆 is the set of initially susceptible agents

distributed onM using homogeneous PPP with parameters 𝜃 . 𝑎𝑖0
is the initially infected agent, placed near the center of the map.
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Algorithm 1:Main(P, 𝑘max): The main function describing

the simulation

Input :The set of parameters P and the maximum

number of steps 𝑘max

Output :The state of a randomly generated model at time

𝑘max𝑑𝑡

1 M← GenerateMap(𝜆);

2 A ← GenerateAgents(𝜃 );

3 M0 ← (P,M,A, (𝑋𝑖,0)𝑖 , (𝑇 (𝐼 )𝑖,0
)𝑖 );

4 for 𝑘 ∈ {1, . . . , 𝑘max} do
5 M𝑘 ← Step(M𝑘−1);
6 returnM𝑘max

4.1 Discrete-time approximations

Recall that our simulations are done over steps, where each step

𝑘 corresponds to a time instant 𝑘𝑑𝑡 . A difficulty lies in the correct

updating of the states of the agents. From step 𝑘 to 𝑘 + 1, each agent

moves independently as described in Section 3.3.1, which means

that we can access the positions of the agents at times (𝑘𝑑𝑡)𝑘∈N
knowing their velocities and the edges they have been through, but

it is complicated to know all the interactions they had given only

this information. To overcome this, we first impose the constraint

𝑑𝑡 < 𝜌 . This guarantees that, by only observing the positions of the

agents at discrete times with a step 𝑑𝑡 , we will not miss any two

devices that connect for a duration longer than 𝜌 , see Section 4.2 for

more details. Let 𝑘 ∈ N, and let us assume that 𝑎𝑖 , 𝑎 𝑗 are connected

to each other at 𝑘𝑑𝑡 . We will treat the general case where they can

have different speeds 𝑣𝑖 and 𝑣 𝑗 , and we will compute the duration

of the connection using their movement equations. Let us denote by

𝑡
(in)
𝑖,𝑠

(respectively 𝑡
(out)
𝑖,𝑠

) the time when 𝑎𝑖 gets in (respectively out)

of the street 𝑠 . These can easily be computed knowing 𝑋𝑖 and the

length 𝐿(𝑠) of the street 𝑠 . Since 𝑠 has two different directions, we

need to consider their velocities v𝑖 , v𝑗 . Let 𝑃1, 𝑃2 be the positions of

the two extremities of the street 𝑠 , let e := (𝑃2 − 𝑃1)/∥𝑃2 − 𝑃1∥ (we
can take −e instead), and 𝜈𝑖 , 𝜈 𝑗 be such that v𝑖 = 𝜈𝑖e, v𝑗 = 𝜈 𝑗e. We

recall that the absolute speed 𝑣𝑖 of 𝑎𝑖 obeys 𝑣𝑖 = ∥v𝑖 ∥ = ±𝜈𝑖 , the
same holds for 𝑎 𝑗 . Finally, let us also define the coordinates of 𝑎𝑖 , 𝑎 𝑗
on the street 𝑠 by 𝑑𝑖,𝑘 := (𝑋𝑖,𝑘 − 𝑃1) · e and 𝑑 𝑗,𝑘 := (𝑋 𝑗,𝑘 − 𝑃1) · e.
Then we have the following result that we present without proof.

Lemma 1. If 𝑎𝑖 , 𝑎 𝑗 are connected at time 𝑘𝑑𝑡 and if 𝜈𝑖 ≠ 𝜈 𝑗 , then

they are connected during all the time interval [𝑡 (𝐶,𝑖)
𝑖, 𝑗

, 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

], where

𝑡
(𝐶,𝑖)
𝑖, 𝑗

:= max{𝑘𝑑𝑡 −
𝑑𝑖,𝑘 − 𝑑 𝑗,𝑘
𝜈𝑖 − 𝜈 𝑗

− 𝑟

|𝜈𝑖 − 𝜈 𝑗 |
, 𝑡
(in)
𝑖,𝑠

, 𝑡
(in)
𝑗,𝑠
},

𝑡
(𝐶,𝑓 )
𝑖, 𝑗

:= min{𝑘𝑑𝑡 −
𝑑𝑖,𝑘 − 𝑑 𝑗,𝑘
𝜈𝑖 − 𝜈 𝑗

+ 𝑟

|𝜈𝑖 − 𝜈 𝑗 |
, 𝑡
(out)
𝑖,𝑠

, 𝑡
(out)
𝑗,𝑠
}.

Moreover, if 𝜈𝑖 = 𝜈 𝑗 , then

𝑡
(𝐶,𝑖)
𝑖, 𝑗

= max{𝑡 (in)
𝑖,𝑠

, 𝑡
(in)
𝑗,𝑠
} and 𝑡 (𝐶,𝑓 )

𝑖, 𝑗
= min{𝑡 (out)

𝑖,𝑠
, 𝑡
(out)
𝑗,𝑠
}.

The connection duration of 𝑎𝑖 , 𝑎 𝑗 is then 𝑇
(𝐶)
𝑖, 𝑗

:= 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

− 𝑡 (𝐶,𝑖)
𝑖, 𝑗

.

In words, two agents on the same street can have different speeds

and move either in the same or in opposite directions. Recall that

the connection-time interval is the set of all time instants such that

the distance of the two agents is less than 𝑟 .

We saw in Section 3.2, that agents states will be determined by

the variable 𝑇
(𝐼 )
𝑖,𝑘−1 at each step 𝑘 ≥ 1. We call S𝑘 ,I𝑘 the sets of

susceptible and infected agents. Let ConnectionInterval(𝑎𝑖 , 𝑎 𝑗 , 𝑘)

be a function computing 𝑡
(𝐶,𝑖)
𝑖, 𝑗

, 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

as in Lemma 1 knowing that

𝑎𝑖 , 𝑎 𝑗 are connected at 𝑘𝑑𝑡 , and let GetNeighbors(𝑎𝑖 ) be a function

returning the set of neighbors of 𝑎𝑖 defined as: 𝑁𝑘 (𝑎𝑖 ) := {𝑎 𝑗 ∈
A : ∥𝑋𝑖,𝑘 − 𝑋 𝑗,𝑘 ∥ ≤ 𝑟 and 𝑎𝑖 , 𝑎 𝑗 on the same street}. Finding the

neighbors of all the agents would normally require a 𝑂 (𝑛2) time

complexity, but since only agents on the same street can connect to

each other, we can considerably reduce this complexity by searching

neighbors of each agent only among those that are on the same

street. From here, we can write Algorithm 2 that updates the values

𝑇
(𝐼 )
𝑗,𝑘

for the neighbors of an infected agent 𝑎𝑖 .

Algorithm 2: InfectNeighbors(𝑎𝑖 )

Input :An infected agent 𝑎𝑖

Output :Updates 𝑇
(𝐼 )
𝑗,𝑘

for all susceptible neighbors of 𝑎𝑖

1 𝑁
(𝑆)
𝑘
(𝑎𝑖 ) ← GetNeighbors(𝑎𝑖 ) ∩ S𝑘 ;

2 for 𝑎 𝑗 ∈ 𝑁 (𝑆)𝑘
(𝑎𝑖 ) do

3 𝑡
(𝐶,𝑖)
𝑖, 𝑗

, 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

← ConnectionInterval(𝑎𝑖 , 𝑎 𝑗 , 𝑘);
4 𝑡

(𝐶,𝑖)
𝑖, 𝑗

← max{𝑡 (𝐶,𝑖)
𝑖, 𝑗

,𝑇
(𝐼 )
𝑖,𝑘
};

5 if 𝑇
(𝐶)
𝑖, 𝑗

:= 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

− 𝑡 (𝐶,𝑖)
𝑖, 𝑗

≥ 𝜌 then

6 𝑇
(𝐼 )
𝑗,𝑘
← min{𝑇 (𝐼 )

𝑖,𝑘
, 𝑡
(𝐶,𝑖)
𝑖, 𝑗

+ 𝜌};

Line 4 makes sure that we only compute the time when the

agents are connected and 𝑎𝑖 is infected. Note that in Line 6, we

cannot set the value of𝑇
(𝐼 )
𝑗,𝑘

simply to 𝑡
(𝐶,𝑖)
𝑖, 𝑗
+𝜌 as agent 𝑎 𝑗 might be

connected to several infected agents, and it will become infected as

soon as it stays connected to one of them for longer than 𝜌 . Finally,

we can write the core function of our simulation, that is Algorithm

3.

Algorithm 3: The Step Function

Input :The modelM𝑘−1 at step 𝑘 − 1
Output :The modelM𝑘 at step 𝑘

1 S𝑘 ,I𝑘 ← The sets of susceptible and infected agents;

2 for 𝑎𝑖 ∈ A do

3 𝑋𝑖,𝑘 ← Move(𝑎𝑖 ,𝑉𝑖 , 𝑋𝑖,𝑘−1, 𝑑𝑡); //Update the positions

4 𝑇
(𝐼 )
𝑖,𝑘
← 𝑇

(𝐼 )
𝑖,𝑘−1; //Initialisation

5 for 𝑎𝑖 ∈ I𝑘 do

6 InfectNeighbors(𝑎𝑖 ); //Update the variables𝑇
(𝐼 )
𝑗,𝑘

7 M𝑘 ← (P,M,A, (𝑋𝑖,𝑘 )𝑖 , (𝑇
(𝐼 )
𝑖,𝑘
)𝑖 ;

8 returnM𝑘 ;
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4.2 Equivalence of discrete and continuous time

We denote by 𝜉𝑖 (𝑡) the state of agent 𝑎𝑖 at continuous time 𝑡 for any
𝑎𝑖 ∈ A. On the other hand, for each 𝑘 ∈ N we denote as before by

𝜉𝑖,𝑘 the state of 𝑎𝑖 at discrete time 𝑘𝑑𝑡 as predicted by our ABM. The

following theorem states that for sufficiently small time slots, at the

discrete time points, our model is equivalent to its continuous-time

version and is then theoretically proven to be correct.

Theorem 2. If 𝑑𝑡 < 𝜌 , then we have

∀𝑎𝑖 ∈ A,∀𝑘 ∈ N, 𝜉𝑖,𝑘 = 𝜉𝑖 (𝑘𝑑𝑡) .

In words, Theorem 2 guarantees that, by discretizing, we do not

miss infection events and the introduced time differences do not

induce errors in the discretized model. Let us first define the first

continuous time when 𝑎 𝑗 ∈ A is infected, i.e., 𝑇
(𝐼 )
𝑗

:= inf{𝑡 ≥
0 : 𝜉 𝑗 (𝑡) = infected}. Regarding our malware propagation rules, we

can write

𝑇
(𝐼 )
𝑗

= inf

𝑎𝑖≠𝑎 𝑗

inf

𝑡 ≥𝑇 (𝐼 )
𝑖

{𝑡 + 𝜌 : [𝑡, 𝑡 + 𝜌] ⊂ N (𝑎𝑖 , 𝑎 𝑗 )}, (1)

where N(𝑎𝑖 , 𝑎 𝑗 ) is as defined in Section 3.3.2. Let us also denote

S𝑘 := {𝑎𝑖 : 𝑘𝑑𝑡 < 𝑇
(𝐼 )
𝑖,𝑘−1},

˜S𝑘 := {𝑎𝑖 : 𝑘𝑑𝑡 < 𝑇
(𝐼 )
𝑖
}, I𝑘 := {𝑎𝑖 : 𝑘𝑑𝑡 ≥

𝑇
(𝐼 )
𝑖,𝑘−1} and

˜I𝑘 := {𝑎𝑖 : 𝑘𝑑𝑡 ≥ 𝑇
(𝐼 )
𝑖
}. Finally, for convenience, let

𝑇
(𝐼 )
𝑖,−1 := 𝑇

(𝐼 )
𝑖,0

for all 𝑎𝑖 ∈ A. We have the following lemma.

Lemma 3. If 𝑑𝑡 < 𝜌 , then for any 𝑘 ∈ N, assertion B𝑘 is true

(B𝑘 ) : ∀𝑎 𝑗 ∈ A,


𝑇
(𝐼 )
𝑗
≤ 𝑇 (𝐼 )

𝑗,𝑘−1,

𝑇
(𝐼 )
𝑗
≤ 𝑘𝑑𝑡 =⇒ 𝑇

(𝐼 )
𝑗

= 𝑇
(𝐼 )
𝑗,𝑘−1 .

Note that, if B𝑘 is verified for some 𝑘 ∈ N, then ˜S𝑘 ⊂ S𝑘 and

˜I𝑘 ⊂ I𝑘 . But since ˜S ∪ ˜I𝑘 = S𝑘 ∪ I𝑘 , this means that
˜S𝑘 = S𝑘 and

˜I𝑘 = I𝑘 and thus Theorem 2 is proved.

Proof. For𝑘 = 0 the assertion is true by definition of (𝑇 (𝐼 )
𝑖,−1)𝑎𝑖 ∈A .

Let 𝑘 ≥ 1, assume that B𝑘 is true and let 𝑎 𝑗 ∈ A. If 𝑇
(𝐼 )
𝑗,𝑘

= 𝑇
(𝐼 )
𝑗,𝑘−1

then directly 𝑇
(𝐼 )
𝑗
≤ 𝑇 (𝐼 )

𝑗,𝑘
. Otherwise 𝑇

(𝐼 )
𝑗,𝑘

was updated during step

𝑘 , i.e., there exists an agent 𝑎𝑖 ∈ I𝑘 for which InfectNeighbor(𝑎𝑖 )

was called and such that 𝑎 𝑗 ∈ 𝑁
(𝑆)
𝑖,𝑘

and 𝑡2 − 𝑡1 ≥ 𝜌 with 𝑡1 =

max{𝑡 (𝐶,𝑖)
𝑖, 𝑗

,𝑇
(𝐼 )
𝑖,𝑘−1}, 𝑡2 = 𝑡

(𝐶,𝑓 )
𝑖, 𝑗

. This implies that [𝑡1, 𝑡1 + 𝜌] ⊂

[𝑡 (𝐶,𝑖)
𝑖, 𝑗

, 𝑡
(𝐶,𝑓 )
𝑖, 𝑗

] ⊂ N (𝑎𝑖 , 𝑎 𝑗 ), and since 𝑎𝑖 ∈ I𝑘 , we have by the

induction hypothesis that 𝑇
(𝐼 )
𝑖

= 𝑇
(𝐼 )
𝑖,𝑘−1 and thus 𝑡1 ≥ 𝑇

(𝐼 )
𝑖

. Thus,

using Equation (1), we have that𝑇
(𝐼 )
𝑗
≤ 𝑇 (𝐼 )

𝑗,𝑘
. For the second part of

the assertion, let us assume that𝑇
(𝐼 )
𝑗
≤ (𝑘 +1)𝑑𝑡 . If𝑇 (𝐼 )

𝑗
≤ 𝑘𝑑𝑡 then

𝑇
(𝐼 )
𝑗,𝑘
≤ 𝑇

(𝐼 )
𝑗,𝑘−1 = 𝑇

(𝐼 )
𝑗

(induction hypothesis), and we proved that

𝑇
(𝐼 )
𝑗
≤ 𝑇

(𝐼 )
𝑗,𝑘

and therefore 𝑇
(𝐼 )
𝑗

= 𝑇
(𝐼 )
𝑗,𝑘

. Otherwise 𝑘𝑑𝑡 < 𝑇
(𝐼 )
𝑗
≤

(𝑘 + 1)𝑑𝑡 , this implies that 𝑎 𝑗 ∈ ˜S𝑘 and there exists 𝑎𝑖 ∈ A such

that [𝑡, 𝑡 + 𝜌] ⊂ N (𝑎𝑖 , 𝑎 𝑗 ) and 𝑡 ≥ 𝑇
(𝐼 )
𝑖

with 𝑡 := 𝑇
(𝐼 )
𝑗
− 𝜌 . Given

that 𝑑𝑡 < 𝜌 we have

𝑇
(𝐼 )
𝑖
≤ 𝑡 = 𝑇

(𝐼 )
𝑗
− 𝜌𝐼 ≤ (𝑘 + 1)𝑑𝑡 − 𝜌𝐼 < 𝑘𝑑𝑡 < 𝑇

(𝐼 )
𝑗

= 𝑡 + 𝜌𝐼 ,

and this implies that 𝑎𝑖 ∈ ˜I𝑘 and 𝑘𝑑𝑡 ∈ [𝑡, 𝑡 + 𝜌] ⊂ N (𝑎𝑖 , 𝑎 𝑗 )
. Thus InfectNeighbors is called on 𝑎𝑖 at step 𝑘 and 𝑎 𝑗 is among

the visited agents during this call (neighbors of 𝑎𝑖 ). 𝑇
(𝐼 )
𝑗,𝑘

will then

be updated and its final value will be at most 𝑡 + 𝜌 = 𝑇
(𝐼 )
𝑖

. With

the inequality 𝑇
(𝐼 )
𝑗
≤ 𝑇 (𝐼 )

𝑗,𝑘
that we already proved, we deduce that

𝑇
(𝐼 )
𝑗

= 𝑇
(𝐼 )
𝑗,𝑘

. □

Finally, for any 𝑘 ∈ N, we have by Lemma 3 that
˜S𝑘 = S𝑘 and

˜I𝑘 = I𝑘 . This means that the states of the agents predicted by the

simulator correspond to their real states.

5 MEAN-FIELD VERSION

The model that we presented so far is very rich with many param-

eters. It is therefore difficult to run simulations varying all these

parameters and see how each of them influences the propagation of

the virus. So, in order to better choose the values we will assign to

them, in this section, we present a theoretical study on a simplified

model to identify critical relationships between parameters and

values that will lead to drastic changes in the system’s evolution.

Let us highlight that we consider a different model that does not

arise as a limiting object. It is mainly introduced in order to sharpen

the intuition for threshold values of important parameters.

As in the first model, we start with a single infected agent 𝑎𝑖0 , and

wewill take interest in the time of the first virus transmission, which

we will denote by 𝜏 in the following. Let us stress that the simplified

model that we present here is used only as a mathematical model.

All the simulations results in Section 6 are based on the original

model and not this simplified one.

We consider the following mean-field approximation of our spa-

tial model. Instead of considering 𝑎𝑖0 to be moving on a PVT, we

will consider that it moves on a succession of streets 𝑠0, 𝑠1, . . ., each

having a length 𝐿
(𝑖)
𝜆

that is a random variable with density 𝑓𝜆,𝐿 ,

where 𝑓𝜆,𝐿 is the density function of the edges lengths in a PVT

having a seeds intensity equal to 𝜆 (see Section 3.1). We will as-

sume that, when 𝑎𝑖0 enters a street, other agents are distributed

on it as an homogeneous PPP with parameter 𝜃 , and that they can

move in any of the two possible directions. What we mainly lose

in this simplified model is the dependence between the lengths of

the successive streets visited by 𝑎𝑖0 .

For each street 𝑠𝑖 visited by 𝑎𝑖0 , let 𝐶𝑖 be the number of agents

that 𝑎𝑖0 infects while being on 𝑠𝑖 . Let 𝑝 := Pr[𝐶𝑖 ≥ 1] denote the
probability that 𝑎𝑖0 infects at least some agent on 𝑠𝑖 (𝑝 is indepen-

dent of 𝑖). Finally, let 𝜏 be the first time instant when some agent

𝑎 𝑗 different from 𝑎𝑖0 becomes infected

𝜏 := inf{𝑡 ≥ 0 : ∃ 𝑗 ≠ 𝑖0 such that 𝜉 𝑗 (𝑡) = infected}.
Then, we have the following main results.

Theorem 4. If 𝜏 is the first time when 𝑎𝑖0 infects another agent,
then

2

3

√
𝜆𝑣
(1/𝑝 − 1) ≤ E[𝜏] ≤ 2

3

√
𝜆𝑣
· 1/𝑝.

Theorem 5. There exists a positive constant 𝐶 such that if 𝑝 is
sufficiently small, then for 𝑡0 = 1/(3

√︁
𝑝𝜆𝑣) we have

Pr[𝜏 ≥ 𝑡0] ≥ 1 −𝐶𝑝1/4 .

Main Track AAMAS 2022, May 9–13, 2022, Online

95



These theorems indicate that, if the probability of infecting an-

other agent on a single street 𝑠𝑖 is low, then the waiting time before

the virus transmission is very large, and therefore the virus propa-

gation is weak. In terms of the asymptotic behavior of the system,

we can state that, when 𝑝 = 𝑜 (1), then E[𝜏] = Ω(1/(
√
𝜆𝑣𝑝) and for

𝑡0 = 1/(3
√︁
𝑝𝜆𝑣) we have Pr[𝜏 ≥ 𝑡0] = 1 −𝑂 (𝑝1/4).

The proofs rely on results for typical edge length in PVT and

Berry–Esseen inequalities. Let us start by presenting a first lemma

on the edges-lengths distribution when 𝜆 = 1, as described in [3].

Lemma 6. In a random planar PVT, if we choose a random edge,
then its length 𝐿 is a random variable having a distribution 𝑓𝐿 satis-
fying

(1) 𝑓𝐿 (0) = 2/𝜋 , when 𝑙 is large enough: 𝑓𝐿 (𝑙) ∼ 𝜋2

3

√
2

𝑙2𝑒−
𝜋
2
𝑙2 ,

(2) if 𝐿 is a random variable with density function 𝑓𝐿 , then 𝐿 has
an 𝑛-th moment for any positive integer 𝑛 and

(3) E[𝐿] = 2/3, 𝜎2
𝐿
:= Var[𝐿] ≈ 0.1856.

From this we deduce the result for any positive 𝜆.

Lemma 7. If 𝑃𝜆 is a PVT generated with an intensity of seeds 𝜆 > 0,
then the edges length in 𝑃𝜆 will have a density function 𝑓𝜆,𝐿 given by

𝑓𝜆,𝐿 (𝑙) :=
√
𝜆𝑓𝐿 (
√
𝜆𝑙), ∀𝑙 ≥ 0.

Then we have the following statement.

Corollary 8. If 𝐿𝜆 is a random variable with density 𝑓𝜆,𝐿 , then
for any positive integer 𝑛, 𝐿𝜆 has a 𝑛-th moment given by

E[𝐿𝑛
𝜆
] = 𝜆−𝑛/2𝐸 [𝐿𝑛

1
] .

Finally, since 𝑓𝐿 is a rapidly decreasing function when ℓ is large,

we have the following probability estimate.

Lemma 9. There exists 𝑙0 > 0 such that for any 𝑥 ≥ 𝑙0/
√
𝜆

Pr[𝐿𝜆 ≥ 𝑥] ≤ exp(−𝜆𝑥2).

Next, the following theorem is a corollary of the Berry–Esseen’s

inequality [1, 7] applied to random variables (𝑋𝑖 − 𝜇) and using the

trivial relation Pr[𝑌𝑛 > 𝑥] = 1−Pr[𝑌𝑛 ≤ 𝑥] for𝑌𝑛 := 1

𝑛

𝑛−1∑
𝑖=0
(𝑋𝑖 −𝜇).

Theorem 10. There exists a constant 𝐶 such that if 𝑋0, 𝑋1, . . . are
i.i.d. random variables with E[|𝑋0 |] = 𝜇 < +∞, Var[𝑋0] = 𝜎2 > 0

and E[|𝑋0 − 𝜇 |3] =𝑚 < +∞, then for any 𝑛 ∈ N and 𝑥 ∈ R

Pr

[
𝑛−1∑︁
𝑖=0

𝑋𝑖 > 𝑥

]
≥ 1 − Φ

((𝑥
𝑛
− 𝜇

) √𝑛
𝜎

)
− 𝐶𝑚

𝜎3
√
𝑛
.

Here Φ is the cumulative distribution function of the standard normal
distribution.

We are now in the position to prove our main theorems.

Proof of Theorem 4. We only need to observe that 𝜏0 + . . . +
𝜏𝑚−1 ≤ 𝜏 ≤ 𝜏0+ . . .+𝜏𝑚 , where𝑚 is the index of the first street such

that 𝐶𝑚 ≥ 1 and 𝜏𝑖 := 𝐿
(𝑖)
𝜆
/𝑣 is the time spent by 𝑎𝑖0 on the street 𝑖 .

Using the law of total expectation, we deduce that E[𝑚]E[𝐿𝜆]/𝑣 ≤
E[𝜏] ≤ (E[𝑚] +1)E[𝐿𝜆]/𝑣 , and the result is obtained by computing

the two expectations E[𝑚] and E[𝐿𝜆]. □

Proof of Theorem 5. To prove this theorem, we first need to

observe that for any �̃� ∈ N we have Pr[𝜏 ≥ 𝑡0] ≥ Pr[𝜏0 + . . . +
𝜏𝑚−1 ≥ 𝑡0] ≥ Pr[𝜏0 + . . . + 𝜏�̃�−1 ≥ 𝑡0] Pr[𝑚 ≥ �̃�] (the second

inequality is true because all the 𝜏𝑖 are non-negative). In particular

for �̃� = ⌈1/√𝑝⌉ ≤ 1/√𝑝 + 1, Bernoulli’s inequality gives that

Pr[𝑚 ≥ �̃�] = (1 − 𝑝)�̃� ≥ 1 − �̃�𝑝 ≥ 1 − √𝑝 − 𝑝 ≥ 1 − 2√𝑝.

On the other hand, if 𝑝 ≤ (6𝜎𝐿)−4, using Theorem 10 and the

inequality Φ(−𝑥) ≤ exp(−𝑥)/
√
2𝜋 , which is true for any 𝑥 ≥ 2, we

find a constant 𝐶1 verifying

Pr[𝜏0 + . . . + 𝜏�̃�−1 ≥ 𝑡0] ≥ 1 −𝐶1𝑝
1/4 .

Finally, when 𝑝 is small enough, we deduce using again Bernoulli’s

inequality that

Pr[𝜏 ≥ 𝑡0] ≥ (1 − 2
√
𝑝) (1 −𝐶1𝑝

1/4) ≥ 1 − (2 +𝐶1)𝑝1/4 .

This finishes the proof. □

We will now apply the previous theorems to show that the virus

propagation is slow in any of the following cases.

• The transmission time of the virus is very large compared

to the expected time spent by agents on streets :

√
𝜆𝜌𝑣 ≫ 1

• The number of agents reachable within the communication

radius is very small: 𝜃𝑟 ≪ 1

• The number of agents on each street is very small: 𝜃/
√
𝜆 ≪ 1.

Corollary 11. If
√
𝜆𝜌𝑣 ≥ 𝑙0, then E[𝜏] ≥

2

3

√
𝜆𝑣
(𝑒𝜆𝜌2𝑣2 − 1) .

Proof. We have the implications 𝐶0 ≥ 1 ⇒ 𝜏0 ≥ 𝜌 ⇒ 𝐿
(0)
𝜆
≥

𝜌𝑣 . Hence, using Lemma 9, 𝑝 = Pr[𝐶0 ≥ 1] ≤ Pr[𝐿𝜆 ≥ 𝜌𝑣] ≤
exp(−𝜆𝜌2𝑣2). The result follows directly from Theorem 4. □

Corollary 12. If 𝑟 < 𝜌𝑣 , then E[𝜏] ≥ 2

3

√
𝜆𝑣
(1/(𝜃𝑟 ) − 1) .

Proof. If 𝑟 < 𝜌𝑣 , then 𝑎𝑖0 can only infect the agents moving

in the same direction as him: its connection time with the agents

moving in the opposite direction is upper bounded by 𝑟/𝑣 < 𝜌 . Let

𝑁𝑐 be the number of agents that 𝑎𝑖0 connects to while being on 𝑠0.

Since each agent in 𝑠0 can be moving in any of the directions with

a probability 1/2, 𝑁𝑐 is dominated by a random Poisson variable

with parameter 2𝜃𝑟/2 = 𝜃𝑟 , which means that

Pr[𝑁𝑐 ≥ 1] =
∫ +∞

0

Pr[𝑁𝑐 ≥ 1 | 𝐿 (0)
𝜆

= ℓ] 𝑓𝜆,𝐿 (ℓ)𝑑ℓ

≤
∫ +∞

0

(1 − 𝑒−𝜃𝑟 ) 𝑓𝜆,𝐿 (ℓ)𝑑ℓ = 1 − 𝑒−𝜃𝑟 ≤ 𝜃𝑟 .

Since 𝐶0 ≤ 𝑁𝑐 , Theorem 4 gives the desired result. □

Corollary 13. We have E[𝜏] ≥ (
√
𝜆/𝜃 − 4/3)/(2

√
𝜆𝑣).

Proof. We can easily prove that the number 𝑁 of agents that

were on 𝑠0 at some time instant when 𝑎𝑖0 was on it too follows a

Poisson distribution with parameter 2𝜃𝐿
(0)
𝜆

. In fact, when 𝑎𝑖0 enters

𝑠0, there are 𝑁1 agents on the street, and by the time it reaches the

end of the street, since all the agents have the same speed, all of

these will have left it and 𝑁2 new agents will have come. 𝑁1 and
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𝑁2 both follow a Poisson distribution with parameter 𝜃𝐿
(0)
𝜆

and

𝑁 = 𝑁1 + 𝑁2. Finally, given that 𝐶0 ≤ 𝑁 , we have

Pr[𝐶0 ≥ 1] ≤ Pr[𝑁 ≥ 1] =
∫ +∞

0

Pr[𝑁 ≥ 1 | 𝐿 (0)
𝜆

= 𝑙] 𝑓𝜆,𝐿 (𝑙)𝑑𝑙

=

∫ +∞

0

(1 − 𝑒−2𝜃𝑙 ) 𝑓𝜆,𝐿 (𝑙)𝑑𝑙 ≤
2𝜃
√
𝜆
E[𝐿1] =

4𝜃

3

√
𝜆
.

Applying Theorem 4 concludes the proof. □

Using Theorem 5 in these three cases, we can also find lower

bounds for 𝜏 that hold with high probability.

6 SIMULATION RESULTS

This section discusses simulations that were performed to analyze

malware propagation in D2D, to benchmark the mathematical study

in Section 5 and to show how the various parameters accelerate or

slow down the propagation. Our ABMwas built based on Mesa [14],

which is a very suitable python framework for ABMs that we have

extended to generate and visualize street system environments.

6.1 Evaluation indicators

We present some indicators that allow us to analyze malware prop-

agation. They should be independent of the dimensions of the map,

since we theoretically want to study propagation on an infinite plan.

We denote 𝜏𝑢 the time when the infection reaches the distance 𝑢

from the initial infection point

𝜏𝑢 := inf{𝑡 ≥ 0 : ∃𝑎 𝑗 ∈ I(𝑡) : ∥𝑋 𝑗 (𝑡) − 𝑋𝐼0 (0)∥ ≥ 𝑢}.
where I(𝑡) is the set of infected agents at time 𝑡 , 𝑎𝐼0 the only

initially infected agent and 𝑋𝐼0 its position at time 0.

Definition 14 (Propagation speed). The propagation speed
is the velocity of malware spread in space. It is defined by

V := lim sup

𝑢→+∞
𝑢E[1/𝜏𝑢 ],

Definition 15 (Infection rate). The infection rate is the rate
of infected agents in the region reached by the virus

R := lim sup

𝑢→+∞

|I(𝜏𝑢 ) |
|{𝑋 𝑗 (𝜏𝑢 ) : 𝑎 𝑗 ∈ A} ∩ 𝐵(𝑋𝐼0 (0), 𝑢) |

,

where 𝐵(𝑋𝐼0 (0), 𝑢) is the open ball of center 𝑋𝐼0 (0) and radius 𝑢.
Note that |{𝑋 𝑗 (𝜏𝑢 )} ∩ 𝐵(𝑋𝐼0 (0), 𝑢) | is simply the number of

agents inside 𝐵(𝑋𝐼0 (0), 𝑢) at time 𝜏𝑢 .

V and R are defined as limits, letV𝑢 and R𝑢 be the expressions

in Definitions 14 and 15 that converge to them respectively. Since

we are mostly interested in the behavior of the system and not

really in the exact values of the propagation speed and the infection

rate, it is enough to set a large enough value for 𝑢, consider that

V ≈ V𝑢 and R ≈ R𝑢 , and interpret the results.

6.2 Simulation results

For all simulations, unless otherwise stated, parameters are set

by default as follows: (𝑢 = 3.5𝑘𝑚,𝐻 = 10𝑘𝑚, 𝜆 = 50𝑘𝑚−2, 𝜃 =

3𝑘𝑚−1, 𝑣 = 5𝑘𝑚/ℎ, 𝜌 = 20𝑠, 𝑟 = 200𝑚). where 𝐻 is the side length

of the square surface containing the map. We assume 𝑑𝑡 = 0.9𝜌 .

Each value in the diagrams we will present later is the average over

20 simulations with the same set of parameters. In the diagrams

where 𝜆 does not vary, we use the same 20 maps for all the points.

Figure 1: Infection rate R

Figure 2: Propagation speedV in (𝑘𝑚/ℎ)

6.2.1 The threshold
√
𝜆𝜌𝑣 . The critical regimes seen in Section 5

are relevant and confirm the intuitive expectations one may have

for the virus propagation. However, the most remarkable result

concerns the regime

√
𝜆𝜌𝑣 ≫ 1, because the lower bound found

for E[𝜏] grows with a speed of 𝑥 ↦→ exp(𝑥2)/𝑥 in the quantity√
𝜆𝜌𝑣 , we can thus expect to observe a rather tight threshold at

the level of which the propagation is no longer possible. To have

meaningful results, we will vary 𝜆 from 10 to 200 and the speed

of the agents from 1 to 90, and the other parameters will be set

by default as in Sections 6.2. However, when 𝜆 is very large, the

number of agents E[|A|] = 2

√
𝜆𝐻2𝜃 will be also large since, even if

it is only proportional to

√
𝜆, the multiplicative constant is large. To

keep a reasonable number of agents, we use maps with side-length

𝐻𝜆 := 20𝜆−1/4 for each value of 𝜆, and the stopping propagation

radius 𝑢𝜆 := 0.45 × 𝐻𝜆 to have 𝐻 > 2𝑢. This will guarantee that

the expected number of agents is E[A] = 2400 (𝜃 = 3), and the

side-lengths will vary from ≈ 11.24 to ≈ 5.32𝑘𝑚.

We observe in Figures 1 and 2 that the rate of infection and the

speed of propagation both cancel out above a certain threshold

curve, having a shape of type 𝑣 (𝜆) = 𝑐/(𝜌
√
𝜆), as indicated in blue

(for 𝑐 = 2/3) and white (for 𝑐 = 3/2). This confirms the hypothesis

of the exponential lower bound of E[𝜏], although it is obtained

with a simplified mathematical model. It seems however that this

threshold is sharper for R than for V . The reason why we have
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Figure 3: Infection rate R

such a threshold is that the distribution of the edges lengths in a

PVT makes it very rare to have edges much larger than the mean

edge length E[𝐿𝜆] = 2/(3
√
𝜆) (see Corollary 8), and therefore, when

there is no edge larger than 𝜌𝑣 , the virus cannot propagate since

connection require agents to be on the same street.

With respect to Figure 2, we see that the virus can hardly prop-

agate if

√
𝜆𝜌𝑣 ≥ 3/2. A surprising remark is that the maximum

infection rate is always not far below the curve

√
𝜆𝜌𝑣 = 2/3, while

the maximum propagation speed seems to be achieved exactly at

the points verifying this equation. We also observe a lower thresh-

old value of the speed: the virus hardly propagates for 𝑣 = 3, but

as soon as 𝑣 = 6, we see a remarkable jump in the values of R
andV . It is to be expected to have a weaker propagation for the

small values of the speed because in the limit 𝑣 = 0 the virus can

propagate at most in the street where it was initially placed.

The third observation is that the virus propagation becomes

slower as 𝜆 becomes larger. The reason is that, as predicted by the

simplified model in Section 5, when

√
𝜆 becomes much larger than

𝜃 , we have too many streets compared to the number of agents, and

therefore 𝑎𝐼0 will only meet a few agents.

6.2.2 How is the propagation speed impacted by 𝜃 and 𝑣? The propa-

gation speed of the virus is certainly a function of all the parameters

of our model. However, the distance 𝑟 is given by the technology

and cannot be changed, and the intensity of streets 𝜆 is known for a

given city. Now, for a given malware, we want to see the influence

of the intensity and speed of users on the propagation speed and

the infection rate. In fact, agents that move fast enough but not

too fast, i.e., not to have

√
𝜆𝜌𝑣 ≥ 3/2, will rapidly carry the virus

to the other edges and facilitate its spreading. Also, when agents’

intensity is important, there will be always agents on these streets

that will get infected and carry the virus further.

Considering Figure 4, we see that the propagation speed and the

infection rate show different behaviors. Indeed, although both are

increasing in 𝜃 , R is maximal for 𝑣 around 7 − 10𝑘𝑚/ℎ, while V
is maximal for 𝑣 around 15 − 20𝑘𝑚/ℎ. Moreover, the high values

of the propagation speed are more concentrated while those of R
seem to be more spread out. Also, for every 𝜃 , there is clearly an

increase and then a decrease ofV when we increase 𝑣 , going from

≈ 0𝑘𝑚/ℎ to the maximal value and then returning to 0𝑘𝑚/ℎ. But
the value R does not change a lot in the first range of values of 𝑣 .

Figure 4: Propagation speedV in (𝑘𝑚/ℎ)

This means that, when agents are slow, they will stay sufficiently

long on every street and therefore, once an infected agent reaches a

street, it will infect many agents being on it too. Propagation speed

is nevertheless slow because agents take a lot of time before exiting

each street and carrying the virus to the next one. This correlation

between R andV confirms the need to study them both.

Returning to the results of Figure 3, the value of 𝑣 for which√
𝜆𝜌𝑣 = 2/3 is 𝑣0 ≈ 16.97. Thus, we have again that R is maximal

in the region below the level line

√
𝜆𝜌𝑣 = 2/3, andV is maximal

exactly in its close neighborhood. This property would therefore be

true even when varying 𝜃 . For larger values of 𝑣 , we expect that the

virus will not propagate anymore because the streets are not long

enough, andwe already see the beginning of this behavior. However,

we notice that the speed at which the propagation weakens depends

on 𝜃 : the higher the intensity of the agents, the higher the speed

needed to weaken the virus propagation, which is to be expected

since the increase of 𝜃 favors the propagation of the virus. Moreover,

for small values of 𝜃 , the propagation never takes place whatever

the value of 𝑣 because the agents are few and do not establish

enough connections (𝜃 is below the percolation threshold).

7 CONCLUSION AND FUTUREWORK

This paper presents a novel ABM for analyzing malware propa-

gation dynamics in D2D networks. This approach, traditionally

applied for complex systems, allows us to obtain relevant and sur-

prising findings about malware propagation in D2D, which demon-

strate also the effectiveness for such dynamical communication

networks. Notably, malware propagation was not possible above

a first threshold (

√
𝜆𝜌𝑣 > 3/2) and was maximal around a second

threshold (

√
𝜆𝜌𝑣 = 2/3), which corresponds to having an average

length of streets equal to the distance traveled by an agent dur-

ing the time 𝜌 (needed for infection transmission). This shows the

importance of street system characteristics, which has been tradi-

tionally neglected when studying malware propagation in D2D. We

believe that the ABM approach has a great potential for studying

malware spread in D2D communication networks. Besides general-

izations such as adding attributes for the street widths, devices out

of the street system or sojourn times , as future work, we aim to

model and simulate countermeasure policies for reversing malware

attacks.
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